40 research outputs found

    Mammography Techniques and Review

    Get PDF
    Mammography remains at the backbone of medical tools to examine the human breast. The early detection of breast cancer typically uses adjunct tests to mammogram such as ultrasound, positron emission mammography, electrical impedance, Computer-aided detection systems and others. In the present digital era it is even more important to use the best new techniques and systems available to improve the correct diagnosis and to prevent mortality from breast cancer. The first part of this book deals with the electrical impedance mammographic scheme, ultrasound axillary imaging, position emission mammography and digital mammogram enhancement. A detailed consideration of CBR CAD System and the availability of mammographs in Brazil forms the second part of this book. With the up-to-date papers from world experts, this book will be invaluable to anyone who studies the field of mammography

    Image Enhancement of Cancerous Tissue in Mammography Images

    Get PDF
    This research presents a framework for enhancing and analyzing time-sequenced mammographic images for detection of cancerous tissue, specifically designed to assist radiologists and physicians with the detection of breast cancer. By using computer aided diagnosis (CAD) systems as a tool to help in the detection of breast cancer in computed tomography (CT) mammography images, previous CT mammography images will enhance the interpretation of the next series of images. The first stage of this dissertation applies image subtraction to images from the same patient over time. Image types are defined as temporal subtraction, dual-energy subtraction, and Digital Database for Screening Mammography (DDSM). Image enhancement begins by applying image registration and subtraction using Matlab 2012a registration for temporal images and dual-energy subtraction for dual-energy images. DDSM images require no registration or subtraction as they are used for baseline analysis. The image data are from three different sources and all images had been annotated by radiologists for each image type using an image mask to identify malignant and benign. The second stage involved the examination of four different thresholding techniques. The amplitude thresholding method manipulates objects and backgrounds in such a way that object and background pixels have grey levels grouped into two dominant and different modes. In these cases, it was possible to extract the objects from the background using a threshold that separates the modes. The local thresholding introduced posed no restrictions on region shape or size, because it maximized edge features by thresholding local regions separately. The overall histogram analysis showed minima and maxima of the image and provided four feature types--mean, variance, skewness, and kurtosis. K-means clustering provided sequential splitting, initially performing dynamic splits. These dynamic splits were then further split into smaller, more variant regions until the regions of interest were isolated. Regional-growing methods used recursive splitting to partition the image top-down by using the average brightness of a region. Each thresholding method was applied to each of the three image types. In the final stage, the training set and test set were derived by applying the four thresholding methods on each of the three image types. This was accomplished by running Matlab 2012a grey-level, co-occurrence matrix (GLCM) and utilizing 21 target feature types, which were obtained from the Matlab function texture features. An additional four feature types were obtained from the state of the histogram-based features types. These 25 feature types were applied to each of the two classifications malignant and benign. WEKA 3.6.10 was used along with classifier J48 and cross-validation 10 fold to find the precision, recall, and f-measure values. Best results were obtained from these two combinations: temporal subtraction with amplitude thresholding, and temporal subtraction with regional-growing thresholding. To summarize, the researcher\u27s contribution was to assess the effectiveness of various thresholding methods in the context of a three-stage approach, to help radiologists find cancerous tissue lesions in CT and MRI mammography images

    Morphological quantitation software in breast MRI: application to neoadjuvant chemotherapy patients

    Get PDF
    The work in this thesis examines the use of texture analysis techniques and shape descriptors to analyse MR images of the breast and their application as a potential quantitative tool for prognostic indication.Textural information is undoubtedly very heavily used in a radiologist’s decision making process. However, subtle variations in texture are often missed, thus by quantitatively analysing MR images the textural properties that would otherwise be impossible to discern by simply visually inspecting the image can be obtained. Texture analysis is commonly used in image classification of aerial and satellite photography, studies have also focussed on utilising texture in MRI especially in the brain. Recent research has focussed on other organs such as the breast wherein lesion morphology is known to be an important diagnostic and prognostic indicator. Recent work suggests benefits in assessing lesion texture in dynamic contrast-enhanced (DCE) images, especially with regards to changes during the initial enhancement and subsequent washout phases. The commonest form of analysis is the spatial grey-level dependence matrix method, but there is no direct evidence concerning the most appropriate pixel separation and number of grey levels to utilise in the required co-occurrence matrix calculations. The aim of this work is to systematically assess the efficacy of DCE-MRI based textural analysis in predicting response to chemotherapy in a cohort of breast cancer patients. In addition an attempt was made to use shape parameters in order to assess tumour surface irregularity, and as a predictor of response to chemotherapy.In further work this study aimed to texture map DCE MR images of breast patients utilising the co-occurrence method but on a pixel by pixel basis in order to determine threshold values for normal, benign and malignant tissue and ultimately creating functionality within the in house developed software to highlight hotspots outlining areas of interest (possible lesions). Benign and normal data was taken from MRI screening data and malignant data from patients referred with known malignancies.This work has highlighted that textural differences between groups (based on response, nodal status, triple negative and biopsy grade groupings) are apparent and appear to be most evident 1-3 minutes post-contrast administration. Whilst the large number of statistical tests undertaken necessitates a degree of caution in interpreting the results, the fact that significant differences for certain texture parameters and groupings are consistently observed is encouraging.With regards to shape analysis this thesis has highlighted that some differences between groups were seen in shape descriptors but that shape may be limited as a prognostic indicator. Using textural analysis gave a higher proportion of significant differences whilst shape analysis results showed inconsistency across time points.With regards to the mapping this work successfully analysed the texture maps for each case and established lesion detection is possible. The study successfully highlighted hotspots in the breast patients data post texture mapping, and has demonstrated the relationship between sensitivity and false positive rate via hotspot thresholding

    Microwave Breast Cancer Imaging: Simulation, Experimental Data, Reconstruction and Classification

    Get PDF
    This work concerns the microwave imaging (MWI) for breast cancer. The full process to develop an experimental phantom is detailed. The models used in the simulation stage are presented in an increasing complexity. Starting from a simplified homogeneous breast where only the tumor is placed in a background medium, moving to an intermediate complexity model where a rugged fibroglandular structure other than tumor has been placed and reaching a realistic breast model derived from the nuclear magnetic resonance phantoms. The reconstruction is performed in 2D using the linear TR-MUSIC algorithm tested in the monostatic and multistatic approaches. The description of the developed phantom and the instruments involved are detailed along with the already planned improvements. The simulated and experimental results are compared. Finally a classification stage based on the leading technique known as “deep learning”, an improved branch of the machine learning, is adopted using mammographic images
    corecore