889 research outputs found

    A PDE Method to Segment Image Linear Objects with Application to Lens Distortion Removal

    Get PDF
    In this paper, we propose a partial differential equation based method to segment image objects, which have a given parametric shape based on energy functional. The energy functional is composed of a term that detects object boundaries and a term that constrains the contour to find a shape compatible with the parametric shape. While the shape constraints guiding the PDE may be determined from object's shape statistical models, we demonstrate the proposed approach on the extraction of objects with explicit shape parameterization, such as linear image segments. Several experiments are reported on synthetic and real images to evaluate our approach. We also demonstrate the successful application of the proposed method to the problem of removing camera lens distortion, which can be significant in medium to wide-angle lenses

    Locating regions of interest prior to X-ray imaging using stereo-photogrammetry

    Get PDF
    The research project aims at locating regions of interest (ROIs) on human subjects prior to X-ray imaging on the Lodox Statscan whole body imaging system

    Calibration of non-conventional imaging systems

    Get PDF

    A cost-effective, mobile platform-based, photogrammetric approach for continuous structural deformation monitoring

    Get PDF
    PhD ThesisWith the evolution of construction techniques and materials technology, the design of modern civil engineering infrastructure has become increasingly advanced and complex. In parallel to this, the development and application of appropriate and efficient monitoring technologies has become essential. Improvement in the performance of structural monitoring systems, reduction of labour and total implementation costs have therefore become important issues that scientists and engineers are committed to solving. In this research, a non-intrusive structural monitoring system was developed based on close-range photogrammetric principles. This research aimed to combine the merits of photogrammetry and latest mobile phone technology to propose a cost-effective, compact (portable) and precise solution for structural monitoring applications. By combining the use of low-cost imaging devices (two or more mobile phone handsets) with in-house control software, a monitoring project can be undertaken within a relatively low budget when compared to conventional methods. The system uses programmable smart phones (Google Android v.2.2 OS) to replace conventional in-situ photogrammetric imaging stations. The developed software suite is able to control multiple handsets to continuously capture high-quality, synchronized image sequences for short or long-term structural monitoring purposes. The operations are fully automatic and the system can be remotely controlled, exempting the operator from having to attend the site, and thus saving considerable labour expense in long-term monitoring tasks. In order to prevent the system from crashing during a long-term monitoring scheme, an automatic system state monitoring program and a system recovery module were developed to enhance the stability. In considering that the image resolution for current mobile phone cameras is relatively low (in comparison to contemporary digital SLR cameras), a target detection algorithm was developed for the mobile platform that, when combined with dedicated target patterns, was found to improve the quality of photogrammetric target measurement. Comparing the photogrammetric results with physical measurements, which were measured using a Zeiss P3 analytical plotter, the returned accuracy achieved was 1/67,000. The feasibility of the system has been proven through the implementation of an indoor simulation test and an outdoor experiment. In terms of using this system for actual structural monitoring applications, the optimal relative accuracy of distance measurement was determined to be approximately 1/28,000 under laboratory conditions, and the outdoor experiment returned a relative accuracy of approximately 1/16,400

    Visual and Camera Sensors

    Get PDF
    This book includes 13 papers published in Special Issue ("Visual and Camera Sensors") of the journal Sensors. The goal of this Special Issue was to invite high-quality, state-of-the-art research papers dealing with challenging issues in visual and camera sensors

    Improving the Geotagging Accuracy of Street-level Images

    Get PDF
    Integrating images taken at street-level with satellite imagery is becoming increasingly valuable in the decision-making processes not only for individuals, but also in business and governmental sectors. To perform this integration, images taken at street-level need to be accurately georeferenced. This georeference information can be derived from a global positioning system (GPS). However, GPS data is prone to errors up to 15 meters, and needs to be corrected for the purpose of geo-referencing. In this thesis, an automatic method is proposed for correcting the georeference information obtained from the GPS data, based on image registration techniques. The proposed method uses an optimization technique to find local optimal solutions by matching high-level features and their relative locations. A global optimization method is then employed over all of the local solutions by applying a geometric constraint. The main contribution of this thesis is introducing a new direction for correcting the GPS data which is more economical and more consistent compared to existing manual method. Other than high cost (labor and management), the main concern with manual correction is the low degree of consistency between different human operators. Our proposed automatic software-based method is a solution for these drawbacks. Other contributions can be listed as (1) modified Chamfer matching (CM) cost function which improves the accuracy of standard CM for images with various misleading/disturbing edges; (2) Monte-Carlo-inspired statistical analysis which made it possible to quantify the overall performance of the proposed algorithm; (3) Novel similarity measure for applying normalized cross correlation (NCC) technique on multi-level thresholded images, which is used to compare multi-modal images more accurately as compared to standard application of NCC on raw images. (4) Casting the problem of selecting an optimal global solution among set of local minima into a problem of finding an optimal path in a graph using Dijkstra\u27s algorithm. We used our algorithm for correcting the georeference information of 20 chains containing more than 7000 fisheye images and our experimental results show that the proposed algorithm can achieve an average error of 2 meters, which is acceptable for most of applications

    Digital Image Processing

    Get PDF
    This book presents several recent advances that are related or fall under the umbrella of 'digital image processing', with the purpose of providing an insight into the possibilities offered by digital image processing algorithms in various fields. The presented mathematical algorithms are accompanied by graphical representations and illustrative examples for an enhanced readability. The chapters are written in a manner that allows even a reader with basic experience and knowledge in the digital image processing field to properly understand the presented algorithms. Concurrently, the structure of the information in this book is such that fellow scientists will be able to use it to push the development of the presented subjects even further

    A high performance, microchannel plate based, photon counting detector for space use

    Get PDF
    This thesis describes the development of a microchannel plate (MCP) based photon counting detector using the Spiral Anode (SPAN) as a readout. This detector was one of two being evaluated for use in the Optical Monitor for ESA's X-ray Multi Mirror satellite. Throughout this thesis, where possible, the underlying physical processes, particularly those of the MCP, have been identified and studied separately. The first chapter is an introduction to photon counting detectors and includes a review of the various readouts used with MCPs. The second chapter provides a more detailed review and analysis of cyclic, continuous-electrode, charge-division readouts, of which SPAN is an example. The next two chapters describe the technique for measuring the radial distribution of the MCP charge cloud, which can significantly affect detector imaging performance. Results are presented for various operating conditions. The distribution consists of two parts and the size is dependent on the operating voltages of the MCP stack. The fifth and sixth chapters describe the procedure for operating a SPAN readout and the decoding necessary for converting the ADC readings into a two dimensional coordinate. Various methods are described and their limitations evaluated. The cause of problems associated with the SPAN readout, such as "ghosting" and fixed patterning and methods of reducing them are discussed in detail. Results are presented which demonstrate the performance of the anode. The seventh chapter discusses and evaluates the interaction between channels in MCPs and the long range effects an active pore has on the surrounding quiescent pores. This represents the first time that these effects have been measured. The importance of this phenomenon for imaging detectors is discussed and possible mechanisms evaluated. The last chapter presents the conclusions of this work and discusses the suitability of SPAN detectors for use on satellites
    • 

    corecore