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This research presents a framework for enhancing and analyzing time-sequenced 

mammographic images for detection of cancerous tissue, specifically designed to assist 

radiologists and physicians with the detection of breast cancer. By using computer aided 

diagnosis (CAD) systems as a tool to help in the detection of breast cancer in computed 

tomography (CT) mammography images, previous CT mammography images will 

enhance the interpretation of the next series of images. The first stage of this dissertation 

applies image subtraction to images from the same patient over time. Image types are 

defined as temporal subtraction, dual-energy subtraction, and Digital Database for 

Screening Mammography (DDSM). Image enhancement begins by applying image 

registration and subtraction using Matlab 2012a registration for temporal images and 

dual-energy subtraction for dual-energy images. DDSM images require no registration or 

subtraction as they are used for baseline analysis. The image data are from three different 

sources and all images had been annotated by radiologists for each image type using an 

image mask to identify malignant and benign. 

 

The second stage involved the examination of four different thresholding techniques. 

The amplitude thresholding method manipulates objects and backgrounds in such a way 

that object and background pixels have grey levels grouped into two dominant and 

different modes.  In these cases, it was possible to extract the objects from the 

background using a threshold that separates the modes.  The local thresholding 

introduced posed no restrictions on region shape or size, because it maximized edge 

features by thresholding local regions separately. The overall histogram analysis showed 

minima and maxima of the image and provided four feature types—mean, variance, 

skewness, and kurtosis. K-means clustering provided sequential splitting, initially 

performing dynamic splits. These dynamic splits were then further split into smaller, 

more variant regions until the regions of interest were isolated. Regional-growing 

methods used recursive splitting to partition the image top-down by using the average 

brightness of a region. Each thresholding method was applied to each of the three image 

types. 

 

In the final stage, the training set and test set were derived by applying the four 

thresholding methods on each of the three image types. This was accomplished by 

running Matlab 2012a grey-level, co-occurrence matrix (GLCM) and utilizing 21 target 

feature types, which were obtained from the Matlab function texture features. An 

additional four feature types were obtained from the state of the histogram-based features 

types.  These 25 feature types were applied to each of the two classifications malignant 



and benign. WEKA 3.6.10 was used along with classifier J48 and cross-validation 10 

fold to find the precision, recall, and f-measure values. Best results were obtained from 

these two combinations: temporal subtraction with amplitude thresholding, and temporal 

subtraction with regional-growing thresholding. To summarize, the researcher’s 

contribution was to assess the effectiveness of various thresholding methods in the 

context of a three-stage approach, to help radiologists find cancerous tissue lesions in CT 

and MRI mammography images 
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Chapter 1 

Introduction 

 

 

 
Statement of the Problem and Goal 

 

Breast cancer is the second leading cause of cancer death among women, and most 

women have had yearly mammography images taken to detect it (i.e., malignant growth). 

After a mammography image is taken, it is then reviewed by a radiologist for detection of 

breast cancer. After a radiologist reviews the mammography images, the images are 

stored over time; they are not recalled or used again by the radiologist. 

The goal of this dissertation was to design an application to help radiologists and 

physicians better detect breast cancer. Using computer aided diagnosis (CAD) systems 

as tools to help in the detection of breast cancer in computed tomography (CT) 

mammography images, previous CT mammography images helped enhance the next 

series of images. If there were two CT mammogram images taken some time apart, 

radiologists and physicians analyzed the later CT image (B) for malignant growth. 

Radiologists also enhanced the data by a process using an earlier CT image (A) in a 

three-stage approach. 

The first stage image enhancement process began with applying image registration 

and subtraction. This was one of the most important processes according to Miyake, 

Kim, Itai, and Ishikawa (2009). If misregistration occurred, this caused the subtraction 

artifacts to produce a false-positive result. Itai, Kim, and Ishikawa (2008) developed a 

new registration method with voxel-matching, a technique for removing artifacts in 
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temporal subtraction tomography. Previously, two types of subtraction techniques were 

being used for CT images: temporal subtraction and dual-energy subtraction. The 

researchers investigated both techniques. 

The researcher accomplished the second stage by applying thresholding techniques as 

shown in Figure 2. Thresholding is the process of finding individual pixels in an image 

that are greater than a specified threshold value (Gonzalez & Woods, 2002). The 

researcher used eight different types of thresholding methods in this dissertation: 

amplitude thresholding, global thresholding, local thresholding, connected-component 

labeling with absolute threshold and variance threshold, threshold in histogram analysis, 

thresholding with K-means clustering, regional growing thresholding algorithm, and 

split-and-merge thresholding algorithm. 

Miyake et al. (2009) used rule-based methods and artificial neural network classifiers 

to detect features based on shape and density in order to find lung nodules. This 

technique can provide a useful CAD application for feature detection of malignant 

growth to help radiologists and physicians detect and diagnose possible cancerous 

growths. Gilbert, Astley, and Gillian (2008) used CAD for screening mammography 

images. The researchers reported that computer-aided detection had potential cost 

savings and that having two readers—human and machine—had the potential to improve 

cancer detection rates. 

This dissertation referenced eight different types of thresholding functions that were 

based upon the density of brightness values present in a region. Thresholding is widely 

used in image processing to generate binary images from gray-level images, and the 

researcher classified the current thresholding techniques available as either global or local 
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thresholding (Gonzalez & Woods, 2002). Global thresholding methods may be further 

broken down into point-dependent and region-dependent techniques. Global thresholding 

uses one threshold over the entire image to compute the binary image (Gonzalez & 

Woods, 2002).  Typically, many features that were present in the original gray-level 

image were lost in the resulting binary image. A better method is to apply thresholding 

locally, which maximizes edge features by thresholding local regions separately 

(Gonzalez & Woods, 2002). Radiologists and researchers can choose these global 

threshold values automatically or manually, but typically chose manually when 

investigating the fitness of algorithms.  Pixels with a gray level above the current 

threshold value are changed to one gray level, which is usually white (1), and the 

remaining pixels to another gray level, which is usually black (0), resulting in a binary 

image. 

Algorithms such as image segmentation and image recognition operate best on binary 

images. Typically, the optimal threshold value is selected by maximizing a given 

criterion, based on the separation of an object from the background in a gray-level image 

or the recognition of key features in a binary image. 

Segmentation-based image techniques deal primarily with those parts of an image that 

consist of equivalent brightness levels. These homogenous, contiguous assemblies of 

pixels were called regions.  The researcher considered a threshold method point 

dependent if the threshold intensity selection was based on the gray level of each pixel. 

This dissertation describes the various techniques for segmenting a group of pixels. 

 

The researcher placed emphasis on global and local thresholding techniques, which were 

employed for the evaluation of experiments.  The researcher compared these various 
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thresholding methods based on their effectiveness for detecting cancerous regions. 

Through this dissertation, the researcher investigated methods of using CAD to assist in 

the accuracy of image classification and the speed in which it was performed. The 

resultant set of algorithms and methods should assist radiologists in the speed and 

accuracy of interpreting results of mammographic, gray-scale medical images. 

Relevance and Significance 

 

As the medical community looked for ways to reduce healthcare cost by investing in 

electronic health information systems, including electronic health records, and as more 

hospitals and medical offices moved their clinical environments towards computerization, 

centralization, and digitization, ever-increasing amounts of CT digital mammogram 

images were generated. Using CAD applications for feature detection of malignant 

growth, these historical mammogram images further enhance the interpretation of the 

current mammogram image and help radiologists and physicians detect and diagnose 

possible cancerous growths. 

Why are image thresholding methods used in the first place? Clustering is the most 

frequently used automatic thresholding method used for classification of medical images. 

Clustering sorts the histogram of the image within a discrete number of classes 

corresponding to the number of phases perceived in an image. The gray values in the 

medical image are determined, and a center is determined for each class. This process 

repeats until a value that represents the center of the mass for each phase or class is 

obtained. 

Thresholding is a critical step towards image understanding especially in regards to 

automatic analysis and image enhancement of cancerous tissue in mammography medical 
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image segmentation.  Many current problems in image-guided surgery, therapy 

evaluation, and diagnostic tools strongly benefit from the result of the analyses of 

thresholding images (Maurer & Fitzpatrick, 1993). Radiologist use some popular 

approaches for threshold techniques. The amplitude thresholding method manipulates 

objects and backgrounds in such a way that object and background pixels have grey 

levels grouped into two dominant and different modes. In local thresholding, the original 

image is broken down into smaller sub-regions, and each is given a threshold 

individually. Threshold-based techniques are often referred to as histogram-based 

methods, which make decisions on local pixel information and are effective only when 

the intensity levels are far outside the range of the levels in the background. K-means 

clustering provides sequential splitting, initially performing dynamic splits. These 

dynamic splits are then further split into smaller, more variant regions until the regions of 

interest are isolated. Regional-growing methods use recursive splitting to partition the 

image top-down by using the average brightness of a region. K-means algorithm is one 

such region-based method used to segment the image (Tou & Gonzalez, 1974). Finding a 

threshold by clustering the histogram is designed to pick the threshold in such a way that 

each pixel on each side of the threshold is closer to the mean of all the pixels. 

Region-based approaches use similarity among pixels to find different regions. 

 

Threshold methods, often used in the medical realm, partition an image into separate 

regions, which ideally correspond to different real world objects. Pixels in the region are 

similar to each other with respect to some characteristic property such as size, color, 

intensity, or texture. The goal of thresholding is to simplify the image representation into 

something that is more meaningful and easier to analyze (Miyake, Kim, Itai, & Ishikawa, 



6 
 

 
 

2009). This critical step enhances overall understanding of the medical-related images 

used in image-guided surgery, therapy evaluation, and diagnostic tools. 

This critical step enhances overall understanding of the medical-related images used in 

image-guided surgery, therapy evaluation, and diagnostic tools. One such CAD 

application was image subtraction, which computed the absolute difference between two 

images. The first image was picked as a reference point and subtracted from the other 

image (Sampat, Markey, & Bovik, 2005).  The subtraction of CT mammogram images 

that are obtained over one’s lifetime could become a tool for radiologists and physicians 

to detect cancerous growths. 

Miyake et al. (2009) examined temporal subtraction images obtained by the voxel 

matching and threshold techniques to find lung nodules. The authors used a filter to 

reduce false positives, and used a rule-based method and artificial neural network 

classifiers to identify lung nodules. The authors took a hard look at many thresholding 

techniques and used those techniques throughout the research along with temporal image 

subtraction. This research built on the work of Miyake et al. by investigating image 

registration, image subtraction methods, and thresholding methods. 

Miyake et al. (2009) also discussed the use of threshold techniques based on pixel 

value in a temporal subtraction image. Miyake et al.’s overview, shown in Figure 1, 

depicts the overall scheme for this detection of lung nodules. As shown in Figure 2, this 

dissertation evaluated the two different techniques, temporal subtraction and dual-energy 

subtraction, using a rule-based method with classifiers based on decision trees and CAD 

design to find malignant growth in CT digital mammography. 

Implementing image subtraction as an enhancement technique required the sequence 
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of images that are obtained over time (Gonzalez & Woods, 2002). Gonzalez and Woods 

(2002) discussed image enhancement by using image subtraction, and briefly described 

the main area of its application in the field of medicine where subtraction may be used for 

x-ray images. 

 

 

 

Figure 1. Overall scheme for detection of lung nodules (Miyake, Kim, Itai, & Ishikawa, 

2009). 

One other technique for medical image enhancement is image segmentation by 

thresholding (Gonzalez & Woods, 2002). CT mammogram images were segmented by 

variance blocks with lower variances that were segmented from blocks with higher 

variances. A CT mammogram image was composed of objects and backgrounds in such 

a way that object and background pixels had gray levels grouped into dominant and 

different modes (Singh & Al-Mansoori, 2000). 

Several researchers investigated a number of region-growing techniques (Kunt et al., 

1985).  Kunt, Ikonomopoulos, and Kocher (1985) started to use region-growing 
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techniques with feeble uniformity predicates. After preprocessing the image, Kunt et al. 

assigned pixels to regions according to a global threshold distribution, such as 0–9, 10– 

19, 20–29, etc. (out of a full, dynamic range of 0–255 brightness levels). This led to an 

enormous number of false regions in which regions were split where no contour existed. 

In one of the testing images, the low-frequency brightness change that occurred in the 

largely uniform sky provoked it to split into eight distinct large regions, and many small 

regions on the borders (Kunt, Ikonomopoulos, & Kocher, 1985). 

Kunt et al. (1985) stated that using a more complex uniformity predicate would simply 

take too much time (i.e., CPU resources). Instead, the researchers adopted an adaptive, 

quadtree-split technique. The split process followed that of the quadtree, generating 

geometrically equal sub-regions. The choice of splitting regions was controlled by 

information obtained by a boundary detection algorithm (a region is split if a strong 

contour is detected within the image). These contour-texture oriented techniques 

attempted to describe an image in terms of contour and texture. 

Miyake et al.’s (2009) process had three steps: registration and subtraction, 

thresholding, and elimination of false positives using artificial neural network (ANN) 

classifiers to identify lung nodules. The researchers had mixed success. Interestingly, 

Miyake et al. used temporal subtraction, whereas Carton, Lindman, Ullberg, Francke, and 

Maidment (2007) used a dual-energy subtraction technique to find breast cancer, as they 

found registration between temporal images to be unreliable. This dissertation researcher 

used the Miyake et al. process for stage one. For the dissertation, the researcher added 

voxel-matching for the registration and focused on the subtraction and thresholding steps, 

keeping the first stage’s input current, and previous CT image sets fixed, and the 
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researcher utilized a decision tree in the last stage. 

 

Image segmentation is the process of partitioning an image into regions of uniform 

brightness (Pavlidis, 1980). Pavlidis (1980) investigated variance thresholding, linear 

approximation, clustering by K-means, connected-component labeling, and regional 

aggregation techniques as methods for further enhancement of the image after the image 

had been subtracted, providing the absolute value of the image. Miyake et al. (2009) 

talked about using a rule-based method, but first the researchers used three image 

segmentation methods, such as thresholding, for the detection of lung nodules that were 

candidates for cancer. Region-splitting algorithms were predominant in the literature of 

segmentation-based images in both Kunt’s and Pavlidis’ work. 

The researcher used the following evaluations for splitting behavior in this study. The 

relationship between segmentation and region splitting was that region splitting was a 

segmentation approach. Region splitting recursively partitioned the image top-down by 

using the average brightness of a region, the average of the minimum and maximum 

brightness present in the region, and K-means clustering where the number of regions 

“K” was fixed in advance. The researcher may have achieved shape simplification by 

eliminating the very large regions in an image.  Therefore, the researcher initially 

expected a sequential splitting to perform dynamic splits, and to follow with splitting of 

smaller, more variant regions. The researcher will elaborate on this process in the chapter 

on methodology.  In this dissertation some of the experiments evaluated thresholding 

with first-order statistics, thresholding with histogram valleys, and splitting by K-means 

clustering. To quantify performance of the algorithms, experiments using each algorithm 

were performed. 
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(Pavlidis, 1980). CT and MRI images were three-dimensional, taken from different 

angles. Since contrast-enhanced CT and MRI images carried fine and vital details, the 

amount of signal-to-noise ratio and distortion introduced to the image needed to be 

examined as a potential issue. 

The current framework for this dissertation was adapted from the work of Miyake et 

al. (2009). One of the key issues involved obtaining the hardware and computer software 

for this framework. In addition, the researcher needed to create a software framework to 

evaluate different the thresholding algorithms used in the evaluation section. 

Obtaining appropriate sets of images for comparison in the research method section of 

this dissertation— i.e., temporal subtraction versus dual-energy subtraction—was 

difficult, as dual-energy subtraction for contrast-enhanced, digital breast tomosynthesis is 

fairly new technology. 

Elements, Hypotheses, Theories, and Research Questions to Be Investigated 

 

In this study, the researcher categorized image segmentation into three classes 

(Rosenfeld & Kak, 1982). The first was segmentation by global characteristics. Its 

fundamental idea encompassed the possible existence of differences of intensity between 

objects and their backgrounds, within global and local thresholding, in which the 

researcher then determined the intensity. Consequently, all the pixels with a value less 

than the threshold belonged to one class and the remaining points belonged to another 

class. The second method was detecting edges and lines. The principle of this method 

was to consider edge and line boundaries between objects. By detecting boundaries, 

objects were then identified. Thirdly, extracting regions was an approach that searched 

for regions according to some criteria such as uniformity of intensity and conformity to 
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certain geometric shapes. The following questions were addressed in the experimentation 

section of this dissertation: 

Voxel-matching for registration: 

 

1. Was it effective for CT and MRI mammogram images? 

Subtraction; Type 1 (temporal) Type 2 (dual-energy): 

1. Did one type produce better initial results for CT and MRI mammogram 

images? 

2. What impacts did Type 1 and Type 2 have on the results? 

 

3. What were the pros and cons of each type? 

Thresholding: 

1. Was it possible to extract the objects from the background using thresholding? 

 

2. What was best for finding malignant growth in CT and MRI mammogram 

images, global thresholding methods or local thresholding methods? 

3. How did considered thresholding methods compare in finding malignant 

growth in CT and MRI mammogram images? 

4. Did the thresholding methods identify with ROI in the original classification? 

 

5. Did the size of the malignant growth matter in any of the thresholding 

methods used? 

Based on preliminary research, the researcher investigated the following hypotheses for 

validity: 

1. Voxel-matching for registration. CT and MRI images worked with region 

mapping, for example, Linh and Linh (2010) talked about the voxel-matching 

process with CT and MRI images, and reported that in most cases it 
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successfully discriminated regions. This dissertation expected that with CT 

and MRI images, the ROI could be easily distinguished from the tissue region 

by using threshold algorithms. 

2. Image subtraction. Miyake et al. (2009) successfully used temporal 

subtraction for the detection of lung nodules. Carton et al. (2007) completed 

studies to find cancer using dual-energy. In addition to investigating both of 

those techniques, previous researchers indicated that dual-energy may have 

provided the best solution (Carton et al., 2007). 

3. Thresholding. The researcher investigated both global and local thresholding 

methods. Local thresholding initially looked to be a better solution, because it 

maximized edge features by thresholding local regions separately. Regional 

growing looked to be the most effective way for thresholding CT and MRI 

medical images, because region-growing techniques did not pose any 

restrictions on maximum region size or shape. A combination of local 

thresholding with regional-growing techniques could have provided the best 

overall classification. 

Limitations and Delimitations 

 

Digital images obtained by CT and MRI scans were discrete both spatially and in 

brightness (Gonzalez & Woods, 2002). It was denoted by the function f (i, j), where the 

arguments i and j are spatial coordinates that specified the location. The value of the 

function f is the intensity at location i, j, which is called the grayscale. The researcher 

confined this dissertation to grayscale CT and MRI mammography medical images, 

which were a sequence of frames acquired by a gamma camera.  Specifically, a single 
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pixel was represented by 8 bits; i.e., the dynamic range of brightness from 0 (black) to 

255 (white). 

Definition of Terms 

 

An Artificial Neural Network (ANN): an artificial system that adaptively changes its 

structure based on external or internal information that flows through the network. 

Back-Propagation Network (BPN): a field of pattern classification created by mapping 

input patterns into one or several categories. 

Benign tumors: non-cancerous tumors that grow larger but do not spread to other parts 

of the body. 

Classifiers in decision trees classification: often measured by precision, recall, and f- 

measure. An artificial neural network refers to a type of learner, loosely inspired by the 

interconnected nature of biological neurons. 

Computed Tomography (CT) mammogram images: medical images used in diagnostic 

radiology, including digital radiographs and nuclear magnetic resonance, created from a 

machine designed specifically to x-ray breast tissue. In CT images, intensity is 

proportional to the absorption rate of an x-ray beam in the object being irradiated. 

Contrast agent can be used to highlight anatomical structures or tissues. 

 

Computer Aided Diagnosis (CAD): a tool that assists radiologists and physicians to 

interpret diagnostic information. 

Contrast Agent (CA): an iodine substance used to enhance the visibility of computed 

tomography x-ray imaging. 

Decision Trees: graphs in a shape resembling a tree where each branch node 

represents a choice between a number of alternatives, and each leaf node represents a 
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classification. 

 

Histogram: constructed for the image intensity values called a gray-level range. 

K-means clustering: represents a group of pixels with homogeneous gray levels. 

Magnetic Resonance Imaging (MRI): intensity is proportional to the Nuclear 

Magnetic Resonance (NMR) signal intensity of the contents of the corresponding volume 

element or voxel of the object being imaged. 

Malignancy: several main types of malignancy exist. Carcinoma is a malignancy that 

begins in the tissues that line or cover internal organs. 

Regions of Interest (ROI): all points contained within boundaries of an area of interest 

that can be defined on an image. 

A temporal subtraction image: obtained by subtraction of a previous image from a 

current one; can be used for enhancing interval changes (such as formation of new lesions 

and changes in existing abnormalities) on medical images by the removal of most normal 

structures. 

Tomosynthesis mammogram images: three-dimensional digital images from different 

angles. Each slice is composed of two-dimensional elements called pixels. A 

tomographic image is composed of several picture elements called pixels. The intensity 

of a pixel depends on the modality used in the image. 

A voxel: a data-set that is composed of three-dimensional elements. 

 

Summary 

 

In 1973, G. N. Hounsfield (a senior research scientist in Middlesex, England) invented 

a revolutionary imaging technique that he called computed axial transverse scanning. 

Hounsfield presented a cross-sectional image of the head that revealed the tissues inside 
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the brain as separate structures of gray matter, white matter, CSF (Cerebrospinal Fluid), 

and bone. This new imaging method allowed pathologic processes such as blood clots, 

tumors, and infarcts to be easily seen. Anatomical structures inside the human body that 

had never been imaged before could now be visualized. During the 41-year period since 

its discovery, this imaging modality has completely revolutionized the practice of 

medicine (Gonzalez & Woods, 2002). At the beginning, the CT scanners only could 

image the head, but now the scanners also have primary roles in diagnosing disorders of 

the chest, abdomen, and pelvis (Gonzalez & Woods, 2002). The original scanners took 

several minutes to acquire a single slice through the brain. The newest scanners now can 

image the entire body in one to two minutes. 

The cue for implementing CT and MRI mammogram image subtraction as an 

enhancement technique for the sequence of medical images was obtained from Gonzalez 

and Woods (2002). The researchers discussed image enhancement by image subtraction 

and image segmentation (Gonzalez & Woods, 2002). Image segmentation is the process 

of dividing an image into units that are homogeneous with respect to one or more 

characteristics (Pavlidis, 1982). This included the processes of identifying partitions, 

which possess distinct features, such as gray levels or texture (Pal & Pal, 1993). The 

level to which subdivision was made depends on the problem to be solved. That is, 

segmentation stops when the object of interest in an application has been isolated (Jain, 

2002). Hence, image segmentation was regarded as the first and most critical step for 

much of the image analysis (Pal & Pal, 1993). Splitting an image implied starting at the 

top of the structure and traversing downward. On the other hand, the merging approach 

started at the pixel level and merged upward in the hierarchy of regions. 
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This dissertation considered pairs of two CT and MRI mammogram images taken 

some time apart to find the differences. Using voxel-matching, temporal and dual-energy 

subtraction techniques provided the absolute value of the two images. This enhanced the 

image by bringing out the finer details. Karellas, Vedantham, and Lewin (2009) offered a 

survey paper from the University of Massachusetts Medical School, and talked about 

temporal subtraction and dual-energy subtraction techniques as two methods for 

increasing visibility in pilot studies. Miyake et al. (2009) used CAD design to detect lung 

nodules.  The researcher of this study implemented the same type of CAD design to 

detect malignant growth in CT and MRI mammography images by using different 

thresholding techniques. Miyake et al. (2009) mainly looked at histograms as a 

thresholding technique and only looked at temporal subtraction with voxel-matching. For 

this dissertation, the researcher used voxel-matching for the registration and used both 

temporal subtraction and dual-energy subtraction. 

Miyake et al. (2009) used thresholding techniques based on a pixel value. This 

dissertation also used thresholding techniques such as amplitude thresholding, first-order 

statistics of the accuracy of segmentation via thresholding, global thresholding, 

connected-component labeling with absolute threshold, connected-component labeling 

with variance threshold, threshold in histogram analysis, and thresholding with K-means 

clustering algorithm. An image was split into regions of nearly constant brightness, and 

then those regions were split again, and so on until the desired outcome was achieved. 

Previous researchers investigated variance thresholds, clustering by K-means, amplitude 

variance thresholding by means of connected-component labeling, and region 

aggregation techniques as methods for defining suitable regions and sub-regions for 
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splitting (Gonzalez & Woods, 2002). 

 

The researcher of this dissertation enhanced the image by using image temporal 

subtraction, and dual-energy method subtraction techniques. The global and local 

algorithms that were introduced posed no restrictions on region shape or size, and were 

tailored to allow constraints to be applied and approximated with ease (via tree- 

structuring). 

The work of Miyake et al. (2009) was similar, but differed technically in that the 

researchers only used temporal subtraction and neural networks, whereas this dissertation 

looks at two different types of image subtraction: temporal and dual-energy. Through 

this dissertation, the researcher looked at eight different thresholding methods and uses 

decision trees. In addition, Miyake et al. (2009) looked for lung nodules, whereas this 

dissertation was looking for malignant growth in CT and MRI mammogram images. The 

researcher of this dissertation looked at both temporal subtraction and dual-energy 

subtraction techniques with CT and MRI mammogram images taken some time apart. 

Regional thresholding algorithms, such as the one proposed, were generally noise- 

tolerant and thus less prone to information loss from image pre-processing (noise 

filtering).  The splitting threshold methods could be derived from: 

1. Amplitude thresholding, 

 

2. Global thresholding methods, 

 

3. Local thresholding methods, 

 

4. Connected-component labeling with absolute and variance thresholding, 

 

5. Threshold with histogram analysis, 

 

6. K-means clustering where “K” is a variable, 
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7. Regional growing thresholding algorithms, and 

 

8. Split-and-merge thresholding algorithms. 

 

The researcher used the following to analyze the results: 

 

1. Accuracy of segmentation. How well did the thresholding method identify the 

correct region of interest as compared to the original classification? 

2. Precision of classification. How well did the resultant classification agree 

with pre-classified images? 

3. Analysis of results. The test set is derived from applying a thresholding 

method to a single image against the training set. Each image type has its own 

decision tree. Which thresholding and subtraction method combinations 

yielded the best precision, recall, and f-measure values? 
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Chapter 2 

Review of the Literature 

 

 

 
The Theory and Research Literature Specific to the Topic 

 

The basic principle behind CT images is that the internal structure of an object can be 

reconstructed from multiple projections of the object (Gonzalez & Woods, 2002). A 

patient lies on the table within the CT gantry, which is shaped like a giant donut. During 

each slice acquisition, an x-ray tube circling the patient produces an x-ray beam that 

passes through the patient, and is absorbed by a ring of detectors surrounding the patient 

(Gonzalez & Woods, 2002). The intensity of the x-ray beam that reaches the detectors is 

dependent on the absorption characteristics of the tissues it passes through (Gonzalez & 

Woods, 2002). Since the beam is moving around the patient, each tissue is exposed from 

multiple directions. Using Fourier analysis, the computer uses the information obtained 

from the different amounts of x-ray absorption to reconstruct the density and position of 

the different structures contained within each image slice (Hornak, 1999). 

One of the most frequent problems found in computer vision and image analysis is 

that of performing an element-by-element or region-by-region comparison of one 

observed image with a near identical reference image (Miyake et al., 2009). This image 

registration takes two images of the same object that may be acquired under different 

conditions (Miyake et al., 2009). For example, images taken from different times; hence, 

the images to be compared may have differed in intensity and in geometry. To compute a 

correct comparison, one image must be aligned with the other in such a way that all 
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corresponding points or regions match. Miyake et al. (2009) mentioned registration 

between images as one of the most important parts of analysis. Misregistration could 

cause subtraction of artifacts and false positives in CT images. 

Implementing image registration and subtraction as an enhancement technique 

requires an image sequence that is obtained over time (Gonzalez & Woods, 2002). 

Miyake et al. (2009) discussed image enhancement by using temporal image subtraction. 

The researchers briefly described the main area of its application, in the field of medicine, 

where subtraction may be used for CT images. Carton et al. (2007) used a dual-energy 

subtraction technique for contrast-enhanced breast tomosynthesis to find breast cancer. 

The subtraction of CT mammogram images that are obtained over one’s lifetime could 

lead to a CAD tool for radiologists and physicians to find breast cancer. 

The size of regions with equivalent brightness in digital areas of coherence tend to be 

large in CT images, which is better because the CAD tool can encode regions to be 

dramatically reduced in terms of data volume. However, before these regions could be 

encoded in this study, the researcher had to identify the regions, and approach the 

problem of locating these regions. One option was image segmentation, the process of 

subdividing an image into regions of uniform brightness (Pavlidis, 1980). By applying 

proper segmentation techniques in this study, the researcher extracted featureless regions 

or the background from image details. Miyake et al. (2009) found that inhomogeneous 

background artifacts could cause problems and could be therefore eliminated. The 

authors used a background trend correction that was applied on the original and 

subsequent images, which was a morphological filter before they used temporal 

subtraction (Miyake et al., 2009).  Wu (1992) recognized the advantages of free 
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segmentation, fewer regions, and better conformance to the real corners, but discarded 

the idea because “natural segmentation can have shapes too complex to be encoded 

compactly” and “it is computationally too expensive,” the latter referring to Kunt’s work 

(Kunt et al., 1985). 

However, Kunt et al. (1985) used pre- and post-processing techniques on contours 

created by their region-growing algorithm. Kunt et al. (1985) examined the property used 

for describing whether a pixel should be appended to a region, which is membership in a 

grey-level interval (e.g., 0–9, 10–19, etc.). This property was too simple according to 

Murat Kunt (1985), who stated that it would require hours of CPU time to execute. 

Instead, Kunt, like Xiaolin Wu, resorted to a quadtree-based, split-and-merge technique 

(Kunt et al., 1985). Several authors had investigated image segmentation with different 

solutions, including Kunt et al. (1985), and started to use region-growing techniques with 

feeble uniformity predicates.  After preprocessing the image, Kunt et al. assigned pixels 

to regions according to a global threshold distribution, e.g., 0–9, 10–19, 20–29, etc. (out 

of a full dynamic range of 0–255 brightness levels). This led to an enormous number of 

false regions; regions were split where no contour existed. In one of Kunt et al.’s testing 

images, the low-frequency brightness change that occurred in the largely uniform sky 

provoked it to be split into eight distinct, large regions and many small regions on the 

borders. 

In Runtime analysis, CPU timing is affected by various factors, many of which are 

related to the threshold algorithm itself, but it supplies the amount of average time over 

multiple images for each of the four threshold methods used in this study. The second 

question in this study, regarding the test data, is true that constant time algorithms, by 
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definition, take the same amount of time on different inputs. The researcher will address 

these values in the appendix. 

Several authors investigated image segmentation with different solutions (Saidin et al., 

2010). Contour-texture oriented techniques attempt to describe an image in terms of 

contour and texture (Saidin et al., 2010). According to Saidin et al. (2010), seed-based, 

regional-growing techniques started to take off in the area of mammogram images in both 

magnetic resonance imaging MRI and CT mammogram images. 

The final step in Miyake et al.’s (2009) work was implementing artificial neural 

network (ANN) classifiers to reduce the number of false positives. The researchers used 

statistical features based on six shape features and four density features. Besides Miyake 

et al., many authors employed ANN classifiers for the detection of breast cancer, some 

achieving 93.6% accuracy (Salma, Abdelhalim, & Zeid, 2013). In addition, neural 

networks comprise a class of computing paradigms that recently spawned a great deal of 

research (Salma et al., 2013). According to Miyake et al. (2009), one widely used neural 

network paradigm is the multi-layer perception, employing back-propagation of errors 

learning, often called a Back-Propagation Network (BPN). BPNs had proven to be very 

useful in the field of pattern classification by mapping input patterns into one of several 

categories. Rather than being specifically programmed, BPNs “learned” this mapping by 

exposure to a training set—a collection of input pattern samples matched with their 

corresponding output classification (Miyake et al., 2009). The proper construction of this 

training set was crucial to successful training of a BPN. Miyake et al. (2009) used an 

ANN with a three-layer-based, back-propagation algorithm to remove false positives. 

Nodule rule-based method and artificial neural network classifiers can detect features 
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based on shape and density. 

 

One criteria to be met for proper construction of a training set is that each of the 

classes is adequately represented. A class that is insufficiently represented in the training 

data may not be learned as completely or correctly, impairing the network’s 

discrimination ability. This is because of the implicit setting of prior probabilities, which 

results from unequal sample sizes. The degree of impairment is a function of, among 

other factors, the relative number of samples of each class uses for training (Salma et al., 

2013). 

Image Enhancement 

 

The principal objective of enhancement techniques was to process mammography 

medical images so that the results were more suitable than the original image (Gonzalez 

& Woods, 2002). The enhancement process may not have increased the inherent content 

in the image, but it did increase the dynamic range of the chosen features so that it was 

more useful for display (Jain, 2002). Different techniques of enhancing were followed in 

different applications; image subtraction may be useful for enhancing x-ray images. 

The past approaches for image enhancement fell into two broad categories: spatial 

domain methods and frequency domain methods (Gonzalez & Woods, 2002). The spatial 

domain method referred to the mammography image coordinate itself, and researchers 

based approaches in this category on direct manipulations of pixels in an image 

(Gonzalez & Woods, 2002). Frequency domain processing techniques were based on 

modifying the spectral transforms of a mammography image. 

Voxel Image Registration 

 

In the literature of image registration, researchers proposed a wide variety of methods 
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Mapping 

 
 

for medical or non-medical applications. In general, any registration method produced a 

set of equations that transformed the coordinates of each point in one image into the 

coordinates of the corresponding point in the other image. Registration methods may be 

classified according to the various criteria. Researchers limited most of the classification 

approaches to the retrospective methods, i.e., methods that register data after acquisition. 

Maurer and Fitzpatrick (1993) defined registration as the “determination of a one-to- 

one mapping between the coordinates in one space and those in another such that points 

in the two spaces that correspond to the same anatomical point are mapped to each other” 

(Maurer & Fitzpatrick, 1993) (see Figure 3). Rigid body motion could be decomposed 

into a rotation and a translation.  Researchers can easily compute scaling from the 

imaging specifications associated with each medical modality (pixel size, distance 

between slices). Point-based registration methods, also referred to as point-fitting 

methods, require the determination of the coordinates of some corresponding points 

(feature points) in different images, and the estimation of the geometric transformation 

using these corresponding points (Gonzalez & Woods, 2002). The feature points were 

either intrinsic, extrinsic, or a combination of both. Intrinsic points, also called fiducial 

points, derive from specific image properties, usually anatomical landmarks (Gonzalez & 

Woods, 2002). Extrinsic points derive from artificially applied markers called fiducial 

markers (Gonzalez & Woods, 2002). 

 
 

I1 (x,y) I2 (x,y) 
 

 

 

Figure 3. Mapped images. 

 

Zitová and Flusser (2003) stated that image registration was a process that 
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overlaid two or more images of the same scene taken at different times.  Linh and 

Linh (2010) defined image registration as the process of using different sets of data of 

the same object, which came from different modalities (CT, MRI, SPECT, PET, etc.). 

The image registration process geometrically aligned the two images. Image 

registration was a process known for transforming different data sets onto one 

coordinate system. Researchers believe image registration is the fundamental step in 

combining computer tomography (CT) image analysis (Zitová & Flusser, 2003). 

Figure 4 shows the registration methods consisting of the following four components. 

The registration process, according to Zitová and Flusser (2003), includes: 

1) Feature detection extracted informational measures from the images that were 

used for matching. For instance, consider the problem of registering two 

images of the same building taken at different times, shown in Figure 4. A 

registration approach of the images might be as follows: Feature detection was 

first performed; relevant and distinguishing objects (closed-boundary regions, 

edges, contours, line intersections, corners, etc.) were automatically detected; 

then for further processing these features were represented by their point 

representatives (centers of gravity, line endings, distinctive points), which 

Zitova and Flusser (2003) called control points (CPs). 

2) Feature matching decided how to choose the next feature from the space to be 

tested in the search for the optimal change. With feature matching, the 

association between the features detected within the sensed image and those 

associated within the reference image were established. A mixture of 

descriptors and likeness, in company with spatial relationships, along with the 
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features, were used for this purpose. 

 

3) Transform model estimations were the class of transformations capable of 

aligning the sensed images. These types of parameters, called mapping 

functions, aligned the sensed image with the reference image. These 

parameters and the mapping functions could be computed by means of the 

recognized feature correspondence. 

4) Image resampling and transformation determined the relation of each test 

search continuously, in accordance with the search strategy, until a 

transformation was found on the image that comparison measurement was 

satisfactory. Then the sensed image was transformed by means of mapping 

functions. The image values in non-integer coordinates were then computed 

by the suitable method. 
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Figure 4. Registration process (Zitová & Flusser, 2003). 
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Magnetic resonance imaging (MRI), computed tomography (CT) images, and all other 

tomographic modalities are imaging modalities for producing images of a slice through 

the human body (Tomography, from the Greek tomos, means slice).  This form of 

imaging is in some respects equivalent to cutting off the anatomy above the slice and 

below the slice. Each slice is a thickness (Thk), and the slice is said to be composed with 

a matrix of volume elements or voxels (see Figure 5). The tomographic image is 

composed of several picture elements called pixels. The intensity of a pixel depends on 

the modality used; for example, MRI is a medical imaging technique used to produce 

high-quality images of the inside of the human body. The technique is called magnetic 

resonance imaging, rather than nuclear magnetic resonance imaging (NMRI), because of 

the negative connotations associated with the word nuclear in the late 1970s (Hornak, 

1999). Magnetic resonance imaging started out as a tomographic imaging technique, i.e., 

to produce an image of the nuclear magnetic resonance (NMR) signal in a thin slice 

through the human body (Hornak, 1999). Since then, magnetic resonance imaging 

advanced beyond a tomographic imaging technique to a volume imaging technique. 

 

 

 
Figure 5. Dataset composed of three-dimensional elements (Hornak, 1999). 
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In the literature, researchers have proposed a wide variety of image registration 

methods for medical and non-medical applications (Hornak, 1999). In general, any 

registration method produces a set of equations that transforms the coordinates of each 

point in one image into the coordinates of the corresponding point in the other image. 

Registration of medical images has been the subject of extensive study in the medical 

imaging field. Medical image registration is important for several reasons; one such 

reason is intra-subject, intra-modulator registration used to monitor treatment. One 

example of this is the need to allow accurate comparison of lesion size and position 

during treatment over time. This process allows precise comparison, in time, of the 

evolution of a lesion. 

Image Subtraction 

 

The Burt and Adelson (1983) method reduced the variations in illumination over the 

entire image by subtracting the low-frequency, grey-level image from the original grey- 

level image. This method was known as the image subtraction method (Hornak, 1999). 

The technique segmented the original grey-level image into regions using the low- 

frequency, grey-level image to determine large regional grey-level areas. The researcher 

then gave each region a threshold individually by using a global thresholding technique 

(Hornak, 1999). 

In medical image applications it was desirable to compare two images. A simple but 

powerful method was to compare two images and subtract them. This image subtraction 

was a type of point-processing technique in which the pixels in the image were 

manipulated to get the desired enhancement. Itai, Kim, Ishikawa, Katsuragawa, and Doi 

(2008) performed image subtraction by first removing artifacts, and then by subtraction 
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of a previous image from a current one. In image subtraction, the absolute difference 

between two images f(x,y) and h(x,y) (Jain, 2002) was expressed as 

g(x, y) | f (x, y) h(x, y) | , obtained by computing the absolute difference between all 

pairs of corresponding pixels in f and h.  Processing medical images was an important 

area of digital image enhancement (Gonzalez & Woods, 2002); it was a powerful 

technique that increased the dynamic range of required features and was very helpful for 

physicians in diagnoses. The image subtraction method could remove the local change in 

illumination over a grey-level image. By using a low-pass, spatial filtering on the grey- 

level image, Hornak (1999) created a new image with the overall contrast and average 

intensity of the original image. After subtracting the new image from the original image, 

the researcher removed the regional variations in illumination (Hornak, 1999). The 

researcher could then threshold the resulting image using a global thresholding technique. 

Miyake et al. (2009) and Carton et al. (2007) used image subtraction. Carton et al. 

(2007) stated that dual-energy, contrast-enhanced (DECE) subtraction technique 

tomography images were produced by enhancement. Miyake et al. (2009) used temporal 

subtraction images obtained by the voxel-matching technique to enhance images with 

lung nodules.  In addition, Carton et al. (2007) emphasized iodine contrast in the breast. 

In the present analysis, the researcher applied subtraction for high-energy and low-energy 

tomography and looked at dual-energy subtraction in addition to temporal subtraction. 

The following equation from Carton et al. (2007) uses weighted subtraction that is 

applied to the logarithm of the high- and low-energy tomographic images: 

I DE
(x, y) ln(IH (x, y)) wiln(IL (x, y)) 

 

where IDE denoted the “iodine-enhanced” DECE tomography image and the subscripts L 
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and H designated the low- and high-energy tomography images. The tissue cancellation 

factor, wi, acted as a weighting factor that maximized the signal difference to noise ratio 

(SDNR) between the iodine contrast agent and the structured breast, and that minimized 

the variance in the structured breast tissue image Carton et al. (2007). 

Thresholding 

 

A thresholding method is considered point dependent if the threshold selection 

depends only on the grey-level of each pixel; for some features (e.g., contours) point 

dependency does not depend. Otsu (1979) used these methods in applications such as 

cell analysis. In the modal (optimum thresholding) method, Prewitt and Mendelsohn 

(1966) used histograms of grey-level to make threshold selection automatic. Figure 6 

depicts multiple peaks, representing both the object and background of the image. By 

choosing the threshold at the bottom of the valley, the object was separated from the 

background. When multiple valleys are in a histogram of an image, the peaks indicate 

several large sets of pixels with the same gray-level value. 

 

Figure 6. Matlab histogram. 

 

One method of global thresholding proposed by Otsu (1979) was based on 

discriminate analysis.  It separated the image into two classes above and below the 
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threshold.  Otsu selected a threshold automatically based on the discriminate criterion, 

and the goal was to select a threshold value that maximized the similarity of grey level in 

the two classes. Typewritten characters and texture images demonstrated the results of 

this method. Otsu’s method also was extended to multi-thresholding methods in the case 

of an image histogram. To demonstrate multi-thresholding, Otsu used an image of cells 

with a histogram. Through this method, Otsu was able to select two threshold values that 

successfully separated the cell from the background and the nucleus from the cytoplasm. 

Brink (1991) proposed a method similar to Otsu (1979) in which the correlation 

between the original and threshold images was evaluated and maximized by iteration. 

Brink’s method was demonstrated on two different images: an image of a sample of 

handwriting representing an image with a unimodal histogram, and an image of bacteria 

colonies that was used to represent an image with a bimodal histogram. Brink’s method 

was able to select valid threshold values for the two cases. 

Other global thresholding methods included entropic, moment-preserving, and 

minimum-error methods (Pun, 1981; Tsai, 1985). Entropic thresholding methods use 

information theory to obtain the optimal threshold. Pun (1981) proposed an entropic 

method that used an anisotropy coefficient α in determining the threshold value. Pun 

used the value of the anisotropy coefficient to classify the shape of the image’s 

histogram.  The shape of the histogram determined the final selected threshold value. 

Tsai (1985) proposed a moment-preserving method. The threshold was selected such 

that the grey-level moments of the input image were preserved in the output image. Tsai 

demonstrated this on images with bimodal, trimodal, and quadmodal histograms. The 

researcher gave the images threshold values according to the number of modes of the 
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histogram: one, two, or three thresholds were used for bimodal, trimodal, and quadmodal 

histograms, respectively (Tsai, 1985). Seven different images were used to demonstrate 

the algorithm, and Tsai’s method yielded reasonable results for the images Tsai 

presented. 

In first-order statistics, the accuracy of segmentation via thresholding depended almost 

entirely on the selection of the value for the threshold (Chen & Chen, 2006). Good 

threshold values were estimated by using statistical information about the image. The 

average, maximum, minimum, median, and mode of the pixels brightness were examples 

of these (Verbeek, Vrooman, & Vliet, 1988). 

Pavlidis (1980) defined a uniformity predicate: Let X denote the grid of sample pixels 

of a picture i.e., the set of pairs 

(i, j) i = 1,2...,N , j = 1,2...,M . 
 

If Y is a nonempty subset of X, uniformity predicate P(Y) assigns the value of true or 

false to Y depending on the properties of the brightness matrix f(i,j) for the points of 

(i,j)Y. Also, a uniformity predicate should satisfy this constraint: if Z is a nonempty 

subset of Y, then P(Y) = TRUE implies that P(Z) = TRUE. A uniformity predicate can 

be defined as in the following Table 1 contains examples of uniformity predicates. 

Table 1 

 

Example Uniformity Predicates (Pavlidis, 1980) 

 

P1 

(Y) 

If the brightness value at any two points of Y is the same. 

P2 

(Y) 

If the brightness values at any two points of Y do not differ by more than a 

given amount e. 

P3 

(Y) 

If the brightness value at any point of Y does not differ by more than a given 

amount from the average value of f(i, j) taken over a set P3  containing Y. 
P4 

(Y) 

If the maximum of the brightness value over Y does not exceed a given value. 
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A segmentation of the grid X for a uniformity predicate P was a partition of X into 

disjoint nonempty subsets R1, R2 ... Rn such that (Pavlidis, 1980): 

n 

Ri  X 
i1 

where Ri    R  , i j 

 

Ri  is connected ,  i 

 

P(Ri ) TRUE, i 

 

P(Ri  R j  ) FALSE, Ri adjacent  to R j  

 

From this point on, the term region will indicate a set of pixels with the above properties. 

Stated differently, any subset of a connected region R was adjacent to the set containing 

the remaining points in R (Pavlidis, 1980). 

Amplitude Thresholding 

 

One technique for image segmentation was amplitude thresholding (Gonzalez & 

Woods, 2002).  According to Gonzalez and Woods (2002), in some cases an image, 

f(x,y), is composed of objects and backgrounds in such a way that object and background 

pixels have grey levels grouped into two dominant and different modes. In these cases, it 

is possible to extract the objects from the background using a threshold that separates 

these modes. Image thresholding operations followed the general relation for a threshold 

T (Gonzalez & Woods, 2002): 

g(x, y) T (x, y, p(x, y), f ( x, y)) 

 

where x, y are the current point's coordinates, p(x,y) is a local function (e.g., the average 

of the eight neighboring pixels), and f(x,y) is the grey level of the current point. If T 

depends solely upon f(x,y), then it is called a global threshold.  If T depends on p(x,y) in 
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addition to f(x,y), it is a local threshold. Gonzalez and Woods found T to be dynamic if it 

depends on all four of the components. 

Global and Local Thresholding 

 

The simplest version of global thresholding techniques is bi-level thresholding. A 

researcher can compare every pixel brightness value with a single preset value, and then 

assigned it to one of two categories (Pavlidis, 1980). Given n pixels, the thresholding 

algorithm is O(n), rendering a fast image segmentation solution. According to Pavlidis 

(1980), thresholding is an image matrix f(x,y) with a single threshold T generated a 

binary matrix v(i,j), defined by the relation: 

0, if f 
v(i, j) 

(i, j) < T 

1,  if  f (i, j)  T 
 

This method was ideal for application on simple foreground-background images, but 

this was hardly the case in natural scenes. When an image had different surface 

characteristics, or simply more than two regions with different brightness functions, 

multilevel thresholding provided a better classification (Pal & Pal, 1993). Thresholding 

with m was generalized by (Pavlidis, 1980): 

v(i, j) k if Tk 1 f (i, j) Tk ' k 1,..., m 

 

where To, T1,…, Tm was an ordered list of threshold values, where T0=0, Tm=256, and Tk-1 

 

< Tk for k=1,…,m. 
 

Amplitude thresholding alone did not suffice to produce segmentation as defined 

above (Pavlidis, 1980). Thresholding merely separated individual pixels by brightness 

level, regardless of connectivity between the points. The connected-component labeling 

algorithm may be used in conjunction with thresholding to satisfy the connectedness 

condition above.  This was different from what had been used in prior research. 
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In local thresholding, Chow & Kaneko (1972) broke down the original image into 

smaller sub-regions, and gave each a threshold individually. In many cases, this caused 

discontinuities at the borders between sub-regions. To eliminate this problem, Chow and 

Kaneko interpolated the threshold values from neighboring sub-regions. The researchers 

divided the image into smaller regions with a 50% overlap (Chow & Kaneko, 1972). 

Chow and Kaneko computed the grey-level histogram for each region, and those with 

large variances were selected. For all other regions, the researchers interpolated the 

threshold from adjacent regions of a known threshold.  Then, the researchers estimated 

the component distributions and the mixture of the probability density functions for each 

selected region using curve fitting. The resultant mixtures of estimated distributions were 

tested for bimodality. The method of maximum likelihood calculated the threshold from 

the estimated distributions for every histogram with appreciable bimodality. Chow and 

Kaneko demonstrated their method on cineangiogram images of the left ventricle of the 

human heart. The results successfully demonstrated the feasibility of the method for low- 

quality images. 

Pappas (1992) presented a local thresholding method that was a generalization of the 

K-means clustering algorithm presented previously (as cited in Tou & Gonzalez, 1974). 

Unlike the K-means, Pappas’ method was adaptive, and included spatial constraints by 

the use of a Tou and Gonzalez (1974) random field model. The intensity functions were 

initially constant in each region, and equal to the K-means cluster centers. In each 

iteration, Pappas updated the intensities by averaging over the region, and progressively 

decreasing the size of the overall region (as cited in Tou & Gonzalez, 1974). The 

algorithm ended when Pappas reached the minimum desired size. 
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Histogram Analysis 

 

Although the first-order statistical functions described above provided a simple 

solution, the predictions varied over the many regions of an image (Pavlidis, 1982). A 

histogram of a digital image provided more information with minimal computational 

complexity (only one pass of the image). It was a discrete function whose x-axis 

represented discrete brightness levels and whose y-axis represented the number of pixels 

with brightness value. The histogram peaks identified ranges of brightness corresponding 

to the different objects or regions. Threshold values therefore may be selected according 

to the locations of the valleys in the histogram, which result in a more sensitive but still 

restricted segmentation (Pal & Pal, 1993). 

The K-means clustering algorithm described below approximated the optimal peaks in 

an image histogram. Each cluster represented a group of pixels with homogeneous grey- 

levels.  K was the variable number of clusters desired.  If one wanted the region to be 

split into two grey levels for example, K would be equal to 2. The algorithm goes as 

follows (Tou & Gonzalez, 1974): 

1. Take the first K pixels in the region. Assign them to be the initial cluster 

centers. z1(1), z2(1), …, zk(1). Set iteration number k=1. 

2. kth iteration: distribute the pixels among the K cluster domains Sj(k) using 

 

x S j (k) if x z j (k)  x zi (k) , i 1, 2,..., k,i j 
 

3. Update cluster centers zj(k+1) with Nj number of samples in domain Sj(k+1): 
 

z  (k 1) 
1  

  x, j 1, 2,..., k 
N j     x S j (k )    

 

4. If cluster centers zj(k+1) differ from the previous iteration, zj(k), for j then step 
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2. 

 

The resulting K cluster centers represented the most populated brightness; also the K 

was the highest peaks in the histogram. The number Nj of pixels in each cluster may be 

considered the “weight” of the cluster brightness.  Evaluating a weighted average such as 

where the Zj are ordered 
 

xj 

 

 
N  z (k) N z (k) 

 
j    j j 1    j 1 

,
 

N j  N j1 

 

 

j 1, 2,..., K 1 

 

of these brightness levels, one could consider this value to correspond to a valley floor in 

the histogram. For K=2, the clustering algorithm returned to peak brightness, of which 

the weighted average was assumed to be the floor of the valley brightness (Tou & 

Gonzalez, 1974). Thresholding the image with this valley floor value generates input for 

the next section’s algorithm, connected-component labeling. As an example to 

demonstrate thresholding, Figure 7 presents the results of manual thresholding an image 

with two objects of different brightness. 

Boundary-Based Methods 

 

Unlike the previous two methods, boundary-based sought the discontinuity of 

brightness levels rather than their homogeneity. Although point, line, and edge 

discontinuities could be defined, the most predominant method was edge detection, 

because real images are not composed of simple points and lines (Li & Zhang, 2006). 

Applying edge detection operators on an image resulted in a characterization of object 

borders, and thus a segmentation of the image (Gonzalez & Woods, 2002). 

Edges were points of abrupt change in brightness levels in digital images (Jain, 2002), 

and this led to the definition of a differential operator on digital images. Gonzalez and 

Woods (2002) defined the gradient of an image f(x,y) at location (x,y) as the image 



40 
 

 
 

vector, which points in the direction of the maximum rate of change of f(x,y) with respect 

to x,y.  The magnitude of f equaled: 

f 



which measured the rate of increase of f(x,y) per unit distance in the direction of f. The 

Sobel operator did well in approximating the value of the gradient, and simultaneously 

had a smoothing effect that diminished the noise enhanced by the derivatives. The digital 

derivatives were based on the Sobel operators defined by Gonzalez and Woods (2002). 

It was Pavlidis’ (1980) opinion that merely detecting areas of high contrast in an 

image did not necessarily result in a complete segmentation (Pal & Pal, 1993). The 

windows in the shade in the middle-left of Figure 7(a) serve as a prime example of this 

case; they were accurately defined in the original, but were not completely surrounded by 

one true, single edge in the gradient image (see Figure 7(b)). Jain (2002) also stated that 

since these local operators were applied to a very limited region, they produced false 

contours. Contours that corresponded to object boundaries and contours that result 

because of noise within the small operator mask region could not be distinguished. 

 

 

(a) (b) 

Figure 7. Edge detection example (Kunt et al., 1985), (a) Original picture of an M.I.T. 

Building, and (b) After applying the Sobel operators. 

 

 

Contour Following 

G2   G 2
 

y  x 
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Pavlidis (1980) developed an algorithm to extract the contour of a single region 

starting at the upper-left member pixel. A “walk” is taken clockwise around the region, 

and the algorithm stops when the initial coordinates are met again (Pavlidis, 1980). The 

single pixel region triggers the “insanity” (circling) condition, and may have been 

encoded simply with a direction operator pointing upward, since all chain-codes begin at 

the uppermost point of a region (Pavlidis, 1980). A sample run would look like the 

image shown in Figure 8.  Figure 9 presents the contour tracking algorithm. 

0 0 
7 +1 

2 6 -1 +1 

1 6 +1 0 

2 6 -1 0 

1 6 +1 
0

 

2 +1 
5 +1 

3 0 

3 5 +2 0 

(a) (b) (c) 

 

Figure 8. Contour tracing graph (a) Region (shaded) and background; (b) result of 

contour tracing with absolute direction operators; and (c) contour tracing with relative 

direction operators (the algorithm for contour tracing is presented in Figure 9). 

 

 

x=x_orig, y=y_orig  //set initial point to (x_orig,y_orig) upper-leftmost point 

first=true //flag indicating first iteration 
dir=oldir=0; //i.e. start off going in an easterly direction 

//(all directions are assumed modulo 8 see Figure 8) 

while((x!=x_orig)or(y!=y_orig)or(first==true){ 

found=false; 

dir=dir – 2;  //turn dir anticlockwise twice 

while(found=false and insanity<8){ 

insanity++ 

set(newx, newy)to the coordinate of the dir-neighbor of (x,y) 

if ((newx,newy) is a member or the region){ 

reldir=dir-oldir; 

export symbol [reldir] (relative direction operator) 

oldir=dir; 

(x,y)=(newx, newy); 

found=true; 

} 

else 

++dir;  //turn dir clockwise 
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Figure 9. Contour tracing algorithm. 

 

Region-Based Methods 

 

Pixel aggregation techniques started with one point, and grew in all directions around 

that point to form a region, giving a seed point to neighboring pixels (Saidin et al., 2010). 

Those pixels that succeeded became part of the same region as the original pixel. A 

growth acceptance criterion compared the candidate pixel’s brightness with the region 

average. For example, Kroon (2008) applied this procedure to the neighbors of the 

newly-grown region, until the growth acceptance criterion was not being met by any 

more neighbors. Then, after Kroon found a complete region, the researcher selected 

another seed point, disjoint from all previous regions, and repeated the process. Figure 

10 shows how the algorithm progresses. 

 

(a) (b) 

} 
if(insanity==8)   //single-pixel regional growing around in circles is insanity! 

export symbol [-1] 

// any dir-op going up on the first symbol is an exception 

first=false; 

} 
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© (d) 
Figure 10. Regional growing (Kroon, 2008); (a) center of the lung exist a seed point; (b) 

region has grown in all directions to form a round shape; (c) the brightness in the center 

was not accepted by the uniformity predicate; and (d) final stage where no further growth 

is permitted by the uniformity predicate. 

 

Regional-based methods use a neighborhood to threshold each pixel individually 

(Kroon, 2008). The neighborhood was centered on each pixel, and a global thresholding 

technique found a threshold value for the pixels within the neighborhood. Kroon (2008) 

used this threshold value to threshold the center pixel, and then the center of the 

neighborhood was moved to an adjacent pixel. Thus the threshold for each pixel was 

based on local properties. The method was a local thresholding technique that used a 

global technique to threshold each local region (Kroon, 2008). 

Assuming an N x M image matrix X with a brightness function f(x, y), a pixel P at 

coordinates (x, y) has horizontal and vertical neighbors with coordinates: 

(x-1, y), (x, y-1), (x, y+1), (x+1, y) 

 

and has four more diagonal neighbors with the coordinates: 

 

(x-1, y-1), (x+1, y-1), (x-1, y+1), (x+1, y+1) 

 

A pixel Q is a 4-neighbor of pixel P if its coordinates match any of the horizontal or 

vertical neighbors of P. A pixel Q is an 8-neighbor of pixel P if its coordinates are 

among either the connected horizontal, vertical, or diagonal neighbors of P (see Figure 
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11). 
 
 

 

 

 

(a) (b) 

 

Figure 11. 4- and 8-Neighbor Connectedness (Jain, 2002); (a) A central pixel and its 4- 

connected neighbors, and (b) a pixel and its 8-connected neighbors. 

 

 

A region is a set of pixels. A pixel Xi in region R z-connects to pixel Xj in R if a path 

exists in R such that all pairs of successive path pixels Xk and Xk+1 are z-neighbors. A 

region R is a connected region if the set of pixels in R had the property that every pair of 

pixels is connected (Ballard & Brown, 1982). 

Regional growing of neighboring pixels of similar values can be found in connected- 

component labeling (Ballard & Brown, 1982). According to Ballard and Brown (1982), 

all pixels that had at least one neighbor defined the contour or perimeter of an object. 

This was not in all the pixels that lay on the image frame. The contour of an object 

describes the shape of the object. Since, in the quadtree example, the researchers 

processed first the predominant brightness of the entire image, followed by the 

predominant brightness of the four major quadrants, followed by the predominant 

brightness of the 16 sub-quadrants and so on, the effect was one of a gradually resolving 

image with finer and finer detail at each step (Ballard & Brown, 1982). This allowed a 

compressor, and then de-compressor, to process an image only to the detail they were 

required to. 

Region-growing techniques did not place a restriction to the shape or size of an image 
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(Nock & Nielsen, 2004). Most split-and-merge algorithms employed tree structures with 

restrictions to the shape that a region could take (e.g., square). This meant that in order 

for tree-based techniques to be efficient, the objects’ contours had to be either 

horizontally or vertically oriented, and had to be in a position corresponding to the 

borders of the tree nodes (Wu, 1992). 

Researchers who used region-growing implementation could have implemented 

extensive memory that was required to hold states awaiting expansion, in addition to 

those that already had expanded (Lin, Jin, & Talbot, 2001). Apart from being time 

consuming, an unpredictable number of regions generated from regional growing. Lin, 

Jin, and Talbot (2001) could have utilized an adaptive algorithm to control these features 

of the output, but it came with a high cost because of its high computational complexities. 

One advantage that became more evident was that region-growing techniques did not 

pose any restrictions on maximum region size or shape (Lin et al., 2001). 

In region splitting and merging, the algorithms took a different approach to 

subdividing an image by utilizing a tree structure [see Figure 12(a)]. The entire image 

was represented by a root node R that was then subdivided recursively into a fixed 

number of siblings. The individual pixels were the leaves of the tree. This formed a 

quadtree structure as depicted in Figure 12(b). Having a fixed number of siblings per 

node, and preset shapes for each level of the tree, made retrieval of region data simple 

and straightforward. The following is an example of a standard splitting technique for 

that representation of a quadtree from Gonzalez and Woods (2002): 

1. Let R represent the entire image region and select the predicate P. R is to 

subdivide successfully into smaller and smaller quadrant regions so that, for 
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any region Ri, P(Ri)= TRUE. 
 

2. If P(R) = FALSE, divide the image into quadrants. 

 

3. If P(R) is FALSE for any quadrants, apply subdivision method recursively on 

that sub-quadrant. It should be noted that by definition, it is not possible that 

P(R) = TRUE and P (R’) = FALSE for some child (sub-quadrant) R’ of R. 

4. Stop when no further splitting is possible. 

 

For example, the quadtree structure divided a parent square region into four square 

sub-regions, the quadtree structure divided into two geometrically equal rectangles 

(alternating orientation), etc. Each node of the quadtree had four children. The root node 

R represented the entire image; its children represented the four quadrants of the entire 

image; their children represented the 16 sub-quadrants; the children of those represented 

the 64 sub-sub-quadrants, and so on. If a non-leaf node had its corresponding image data 

area conforming to a uniformity predicate, then the average brightness was stored in the 

parent and the children were deleted. Thus, if an entire quadrant (sub-quadrant, sub-sub- 

quadrant, etc.) of the image was a single brightness (e.g., white), that information could 

be seen as a single quadtree node. 

 

 

 

(a) (b) 

Figure 12. Partitioned quadtree image (Gonzalez & Woods, 2002); (a) Partitioned image, 

R 

R1 R2 R3 R4 

R41 R42 R43 R44 
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and (b) corresponding quadtree. 

 

Splitting schemes started with evaluating the root node for uniformity, and recursively 

split nodes for which the predicate was not satisfied (Gonzalez & Woods, 2002). The 

split was a division into a number of sub-regions specified by the technique being used. 

For example, in the quadtree technique Gonzalez and Woods (2002) divided a square 

region (required) by splitting the region horizontally and vertically at the middle of each 

side to form four square sub-regions. The researchers also checked each sub-region for 

uniformity, and if it was non-uniform, its sub-regions were generated recursively 

(Gonzalez & Woods, 2002). This process repeated until all regions satisfied the predicate 

P for uniformity criterion. Splitting an image implied starting at the top of the tree and 

traversing downward.  On the other hand, the merging approach started at the leaf nodes 

of the quadtree when all leaf nodes satisfied the uniformity criterion i.e., TRUE under P, 

and merged upward in the hierarchy of regions. The following was a standard merging 

predicate from the work of Gonzalez and Woods (2002). 

The researchers merged only adjacent regions with combined pixels that satisfied 
 

predicate P two adjacent Rj and Rk were merged only if P(Rj Rk ) TRUE (Gonzalez & 

 

Woods, 2002). 

 

1. Split into four disjoint quadrants any region Ri for which P(Ri) = FALSE. 
 

2. When no further splitting was possible, merged any adjacent regions Rj and Rk 

 

for which P(Rj Rk ) = TRUE. 

 

3. Stopped when no other merging was possible. 

 

Gonzalez and Woods (2002) defined the following conditions to merging where P(Ri) 

was a logical predicate defined over the points in set Ri and was the null set. 
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Ri   R. 

 
 

R 

1. 
i1 

 

This first condition indicated that the segmentation must be completed; that 

was every pixel must have been in a region. 

2. Ri was a connected region i = 1, 2,…, n. 
 

This condition required that points in a region were connected in some 

predefined sense (e.g., 4- or 8-connected). 

3. Ri 
Rj  for all i and j, i  j. 

 

The third condition indicated that the regions must be disjoint. 

 

4. P(Ri)= TRUE for i = 1, 2,…, n. 
 

The properties that must be satisfied by the pixels in a segmented region for 

example P(Ri) = TRUE if all pixels in Ri had the same grey level. 

5. P(Ri Rj ) FALSE for any adjacent region Ri  and Rj. 

 

Finally, condition five indicated that adjacent regions Ri and Rj were different 

in the sense of predicate P. 

Instead of starting at the top (whole image) or the bottom (pixel level) of the tree, 

starting at an intermediate level and thus applying a split-and-merge algorithm was more 

advantageous (Gonzalez & Woods, 2002). This algorithm traversed the nodes at the 

preset intermediate level, and either split or merged according to the degree of uniformity 

of the regions (nodes). If a region had a variance that was higher than a certain threshold, 

that region was split. If Gonzalez and Woods (2002) found two regions to have highly- 

similar features (i.e., a merge test passed the predicate), the regions were merged. The 

split-and-merge techniques were superior; researchers found a suboptimal solution tree 
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quicker (Pavlidis, 1980). 

 

Single- and multiple-amplitude thresholding techniques generated thresholds based 

upon the statistical features of a local region. They could be implemented so that a new 

threshold was conceived for a new sub-region. A method for deriving a variance 

threshold, however, was quite different. Splitting regions into the least number of sub- 

regions was preferable to splitting to produce a large number of sub-regions. This was 

because a smaller number of sub-regions were then split even further to produce the same 

sub-regions that were originally conceived. 

In split-and-merge, regions depended on some uniformity criterion. Uniformity 

criterion is a subset property, such that a uniformity predicate exists if P(R1) and R2 R1, 

then P(R2). This is usually aimed at finding some uniform intensity, or uniform-like 

background image regions. Pavlidis (1982) investigated variance thresholding techniques 

as methods for defining suitable regions and sub-regions for splitting algorithms. In split- 

and-merge schemes both methods had advantages and disadvantages. Merge-only 

algorithms must exhaustively test uniformity criteria on single pixels, whereas split-only 

algorithms created the need to recheck the resulting sub-blocks for uniformity. Both 

methods required more time to reach a final result because of the expensive nature of 

their operations (Pavlidis, 1982). 

Connected-Component Labeling 

 

The amplitude-splitting algorithms may have resulted in the same labels being applied 

to regions that were not necessarily connected. Figure 13I contains two disjoint regions 

that had been labeled by unity. The same two objects in Figure 13(b) had been assigned 

different labels, namely 1 and 2.  The latter complied with the definition of image 
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segmentation, but the former segmentation violated the connectedness rule. 

 

Connected-Component Labeling with Absolute Threshold 

 

The connected-component labeling algorithm assigned individual region numbers to 

connected groups of pixels, i.e., it takes Figure 13(a) as input and outputs Figure 13(c) 

(Pavlidis, 1980). 

 

  

 

(a) (b) (c) 
Figure 13. Multilevel thresholding example (Csetverikov, 2012); (a) Original image, (b) 

Result of bi-level threshold, and (c) Result of a multilevel threshold. 

 

 

Its sequential, top-left to bottom-right raster scan method was easy to implement. A 

connected-component labeling algorithm mapped a binary input image f(x,y) to a 4- 

connected labeled matrix s(x,y) (Ballard & Brown, 1982). A second pass was necessary 

because of V-shaped regions in the image. The algorithm was followed by a sort routine 

that identified unique labels for all the labels marked equivalent. Then, in a second pass 

of the matrix s, the equivalent labels were assigned to their corresponding unique label. 

The algorithm accepted binary input matrices, which meant this ideally could have been 

applied to the output from an amplitude thresholding process. 

Connected-Component Labeling with Variance Threshold 

 

The algorithm also could be extended to work on grey-level images by relaxing the 

definition of uniformity.  Instead of comparing the upper and left neighbors’ equality 

with the central pixel’s brightness, the researcher of this study compared the difference of 
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their brightness with a threshold, basically using a local threshold as explained in the 

Amplitude Thresholding section. 

The variance threshold allowed for some degree of “looseness” among neighboring 

pixels in this manner. Ballard and Brown (1982) considered the labeling to be a simple 

region-grower for non-binary images. The researcher of this study described 

characteristics of region growers in further detail earlier in the Region Based Method 

section. Both cases of connected-component labeling in this study were local algorithms 

because they involved only one pixel and its neighbors. 

Classifiers 

 

A computing task of much interest in the field of machine perception, both from a 

practical and theoretical standpoint, is that of pattern classification. The task of a pattern 

classifier is to make a decision about which class a given sample represents based on 

information extracted from that sample. These classifiers perform a transform, or 

mapping, from a set of feature values into one of a finite number of classes (White, 

1990). 

The proper construction of the training set is crucial to successful training. One of the 

criteria to be met for proper construction of a training set is that each of the classes has to 

be adequately represented (Vasantha & Bharathi, 2012). A class that is represented less 

often in the training data may not be learned as completely or correctly, impairing the 

network’s discrimination ability (Vasantha & Bharathi, 2012). This is because of the 

implicit setting of a priori probabilities, which results from unequal sample sizes. The 

degree of impairment is a function of (among other factors) the relative number of 

samples of each class used for the training set (Vasantha & Bharathi, 2012). 
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As in the case of statistical classifiers, one of the criteria to be met for proper 

construction of a training set for a BPN was that the image classification had been 

adequately represented—enough samples and an approximately equal number of samples 

per image classification (White, 1990). The number of samples per classification was 

implicitly represented in a network as a priori probability (Arora & Suman, 2012). The 

more often a classification was represented in the training data, the more the weights 

were adjusted to favor that classification. An image classification that was represented 

less often in the training data was not learned as completely or correctly, and the 

network’s discrimination ability could be impaired (Arora & Suman, 2012). If the 

condition of equal representation of each output classification was not met in the original 

data, the simple and often practiced resolution was to duplicate training data for the 

minority classification, or reduce the population of the over-represented classification 

until adequate representation of all classification was achieved (Arora & Suman, 2012). 

Using this method, data were either duplicated or discarded to provide adequate 

minority image classification representation. In autonomous systems, the memory 

required while performing duplication in the training sets, or the intelligence to select 

vectors for removal, could be impractical to implement. Miyake et al. (2009) used image 

classifiers to find false positives and to detect statistical features based on shape of four- 

density features.  When using decision tree classifiers to predict a particular output of 

class that is true, the decision tree classifiers will predict that all remaining output classes 

are false (Russell & Norvig, 2003). Olson and Delen (2008) found that for each classifier 

the following prediction would be used: 

 True positive (tp) is when the classifier output correctly predicts that the input 
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is true. 

 

 True negative (tn) is when the classifier output correctly predicts that the input 

is not true. 

 False positive (fp) is when the classifier output incorrectly predicts that the 

input is equal to a true output. 

 False negative (fn) is when the classifier output incorrectly predicts that the 

input is not equal to the true output. 

Decision Tree 

 

A decision tree paradigm provides a useful tool for solving certain types of 

classification problems. The overall hierarchy is a tree, composed of nodes and branches. 

Internal nodes corresponded to decision locations in the tree. Branches connect each 

parent node to its child nodes (or children) when moving from top to bottom, and connect 

child nodes to parent nodes when moving from bottom to top. The node at the top of the 

tree is referred to as the root node.  Nodes with no children are called leaves; these also 

are referred to as terminal nodes and hold all of the possible solutions that can be derived 

from the tree. With the exception of neural networks, decision trees are the most widely 

utilized tool within data mining applications, and are a useful technique for image 

classification (Russell & Norvig, 2003). 

The advantage of decision tree methods over other modeling tools, such as neural 

networks, is that it produces a model that may represent English rules or logic statements. 

Another advantage associated with decision trees is that no assumptions about the data 

are necessary.  Decision trees can be used to automatically classify the input variables 

(test sets) based on the overall strength of their influence on the decision tree (training 
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set).  Figure 14 presents the algorithm for decision tree learning. 

 

 

 

Figure 14. Decision tree learning algorithm (Russell & Norvig, 2003). 

 

Nonetheless, one can certainly use rule-based methods with a classifier based on an 

artificial neural network (ANN) to find candidates for cancer. This technique can provide 

a useful computer-aided detection (CAD) application for feature detection of malignant 

growth to help radiologists and physicians detect and diagnose possible cancerous 

growths. Gilbert, Astley, and Gillian (2008) used CAD for screening mammography 

images. They reported that CAD had potential cost savings, and that using two kinds of 

readers—human and machine—had the potential to improve cancer detection rates. 

ANNs comprise a class of computing paradigms that have recently spawned a great deal 

of research. One widely used neural network paradigm is the multilayer perception, 

which employs back-propagation of errors learning, or Back-Propagation Network 

(BPN). BPNs have proven very useful in the field of pattern image classification by 

mapping image input patterns into one of several categories.  Rather than requiring 

function Decision-Tree-Learning (examples, attribs, default) returns a decision tree 

inputs: examples, set of examples 

attribs, set of attributes 

default, default value for the goal predicate 

 

if examples is empty then return default 

else if all examples have the same classification then return the classification 

else if attribs is empty then return Majority-Value (examples) 

else 
best  Chose-Attribute(attribs, examples) 

tree  a new decision tree with root test best 

m  Majority-Value(examplesi) 
for each value vi, of best do 

examples  {elements of examples with best =vi} 

subtree  Decision-Tree-Learning (examplesi,  attribs – best, m) 

add a branch to tree with label vi  and subtree subtree 
return tree 
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specific programming, BPNs learn new mappings by exposure to a training set, which 

comprises a collection of input image pattern samples matching with their corresponding 

output images. 

Ultimately, the present study used decision trees in lieu of an ANN. Gupta, D. L., 

Malviya, A. K., & Gillian, Singh (2012) examined J48 methods of classification and 

observed that the J48 methodology had maximum accuracy and minimum error rate. On 

the basis of accuracy measures of the classifiers, one can provide guidelines regarding 

fault-prone prediction issues of any given data set in the respective situations. 

The Miyake et al. (2009) paper discussed using rule-based methods and artificial 

neural network classifiers to detect features based on shape and density in order to find 

lung nodules. In contrast to ANN, decision trees have become the de facto standard 

when detecting features based on shape and density in WEKA 3.6.10 (Arora, R., & 

Suman, 2012). This paper illustrates how neural networks give a lower classification 

error rate than decision trees but require longer learning time.  Additionally, a WEKA 

3.6.10 decision tree can convert into a set of (mutually exclusive) rules, with each rule 

corresponding to a tree branch. 

Abeer Y. Al-Hyari, & Ahmad M. Al-Taee (2013) used the open source WEKA 3.6.10 

software in their study for performance comparison and evaluation purposes. The 

obtained results showed that the developed decision tree algorithm represents the most 

accurate Chronic Renal Failure (CRF) classifier (92.2%) when compared to all other 

algorithms/implementations involved in this study. 
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Chapter 3 

Methodology 

 

 

 

 

General Approach 

 

The goal of this approach was to help radiologists detect cancerous tissue in CT and 

MRI mammography images with CAD system design. Doctors order a patient to take a 

CT or MRI mammogram every year for routine checkups, and radiologists routinely 

screen hundreds of these mammogram images for cancerous tissues. The proposed 

methodology could help radiologists detect cancerous tissues by using a CAD system to 

help locate the region of interest. The experimental design is explained in detail at the 

beginning of Chapter 4. 

This methodology could improve breast cancer detection by automatic detection of 

cancerous tissue from CT and MRI mammography images by enhancing the CT and MRI 

mammography image using image registration and subtraction. Next, in this dissertation 

the researcher used research thresholding techniques, such as regional growing, to find 

the region of interest. Finally, the researcher employed decision trees classifications to 

reduce false positives and false negatives.  Thus, this dissertation is a three-stage 

approach to detect malignant growth in CT and MRI mammography images (see Figure 

15). 
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Figure 15. Methodology overview. 

 

Miyake et al. (2009) used the same type of methodology in rule-based, artificial neural 

network classifiers to detect features based on shape and density and to find lung nodules. 

This dissertation involved the same type of CAD methodology to detect cancerous tissue 

in CT mammography images, and also examined MRI images. The researcher also used 

two types of subtraction methods and different thresholding methods. 

The work of Miyake et al. (2009) was similar to this study, but differs technically in 

that the researchers considered registration with CT images, whereas this work involves 

with both CT and MRI images. In addition, Miyake et al. only used temporal subtraction. 

This dissertation considered both temporal subtraction and dual-energy subtraction 

techniques with mammogram images taken some time apart. By using registration and 

subtraction, Linh and Linh. (2010) stated that one of the keys of usefulness of subtraction 

was the enhancement of differences between images. 

Miyake et al. (2009) only used histograms for thresholding. This dissertation 

considered both global and local thresholding algorithms. The thresholding methods 

proposed have no restrictions on region shape or size, and are tailored to allow 

constraints to be applied and approximated with ease.  The local region-growing 

 

I m a g e   C l a s s i f i c a t i o n 

D e c i s i o n   T r e e 

Im a g e   R e g i s t r a t i o n   a n d 

S u b t r a c t i o n 

T h r e s h o l d i n g 
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techniques combine the flexibility of quadtree-based algorithms with the non-shaped- 

restricted features of region-growing schemes. Regional splitting algorithms, such as the 

one proposed, are generally noise-tolerant, and thus less prone to information loss from 

image pre-processing (noise filtering). 

Image Registration and Subtraction 

 

To achieve a high degree of accuracy in the registration, researchers used external 

markers (e.g., stereotactic frame systems) for a long time—since 1947. The idea of using 

marker implantation in order to provide for image registration was simple, and had some 

advantage over techniques that rely on natural landmarks. For example, the marker could 

be tailored to serve the purpose of accurate image registration; once the appropriate 

marker had been devised it was the same for every patient. 

In the last decade, techniques for retrospective registration of tomographic images 

began to appear. The retrospective techniques mainly rely on the localization of 

anatomical features and provide a non-invasive method of registration (Linh & Linh, 

2010). Linh and Linh (2010) used the registration tool from Matlab for image 

registration by utilizing multimodal image registration to optimize the alignment of CT 

and MRI data. Figure 16 shows the Matlab tool with image registration of an MRI brain 

scan. This tool allowed alignment of 3D images from different medical imaging 

modalities. In this dissertation, the researcher used the same tool for registration of CT 

and MRI mammographic images. 
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Figure 16. Image registration with Matlab. 

 

The second part of image enhancement requires image subtraction. Linh and Linh 

(2010) described image subtraction as being an enhancement process that subtracts the 

difference to bring out greater detail in the image. The image subtraction method 

removes the local change in illumination over a gray-level image. The researcher of this 

study used two types of subtraction techniques for CT and MRI images: temporal 

subtraction and dual-energy subtraction. The dissertation researcher investigated both 

techniques. The researcher used temporal subtraction experiments with Matlab, and the 

dual-energy subtraction was acquired from image databases and compared with temporal 

subtracted images. 

By using low-pass spatial filtering, the researcher created a new image with the overall 

contrast and average intensity of the original image. By subtracting it from the original 

image, the regional variations within the illumination were removed and the resulting 

image  was  then  thresholded  using  a  global  technique  (see  Figure  17).   Miyake et            

al. (2009) used temporal subtraction images obtained by the voxel-matching technique 

and threshold techniques to find lung nodules. 
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(a) (b) (c) 

 

Figure 17. Subtraction images with Matlab (Linh, 2010); (a) Mask image, (b) Image 

taken after contrast, and (c) Image with mask subtracted out. 

 

 

Methods for Identifying ROI 

 

The work of Tourassi, Vargas-Voracek, and Floyd (2003) highlights the methods used 

to identify ROI. In their work, they developed content-based image retrieval (CBIR) 

using DDSM with over 1,009 mammographic images from the database to find ROI. 

Vasantha and Bharathi (2011) stated DDSM contained more than 2,620 cases acquired 

from Massachusetts General Hospital, Wake Forest University, and Washington 

University in St. Louis School of Medicine, and that the DDSM comprised patients of 

different ethnic backgrounds. Eltonsy, Tourassi, and Elmaghraby (2007) presented a 

technique for automatic detection in mammographic masses in images that were cropped 

into regions containing malignant growth. These researchers extracted morphological 

characteristics from these regions to find ROI, and they then used a minimum distance 

classifier in 540 images containing malignant masses, 270 images containing benign 

masses, and 164 normal images from the DDSM database (Eltonsy, Tourassi, & 

Elmaghraby, 2007). 
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In this dissertation, the approach for finding the ROI is a five step process. First, one 

must apply the threshold method to the subtraction image. From this thresholded image, 

the ROI gets identified, and subsequently registered, with the original image. Next, 

feature vectors from the ROI (relative to the original image) get extracted from the non- 

ROI.  The final step involves classifying the feature vectors using a decision tree. 

For all images in this study, the researcher completed Classification Analysis, 

checking for accuracy of segmentation and quality of classification. Additionally, the 

researcher computed twenty-five texture feature type values for the malignant and benign 

areas of each image. This combined the test set and training set from thresholding to 

produce the precision, recall, and f-measure. An image classification decision tree 

calculated the final values from WEKA 3.6.10 along with WEKA J48 classifier and 

cross-validation 10 fold on all experiments. 

 

In this dissertation, the Image Processing Toolbox supported different types of image 

file formats for medical images, such as tomographic images (Matlab, 2012). The Image 

Processing Toolbox also provided comprehensive image display capabilities such as 

zoom, pan, and examination of regions of pixels. The graphic user interface allows 

interactively identifying the Region of Interest (ROI), adjusting contrast, cropping, and 

measuring distance (Matlab, 2012). 

For deriving the training sets, the researcher examined possible classifications of the 

feature vectors of an image based on the ROI in the image (Vasantha & Bharathi, 2012). 

The original images have an ROI of the malignant region that a radiologist previously 

identified, and this ROI then carried over to the thresholded images.  The extraction of 
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the ROI was necessary to analyze the feature vector, and to find the prominent features 

that were representative of the classes of the images. 

Thresholding 

 

There were eight types of thresholding methods in this dissertation: amplitude 

thresholding; global thresholding; local thresholding; connected-component labeling with 

absolute threshold and variance threshold; threshold in histogram analysis; thresholding 

with K-means clustering; regional growing thresholding algorithm; and split-and-merge 

thresholding algorithm functions based upon the density of brightness values present in a 

region. After considering the results (shown in the results section Chapter 4 Results), the 

researcher chose four thresholding methods for further experimentation: amplitude 

thresholding, local thresholding, K-means clustering, and regional growing thresholding. 

Out of the original eight thresholding methods, the researcher deemed these four 

techniques acceptable for the next stage of image classification. 

To clarify, the researcher excluded the global contour method as it did not detect one 

of the cancerous tissues shown. Notably, it did show the full contour of the image and 

followed the Otsu method. Nevertheless, the global thresholding, connected-component 

labeling, and split-and-merge methods will not appear in the Appendix since all results 

were the same due to all of the images having the same brightness level in the foreground 

or background. Additionally, these different thresholding methods were tested and found 

to be unusable for each image type. 

One should also note that threshold based techniques oftentimes get referred to as 

histogram-based methods, which make decisions on local pixel information and are 

effective only when the intensity levels are far outside the range of the levels in the 
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background. Also of importance to note, when using amplitude thresholding, the most 

noticeable difference between temporal subtraction images and dual-energy images is the 

foreground truth, in which temporal subtraction is white and the dual-energy subtraction 

is black. 

The second stage examined the four different thresholding techniques. The amplitude 

thresholding method manipulated objects and backgrounds in such a way that object and 

background pixels had grey levels grouped into two dominant and different modes. In 

these cases, the researcher could extract the objects from the background using a 

threshold that separates the modes. The local thresholding introduced posed no 

restrictions on region shape or size, due to the fact that it maximized edge features by 

thresholding local regions separately. Regional-growing methods used recursive splitting 

to partition the image top-down by using the average brightness of a region. Importantly, 

the researcher applied each thresholding method to each of the three image types.  A 

more detailed description of each of these methods is contained in the following 

paragraphs. 

Amplitude Thresholding 

 

To reiterate, the amplitude thresholding method manipulates objects and backgrounds 

in such a way that object and background pixels contain grey levels grouped into two 

dominant and different modes. In these cases, the researcher extracted the objects from 

the background using a threshold that separates the modes. In other words, amplitude 

thresholding segments an image by setting all pixels whose intensity values are above a 

threshold to a foreground value, and all the remaining pixels to a background value. As 

such, amplitude thresholding typically takes a grayscale image as input and, in the 
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simplest implementation, outputs a binary image representing the segmentation. For each 

segment, each pixel is classified relative to (above or below) the threshold to be 

calculated. If the pixel value is below the threshold, it is set to the background value, 

otherwise it assumes the foreground value. Simple and fast functions include the mean of 

the local intensity distribution. 

When implemented, an amplitude thresholding algorithm separates the foreground 

from the background with non-uniform illumination.  Importantly, illumination comes 

into play in the mammography images after thresholding. Illumination can exist in any 

image and represents one of the key elements in creating an image, particularly based on 

the interplay of shadow and high intensity light. As such, one technique for image 

segmentation is amplitude thresholding (Gonzalez et al., 2002). In some cases, an image, 

f(x,y), was composed of objects and backgrounds in such a way that object and 

background pixels had grey levels grouped into two dominant and different modes. In 

these cases it was possible to extract the objects from the background using amplitude 

thresholding that separates these modes. 

Image thresholding operations followed the general relation for a threshold T 

(Gonzalez et al., 2002).  Point's coordinates, p(x,y) is a local function in the 

neighborhood of pixel (x,y) (e.g., the average of the eight neighboring brightest pixels), 

and f(x,y) is the grey level of the current point or pixel. T is equal to f(x,y), which is grey 

level of (x,y). The application of T—classification of (x,y) with respect to T—depends 

solely on f(x,y). In the case of ‘local threshold’, application of T depends on p(x,y), a 

function of the neighborhood of (x,y).  If T depends on p(x,y) in addition to f(x,y), it is a 
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local threshold. Additionally, T is said to be dynamic if it depends on all four of the 

components (Gonzalez et al., 2002). 

Local Thresholding 

 

The local thresholding method poses no restrictions on region shape or size, due to the 

fact that it maximizes edge features by thresholding local regions separately. In local 

thresholding the original image is decomposed into smaller sub-regions, and each is 

given a threshold individually. A pixel represents the center of a neighborhood if it 

achieves a local maximum (in brightness) relative to its neighbors. Furthermore, the 

NHOOD function determines which pixels are neighbors.  In fact, NHOOD neighbors is 

a variable that provides a generalization of ‘8 neighbors’ in that it defines the shape of 

each pixel’s neighborhood. More specifically, NHOOD comprises an array of zeros and 

ones in which the nonzero elements specify the neighbors used in the computation of the 

local mean and standard deviation; as such, NHOOD defines the size of the 

neighborhoods. The size of NHOOD must be odd in both dimensions because it is 

centered on (x,y). In many cases, this caused discontinuities at the borders between sub- 

regions. To eliminate this problem, the researcher interpolated the threshold values from 

neighboring sub-regions. The approach used was the same one proposed by Chow and 

Kaneko (1972). 

K- means Clustering 

 

K- means is a popular clustering algorithm for large datasets.  This algorithm 

iteratively computes a set of k centers that implicitly represents a partition. Given any set 

Z of centers, each zZ has a neighborhood defined as the set of data points that are closer 

to z than to any other center in Z. K-means starts with a set Z of centers and computes 
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their neighborhoods. In successive iterations, every center moves to the centroid of its 

neighborhood, and then one must re-compute the neighborhoods based on the updated 

positions of the k centers. This process continues until it satisfies a convergence 

criterion, such as when two successive iterations produce no changes to any of the k 

neighborhoods. 

The collection of neighborhoods that results is taken to be the partition of the data 

points produced by k-means applied to the initial set of centers. Since some of the 

neighborhoods may be empty, the resulting partition comprises up to k nonempty 

clusters. Having applied k-means, pixels must now get classified into k classes. The 

graphic user interface was also used in K-means clustering as this allowed interactively 

looking at Region of Interest (ROI), adjusting contrast, cropping, and measuring distance 

(Matlab, 2012). Matlab used histogram-based methods, which make decisions on local 

pixel information and are effective only when the intensity levels are far outside the range 

of the levels in the background. 

Interestingly, the K-means clustering algorithm approximated the optimal peaks in an 

image histogram. Each cluster represented a group of pixels with homogeneous grey- 

levels. K was the variable number of clusters desired. For example, if one wanted the 

region split into two grey levels, K would equal 2. (See Histogram Analysis Chapter 2.) 

The researcher used Matlab’s 2013 Distance tool in the Imtool that allows for measuring 

distance in images by using the tool function in the toolbar or by selecting Measure 

Distance. 

Matlab had some examples for K-means clustering located in the file exchange. The 

researcher conducted an analysis for the accuracy of segmentation and quality of 
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classification on this experiment. It often worked better than Otsu's method, which 

outputs larger or smaller thresholds on fluorescence images. While viewing the Dual- 

energy Subtraction Image, one can see that the last images showed the ROI. (See 

Appendixes A, B, and C for the greatest calculated precision, recall, and f-measure 

values.) 

Region-Based Methods 

 

The purpose of region growing is to partition an image into regions such that the 

pixels comprising each region satisfy a given similarity measure P. Specifically, a 

partition represents an equivalence relation over the pixels (every pixel belongs to exactly 

one region); every region is connected in a well-defined sense (generally 4- or 8- 

connected); every region satisfies the similarity measure P; and, generally, no proper 

superset of the region satisfies P. In contrast to split-and-merge segmentation, region 

growing proceeds bottom-up. To clarify, a selected seed pixel starts a region, and then 

adjacent pixels get added to the region as long as P is satisfied, and the process continues 

recursively on recently-added pixels until no further pixels can be added to the region 

without violating P. Additional regions successively grow from new (unvisited) seeds 

until a complete partition results. 

The region-growing thresholding algorithm, obtained from the Gonzalez et al. (2012) 

paper, is an analysis for the accuracy of segmentation and quality of classification used 

on regional growing completed images. The Image Processing Toolbox also provided 

comprehensive image display for region growing capabilities such as zoom, pan, and 

examination of regions of pixels. Typically, one would let this image be an image where 

every pixel has its own label criterion.  One uses the value of the similarity criterion to 
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decide between fusing segments and not fusing segments. In Figure 9 (Contour tracing 

algorithm) one can see how the region-growing algorithmic process functions, where P is 

coded. Pixel aggregation techniques started with one point, and grew in all directions 

around that point to form a region, giving a seed point to neighboring pixels (Saidin et al., 

2010). The researcher would use similarity measurement using the Matlab GUI interface 

which allowed interactively looking at ROI, adjusting contrast, cropping, and measuring 

distance (Matlab, 2013). 

When the ROI is identical to or similar enough to the one identified by the radiologist 

before thresholding, it is described as holding the ROI. This term identifies a region that 

has a malignancy, which refers to the area of the image that contains cancerous cells. If 

the ROI is very similar, but not identical to, the original ROI, this would be an area that 

holds the ROI because thresholding will change the look but not the overall size and 

degrees of the area. Matlab’s 2013 Distance tool in the Imtool set allows for measuring 

distance in images by using the tool function in the toolbar or by selecting Measure 

Distance. This allows one to calculate and express in data units determined by the XData 

and YData properties, which by default is in pixels, the distance between two endpoints. 

Image Classification 
 

Decision tree learning consists of classifiers for instances represented as feature 

vectors (Gupta, Malviya, & Singh, 2012). In this approach, classification knowledge is 

first represented as a decision tree and then the tree is translated as a set of rules. The 

decision tree is constructed by sequentially selecting attributes based on an informational 

theoretical measure (Gupta et al., 2012). 

Adequate representation of each of the image classifications is crucial to training. In 
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this study, an image classification that was represented less often in the training data 

might not have been learned as completely or correctly, impairing the network’s 

discrimination ability. This stems from the implicit setting of a priori probabilities, 

which resulted from unequal sample sizes. The degree of impairment was a function of 

(among other factors) the relative number of samples of each image classification used 

for training. 

A computing task of much interest in the field of machine perception, both from a 

practical and theoretical standpoint, is that of pattern classification (Gupta et al., 2012). 

The task of a pattern classification involves making a decision about which image 

classification a given sample represented, based on information extracted from that 

sample (Gupta et al., 2012). For the experiments for this methodology, the dissertation 

researcher used Digital Database for Screening Mammography (DDSM) images from the 

University of South Florida’s mammography database. DDSM contained descriptions of 

breast lesions in terms of the American College of Radiology’s (ACR) breast imaging 

lexicon called the Breast Imaging Reporting and Data System (BI-RADS) (Vasantha & 

Bharathi, 2011). These databases used the same image classification method that Miyake 

et al. (2009) used to find false positives and to detect statistical features based on shape 

and density. 

For image classification, the researcher created J48 decision trees based on 21 features 

that were identified and obtained from the Matlab GLCM function, and four feature types 

that were obtained from the state of the histogram-based features.  The J48 algorithm 

used a greedy approach in which the decision trees were constructed in a top-down 

recursive manner with a divide and conquer technique.  Most algorithms for decision tree 
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methods take a top down approach. The algorithms start at the top of the tree with a 

training set of tuples and their associated class labels. 

The researcher recursively divided the training set into smaller subsets as a tree was 

being built. The J48 algorithm consists of three parameters—attribute list, attribute 

selection method, and classification (Arora & Suman, 2012). The attribute list is a list of 

characteristics that describe the different tuples.  The attribute selection method specifies 

a heuristic procedure for selecting the attribute that best discriminates the given tuples 

according to each class (Arora & Suman, 2012). The specified procedure employs an 

attribute selection method for selecting only those variables that contribute to information 

improvement that allow for multi-level splits. Each attribute selection method determines 

the splitting criteria. The splitting criteria tell which attribute to test at a node by 

determining the best way to separate or partition the tuples into individual classes (Arora 

& Suman, 2012). The researcher used WEKA 3.6.10 to create a decision tree training 

and test set using 25 features that were relevant at each node of the tree. WEKA 3.6.10 

was used with the classifier J48 and cross-validation ten10 fold to create the final 

decision trees. 

Vasantha and Bharathi (2011) used the Machine Learning package of WEKA to train 

their dataset, also using a decision-tree method. WEKA 3.6.10 is a collection of machine 

learning algorithms for data mining tasks. The classifiers in WEKA 3.6.10 were methods 

for predicting group membership based on numeric values. The experiment constructed 

one decision tree for each of the three image types. 

Research Methods 

 

This dissertation researcher enhanced categorization of the images by using image 
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registration and subtraction, and applying global and local thresholding methods. Global 

thresholding used one threshold over the entire image to compute the image, while in 

local thresholding the image was broken down into smaller sub-regions, and each 

threshold was computed individually. A thresholding method was considered point 

dependent if the threshold selection was based only on the gray-level of each pixel. For 

global thresholding, the researcher used the method of Otsu (1979) for optimum 

thresholding, in which thresholding of a global region was determined from a local 

property in the neighborhood of each pixel. Some region-dependent methods were 

developed to improve the histogram of an image, making it easier to select the global 

threshold value. 

For local thresholding methods, the flexibility of quadtree-based algorithms was 

combined with the non-shaped-restricted features of region-growing schemes. The 

purpose of local thresholding was to preserve features or edges in a gray-level image that 

were lost using global thresholding techniques. Global methods preserved only global 

features. However, it was often necessary to enhance details over small areas. Because 

these areas were small, they may have had a negligible influence on the calculation of 

global threshold values. Therefore, the local details were usually lost by global 

thresholding. Local thresholding techniques obtained the local details. Local 

thresholding maximized edge features by thresholding local regions separately. 

The regional growing algorithm that was introduced poses no restrictions on region 

shape or size, and the researcher tailored it to allow constraints to be applied and 

approximated with ease. The work of Miyake et al. (2009) was similar to this study, but 

differs technically in that the researchers did not use a splitting process prior to merging- 
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and-thresholding.  The threshold could be derived from: 

 

1. The average brightness of a region. 

 

2. The average of the minimum and maximum brightness present in the region. 

 

3. K-mean clustering where K was some defined variable. 

 

The researcher conducted all the experiments comprehensively using the Matlab® 

Image Processing Toolkit (IPT) to compare the splitting and merging algorithms on 

mammographic, gray-scale, and CT and MRI mammogram images. The algorithm 

utilized here was selected for its combination of commitment, use of heuristic 

information, and exhaustive nature. 

The following were the independent variables and experiments that were run on all 

combinations of the data: 

1. Image Registration using two different image types: CT image vs. MRI 

image. The image was taken from databases that were backed by ACR. 

Matlab provided full image registration, which was part of Matlab’s IPT 

toolbox. The IPT supported many image file types (Linh et al., 2010). The 

results were analyzed using accuracy of segmentation (Verbeek et al., 1988). 

2. Temporal subtraction vs. dual-energy subtraction. This experiment compared 

temporal subtraction using images from the ACR database, and applied 

temporal subtraction using the Matlab IPC toolbox and dual-energy 

subtraction images that were used from Lewin’s (2003) research. 

3. Eight different types of thresholding methods were run on all combinations of 

temporal and dual-energy images listed below. 

 Amplitude thresholding in Matlab. The Matlab function could be used to 
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find local minima, maxima, and match value in the vector of an image. 

Matlab had many examples on the vector of an image (Matlab, 2012). 

 Global thresholding. In this experiment both temporal subtraction and 

dual-energy subtraction images were used with DIPUM Toolbox Version 

2 (Gonzalez, Woods, & Eddins, 2012). The DIPUM toolbox provided a 

function for the global image thresholding method. This experiment’s 

analysis used the accuracy of segmentation and quality of classification. 

 Local thresholding DIPUM Toolbox Version 2 (Gonzalez et al., 2012) 

provided a local image thresholding method. The image came from the 

experiment image registration using two different image types: CT image 

vs. MRI image. Analysis for accuracy of segmentation and quality of 

classification was completed. 

 Connected-component labeling. Matlab had some examples for 

connected-component labeling located in the file exchange (Matlab, 

2012). This experiment completed the analysis for the accuracy of 

segmentation and quality of classification. 

 Threshold with histogram analysis. Matlab had a few functions for image 

histograms in the IPC that this dissertation researcher used in this 

experiment (Matlab, 2012). 

 Thresholding with K-means clustering where K is some variable. Matlab 

had some examples for K-means clustering located in the file exchange. 

Analysis for the accuracy of segmentation and quality of classification was 

done on this experiment. 
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 Regional growing thresholding algorithm. This was obtained from the 

Gonzalez et al. (2012) function (regiongrow). An analysis for the 

accuracy of segmentation and quality of classification was used on 

regional growing completed image. 

 Split-and-merge method thresholding. This was obtained from the 

Gonzalez et al. (2012) function (splitmerge). Analysis of the accuracy of 

segmentation and quality of classification was used. 

4. WEKA 3.6.10 was used for obtaining precision, recall, and f-measure. The 

training was derived from the collection of 30 images containing two 

classifications—malignant and benign. 

Resources 

 

This experiment used the University of South Florida’s mammography database 

(University of South Florida, 2011) and the American College of Radiology’s breast 

imaging (BI-RADS) database. These databases were the standards for American College 

of Radiology’s breast imaging (Vasantha & Bharathi, 2011). 

Mammography image results from each of the experiments were collected and 

analyzed with the following data results. 

1. Accuracy of segmentation via thresholding depended almost entirely on the 

selection of the value for the threshold. Good threshold values were estimated 

by using statistical information about the image like the average, median, and 

mode of the pixels’ brightness in the image. Recall from the thresholding 

section was that first-order statistics were the accuracy of segmentation via 

thresholding; this depended almost entirely on the selection of the value for 
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the threshold (Chen & Chen, 2006). The average, median, and mode of the 

pixels’ brightness were examples of these (Verbeek et al., 1988). By using 

different threshold methods one can compare accuracy and precision of 

thresholding against the pre-defined cancer images. 

2. Quality of classification often is measured by precision, recall, and f-measure 

(which combines precision and recall) (Dembczynski, Waegeman, Cheng, & 

Hullermeier, 2011). These measures were applied to assess the relative 

effectiveness of these independent variables (i.e., subtraction method, 

segmentation method). All measurements were used to assess the 

effectiveness of the proposed methods (Kulkarni & Nicolls, 2009). 

Throughout the study, many resources were used, including material from the 

following: Institute of Electrical and Electronics Engineers (IEEE), Association for 

Computing Machinery (ACM), Signal Processing Society, Society of Photo-Optical 

Instrumentation Engineers (SPIE), and Nova Southeastern University online library. The 

framework utilized Matlab and Simulink R2011b Environment applications. This was an 

open environment for developers and allows for C and C++ interface calls (Matlab, 

2012). The Image Processing Toolbox extended Matlab and provided a complete set of 

references, standard algorithms, and graphical tools for image processing. The Image 

Processing Toolbox supported different types of image file formats for medical images, 

such as tomographic images (Matlab, 2012). The Image Processing Toolbox also 

provided comprehensive image display capabilities such as zoom, pan, and examination 

of regions of pixels.  The GUI interface allowed interactively looking at Region of 

Interest (ROI), adjusting contrast, cropping, and measuring distance (Matlab, 2012). 



76 
 

 
 

Additional methods that were used within Matlab were from functions that could be 

found in the DIPUM Toolbox Version 2 (Gonzalez et al., 2012). The DIPUM Toolbox 

contains Matlab functions that Gonzalezet et al. used in their 2004 through 2012 

textbooks. 

Summary 

 

The goal of this research was to assess the effectiveness of various thresholding 

methods in the context of a three-stage approach to help radiologists find cancerous tissue 

lesions in CT and MRI mammography images, using image registration and subtraction, 

thresholding, and classification for the detection of cancerous tissue with a CAD system 

design.  There were two independent variables:  subtraction method in stage one 

(temporal subtraction and dual-energy subtraction), and thresholding method in stage 

two. The remaining factors were fixed (including the classification method). All the 

experiments used the Matlab R2012a Environment. 

The available software comes from the Matlab Image Toolbox and the DIPUM 

Toolbox. The built-in functions from the Matlab Image Toolbox were registration, image 

subtraction, region of interest, visualization, and algorithm development (Matlab, 2012). 

The Otsu (1979) function was available in Matlab and the DIPUM Toolbox. The 

researcher presents and compares the results image by image in a tabular format in 

Chapter 4. 
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Chapter 4 

Results 

 

 

 

 

Organization 

 

This experimental design presents the methodology for using eight distinct 

thresholding methods to find the region of interest (ROI) containing malignancy cancer 

cells on three different image types: temporal subtraction, dual-energy subtraction, and 

Digital Database for Screening Mammography (DDSM). Ten unique images exist per 

type. In each of the three different image types, malignant cancer cells have been 

identified by radiologists using an image mask. From each image within the three image 

types, two classifications are created as follows: sub-regions from the image as malignant 

and benign. Malignancy refers to the part of the image that contains cancerous cells that 

have the ability to spread to other areas within the body (Dromain et al., 2012). Benign 

refers to the part of the image that has no cancerous cells found (Vasantha & Bharathi, 

2011).  This process yields 20 training instances in total for each image type. 

The Matlab 2012a® Image Processing Toolkit (IPT) function Imtool has several 

built-in tools, including one that helps measure distance in an image for determining the 

precision value. Imtool also allows for cropping an area of interest and saving the 

cropped image. Using the Matlab 2012a functions co-occurrence matrix (GLCM) and 

histogram based features, 25 different feature types are captured. GLCM calculates 21 

target features types which are obtained from the Matlab function texture features. The 

remaining four feature types—mean, variance, skewness, and kurtosis—are obtained 
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from the state of the histogram based features. 

 

Using WEKA® 3.6.10, a training set was derived from the collection of 30 images 

containing the two classifications—malignant and benign. The test set was derived from 

thresholding each of the three different image types (temporal subtraction, dual-energy 

subtraction, and DDSM) running the feature types on each of the two classifications. The 

final step was to then run the test set derived from applying a thresholding method to a 

single image against the training set decision tree, which provides the precision, recall, 

and f-measure values. This methodology forms an assessment for the combination of 

image type and thresholding method, which yields the calculated precision, recall, and f- 

measure values. The rest of this section elaborates the steps in this experimental 

methodology. 

Image Data 

 

The images data were from three sources. The first set of images was taken from the 

Digital Database for Screening Mammography (DDSM) from the University of South 

Florida’s mammography database. The second set of images, temporal image 

subtraction, came from two sources. First, from DDSM case 83 and case 84 (referenced 

as Patient A, Figure 18) and DDSM case 171 and case 216 (referenced as Patient B, 

Figure 19) were created using Matlab IPT image registration. The remainder of the 

temporal image subtraction images are from Rafferty (2007). The third set, dual-energy 

images, came from Lewin’s (2003) research. Patient 2 was referenced as Patient C, 

Figure 21, and Patient 6 was referenced as Patient D, Figure 21. 

The dissertation researcher investigated three types of image data: temporal 

subtraction, dual-energy subtraction, and DDSM.  DDSM contains descriptions of breast 
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lesions in terms of the American College of Radiology (ACR) and breast imaging lexicon 

called the Breast Imaging Reporting and Data System (BI-RADS) (Vasantha & Bharathi, 

2011). Temporal subtraction has been used successfully for the detection of lung nodules 

by Miyake et al. (2009).  Carton et al. (2007) used dual-energy subtraction to find cancer. 

One issue that the researcher had to resolve was data had to be transformed to standard 

grayscale image.  This was seen in the predominant negative aspect working with 

temporal and dual-energy images, as data were presented with RGB grayscale values (0– 

255).  The RGB color scheme allows 256 values that are possible for shades of color. 

These values have to be converted or transformed to equal standard grayscale image 

values (0–255) in order to prepare for subsequent stages of the experiments. 

 

 

 

 

Figure 18. Images from University of South Florida Digital Mammography (DDSM), 

Patient A. 



80 
 

 

 

 

 

Figure 19. Images from University of South Florida Digital Mammography (DDSM), 

Patient B. 
 

 

 

 

(a) (b) 

 

Figure 20. Lewin (2003) images Patient C; (a) Benign dual-energy. 
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(a) (b) 
 

Figure 21. Lewin (2003) images Patient D, (a) Benign dual-energy. 

 

Deriving Training Sets 

 

For deriving the training, sets the resarcher looked at classifying feature vectors of an 

image based on the Region of Interest (ROI) in the image (Vasantha & Bharathi, 2011). 

Both original and thresholded images have an ROI of the malignant region that had been 

previously identified by a radiologist. The extraction of the ROI was necessary to 

analyze the feature vector, and to find the prominent features that were representative of 

the classes of the images. Malignancy refers to cancerous cells that had the ability to 

spread to other areas within the body (Dromain et al., 2012). All malignancy had been 

identified by radiologists in each image type using an image mask to identify the ROI 

malignancy. Benign refers to a sub-image that has no cancer found (Vasantha & 

Bharathi, 2011). Note that the benign and malignant regions of an image partition the 

image, and combine to form the Image as a whole.  The benign area is all parts of the 
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original image other than the portion containing the malignancy that was identified by the 

radiologists in the foreground of the whole image. When applying thresholding 

techniques to the image, either the original radiologist’s mask overlay or the original 

image mask to identify the area of malignancy. To summarize, the structure of the 

training sets are derived from the whole image, and the sub-images identified by the 

radiologists’ designation as malignancy and the remainder, benign, found in the area 

other than the malignancy. 

 

The Matlab 2012a image processing toolbox function Imtool has a built-in tool that 

helps measure distance in the image for precision. Imtool also allows for cropping an 

area of interest. To crop the benign area, all areas other than the malignancy that was 

identified by the radiologists in the foreground were selected. The Matlab 2012a 

supported feature set GLCM and histogram were run on each of the image 

classifications—malignant and benign. This provided 30 images along with their 

corresponding thresholding methods and feature sets, which provided an adequate 

representation in the training set. 

Constructing the Decision Trees 

 

Each image has two parts for classification: malignancy refers to the part of the image 

that contains cancerous cells and benign refers to the part of the image that has no 

cancerous cells. For image classification, the dissertation researcher used a J48 decision 

tree on 21 features that were identified and obtained from the Matlab GLCM function and 

four feature types that were obtained from the state of the histogram-based features. 

WEKA 3.6.10, along with cross-validation, was used to create a decision tree training set 

using the 25 features that were relevant at each node of the two.  The feature vector for a 
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region was obtained from the original thresholded whole image. 

 

There are three different image types: temporal subtraction, dual-energy subtraction, 

and Digital Database for Screening Mammography (DDSM). The classification used for 

the construction of decision trees supports malignant and benign. The feature vectors that 

are based on malignant regions were used on malignant instances and the feature vectors 

based on benign regions were used for benign instances. The image was based on the 

image as a whole and the specific region being examined for the feature vectors. 

WEKA 3.6.10 was used with the J48 classifier and cross-validation to create the final 

decision trees. Vasantha and Bharathi (2011) used the Machine Learning package 

WEKA to train the dataset, and also used a decision tree method. WEKA 3.6.10 is a 

collection of machine learning algorithms for data mining tasks. The classifiers in 

WEKA 3.6.10 were methods for predicting group membership based on numeric values. 

The experiment used one decision tree for each of the three image types (temporal 

subtraction, dual-energy subtraction, and DDSM). For creating the decision tree, the 

feature vectors and classifiers are malignant and benign regions from the 10 cases. 

Deriving Test Sets 

 

In the test set, the researcher derived an ROI obtained in the thresholded image, 

generated a feature vector for this ROI, and applied this vector to the relevant decision 

tree. The test sets are derived from applying four different thresholding techniques. The 

data used were 30 images containing malignancies that were comprised of 10 DDSM 

mammographic images, 10 dual-energy subtraction images, and 10 temporal subtraction 

mammogram images. The approaches for image thresholding fall into eight broad 

categories: amplitude thresholding, global thresholding, local thresholding, connected- 
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component labeling, thresholding with histogram, k-means clustering, regional growing 

thresholding, and split-and-merge thresholding. The histogram thresholding method used 

was part of the Matlab-supported feature set and constructed four feature types: mean, 

variance, skewness, and kurtosis.  These were used along with the 21 GLCM target 

feature types to construct the decision trees for each image type and also to construct test 

sets for thresholding. 

The same Matlab 2012a supported feature set GLCM and histogram values were 

applied on the same malignancy and benign sub-regions that were extracted to create the 

training set.  For each of the three image types, a thresholding method was applied. 

Hence, each test set is characterized by a sub-image type, threshold-method pair. Each 

test set comprised the set of 10 images of a given image type subject to the given 

threshold method. The ROIs determined by thresholding were used to derive the feature 

vector, and to find the prominent features that were representative of the classes of the 

thresholded image. The test set was used to verify an ROI whose vector would be 

classified as malignancy under the decision tree for the image type. This process 

provided an individual test set that could be run against the full training set using WEKA 

3.6.10. 

Classification 

 

The ROI was determined by the thresholding method being tested. The researcher 

derived a feature vector for the ROI by thresholding an original image that classified as 

malignant, and a feature vector for the complement of the ROI in an image, which was 

any other area in the foreground that was classified as benign. Identifying the ROI after 

thresholding is a subjective measurement, as the original image has been transformed by 
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the selected thresholding method. 

 

Both positive and negative test cases were used in the experiments: the positive 

malignancy cases were identified by thresholding the original image, and the negative 

benign cases were complements of the malignancy region.  The feature vector for a 

region was obtained from the original un-thresholded whole image. The experiment used 

one decision tree for each of the two image types and then classified both the malignant 

and benign regions from the 10 test cases. 

The results of the experiments were used in the calculation of precision, recall, and f- 

measure. Precision, also called positive predictive value, is the fraction of retrieved 

instances that are relevant in the image (Russell & Norvig, 2003). Recall is the fraction 

of relevant instances that are retrieved in the image (Russell & Norvig, 2003). Finally, f- 

measure is the measurement that tests for accuracy in both precision and recall. For an 

experiment, precision and recall depends on true and false positives. The maximum 

precision would have no false positives and the maximum recall would have no false 

negatives (Russell & Norvig, 2003). An experiment is parameterized by image type and 

thresholding method. 

The series of steps in this experiment provided for a methodical evaluation of each 

image type against each thresholding method, which was then used to create a test set that 

helped determine the adequacy of the individual methods. Ultimately, this methodology 

formed assessments for each combination of image type and thresholding method. The 

researcher examined the results to determine which combination yields the greatest 

calculated precision, recall, and f-measure values and provide a benchmark for  

comparing the results across each cell of the image type thresholding method matrix. 
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Findings 

 

In the first stage, image registration was used for temporal subtraction and dual-energy 

subtraction.  The fundamental characteristic of any image registration is the type of 

spatial transformation or mapping used to properly overlay two images (Matlab, 2012). 

Since a relatively high image contrast (mammograms) was the source, the Matlab 

registration process was the method used. The Matlab registration process allowed 

different tomographic images (MR, CT, PET, etc.) when the size of the pixel was known. 

Image registration used feature identification to find some information that was 

invariant to the registration process. The information found to be the same in all 

mammograms involved the external boundaries. Regardless of the type of image (MR, 

CT, PET, etc.), as long as the subject was the same patient, and no significant external 

shape modifications existed, the boundaries should have had the same shape. This 

dissertation researcher determined a set of features completely automatically. Since this 

method was designed to work with any kind of subject data, this step’s approach used 

gray-level information. Figure 22 shows the registration interface on the left-hand side 

with the two images that were registered for Patient A. In the center, the result of the 

image registration image is presented. Figure 23 presents registration using temporal 

subtraction for Patient B. 
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Figure 22. Image registration using temporal subtraction Patient A. 
 

 

 

 

Figure 23. Image registration using temporal subtraction Patient B. 
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The researcher accomplished the second stage by applying thresholding techniques to 

find the Region of Interest (ROI). When the ROI is identical to or similar enough to the 

one identified by the radiologist before thresholding, it is described as holding the ROI 

(Miyake et al., 2009). This term is used to identify a region that was noted to have a 

malignancy, which refers to the area of the image that contains cancerous cells.  If the 

ROI is very similar but not identical to the original ROI, this would be an area that holds 

the ROI because thresholding will change the look but not the overall size and degrees of 

the area. Matlab’s 2013 distance tool in the Imtool set allows for measuring distance in 

images by using the tool function in the toolbar or by selecting Measure Distance. This 

allows the distance between two endpoints to be calculated and expressed in data units 

determined by the XData and YData properties, which by default is in pixels. The Imtool 

allows for exporting endpoint distance data, thus allowing end point locations and 

distance information to be saved (Matlab, 2013).  The researcher used this tool to 

measure the distance in each image both before and after thresholding the area defined by 

the radiologist.  The Imtool is used to show the size of the identified malignancy ROI. 

The distance from the original reference point prior to thresholding is compared to the 

distance calculated after thresholding to determine if the new region holds the ROI, 

helping to validate the legitimacy of the other calculated values. 

Thresholding is the process of finding individual pixels in an image that are greater 

than a specified threshold value. The researcher used eight different types of 

thresholding methods in this section. In amplitude thresholding, ground truth was 

noticeably different, and dual-energy seemed to hold the ROI identified by the 

radiologist, whereas temporal subtraction did not.  ROI was defined by a radiologist on 
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all the different image types prior to any experiments and noted as malignant. Global 

thresholding did not detect ROI in temporal subtraction or dual-energy. Local 

thresholding was different in that dual-energy seemed to find the ROI better than 

temporal subtraction when the image was broken down into smaller sub-regions and the 

edge features were maximized in blocks. Connected-component labeling, like global 

thresholding, did not hold the ROI. The only difference was in dual-energy; the image 

looked grainy and the resultant image was black instead of white. 

The researcher used histogram analysis thresholding to find four feature types that 

were obtained from the state of the histogram-based features: mean, variance, skewness, 

and kurtosis.  K-means clustering seemed to do very well in both temporal subtraction 

and dual-energy subtraction for finding ROI. The regional growing thresholding 

algorithm seemed to be the best in the 4-neighbors function as it returned the ROI in both 

temporal subtraction and dual-energy subtraction. The split-and-merge thresholding 

algorithm did not do well on the split, as there was no sign of the ROI. 

In the last stage, the researcher used a J48 classifier with cross-validation based on the 

decision tree, which provided the precision, recall, and f-measure values. Classifiers 

detect features based on shape and density in order to find malignant growth (Miyake et 

al., 2009). This technique can provide a useful CAD application for feature detection of 

malignant growth to help radiologists and physicians detect and diagnose possible 

cancerous growths. The researcher identified and obtained 21 features from the Matlab 

GLCM function, and four features were obtained from the histogram data. The WEKA 

results collected included precision, recall, and f-measure. 
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Amplitude Thresholding in Matlab 

 

The next several sections on thresholding provide anecdotal evidence about the 

various thresholding methods based on a limited number of images. Using Matlab on 

adaptive thresholding algorithm separated the foreground from the background with non- 

uniform illumination (Xiong, 2005). Single and multiple amplitude thresholding 

techniques generated thresholds based upon the statistical features of the region. Figure 

24(b) displays the resultant temporal subtraction images, and Figure 25(b) shows the 

dual-energy subtraction image results. The histogram of a digital image provided more 

information with minima and maxima of the image, and is discussed further in a later 

section of this chapter. One thing that was noticeable between temporal subtraction and 

dual-energy images in amplitude thresholding was that the ground truth temporal 

subtraction image was white, and the dual-energy subtraction image was black. 

Appendices A, B, and C are the results of each anecdotal thresholding method from each 

image type that consists of 30 images containing malignancies that were comprised of 10 

DDSM mammographic images, 10 dual-energy subtraction images, and 10 temporal 

subtraction mammogram images. The researcher examined the results shown in the 

Appendices to determine which combination yielded the greatest calculated precision, 

recall, and f-measure values. 
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(a) (b) 
 

Figure 24. Amplitude thresholding using temporal subtraction image Patient A. 
 

 

 

(a) (b) 

 

Figure 25. Amplitude thresholding using dual-energy subtraction image Patient D. 
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Global Thresholding 

 

In Global thresholding, the thresholded images in Figure 26(b) (using temporal 

subtraction), and Figure 27(b) (using dual-energy subtraction), contained all of the edges 

within the original images shown in Figures 18 and 20. In comparison to the global 

techniques, no portion of the image was missing in the thresholded image. The Otsu 

(1979) and the global contour methods did not detect one of the cancerous tissues shown 

in Figure 18 or Figure 20, respectively. Global thresholding did show the full contour of 

the image and followed the Otsu method. The global thresholding, connected-component 

labeling, and split-and-merge methods were not noted in the Appendices because all 

results were the same because all of the images had the same brightness level in the 

foreground of each image. 

 

(a) (b) 
 

Figure 26. Global thresholding using temporal subtraction image Patient A. 
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(a) (b) 

 

Figure 27. Global thresholding using dual-energy subtraction image Patient C, local 

thresholding. 

 

The local thresholding techniques presented in this dissertation were demonstrated 

using the same images as previously used for the global thresholding techniques. The 

results are shown in Figure 28(b) (temporal subtraction image) and Figure 29(b) (dual- 

energy subtraction image). Local thresholding processed an image, called the graythresh 

function, on local blocks of the image (Chow & Kaneko, 1972). This facilitated 

thresholding of an image with uneven background illumination, for which global 

thresholding was inadequate. This local thresholding process used the Matlab Image 

Processing Toolbox function. 
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(a) (b) 
 

Figure 28. Local thresholding using temporal subtraction image; (a) Original image, and 

(b) Local thresholding, Patient A. 

 

 

(a) (b) 

 

Figure 29. Local Thresholding using dual-energy subtraction image; (a) Original image, 

and (b) Local thresholding, Patient D. 
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As discussed in Chapter 2, in local thresholding, the original image was broken down 

into smaller sub-regions, and each was given a threshold individually.  In many cases, 

this caused discontinuities at the borders between sub-regions. This effect can be seen in 

Figure 28(b) (temporal subtraction image), and Figure 29(b) (dual-energy subtraction 

image). See the results in Appendices A, B, and C for which the WEKA decision tree 

yielded the greatest calculated precision, recall, and f-measure values. 

Connected-Component Labeling 

 

A connected-component labeling algorithm may be used in conjunction with 

thresholding to satisfy the connectedness condition, as seen in Figure 30(b) (temporal 

subtraction image) and Figure 31(b) (dual-energy subtraction image). The results were 

similar to Figure 26(b) and Figure 27(b) representing global thresholding. 

 

 

 

(a) (b) 

 

Figure 30. Connected-component labeling using temporal subtraction image, Patient A. 
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(a) (b) 
 

Figure 31. Connected-component labeling using dual-energy subtraction image, Patient 

D. 

 

Threshold with Histogram Analysis 

 

The results of thresholding with histogram analysis can be seen in Figure 32, with the 

temporal subtraction image, and Figure 33 with the dual-energy image. Matlab had a few 

functions for image histograms in the IPC toolbox that the dissertation researcher used in 

this experiment (Matlab, 2012). The “imhist” function from the IPC toolbox displays a 

histogram for an image, and the best way to find the threshold value was to look at the 

histogram of the image. The researcher used the histograms later in this chapter in the 

classification section to find features mean, variance, skewness, and kurtosis. The energy 

and entropy values generated using this method were identical to their corresponding 

GLCM values. 
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Figure 32. Threshold with histogram analysis using temporal subtraction image, Patient 

B. 

 

 

Figure 33. Threshold with histogram analysis using dual-energy subtraction image, 

Patient D. 
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Thresholding with K-Means Clustering 

 

In the Matlab file exchange, the researcher found many examples of image processing 

with K-means clustering.  The one used in this dissertation outputted the binary image 

and threshold level of the image using a 3-class, fuzzy k-means clustering, as shown in 

Figure 34 and Figure 35. Xiong (2005), the author of the function, explained it often 

worked better than Otsu's (1979) method, which output larger or smaller threshold levels. 

Xiong (2005) noted that K-mean clustering found the ROI at the higher levels of 

thresholding than was expected. In Figure 34, Using Temporal Subtraction Image, and 

Figure 35, Using Dual-energy Subtraction Image, it can be seen that the last images 

showed the ROI.  See Appendices A, B, and C for the greatest calculated precision, 

recall, and f-measure values. 

 

 
Figure 34. Thresholding with k-means clustering using temporal subtraction image, 

Patient B. 
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Figure 35. Thresholding with k-means clustering using dual-energy subtraction image, 

Patient C. 

 

Regional Growing Thresholding Algorithm 

 

The results of regional growing can be seen in Figure 36, using the temporal 

subtraction, and Figure 37, using the dual-energy subtraction images. The 4-neighbors 

function returned the coordinates of an element in a matrix for dual-energy, shown in 

Figure 37(b). The values were returned in the list of neighbors. If the neighbor did not 

exist, that was, if (x,y) corresponded to an edge or corner of the array, the list of 

neighbors contained only those coordinates corresponding to real neighbors. 

The 8-neighbors function returned the coordinates of the element in a matrix just like 

the 4-neighbors function (Kroon, 2008), and seems to work well in temporal subtraction 

as shown in Figure 36(c). If the neighbor did not exist, that was, if the center 

corresponded to an edge or corner of the array, the list of neighbors contained only those 

coordinates corresponding to real neighbors.  See Appendices A, B, and C for precision, 
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recall, and f-measure values. 

 

 

 

(a) (b) (c) 

 

Figure 36. Regional growing using temporal subtraction image, Patient A 
 

 

 

(a) (b) (c) 

 

Figure 37. Regional growing using dual-energy subtraction image, Patient D. 
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Split-and-Merge Method Thresholding 

 

Through this method, the researcher performed basic region splitting on an image and 

used the Matlab function region split. The researcher used the value of the similarity 

criterion to decide between splitting of segments or not; the set value of the first label to 

be used (typically 1) was primarily needed in the recursion, and was set to an empty 

matrix initially. The split image was enhanced when viewed in color; when viewed in 

grayscale the image contained unrecognizable fragments. Figure 38(b) shows a split 

threshold using a temporal subtraction image and Figure 39(b) shows a dual-energy 

subtraction image. 

 

 

 

(a) (b) 
 

Figure 38. Split thresholding using temporal subtraction image, Patient A. 
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(a) (b) 
 

Figure 39. Split thresholding using dual-energy subtraction image, Patient C. 

 

Image Classification 

 

Classification is an important measurement in the areas of pattern recognition, 

artificial intelligence, and vision analysis (Vasantha & Bharathi, 2011). These 

measurements were applied to the independent variables of the subtraction method and 

the segmentation method. Vasantha and Bharathi (2011) used 28 feature types. Twenty 

one of the feature types used in this dissertation are the same as those used in the work of 

Vasantha and Bharathi and the remaining four are from the histogram. 

The image classification framework for this dissertation was adapted from the work of 

Vasantha and Bharathi (2011), which used classification of mammogram images using 

hybrid features.  The researchers work used the Machine Learning package WEKA to 

train their dataset using a decision-tree method (Vasantha & Bharathi, 2011). WEKA is a 

collection of machine-learning algorithms for data-mining tasks.  The classifiers in 

WEKA are methods for predicting group membership based on numeric values.  In the 
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Vasantha and Bharathi’s research, the researchers used WEKA to create a decision tree 

training set using 28 features that were relevant at each node of the tree (see Table 2). 

Table 2 

Feature Types (Vasantha & Bharathi, 2011) 

 

Feature Feature 

1 Autocorrelation 

2 Contrast 

3 Homogeneity 

4 Correlation 1 

5 Correlation 2 

6 Cluster Prominence 

7 Cluster Shade 

8 Dissimilarity 

9 Energy 

10 Entropy 

11 Homogeneity 1 

12 Homogeneity 2 

13 Maximum Probability 

14 Sum Average 

15 Sum Variance 

16 Sum Entropy 

17 Difference Variance 

18 Difference Entropy 

19 Information Measure of Correlation 1 

20 Information Measure of Correlation 2 

21 Inverse Difference Normalized 

22 Inverse Difference Moment 

23 Mean 

24 Variance 

25 Skewness 

26 Kurtosis 

27 Energy 

28 Entropy 
 

 

The 25 features used in this dissertation comprise a feature set that is referred to as 

Gray Level Co-Occurrence Matrix (GLCM), which has become the standard for medical 

image analysis (Gonzalez & Woods, 2002).  The GLCM features statistical methods that 
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consider the spatial relationship; GLCM is also known as the gray-level spatial 

dependence matrix. Matlab (2012) has functions for obtaining GLCM from images by 

calculating how often a specific gray-level intensity value occurs. Matlab (2012) file 

exchange has some examples for GLCM that were used to define most of the 

requirements for the 25 features types used in the decision tree. 

In this dissertation, the researcher identified 21 features that were obtained from the 

Matlab function texture features. The researcher obtained the remaining four feature 

types, mean, variance, skewness, and kurtosis, from the state of the histogram-based 

features. These features are listed in Table 3 and the set of tables in Image Classification 

Results, where Malignant referred to cancerous cells that had the ability to spread to other 

areas within the body, and benign referred to an image that had no cancer found. 

When classifying an object, one needs to look for the ROI in the image (Vasantha & 

Bharathi, 2011).  The extraction of the ROI, determined by the given thresholding 

method, is necessary to analyze the area of interest, and to find the prominent features 

that are representative of the classes of the images. The researcher used the ROI for 

classification framework analysis categorized using Matlab GLCM and Histogram Image 

Feature Types [see Figure 40(b) Temporal Subtraction Image ROI Extraction Patient A]. 

The feature-type sum of squares variance, which is a mathematical approach to determine 

the dispersal of data points, was added in place of sum variance. The researcher used the 

Matlab “imtool” function to extract the Malignant areas in images. Overall, the WEKA 

training set used 30 images containing malignancies that were comprised of 10 temporal- 

subtraction mammogram images, 10 dual-energy subtraction images, and 10 DDSM 

mammographic images. 
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Table 3 

 

Matlab GLCM and Histogram Image Feature Types 

 

Feature Feature Type GLCM Histogram 

1 Autocorrelation autoc  

2 Contrast contr  

3 Homogeneity homop  

4 Correlation 1 corrm  

5 Cluster Prominence cprom  

6 Cluster Shade cshad  

7 Dissimilarity dissi  

8 Energy energ  

9 Entropy entro  

10 Homogeneity 1 homon  

11 Sum of Square: Variance sosvh  

12 Maximum Probability maxpr  

13 Sum Average savgh  

14 Sum Variance svarh  

15 Sum Entropy senth  

16 Difference Variance dvarh  

17 Difference Entropy denth  

18 Correlation 1 inf1h  

19 Correlation 2 inf2h  

20 Inverse Normalized indnc  

21 Inverse Moment idmnc  

22 Mean  Mean 

23 Variance  Variance 

24 Skewness  Skewness 

25 Kurtosis  Kurtosis 
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(a) (b) 
 

Figure 40. Temporal subtraction image ROI extraction, Patient A. 

 

Image classification results contain the WEKA results from tests completed on 

accuracy measures of classification by using the features listed in Table 3. Figure 40, 

Temporal Subtraction Image ROI Extraction Patient A, shows the ROI for the cancer. 

Figure 40(b), WEKA Precision, Recall, F-measure, shows the results from running 

Matlab GLCM Image Feature Types outputs. The following summary shows the 

accuracy measures of classification by using the features selected from temporal 

subtraction for Patient A. The summary shows the results of precision, recall, and f- 

measure on DDSM malignant cancer images, which were used in Appendix A to 

compare the results of the different thresholding methods on temporal subtraction 

mammogram, Appendix B dual-energy, and Appendix A DDSM mammogram images 

with malignant cancer. 
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Precision is the proportion of correctly predicted classes: 

 

Precision 
tp  

 
tp  fp 

 

Recall is the proportion of the correctly predicted class of true classes: 

 

Recall 
 tp  

 
tp  fn 

 

F- measure is the weighted harmonic mean of precision and recall: 

 

F- measure 2 
precisionrecall 
precisionrecall 

 

Summary 

 

In Chapter 2, the researcher discussed several hypotheses and questions in accordance 

with this work, and this chapter supports the exploration of those questions. Data for 

voxel-matching for temporal subtraction within the registration process was examined 

using Matlab R2013b, which supports both CT and MRI mammogram images. The 

results of these CT and MRI mammogram images were the same.  The effects of 

temporal over dual-energy methods are most evident in the global thresholding method 

where the ground truth was markedly different. One of the positive aspects in working 

with both temporal and dual-energy images was the high resolution. The predominant 

negative aspect in working with dual-energy images was that their data were presented 

with RGB grayscale values (0–255), which must be converted to the standard grayscale 

images value (0–255) used in temporal images. 

Temporal thresholding and dual-energy did hold the ROI, and the ground truth was 

different between temporal and dual-energy. In global thresholding, neither temporal nor 

dual-energy methods held the ROI.  In local thresholding, the temporal method did hold 
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the ROI; dual-energy did as well, although dual-energy local was very block-oriented. In 

connected-component labeling, neither temporal nor dual-energy held the ROI. 

The researcher utilized histograms to find features mean, variance, skewness, and 

kurtosis. One of the images using K-means had very good results finding ROI in 

temporal subtraction at threshold level .636719, and dual-energy at threshold level 

.441176. Regional growing had good results as well, with temporal method using the 8- 

neighbors function to return the coordinates of the ROI and dual-energy method using the 

4-neighbors function to return the coordinates of the ROI. The split-and-merge technique 

did not hold the ROI with temporal or dual-energy methods.  It was possible to extract 

the objects from the background ground-truth using all thresholding methods, but the real 

test was to hold the ROI for malignant growth. 

The dissertation researcher did consider thresholding method comparisons in finding 

malignant growth in CT and MRI mammogram images, and Matlab handled both 

formats. Thresholding methods identified ROI in the original DDSM classification, and 

the size of the malignant growth did seem to affect the quality of the result in the 

thresholding and classification methods used. 

The researcher used classification for measurements that assessed the effectiveness of 

the proposed methods. Matlab had some examples of precision, recall, and f-measure for 

images, which the researcher used to find 21 texture feature types. The remaining four 

features were found from the histogram analysis. Classification results looked at two 

areas: malignancy, or cancerous cells, and benign, or an image where no cancer was 

found. The researcher utilized WEKA 3.6.10 for classification, and the training set was 

derived from a collection of all 30 images containing malignancies.  These were 
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comprised of 10 DDSM mammographic images, 10 dual-energy subtraction images, and 

10 temporal subtraction mammogram images. Each image used the two parts of 

classification: malignancy and benign. Image classification used a J48 decision tree on 

25 features types, which the researcher identified and obtained from the Matlab function 

texture features. 

From the results collected, the researcher looked at precision, recall, and f-measure, 

shown in Appendices A. All values are derived from the experiments described in 

Chapter 4 using Image classification with WEKA 3.6.10, which yielded precision, recall, 

and f-measure by running the feature types on each of the two image classifications. The 

final step was to run the derived test set by applying a thresholding method to a single 

image against the training set.  Each image type has its own decision tree that provided 

the precision, recall, and f-measure values. The results given are expressed as precision, 

which is the probability of being correct in finding the result of malignancy using the 

appropriate image classification. Recall is the probability of correctly identifying the 

class, and F-measure is the weighted harmonic mean of precision and recall. Appendices 

A and B contain the values the researcher examined to determine the best combination 

that yielded the greatest calculated precision values. 
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Chapter 5 

 

Conclusions, Implications, Recommendations, and Summary 

 

 

 

 
Conclusions 

 

The goal of this dissertation was to create a computer aided diagnosis (CAD) system 

as a tool to help in the detection of breast cancer in computed tomography (CT) 

mammography images, in which previous CT mammography images were used to 

enhance the next series of images. In the first stage of the dissertation, the researcher 

used image subtraction of images from the same patient over time. This dissertation 

involved image enhancement by applying image registration and subtraction using 

temporal image registration and dual-energy subtraction. This dissertation researcher 

investigated both techniques of subtraction, utilizing Matlab registration to apply 

temporal subtraction, and employing Lewin’s (2003) dual-energy subtraction images for 

the subtraction section. 

The second stage of the experiments involved employing eight different thresholding 

techniques. The data included 30 images containing malignancies that were composed of 

10 DDSM mammographic images, 10 dual-energy subtraction images, and 10 temporal 

subtraction mammogram images. The first thresholding technique employed was the 

amplitude thresholding method. When using amplitude thresholding, the researcher 

discovered that the most noticeable difference between temporal subtraction images and 

dual-energy images was the ground truth, in which temporal subtraction was white and 

the dual-energy subtraction was black.  The researcher employed the second and third 
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thresholding techniques using global and local thresholding where the global technique 

used the Otsu (1979) method, and the local version segmented gray-level images into 

regions and then thresholded each region separately. 

The global thresholding method had high precision, recall, and f-measure, which was 

misleading because applying the global thresholding method made the entire image fill in 

with white, in effect comparing two nearly identical data sets. In local thresholding, the 

dual-energy subtraction method worked the best as cancerous tissue lesions were still 

visible in the images. The fourth technique used connected-component analysis and did 

not seem to highlight cancerous tissue lesions as the images became very grainy. The 

fifth used the overall histogram analysis to show minima and maxima of the image as 

seen in Chapter 2. As described in Chapter 4, the researcher used the histogram to obtain 

the mean, variance, skewness, and kurtosis features for image classification. The sixth 

technique used a K-means at different levels. K-means clustering behaved in an intuitive 

manner and a split process was expected.  It is evident in the Chapter 4 figures that the 

last images did reach ultimate results because of small, slightly deviant regions. 

Thresholding with K-mean clustering did, however seem to generally retain the 

cancerous tissue lesions using temporal subtraction at a threshold level of .636719 and 

dual-energy subtraction at a threshold level of .441176. The seventh technique used a 

region-based method called regional growing. This method seemed to work well with 

both temporal subtraction at the 8-neighbors function and dual-energy subtraction at the 

4-neighbors function as the cancerous tissue was noticeable in both methods. The final 

thresholding method used the split-and-merge technique. The split image was enhanced 

when viewed in color, while the grayscale contained unrecognizable fragments. Both 
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temporal subtraction and dual-energy subtraction images did not reveal any noticeable 

cancerous tissue lesions. Out of the original eight thresholding methods, four techniques 

were found to be acceptable for the next stage of image classification. The researcher 

utilized histogram analysis to show minima and maxima of the image, and provided four 

feature types—mean, variance, skewness, and kurtosis. 

A decision tree represented segmentation of data created by applying a series of 

simple rules. A J48 decision tree method with a classifier base was used to find 

candidates for cancer by detecting features based on shape and density of the cancerous 

tissue in the mammography images. The researcher used WEKA 3.6.10 with the J48 

decision tree method, and 21 features were identified and obtained from the Matlab 

function texture features.  An additional four feature types were obtained from the state 

of the histogram-based features. Extraction of the ROI was necessary to analyze the area 

of interest and to find the prominent features. The classification result malignancy 

referred to cancerous cells that had the ability to spread to other areas within the body. 

Finally, the benign classification referred to an image that had no cancer found. 

 

Implications 

 

The effect of this study on future research is that CAD systems using a multiple three- 

stage approach can help radiologists find cancerous tissue in CT and MRI mammography 

images using image registration and subtraction, thresholding, and classification for the 

detection of cancerous tissue. One main result of this research shows how image 

subtraction and thresholding methods together can enhance mammography images. 

The effect of this dissertation on the medical practice will help radiologists and 

physicians detect breast cancer by using CAD.  A patient takes CT mammogram every 
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year—sometimes every 6 months for high-risk patients for routine checkups; radiologists 

routinely screen hundreds of these mammogram images for cancerous tissues. The 

implications of this work could provide a second look that would help overworked 

radiologists and doctors more effectively read mammogram images using CAD. 

Recommendations 

The results of this dissertation can be improved further by increasing the size of the 

study including additional images of DDSM, dual-energy, and temporal images. 

Additional classification methods also should be examined. Future researchers should 

consider variations on the thresholding methods, for example, by embedding expert 

knowledge in the CAD design using thresholding software. Further work can be directed 

at higher-resolution mammograms. Segmentation techniques may be eliminated through 

the use of threshold interpolation between regions. Also, a three-dimensional surface plot 

would present smooth, readily interpreted surfaces. 

Future researchers can pursue several areas as an extension of this research. First, 

increasing the size of the study by increasing the number of images used may produce 

more thorough results. A larger study yields greater statistical significance. Additional 

specialized studies are possible, because of different factors such as aging, body mass 

index (BMI), size, number of pregnancies, and breast augmentation along with many 

other factors. Another extension of this research would employ different classification 

methods such as Artificial Neural Networks (ANN), Support Vector Machines (SVM), 

Genetic Algorithms (GA), Fuzzy Support Vector Machines (FSVM), and Genetic 

Algorithms with Neural Networks, all of which have been used for image classification. 

The extension of using multiple thresholding methods, or different combinations of 
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the methods presented here, may provide better overall results. The researcher combined 

temporal with amplitude thresholding, which held the highest precision, recall, and f- 

measure, along with dual-energy with local thresholding, which held the second highest 

thresholding for precision, recall, and f-measure results. Local thresholding broke down 

the original image into smaller sub-regions, and each sub-region was given a threshold 

individually. Amplitude thresholding could be then applied at this step at the smaller 

sub-regions levels. Combining the use of temporal-based and dual-energy enhanced 

digital mammography from a patient into a single technique may provide the benefits of 

both approaches. 

Summary 

 

The goal of this research was to assess the effectiveness of various thresholding 

methods in the context of a three-stage approach, to help radiologists find cancerous 

tissue lesions in CT and MRI mammography images. This three-stage approach included 

image registration and subtraction, thresholding, and classification for the detection of 

cancerous tissue with CAD system design. The researcher identified two independent 

variables: subtraction method in stage one (temporal subtraction and dual-energy 

subtraction), and thresholding method in stage two. The remaining factors were fixed 

(including the classification method). All the experiments used the Matlab’s 2012a 

Environment to obtain relevant measurements and WEKA 3.6.10 for image 

classification. Amplitude and K-means thresholding scored high in image classification 

with dual-energy subtraction, but the local thresholding method provided the best 

precision, recall, and f-measure results. 

The goal of this dissertation was to design an application to help radiologists and 
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physicians better detect breast cancer.  The three-stage approach of image registration 

and subtraction, application of thresholding techniques, and classification detailed within 

this dissertation achieved this goal. While additional research can enhance the process, 

the methods presented here are a solid foundation for providing automated assistance to 

radiologists and physicians in detecting and diagnosing suspected breast cancer. 
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Appendix A 

Image Results 

The data values in Appendix A are derived from the experiments detailed in Chapter 4 

and were drawn from three different image types. All values are expressed in 

milliseconds. The Matlab profiling tool MuPAD® process is used to isolate time spent 

thresholding on time() which returns the total CPU time in milliseconds. 

Appendix A data relate to temporal subtraction images, dual-energy subtraction 

images, and Digital Database for Screening Mammography (DDSM) images. There are 

10 unique samples from each image type providing a total collection of 30 images. The 

methodology used to calculate precision, recall, f-measure, and CPU timing utilized 

averages over multiple images for each of the four threshold methods in a three stage 

approach: 

1. Image registration – Defines each image type (temporal subtraction, dual- 

energy subtraction, and DDSM) by determining regions within each image. A 

region is classified as malignant or benign. 

2. Thresholding – Provides the test set for each image type (temporal 

subtraction, dual-energy subtraction, and DDSM) using four different 

thresholding techniques—amplitude, local, k-means, and regional growing. 

Histogram analysis provided four feature types—mean, variance, skewness, 

and kurtosis. Matlab 2012a grey-level, co-occurrence matrix (GLCM) 

provided 21 target features types which the researcher obtained from the 

Matlab function texture features. After thresholding, the 25 texture feature 

type values were computed for the malignant and benign area of each image. 



117 
 

 
 

3. Image classification – Combines the test set and training set from thresholding 

to produce the precision, recall, and f-measure. An image classification 

decision tree calculated the final values from WEKA 3.6.10 along with 

WEKA J48 classifier and cross-validation 10 fold. 

The following table contains the raw values for precision, recall, and f-measure for 

each threshold method by image type for images containing malignant and benign 

artifacts. It is followed first by a chart depicting all image types combined and then one 

for each of the individual image types. 

 

  
 

M alignant Be nign 

Image type Threshold Method Precision (M) Recall (M) F-measure (M) Precision (b) Recall (b) F-measure (b) 

Temporal Amplitude 0.909 1.000 0.952 1.000 0.900 0.947 

 Local 0.727 0.800 0.726 0.778 0.700 0.685 

 K-means 0.769 1.000 0.870 1.000 0.700 0.824 

 Regional Growing 0.818 0.900 0.857 0.889 0.800 0.842 

Dual-energy Amplitude 0.667 0.800 0.727 0.750 0.600 0.667 

 Local 0.615 0.800 0.969 0.714 0.500 0.588 

 K-means 0.545 0.600 0.571 0.556 0.500 0.526 

 Regional Growing 0.556 0.500 0.526 0.545 0.600 0.571 

DDSM Amplitude 0.667 0.600 0.632 0.636 0.700 0.667 

 Local 0.556 0.500 0.526 0.545 0.600 0.571 

 K-means 0.444 0.400 0.421 0.455 0.500 0.476 

 Regional Growing 0.545 0.600 0.571 0.556 0.500 0.549 
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Appendix B 

Runtime Analysis 

Appendix B contains the runtime analysis framework on experimental timing 

(averaged over multiple images) that the researcher computed for each of the four 

threshold methods and reported as average CPU time in milliseconds. The raw values are 

presented first and are followed by a graph depicting the results in each category. 

  Maligant Benign 

Image 

type 

Threshold 

Method 

CPU 

Timing 

CPU 

Timing 

Temporal Amplitude 0.600 0.611 

 Local 0.598 0.812 

 K-means 0.832 0.798 

 Regional 

Growing 
0.892 0.780 

Dual- 

energy 

 

Amplitude 
0.604 0.611 

 Local 0.800 0.812 

 K-means 0.640 0.690 

 Regional 

Growing 
0.879 0.765 

DDSM Amplitude 0.689 0.867 

 Local 0.567 0.744 

 K-means 0.742 0.649 

 Regional 

Growing 
0.792 0.722 
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