533 research outputs found

    Optocoupler Integration of LTCC-based Gate Driver in a SiC Power Module

    Get PDF
    The growing demand for electrical energy in today’s industrialized economy has driven the need for innovative approaches to meet diverse application requirements. Notably, advancements have been made in the field of power electronic systems, as reliable power electronic converters are essential for managing multiple power sources and loads. However, the development of these systems poses challenges related to power device switching speed, system weight and size, and power losses. The integration of a gate driver into a SiC power module offers a solution to many of these challenges, thereby driving the advancement of electrical power density expansion. An LTCC-based gate driver with an LTCC-based optical isolator was developed and integrated into a fabricated 1.2kV SiC power module. This development was done specifically for high temperature applications as part of a wider research on the reliability of the integrated power module at higher temperatures. Therefore, this high temperature gate driver integrated SiC power module was tested from 25oC to 200oC. Double pulse testing of the fabricated integrated SiC power module was done to characterize the switching performance of the power module. The test results indicate a minimal voltage overshoot of approximately 3.5V during both the turn-on and turn-off periods. Additionally, the current overshoot ranges from ~5A to ~8A as the temperature increases from 25oC to 200oC. The results show good switching performance resulting in minimal losses over higher temperatures. Therefore, with these results, the integrated SiC power module can enhance better power density, and lower losses even in high temperature applications

    Optocoupler Integration of LTCC-based Gate Driver in a SiC Power Module

    Get PDF
    The growing demand for electrical energy in today’s industrialized economy has driven the need for innovative approaches to meet diverse application requirements. Notably, advancements have been made in the field of power electronic systems, as reliable power electronic converters are essential for managing multiple power sources and loads. However, the development of these systems poses challenges related to power device switching speed, system weight and size, and power losses. The integration of a gate driver into a SiC power module offers a solution to many of these challenges, thereby driving the advancement of electrical power density expansion. An LTCC-based gate driver with an LTCC-based optical isolator was developed and integrated into a fabricated 1.2kV SiC power module. This development was done specifically for high temperature applications as part of a wider research on the reliability of the integrated power module at higher temperatures. Therefore, this high temperature gate driver integrated SiC power module was tested from 25oC to 200oC. Double pulse testing of the fabricated integrated SiC power module was done to characterize the switching performance of the power module. The test results indicate a minimal voltage overshoot of approximately 3.5V during both the turn-on and turn-off periods. Additionally, the current overshoot ranges from ~5A to ~8A as the temperature increases from 25oC to 200oC. The results show good switching performance resulting in minimal losses over higher temperatures. Therefore, with these results, the integrated SiC power module can enhance better power density, and lower losses even in high temperature applications

    Design and Test of a Gate Driver with Variable Drive and Self-Test Capability Implemented in a Silicon Carbide CMOS Process

    Get PDF
    Discrete silicon carbide (SiC) power devices have long demonstrated abilities that outpace those of standard silicon (Si) parts. The improved physical characteristics allow for faster switching, lower on-resistance, and temperature performance. The capabilities unleashed by these devices allow for higher efficiency switch-mode converters as well as the advance of power electronics into new high-temperature regimes previously unimaginable with silicon devices. While SiC power devices have reached a relative level of maturity, recent work has pushed the temperature boundaries of control electronics further with silicon carbide integrated circuits. The primary requirement to ensure rapid switching of power MOSFETs was a gate drive buffer capable of taking a control signal and driving the MOSFET gate with high current required. In this work, the first integrated SiC CMOS gate driver was developed in a 1.2 μm SiC CMOS process to drive a SiC power MOSFET. The driver was designed for close integration inside a power module and exposure to high temperatures. The drive strength of the gate driver was controllable to allow for managing power MOSFET switching speed and potential drain voltage overshoot. Output transistor layouts were optimized using custom Python software in conjunction with existing design tool resources. A wafer-level test system was developed to identify yield issues in the gate driver output transistors. This method allowed for qualitative and quantitative evaluation of transistor leakage while the system was under probe. Wafer-level testing and results are presented. The gate driver was tested under high temperature operation up to 530 degrees celsius. An integrated module was built and tested to illustrate the capability of the gate driver to control a power MOSFET under load. The adjustable drive strength feature was successfully demonstrated

    Packaging of Wide Bandgap Power Semiconductors using Simulation-based Design

    Get PDF

    Contributions to the design of power modules for electric and hybrid vehicles: trends, design aspects and simulation techniques

    Get PDF
    314 p.En la última década, la protección del medio ambiente y el uso alternativo de energías renovables están tomando mayor relevancia tanto en el ámbito social y político, como científico. El sector del transporte es uno de los principales causantes de los gases de efecto invernadero y la polución existente, contribuyendo con hasta el 27 % de las emisiones a nivel global. En este contexto desfavorable, la electrificación de los vehículos de carretera se convierte en un factor crucial. Para ello, la transición de la actual flota de vehículos de carretera debe ser progresiva forzando la investigación y desarrollo de nuevos conceptos a la hora de producir vehículos eléctricos (EV) y vehículos eléctricos híbridos (HEV) más eficientes, fiables, seguros y de menor coste. En consecuencia, para el desarrollo y mejora de los convertidores de potencia de los HEV/EV, este trabajo abarca los siguientes aspectos tecnológicos: - Arquitecturas de la etapa de conversión de potencia. Las principales topologías que pueden ser implementadas en el tren de potencia para HEV/EV son descritas y analizadas, teniendo en cuenta las alternativas que mejor se adaptan a los requisitos técnicos que demandan este tipo de aplicaciones. De dicha exposición se identifican los elementos constituyentes fundamentales de los convertidores de potencia que forman parte del tren de tracción para automoción.- Nuevos dispositivos semiconductores de potencia. Los nuevos objetivos y retos tecnológicos solo pueden lograrse mediante el uso de nuevos materiales. Los semiconductores Wide bandgap (WBG), especialmente los dispositivos electrónicos de potencia basados en nitruro de galio (GaN) y carburo de silicio (SiC), son las alternativas más prometedoras al silicio (Si) debido a las mejores prestaciones que poseen dichos materiales, lo que permite mejorar la conductividad térmica, aumentar las frecuencias de conmutación y reducir las pérdidas.- Análisis de técnicas de rutado, conexionado y ensamblado de módulos de potencia. Los módulos de potencia fabricados con dies en lugar de dispositivos discretos son la opción preferida por los fabricantes para lograr las especificaciones indicadas por la industria de la automoción. Teniendo en cuenta los estrictos requisitos de eficiencia, fiabilidad y coste es necesario revisar y plantear nuevos layouts de las etapas de conversión de potencia, así como esquemas y técnicas de paralelización de los circuitos, centrándose en las tecnologías disponibles.Teniendo en cuenta dichos aspectos, la presente investigación evalúa las alternativas de semiconductores de potencia que pueden ser implementadas en aplicaciones HEV/EV, así como su conexionado para la obtención de las densidades de potencia requeridas, centrándose en la técnica de paralelización de semiconductores. Debido a la falta de información tanto científica como comercial e industrial sobre dicha técnica, una de las principales contribuciones del presente trabajo ha sido la propuesta y verificación de una serie de criterios de diseño para el diseño de módulos de potencia. Finalmente, los resultados que se han extraído de los circuitos de potencia propuestos demuestran la utilidad de dichos criterios de diseño, obteniendo circuitos con bajas impedancias parásitas y equilibrados eléctrica y térmicamente. A nivel industrial, el conocimiento expuesto en la presente tesis permite reducir los tiempos de diseño a la hora de obtener prototipos de ciertas garantías, permitiendo comenzar la fase de prototipado habiéndose realizado comprobaciones eléctricas y térmicas

    Switching Trajectory Control for High Voltage Silicon Carbide Power Devices with Novel Active Gate Drivers

    Get PDF
    The penetration of silicon carbide (SiC) semiconductor devices is increasing in the power industry due to their lower parasitics, higher blocking voltage, and higher thermal conductivity over their silicon (Si) counterparts. Applications of high voltage SiC power devices, generally 10 kV or higher, can significantly reduce the amount of the cascaded levels of converters in the distributed system, simplify the system by reducing the number of the semiconductor devices, and increase the system reliability. However, the gate drivers for high voltage SiC devices are not available on the market. Also, the characteristics of the third generation 10 kV SiC MOSFETs with XHV-6 package which are developed by CREE are approaching those of an ideal switch with high dv/dt and di/dt. The fast switching speed of SiC devices introduces challenges for the application since electromagnetic interference (EMI) noise and overshoot voltage can be serious. Also, the insulation should be carefully designed to prevent partial discharge. To address the aforementioned issues, this work investigates the switching behaviors of SiC power MOSFETs with mathematic models and the formation of EMI noise in a power converter. Based on the theoretical analysis, a model-based switching trajectory optimizing three-level active gate driver (AGD) is proposed. The proposed AGD has five operation modes, i.e., faster/normal/slower for the turn-on process and slower/normal for the turn-off process. The availability of multiple operation modes offers an extra degree of freedom to improve the switching performance for a particular application and enables it to be more versatile. The proposed AGD can provide higher switching speed adjustment resolution than the other AGDs, and this feature will allow the proposed AGD to fine tune the switching speed of SiC power devices. In addition, a novel model-based trajectory optimization strategy is proposed to determine the optimal gate driver output voltage by trading the EMI noise against the switching energy losses. For the 10 kV SiC power MOSFET, the detailed design considerations of the proposed AGD are demonstrated in this dissertation. The functionalities of the 3-L AGD are validated through the double pulse tests results with 1.2 kV and 10 kV SiC power MOSFETs

    Short-Circuit Instabilities in Silicon IGBTs and Silicon Carbide Power MOSFETs

    Get PDF

    Series-Connection of Medium Voltage SIC Mosefets with Self-Powered Design

    Get PDF

    Methodology to Improve Switching Speed of SiC MOSFETs in Hard Switching Applications

    Get PDF
    To meet the higher efficiency and power density requirement for power converters, the switching speed of power devices is preferred to increase. Thanks to silicon carbide (SiC) power MOSFETs, their intrinsic superior switching characteristics compared with silicon IGBTs makes it possible to run converters at faster switching speed in hard switching applications. Nevertheless, the switching speed is not only dependent on the device’s characteristics, but also strongly related to the circuit like gate drive and parasitics. To fully utilize the potential of SiC MOSFETs, the impact factors limiting the switching speed are required to be understood. Specific solutions and methods need to be developed to mitigate the influence from these impact factors.The characterization of the switching speed for SiC MOSFETs with different current ratings is conducted with double pulse test (DPT) first. Based on the result, the impact factors of switching speed are evaluated in detail.According to the evaluation, the switching speed of SiC discrete devices with low current rating is mainly limited by the gate drive capability. A current source gate drive as well as a charge pump gate drive are proposed, which can provide higher current during the switching transient regardless of the low transconductance and large internal gate resistance of SiC discrete devices.For SiC power modules with high current rating, the switching speed is mainly determined by the device drain-source overvoltage resulting from circuit parasitics. An analytical model for the multiple switching loops related overvoltage in 3L-ANPC converters is established. A simple modulation is developed to mitigate the effect of the non-linear device output capacitance, which helps reduce the overvoltage and enables higher switching speed operation of SiC power modules.Furthermore, the layout design methodology for three-level converters concerning the multiple commutation loops is introduced. The development of a laminated busbar for a 500 kVA 3L-ANPC converter with SiC power modules is presented in detail.Finally, a SiC based 1 MW inverter is built and tested to operate at cryogenic temperature. The proposed control and busbar above are utilized to increase the switching speed of the SiC power module
    corecore