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Ultrafast Switching Superjunction MOSFETs for 

Single Phase PFC Applications  
 

 

Abstract—This paper presents a guide on characterizing state-

of-the-art silicon superjunction (SJ) devices in the 600V range 

for single phase power factor correction (PFC) applications. The 

characterization procedure is based on a minimally inductive 

double pulse tester (DPT) with a very low intrusive current 

measurement method, which enables reaching the switching 

speed limits of these devices. Due to the intrinsic low and non-

linear capacitances in vertical SJ MOSFETs, special attention 

needs to be paid to the gate drive design to minimize oscillations 

and limit the maximum       at turn off. This paper 

investigates the latest SJ devices in order to set a reference for 

future research on improvement over silicon (Si) attained with 

the introduction of wide bandgap devices in single phase PFC 

applications. The obtained results show that the latest 

generation of SJ devices set a new benchmark for its wide 

bandgap competitors.  

I. INTRODUCTION 
 

Power semiconductor devices in the 600V range are about 
to be replaced with new devices based on wide bandgap 
materials. As shown in Table I, Gallium Nitride (GaN) and 
Silicon Carbide (SiC) materials present higher electrical field 
strength and higher electron mobility compared to Silicon (Si). 
This allows for a reduction in the die size [1]. Moreover, these 
materials present a lower dielectric constant. This, coupled 
with the die size reduction, makes it possible to decrease the 
parasitic capacitances, directly enhancing the device switching 
performance. 

Bulk GaN is an expensive material (100        compared 

to SiC (10        and Si (0.1        [2]. However, epitaxial 

growth of GaN on Si substrate, together with higher electron 

mobility and electrical field strength compared to SiC, has 

made GaN devices to be an attractive solution in the 600V 

range.  
On the other hand, Si based devices represent a very 

mature technology. This often overcomes the material 
disadvantages compared to wide bandgap devices, whose 
manufacturing processes are still far from reaching the 
theoretical material limits [3]. This paper investigates the 
dynamic performance of state-of-the-art Si devices in the 
600V range for single phase PFC applications.  

 

II. SUPERJUNCTION SI MOSFETS 
 

Vertical SJ MOSFETs based on charge balance have set a 
new benchmark for high voltage Si devices, enabling a 
reduction of the on resistance and parasitic capacitances [4]. 
These switches are characterized by very low and highly 
nonlinear drain to source and drain to gate capacitances. These 
characteristics will produce extremely fast       and       at 
turn off,  with close to zero voltage switching (ZVS) operation 
when a low resistive/inductive gate drive circuit is employed 
[5], [6]. Under this condition the       will be determined by 
the current level, the circuit parasitic inductance and the 
charge of the MOSFET output capacitance. Exceeding the 
      can cause self-destruction due to the activation and 
thermal runaway of the parasitic bipolar junction transistor 
(BJT) [7]. This behavior is potentially dangerous in PFC 
circuits with average input current control, where a grid 
voltage transient can result in an abnormal inductor current 
level. The aforementioned issues are taken into account in the 
switching loss characterization to ensure that the maximum 
      ratings of the devices are not exceeded.  

III. DOUBLE PULSE TESTER DESIGN 
 

Printed circuit board (PCB) layout, package selection and 
other circuit parasitics are critical in modern power electronics 
[8]. Increasing the switching frequency to enable higher power 
densities is only possible under careful design of the PCB 
layout. A four layer PCB is used to reduce the area of the 
critical ac current loops. Special care has been taken to 
minimize parasitic inductances in the MOSFET and diode 
current paths as well as in the driving circuitry. Moreover, as 
proposed in [6], the capacitive coupling between drain and 
gate has been minimized to reduce gate oscillations.  
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                                                    TABLE I 

WIDE BANDGAP VS. SILICON PROPERTIES  

Properties Si 4H-SiC GaN 

Bandgap    [eV]         6      

Critical field        [MV/cm]              

Thermal conductivity λ [W/cm·K]             

Electron mobility μ [cm2/V·s]               

 



 

 

 

Figure 1. Double pulse tester schematic with components’ parasitic 

capacitances 

 

Fig. 1 shows the DPT schematic with the parasitic 
components. The PCB is designed to accommodate DPAK 
(TO-252) and leadless 8x8mm packages for the power 
MOSFET. DPAK and D

2
PAK (TO-263) can be 

accommodated for the freewheeling diode. Flat mounted 
packages allow cancelling or reducing some of the package 
parasitic inductances and are preferred in this work.  

In order to extract the switching energy, both voltage 
across and current through the device need to be measured. An 
overview of different current sensing solutions for integration 
in PCB or power modules is presented in [9]. One of the most 
adopted solutions is based on coaxial resistors [10]. State-of-
the-art current measurement in high switching speed 
applications is based on the SDN coaxial current shunt series 
from T&M Research Products, claiming bandwidths up to 
2GHz. This solution has been previously adopted for SiC and 
GaN characterization, as presented in [11] and [12]. However, 
due to the large parasitic inductance inserted in the loop by 
this device (       [11]), the flat distributed shunt approach 
presented in [13] and [14] is used instead. This current shunt 
consists of an array of paralleled surface mount resistors 
(SMD). A pick-up wire placed as shown in Fig. 2, reduces the 
inductive coupling and increases the bandwidth of the 
measurement. However, as presented in [14], this shunt 
structure can present current distribution problems, limiting 
the accuracy and bandwidth of the current measurement. In 
order to overcome this problem, a high shunt resistance value 
is selected, which also reduces the inductive effect in the 
current measurement. The designed shunt structure is 
composed by 10x10Ω thin film resistors (0603 package) 
mounted in parallel. Since the resistive element in the resistor 
package is placed on top, these components are mounted 
upside down to reduce the distance from the resistive element 
to the PCB current return path. Fig.3 shows a Finite Element 
Analysis (FEA) of the current measurement structure to 
evaluate its bandwidth. The analysis shows that the bandwidth 
of the current measurement is well above   = 500MHz. As 
presented in [15] and shown in Eq. (1), the obtained 
bandwidth makes it possible to measure signals with a rise 
time down to    = 0.7ns.  

  
   

    

  

 (1) 

 

Fig. 4 shows the implemented DPT prototype with the 
integrated current shunt. The MOSFET driver used in this 
prototype is a 9A FAN3122 from Fairchild Semiconductor.  
Fig. 5 shows the designed low capacitive inductor. This 
component is implemented using two K6527E040 cores from 
Magnetics in a single layer configuration with a total 
magnetizing inductance of  213   and a parasitic capacitance 

of 2.9  .  

 

Figure 2. Integrated flat shunt 3D model used for FEA simulation 

 
       Figure 3. FEA current measurement transfer function 

 
 

     

        Figure 4.  Double pulse tester prototype with integrated current shunt 

     

    Figure 5. Low capacitance inductor prototype 

from MOSFET source 
0603 resistors 

return path 

pick-up wire 



 

 

IV. CHARACTERIZATION RESULTS 
 

In this work, five SJ devices and six SiC diodes with 

different die sizes in the 600V range have been selected. The 

MOSFETs have been chosen based on their input gate charge 

and on resistance. Three of the devices (Fairchild and 

STMicroelectronics) are mounted in DPAK and the other two 

(Infineon C7) in a flat 8x8mm package with kelvin connection 

for the gate drive source. Table II shows the manufacturer 

specified gate charges and internal gate resistances together 

with the measured on resistance at 25°C. The SiC diodes are 

selected from two different manufacturers. The smaller die 

sizes are CREE C3D0X060E in 2, 3 and 4A versions, while 

the larger die sizes are Infineon IDDXXSG60C in 6, 8 and 

10A versions. Fig. 6 presents the measured diodes’ I-V curves 

at 25 °C. 

The two smaller SJ devices (FCD9N60NTM and 

STD13NM60N) are characterized with the small CREE SiC 

diodes and the large die sizes with the Infineon SiC diodes. 

The DPT prototype is based on the digital signal processor 

(DSP) evaluation platform C2000™ Piccolo Launchpad. An 

automatic characterization procedure has been developed. The 

switching waveforms are automatically saved on each trigger 

event and post processed using MATLAB. Switching energy, 

voltage and current derivatives for different inductor current 

levels are extracted. Fig. 7 and Fig. 8 show the DPT turn on 

and turn off waveforms with a 5 ns time scale.   Fig. 9 and Fig. 

10 show the post processed voltage and current waveforms for 

different inductor current levels. 

 

 

 
Figure 6. Diode VF - IF curves @ 25 °C 

 

 
Figure 7. FCD9N60NTM and IDD10SG60C turn on waveforms. Light 

brown             , red             , blue               . Time scale 

          

 
Figure 8. FCD9N60NTM and IDD10SG60C turn off waveforms. Light 

brown             , red             , blue               . Time scale 

          

 
Figure 9. MOSFET drain to source voltage waveform during turn on for 
different inductor current levels 

 
Figure 10. MOSFET current waveform during turn on for different inductor 

current levels 
 

The switching waveforms are measured for different 

current levels, gate resistances and devices’ junction 

temperatures. The junction temperature is controlled by a hot 

plate with temperature control based on thermocouple 

feedback. In this way it is possible to create a 4D space 
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TABLE II 

CHARACTERIZED SUPERJUNCTION DEVICES  

                 
           

       

                 

FCD9N60NTM 600 391 
18 @     = 10V 

&     = 380V 
- 

STD13NM60N 600 348 
27 @     =10V 

&      = 480 V 
4.7 

STD18N65M5 650 182 
31 @     =10V 

&       = 520V 
3 

65R230C7 650 231 
20 @     =10V 

&      =400V 
1 

65R130C7 650 118 
35 @    = 10V 

&       = 400V 
1 

 



 

 

solution for the devices’ turn on and turn off energy loss and 

VDS voltage derivatives. In this research, the effect of the gate 

resistance on the maximum       at the turn off of the 

MOSFET is considered. As presented in [6], due to the large 

MOSFET output capacitance at low voltage levels, SJ devices 

will exhibit a quasi ZVS (QZVS) behavior when very low 

gate resistance is used in the drive circuitry. Under these 

conditions, the current will be removed from the MOSFET 

channel under almost zero voltage conditions and the gate 

drive will not be in control of the device’s       (now 

limited by the inductor current level and the device output 

capacitance value).  

SJ manufacturers often specify the MOSFET       

ruggedness rating related to BJT parasitic activation and gate 

activation by the     charge at the MOSFET turn off. 

Moreover, as shown in [16], degraded blocking voltage 

capabilities were observed in the first generations of SiC 

diodes. However, as presented in [17], [18] and [19], these 

issues have been solved and reliability reports show safe 

operation over 100V/ns. Therefore, in this characterization 

the gate resistance at turn off will be adjusted to limit the 

maximum       to 100V/ns, regardless of the inductor 

current level. As shown in Fig. 11, a QZVS behavior is 

observed for 0Ω gate resistance with a switching energy loss 

corresponding to the MOSFET’s output capacitance charge.  

Fig. 12 and Fig. 13 show the instantaneous       and 

      slope at turn off. When the gate resistance is equal to 

zero, it can be seen that the       only depends on the 

inductor current level. However, when the gate resistance is 

increased, the       is limited by the gate turn off speed.  

Fig. 14 shows the negative        slope dependence with  the 

 

 
Figure 11. FCD9N60NTM and C3D02060E turn off energy loss vs. inductor 

current level for different gate resistances 
 
 

 

 
Figure 12. FCD9N60NTM and C3D02060E maximum instantaneous       
at turn off vs. inductor current level for different gate resistances  

junction temperature. Fig. 15 shows a contour plot of the 

      slope vs. inductor current and gate resistance. Thus, 

the minimum gate resistance that limits the       can be 

obtained. Afterwards, the switching energy loss at turn off 

can be calculated by performing a 2D interpolation of the 

switching energy surface as a function of the gate resistance 

and inductor current level as shown in Fig. 16.    
  

 
Figure 13. FCD9N60NTM and C3D02060E       slope at turn off vs. 
inductor current level for different gate resistances 

 
Figure 14. FCD9N60NTM and C3D02060E       slope at turn off vs. 
inductor current level for different junction temperatures 

 

 
Figure 15. FCD9N60NTM and C3D02060E       at turn off vs. inductor 

current level as a function of the gate resistance 

 
Figure 16. FCD9N60NTM and C3D02060E turn off energy loss vs. inductor 
current level as a function of the gate resistance 
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Figure 17. FCD9N60NTM turn on energy loss vs. inductor current level 

 

 
Figure 19. STD13NM60N turn on energy loss vs. inductor current level 

 

 
Figure 21. STD18N65M5 turn on energy loss vs. inductor current level 

 

 
Figure 23. 65R230C7 turn on energy loss vs. inductor current level 

 

 

 
Figure 18. FCD9N60NTM turn off energy loss vs. inductor current level 

 

 
Figure 20. STD13NM60N turn off energy loss vs. inductor current level 

 

 
Figure 22. STD18N65M5 turn off energy loss vs. inductor current level 

 

 
Figure 24. 65R230C7 turn off energy loss vs. inductor current level 
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Figure 25. 65R130C7 turn on energy loss vs. inductor current level 

 

Fig. 17 to Fig. 26 show the characterization results for the 

different analyzed SJ and SiC devices at a junction 

temperature of 25°C. The turn on loss energy curves are 

obtained at 0Ω gate resistance. The turn off loss corresponds 

to the calculated-interpolated gate resistance values in order 

not to exceed 100V/ns at turn off.  

The difference in the diode junction capacitance charge 

can be observed in the turn on energy loss of the different 

MOSFETs, where the energy difference between the different 

diodes measurements is constant and independent of the 

current level.  

From Fig. 20 it can be observed that MOSFET 

STD13NM60N is turned off with 0Ω gate resistance. This is 

due to the large internal gate resistance of the device (4.7Ω), 

which limits the maximum       to 35V/ns and has a 

negative effect on the switching loss.  

The results obtained for the smallest device 

(FCD9N60NTM) show very low energy loss at both turn on 

and turn off. More remarkable are the results from the C7 

devices from Infineon. It can be observed that the 65R130C7 

presents lower turn on losses compared to the smaller 

65230C7 device. In fact, attending to the results from the 

device 65R130C7, the obtained turn on losses for a 130mΩ 

are quite remarkable. This device in combination with the 6A 

diode from Infineon (IDD06SG60C    8   at 400V) 

presents a lower turn on loss than the Fairchild device with 

the 4A diode from Cree (C3D04060E     8.5   at 600V). 

This result can be compared with the results obtained in [20] 

corresponding to a 600V GaN High-Electron-Mobility-

Transistor (HEMT) in cascode configuration with 150mΩ on 

resistance. In [20] the device switching energy is measured at 

dc voltage of 240V and a current range from 0 to 10A. The 

device measured in this work, 65R130C7 presents similar on 

resistance than the GaN device, but much smaller switching 

energy losses.  
 

V. DISCUSSION 
 
 

The QZVS turn off capabilities of SJ devices need to be 

investigated as a very interesting feature for high frequency 

boundary conduction mode (BCM) operation in PFC 

applications. BCM makes possible to operate the switch 

under zero current switching (ZCS) conditions at turn on. If 

this operation is combined with a SJ device with 0Ω gate 

resistance and operated under QZVS conditions, the turn off 

energy loss will be independent of the current level. 

 
Figure 26. 65R130C7 turn off energy loss vs. inductor current level 

 

 
Figure 27. Turn off event FCD9N60NTM and C3D032060E. Light 

brown             , red             , blue               . Time scale 

          

Is the author’s experience that is possible to exceed the 

      manufacturer specified limits if a very low impedance 

gate drive is implemented to avoid gate activation due to the 

charge of the parasitic     capacitance.  

Fig. 27 shows a turn off event measured for 

FCD9N60NTM with CD032060E. In this experiment a 9A 

Zetex 3002 totem pole 9A driver was located in close 

proximity to the gate and source terminals to reduce the gate 

drive impedance. The inductor current level was increased 

until an absolute maximum       was found. The figure 

shows a drain to source voltage with a slope of more than 

250V/ns on a 100V/ns rated device. (It is important to notice 

that this measurement may not represent the real waveforms 

due to the 500MHz bandwidth limitation of the oscilloscope 

voltage probes).  

A last test was performed on FCD9N60NTM and 

CD032060E with a controlled junction temperature of 100°C. 

More than 10000 switch off events at 200V/ns        were 

measured without failure of the devices. These results are not 

concluding and more experiments need to be performed to 

clarify the device reliability when the maximum       is 

exceeded.     

VI. CONCLUSION 
 

This work evaluates state-of-the-art Si switches in the 600V 

range for single phase PFC applications setting a performance 

reference for the new wide bandgap materials. Several issues 

have to be addressed to ensure optimal switching 

performance. The DPT parasitic inductances and some of the 

packages’ inductances are minimized by using a four layer 
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PCB design to minimize the ac current loops. Moreover a low 

intrusive current measurement method is used to minimize the 

insertion of parasitic inductances that would degrade the 

switching performance of the characterized devices.  

The devices switching waveforms are saved and post 

processed in MATLAB to create a 4D map that can be used to 

calculate the switching energy and voltage derivatives by 

performing a curve fitting or a linear interpolation of the 4D 

space solution.  

This work shows the obtained results for five SJ devices in 

combination with six different SiC diodes where       

limitation at turn off has been taken into account to avoid 

parasitic BJT activation at turn off. The obtained results show 

that the latest SJ devices present very low switching energy 

loss together with a very low on resistance that makes these 

devices compete with some of the latest 600V GaN HEMT 

transistors.  
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