197 research outputs found

    Model generation of coronary artery bifurcations from CTA and single plane angiography

    Get PDF
    International audiencePurpose: To generate accurate and realistic models of coronary artery bifurcations before and after percutaneous coronary intervention (PCI), using information from two image modalities. Because bifurcations are regions where atherosclerotic plaque appears frequently and intervention is more challenging, generation of such realistic models could be of high value to predict the risk of restenosis or thrombosis after stent implantation, and to study geometrical and hemodynamical changes. Methods: Two image modalities have been employed to generate the bifurcation models: computer tomography angiography (CTA) to obtain the 3D trajectory of vessels, and 2D conventional coronary angiography (CCA) to obtain radius information of the vessel lumen, due to its better contrast and image resolution. In addition, CCA can be acquired right before and after the intervention in the operation room; therefore, the combination of CTA and CCA allows the generation of realistic prepro-cedure and postprocedure models of coronary bifurcations. The method proposed is semiautomatic, based on landmarks manually placed on both image modalities. Results: A comparative study of the models obtained with the proposed method with models manually obtained using only CTA, shows more reliable results when both modalities are used together. The authors show that using preprocedure CTA and postprocedure CCA, realistic postprocedure models can be obtained. Analysis carried out of the Murray's law in all patient bifurcations shows the geometric improvement of PCI in our models, better than using manual models from CTA alone. An experiment using a cardiac phantom also shows the feasibility of the proposed method. Conclusions: The authors have shown that fusion of CTA and CCA is feasible for realistic generation of coronary bifurcation models before and after PCI. The method proposed is efficient, and relies on minimal user interaction, and therefore is of high value to study geometric and hemo-dynamic changes of treated patients

    Patient-specific in silico 3D coronary model in cardiac catheterisation laboratories

    Get PDF
    Coronary artery disease is caused by the buildup of atherosclerotic plaque in the coronary arteries, affecting the blood supply to the heart, one of the leading causes of death around the world. X-ray coronary angiography is the most common procedure for diagnosing coronary artery disease, which uses contrast material and x-rays to observe vascular lesions. With this type of procedure, blood flow in coronary arteries is viewed in real-time, making it possible to detect stenoses precisely and control percutaneous coronary interventions and stent insertions. Angiograms of coronary arteries are used to plan the necessary revascularisation procedures based on the calculation of occlusions and the affected segments. However, their interpretation in cardiac catheterisation laboratories presently relies on sequentially evaluating multiple 2D image projections, which limits measuring lesion severity, identifying the true shape of vessels, and analysing quantitative data. In silico modelling, which involves computational simulations of patient-specific data, can revolutionise interventional cardiology by providing valuable insights and optimising treatment methods. This paper explores the challenges and future directions associated with applying patient-specific in silico models in catheterisation laboratories. We discuss the implications of the lack of patient-specific in silico models and how their absence hinders the ability to accurately predict and assess the behaviour of individual patients during interventional procedures. Then, we introduce the different components of a typical patient-specific in silico model and explore the potential future directions to bridge this gap and promote the development and utilisation of patient-specific in silico models in the catheterisation laboratories

    Computer Vision Techniques for Transcatheter Intervention

    Get PDF
    Minimally invasive transcatheter technologies have demonstrated substantial promise for the diagnosis and treatment of cardiovascular diseases. For example, TAVI is an alternative to AVR for the treatment of severe aortic stenosis and TAFA is widely used for the treatment and cure of atrial fibrillation. In addition, catheter-based IVUS and OCT imaging of coronary arteries provides important information about the coronary lumen, wall and plaque characteristics. Qualitative and quantitative analysis of these cross-sectional image data will be beneficial for the evaluation and treatment of coronary artery diseases such as atherosclerosis. In all the phases (preoperative, intraoperative, and postoperative) during the transcatheter intervention procedure, computer vision techniques (e.g., image segmentation, motion tracking) have been largely applied in the field to accomplish tasks like annulus measurement, valve selection, catheter placement control, and vessel centerline extraction. This provides beneficial guidance for the clinicians in surgical planning, disease diagnosis, and treatment assessment. In this paper, we present a systematical review on these state-of-the-art methods.We aim to give a comprehensive overview for researchers in the area of computer vision on the subject of transcatheter intervention. Research in medical computing is multi-disciplinary due to its nature, and hence it is important to understand the application domain, clinical background, and imaging modality so that methods and quantitative measurements derived from analyzing the imaging data are appropriate and meaningful. We thus provide an overview on background information of transcatheter intervention procedures, as well as a review of the computer vision techniques and methodologies applied in this area

    Coronary Artery Segmentation and Motion Modelling

    No full text
    Conventional coronary artery bypass surgery requires invasive sternotomy and the use of a cardiopulmonary bypass, which leads to long recovery period and has high infectious potential. Totally endoscopic coronary artery bypass (TECAB) surgery based on image guided robotic surgical approaches have been developed to allow the clinicians to conduct the bypass surgery off-pump with only three pin holes incisions in the chest cavity, through which two robotic arms and one stereo endoscopic camera are inserted. However, the restricted field of view of the stereo endoscopic images leads to possible vessel misidentification and coronary artery mis-localization. This results in 20-30% conversion rates from TECAB surgery to the conventional approach. We have constructed patient-specific 3D + time coronary artery and left ventricle motion models from preoperative 4D Computed Tomography Angiography (CTA) scans. Through temporally and spatially aligning this model with the intraoperative endoscopic views of the patient's beating heart, this work assists the surgeon to identify and locate the correct coronaries during the TECAB precedures. Thus this work has the prospect of reducing the conversion rate from TECAB to conventional coronary bypass procedures. This thesis mainly focus on designing segmentation and motion tracking methods of the coronary arteries in order to build pre-operative patient-specific motion models. Various vessel centreline extraction and lumen segmentation algorithms are presented, including intensity based approaches, geometric model matching method and morphology-based method. A probabilistic atlas of the coronary arteries is formed from a group of subjects to facilitate the vascular segmentation and registration procedures. Non-rigid registration framework based on a free-form deformation model and multi-level multi-channel large deformation diffeomorphic metric mapping are proposed to track the coronary motion. The methods are applied to 4D CTA images acquired from various groups of patients and quantitatively evaluated

    Coronary motion modelling for CTA to X-ray angiography registration

    Get PDF

    Towards a better understanding of the posttreatment hemodynamic behaviors in femoropopliteal arteries through personalized computational models based on OCT images.

    Get PDF
    The hemodynamic behavior following endovascular treatment of patients with peripheral arterial disease plays a significant role on the occurrence of restenosis in femoro-popliteal (FP) arteries. The atheroprone flow conditions that are generally accepted to promote restenosis can be calculated by computational fluid dynamics (CFD) analyses, and these results can be used to assess individualized treatment outcomes. However, the impact of endovascular therapy on the flow behaviors of FP arteries are still poorly understood, as the imaging modalities used in existing numerical works (X-ray angiography, computed tomography angiography) are unable to accurately represent the post-treatment arterial geometry due to their low resolutions. Therefore, this study proposes a new algorithm that combines intra-arterial lumen geometry obtained from high-resolution optical coherence tomography (OCT) images with centerlines generated from X-ray images to reconstruct the FP artery with an in-plane resolution of 10 µm. This superior accuracy allows modeling characteristic geometrical structures, such as angioplasty-induced arterial dissections, that are too small to be reconstructed with other imaging modalities. The framework is applied on the clinical data of patients treated either with only-percutaneous transluminal angioplasty (PTA) (n = 4) or PTA followed by stenting (n = 4). Based on the generated models, PTA was found to cause numerous arterial dissections, covering approximately 10% of the total surface area of the lumen, whereas no dissections were identified in the stented arteries. CFD simulations were performed to investigate the hemodynamic conditions before and after treatment. Regardless of the treatment method, the areas affected by low time-averaged wall shear stress (< 0.5 Pa) were significantly higher (p < 0.05) following endovascular therapy (pre-PTA: 0.95 ± 0.59 cm2; post-PTA: 2.10 ± 1.09cm2; post-stent: 3.10 ± 0.98 cm2). There were no statistical differences between the PTA and the stent groups. However, within the PTA group, adverse hemodynamics were mainly concentrated at regions created by arterial dissections, which may negatively impact the outcomes of a leave-nothing-behind strategy. These observations show that OCT-based numerical models have great potential to guide clinicians regarding the optimal treatment approach

    Three-dimensional reconstruction and NURBS-based structured meshing of coronary arteries from the conventional X-ray angiography projection images

    Get PDF
    Despite its two-dimensional nature, X-ray angiography (XRA) has served as the gold standard imaging technique in the interventional cardiology for over five decades. Accordingly, demands for tools that could increase efficiency of the XRA procedure for the quantitative analysis of coronary arteries (CA) are constantly increasing. The aim of this study was to propose a novel procedure for three-dimensional modeling of CA from uncalibrated XRA projections. A comprehensive mathematical model of the image formation was developed and used with a robust genetic algorithm optimizer to determine the calibration parameters across XRA views. The frames correspondences between XRA acquisitions were found using a partial-matching approach. Using the same matching method, an efficient procedure for vessel centerline reconstruction was developed. Finally, the problem of meshing complex CA trees was simplified to independent reconstruction and meshing of connected branches using the proposed nonuniform rational B-spline (NURBS)-based method. Because it enables structured quadrilateral and hexahedral meshing, our method is suitable for the subsequent computational modelling of CA physiology (i.e. coronary blood flow, fractional flow reverse, virtual stenting and plaque progression). Extensive validations using digital, physical, and clinical datasets showed competitive performances and potential for further application on a wider scale

    3D reconstruction of coronary artery using Feldkamp-Davis-Kress algorithm

    Get PDF
    An important cause of death in industrialized countries is coronary heart diseases. To treat those pathologies, a percutaneous intervention that consists in inserting a catheter in the femoral artery is performed. The instrument is directed to the affected arteries, and coronary angiography is used to lead the surgeon in an interventional context. However, 2D angiography which is frequently used during an intervention, does not consider depth, resulting in high doses of contrast agent and an extended exposure to X-ray. To mitigate the impact of these problems, medical imaging techniques such as 3D coronary artery imaging are used to assist surgeons during the intervention. Many imaging modalities are used to acquire the sequences, but the rotational angiography is favored due to its lower contrast agent use and its ease of use in an interventional context. This imaging technique allows the surgeon to guide the catheter in 3D in a clear manner, and limit the use of X-rays and contrast agent by reducing the duration of the intervention. In this thesis, we present a flexible algorithm, Feldkamp-Davis-Kress (FDK), to reconstruct 3D model of coronary artery in multiple angle views. The dual-axis rotational coronary artery angiography is proposed to use along with this algorithm. The cameras parameters are first calibrated by a nonlinear optimization where the reprojection error is minimized. Then the optimal working view is calculated to avoiding the vessel overlap and foreshortening effects. To reduce the cardiac motion effect, ECG-gated is applied into the reconstruction algorithm. The proposed method can be used in the framework to improve 3D navigation guidance in surgery. It could be a good tool for clinicians in coronary artery disease

    Coronary motion modelling for CTA to X-ray angiography registration

    Get PDF

    CoronARe: A Coronary Artery Reconstruction Challenge

    Get PDF
    CoronARe ranks state-of-the-art methods in symbolic and tomographic coronary artery reconstruction from interventional C-arm rotational angiography. Specifically, we benchmark the performance of the methods using accurately pre-processed data, and study the effects of imperfect pre-processing conditions (segmentation and background subtraction errors). In this first iteration of the challenge, evaluation is performed in a controlled environment using digital phantom images, where accurate 3D ground truth is known
    • …
    corecore