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Summary 

The work in this thesis examines the use of texture analysis techniques and shape descriptors 

to analyse MR images of the breast and their application as a potential quantitative tool for 

prognostic indication. 

Textural information is undoubtedly very heavily used in a radiologist’s decision making 

process. However, subtle variations in texture are often missed, thus by quantitatively 

analysing MR images the textural properties that would otherwise be impossible to discern by 

simply visually inspecting the image can be obtained. Texture analysis is commonly used in 

image classification of aerial and satellite photography, studies have also focussed on utilising 

texture in MRI especially in the brain. Recent research has focussed on other organs such as 

the breast wherein lesion morphology is known to be an important diagnostic and prognostic 

indicator.  Recent work suggests benefits in assessing lesion texture in dynamic contrast-

enhanced (DCE) images, especially with regards to changes during the initial enhancement and 

subsequent washout phases. The commonest form of analysis is the spatial grey-level 

dependence matrix method, but there is no direct evidence concerning the most appropriate 

pixel separation and number of grey levels to utilise in the required co-occurrence matrix 

calculations. The aim of this work is to systematically assess the efficacy of DCE-MRI based 

textural analysis in predicting response to chemotherapy in a cohort of breast cancer patients. 

In addition an attempt was made to use shape parameters in order to assess tumour surface 

irregularity, and as a predictor of response to chemotherapy. 

In further work this study aimed to texture map DCE MR images of breast patients utilising the 

co-occurrence method but on a pixel by pixel basis in order to determine threshold values for 

normal, benign and malignant tissue and ultimately creating functionality within the in house 

developed software to highlight hotspots outlining areas of interest (possible lesions). Benign 

and normal data was taken from MRI screening data and malignant data from patients 

referred with known malignancies. 
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This work has highlighted that textural differences between groups (based on response, nodal 

status, triple negative and biopsy grade groupings) are apparent and appear to be most 

evident 1-3 minutes post-contrast administration. Whilst the large number of statistical tests 

undertaken necessitates a degree of caution in interpreting the results, the fact that significant 

differences for certain texture parameters and groupings are consistently observed is 

encouraging.  

With regards to shape analysis this thesis has highlighted that some differences between 

groups were seen in shape descriptors but that shape may be limited as a prognostic indicator. 

Using textural analysis gave a higher proportion of significant differences whilst shape analysis 

results showed inconsistency across time points.  

With regards to the mapping this work successfully analysed the texture maps for each case 

and established lesion detection is possible. The study successfully highlighted hotspots in the 

breast patients data post texture mapping, and has demonstrated the relationship between 

sensitivity and false positive rate via hotspot thresholding. 
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1 Introduction (Physics) 

 

Nuclear Magnetic Resonance (NMR) deals with specific isotopes in a magnetic field with 

respect to the distribution and behaviour of their magnetic moments (NMR is still used today 

as NMR spectroscopy). First proven experimentally in the 1940’s [1, 2], NMR development was 

primarily focused on chemical and biochemical studies until the 1970s. Since then the NMR 

method has also been applied to the biomedical field and nowadays it is widely used in the 

form of magnetic resonance imaging (MRI). It has in modern day medicine become one of the 

most important radiological techniques due to it being a non invasive method providing 

information about biochemical processes in living tissue. Over the last quarter of a century, in 

addition to standard MR imaging, many new MR techniques have been developed for 

biomedical applications, some examples include measurements of diffusion, perfusion, 

relaxometry, and in vivo spectrometry. MRI allows the determination of different tissue 

characteristics; the contrast and signal intensity values can be evaluated using various different 

mathematical-statistical methods, texture analysis being one of them. 

Unlike X-ray imaging MRI utilises relatively low frequencies and thus does not induce ionising 

radiation damage. The principle of the MR method can be best described as the absorption of 

radiofrequencies by nuclei that are placed in a strong magnetic field   .  In general it’s possible 

to produce an MR image for many elements due to the multiple energy levels present within 

all isotopes with a non-zero magnetic moment.  In practical application the NMR sensitivity of 

hydrogen nuclei (protons) is greater than that of any other nuclei; therefore in biomedicine 

hydrogen nuclei (protons) are used in nearly all applications. Hydrogen as an element is 

present in all organic compounds as well as in water. Water is a basic material in the makeup 

of biological tissues and exists in very high concentrations. The structural composition of a 

tissue is influenced by the distribution of its water molecules and this is why MR imaging is 

particularly suited to medical applications. 
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1.1 Nuclear Spin 

 

Hydrogen nuclei (protons) behave like tiny rotating magnets. This is due to them having 

magnetic properties as a result of being charged and possessing nuclear spin. This behaviour 

can be represented using vector notation (fig 1.1). The vector quantities are in parallel, the 

relation is shown by the equation: 

       (Equation 1) 

where   is the magnetic moment,   is the angular momentum and   is the gyromagnetic ratio 

(constant for a given nucleus).  

  

    

 

Figure 1.1: A Hydrogen nuclei (proton) rotating, black arrow represents vector (magnetic 

moment) 

 

1.1.1 Nuclear Spins in an External Field 

 

When nuclei are inserted into a strong external magnetic field (  ) they will attempt to align 

themselves with    and spin around an axis parallel with     (fig 1.2). The concept of nuclear 

spin can be represented by being similar to that of a spinning top, a spinning top rotates on its 

own axis and rotates around the gravitational field as it does this. Therefore, nuclear spins 

rotate on their own axis whilst rotating around    as they try to align with   . When nuclei are 

placed in a magnetic field discrete energy levels are created, the magnetic moment has an 

energy given by the equation:  

Magnetic moment 

Spinning charged particle/proton 

Angular momentum 
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U=           (Equation 2) 

where   is the magnetic spin quantum,    is the measurable component of  ,    is the 

magnetic field strength,   is defined as 
 

  
 where h is Planck’s constant . The energy levels 

experience a splitting effect, and the energy becomes directly proportional to the strength of 

the externally applied magnetic field. The following selection rule allows transitions to be 

induced between these energy levels 

          (Equation 3) 

provided the Bohr frequency condition is met: 

           (Equation 4) 

Equation 4 combines with equation 2 and reduces to: 

  = γ      (Equation 5) 

where    is the frequency of applied radiation, thus the required frequency of the applied 

radiation is proportional to the applied magnetic field strength. 

1.1.2 Larmor Frequency (Precession) 

 

In the external field the magnetic moment tries to align itself with this field whilst it spins on 

its own axis. A torque is produced as a result of which it precesses about the    axis. The 

frequency of precession    (known as the Larmor frequency, see fig 1.2) is dependent on the 

external magnetic field strength    and on the type of nucleus, (each spin species has a unique 

gyromagnetic ratio γ). The Larmor frequency is thus given by: 

  = γ   

This frequency is the same as in the previous section (equation 5) which is required to induce 

transitions i.e. resonance. 
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Figure 1.2: Torque is exerted on moment which attempts to align it with the magnetic field, this 

leads to Larmor precession where angular frequency is given by   = γ  . 

1.1.3 Net magnetisation 

 

In the absence of an external magnetic field, the sum of all magnetic moments is zero (fig 1.3).  

In a magnetic field at room temperature there is a small excess of spins parallel to     (low 

energy state) compared to anti parallel spins (fig 1.4). The spins with lower energy states are 

naturally more in number due to this state having higher stability than that of the higher 

energy state (anti-parallel).  As a result of this small difference there exists a macroscopic 

magnetisation M of the system. 

Because of the slightly more parallel spins the net magnetisation has a longitudinal component 

(along the Z axis) aligned with   . Due to the spins not rotating in phase, the sum of all the net 

magnetisation (macroscopic magnetisation) in the transverse component is null. According to 

the Boltzmann distribution the spins are spread amongst the Zeeman energy levels, the 

difference in population between the two levels can be shown by the following population 

distribution equation: 

         
     

   
     (Equation 6) 

where   is the total number of spins, k is boltzmann’s constant, T is absolute temperature and 

       represent the number of spins in the low (high) energy states.    (Magnetic field 
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strength) is the only thing that can be easily controlled in order to attempt to increase the 

magnetisation. 

 

       

     

       

 

Figure 1.3: The magnetic moments of protons in the absence of an external magnetic field. The 

sum of all magnetic moments is zero because they are oriented in a random fashion. 

 

 

       

      

        

 

Figure 1.4: The magnetic moments of protons in a non-zero magnetic field   . M known as the 

macroscopic magnetization vector is observed as the sum of all magnetic moments parallel 

with   . This is due to the moments having a (anti) parallel alignment with     and all the 

transverse components are cancelled since the spins are equally distributed about the cone of 

precession. 

M (Net Magnetisation) 
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1.1.4 Rf Pulse 

 

A time dependent magnetic field can induce transitions as the macroscopic magnetisation 

precesses around the total applied field, i.e. the sum of the static magnetic field    and the 

time dependent magnetic field   . An rf pulse is when a    field is applied on resonance for a 

finite amount of time, hence resonance occurs when the frequency of the stimulus (RF pulse) 

is the same as the natural frequency (Larmor) of the system. The precessional frequency 

around    is given by the equation: 

     =      (Equation 7) 

 The only protons that will respond to the RF pulse are the ones that spin with the same 

frequency as the electromagnetic RF pulse. The magnetisation can be rotated through any 

desired angle by applying the    field for a certain length of time. The flip angle can be easily 

manipulated by adjusting either the duration or strength of the applied field. By applying a 

180° pulse excess spins will exist in the higher energy state caused by an inversion of the 

equilibrium population difference, whilst a 90° pulse will equalise the spin populations and 

individual spins will bunch together in the cone of precession. The angle of rotation can be 

shown by the formula: 

    =        (Equation 8) 

where   is the duration of the rf pulse. 

1.1.5 Bloch Equations 

 

Once perturbation has occurred the spin system returns to equilibrium via the dissipation of 

energy to the surrounding lattice and neighbouring spins over time. The lost energy converts 

into heat thus raising the temperature of the system. Bloch in 1946 incorporated these 

relaxation processes into the equation of motion (Bloch equations are phenomenological): 
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         Equation (9) 

  

   

  
         

  

  
 

   

  
         

  

  
 

   

  
         

       

  
 

Where    is the spin-lattice relaxation time and    is the spin-spin relaxation time. The 

evolution of the transverse (  ,   ) and longitudinal      magnetisation components are 

independent processes.     are equal to the vector cross product of M and B. 

1.1.6 Relaxation 

 

The process whereby the net magnetisation returns to equilibrium is known as relaxation. 

During relaxation electromagnetic energy is retransmitted, and this is often referred to as the 

NMR signal. There are two distinct mechanisms involved in relaxation; 

 Longitudinal relaxation: longitudinal magnetisation recovery. Also known as spin 

lattice relaxation, this occurs when energy exchange between the spins and 

surrounding lattice re-establishes thermal equilibrium. RF energy is released back into 

the surrounding lattice as the spins enter back into a low energy state from a high 

energy state. Figure 1.5 shows the longitudinal recovery. Recovery of the z-component 

after a 90° excitation is given by the equation:  

                       Equation (10) 

recovery of the z-component after a 180° excitation is given by the equation: 

                         Equation (11) 
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 Transverse relaxation: transverse magnetisation decay. Also known as spin-spin 

relaxation, this occurs when spins get out of phase. Referred to as spin-spin 

interaction; the local magnetic fields interact as the spins move together in turn 

slightly modifying their precession rate, interaction is random and temporary. Spin-

spin relaxation therefore causes a cumulative loss in phase which results in a 

transverse magnetisation decay. Figure 1.6 shows the transverse relaxation decay. The 

evolution of a transverse magnetisation after a 90° pulse is given by the equation 

         
        Equation (12) 

 

 

Figure 1.5: Spin-lattice relaxation after a 90 degree RF pulse. The recovery of 

longitudinal magnetisation follows an exponential curve. T1 is the tissue specific time 

constant which the recovery rate is characterised by. Longitudinal magnetisation has 

returned to 63% of its final value after time T1. T1 values are longer at higher field 

strengths. Tissue A has a shorter longitudinal relaxation time than tissue B and 

therefore recovers quicker. 

 

Tissue A (short T1) 

Tissue B (long T1) 

Time 

100% 

63% 

Signal 
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Figure 1.6: Spin-spin relaxation, Tissue B has a longer T2 than Tissue A.  The graph shows 

transverse magnetisation decay characterised by the time constant T2. After time T2, 

transverse magnetisation has lost 63% of its original value. This type of relaxation (transverse) 

is a lot faster than longitudinal relaxation. Different tissues have different T2 due to the 

amount of free water present. 

 

A few additional points to note about T1 and T2 are as follows; 

 When motions are slow relaxation is inefficient and T1 is long.  

 When the frequency of the motions match the transition frequency relaxation is 

efficient and T1 is short.  

 When motions are too fast, relaxation is once again inefficient.For systems high in 

liquid T1 ranges from 0.1-10 seconds. 

 The amount of free water present in a substance has direct relation to T1, the more 

water there is present then the higher the T1. 

 On a T1 weighted image substances with long T1 values will appear dark. 

Tissue A (short T2) 

Tissue B (long T2) 

Signal 

100% 

37% 
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Similarly for T2; 

 For a liquid system the T2 value is typically in the range of 10-200 milliseconds. 

 The amount of water present in a substance has direct relation to the length of T2, the 

more water there is present then the longer the T2. 

 On a T2 weighted image the long T2 values will appear bright. 

Water molecules are in fast exchange between three states, over the time scale of an MRI scan 

a water proton will either be in a bound, structured or free tissue and wander between these 

states. The proportion of water in each state determines the amount of time spent in each 

state. T1 and T2 relaxation times are long when in free water state. When in bound state T2 is 

very short and T1 is long. 

1.1.7 Free Induction Decay and Signal Detection 

 

The signal detected in the transverse plane is determined by the relaxation processes, and the 

signal oscillates at the Larmor frequency. The envelope height is determined by T2* (see 

section 1.2) the signal here is what is known as the Free induction decay (FID), figure 1.7 

illustrates FID. 

 

 

 

 

 

 

 

Figure 1.7: Illustrates Free induction decay (FID) 

Signal 

Time 

Signal oscillates at Larmor frequency 

Signal envelope decays exponentially with a time 

constant T2* 
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In signal detection often the same coil is used for transmission and reception, since the spin 

system is not observable during the rf pulse as this would cause saturation of any receiver. 

Instead at the end of the pulse the receiver is gated open, and the EMF induced in the receiver 

coil detects the component of magnetisation in the transverse plane as illustrated in figure 1.8. 

 

 

 

 

 

Figure 1.8: Illustrates how signal is induced and detected, often the same coil is used for both 

 

1.1.8 Electronic Shielding and Chemical Shift 

 

The sample or patient present within the MRI scanner has an effect on the externally applied 

field   . The orbital electrons around the nucleus produce small magnetic fields which in turn 

shield the nucleus from the full influence of    causing the effective field at the nucleus to 

become:  

                      Equation (13) 

where σ is the shielding constant, and since the local electronic environment causes the 

shielding effect σ therefore varies with nuclear position within the molecule. The resonance 

condition thus can be described by the equation: 

                  Equation (14) 
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and variations in resonant frequency will be caused by variations in σ. Chemical shifts will be 

present and are field dependent, it’s these chemical shifts that allow an NMR spectroscopist to 

determine molecular structure. Figure 1.9 shows an example of a chemical shift spectrum from 

ethanol, the peaks amplitudes are proportional to the number of hydrogen atoms present. 

 

 

 

 

 

 

Figure 1.9: Spectrum from ethanol, the Hydrogen atoms are in slightly different chemical 

environments for each sub-group, and the amplitude of each peak is proportional to the 

number of hydrogen atoms. 

 

1.2 Magnetic Field Inhomogeneities and T2* 

 

The spin-spin relaxation time (T2) describes how fast the transverse magnetisation decays and 

is a fundamental property of the tissue. Even if the magnetic field was perfectly homogenous 

spin-spin relaxation would still occur, however if due to susceptibility effects or 

inhomogeneities in the main magnetic field there are different magnetic field strengths in 

different regions of the body then transverse relaxation is speeded up without affecting spin-

lattice relaxation. The combined effect of T2 and magnetic field inhomogeneities in a sequence 

such as that of GE (gradient echo) is referred to as the ‘apparent’ relaxation time and given the 

shorthand notation T2* [3]. Nuclei in differing locations within the main field will resonate at 

    

    

OH 
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varying frequencies since the static magnetic field is never perfectly homogenous which leads 

to a reduction in apparent T2. 

1.2.1 Spin-Echoes 

 

When looking at the historical aspect spin echo was the first sequence to be used and created 

a benchmark for all following sequences, this was mainly to do with its contrast. Its 180 degree 

rephase pulse gives a true T2 signal as opposed to a T2* signal, spin-echo can be used to 

quantify T2 in NMR (by varying TE). 

 

 

 

 

 

 

 

 

 

 

Figure 1.10a: Spin echo pulse sequence, figures 1.10b-1.10g illustrate each phase point b-g in 

order 
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Figure 1.10b: Illustrates point b in figure 1.10a; Spins are initially in phase immediately after 

the 90° pulse.  

 

 

 

 

 

 

 

 

 

Figure 1.10c: Illustrates point c in figure 1.10a; De-phasing naturally and due to inhomogeneity 

until the 180° pulse is applied 
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Figure 1.10d. Illustrates point d in figure 1.10a; 180° pulse is applied, 180° pulse can reverse 

static field inhomogeneities by rephasing spins. After a 180° RF pulse, spins rephase and 

transverse magnetization reappears. 

 

 

 

 

 

 

 

Figure 1.10e: Illustrates point e in figure 1.10a; Phases are reversed immediately after the pulse 

but de-phasing continues in the same direction   
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Figure 1.10f: Illustrates point f in figure 1.10a; an echo is formed  

 

 

 

 

 

 

 

 

 

Figure 1.10g: Illustrates point g in figure 1.10a; De-phasing re-occurs   
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The spin echo sequence is illustrated by figure 1.10a where b-g represent each point and 

illustrated further by figures 1.10b to 1.10g.  

 After the 90 degree pulse the spins are left to de-phase naturally for some time 

 A 180 degree pulse is applied on the +y’ axis, as a result all the spins are flipped 

through 180° about the y’ axis. This reverses the phase angles but will not change the 

precessional frequencies of the spins. 

 Lower magnetic field strength spins de-phase anticlockwise, higher field spins de-

phase clockwise and appear to have been in a higher magnetic field as the 180° pulse 

flips them over. 

 The spins will continue to de-phase in the same direction and experience the same 

magnetic field inhomogeneities. 

 All the spins will eventually come back into phase along the +y’ axis after a time equal 

to the delay between the 90° and the 180° pulse thus forming the spin echo. 

 Because of the phase reversal T2 is the only process that will affect the echo height. 

1.2.2 Magnetic Field Gradients 

 

The signal in MRI needs to be spatially encoded to enable reconstruction of the original sample 

post data acquisition. The precessional frequency can be made to reflect spatial dependence 

by varying the static magnetic field with position in a predictable fashion. A range of 

precessional frequencies across the sample is created giving 

                 Equation (15) 

Where    is the strength of the linear field gradient, and z is the position of the molecule along 

the z axis.  

1.2.3 Slice Selection 

 

The Larmor equation states that resonant frequency is proportional to field strength. It is 

possible to artificially change the resonant frequency of the spins so they are spatially 



18 
 

dependent by applying linear changes in the magnetic field (gradients). Slice selection is 

illustrated in figure 1.11; by adjusting the gradient or RF waveform properties features of the 

slice can be manipulated without having to move the patient as in X-ray and CT. A gradient in 

combination with a limited bandwidth rf pulse excites a strip (slice) of spins. The following slice 

features can be manipulated electronically via the MRI scanner software: 

 Position: varied by changing the carrier/basic frequency of the RF pulse but keeping 

the gradient strength the same 

 Orientation: varied by changing the physical gradient axis, the selected slice is always 

perpendicular/orthogonal to the gradient applied, sagittal, coronal and transverse 

views can be obtained (fig 1.12) in addition by combining these physical gradients, 

oblique and double oblique views are possible  

 Thickness: varied by changing the bandwidth (shape) of the RF pulse or the strength of 

the gradient. By applying a stronger gradient a thinner slice is achieved, also by using a 

narrower RF pulse bandwidth the same can be achieved (fig 1.13). 
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Figure 1.11 [4]: illustration shows how selective excitation is achieved of an image slice by 

applying a shaped RF pulse and a field gradient simultaneously 

 

 

Figure 1.12 [5]: The principle slice orientations using physical gradients axis, by combining the 

physical gradients, oblique and double oblique views can be obtained.  
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Figure 1.13: illustration shows slice thickness dependence on rf pulse bandwidth and applied 

field gradient strength, slice thickness can be reduced by either an increase in gradient strength 

or reducing rf pulse bandwidth 

 

1.2.4 Frequency Encoding Gradient 

 

A frequency encoding gradient, in a manner similar to the slice selection gradient, is a static 

gradient field which causes a range of Larmor frequencies to exist in the direction in which it is 

applied according to the Larmor equation. A Fourier transform (see next section) can then be 

used to separate the frequencies out once an MRI signal is measured. The signal is recorded 

under a frequency encoding gradient which allows the ability to provide projection 

reconstruction imaging if the direction of gradient is varied, frequency encoding gives a 

projection in that direction. 

1.2.5 Fourier Transforms 

 

According to Fourier’s  theorem any continuous periodic function S(t) can be expressed as the 

sum of a series of sine and cosine terms with appropriate frequencies and amplitudes. The 

Fourier transform is the mathematical tool used to relate these two functions giving the 
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equation:     

      
  
 S(f) where S(t) and S(f)   Equation (16) 

forming a Fourier transform pair. 

The signal measured from MRI consist of signals from all over the object/patient being imaged, 

all signals can be treated as a series of sine waves, each having an individual frequency and 

amplitude. The Fourier transform has the ability to analyse these frequencies and amplitudes 

and in short since frequency is made dependent on position the Fourier transform can turn a 

signal against time graph into a signal against frequency (and ultimately position) graph.   

1.2.6 Phase Encoding 

 

Phase encoding is when a gradient is applied in order to spatially discriminate signal along a 

particular direction, this process is repeated many times unlike that of frequency encoding. 

The effect a gradient has on a spin’s phase is that the spins precess slightly faster when a 

positive gradient is applied and when the gradient removal occurs the spins revert to their 

original Larmor frequency. It’s this difference with/without the gradient that produces what’s 

known as the phase shift in the signal (fig 1.14 illustrates this).  

The amount of phase shift produced can be increased by increasing the gradient strength (or 

duration), the rate of change of phase (frequency) can be measured by repeating the 

experiment with an increasing gradient strength. When the signal is recorded at any one 

instant each individual spin does not possess a unique phase and frequency. Multiple 

measures are taken to establish each individual spin’s combination of rate of change of phase 

(phase encoding) and baseline frequency (frequency encoding) which will be unique for each. 

A Fourier transform is then applied to determine each spin’s position within the main magnetic 

field. 
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Figure 1.14: spins precess slightly faster when a positive gradient applied, when gradient is 

removed the spins revert to their original Larmor frequency, the difference with/without 

gradient produces a phase shift in the signal 

 

1.3 Imaging Sequences 

 

Imaging sequences are concerned with improving acquisition speed and image quality and 

trying to get a trade off between the two when obtaining MRI images. A sequence will consist 

of a combination of radio frequency pulses and gradients, the aims are to favour the signal of a 

particular tissue without degrading the signal to noise ratio and trying to limit the number of 

artefacts. There are literally hundreds of different sequences with different manufacturers 

having their own names for each. There are however 2 main families of sequence, spin echo 

sequences and gradient echo sequences; numerous variations of these two families have been 

developed.  

The two main building blocks for any given sequence are radiofrequency pulses and gradients. 

Phase shift    

Phase shift 0 
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There are some essential components of any given imaging sequence which are outlined 

below; 

 For the purpose of magnetic resonance an RF excitation pulse must exist 

 For the purpose of spatial encoding be it 2D or 3D there need to be gradients 

 A combined signal reading of one or more echo types 

These are not exhaustive lists and there are various techniques for achieving each of the three 

options above. There are also sequence parameters that need to be set in order to find the 

best compromise between contrast, spatial resolution and speed, the parameters include 

repetition time(TR), echo time (TE), flip angle, field of view and matrix size.  

 TR: The time interval between two excitation pulses which is normally a 90 degree 

pulse, this controls the T1 weighting 

 TE: The time from pulse excitation to the signal induced in the receiver coils maximum 

value; known as time to spin echo formation, T2 weighting level is determined by TE. 

1.3.1 Spin echo Imaging Sequence 

 

Spin echos have already been discussed in section 1.2.1. This section will look at how these are 

used in imaging sequences, figure 1.15 illustrates the steps that occur in spin-echo imaging: 

1. A 90° pulse is applied in conjunction with the slice select gradient 

2. Phase differences are created along the phase encoding axis by the phase encoding 

gradient 

3. After an initial time delay (TE/2) the refocusing 180° pulse is applied 

4. The spin echo is then formed at the TE 

5. During echo formation the frequency encoding gradient is applied, the frequency is 

dependent on the position along the gradient 

6. An analogue to digital convertor samples the signal during the readout gradient 
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7. The process is repeated with a different phase encoding gradient amplitude after a 

time TR (Time to Repetition)  

8. Image data is produced the size of which is dependent on the number of phase 

encoding steps and the number of points that were sampled per spin-echo 

Long T2 weighted spin echo images have the major trade off of having long TR which results in 

long acquisition times. Spin echos are excellent in clinical environments as they produce T2 

weighted images of good quality, for T1 weighted images a faster type of sequence is normally 

desired. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1.15: Spin echo imaging sequence showing applied rf pulse, slice select gradients, phase 

encoding gradient, frequency encoding gradient and data sampling 
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1.3.2 Gradient echo Imaging Sequence 

 

The major differences between a gradient echo sequence and a spin echo sequence are that 

with a gradient echo; 

 The flip angle is normally below 90°. 

 There is no 180° RF re-phasing pulse 

The partial flip angle (lower than 90°) causes the amount of magnetisation in the transverse 

plane to be decreased. Advantages of gradient echo and low flip angle excitations include; 

 Faster acquisitions 

 Different contrast between tissues 

 A short TR normally leads to a weaker MR signal due to T1 saturation 

The fraction of magnetisation tipped into the transverse plane and the quantity of 

magnetisation left on the longitudinal axis is determined by the flip angle. A lower tipped 

magnetisation will occur if there is a lower flip angle excitation. 
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Figure 1.16a: A simple Gradient echo sequence 

 

 

 

 

 

 

 

 

 

Figure 1.16b: Illustrates point b in figure 1.16a; spins along the y axis  
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Figure 1.16c: Illustrates point c in figure 1.16a; Spins de-phased by the negative lobes 

 

 

 

 

 

 

 

Figure 1.16d: Illustrates point d in figure 1.16a; Gradient switched to positive 

 

 

 

 

 

 

 

 

Figure 1.16e: Illustrates point e in figure 1.16a; the spins begin to rephase, forming an echo 
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Figure 1.16f: Illustrates point f in figure 1.16a; if the gradient is left on de-phasing reoccurs 

Figure 1.16a-1.16f illustrates a gradient echo sequence; 

 A negative gradient lobe is applied immediately after the excitation pulse. 

 A rapid de-phasing of the transverse magnetisation is caused 

 A positive gradient is applied after the negative lobe, which reverses the magnetic field 

gradient 

 Spins previously precessing at a low frequency due to their position in the gradient will 

now precess at a higher frequency and vice versa. 

 Previously de-phasing spins begin to re-phase, after a set time period when gradient 

areas are equal they all come back into phase along the +y’ axis, thus forming a 

gradient echo 

 T2 and T2* effects are not reversed with a gradient echo 

1.3.3 Paramagnetic Contrast Agents 

  

Contrast agents allow the production of an extra set of images with different contrast with 

only a short increase in the total scan time of the patient, this increases specificity and clarifies 

tissue discrimination. The most commonly used contrast agents are based on gadolinium (Gd). 

Gd contains seven unpaired electrons. Gd is a highly toxic substance therefore it is 

encapsulated within another chemical structure such as diethylenetriaminepentaacetic acid 

(DTPA). Once injected into the body Gd is rapidly distributed throughout the vascular supply, it 

then gradually excretes through a patients kidneys taking around 24 hours to do so. Having the 
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presence of Gd during MRI scans has the effect of shortening T1 in tissues where it 

accumulates, therefore on post contrast T1 –weighted images these tissues will experience 

enhanced signals. As a result highly vascular tumours will become brighter as the area of 

disruption will cause the Gd to leak into the lesion thus enhancing that area. Figure 1.17 shows 

post contrast and pre contrast images of a breast MRI scan. 

 

 

Figure 1.17: pre-contrast (left) and post contrast (right) at 2min post Gd injected MR images of 

breast, image on right shows enhanced lesion area. Images taken from data acquired by The 

University of Hull of patients undergoing neoadjuvent chemotherapy. 

 

1.4 Instrumentation  

 

For the purpose of this study the dataset consisting of patients undergoing neoadjuvant 

chemotherapy was acquired using a superconducting GE magnet running at 3 tesla (3.0T HDx, 

GE Healthcare, Milwaukee, WI) in combination with an 8-channel dedicated breast coil. 

Superconducting magnets have generally low running costs and excellent homogeneity and 

are available at field strengths of up to 8T. Superconducting magnets are normally wound from 

niobium-titanium filaments having a transition temperature of 7.7K, they contain a chamber of 

liquid Helium (He) known as the cryostat and are further surrounded by vacuum chambers. 
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There are three types of orthogonal linear magnetic field gradient coils to produce gradients in 

the x, y and z directions. These are mounted on a cylindrical former just inside the bore of the 

magnet. Various radiofrequency coils exist for different parts of the body and often the 

transmitting and receiving is done via the same coil, for this study a standard breast coil has 

been used to acquire the breast data (receive only).  

  



31 
 

2 Literature Review 

 

This chapter will look at previously conducted studies that lead to the study in this PhD thesis 

of morphology (texture) and shape. The chapter begins by outlining the diagnostic techniques 

available which are used both in screening and in clinical studies for prediction and monitoring 

of tumour response in breast including the Bi-RADS lexicon. This is followed by examining the 

need for automatic analysis of DCE-MRI data and post-contrast images including 

pharmacokinetic modelling. Existing work on morphology and discussion of the different 

methods of texture and shape analysis concludes the chapter. 

2.1 Diagnostic techniques 

 

This section will examine the different techniques currently in use for diagnosing or detecting 

breast cancer. Many of these are commonly used for screening purposes as well as monitoring 

of known lesions. 

2.1.1 Clinical Breast Examination 

 

Sensitivity measures the proportion of actual positives which are correctly identified as such, 

specificity measures the proportion of negatives which are correctly identified. A perfect 

predictor would be described as 100% sensitivity and 100% specificity. Examinations by 

clinicians usually involve a physical examination; these can vary in accuracy based on time 

spent per session and level of expertise of the clinician [6]. Community practice reported 

results showed sensitivity ranging from 28-36%. A study highlighted 42.5% of physicians who 

performed a screening breast examination on manufactured breast models used no 

discernible systematic search pattern at all. Sensitivity improved when using a systematic 

approach, and spending more time, however the number of false positive examinations may 

increase with training [6]. 
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2.1.2 Breast Self-examination 

 

Breast self examination appeals to women as it allows them to become comfortable with their 

own bodies and is non-invasive. However the extent of its current practice is believed to be 

low and it seems to create an increase in false positive findings and therefore a diminished 

specificity [6]. 

2.1.3 Mammography 

 

Mammography uses low dose amplitude x-rays to look for tumours in breasts with the aim of 

detecting cancer early which increases the subsequent chances of a cure. Mammography is 

commonly used as a screening and diagnostic tool for early detection of breast cancer, this is 

usually done through the detection of characteristic masses (for example a cancerous area, see 

fig 2.1) and/or micro calcifications (see figures 2.2 and 2.3) which are tiny calcium deposits that 

show up as fine white specs on a mammogram. Various randomised trials have studied 

mammography’s effectiveness. A Swedish study [7] concluded that breast screening reduces 

breast cancer mortality and this persists after long term follow up. The effect was found to be 

age dependent: highest effect in women aged 55-69 years at randomisation and lowest in 

women aged 50-54 years at randomisation. A UK study [8] concluded that mammographic 

screening does reduce mortality from breast cancer. A review paper on screening for breast 

cancer [6] outlines that there are flaws with the randomised studies but further in depth 

reviews of the criticisms of the trials have concluded that especially in women aged 50-69 

mammography is still efficient in reducing breast cancer mortality. Women in their 40s 

generally have denser breast tissue which can lower the sensitivity of mammography [6]. 
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Figure 2.1 [9]: Mammography image showing normal breast tissue (left) versus the whitish 

area in the tissue on the right (arrow), which is cancerous. 

 

Figure 2.2 [10]: mammogram showing cluster of micro calcifications (red arrow)  

 

http://upload.wikimedia.org/wikipedia/commons/f/f6/Mammo_breast_cancer.jpg
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Figure 2.3 [10]: a closer look at the micro calcifications from figure 2.2 

2.1.4 Full-Field Digital Mammography and Computer Aided Detection programs 

 

As the name suggests the major difference between screen-film mammography and digital 

mammography is that with the latter the image is captured digitally as opposed to on a film. 

Digital images have the additional benefits of being interpreted directly from a computer 

monitor in addition to being printed on film for viewing as with conventional mammographs. 

The advantages are immediately obvious as digital images can be stored electronically and 

various adjustments made like altering the contrast and brightness of the image as well as 

magnifying areas of interest all of which aid the radiologist’s decision making process without 

having to perform extra x-rays on the patient. In addition computer aided detection programs 

can potentially aid in the assessment of diagnostic accuracy to give radiologists a computerised 

second opinion (figure 2.4). A study by Freer et al [11] of 12860 women showed that when a 

computer program was used that was able to mark calcifications, masses, or other potential 

lesions on the mammogram this increased the number of cancers detected from 41 to 49. 

However, the overall recall screening rate increased from 6.5% to 7.7%. A further much larger 

clinical study by Gur et al [12] included 59139 mammograms interpreted with computer-aided 

detection and 56432 without and showed that cancer detection rates and recall rates did not 
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significantly differ. Depending on the expertise level of the radiologist computer-aided 

detection may be a helpful aid. 

 

Figure 2.4 [13]: digital mammogram with computer aided detection outlining suspicious areas  

2.1.5 Ultrasound 

 

Ultrasound is beneficial in a targeted diagnostic examination, for example when the focus is on 

a specific area of concern. Ultrasound may help in distinguishing between cysts and solid 

masses as well as between benign and malignant masses [14].  Figures 2.5 and 2.6 show an 

ultrasound scan after a 44 year old woman found a lump on self-examination.  Ultrasound has 

a higher rate of false positive results than mammography, and in a study reviewing the 

accuracy of technology in screening for breast cancer the false positive rate based on a solid 

lesion for ultrasound was 2.4% to 12.9% compared with 0.7% to 6% for mammography [15].  
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Figure 2.5 [13]: Ultrasound showed a 3cm solid mass in the upper outer quadrant of the left 

breast (yellow arrow). As she is over 40 years of age and the mass is more than 2cm, a biopsy is 

recommended. 

 

Figure 2.6 [13]: In contrast, this 34 year old lady with similar presentation was found to have a 

benign breast cyst in the upper quadrant of the left breast (yellow arrow). After some 

assurance, no further investigation was necessary. 
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2.1.6 Magnetic Resonance Imaging (MRI) 

 

MRI as discussed in detail in chapter one produces images from radio waves using a strong 

magnetic field combined with computer processing. MRI can be especially helpful in cases 

where mammography is not optimal. Sensitivity in MRI is normally higher than that of 

mammography, as per a study by Kuhl et al [16]. In 105 asymptomatic women with validation 

of the 1st-year screening results, the sensitivities of mammography, US, and MR imaging were 

33%, 33% (mammography and US combined, 44%), and 100% respectively. Specificity is 

normally lower in MRI than in mammography but in this same study this was not the case as 

specificities of mammography, US, and MR imaging of 93%, 80%, and 95% were reported 

respectively. A study by M Kriege et al [17] agrees with the norm wherein the specificity of 

clinical breast examination, mammography, and MRI for detecting invasive breast cancer was 

98.1%, 95.0%, and 89.8%, respectively. 

 

According to a later study in 2007 which looked at the effectiveness of MRI as an addition to 

mammography and ultrasound in screening young women at high risk of breast cancer [18] 

there is strong evidence that MRI in addition to conventional screening tests increases early 

detection of breast cancer in young high risk women, but does pose a higher risk of 

unnecessary false positive findings [18].  

2.2 MRI and breast tumours 

 

The previous few sections have aimed to give a comparative overview of the different 

techniques which are mainly used for screening of breast tumours. This section will look at 

more detail regarding MRI and its use for diagnostic purposes in breast tumours, including the 

use of contrast agents and discussion of MRI as an extremely sensitive technique that seems to 

have limited specificity and high sensitivity [19]. 
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2.2.1 Pathophysiologic basis 

 

MR contrast agents are more often than not used as an intravenous injection in order to 

enhance lesions which would otherwise be difficult if not impossible to identify. In order to 

generate contrast a gadolinium based agent is used.  The different lesion and diagnosis 

detection techniques shall be discussed here in further detail.  

Angiogenesis is the physiological process where new blood vessels are formed from pre-

existing vessels, malignant lesions release angiogenic factors, the effect of this angiogenic 

activity is that firstly there is an increased vessel density (vascularity), this leads to a focally 

increased inflow of contrast material as well as an increase in vessel permeability which 

ultimately results in accelerated leakage into the surrounding tissue known as extravasation of 

contrast material at the site of the tumour[19].  Invasive breast cancers are detectable due to 

their strong enhancement i.e. due to the increase in signal intensity on T1 weighted images in 

dynamic breast MR images, the signal intensity peaks early after contrast injection. The 

diversion of blood from an artery directly to a vein known as an arteriovenous shunt along 

with increase in vascular permeability seem to contribute to a wash out in breast cancers i.e. 

the signal intensity decreases in the early or intermediate post-contrast period. Tumour 

vascularity seems to correlate with tumour aggressiveness and the potential for it to be 

metastatic / malignant. It’s clear then that the presence of contrast agents such as gadolinium 

in the veins helps create a high contrast image in MRI, but lesion enhancement is far from 

being a simple process as it is determined by a variety of different factors, including but not 

limited to; vessel permeability, vessel density, contrast material diffusion rates, composition of 

the interstitial (interstitial fluid is a solution that surrounds and bathes the cells) tumour matrix 

and baseline and post contrast tissue relaxation times. 

An important point to note is that contrast enhancement merely enhances some types of 

malignant lesions in breast, a lack of or only shallow contrast enhancement is also found in 

some malignant changes. Fibroids (benign tumours) enhance in a similar way to malignant 
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breast tumours. Simply having contrast enhancement present does not determine the 

presence or absence of malignancy in breast MRI. Before a final diagnosis is established 

various additional diagnostic criteria and all clinical, mammographic and sonographic 

information that is available has to be considered. Detection and differentiation of breast 

lesions and the criteria used will be the topic of discussion in the following sections. 

2.2.2 Diagnosing techniques 

 

The decision to take a biopsy is needed when an enhancing area is detected on post contrast 

subtracted images or a suspicious mass is seen on pre contrast images in order to establish 

whether it is benign or malignant, as none of the diagnostic criteria discussed provide 

definitive diagnosis of an area being benign or malignant, therefore a core biopsy is always the 

most cost effective and safest way to clarify suspicion lesions. In addition each case will have 

its own individual factors for deciding if a biopsy is recommended or not, these include but are 

not limited to patient history, present clinical or radiological findings, and personal concerns of 

the patient. 

2.2.2.1 Morphologic features of lesion 

 

Looking at the morphological features (structure, and shape) of a breast image is one way of 

diagnosing breast cancer. Lesion configuration is determined and classified as either mass, 

non-mass-related focal enhancement, segmental, linear/linear-branching or regional/patchy 

enhancement. A mass like lesion is treated as suspicious and can be seen on a pre-contrast 

image. If present its shape and borders should be evaluated, if an irregular (fig 2.7) or 

spiculated (fig 2.8) shape exists this strongly suggests that it is a malignant lesion and roundish 

or ovoid shapes suggest a benign mass (fig 2.9). Non-mass-related focal enhancement are 

lesions that only shows up after contrast injection, unlike a mass no space occupying 

properties can be observed in pre-contrast images. Some small breast cancers as well as many 

unidentified bright breast objects (UBOs) are categorised as non-mass. As with mass lesions if 

small cancers are present their shape and borders should be evaluated, if an irregular (fig 2.7) 
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or spiculated (fig 2.8) shape exists this strongly suggests that it is a malignant lesion and 

roundish or ovoid shapes suggest a benign mass. Spatial resolution plays vital importance in 

seeing well circumscribed focal mass or tiny spiculae. For the most subtle variations in 

morphological details of enhancing lesions a maximum spatial resolution is required. Adjacent 

parenchyma (bulk or functional part of tissue) will enhance progressively, in the very early pre-

contrast period the parenchyma/lesion-contrast is best, and hence for morphological analysis 

a good temporal resolution is required. Finally the lesion should be looked at in terms of its 

internal architecture and determine whether it is homogenous or not and if it shows low-

signal-intensity internal septations (fig 2.10), if either is true this suggests the lesion is benign, 

on the other hand if it is heterogeneous with areas showing strong and others with only 

shallow enhancement or if the enhancement is confined to the lesion periphery then the 

lesion is probably malignant. This was found to be true in a 93 patient study which concluded 

that to help distinguish between benign and malignant disease the architectural features 

revealed by high-spatial resolution MR imaging of the breast need to be analysed [20]. 

Segmental lesions are confined to the area of a duct or the ductal system and are usually 

triangular in shape with the tip pointing towards the nipple (fig 2.11). 

 

Figure 2.7 [20]: image of 67 year old woman with invasive ductal carcinoma, the gadolinium 
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enhanced image shows the lesion represented by the arrow with irregular borders and rim 

enhancement. 

 

Figure 2.8 [20]: image of 51 year old woman with invasive ductal and intraductal carcinoma, 

the gadolinium enhanced image shows the lesion represented by the arrow with spiculated 

borders. 
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Figure 2.9 [21]: scan showing typical findings in a fibroadenoma, with ovoid shape, smooth 

margins and homogenous internal architecture 

 

 

Figure 2.10 [20]: image of 37 year old woman with fibroadenoma, lesion represented by arrow 

with lobulated borders and non enhancing internal septations 

 

Figure 2.11 [19]: intermediate post contrast image, segmental enhancement as hallmark of 

ductal in situ cancer (DCIS), with the almost triangular shape, tip pointing towards the nipple 

and the heterogeneous internal architecture. 
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2.2.2.2 Enhancement kinetics 

 

The evaluation of lesion enhancement kinetics should be done on subtracted and non-

subtracted images over all the dynamic series and time/signal intensity curves plotted on 

lesions that look to be benign (normally distinguished by continuous enhancement by a type 1 

curve) or malignant (normally associated with a type 3 curve) in terms of their morphology. A 

good temporal resolution is essential in order to evaluate all kinetic criteria, although what the 

optimal temporal resolution is has been a matter for discussion [19]. Initially experiences with 

ultra high temporal resolution suggested an improved specificity for differential diagnosis [22]. 

Eighty-seven lesions were evaluated and gadolinium-enhanced TurboFLASH imaging had a 

sensitivity of 95%, a specificity of 86%, and an overall accuracy of 93% in differentiating benign 

from malignant lesions. The study went on to conclude that gadolinium-enhanced TurboFLASH 

imaging is a valuable method in the examination of breast lesions suspected of being 

malignant [22]. Most evidence suggests that temporal resolution should be of approximately 

1-2 min per dynamic scan and it seems studies show that it is not useful to sacrifice spatial 

resolution in favour of improving temporal resolution far beyond the 1 min margin [19] for the 

purpose of diagnosis.  

2.3 Breast Imaging Reporting and Data System (BI-RADS Lexicon) 

 

Historically the terminology used for reporting purposes often provided inconsistent 

recommendations by radiologists, this often led to confusion for clinicians on how to conduct 

further evaluation.  In order to provide a certain level of consistency in interpretation it was 

necessary to form some sort of standards, the American College of Radiology (ACR) did just 

this in the form of The Breast Imaging Reporting and Data System (BI-RADS) [23]. The BI-RADS 

lexicon as it is known today is a tool which includes within it a section containing illustrations 

of each mammographic feature, a section on mammographic practice and some sample 

reports.  
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BI-RADS is a quality assurance tool designed to standardise mammography reporting. It 

contains a lexicon for standardised terminology (descriptors) originally for mammography, 

breast Ultrasonography (US) and latterly in a revised version for MRI. The BI-RADS lexicon tool 

aims to standardise terminology, assessment of findings and recommendations for action 

based on findings [24]. This assessment coupled with management recommendations has 

implications for clinical care, teaching, and evaluation of screening by radiologists. This section 

aims to provide an illustration of the BI-RADS lexicon as well as discussion of its advantages 

and disadvantages. 

2.3.1 BI-RADS Mammography 

 

The BI-RADS lexicon for mammography of the ACR describes four classes of breast 

parenchymal density and their effect on diagnostic accuracy [24]: 

1. Mostly fatty (fig 2.12)– very high diagnostic accuracy 

2. Fibroglandular (fig 2.12) – high diagnostic accuracy 

3. Heterogeneously dense (fig 2.12) – limited diagnostic accuracy 

4. Dense (fig 2.12) – limited diagnostic accuracy 

 



45 
 

 Figure 2.12 [24]: different types of breast tissue density according to the ACR where ACR 1 

illustrates fatty breast tissue, ACR 2 fibroglandular breast tissue, ACR 3 heterogeneously dense 

breast tissue and ACR 4 extremely by dense breast tissue. 

 

Earlier in the chapter morphological features of a lesion were discussed, there are similar 

categories defined for the types of lesion within the BI-RADS lexicon: 

 Masses – if a lesion is seen in 2 different projections it is a mass otherwise if it is only 

seen in a single projection it is a density,  there are three classifications of masses: 

o Shape of mass can be (fig 2.13, top): 

 Round 

 Oval 

 Lobular  

 Irregular 

o Margin of mass can be described in five different ways (fig 2.13, middle): 

  Well or sharply circumscribed 

 Undulation with short cycles (microlobulated) 
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 Hidden by superimposing adjacent tissue (obscured) 

 Ill-defined  (indistinct) 

 Spiculated 

o Density of mass in relation to the surrounding parenchyma or fat equivalent 

can be (fig 2.13, bottom): 

 Higher 

 Equivalent (isodense)  

 Lower  

 Calcifications (fig 2.14), are classified as follows: 

o Benign calcifications include skin, vascular, coarse or popcorn-like, large rod-

like, round, lucent centred, “eggshell” or “rim”, milk or calcium, salure, 

dystrophic and punctuate calcifications 

o Intermediate concern calcifications include amorphous or indistinct 

calcifications 

o Malignant (high probability of malignancy) include pleomorphic or 

heterogeneous (granular) calcifications and fine linear, fine linear branching 

(casting) calcifications 

o Distribution of microcalcifications (fig 2.15); include diffuse or scattered, 

regional, linear, segmental and group or clustered. 

o Other features include architectural distortion where the architecture is 

distorted with no definite mass visible which can be associated with 

malignancy.  

In addition there are also various associated findings which can be used with masses or 

calcifications or when no other abnormality can be seen, these include nipple retraction, skin 

lesion and skin retraction. 
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Location of the lesion is classified by the following parameters: 

 Side (left, right or both) 

 Location (according to clock face and subareolar, central or axillary)  

 Depth (anterior, middle or posterior) 

Figure 2.13 [24]: Set of images categorised according to the Bi-Rads lexicon, top row of images 

show shape: round/oval (Aa), lobular (Ab), irregular (Ac). Middle row of images show margin: 

well-defined (Ba), ill-defined (Bb), obscured (Bc) and spiculated (Bd). Bottom row of images 

showing density: fat containing (Ca), isodense (Cb) and high density (Cc) 



48 
 

figure 2.14 [24]: images of types of calcifications according to the BI-RADS lexicon. Top and 

middle rows show benign findings:  vascular (Aa), coarse or popcorn-like (Ab), large rod-like 

(Ac), round (Ad), “eggshell” (Ae), lucent centred (Af), suture (Ag), milk or calcium calcifications 

(Ah). Bottom row of images show intermediate-concern calcifications: amorphous calcifications 

(B) and higher probability of malignancy: pleomorphic (C) and fine linear branching 

calcifications (D) 

figure 2.15 [24]: images showing the distribution of microcalcifications according to the BI-

RADS lexicon: diffuse(A), regional (B), linear (C), segmental (D), and clusters of 

microcalcifications (E) 
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2.3.2 Report 

 

Once a clear description of the findings is made a report is compiled indicating the 

categorisation of the lesion(s) according to the BI-RADS classification with implications on the 

next course of action (table 2.1).  

 

Table 2.1 [24]: ACR BI-RADS categories for mammographic lesions according to their 

probability of being malignant and recommendations. 

2.3.2 BI-RADS Ultrasonography (US) 

 

A similar lexicon exists with the six categories for Ultrasonography with additional sub-

categories A-C for category 4, some slight differences in description wording exist.[25, 26]. 

2.3.3 BI-RADS MRI 

 

In the same way the BI-RADS lexicon was formed for mammography, the increasing use of 

breast MRI in cancer detection, diagnosis and management led to a need for a revised lexicon. 

This was fulfilled by the American college of Radiology through the development of the BI-

RADS MRI lexicon. The lexicon is very similar to the mammography BI-RADS lexicon with a few 

minor additions with MRI imaging in mind. In addition to the categorisation of masses by 
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shape, margin and other characteristics similar to mammography BI-RADS there is an 

additional category Focus and Foci, these are when enhancements measure less than 5mm 

that cannot be otherwise specified (fig 2.16). Focus or foci are frequently stable on follow-up 

images and are known to result from hormonal changes [27]. As with the Mammography BI-

RADS the MRI BI-RADS has a category for associated findings (fig 2.17), these findings include:  

 nipple retraction 

 inversion 

 skin retraction  

 skin thickening 

  skin invasion 

 pectoralis muscle or chest wall invasion 

 high signal intensity in ducts on unenhanced images 

 abnormal signal void 

 hematoma 

 edema 

 lymphadenopathy 

 cysts 
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Figure 2.16 [27]: Focus and foci of enhancement. MRI images from 49 year old woman with 

palpable abnormality in right breast, radiologic findings suggested fibrocystic disease. Image A 

(left) shows dynamic contrast-enhanced image of left breast with subcentimeter focus (arrow) 

of delayed enhancement in upper aspect of right breast. Image B (right) shows multiple foci of 

enhancement (arrows) throughout right breast. All foci were stable for at least 1.5 years and 

considered benign. 
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Figure 2.17 [27]: Images of the associated findings category of the BI-RADS MRI lexicon. Image 

A shows pectoralis muscle or chest wall invasion (thick arrow), skin involvement (thin arrow), 

and reticular enhancement (asterisk) in a woman with T4 breast cancer. Images B and C show 

unenhanced high signal intensity in ducts. Sagittal T2 (B) and axial T1 (C) images show 

subareolar dilated ducts (arrows) with areas of high signal intensity (asterisks). These areas 

represent benign ectatic ducts containing secretion with increased protein content. Image D of 

right breast after right segmentectomy for invasive ductal cancer shows abnormal signal voids 

(arrows) that denotes surgical clips. Deformity and skin thickening (arrowheads) due to surgery 

and radiation are evident. 
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2.3.4 Limitations of the BI-RADS lexicon 

 

The BI-RADS lexicon categories are useful as a means of predicting malignancy but as with any 

tool are not free from limitations. Even before the use of the BI-RADS lexicon variability in the 

mammographic interpretation had been reported in various studies. Elmore et al [28] 

published a study in which ten radiologists reviewed 150 mammograms including 27 cancers. 

Work-up was recommended for 74% to 96% of women with cancer and 11% to 65% without 

cancer, the study concluded that although mammography is of value in screening women for 

breast cancer, radiologists can differ, sometimes substantially in their interpretations of 

mammograms and in their recommendations for management [28]. Since the introduction of 

the BI-RADS lexicon, observer variability has been re-evaluated by various studies [29, 30]. The 

studies concluded that even with a standardised lexicon present, variability in mammographic 

reports persists [24]. In a more recent study [31] four observers evaluated 103 lesions (49 

malignant and 54 benign) and looked at variability in the description of morphologic and 

contrast enhancement characteristics in MRI of breast lesions, the author concluded that there 

was considerable variability in the use of most generally accepted terms. In addition the 

preparation of the regions of interest (ROIs) was a major source of variability in the 

interpretation of enhancement curves.  Although BI-RADS is a helpful guide for use in everyday 

practice; continued development of methods to improve standardisation in mammographic 

interpretation is needed [30]. In time this will help to achieve its purpose of standardising 

mammographic reports and improving clarity and enabling better communication. 
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2.4 Automatic Analysis of Dynamic contrast enhanced (DCE) MR images 

 

DCE-MRI is discussed in more detail in the introduction chapter (1.3.3). This section will look at 

the need for automated analysis of DCE-MRI data and post contrast images. There are various 

ways for hospitals performing breast MRI exams to classify tumours (for example BI-RADS as 

discussed in previous sections). There tends to be a fixed workflow for each patient study from 

the scan through to the report being generated. Once the data is acquired a technologist 

manually creates subtraction images at the MRI workstation and sends them to the radiologist 

workstation for examination, the radiologist then manually has to go through all the slices 

looking for suspicious regions which is a very time consuming task especially as the regions can 

be very small. The human factor can be one of the main reasons for missing suspicious regions, 

once one is detected the region is then analysed by the radiologist, this is normally a manual 

process where the radiologist specifies a region of interest (ROI) within the suspicious region. 

For the ROI a corresponding time-signal curve is computed and the region is finally classified, 

each suspicious region has to be analysed and hence this is a lengthy process which can take 

around 30-40 minutes per patient. Performing several of these examinations per day can lead 

to fatigue and inattention for the radiologist. To overcome this various studies have been 

conducted to optimise this workflow by using breast DCE-MRI data with various computer 

aided design (CAD) techniques and as a result these are able to automatically analyse DCE-MRI 

images. There are many CAD packages available; a few will be discussed in this section, which 

aim to automate some of the radiologists otherwise manual work.  

Two factors can enhance tumour regions, firstly the effect of angiogenesis resulting in 

increased vascularity or vessel density which causes increased contrast uptake. Second 

increased vessel permeability which leads to increased leakage of the contrast agent into the 

tumour site. Dynamic imaging of the breast or a ROI makes it possible to functionally analyse 

the contrast intake or washout, using signal-time curves [32], these factors can assist in 

improving the sensitivity and specificity of the lesions [33].  

Subramanium et al [33] developed a system to identify, process, visualise and quantify lesions 
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from breast DCE-MRI volumes, based on time signal curves. The application has the following 

features/benefits [33]: easy manipulation of signal-time intensity curves, 2D and 3D 

visualisation views, with 3D providing better characterisation of shape and size and 2D views 

providing lesion information about specific parts of the volume, easy navigation between 2D 

and 3D views without loss of spatial context, and a function which accurately computes 

tumour volumes. 

In the Subramanium [33] study the system was tested on four breast tumour cases; Invasive 

ductal cancer, benign fibrodenoma, DCIS and lobular carcinoma. The system was in agreement 

for the first three cases, in the fourth case (lobular carcinoma) the tools assessment differed 

from the radiological assessment (false negative). 

Pediconi et al [34] took another approach in software which employs time-signal curves of 

DCE-MRI volumes to automatically display a false colour map, where each type of curve is 

mapped to a different colour. The regions that correspond to the different type of curve are 

simultaneously displayed using different colours. The software features a semiautomatic pixel 

by pixel analysis of the ROI which makes the procedure mainly operator independent which 

the study claims can help radiologists distinguish different patterns inside a single lesion, 

possibly allowing to reduce false negative evaluation [34]. 

Coto Ernesto et al [35] produced ‘MammoExplorer’ (fig 2.18) a CAD application that requires as 

input a DCE-MRI sequence containing at least two time steps, first being pre-contrast and the 

rest post contrast time steps. MammoExplorer automatically computes, for every post 

contrast time step in the input sequence, its subtraction from the pre-contrast time step. It 

then displays a control panel which contains the following (fig 2.18): 

 An enhancement scatter plot for each subtracted volume; 

 this serves as an interface for a sophisticated segmentation algorithm, which allows 

the radiologist to look at the breast DCE-MRI data in an intuitive way where every 
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interesting region can be explored using the usual slice through approach and cross-

sectional views 

 A 3D view; 

this is able to display advanced volume renderings of the data and the ROIs 

 A time-signal curve view 

this view is available for radiologists that are familiar with this method, all views are 

linked for effective correlation of all data 

 3 cross sectional views (sagittal, coronal and axial) 

Coto Ernesto et al [35] believe that this application allows radiologists to perform a more in 

depth exploration of the breast whilst considerably reducing the usual workflow time, and that 

this will lead to more accurate diagnosis. 

As with any software application none of the above are free from limitations, the application in 

the study by Subramanium et al [33] has the ability for the user to pick a few voxels central to 

a lesion, and examine their time-signal curves but this requires the radiologist to find the 

suspicious regions manually, a confidence degree of malignancy is then assigned. The user 

when using this approach is limited to detect lesions with time-signal behaviour which is 

approximately similar to the specified mean curve, the radiologist could miss this type [35]. 

The application developed by the Carotenuto et al [34] study also has its criticisms as outlined 

by Coto Ernesto et al [35] that when the type of curve is mapped to a different colour it is a 

discrete mapping as opposed to a smooth transition between the different kinds of curves, it is 

therefore impossible to tell the difference between certain and uncertain regions which can 

ultimately lead to incorrect interpretations. 
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Figure 2.18 [35]: MammoExplorer working with a DCE-MRI sequence of five scans. (a)- (d) 

Enhancement scatter plots for subtracted volumes t1-t0, t2-t0, t3-t0 and t4-t0. (e) 3D view. (f) 

time-signal curve view. (g)- (i) axial, sagittal, and coronal views. 

A more up to date system CADstream has the following features for MRI of breast [36]; Image 

registration (using adaptive motion correction as well as artefact detection (fig 2.19)), 

subtraction images (indicating abnormal tissues by comparing different series (fig 2.20)), 

multiplanar reformatting (allowing sagittal, axial and coronal views allowing localization of 

lesions and their relationships to other anatomy (fig 2.21)), maximum intensity projections 

(provide interactive 3D viewing), volume summaries (3D rendering, grow and shrink 

segmented lesions, isolate vascular areas, lesion diameter measurements, location information 

with distance to nipple, skin and chest wall, automatic detection of most suspicious washout, 

plateau and persistent curves, morphology characterizations, BI-RADS atlas lexicon for lesion 

classification (fig 2.22)), angiogenesis maps and curves (in accordance to the ACR BI-RADS 

Atlas), Interventional guidance (calculate more efficiently coordinates for MR-guided 
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interventions at the point of procedure, provides real time reports for needle position), 

portfolio for reporting (including BI-RADS classification (fig 2.23)).   

The CADstream package claims continuous validation by a growing body of published research 

[36]. A study by Lehman et al published in 2006 highlighted that the use of CADstream 

interpreted breast MR examinations accurately showing significant enhancement in all the 

malignant lesions while depicting 12 of 24 benign lesions as showing insignificant 

enhancement [37]. The study states such CAD programs improve specificity, may decrease 

heterogeneity of interpretations across radiologists of varying levels of breast MR 

interpretation experience, as well as reducing time required for image processing and 

interpretation. 

 

 

Figure 2.19 [37]: CADstream image registration uses 2D/3D adaptive motion correction and is 

efficient in demonstrating the ability to reduce artefact in subtraction images  
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Figure 2.20 [37]: CADstream subtraction compares different series and highlights bright areas 

that may indicate abnormal tissue 

 

 

 

Figure 2.21 [37]: Multiplanar Reformatting (MPR) allows user to view studies in multiple planes 

(sagittal, axial and coronal) 
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Figure 2.22 [37]: CADstream Volume Summaries creates lesion (volume) characterizations 

automatically with 3D renderings and data calculations for each volume 
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Figure 2.23 [37]: CADstream Portfolio for Reporting automatically generated with reference 

images, size and location information and radiologist assigned BR-RADS Atlas classification for 

each lesion. 

2.5 Pharmacokinetic modelling 

 

Pharmacokinetics (PK) is a branch of pharmacology that involves administering drugs 

externally to a living organism, and determines where these substances/drugs end up. Simple 

mathematical schemes representing complex physiological spaces or processes are known as 

pharmacokinetic models. Signal enhancement that is prevalent on dynamic acquisition of T1-

weighted images can be assessed in two ways, either by the analysis of the signal intensity 

changes (semi-quantitative) or by the quantification of contrast agent concentration change 

using pharmacokinetic modelling techniques. Generally quantitative techniques involve the 
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modelling of tissue contrast agent concentration, in reality some model intensity changes, 

which assume that signal intensity changes are proportional to contrast agent concentration 

changes.  During a dynamic enhancement acquisition the signal intensity changes measured 

can be used to estimate contrast agent concentration, concentration-time curves are then 

mathematically derived using one of the pharmacokinetic modelling techniques, some of the 

parameters used in this type of modelling include [38]: 

        (permeability) -  the volume transfer constant of the contrast agent, also known 

as permeability (surface area product per unit volume of tissue) 

    - leakage space as a percentage of unit volume tissue 

     - the rate constant 

 The above have the mathematical relationship of     =       /   

 [C](t) – concentration vs. time [39] 

In order to determine precise elimination rate it is important to have accurate PK modelling, 

the most widely used types of PK models include: 

 one-compartment model (fig 2.24);  used for drugs which equilibrate rapidly with the 

tissue compartment, for example a drug which takes 15-30 minutes  

 two-compartment model (fig 2.25); used for drugs which equilibrate slowly with the 

tissue compartment, for example drugs which take 1 to 2 hours 
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Figure 2.24 [40]: the one-compartment model (left) with a serum level plot on the right 

showing how this model yields a straight line when using a log scale on the y axis 

 

Figure 2.25 [40]: the two-compartment model (left) with a serum plot on the right showing how 

this model yields a biphasic line when using a log scale on the y axis 

For the purpose of detecting and evaluating breast disease researchers [38] often use 

quantitative T1-weighted dynamic contrast MRI (  -w DCE-MRI). Within this technique 

gadolinium (Gd) contrast agent is intravenously injected during rapid (~sec), repeated T1-

weighted imaging, the Gd concentration vs. time ([C] (t)) of a lesion of interest can be 

estimated from these images. By then applying pharmacokinetic modelling to [C] (t) 
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parameters such as extraction-flow product (EF, which is equivalent to       ) can be 

extracted which in turn are used for lesion diagnosis and tracking of treatment progress [39]. 

Slice selective (two dimensional) spoiled gradient-recalled echo (2D SPGR) imaging is the pulse 

sequence frequently used for T1-w DCE-MRI as it produces relatively artefact free images 

when performed with high temporal resolution (<~15 sec), this is useful in distinguishing 

benign and malignant breast lesions [39]. The 2D SPGR images allow the measurement of the 

signal vs. time (S (t)) of a pixel or an ROI in a lesion. The S (t) can then be converted to       

and this can then be used to compute [C](t) for PK modelling [38]. In order to get the 

relationship between S and   the       is estimated from S(t) by utilising a 2D SPGR signal 

strength equation,   is measured before the injection of Gd contrast agent (     ) or by 

measuring one or more values of S in order to determine the signal strength equations overall 

scaling factor. Significant errors can occur, in fact greater than 50% [39] in the estimated [C](t), 

due to the signal strength in the 2D SPGR being very sensitive to even the slightest of 

variations in the transmit magnetic field (  ) which can cause inaccuracies in the signal 

strength equation as the   shortens and [C] increases post-injection. In turn this leads to 

errors in the PK parameters that have been estimated, thus reducing sensitivity and specificity 

and making this method less consistent for tracking treatment progress [39].  

Greg O. Cron et al [39] showed that a single pre-injection   measurement was not sufficient 

for estimating [C](t) reliably from rapid 2D SPGR imaging for PK modelling, the study concluded 

that this was due to discrepancy between the measured 2D SPGR signal strength and its 

theoretical value is not consistent from lesion to lesion. the study put the inconsistencies down 

to unexpected variations in the    or slice-select profile, which it deemed to be caused by 

factors such as variations from patient to patient in breast geometry or inconsistently set 

transmit gains. 

Another study by Giovanni et al [41] on the accuracy of PK parameter measurement in DCE-

MRI of the breast at 3T states that accurate and robust PK parameters are needed if it is to be 

used in routine clinical practice, the study found sources of error in three areas in parameter 
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estimation. It concluded that improving the native   calculation,   inhomogeneity and 

ensuring that the dynamic temporal resolution is not lower than 20 s would aid in minimising 

errors. 

2.6 Morphology 

 

The BI-RADS lexicon describes calcification morphology (shape) and distribution. This helps 

radiologists to score breast lesions and determine whether they are benign or malignant, but 

the BI-RADS is highly subjective (clinician decides if they think lesion is spiculated, smooth etc). 

Pharmacokinetics looks at dynamic information objectively. Clinically there is no means of 

quantitatively analysing lesions in terms of their morphological features (shape or texture).  

Texture analysis is already an established method in image classification of aerial and satellite 

photography. More recently, attempts have been made to utilise texture in MRI, particularly in 

the brain [42-44], but also in other organs such as the breast [45-50] wherein lesion 

morphology is known to be an important diagnostic and prognostic indicator. The following 

sections will begin by looking at the various morphological techniques including shape and 

texture and eventually discuss their applications in both medical and non-medical fields.  

2.6.1 Textural Analysis methods 

 

 Texture features are mathematical parameters computed from the distribution of pixels, the 

mathematical parameters characterise the texture type and the underlying structure of the 

objects in the image [51]. This section will aim to compare the different techniques of texture 

analysis currently known. The methods of textural analysis used to evaluate the inter-

relationships of the pixels in an image can be discussed by four categories; structural 

(represent texture by the use of well defined primitives), model-based (represent texture using 

sophisticated mathematical models), statistical (represent texture by looking at properties 

controlling the distribution and relationships of grey level values in an image) and transform 

methods (analysing texture properties of an image in a different space such as frequency or 

scale space) [52]. Structural methods provide a good symbolic description of an image whilst 
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model-based methods are computationally complex. Statistical methods in medical images 

have the advantage of achieving higher discrimination indexes than structural or transform 

methods [51]. A later section will discuss successful texture analysis studies using MRI that 

would normally be impossible to discern by simply visually inspecting the MR image, various 

examples will be discussed including studies involving texture analysis in the brain [42-44] and 

breast [48]. Of the four categories of texture analysis mentioned the most commonly used for 

medical applications is the statistical approach [51], this section will discuss this class in more 

detail along with the model-based and transform class, there are no known examples of the 

structural class method of texture analysis being applied to medical images [51] therefore this 

class will be omitted in the discussion. Texture parameters are commonly derived from six 

main categories which the remainder of this section will discuss, these categories are 

histogram, absolute gradient, run-length matrix and co-occurrence matrix all of which are 

utilised in the statistical form of texture analysis. The final 2 categories are auto-regressive 

model (model class) and wavelets (transform class).   

2.6.1.1 Image Histograms 

 

The histogram of an image counts the number of pixels in a given image with respect to its 

grey level value. 8 bit images values range from 0 to 255 and most digital images are of this 

nature. Medical MR images on the other hand give more definition of the object of the image 

which can only be achieved using higher bit images, for example a 12 bit image will have grey 

values ranging from 0 to 4095, lower values are attributed to darker grey levels and higher to 

lighter colour grey levels. A value of 0 represents a black pixel and white will have value of 

4095 (or 255 if it’s an 8 bit image). In this thesis the images from the GE scanner are acquired 

at 12 bit and stored at 16 bit. Figure 2.26 shows an example of a digital image and its 

corresponding histogram can be seen in figure 2.27. The numbers of pixels are then counted of 

each given grey level value; figure 2.27 shows an example of how the results from the digital 

image (fig 2.26) can be represented as a histogram chart. Parameters that can then be derived 
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from the histogram include its mean, variance and percentiles. Histograms are useful but they 

do not contain any localised information, figure 2.28 shows another digital image, the images 

in figures 2.26 and 2.28 will have the same histogram (fig 2.27) as although visually they look 

different the number of pixels with respect to their grey levels remain the same.  

  

Figure 2.26 [51]: a 5x5 digital image (left) with grey level values where 0 is black and 7 is white. 

The matrix (right) illustrates the numerical representation of the image 

 

 

 

Figure 2.27 [51]: histogram chart of the image shown in figures 2.26 and 2.28 
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Figure 2.28: a 5x5 digital image (left) with grey level values where 0 is black and 7 is white. The 

matrix (right) illustrates the numerical representation of the image 

2.6.1.2 Absolute gradient 

 

The absolute gradient is a measure of the spatial variation of grey levels across an image. It 

aims to see if the image varies from grey to white at a given point (high gradient value) or if it 

varies smoothly from a dark grey to a slightly lighter grey (low gradient value). The gradient 

can be either negative (light to dark) or positive (dark to light), generally when applying this 

measure the interest is in whether the grey level variation is smooth or abrupt therefore the 

absolute gradient is used (ignoring the negative/positive sign). Figure 2.29 shows a coronal 

slice of a T1 weighted cerebral MRI and the corresponding absolute gradient, the image 

gradient emphasises the contours of the original image with the strongest (whitest) where the 

changes in grey level in the original image is the greatest [51]. Texture parameters that can be 

derived from the absolute gradient include the mean and variance. 
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Figure 2.29 [51]: coronal slice of a T1 weighted cerebral MRI (left) and its corresponding 

absolute gradient image 

2.6.1.3 Run-length matrix 

 

A run-length matrix searches an image across a given direction, looking for pixels that have 

(run) the same grey level value. For example if looking in the vertical direction the run length 

matrix would measure for each grey level value how many times there are runs of 2 

consecutive pixels with the same value, then for 3 consecutive pixels with the same value, then 

4, 5, 6 and so on and this can be repeated for many directions but is normally done for 4 

(horizontal, vertical and 2 diagonals) [51]. Figure 2.30 illustrates a horizontal and a diagonal 

run-length matrix of the image in figure 2.26. From the run-length matrix parameters that can 

be computed include fraction of image in runs which measures the percentage of image pixels 

that are part of any of the runs considered for the matrix computed and short-run emphasis 

which is a measure of the proportion that occur in an image with a short length [51]. 
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Figure 2.30 [51]: corresponding run length matrices for the image in figure 2.26 with an 

example of horizontal (left) and a 45° (right) run-length matrices 

2.6.1.4 Co-occurrence method 

 

Textural analysis within aerial and satellite photography has long been an established method 

of image classification. Some attempts have been made to utilise texture in MRI, particularly in 

the brain [42-44]. Freeborough et al [42] focused a study on assessing the value of MR based 

texture as a measure of change in Alzheimer’s disease. Texture features were calculated over a 

large range of offset distances. Texture was calculated using the co-occurrence matrix and the 

Haralick texture formulas f1-f13 [53], this statistical technique known as the spatial gray-level 

dependence matrix method has the ability to study the 2nd order statistics of pixels at 

difference spacing's and angles. Graycommatrix function in programming environments such 

as Matlab generates the GLCM by calculating how often a pixel with gray-level (greyscale 

intensity) value i occurs horizontally adjacent to a pixel with the value j. (You can specify other 

pixel spatial relationships using the 'Offsets' parameter). Each element (i,j) in GLCM specifies 

the number of times that the pixel with value i occurred horizontally adjacent to a pixel with 

value j (fig 2.31). The Freeborough study [42] demonstrated that a texture descriminant 

function derived from MRI brain scans, yields significantly different values for Alzheimer’s 
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disease patients compared to normal controls [42]. In addition this measure reflects the 

progression of the disease over time, and these measures could be useful as aids in the 

diagnosis and tracking of Alzheimer’s disease.  

 

Figure 2.31 [54]: matrix on top left is an example of an original matrix, matrix next to it is the 

generated GLCM matrix, generation of Gray level co-occurrence matrix (GLCM) by calculating 

how often a pixel with gray-level (greyscale intensity) value i occurs horizontally adjacent to a 

pixel with the value j . You can specify other pixel spatial relationships using the 'Offsets' 

parameter, each element (i,j) in GLCM specifies the number of times that the pixel with value i 

occurred horizontally adjacent to a pixel with value j. Top right shows the different directions 

the GLCM can be calculated in and the distance that can be varied from the pixel of interest. 

 

 As the co-occurrence matrix looks at the grey level distribution of pixel pairs it is sometimes 

referred to as the second-order histogram. Calculations that can be derived from the co-

occurrence method include over 14 texture parameters such as contrast, entropy and angular 

second moment. These are discussed further in section 2.6.3 with example uses in studies by 

Haralick [53] and Conners [55]. 

2.6.1.5 Auto-regressive model 

 

The auto-regressive model finds relationships between groups of neighbouring pixels and uses 

these as a way of describing shapes within the image. The parameters from the auto- 

regressive technique are the set of weights used to establish the relations between groups of 

neighbouring pixels, the relations are said to be unique for any given type of object or shape in 

an image therefore this can aid in characterising the object [51]. Figure 2.32 illustrates an 
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example of a pixel neighbourhood that can be used to compute parameters of the auto 

regressive model (example parameters include  curvature and radius), in this example the 

white pixels (neighbourhood) are shown that could be used to characterise the centre black 

pixel using this model. The figure shown would suggest that every pixel in the images grey level 

value would be characterised according to its neighbouring pixel values as per the pattern 

shown. 

 

Figure 2.32 [51]: pixel neighbourhood example that could be used to compute parameters of 

the auto-regressive model. 

2.6.1.6  Wavelet transforms 

 

Wavelets are best explained by first looking at fast and slow variations of grey level values and 

their spatial frequencies. Given a 2-D image if its grey level value varies fast it is said to have 

many variations within a small piece of the image, it is said this image has a high spatial 

frequency in this part of the image. Similarly if the grey level value varies slowly, to the point 

where it is almost the same throughout the region of the image then it is said the region has a 

low spatial frequency. The scale of the image region is what the concept of fast or slow grey 

level value variations depends upon [51]. This can be further elaborated if looking at certain 

satellite images and comparing with close up images of scenery, for example a very large scale 

image taken by satellite of a terrain or forest like scenery would appear almost like a constant 

green stain, if this same image was taken by a low flying aircraft it would be much smaller scale 

and the image would show more variations and details. Thus the satellite image would have 

lower frequency content and the one taken from the low altitude aircraft of the same forest 
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land would have higher frequency content. In addition it is also necessary to take into account 

the direction of the variations in 2-D. Wavelets themselves then can be described as a 

technique that involves the analysis of the frequency content of an image for different scales 

of that image [51]. The analysis will yield a set of wavelet coefficients which correspond to 

different scales and different frequency directions. A set of numbers is associated with each 

pixel when computing the wavelet transform of an image, these are known as the wavelet 

coefficients and characterise the frequency content of the image at that point over a set of 

scales. It is from these coefficients that a set of texture parameters can then be computed. 

Figure 2.33 shows an example of a wavelet transform of the original image in figure 2.29, 

where the top left shows a small-scale low frequency version of the original image and all 

other parts of the image show versions of the original image in high frequency and on different 

scales. 

 

Figure 2.33 [51]: wavelet transform of the image in figure 2.29. Top left is low frequency, small 

scale version of the original image whereas all other parts of the image are showing high 

frequency versions of the original image on different scales. 

The statistical approaches to texture analysis described (histogram, absolute gradient, run-

length matrix and co-occurrence matrix) do not explicitly attempt to understand the 
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hierarchical structure of the texture. Second order statistical methods that look at statistics 

given by pairs of pixels have shown to give higher discrimination rates than that of transform 

based methods such as wavelets [52]. Model based approaches to texture analysis such as the 

auto regressive model described earlier tend to be computationally complex and lack 

orientation selectivity and are considered not suitable for describing local image structures 

[52]. Models based on transform methods such as Fourier, Gabor and wavelet transforms 

(discussed earlier)  look at coordinates in space of an image and how this coordinate system 

can be interpreted with its relations to the characteristics of a texture (such as frequency or 

size). This is an area where co-occurrence or run length features may lack the sensitivity to 

identify large scale or more coarse changes in spatial frequency [56]. In practice Fourier 

transforms perform poorly due to their lack of spatial localisation, Gabor filters in contrast 

have better spatial localisation but in practice are not very useful due to lack of single filter 

resolution at which one can localise a spatial structure in natural textures [52]. Wavelet 

transforms offer several advantages over Gabor transforms in that varying the spatial 

resolution results in textures being able to be represented at the most suitable scale. Wavelets 

are also useful due to having a wide range of choices so that a specific application can choose 

wavelets that are best suited for texture analysis. Wavelet transforms are therefore a good 

choice for texture segmentation, a disadvantage of wavelet transforms is that they are not 

translation invariant [52]. More recently in 2010 Kassner and Thornhill  said that run length 

features performed comparably well with those derived from GLCM and were considered to 

be superior to wavelet features [56]. Wavelet transforms are computationally complex and 

therefore implementation in a clinical setting is considered a substantial disincentive. In 

conclusion then texture analysis has potential to be a valuable and versatile tool especially in 

MR imaging but can contain many pitfalls such as statistical over fitting. Statistical or spectral 

textural features have outperformed visual assessment in discerning subtle anatomical 

changes in the medical field, and the robustness of texture analysis makes it particularly 

attractive for monitoring disease progression or treatment response with time [56].  
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2.6.2 Shape Analysis techniques 

 

Visually shape is an important feature and one of the basic features used to describe content 

of an image. Representing shapes and describing them can be a difficult task, one dimension of 

image informarion is lost when a 3-D real world object is projected onto a 2-D image plane.  A 

partially represented objects shape is seen as a result as well as seeing the corruption in terms 

of noise, defects, distortion and occlusion. Also as with texture analysis general points to 

consider include computational complexity of any calculation. Shape representation and 

descriptors are generally of two classifications: contour based methods (features extracted 

from the contour) and region based methods (features extracted from the whole region). 

These two are further divided into structural approaches (shape represented as a whole) and 

global approaches (shape represented by segments/sections (primitives)), these approaches 

are further split into space domain (features derived from spatial domain) and transform 

domain (features derived from transformed domain) [57]. Figure 2.34 illustrates this hierarchy. 

 

Figure 2.34 [57]: classification of shape representation and description techniques 

Humans are thought to discriminate shapes mainly by their contour features and for this 

reason in literature this approach seems to be more popular than region based approaches. In 

addition shape contour is the only interest in many cases and shape interior content may not 
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normally be important [57].  Contour based methods have several limitations, firstly as they 

only use a small part of shape information (contour information) the shape descriptors are 

generally sensitive to noise and variations, sometimes the shape contour is simply not 

available and finally shape contour information sometimes isn’t enough and the shape content 

is more important. Region based methods are used to overcome these limitations. Region 

based methods are said to be more robust as information is used from all of the shape. 

Although region based look at the whole shape information they are not strictly speaking any 

more complex than contour based as some of the region based methods are simple to 

implement [57]. 

Structural approaches are complex to implement in comparison to global approaches as there 

are lots of complex calculations that aid the matching of shapes and thresholding in order to 

determine similarities between primitives of two shapes in the matching process as well as 

majority of structural approaches using angle as a feature which adds another parameter into 

the system to accommodate the rotation invariant. These parameters in turn need to be finely 

tuned for different applications [57]. In favour of structural approaches is that they do allow 

partial matching which is useful when a large part of the shape is missing (boundary of shape is 

not closed) or occluded.  

Methods working in the spatial domain suffer from two major drawbacks of having high 

dimension and noise sensitivity. The problems are solvable via histogram, moments, scale 

space and spectral transforms with spectral transforms among the four solutions being the 

best solution especially Fourier transform [57]. Using histogram and scale space will increase 

robustness to noise and compactness but matching using histogram and scale space can be 

computationally expensive. Moments are also robust and compact, however moments of 

higher order are difficult to assign to any physical meaning. For generic shape representations 

the generic Fourier Descriptor (GFD) is a desirable solution due to its retrieval performance 

whether they are used for contour based shapes (without interior content) or region based 

shapes (with interior content) makes no difference. GFD cannot do partial matching although 
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does work well where part of a shape is missing or occluded.  

In conclusion then structural approaches are useful when partial matching of a shape is 

needed. For general purpose shape applications the complex moments and spectral 

transforms are the best choices such as GFD as they have good retrieval accuracy, compact 

features are good for general application with low computational complexity and robust 

retrieval performance [57].  

2.6.3 Shape and Texture in non-medical fields 

Gabor filters are linear functions used for edge detection, and are similar to those of the 

human visual system, in particular they have been found to be appropriate for texture 

representation and discrimination. A set of Gabor filters with different frequencies and 

orientations may be helpful for extracting useful features from an image [58]. Various studies 

exist within the MRI field [59] where the use of Gabor filters has been demonstrated. More 

commonly Gabor filters have been used outside the medical field in remote sensing and 

content-based image retrieval studies. Remote sensing is when an object is measured from far 

away in terms of its properties such as cloud and terrain classification, content based image 

retrieval uses image content as a search key for example in water, sky, forest etc all of which 

have texture as an important characteristic. Xiaojing Yuan et al [60] used evolution strategies 

to derive a feature identification system, the study states that the most critical component of 

the feature extraction system is the filter bank, the filter banks are chosen to extract features 

in the image by differentiating them from the background or other features.  

Richard Conners et al [55] segmented high resolution urban scenes using various texture 

parameters, the parameters were calculated using Haralick’s co-occurrence method [53], some 

of the features proposed by Haralick were calculated along with additional features such as 

cluster shade and cluster prominence. The study concluded with an overall 90% correct 

classification confirming the ability of texture algorithms to characterise land use classes. 

Haralick’s study [53] originally performed texture analysis on photographic quality images 
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mainly aerial and satellite images, an important point to note from the study is that Haralick 

outlines that although features extracted contain textural characteristics in an image, it is 

difficult to identify which of the textural characteristics are specifically represented by these 

features. Haralick’s studies have been the most influential in terms of the co-occurrence matrix 

and the texture features that can be calculated from the model.  The study discusses in detail 

the Grey Level Co-occurrence Matrix (GLCM) and attempts to define some of the features and 

what they mean [53]. For example f1 (angular second moment (ASM)) is defined as a measure 

of homogeneity of an image. Homogenous images (figure 2.35b) contain very few dominant 

grey-tone transitions, hence the P matrix for this image will have fewer entries of large 

magnitude, whereas a more inhomogeneous image (fig 2.35a) will have a large number of 

small entries within the P matrix and hence its ASM feature (calculated by the sum of squares 

of the entries) will be smaller. Figure 2.35 shows the digital printout of two 64 x 64 image 

blocks taken from a satellite picture over the Californian coastline. Figure 2.35a shows 

grassland and 24b represents a sample of water bodies in the area, the corresponding values 

of features f1, f2 and f3 obtained from GLCM matrices for distance d=1 are shown below figure 

2.35. 

The overall results of the Haralick [53] study indicated that an identification accuracy of 89% 

was achieved when textural features were computed with the sandstone image set and 83% 

accuracy for satellite imagery of land use images. The study outlines possible pitfalls, it states 

that in the same way two people examining photographs of the same texture may actually be 

seeing two different but related kinds of tones in the texture, one photograph may have been 

developed so its tones are light and thin whereas the other may have been developed with 

dark and heavy tones. The majority of people would make the observation that both images 

have the same texture. For a machine to find that the textures are the same the images need 

to be probability quantised. Haralick is possibly trying to point out the importance of 

normalising the images and applying the correct number of grey levels as well as applying 

techniques such as histogram equalisation in order to achieve invariance under monotonic 
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grey-tone transformations. More specifically the texture features which contain this invariance 

property are angular second moment, entropy, sum entropy, difference entropy, information 

measure of correlation and maximal correlation coefficient. The study also recognised the 

need for further work in order to establish the size of the sub-image region and distance that 

would be optimum when computing the grey level matrices. 

 

Figure 2.35 [53]: textural features for two different land-use categories 

2.6.4 Texture in MRI 

 

R.A Lerski et al performed texture analysis in an attempt to investigate its use in tissue 

characterisation [61], the results of this study suggests that statistical image texture analysis of 

MR images of the human brain is clinically important when aiming to discriminate between 

brain tumour and oedema, the study acknowledged that further verification would be needed 

by carrying out a further clinical study. 

A study by L Kjaer et al [62] looked at texture analysis in tissue characterisation of normal brain 

and intracranial tumours, the study found that much texture information was present in MR 

images that was useful for tissue characterisation of the normal brain, in addition the study 
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found that texture information showed promising potential in the differentiation of 

intracranial tumours. 

Kovalev et al [43] suggested a new method for 3-D texture analysis of MRI brain datasets. The 

methods used for the study were based on extended, multi-sort co-occurrence matrices which 

use the combination of intensity, gradient and anisotropy image features in a systematic and 

consistent way. Reduced versions of the general 6-D co-occurrence matrices can be employed 

for texture analysis depending on the problem in question. The co-occurrence descriptors used 

are natively 3D, reflection and translation invariant and can also be rotation-insensitive [43]. 

Comparisons of brain regions with different sizes and inter-subject analysis are provided by the 

normalisation of the co-occurrence descriptors. The comparative section of the study revealed 

the following: 

 the most sensitive texture descriptors are general 6-D matrices 

 changes that appear to be subtle in appearance do not seem to show any changes in 

textural features 

The study demonstrated that the extended co-occurrence descriptors are an efficient tool 

when used in various MRI brain image analysis tasks such as for classification of brain datasets 

and segmentation of diffuse brain lesions. Haralicks co-occurrence matrix was further used in a 

glioma study [44] with 3D as opposed to a 2D co-occurrence matrix. The results of the study 

demonstrated that various tumour parts that are usually difficult to distinguish were able to be 

enhanced using 3D-co-occurrence texture analysis without the need of contrast or additional 

acquisition sequences [44]. The study found that 3D co-occurrence either validated the 2D co-

occurrence results but more importantly in some cases an improvement in tumour 

characterisation was seen with 3D co-occurrence. 3D co-occurrence gives better interclass 

separation values than the 2D co-occurrence method, which in turn means identifying suspect 

tumour areas that could otherwise appear normal. 
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Recent research has focused on other organs such as the breast, a 79 patient study by Gibbs et 

al [48] demonstrated significant differences in textural features between benign and malignant 

breast tumours. The study showed variance, entropy and sum entropy as important factors in 

lesion discrimination when combined with a logistic regression model, the findings were 

consistent with the perception that benign lesions have a more homogenous appearance.  

A study of various features of contrast enhanced MR images of the breast by Sinha S et al [50] 

included extracting 8 of the Haralick [53] features, for 23 benign and 20 malignant breast 

lesions. This study showed significant differences in only three of the eight texture features 

calculated. An attempt was made to find the best combination of features yielding the highest 

classification accuracy. The specificity and sensitivity of combined texture features were 70% 

and 75% respectively.  

In an extension to the study by Gibbs et al [48] a further study was carried out by Chen et al 

[47] but focussing on 3D GLCM as opposed to a 2D version, the study presented a volumetric 

texture analysis approach for computerised analysis of breast lesions on DCE-MRI. The study 

showed that texture features calculated based on 3D analysis yielded significantly better 

classification results than those based on 2D analysis [47]. Although this study generated 3D 

co-occurrence matrices and yielded significant differences from using 2-D the MRI images 

themselves were not true 3-D. In order to obtain 3-D MRI images they would need to be 

isotropic so in a sense the images obtained where similar to that of Gibbs et al, Chen et al used 

multiple slices with ROIs and used 3D interpolation  to yield isotropic voxels. 

A more recent study by Neha Bhooshan et al, 2010 [46] used texture analysis along with other 

computerised methods such as shape and kinetic features on DCE-MRI breast lesions in an 

attempt to make use of them as prognostic markers. The study found that lesion 

heterogeneity was a common indicator of malignancy, which in terms of texture can be 

described by using different mathematical algorithms namely the Haralick features [53] but 

extending his model to a 3-D volumetric grey-level co-occurrence matrix method. Unlike most 

MRI related studies that look at morphological features and for the purpose of the study are 
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only interested in quantifying the Haralick features, this study describes the 14 Haralick 

features with a brief definition of each as follows [46]: 

1. Contrast: measure of local image variation 

2. Correlation: measure of image linearity 

3. Energy: measure of image homogeneity 

4. Homogeneity: measure of local homogeneity  

5. Entropy: measure of randomness of grey levels 

6. Variance: measure of how spread out the grey level distribution is 

7. Sum average: measure of overall image brightness 

8. Sum variance: measure of how spread out the sum of the grey levels of voxel pairs is 

9. Sum entropy: measure of randomness of the sum of the grey of neighbouring pixels 

10. Difference in variance: measure of variation in the difference in grey levels between 

voxel pairs 

11. Difference in entropy: measure of randomness of the difference in neighbouring grey 

levels 

12. Information measure of correlation 1: measure of nonlinear grey-level dependence 

13. Information measure of correlation 2: measure of nonlinear grey-level dependence 

14. Maximal correlation coefficient: measure of nonlinear grey-level dependence 

In addition according to the authors of a study by Conners et al [55] the texture parameters 

cluster shade and cluster prominence are believed to gauge the perceptual concepts of 

uniformity and proximity. 

Whilst previous research has generally concentrated on quantifying morphology in high 

resolution data there appears to be some value in assessing lesion texture in dynamic contrast-

enhanced (DCE) images [45], especially with regards to changes during the initial enhancement 

and subsequent washout phases.  
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Studies have also experimented using test objects for the study of texture measurement in MR 

imaging. Lerski [63] used reticulated foam as texture test objects, foams were inserted in test 

tubes embedded in agarose gel. A further study by the same group [64] involved multicentre 

analysis of the same test objects created in a similar manner of that of their earlier study [63]. 

In this study [64] the group scanned the same test objects across multiple centres and found 

some MRI equipment out performed others in terms of texture analysis. In addition the study 

concluded that texture measures were not easily comparable between centres, although the 

test object itself was deemed a successful standard object for the measurement of texture. 

Both studies [63, 64] considered first order parameters such as mean and skewness as well as 

texture parameters from the co-occurrence, gradient and run length methods. 

In a more recent study Waugh [65] used a custom-made phantom containing different grades 

of reticulated foam embedded in agarose gel. They looked at assessing the ability of texture 

analysis to distinguish between different texture objects, an objective that the work in this 

thesis decided to adopt. The Waugh study also looked at outcome of texture analysis when 

imaging sequences were changed and concludes that changes to sequence parameters were 

less critical for the outcome of texture analysis. The study however did reliably differentiate, 

using texture analysis, between four grades of foam. By simply visually inspecting the MR 

images of foam different porosities of foam were deemed indistinguishable. 

A study on texture analysis of the human liver by Daniel Jirak et al [66] recognised that many 

features can be applied for texture analysis, programs such as MaZda [67] used in this study 

produces 256 features, but not all carry information necessary for successful texture 

classification [66]. The subjects examined consisted of 43 patients with liver cirrhosis of various 

etiology. Within the study methods were used to distinguish the features that would be useful 

for the study, in conclusion the results showed successful use of texture analysis for the 

separation of cirrhotic patients and healthy volunteers, the study also found that a 

combination of features significantly improves texture analysis’ ability in confirming the 
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classification of the subjects. The authors hypothesise training a higher number of patient and 

control sets will improve the classification power of texture analysis which can be useful for 

detecting early and mild cirrhosis. 

Mathias et al applied texture analysis to the spinal cord in an attempt to quantify pathological 

changes that occur in multiple sclerosis (MS) [68]. The results using the co-occurrence method 

with MR images of the spinal cord for 10 control subjects (healthy volunteers) and 40 patients 

with clinically definite MS demonstrated that significant differences existed in texture between 

normal controls and MS patients. The texture differences seen indicated that texture features 

can detect changes in pathology early in the disease, before the occurrence of spinal cord 

atrophy. The results also revealed significant correlation between texture and disability. The 

results showed an increase in variance grey level, mean gradient, and mean entropy, as well as 

a decrease in mean angular second moment, in MS patients. This suggests that spinal cords in 

MS are less homogeneous and more complex than in normal healthy volunteers [68]. 

Marius Mayerhoefer et al performed texture analysis on knee joints in a multicenter study of 

63 patients [69]. Texture analysis was performed with the software package MaZda [67], the 

results showed that despite texture information differences among MR images from different 

centres, feature sets were able to be used from one centre for successful tissue discrimination 

in data from other centres, which is important within future clinical applications. It was found 

at one of its 3 centres the best discriminative texture analysis feature was based on wavelet 

transform,  in addition the feature selection method the study used identified a single feature 

that was present in the top 10 features of all 3 centres , which was derived from wavelet 

transform.  

 Yao J [70] looked at breast tumour analysis in DCE MRI using texture features and wavelet 

transform and concluded that both are useful tools in breast tissue classification using DCE-

MRI. 
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The spatial grey-level dependence matrix method, as proposed by Haralick [53], appears to be 

the commonest form of analysis for texture, but there is no direct evidence concerning the 

most appropriate pixel separation and number of grey levels to utilise in the required co-

occurrence matrix calculations. One of the aims of this PhD study is to systematically assess 

the efficacy of DCE-MRI based textural analysis in predicting response to chemotherapy in a 

cohort of breast cancer patients. 
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2.6.5 Shape in MRI 

Unlike in texture analysis where the most commonly used statistical technique due to its ability 

to study the 2nd order statistics of pixels at different spacings and angles is the Haralick model 

[53], the most appropriate shape/geometry features are not as clear cut and there exist 

various ways of calculating mathematically the geometry of a given shape or lesion, from 

traditional means like circularity to features such as moment analysis. Neha Bhooshan et al 

[46] used shape (geometric) analysis along with other computerised methods such as texture 

and kinetic features on DCE-MRI breast lesions in an attempt to make use of them as 

prognostic markers. The shape features included; size (lesion volume, in cubic millimetres), 

circularity (conformity of lesion to circular shape), irregularity (deviation of 3D lesion surface 

from sphere surface), margin sharpness (mean image gradient at lesion margin), variance in 

margin sharpness (variance in image gradient at lesion margin) and variance in radial gradient 

histogram (how well enhancing structures in a lesion extend in a radial pattern originating 

from centre of lesion). 

The study found that in terms of shape features ductal carcinoma in situ (DCIS) lesions are 

generally non-mass like with enhancement being in a linear fashion as opposed to invasive 

ductal carcinoma (IDC) and benign lesions being mass-like. The circularity feature proved to be 

an effective way of classifying IDC versus DCIS lesion. The study also recognised that DCIS can 

appear to be mass-like enhancement; thus in their analysis both morphological and kinetic 

features were used for classification purposes. 

Agner et al [45] has also looked at shape features and concluded that, due to the increases in 

specificity, sensitivity and AUC when combining texture features with shape/morphological 

features, the pairing of morphology and signal intensity kinetic features with lesion attributes 

such as texture kinetics could result in improved diagnostic of breast cancer on breast DCE-MRI 

[45].  According to BIRADS lexicon descriptors [23] for mass-like lesions there are two 

important lesion descriptors; lesion shape (for example round, oval, lobular, and irregular) and 
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lesion margin (for example smooth, irregular, and spiculated). This study [45] looks at six 

different quantitative descriptors modelled on the BI-RADS attributes- the area overlap ratio 

(measure of lesion roundness), normalised average radial distance ratio, standard deviation of 

normalised distance ratio, variance of distance ratio, compactness and smoothness. All of the 

descriptors with the exception of area overlap ratio being descriptors for quantifying 

irregularity of the lesion boundary. 

SInha et al [50] looked at a multi-feature study of Gd-enhanced MR images of the breast, 

utilising some shape features reporting some significant differences between benign and 

malignant lesions in the breast. The features used within this study included compactness, 

entropy, bending energy, and ratio of minimum to maximum radial length. 

2.6.6 Shape in non-MRI Breast 

Wei Yang et al [71] looked at shape symmetry of breast tumours on ultrasound images. Five 

shape reflective symmetry measures were investigated with the aim of distinguishing benign 

and malignant lesions. Results showed that reflective symmetry (RMSL) was significantly 

different between benign and malignant tumours, RMSL was computed directly from the 

binary mask image, this paper also refers to various other symmetry calculation methods such 

as that by Zabrodsky et al which defines symmetry distance (SD) as “a quantifier of the 

minimum ‘effort’ required to transform a given shape into a symmetric shape. This ‘effort’ is 

measured by the mean of the square distances each point is moved from its location in the 

original shape to its location in the symmetric shape” [72]. 

A study by Toshiro Yokoyama et al [73], looked at irregularity of cluster shape in cytological 

diagnosis of breast tumours, although the study is beyond the capabilities of this thesis as it 

involves the extraction of cell cluster specimens of breast tumours by fine-needle aspiration 

(FNA), nevertheless the shape analysis features maybe something worth considering by 

applying the shape analysis techniques to the ROI within MR images of breast lesions. The 

study looked at the following shape parameters (some of which have been applied in previous 
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MR studies) cluster area, circumference, maximal length, maximal breadth, cluster roundness, 

cluster size, edge and distribution image fractal dimensions for cluster analysis (which the 

study used to evaluate the irregularity in the cell cluster shape and determine the correlation 

to cluster size). 

The results of the study demonstrated differences in the irregularity of the cluster shape 

between fibroadenoma (FA) and invasive ductal carcinoma (IDC) with weak cellular atypia, the 

study also revealed important factors indicative of malignancy such as cell overlap, cell 

adhesion, and irregular nucleus shape [73]. 

Mohamed Eisa et al [74] studied the classification of breast masses by applying moments to 

mammograms combined with texture features to improve retrieval performance. The main 

aim of the work was to present a Content Based image retrieval (CBIR) approach, which is a 

method of managing databases and effectively retrieving images using descriptions of the 

image content, the study investigated and applied a content based image retrieval system to a 

domain of medical images. Images were characterised by a set of geometric moment 

invariants which are independent to translation, scale, rotation and contrast and some texture 

features, retrieval was then based on similar images existing within the database [74].  Table 

2.2 outlines the evaluation results of the study, showing that overall performance of all 

methods was very similar. 

 

Table 2.2 [74]: evaluation results, the overall performance of all methods is very similar 

with the texture and moments algorithm performing best. 

The geometric moments features extracted in the study [74] were central moments, mass and 

area, centre of mass (the point where all the mass of the image could be concentrated without 

the changing of the image about any axis), orientations, projections and moment invariants. 
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In addition mammogram texture features were extracted from the masses, shape and texture 

features being the basis of mass detection [74], these were mass area (concerned with the 

pixels inside the region of mass), mass perimeter length (the total length of the mass edge), 

compactness (a measure of contour complexity versus enclosed area, high compactness values 

represent a mass with a rough contour, lower values represent mass with a smooth contour), 

normalised radial length (the normalised sum of the Euclidean distances from the mass centre 

to each of the boundary coordinates), minimum and maximum axis (minimum axis of a mass is 

a measure of the smallest distance connecting one point on a border to another through the 

centre of mass, the maximum axis of a mass is a measure of the largest distance connecting 

one point on a border to another through the centre of mass), average boundary roughness, 

mean and standard deviation of the normalised radial length, eccentricity (the length of a ROI, 

if the value is close to 1 the ROI is almost circular, values close to zero represent more 

stretched ROIs), roughness, average mass boundary. 

2.7 Image Analysis Applications 

  

This section aims to outline some of the various image analysis applications available that 

allow users to perform morphology, including texture and shape analysis. There are various 

systems that are available such as MaZda and Fiji [67, 75] and studies in the past have made 

use of these [66, 69]. In other studies authors have chosen to program their own applications 

using various programming environments [48]. 

Whichever route is taken all image processing applications that aim to provide texture 

information be it on medical images or satellite and aerial images of sceneries and objects, the 

parameters used for analysis tend to be the same. Most studies looking at texture analysis for 

example utilise some of the 14 texture parameters originating from Haralicks original study 

from 1973 [53], for shape analysis there are various descriptors some more common than 

others. Although the various systems share some of the same analysis output, often the 

method of deriving the texture properties can differ, i.e. some systems may use different 
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algorithms or image transformation techniques therefore the end results can differ from 

system to system which can be vital especially when looking for subtle changes in texture. This 

is the reason why some researchers prefer to write their own applications from scratch so they 

can apply formulas and image formatting/enhancement techniques such as histogram 

equalisation in different ways or using alternative methods which may suit their research area 

more appropriately rather than using an off the shelf software package such as MaZda [67]. 

Another option available to authors is making use of open source applications such as Fiji that 

allow a user full access to code giving the option to amend the underlying code/formulas used 

to derive calculations. The options available as discussed are packages such as MaZda [67] and 

Fiji [75] but Fiji’s not really well known for texture analysis and none of the studies discussed in 

this chapter mention any use of it. MaZda is more widely adopted but does not compute all 

Haralick’s parameters and although it has some options for changing the number of grey levels 

it’s not unlimited as can be done if the decision is made to write your own texture analysis 

code in environments such as Matlab, which have built in functions and toolboxes to aid 

texture analysis [76]. The plug-in modules available in Fiji do not allow you to have accurate 

ROI representation as, although you use a pencil like pointer to draw the ROI, the Fiji 

application only interprets this as a rectangle [77]. Matlab is a matrices based programming 

language and computationally its performance is incomparable when dealing with complex 

image datasets such as Dicom. Fiji is a java based environment, and is also known for high 

performance applications especially in the mobile games industry, the large open community 

in Fiji means lots of free code has already been written for anyone to use and customise as has 

indeed been done for the purpose of texture analysis. Trying to understand and modify 

complex code can be a daunting task even for the most experienced software developer. From 

a research point of view you would want to apply the algorithms you believe are known best 

methods, sometimes the only option would be writing your own code from scratch. Aside from 

the mathematical differences in algorithms there are other differences for example Fiji will 

only allow 8 bit images, while in Matlab you can apply texture analysis to 16 bit images. Mazda 
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only runs on windows, while Matlab code can be recompiled into Mac, Windows or Unix. The 

argument for advantages and disadvantages can go on, ultimately it can boil down to simple 

personal preference to determine which method is used. 
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3 Software 

3.1 Introduction 

Before embarking on the development of the software required for this thesis it was decided 

that proper planning and documentation according to normal software development practices 

should be adhered to in an attempt to make the final software robust and easy to modify in 

the future. With the author being from a Computer Science background it was felt the most 

appropriate way to relay this information to the reader was by adhering to the software 

lifecycle as followed by industry standards. This document therefore contains information and 

planning that was required before the development of the final product including a detailed 

user manual which was written once the package was complete. The chapter aims to provide 

information on the software lifecycle stages applied in the development of the DicomReader 

software, in short this document will summarise the different stages of the software 

development from requirements through to testing. 

3.1.1 Requirements Analysis 

 

Development of a software package capable of analysing both single slice 2D data and multiple 

slice 2D data. Textural analysis will be implemented using Haralick parameters calculated from 

co-occurrence matrices. The software will be capable of varying the degree of grey level 

decimation. The software will also be required to have the ability to run wavelet transform 

analysis as well as shape analysis. Conventional first order histogram features (e.g. mean, and 

standard deviation) will also be calculated for comparison. 

The application will be displayed to the user in the form of a simple to use Graphical User 

Interface (GUI) and will read in images in DICOM format. The application will read in large 

datasets often containing over 1800 images therefore the design should allow the application 

to process large amounts of data efficiently. The application will also read in binary files 

containing regions of interest (ROIs) pre drawn and calculate texture analysis on the 

corresponding image slice.  
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In addition the application will allow the user to step through each slice and phase and adjust 

contrast and brightness levels. As well as loading pre-drawn files containing ROIs the user will 

also be able to draw, using a pen like tool, new ROIs and calculate texture properties of the 

region drawn, all of which will be output to a spreadsheet. 

The application will allow the user to employ histogram equalisation on the pre-drawn and 

hand drawn ROIs. There will then be an option to choose whether the texture analysis is to be 

performed on the histogram equalised version of the ROI or the non histogram equalised ROI. 

Texture mapping will also be available in the application. This will take each pixel at a time and 

texture analysis of the 16 parameters will be performed in each pixel value of any given image. 

As with the texture analysis the option will be there to histogram equalise (the full image) 

before performing texture analysis, and the number of grey levels will also be adjustable. In 

addition each pixel’s surrounding pixel area matrix will be user defined. The results will be 

saved in an image file showing 1 map per texture parameter (  ,     ...    ). In addition the 

histogram of a texture mapped image can be viewed as this can aid in the threshold values 

used when using a hotspot search facility which will highlight suspected lesions or areas of 

interest.  

Shape analysis facility of the software will allow the user to analyse a set of shape parameters 

on a given ROI, most of the calculations will not require pixel values to be taken into account 

as the shape of the region is the only input required but some of the calculations may require 

image intensity values as part of the shape calculation formulas. 

Wavelet transform analysis function will be contained in the software, the wavelet transform 

will allow the frequency of the signals and the time associated with those frequencies in an 

image to be analysed, the software will output energy levels that will be calculated from the 

wavelet coefficients using the Haar method of wavelets calculation. As the Matlab 

environment along with the wavelets toolbox already contains a package for calculating 
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wavelet coefficients for Haar the only remaining section that will need to be coded is 

extracting energy levels from the generated wavelet coefficients. 

As there will be a large number of mathematical calculations the application will be 

continuously unit tested against the design specification to verify the implementation of the 

formulae. 

3.1.2 Design Specification 

This section outlines the class and use case diagrams for the proposed software system. 



95 
 

3.1.2.1 Class Diagram 
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3.1.2.2 Use case Diagram 
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3.2 Texture Analysis 

 

The application will be coded using Matlab as the language of choice as Matlab is a matrices 

based language and is already widely used in the medical research industry for analysing image 

data. 

3.2.1 Load Dicom Image dataset 

 

The application shall allow the user via a GUI to select a dataset containing a large number of 

images in DICOM format; these images are then displayed to the user. By pointing to the 

directory containing all the images the application will load only one image at a time as loading 

the whole dataset which can contain over 1800 images would be a real issue for performance.  

Sample code: k=1; 

for j=1:k 

        str_j=num2str(j); 
        file=strcat(str_j); 
        file_path=strcat(dname,'\IM',file); 
         info = dicominfo(file_path); 
         I = dicomread(info);         
end  
imshow(I,'DisplayRange',[]); 

 

3.2.2 Slice slider control 

 

A slider control will be available once an image has been displayed which will allow the user to 

scroll through the various slices in the loaded dataset.  When the slice slider is adjusted the 

corresponding slice is displayed to the user and the phase slider synchronises accordingly. To 

the top of the slider numerical values are to be displayed indicating the current slice number. 

To be implemented using Matlab’s slider GUI. 

3.2.3 Phase slider control 

 

A phase slider control will be available once an image is displayed. The user is able to scroll 

through the different phases in the loaded dataset. When the phase slider is adjusted the 

corresponding slice is displayed to the user and the slice slider synchronises accordingly. To the 
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top of the slider numerical values are to be displayed indicating the current phase number. To 

be implemented using Matlab’s slider GUI. 

3.2.4 Contrast slider control 

 

A contrast slider control will be added to allow the user to adjust the contrast of the image. It 

is important to note that any analysis done on the image will work on the original image and 

not the one that is displayed to the user with the adjusted contrast via the slider, therefore it is 

vital that the contrast of the original image is maintained in memory. 

for i=contrast_setting:contrast_setting       

      contrast_setting = contrast_setting + 0.01; 
      if contrast_setting > 1 
         contrast_setting = 1.0; 
      end       
       J = imadjust(I,stretchlim(I),[0 contrast_setting]); 

       
  end 
imshow(J); %show image J as we need to retain image I in its original 

form for purpose of analysing ROI etc 

 

3.2.5 Brightness slider control 

 

A brightness slider control will be added to allow the user to adjust the brightness of the 

image. It is important to note that any analysis done on the image will work on the original 

image and not the one that is displayed to the user with the adjusted brightness via the slider, 

therefore it is vital that the brightness of the original image is maintained in memory. 

  if brightness_setting > 1.0 
         brightness_setting = 1.0; 
      end 
      if brightness_setting < -1.0 
         brightness_setting = -1.0; 
      end 
      %maintain contrast -  
  J = imadjust(I,stretchlim(I),[0 contrast_setting]); 

imshow(J); 
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3.2.6 Dicom Information 

 

When selected the Dicom header information/data about the current file shall be displayed to 

the user. 

3.2.7 Draw Region of Interest (ROI) 

 

A freehand draw tool will be available to draw onto any loaded image, this will be similar to 

the freehand pen like function in such applications as paint. The x and y points will need to be 

stored in memory so that ROI based calculations can be performed. 

3.2.8 Save ROI 

 

A save function will allow the user to save the current ROI drawn on screen as a Matlab file. 

3.2.9 Load ROI 

 

A load function will allow the user to load a previously saved ROI on any given image. 

3.2.10 Calculate ROI properties 

 

Once the ROI is drawn the program will output the mean and standard deviation values to the 

user and these values will be stored in Matlab’s memory to be used for further calculations 

[J,temp] = roifill(I, xpts, ypts); 
 pts = sum(temp(:)); %no of entries ie 1's in ROI 
roi = uint16(temp).*uint16(I); %creates roi as part of I, roi is all 

entries ????  
%roiImage is the image showing null values as NaNs 
roiImage = double(roi).*(0./double(temp) + 1); %divide using 0 get the 

NaN(null)values and add 1 shows non null from null values 
sumRoiImage = sum(roiImage(~isnan(roiImage))); %sum of non null values 
npts = sum(temp(:)); %number of(qty)of values 
mean = sumRoiImage/npts; %calculates mean 

  
% calc standard deviation  
a = (roiImage - mean); 

  
a2 = a.*a; 
b = sum(a2(~isnan(a2)));% sum all values that are not nan 
c = b/(pts-1); 
sd = sqrt(c); 
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3.2.11 Calculate TA 

 

When selected this will calculate 16 texture analysis parameters on the current ROI using the 

formulas below (detailed formulas can be found in chapter 5). 
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(f8 Sum Entropy) 
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(f11 Difference Entropy) 
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3.2.12 Load ROI data from binary file and calculate Texture Analysis(TA) 

 

Given a dataset of Dicom images a file in binary format containing many pre drawn ROI 

coordinates and Image slice number that each set of coordinates corresponds to. This file will 

be read into the application and loaded onto the corresponding image/slice, the ROI in turn 

will be displayed to the user when the slice slider is moved to the appropriate slice. 

dimWidth = double(info.Width); 
dimHeight = double(info.Height); 
dim = [dimWidth,dimHeight];  
DIM = dim; 
if (greyLevelCalc == true) 
     fid = fopen(ROIFILEPATH, 'r'); 

  
else  
[filename,pathname] = uigetfile('E:\Patient Data\*.rgn','Select ROI 

File'); 
handles.Numlevels = dicomReaderNumlevels; 
file1 = [pathname,filename]; 
ROIFILEPATH = file1; 
fid = fopen(file1, 'r'); 
end 
num_rois = fread(fid, 1, 'int16', 'b'); 

  
roi_slice = zeros(num_rois,1); 
roi_pts = zeros(num_rois,1); 
global num_rois I  

  
glcmX = zeros(Numlevels, Numlevels, 4); 
progress=0; 
p=progressbar(); 
roiGreyLevels = 0; 

         
for i = 1:num_rois 

  
progress = progress + 1 / num_rois; 

  
  roi_slice(i) = fread(fid, 1, 'int16', 'b');   
    roi_pts(i) = fread(fid, 1, 'int16', 'b'); 
    data_pts = fread(fid, 2*roi_pts(i), 'float32', 'b'); 
    sliceNumber = roi_slice(i) +1;   

  

     
    xpts = data_pts(1:2:end); 
   ypts= dim(2) - data_pts(2:2:end); 
    str_slice=num2str(int32(sliceNumber)); 
        file1=strcat(str_slice); 
    file_path1=strcat(dname,'\IM',file1); %C:\.... 
         info = dicominfo(file_path1); 
         I = dicomread(info);  
        imshow(I,'DisplayRange',[]); 
   line(xpts,ypts,'tag','tmpregsel'); 
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3.2.13 Adjust Number of Grey levels 

 

A pop up box will appear allowing the user to adjust the number of grey levels the concurrence 

matrix should be working to, this will have a default value with the ability for the user to 

change to the desired integer value. 

3.2.14 Calculate Texture Properties 

 

Once the ROI binary file is loaded the application will automatically calculate all the texture 

properties as in ‘Calculate ROI properties’ function, in this case texture analysis will be 

calculated on summed co-occurrence matrices of all ROIs. 

3.2.15 Export TA properties to Excel 

 

A pop up box will prompt the user to export the calculated TA properties to an excel 

spreadsheet and save the file to a location and name of choice. The spreadsheet will also 

contain additional information such as date/time of creation, mean and standard deviation of 

last image in dataset with a loaded ROI, as well as slice/phase numbers of the final image. In 

addition the same function will be available to the user to export to excel in the event that the 

user originally decided not to export and decides to export at a later time or decides to export 

TA properties to excel on a self drawn ROI. 

[filename,pathname] = uiputfile('E:\Patient Data\TA\*.*','Save As:'); 
file = [pathname,filename]; 
  xlswrite(file, d, 'Texture Properties of ROI', 'A1') 

 

3.2.16 Progress bar 

 

Progress bar in command window to show remaining execution time and elapsed time. 

3.2.17 Maximise Window 

 

User can maximise the image by clicking the maximise windows icon in top right corner of 

display window, this will magnify the image and will aid the user to draw a ROI more 

accurately. 
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3.2.18 Exception handling 

 

As the main user of the application will be the programmer himself the need for exception 

handling and error checking on the scale that would be required in a commercial project is not 

necessary. Therefore limited exception handling will be required such as warning the user 

when a correct file type is not selected. In addition all function menus that are not available to 

the user shall be greyed out to avoid the user clicking on these and the system subsequently 

throwing error. 

3.2.19 Chessboard 

 

A chessboard image will be loaded on activation of this function which will mainly be used to 

aid the user in testing purposes as the output values are easier to verify for a black and white 

image. This function shall remain in the application as it will aid in testing future 

enhancements to the software application. 

3.2.20 Histogram Equalisation of ROI 

 

The option will appear in the popup menu when a user selects to perform texture analysis 

either on pre-drawn ROIs or on an individual ROI. The user can select the ROI to be histogram 

equalised before the Haralick texture parameters are calculated. The inbuilt function of Matlab 

cannot be used as this will apply histogram equalisation to the whole image, therefore the 

following 2 functions will need to be created to do this appropriately: 

function createHistogram 
 

hgramSum = sum(hgramTotal); 
% NORMALISES HISTOGRAM (EFFECTIVELY TURNS HISTOGRAM INTO PROBABILITY) 
hgramNormalise = hgramTotal/hgramSum; 
% CALCULATES CUMULATIVE NORMALISED HISTOGRAM (LAST VALUE SHOULD ALWAYS 

BE 
% 1) 
hgramCum = cumsum(hgramNormalise); 

  
% CREATES A LOOKUP TABLE  
look_up = zeros(1,overallRoiMax+1); 

  

  
% THE CLEVER BIT! 
gry_lvl = 0; 
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% GOES THROUGH EACH IMAGE INTENSITY (O TO MAX – OFFSET BY 1) AND 

CALUCLATES WHAT FINAL GREY LEVEL FOR THIS 
% INTENSITY SHOULD BE  
for i=1:overallRoiMax+1 
% IF CUMULATIVE HISTOGRAM IS LESS THAN EG (0+1)/16 THEN ALL VALUES OF 

I ARE GOING TO BE ASSIGNED GRY LEVEL O 
    elseif hgramCum(i) <= (gry_lvl+1)/Numlevels 
        look_up(i) = gry_lvl; 
% WHEN CUMULATIVE HISTOGRAM IS LARGER THAN 1/16 THEN INCREASE FINAL 

GREY LEVEL BY 1 AND ASSIGN FOR I 
    else 
        gry_lvl = gry_lvl+1; 
        look_up(i) = gry_lvl; 
    end 
end 

 

function generateHist() 
hgram = zeros(1,overallRoiMax+1); %max value for all roi's 

  
% CREATES HISTOGRAM OF ROI DATA  

  
h=1; 
 temp = double(temp); 
 for x=1:DIM(1) 
     for y=1:DIM(2) 

  
        if (temp(x, y) ~= 0) 
            hgram(roiImage(x,y)+1) = hgram(roiImage(x,y)+1)+1; 
            h = h+1; 
         end 
     end 
 end 
hgramTotal = hgram + hgramTotal; 

  
  createHistogram()% reuse the createHistogram function 
end   
function histEqual 

            
% AFTER LOOK UP FILE CREATED NOW JUST GO THROUGH ROI IMAGE AND ASSIGN 

APPROPRIATELY 

  
for x=1:DIM(1) 
    for y=1:DIM(2) 
        if (temp(x,y) ~= 0) 
            roiImage(x,y) = look_up(roiImage(x,y)+1)+1; 
        else roiImage(x,y) = NaN; 
        end 
    end 
end 

 

3.2.21 Exit 

 

When pressed the application will exit and clear all variables stored in memory. 
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3.3 Shape Analysis 

3.3.1 load RGN and perform shape analysis 

 

This feature will allow the user to perform shape analysis on the current set of images and the 

software will automatically pick the largest ROI in order to do the calculations. Results will be 

saved in a spreadsheet. In cases where the ROI appears multifocal on any slice the coding 

needs to take into account and eliminate any minor ROI clusters and only take the main region 

area ie the one with the most pixels. 

The following shape parameters need to be calculated when this function is run (more details 

on these parameters can be found in chapter 6) 

Mean Normalised Radial Length, StdevNRL, skewnessNRL, kurtosisNRL, Convexity and 

Circularity, also for Moments: μ02, μ11, μ20, μ30, μ03, μ21, μ12, μ00, μ01, μ10, Eigenvalue and 

Eccentricity. 

It is important that the correct ROI is mapped onto the corresponding slice as some of the 

above moments calculations also take into account the pixel intensity values and not just the 

shape of the ROI. 

3.4 Texture Mapping 

 

For this a function will be created that will loop through any given dicom image and perform 

the co-occurrence calculations on each pixel. The co-occurrence matrices are calculated using 

surrounding pixels and it will be up to the user as to how many surrounding pixels the 

calculations will allow, this will be customisable to the user via the same popup menu that 

allows input of number of grey levels and if the calculation is to be histogram equalised or not. 

The user can input any number (odd number) ie 3x3, 5x5 and so on. For example selecting 

matrix size 5 will create a 5x5 matrix with the pixel in question being the centre pixel, once this 

is calculated for each pixel in the image and for each of the 16 parameters the application will 
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output 16 image files one for each parameter. The outer most pixels will need to be padded 

according to the matrix size otherwise there will be null entries. 

%loop through the matrix selecting each pixel at a time 
    function pixelSelect(paddedI) 
        sizeRow = size(paddedI,1); 
        sizeColumn = size(paddedI,2); 
for i=mSizeValue+1:sizeRow -mSizeValue 
    progress = progress + 1 / sizeRow; 
    for j = mSizeValue+1:sizeColumn - mSizeValue 
       paddedI(i,j) ; 
       createArea(i,j)%run createArea function with i and j as input 
    end 

  

3.4.1 segment Image 

 

This function will be used to segment the image for example from nipple to chest wall prior to 

performing texture mapping, the user should be able to select the start and end points of 

where the image is to be segmented 

3.4.2 save segment points 

 

The segment points should be saved in a Matlab file. 

3.4.3 load segment points from file 

 

This function will allow the saved segment points to be loaded onto any given image 

3.4.4 save  segmented image 

 

The segmented image should be saved as a tiff file using this function 

3.4.5 erode and save texture map 

 

This function will allow erosion techniques to be applied to the segmented image in order to 

further eliminate chest wall border pixels 

3.4.6 view histogram for current image 

 

This function will display the histogram of the current image to the user. The user can then 

employ the Matlab built in tools to obtain pixel values from the histogram 
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3.4.7 scan Image for hotspots 

 

This function will allow the user to enter min and max (range) pixel values with a specified 

matrix size that will take the average of each pixel area (of matrix size) and check if it is within 

the range specified and if it is the display will highlight these areas on the current image.  

3.5 Wavelet Analysis 

 

This function will allow the user to perform wavelet analysis based on a previously saved ROI 

file. A file menu option will be available in the tools section which the user can select and thus 

open up the Wavelet Matlab toolbox. This function for calculating coefficient values uses a 

built in Matlab toolbox so no coding is needed for this part. In order to process the energy 

efficient values a coefficient sorter class will be required which will extract the wavelet energy 

values once the user has selected the relevant ROI and previously saved coefficient file. These 

values will then be saved into an excel spreadsheet. The coefficient sorter class will only need 

to deal with wavelet coefficient files generated using wavelet type Haar down to level 4 (see 

wavelet section, chapter 5.4) as for the purpose of this research this is the only setting that will 

be used. 

3.5.1 Wavelet toolbox 

 

User will have the ability to open the wavelet toolbox using the sub menu in the tools section 

of the dicomreader software main GUI. 

 3.5.2 Coefficient sorter 

 

This class will require a GUI menu in the main dicomreader interface and will run when the 

user selects ‘load coefficient file and calculate wavelet energy’ function from the tools menu 

under the wavelets sub menu. The user will be prompted to select a coefficient file (this will be 

generated using Matlabs wavelet toolbox) and the corresponding ROI file. The calculated 

values will be saved in an excel spreadsheet and the user will be prompted when file is saved 

and its location displayed in the Matlab command window. 
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In order to correctly read the coefficient files code similar to the following may be executed: 

% Import the file 
%newData1 = load('-mat', fileToRead1); 
newData1 = load(fileToRead1); 

  
% Create new variables in the base workspace from those fields. 
vars = fieldnames(newData1); 
for i = 1:length(vars) 
    assignin('base', vars{i}, newData1.(vars{i})); 
end 

  
% Extract coefficent and size data from current workspace 
coefs1D = evalin('base', 'coefs'); 
coef_size = evalin('base', 'sizes'); 
wave_type = evalin('base', 'wname'); 

  
% Number of levels calculated 
b = size(coef_size); 
num_levels = b(1) - 2; 

  
% Create dummy output array for numbering purposes 
v = genvarname(wave_type, who); 
T = evalc([v ' = num_levels']); 

  
% Turn coefficient file into appropriate 2D array 
for k=num_levels:-1:1 
    clear temp_array; 
    temp_array = zeros(coef_size(k+1,1),coef_size(k+1,2),3); 
    for w_dirn=1:3 
        for y=1:coef_size(k+1) 
            for x=1:coef_size(k+1) 
                temp_array(x,y,w_dirn) = 

coefs1D(w_dirn*coef_size(k+1,1)*coef_size(k+1,2) + x + (y-

1)*coef_size(k+1,1)); 
            end 
        end 
    end 
    v = genvarname(wave_type, who); 
    T = evalc([v ' = temp_array']); 
end 

 

As each image for each Haar level is smaller in size the calcROIMatrix() function will be utilised 

and code will be needed to shrink the ROI loaded to the correct scale for the appropriate Haar 

level. The following code is an example of how this may be done, for Haar level 1: 

%for haar 1 
for j = 1:3 % ie all 3 directions 
  I = (haar1(:,:,j));%put this in here so can use for ROI into 

calcROIMatrix 
 xpts = xptsHaar1;%change xpts and ypts values so can be used in 

calcROIMatrix to generate new ROI 
ypts = yptsHaar1; 
calcROIMatrix(); % run this before each Haar level to get the new roi 

(ie shrunk for each wavlelet haar level) 
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%this section of code is merely to visualise the changes not needed 

for actual calc but good for testing purposes 
 imshow(I,'DisplayRange',[])%display the current image, probably dont 

need to but goo dway to check if ROI is correct 
line(xpts,ypts,'tag','tmpregsel','Color',[1 0 0], 

'LineWidth',1.2);%line color red 

  
 %haar1_dir = (haar1(:,:,j)); %direction 1 - 3 
haar1_dir = roiImage; %name it haar1_dir as it helps rename further 

down this code?? 
 squared_haar1 = haar1_dir.*haar1_dir; %takes each pixel in matrix and 

multiplied by iteself ie squared saves doing all the code below 
%      sumhaar1 = (dir(i).*dir(i)) + sumhaar1; %sum of each pixel 

squared as per formula from mazda user manual for  wavelet energy 

 
 %energyWavelet = 

(sum(sum(squared_haar1)))/(size(haar1,1)*size(haar1,1)); %divide by 

total no. of pixels ie size of column * size of column 
pixels = ~isnan(haar1_dir); 
 pixelsSum = sum(pixels(:)); 

  
  squared_haar1(isnan(squared_haar1)) = 0; %replace all NaN in matrix 

values with a 0 
 energyWavelet = (sum(sum(squared_haar1)))/(pixelsSum); %divide by 

total no. of pixels   
 %this bit of code will create variable names according to direction 

ie take j as part of var name  
 varname = strcat('energyWaveletHaar1Dir' ,num2str(j)); 
 eval( [ sprintf(varname) '=energyWavelet'] ) 

  
end 

 

3.5.3 Normalise Image 

 

A function allowing the image to be normalised will be available in the form of normaliseImage 

class, this will be similar to the following: 

I = dicomread('C:\PhD Data\neoadjuvantData\PC_2min\E08429\IM28');% 

example image 
maxI = max(I(:)); 
I2 = double(I)./double(maxI).*255; 

3.6 Testing 

 

Testing as with any piece of software played a crucial part in the development of this software. 

Testing and retesting was done at every stage, largely due to the fact that complex formulas 

were being applied and matrix models being created right from the start which all had to be 

verified for correctness as any error would mean the next stage of calculation would be 

incorrect. 
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As a means of testing for correct mean and standard deviation values of a drawn ROI the 

chessboard example was used. An ROI was drawn on a chessboard and the expected output 

was tested against the actual, expected output which was calculated manually without the use 

of any software and this was used as ‘expected output’ once it was determined that it was 

mathematically correct. For the main application itself again a set of data was used that had 

already had its texture properties calculated manually. A unit test table below shows the 

testing procedure. 

Some of the tests were automated in the sense that certain matrices were coded to display in 

the command window of Matlab so that the output could be compared to the expected 

output. Once testing had passed these features where disabled. In actual fact all unit testing 

was done manually as this was seen as a sufficient method of testing for this project. The 

results of the final unit test can be seen below:- 
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Unit 
Test 
No. 

Test Description Procedure/Input Expected Output Actual Output Pass/Fail 

1 Test for 
correctness of 
mean and 
standard 
deviation 
values. 

1)Load software application 
2)from file menu navigate to the ‘load chessboard’ menu option 
3)from ‘Tools’ menu select ‘Draw ROI’ option 
4)using the mouse draw a ROI that covers approximately 2 full black 
squares, 2 white squares and part of(1 pixel) of each black and white 
square above and 1 pixel of each box to the right 
5)from the ‘Tools’ menu select the ‘calculate ROI properties’ option 

Mean value: 
128.117 
Standard Deviation Value: 
127.058 

Mean value: 
128.117 
Standard Deviation Value: 
127.058 
 
See screenshot 1a 

Pass 

2 Load image 
dataset 

1)From file menu select ‘load image dataset’ 
2)point to directory where dataset is saved 

Image 1 of whole series is loaded Image 1 of whole series is 
loaded 

Pass 

3 Load .rgn file  1)From file menu select ‘load image dataset’ and load set of images 
with rgn file E04506_roi.rgn 
2)from file menu select ‘load .RGN file and perform TA’ option 
3)point to corresponding RGN file ‘E04506_roi.rgn’ 
4)when prompted enter Numlevels as default of 16 in pop up box 
  

1)final ROI is shown on slice 72, 
phase 1 
2)results as per spreadsheet 1b 

1)final ROI is shown on slice 
72, phase 1 
2)results as per spreadsheet 
1b 

Pass 

4 Check for 
correctness of 
glcm and 
normalise 
matrices 

1)In debug mode put break points so that all outputs of each ROI 
GLCM  matrix is output, as well final GLCM values and matrix for 
each normalisation 
2)follow steps as per unit test 3) 

1)for purpose of this document 
only ROI number 1 is shown, see 
screen shots 1c), 1d) and 1e)  

Screenshots  1c), 1d) and 1e) Pass 

5 Validate final 
output 

1)follow steps as per unit test 3) 1)Values as per screenshot 1b) 1)values as per screenshot 
1b) 

Pass 

6 Save ROI as 
.met file 

1)from file menu select ‘save ROI as .mat file’ 
2)select directory and file name 

1).mat file saved 1).mat file saved Pass 

7 Load ROI from 
.mat file 

1)from file menu select ‘load ROI from .mat file’ 
2)select directory and file name 

1).mat file saved and ROI displayed 
on current image 

1).mat file saved and ROI 
displayed on current image 

Pass 

8 Slice slider 1)follow steps as per unit test 2) 
2)move the slice slider 

1)moves to previous/next image in 
dataset 

1)moves to previous/next 
image in dataset 

Pass 

9 Phase slider 1)follow steps as per unit test 2) 
2)move the phase  slider 

1)moves to previous/next phase in 
dataset 

1)moves to previous/next 
phase in dataset 

Pass 

10 Contrast slider 1)follow steps as per unit test 2) 
2)adjust contrast slider 

Contrast adjusts up/down brightness adjusts up/down Pass 

11 Brightness 
slider 

1)follow steps as per unit test 2) 
2)adjust brightness  slider 

Brightness adjusts up/down brightness adjusts up/down Pass 

12 System exit Go to File menu and select ‘exit’ Application closes Application closes Pass 

13 Dicom 
information 

Go to Info menu and select ‘Dicom Information’ option Dicom info displayed in command 
window 

Dicom info displayed in 
command window 

Pass 

14 Progress bar 1)follow steps as per unit test 3) Progress bar displayed in command 
to show time remaining for current 
execution 

Progress bar displayed in 
command to show time 
remaining for current 
execution 

Pass 

15 Greyed out 
menus 

1)load application All menus greyed out except ‘Load 
image dataset’ and ‘load 
chessboard’ 

All menus greyed out except 
‘Load image dataset’ and 
‘load chessboard’ 

Pass 
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16 Enable menus 1)draw ROI as per unit test 1) ‘Calc ROI properties’ menu now 
enable 

‘Calc ROI properties’ menu 
now enable 

Pass 

17 Texture analysis Using the DicomReader software GUI 1)Run texture analysis on the 
test data located in folder \TEST FILES\TextureAnalysis using 16 grey 
levels and histogram equalisation  
2) Run texture analysis on the test data located in folder \TEST 
FILES\TextureAnalysis using 16 grey levels and NON histogram 
equalisation  
3) open the file testTextureAnalysis.m in MATLAB and amend so it 
points to the appropriate files where the original files are pointing 
to TESTEDhisteq16g.xls and TESTEDnonHisteq16g and the files to be 
tested are the excel files just saved as output 

Both histogram equalised and non 
histogram equalised tests show 
‘pass’ markers in Matlab command 
window 

Both tests show ‘pass’ 
output 

Pass 

18 Shape analysis Run shape analysis on the square and circle ROIs by loading onto the 
images used in test files (see user manual if help needed on how to 
perform shape analysis) contained in the folder 
TA_Application\TEST FILES\shape  
Compare the output of all shape parameters with the output files 
contained in TA_Application\TEST FILES\shape folder 
Visually examine to see if parameters in test file match the newly 
generated files 

Shape analysis output files match 
the output files in 
TA_Application\TEST FILES\shape 
folder for square and circle ROIs 

Files match Pass 

19 Texture 
mapping 

Using the DicomReader software GUI Run texture mapping on the 
brick image from brodatz and test for each direction coocurrence 
matrix using 16 grey levels and histogram equalisation. Then open 
the testTextureMapping.m in MATLAB and point the files for testing 
ie A = mapped files just created and B= test files located in 
TA_Application\TEST FILES\TextureMapping\histeq16GreyTESTED 

Output = 1 showing test has passed 
and both files match  

Output = 1  Pass 
 

20 Load single 
image (non 
dicom format) 
example .tiff 
files 

1)Using the DicomReader GUI software: 
2)Go to File menu > load single image 
3)Point to any non dicom image for example an image with the .tiff 
format 

Image is displayed on the screen Image is displayed on the 
screen 

Pass 

21 Save current 
image as .tiff 

1)load any slice from any of the dicom series 
1)Using the DicomReader GUI software: 
2)Go to File menu > save current image as .tiff 
3)select a location and give the file a name (different to the original) 
4)using test 20 reload the saved file 

Same image is displayed on screen 
and is saved now as .tiff file 

Same image is displayed on 
screen and is saved now as 
.tiff file 

Pass 

22 Segment image Follow user manual on how to segment breast image using the 
‘segment image’ sub menu in the tools menu 

Image is blanked before the 
selected area (nipple area) and past 
the chest wall 

New image now displays 
segmented (ie all points 
before and after segmented 
areas no longer displayed 

Pass 
 

23 Save segment 
points 

Follow test 22 and the click on file menu and ‘save segment points’ 
sub menu 
Give the file an appropriate name and location 
Reload saved segment file as per test 24 on the original non 
segmented image or any other image will segment at the same 
points 

Saved file present and Segmented 
image displayed 

Saved file present and 
Segmented image displayed 

Pass 
 

24 Load segment 
points 

load saved segment file on the original non segmented image or any 
other image will segment at the same points 

Segmented image displayed Segmented image displayed Pass 
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25 Erode image 1)Follow instructions on erosion in user manual by eroding a texture 
mapped image that was segmented before being texture mapped 
2)use the erosion function an any texture mapped breast image  
3)can be viewed using the load single image function 

Mapped image now gets eroded 
and saved can be viewed using load 
single image function 

Mapped image now gets 
eroded and saved 

Pass 
 

26` Calculate 
min/max values 

Run Textureminmaxcode.m file changing the file names to point to 
the series of texture mapped images you want to obtain min max 
values for 

Min, max and median values saved 
in excel spreadsheet 

Min, max and median values 
saved in excel spreadsheet 

Pass 
 

27 Scan image for 
hotspots 

1)Run the scan Image for hotspots function of the software as per 
user manual 
2)open imtool Matlabs in built image viewer by typing in imtool in 
command window 
3) in debug mode run this feature again and compare if the range 
selected are the actual values that are highlighted on the image 
using the pixel region feature in imtool  

1)Lesion hotspots highlighted 
2)correct pixel values highlighted 
when compared within imtool 

1)Lesion hotspots 
highlighted 
2)correct pixel values 
highlighted when compared 
within imtool 

Pass 

28 View histogram 1)Load any image on DicomReaderGUI application 
2)go to tools and ‘view histogram’ 

Histogram displayed Histogram displayed Pass 
 

29 Open wavelet 
toolbox 

1)follow instructions on wavelet section of user manual 1)Wavelet menu opened and 
correctly load image 
2)spreadsheet containing wavelet 
energy levels is produced 

Wavelet menu opened and 
spreadsheet containing 
wavelet energy values saved 

Pass 

30 Code level test 
for wavelet 
analysis 

Using debug mode in Matlab coding environment, place debug 
break points in code so that matrices and the corresponding images 
with original matrix and roi matrix can be viewed for Haar4 dir1, 
haar4 dir 2 and haar4 dir 3. Test should be done using the relevant 
files in test files>wavelets folder. Note this test is performed as per 
user manual instructions but ignoring the normalisation of image 
section. For reference purposes the image file used for testing is id 
E04246 slice 22 

Screenshots 2a to 2m produced Screenshots 2a to 2g 
produced 

Pass 

31 Normalise 
Image 

As this is not part of a GUI feature of the software type in the 
Matlab command window a Matrix as follows: 
I = [1, 4, 5 ; 3, 5,3 ; 3, 7, 76] 
Then run the normaliseImage function: 
maxI = max(I(:)) 
I2 = double(I)./double(maxI).*255 
 

maxI =    76 
I2 =[3.3553,13.4211, 
16.7763;10.0658, 
16.7763,10.0658;10.0658,23.4868,
255.0000] 

maxI =    76 
I2 =[3.3553,13.4211, 
16.7763;10.0658, 
16.7763,10.0658;10.0658,23.
4868,255.0000] 

Pass 
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3.7 Screenshots  

 

 

Figure 3.1a: The chessboard feature used for testing purposes. 

 

Figure 3.1b: Example output of texture parameters.  
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Figure 3.1c: Four co-occurrence matrices corresponding to 0°, 45°, 90° and 135° directions for 

the first ROI in a series of images. 
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Figure 3.1d: Summation of the co-occurrence matrices for all ROIs in image series. 
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Figure 3.1e: Co-occurrence matrix of figure 3.1d after normalisation. 
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Figure 3.2a: Original image used for the purpose of testing the Wavelet function of the 

software 

 

Figure 3.2b: Wavelet coefficient images using haar level4 generated from the image in 2a 
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Figure 3.2c: Wavelet energy parameters calculated using the wavelet coefficient images 

generated in 3.2b 

 

Figure 3.2d: ROI displayed on Haar 1 dir 1 coefficient image generated by the wavelet section 

of the software 
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Figure 3.2e: ROI displayed on haar 4 dir 1 coefficient image generated by the wavelet section of 

the software 

 

Figure 3.2f: Haar 4 dir 1 raw image matrix generated by the wavelet section of the software 
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Figure 3.2g: Corresponding ROI raw matrix for haar 4 dir 1 generated by the wavelet section of 

the software 
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4 Texture Analysis Repeatability using Agar Phantom  

4.1 Introduction 

 

The importance of texture analysis in MRI has been discussed at length in chapter 2 (literature 

review) which looked at texture analysis in the context of MRI, as well as in non MRI based 

images such as satellite images of terrain. In the medical context textural information is 

undoubtedly very heavily used in a radiologist’s decision making process. However, subtle 

variations in texture are often missed, thus by quantitatively analysing MR images the textural 

properties that would otherwise be impossible to discern by simply visually inspecting the 

image can be obtained. This information can then potentially be used to aid diagnosis, monitor 

treatment response and as a screening tool.  

In this study reticulated foams of varying porosities embedded in agarose gel are used as 

phantoms and texture analysis is performed using the in house developed software in order to 

test the repeatability of texture analysis. In addition an attempt was made to establish 

whether texture analysis could be used reliably with clinical protocols to distinguish between 

different objects. 

In a 1998 study Lerski [63] used reticulated foam as texture test objects, foams were inserted 

in test tubes embedded in agarose gel. The study found the test object useful for the study of 

texture measurement in MR imaging.  

Another study by the same group the following year [64] involved multicentre analysis of the 

same test objects created in a similar manner of that of their earlier study [63]. In this study 

[64] the group scanned the same test objects across multiple centres and found some MRI 

equipment out performed others in terms of texture analysis. In addition the study concluded 

that texture measures were not easily comparable between centres, although the test object 

itself was deemed a successful standard object for the measurement of texture. Both studies 

[63, 64] considered first order parameters such as mean and skewness as well as texture 

parameters from the co-occurrence, gradient and run length methods. 
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In a more recent study Waugh [65] used a custom-made phantom containing different grades 

of reticulated foam embedded in agarose gel. They looked at assessing the ability of texture 

analysis to distinguish between different texture objects, an objective that the work in this 

thesis has adopted. The Waugh study also looked at outcome of texture analysis when imaging 

sequences were changed and concludes that changes to sequence parameters were less 

critical for the outcome of texture analysis. The study however did reliably differentiate, using 

texture analysis, between four grades of foam. By simply visually inspecting the MR images of 

foam different porosities of foam were deemed indistinguishable. In this thesis assessment of 

repeatability and correlations are performed using 7 grades of foam as opposed to the 4 used 

in the Waugh study.  

4.1.1 Aims 

 

To assess the repeatability of texture analysis by applying in house developed software to MR 

images of reticulated foam phantoms. 

To assess texture analysis in differentiating foams of varying porosity that look visually 

indistinguishable on MR images.  

4.2 Methods 

 

Reticulated foams of specific porosities were ordered as samples from Foam Engineers 

Limited, Dashwood Avenue, High Wycombe, Buckinghamshire, HP12 3EA. Seven different 

breast-mimicking phantoms were created using foams with pore sizes of 10, 20, 30 , 45, 60, 75 

and 90 pores per inch (PPI) as shown in figure 4.1, each piece of foam was cylindrical in shape 

with an approximate diameter of 7cm and depth of 4cm.   
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Figure 4.1: The seven different foam samples with a range of pore sizes from left to right of 10, 

20, 30, 45, 60, 75 and 90 PPI 

4.2.1 Phantom Chemistry 

 

The method used closely replicated that in the Waugh [65] study. The foam samples were 

added to individual beakers containing a 2% agarose solution (ca. 400 ml) with a 1.75 

millimolar concentration of the DOTAREM contrast agent at 70 deg C. The foam samples were 

repeatedly compressed (ca. 20-30 compression cycles) while being held at 70 deg C in a water 

bath to remove all air bubbles. They were then removed from the water bath and allowed to 

cool to room temperature prior to sealing with parafilm (figure 4.2). A series of test phantoms 

were created and scanned before making the actual phantoms from the sample foam in order 

to optimise the procedure. 

 

Figure 4.2: Phantoms suspended in agarose having undergone compression during preparation 
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4.2.2 MRI Protocol 

 

All phantoms were scanned on a 3.0T HDx (GE Healthcare, Milwaukee, WI) scanner in 

combination with an 8-channel dedicated breast coil. Two sequences were utilised. A sagittal 

vibrant sequence [10° flip, TR 4ms, TE 1.6ms/Fr, bandwidth 41.7kHz, 20x20cm FOV, 220x160 

matrix, 4mm slice thickness] was equivalent to DCE images detailed elsewhere.  

A fast spin-echo sequence employing echo-times of 28ms and 113ms was used for T2 mapping 

in the coronal plane [90° flip, TR 4000ms, bandwidth  32.2kHz, 20x20cm FOV, 320x320 matrix, 

4mm slice thickness]. All scans for T2 mapping and vibrant were performed twice in order to 

assess repeatability. 

4.2.3 Quantitative Analysis 

 

After data acquisition ROIs were generated using the in house developed software draw ROI 

feature. Both a larger and a smaller ROI were drawn on the Vibrant data. The smaller ROI 

approximately covered a third of the foam in the MR image (1006 pixels) and the larger ROI 

(2752 pixels) tried to cover as much as possible whilst avoiding edges and noisy sections of the 

image (fig 4.3). Once drawn each ROI was saved and these two ROIs were used for all future 

analysis of the Vibrant data. Similarly a small (565 pixels) and a large (13885 pixels) ROI were 

drawn for the T2 mapping data (fig 4.4) and saved and all future analysis of T2 data used these 

two ROIs. In both Vibrant and T2 mapping data ROIs were only drawn on one set of data then 

translated onto others.  
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Figure 4.3: Vibrant MR image of one foam phantom (PPI 10) with the larger (2752 pixels) and 

smaller (1006 pixels) ROIs illustrated 

 

Figure 4.4: FSE image of one foam phantom (PPI 10) with the larger (13885 pixels) and smaller 

(565 pixels) ROIs illustrated 

4.2.4 Texture Analysis 

 

Texture analysis was then performed on a single slice from the Vibrant phantom data and the 

same slice was utilised from each series. To ensure positioning for each test was the same only 

one pre-scan was run on the MRI scanner with the first test phantom in position and no pre-

scans were run on the remainder of the test phantoms as the same settings were maintained. 
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In addition each beaker was manually put in to the same position of the breast coil prior to 

scanning. To prevent sparseness within subsequently calculated co-occurrence matrices the 

ROI data underwent grey level decimation to 16 grey levels via histogram equalisation.  

Co-occurrence matrices, which contain the joint probability of two adjacent pixels along a 

given direction  having co-occurring values i and j, were calculated for  = 0, 45, 90 and 

135 and subsequently averaged. The 14 textural features as defined by Haralick [53] (denoted 

f1 to f14 and including entropy, angular second moment and correlation) were then determined 

alongside two further parameters cluster shade (f15) and cluster prominence (f16) [55] (detailed 

formulas and explanations on the co-occurrence matrices are included in chapter 5; texture 

analysis on neoadjuvant data). 

4.2.5 T2 Mapping Analysis 

 

T2 maps were calculated for each texture phantom, maps were generated via the in house 

software’s T2 mapping feature and saved as .tiff images. Maps were calculated using the 

formula: 

       =  
         

  
  

  
 

 

Where TE is echo time(s) and S is signal for image(s) 1 and 2. 

4.2.6 Statistical Analysis 

 

Pearsons correlation tests were performed between texture parameters and porosity and 

between T2 values and porosity. Correlations were performed for both ROI sizes using SPSS 

version 18. Repeatability tests were performed for both T2 mapping and Vibrant data, wherein 

independent test results on identical items obtained with the same method in the same 

laboratory are compared [78]. A repeatability assessment would enable the magnitude of 

treatment-induced change required for reliable detection to be established. Repeatability was 
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estimated using the methodology previously described by Bland and Altman [79] wherein it is 

calculated as 2.77 times the common standard deviation of repeated measures. The common 

standard deviation of repeated measures is often referred to as within-subject standard 

deviation. 

4.3 Results 

4.3.1 Correlation of texture analysis with porosity 

 

Visually inspecting the images acquired using the vibrant data series, looking at the same slice 

for each different pore sized foam phantom (figure 4.5) it can clearly be seen that with the 

exception of a) PPI 10 it is near impossible to distinguish the different pore sizes. The results of 

the texture analysis however show differences in texture between pore sizes as highlighted in 

the correlation graphs. 

 

 

Figure 4.5: MR images from Vibrant sagittal data with a) 10, b) 20, c) 30, d) 45, e) 60, f) 75 and 

g) 90 pores per inch (PPI) foam  

  

[a] [b] [c] [d] 

[e] [f] [g] 



130 
 

Table 4.1 highlights the results for the large and small ROIs after texture analysis was 

performed and the results of each texture parameter were correlated against each foam 

(according to PPI). In addition table 4.2 shows the actual texture values for three of the 

parameters (       and    ) against PPI size for the small ROIs. For the larger ROI table 4.1 

highlights reasonable correlation between PPI and texture parameters although p-values were 

not significant in most cases. The two texture parameters that had p-values < 0.05 (    and    ) 

and reasonable R² values are highlighted in figures 4.6 and 4.7. In figure 4.6 for the parameter 

    the R² value of 0.611 highlights that the PPI contributes to 61% of the variation in     and 

the remainder 39% of variation in the texture parameter has nothing to do with change in PPI, 

having a p-value of < 0.05 shows that the confidence level of 61% variation is good. The p-

value of <0.05 indicates there is only a 5% chance (ie confidence level is 95%) that the R² value 

of 0.611 is by chance, the closer the R² value is to 100% the better correlated the data is. In 

addition texture parameter     had a p-value of 0.052 (close to significant) and the correlation 

graph can be seen in figure 4.8. In all three examples (       and    ) the graphs show the 

smaller the pore size the higher the texture parameters value showing that PPI sizes clearly 

affect the value of texture analysis parameters in these cases although visually the MR images 

look indistinguishable.  

It is clear when comparing larger ROI results with smaller ROI results (both shown in table 4.1) 

that the results for smaller ROI show no p-values of < 0.05 and therefore no texture 

parameters are significantly correlated with PPI.  
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Texture parameters R² P value 

Large small large small 

   (angular 2nd moment) 0.563 0.295 0.052 0.208 

   (contrast) 0.398 0.477 0.129 0.086 

   (correlation) 0.421 0.480 0.115 0.085 

   (variance) 0.433 0.444 0.108 0.102 

   (inv diff moment) 0.510 0.386 0.072 0.136 

   (sum average) 0.152 0.170 0.386 0.357 

   (sum variance) 0.458 0.412 0.095 0.120 

   (sum entropy) 0.433 0.310 0.108 0.194 

   (entropy) 0.477 0.336 0.086 0.173 

    (difference variance) 0.401 0.456 0.127 0.096 

    (difference entropy) 0.472 0.377 0.088 0.142 

    (info m’ of corr’ 1) 0.477 0.335 0.086 0.173 

    (info m’ of corr’ 2) 0.327 0.438 0.180 0.105 

    (max corr’ coeff’) 0.256 0.410 0.247 0.121 

    (cluster shade) 0.611 0.109 0.038 0.470 

    (cluster prominence) 0.589 0.482 0.044 0.083 

Table 4.1: correlation results for texture parameters against foam PPI size for the large and 

small ROIs 

            
PPI 10 .006934 -45.62 8942 

PPI 20 .009775 -115.17 9825 

PPI 30 .017214 -31.98 11533 

PPI 45 .017257 -62.11 11463 

PPI 60 .012289 -54.25 11011 

PPI 75 .014444 -43.27 11345 

PPI 90 .015614 -46.89 11346 

Table 4.2: texture analysis results for texture parameters   ,     and     against foam PPI size 

for the small ROIs, results show fairly large change in values according to PPI of each phantom 

(for parameter    77.26% variation around the mean)  
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Figure 4.6: Pearson correlation graph for texture parameter     (cluster shade) against PPI for 

the larger ROI 

 

Figure 4.7: Pearson correlation graph for texture parameter     (cluster prominence) against 

PPI for the larger ROI 
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Figure 4.8: Pearson correlation graph for texture parameter    (angular 2nd moment) against 

PPI for the larger ROI 

4.3.2 Correlation of     values with porosity 

 

Once the    maps were obtained for each foam sample Pearson correlation coefficients were 

calculated, the graphs revealed reasonable R² values (fig 4.9) of 0.479 indicating that 48% of 

the variation in the larger ROI mean data can be explained by the change in pore size. The p-

values were not significant with 0.085 (large ROI) and 0.162 (small ROI) indicating a poor 

confidence level (table 4.3). In addition variations in mean    values between pore sizes of 

foam were very small, for the large ROI (Table 4.4) the variation around the mean was only 

4.4% and even less at 3.9% for the small ROI. These very small variations around the mean 

indicate virtually no way of distinguishing different pore sizes using     Mapping alone. 
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Figure 4.9: Pearson correlation graph for large ROI mean T2 value against PPI  

ROI size R² P value 

      0.479 0.085 

      0.35 0.162 

Table 4.3: correlation results for mean    values against varying foams according to PPI size for 

small and large ROIs 

 mean large ROI mean small ROI 

PPI10 53.9651 53.7752 

PPI20 53.4393 53.2053 

PPI30 52.6806 52.5009 

PPI45 52.3691 52.2673 

PPI60 51.8683 51.8991 

PPI75 51.6349 51.7469 

PPI90 52.8267 52.9327 

Table 4.4: mean values taken from the    maps of each pore size. The results clearly show very 

small change in values according to PPI of each foam phantom (4.4% variation around the 

mean for the large ROI and 3.9% for the smaller ROI) 
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4.3.3 Repeatability of texture analysis 

 

Repeatability was also tested between the two sets of vibrant scans that were obtained for 

both the small and large ROI. The results as per Tables 4.5 and 4.6 clearly indicate that texture 

analysis is repeatable as it shows similar results on analysis of scans taken at different times 

using the same MRI protocols. The tables show mean, repeatability and percentage change of 

each texture parameter calculated using two separate scans for each of the seven PPI sizes of 

the foam phantom. Figures 4.10 and 4.11 highlight the most and least repeatable texture 

parameters    and     respectively in the form of Bland Altman scatter plots. 

Texture parameters Mean  Repeatability % change 

   (angular 2nd moment) 0.017 0.001 4.66% 

   (contrast) 2.876 0.533 18.55% 

   (correlation) 0.923 0.013 1.42% 

   (variance) 19.414 0.266 1.37% 

   (inv diff moment) 0.581 0.015 2.59% 

   (sum average) 17.138 0.027 0.16% 

   (sum variance) 80.768 0.569 0.70% 

   (sum entropy) 4.934 0.006 0.12% 

   (entropy) 6.276 0.079 1.26% 

    (difference variance) 1.362 0.302 22.19% 

    (difference entropy) 1.924 0.106 5.51% 

    (info m’ of corr’ 1) -0.431 0.020 4.61% 

    (info m’ of corr’ 2) 0.974 0.004 0.45% 

    (max corr’ coeff’) 0.960 0.004 0.38% 

    (cluster shade) -26.848 7.158 26.66% 

    (cluster prominence) 11757.247 131.088 1.11% 

Table 4.5: Repeatability test values for all PPI sizes of foam showing values for each texture 

parameter using two separate MRI scans and running texture analysis using the larger ROI 
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Texture parameters Mean  repeatability % change 

   (angular 2nd moment) 0.013 0.001 7.93% 

   (contrast) 6.767 1.211 17.89% 

   (correlation) 0.825 0.028 3.44% 

   (variance) 17.411 0.568 3.26% 

   (inv diff moment) 0.468 0.031 6.61% 

   (sum average) 17.165 0.049 0.29% 

   (sum variance) 76.721 1.139 1.48% 

   (sum entropy) 4.909 0.011 0.23% 

   (entropy) 6.642 0.104 1.56% 

    (difference variance) 2.968 0.473 15.95% 

    (difference entropy) 2.429 0.131 5.40% 

    (info m’ of corr’ 1) -0.340 0.026 7.56% 

    (info m’ of corr’ 2) 0.942 0.008 0.83% 

    (max corr’ coeff’) 0.914 0.019 2.09% 

    (cluster shade) -57.041 14.008 24.56% 

    (cluster prominence) 10780.491 319.303 2.96% 

Table 4.6: Repeatability test values for all PPI sizes of foam showing values for each texture 

parameter using two separate MRI scans and running texture analysis using the smaller ROI

 

figure 4.10: Bland Altman plot showing mean and difference values for texture parameter    

(sum entropy) for the larger ROI   
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Figure 4.11: Bland Altman plot showing mean and difference values for texture parameter     

(cluster shade) for the larger ROI  

4.3.4 Repeatability of    Mapping 

 

Repeatability was also tested between the two sets of FSE scans that were obtained for both 

the small and large ROI. The results as per table 4.7 clearly show excellent repeatability 

percentage values indicating that    Mapping is highly repeatable. The tables show mean of 

differences, standard deviation of differences and repeatability of each ROIs mean    Mapped 

value calculated using two separate scans for each of the seven PPI sizes of the foam phantom. 

ROI size Mean of 
differences 

Std dev of 
differences 

repeatability 
(%) 

      0.040 0.156 0.58% 

      -0.053 0.081 0.30% 

Table 4.7: Repeatability test values for all PPI sizes of foam showing values for each ROI using 

two separate MRI scans and calculating the mean of    Mapped images using the small and 

large ROIs 
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4.4 Discussion 

 

Pearson correlation graphs for    maps indicated that 48% of the variation in the larger ROI 

mean data can be explained by the change in pore size (fig 4.9). The p-values 0.085 and 0.162 

for large and small ROI’s respectively indicate a poor confidence level. Variations in mean    

values between pore sizes of foam were very small (3.9% variation around the mean for the 

small ROI) (table 4.4). These very small variations in mean indicate virtually no way of 

distinguishing different pore sizes using     Mapping alone.  

For texture analysis the PPI contributes to 61% of the variation in     (fig 4.6), having a p-value 

of < 0.05 shows that the confidence level of the 61% variation is good. In the 3 texture 

parameters (       and    ) the graphs show general trend of the smaller the pore size the 

higher the texture parameters value, this demonstrates that PPI sizes clearly affect the value of 

texture analysis parameters in these cases despite the MR images looking visually 

indistinguishable. Unlike the mean    values the texture parameters have much larger 

variation (Table 4.2), for example a variation around the mean of 77.26% was noted for 

parameter    between different pore sizes for the smaller ROI. These larger variations in 

texture parameters indicate pore sizes are clearly distinguishable when using texture analysis. 

Having this bigger percentage change in texture shows promise for use in a clinical 

environment. Clinical images will also suffer from lower SNR therefore having very small 

variations using    mapping alone may not be useful as this small change could be attributed 

to SNR and therefore unreliable. However this was not a phantom of breast tissue therefore 

requires caution in extrapolating results. 

The texture parameters proved to have good repeatability with 12 of the 16 (Tables 4.5 and 

4.6) parameters being more repeatable with the larger ROI than the smaller ROI, this shows 

that the co-occurrence method of texture analysis relies heavily upon having good counting 

statistics. This indicates that in clinical images distinguishing smaller lesions using texture 

analysis may be problematic. The 3 parameters (       and    ) that showed poorer 
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repeatability values for both large and smaller ROIs need to be investigated further and 

establish whether mathematically there is an underlying cause. With the exception of texture 

parameter     for which repeatability value decreases from 22.19% for the large ROI to 15.95% 

for the smaller ROI (tables 4.5 and 4.6), the results show that the larger ROI is more repeatable 

when texture analysis is performed on the MRI scan. Any variation would need to be higher 

than the values in the repeatability column of the two tables for each texture parameter in 

order for it to be perceived as an actual valid treatment induced change. In vivo repeatability 

will probably be worse due to lower SNR from clinical images. 

4.5 Conclusion 

 

Texture analysis reliably demonstrated its ability to differentiate between varying grades of 

foam in an agar embedded phantom despite them appearing visually indistinguishable on an 

MR image. This study proved that texture analysis demonstrates good repeatability in MR.  
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5 Texture Analysis on Breast Cancer Patients 

5.1 Texture Analysis as a Predictor of Chemotherapeutic Response 

5.1.1 Introduction 

 

Predicting response to chemotherapy is important, both from the economic perspective as 

treatment is expensive and due to the incidence of side effects including bone marrow 

depression, gastrointestinal upset and alopecia. Knowing whether a patient will respond to 

chemotherapy is difficult to predict, but if accurate assessment was possible would allow 

prompt change in chemotherapy regime or early resort to surgery. 

The identification of specific types of breast cancer is important in a clinical setting as these 

influence prognosis and response to treatment. The traditional triple receptor negative 

phenotype (TNBC) [negative staining for estrogen receptor(ER), progesterone receptor (PR), 

human epidermal growth factor receptor2 (HER2)], can be subdivided into “basal-like” and 

“normal-like” subgroups on further assessment. Profiling gene expression in breast cancer 

provides five sub-groups based on transcriptomic similarity: luminal A, luminal B, normal-like, 

Her2/neu positive and basal-like (BBC) [80, 81]. The BBC is a particularly aggressive subtype, 

although not all TNBC are basal-like in subtype and not all BBC are triple receptor negative. 

TNBC are associated with a particularly poor outlook, in part due to the lack of treatment 

options other than chemotherapy. Consequently novel targeted chemotherapeutic strategies 

are being developed for this group, prompting the need for close monitoring to predict 

response to therapy. Approximately 30% of all patients respond sub-optimally to treatment 

and this is known to vary between immuno-receptor subtypes. It is becoming increasingly 

important to assess response to treatment, both early so that recourse to alternative therapy 

can be considered, and at the end of treatment prior to definitive surgery.  

Response Evaluation Criteria in Solid Tumours (RECIST) is a simplified, conservative, means of 

extracting measurements of solid tumour from imaging data and is widely applied in clinical 

trials. RECIST presumes that linear measures are an adequate substitute for area and/or 

volume and registers four response categories: CR (complete response) = disappearance of all 
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target lesions; PR (partial response) = 30% or greater decrease in the sum of the longest 

diameters of target lesions; PD (progressive disease) = 20% or greater increase in the sum of 

the longest diameters of target lesions; SD (stable disease) = small changes that do not meet 

above criteria [82]. Other studies have not always followed this criteria strictly. Manton et al 

[83] used a volume measurement of 65% as the cut off between PR and SD, this being 

equivalent to a decrease in cross-sectional area of 50%, itself broadly equivalent to a 50% 

decrease in the product of maximum orthogonal diameters (a RECIST criterion). 

For the purpose of detecting and evaluating breast disease researchers [38] often use 

quantitative T1-weighted dynamic contrast-enhanced MRI (  -w DCE-MRI). This technique 

involves the intravenous administration of a gadolinium (Gd) based contrast agent during 

repeated T1-weighted imaging. The Gd concentration vs. time curve ([C](t))  of a lesion of 

interest can be estimated from these images. By applying pharmacokinetic modelling, 

parameters such as extraction-flow product can be extracted to aid lesion diagnosis and 

tracking of treatment progress [39]. However these parameters are prone to error. For 

example, minor variations in the transmit magnetic field (  ) can result in up to 50% error on 

the estimated [C](t) in 2D spoiled gradient echo sequences (SPGR) [39]. In turn this leads to 

errors in the estimated PK parameters, thus potentially reducing the sensitivity and specificity 

of this technique and limiting its applicability for tracking treatment progress [39].  

 

Analysis of images for functional information is not the only way of determining the presence 

of disease; as outlined in the Bi-RADS lexicon [23] morphology is also an important factor used 

in assessing MR images. Textural analysis is one such method of assessing morphology, and 

sSome attempts have been made to utilise texture in MR image analysis [42-50, 53, 59, 61, 62, 

68, 69], particularly in the brain [42-44, 61, 62].  

Freeborough et al [42] assessed the value of MR derived textural parameters as a measure of 

evaluating change in Alzheimer’s disease. Texture was calculated using a co-occurrence matrix 
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and the Haralick texture formulae   -    [53]. This statistical technique, known as the spatial 

gray-level dependence matrix method, has the ability to study 2nd order statistics of pixels at 

different spacings and angles of adjacent or nearest-neighbour pixels. The Freeborough [42] 

study  demonstrated that a texture discriminant function derived from MRI brain scans using a 

spoiled gradient-echo technique on a 1.5T system yielded significantly different values for 

Alzheimer’s sufferers compared to normal controls [42]. In addition, this measure reflected the 

progression of the disease over time, and could potentially be useful as an aid in the diagnosis 

and in tracking of disease progression.  

A study by Kjaer et al [62] found that considerable texture information was contained in MR 

images that was useful for characterisation of normal brain tissue. In addition the authors 

found that texture information showed potential for differentiation between sub-types of 

intracranial tumours. Lerski et al also performed texture analysis on images for tissue 

characterisation [61] in the human brain, and demonstrated clinical utility for discriminating 

between brain tumour and oedema. 

 

Recent research has focussed on other organs including the breast. A 79 patient study by Gibbs 

et al [48], using data taken from the largest cross-sectional area of individual lesions acquired 

using contrast-enhanced MRI, demonstrated significant differences in textural features 

between benign and malignant breast tumours. Variance, entropy and sum entropy, all 

measures of image heterogeneity, were found to be important factors in lesion discrimination 

when combined using a logistic regression model. In a smaller study of 23 benign and 20 

malignant breast lesions, Sinha et al [50] examined the utility of textural features derived from 

DCE-MRI using 8 of the 13 Haralick features [53]. This study showed significant differences in 

only three of the eight texture features calculated, but using a combination of features 

obtained a specificity and sensitivity of 70% and 75% respectively.  
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In an attempt to verify the findings by Gibbs et al [45] a further study was carried out by Chen 

et al [47] focussing on the use of a 3D grey level co-occurrence matrix (GLCM), as opposed to a 

2D version. The work described a volumetric texture analysis approach for computerised 

analysis of breast lesions on DCE-MRI. The study showed that texture features from a 3D 

analysis yielded significantly better classification results than from a 2D analysis.  

 

A more recent study by Bhooshan et al, (2010) of DCE-MRI breast images used texture analysis 

along with other computerised methods such as shape and kinetic features, in an attempt to 

determine their utility as prognostic markers. The authors found that in terms of textural 

features, a common indicator of malignancy was lesion heterogeneity, which could be 

described by using different mathematic algorithms for texture analysis such as contrast and 

maximal correlation coefficient [46]. 

 

Whilst previous research has generally concentrated on quantifying morphology from high 

resolution data, there appears to be some value in assessing lesion texture in DCE-MRI [45], 

especially with regards to changes in signal intensity following contrast administration during 

the initial enhancement and subsequent washout phases.  A study by Agner et al of 41 cases 

(17 benign and 24 malignant) demonstrated that when DCE-MRI was analysed using textural 

parameters combined with morphological descriptors, utilising a probabilistic boosting tree 

framework as its learning model, the resulting classifier yielded 89% accuracy, 99% sensitivity, 

76% specificity and an AUC of 0.91 [45].  

 

The spatial grey-level dependence matrix method, as proposed by Haralick [53], is the 

commonest form of analysis for texture, but there is no direct evidence concerning the most 

appropriate pixel separation and number of grey levels required to utilise the optimum co-

occurrence matrix calculations. The aim of this study is to systematically assess the efficacy of 

DCE-MRI based textural analysis, throughout the contrast enhanced time course, in predicting 
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and assessing response to neoadjuvant chemotherapy in a cohort of breast cancer patients. 

The impact of varying the number of grey levels employed is further examined. 

5.1.1.1 Aims 

 

The aims of this research include: 

 Develop a robust software package for texture analysis of MRI data 

 Apply developed software  to cohort of 100 patients undergoing neoadjuvant 

chemotherapy of breast cancer, to help predict tumour response 

5.1.2 Methods: The Data 

5.1.2.1 Patient Population 

 

The data acquired from 100 patients, age range of 31-77 years, median age of 48 years, all 

undergoing neoadjuvant chemotherapy for treatment of locally advanced breast cancer at this 

Institute between April 2006 and September 2008 was retrospectively reviewed.  This study 

was approved by the Local Ethics Committee and NHS Trust. Post treatment biopsy grade was 

known in 97 patients (4 not specified, 6 grade 1, 32 grade 2, 55 grade 3). Details of treatment 

regime were available in 95 patients, the majority of whom (57) had a combination of EC 

(Epirubicin and Cyclophosphamide) and Docetaxel. MR data was acquired prior to treatment 

and information on tumour response was obtained on completion of all cycles of NAC. The 

number of days between initial baseline MR scan and chemotherapy starting ranged from 1-45 

days with a median of 11.5 days.  

After treatment the patients were categorized according to their response to chemotherapy 

from MR data: partial responders (PR) corresponding to a decrease in longest diameter of 

tumour of greater than 50% (40 patients) and non-responders (NR) corresponding to a 

decrease of less than 50% (49 patients). Data for the remaining 11 patients was not available. 

Data was also split based on factors that are known to influence response: TNBC (22 patients) 

vs. all other combinations of the three appropriate markers (49 patients) with 29 patients data 
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unavailable; subdivided into nodal status by examining node negative (45 patients) vs. node 

positive (46 patients) with data in 9 patients not available; and tumour grade derived from pre-

treatment biopsy, biopsy grade 1 or 2 (38 patients) vs. biopsy grade 3 (55 patients) and 7 

patients data was not available. 

5.1.2.2 MRI Protocol 

 

All patients were scanned on a 3.0T HDx (GE Healthcare, Milwaukee, WI) scanner in 

combination with an 8-channel dedicated breast coil. This study used data from a dynamically 

acquired contrast-enhanced sequence employing the following parameters: sagittal 3D T1W 

fat nulled Volume Imaging for Breast Assessment (VIBRANT) sequence [10° flip, TR 4.1ms, TE 

1.6ms/Fr, 41.7kHz, 22x22cm FOV, 220x160 matrix, 4/-2mm slice/gap (4/0 in first 21 exams), 

parallel imaging x 2]. This dynamic sequence included 2 phases pre-contrast and 10 phases 

post-contrast administration, with an average temporal resolution of 33.6 seconds (range 23.5 

to 44.6 seconds). Minor alterations in temporal resolution were noted due to the variable 

number of slices required to image both breasts in their entirety.  Contrast medium was 

delivered by a Spectris Solaris power injector (Medrad, Warrendale, PA). At the start of the 3rd 

phase a bolus injection of gadolinium (Schering, Magnevist) contrast agent (0.05 mmol/kg 

body weight) was immediately followed by a 20ml saline flush, with a total injection time of 10 

seconds for all patients. 

5.1.2.3 Quantitative Analysis 

 

Regions-of-interest (ROIs) were generated semi-automatically on all slices utilising early 

arterial phase data, whereby a seed point was selected on each slice and an ROI was 

automatically generated based on the Otsu thresholding method. Following a strict software 

lifecycle, a robust software package was created in house allowing texture analysis to be 

performed on pre-contrast and 1, 2, 3, 4 and 5 minutes post-contrast data. To prevent 

sparseness within subsequently calculated co-occurrence matrices, the ROI data underwent 

grey level decimation via histogram equalisation. ROI data was reduced to 8, 16, 32 and 64 
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grey levels since the optimal number of grey levels required for textural analysis is unknown 

(reducing the number of grey levels improves SNR at the expense of discriminatory power). 

The ROIs were selected on images across multiple slices all containing tumour, thus giving a 

complete representation of the tumour. 

Co-occurrence matrices, which contain the joint probability of two adjacent pixels along a 

given direction  having co-occurring values i and j, were calculated for  = 0, 45, 90 and 

135 and subsequently averaged. The 14 textural features as defined by Haralick [53] (denoted 

f1 to f14 and including entropy, angular second moment and correlation) were then determined 

alongside two further parameters namely cluster shade (f15) and cluster prominence (f16) [55]:  
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The 14 Haralick parameters f1 to f14 applied in the software application have been previously 

described by this group (Gibbs et al [48]): 

Notation: N is the number of distinct gray levels in the histogram equalized image;       is the 

     th entry in a normalized spatial gray-level dependence matrix; and       is the i-th entry in 

the marginal-probability matrix obtained by summing the rows of       =           
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Textural Feature: 
 

  

 

 

        

 

 

 

(f1 Angular Second Moment) 

 

   

   

   

        

(f2 Contrast) 

 

                  
 

 

 

  
 

 

(f3 Correlation) 

Where    and    are the mean and standard deviations of   , respectively  
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(f5 Inverse Difference Moment) 
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(f10 Difference Variance) 

Where      is the mean of       
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(f12 Information Measure of Correlation 1) 

 

               

(f13 Information Measure of Correlation 2) 

where     =                                 

  

                                

(f14 Maximal Correlation Coefficient) 

where        =                                 

5.1.2.4 Statistical Analysis 

 

Statistical analysis of the individual texture parameters was performed to establish whether 

the results were normally or non-normally distributed. The texture data was combined with all 

relevant clinical data. Mann Whitney and  -tests were executed using SPSS version 15.0 on the 

combined data, as appropriate, with a p-value of <0.05 regarded as indicating significant 

difference between groups. Since this study can be regarded as hypothesis generating no 

corrections for performing multiple statistical tests were made. 
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5.1.3 Methods: The software application 

5.1.3.1 GLCM 

The software application was created using the matrix based programming language MATLAB, 

the grey-level dependence matrix (GLCM) method was used and is illustrated in detail in 

section 2.6.1.4. 

5.1.3.2 Region of Interest (ROI) 

 

A vital part of the software application is its ability to obtain pixel values from a pre-drawn ROI 

as well as accurately draw an ROI using the computers mouse, the accuracy of this is 

paramount as the pixel values obtained are the backbone of any future calculations.  Regions-

of-interest (ROIs) were generated semi-automatically on all slices utilising early arterial phase 

data whereby a seed point was selected on each slice and an ROI was automatically generated 

based on the Otsu thresholding method. ROIs were subsequently saved in binary file format, 

the application created for this study reads in these binary files and maps the correct ROI to 

the correct slice of the dataset. Each ROI file could contain anything from one to any number 

(no limit) ROI’s and a given slice may also contain more than one ROI. The software application 

then allows the user to scroll through slice by slice with the correct ROI loaded onto each slice, 

the user may then perform texture analysis for the current slice in the application viewer or 

perform a full texture analysis on multiple slices (fig 5.1). 

For the texture analysis calculations the software application utilises ROIs on the breast images 

across multiple slices, this gives a complete representation of the tumour as opposed to just a 

single slice.  
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Figure 5.1: : Images obtained at 2 minutes post contrast, in breast cancer patient (age 48, 

grade on biopsy 3, Node –ve, HER2 –ve, PR-, ER-) prior to undergoing neoadjuvant 

chemotherapy. Patient subsequently defined as partial responder with a >50% reduction in 

tumour size. The total lesion pixel count for all slices was 57745 pixels. The images show the 

variable appearance through each slice of the tumour and the absence of contrast uptake 

centrally due to tumour necrosis. Treatment 4 cycles EC, 4 cycles Docetaxel. 

5.1.3.3 Histogram Equalisation 

 

Histogram equalisation removes the overall brightness information in an image. In a given 

digital image the graphical representation of the tonal distribution of that image in the form of 

a histogram is referred to as the image histogram, it plots the number of pixels for each tonal 

value. The entire tonal distribution can be judged at a glance by looking at the histogram for a 

specific image. Histogram equalisation is a method in image processing of adjusting contrast 

using the histogram of that image [84]. Histogram equalisation normally increases the global 

contrast of lots of images, especially when the image has close contrast values, this adjustment 

allows the intensities to be better distributed on the histogram. In turn this allows areas of 
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lower local contrast to gain higher contrast. Histogram equalisation achieves this by effectively 

spreading out the most frequent intensity values [84]. It is a useful method in images where 

the foregrounds and backgrounds are either both dark or both bright.   

Although MATLAB has its own function for histogram equalising an image for the purpose of 

this study a new class had to be written, this was because Matlab’s function applies histogram 

equalisation to the whole image and does not allow the user to apply it to the ROI only, which 

is important for the purpose of this study. Figure 5.2 shows a normal image MRI image of the 

breast, figure 5.3 shows the same image after applying histogram equalisation. Histogram 

equalisation improves counting statistics at the expense of discriminatory power. 

 

Figure 5.2: MRI breast image prior to histogram equalisation 

 

Figure 5.3: MRI breast image post histogram equalisation of lesion only 
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5.1.3.4 Grey levels 

 

The number of grey levels determines the size of the GLCM matrix, it is difficult to know the 

optimum as having too large a GLCM and the matrix becomes noisy. Within the application 

created in this study the grey levels are user selectable to 8, 16, 32, 64..., the application then 

averages (normalises) the GLCM matrix to remove directional bias (figures 5.4, 5.5 and 5.6), 

the figures also outline the issue of having higher number of grey levels results in a noisier 

matrix albeit with more information. The histograms in figures 5.7 and 5.8 show pre and post 

gray level decimation. 

 

Figure 5.4: an example of GLCM matrix using 8 gray levels in four directions, averaged to 

remove directional bias. Adjacent pixel entries are similar as one would expect 
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Figure 5.5: GLCM matrix using 16 gray levels 
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Figure 5.6: GLCM matrix using 32 gray levels, its clear there is more information.

 

Figure 5.7: prior to gray level decimation 

 

Figure 5.8: post gray level decimation and histogram equalisation 

5.1.3.5 Application of formulas 

 

The heart of the results obtained from the application is undoubtedly reliant on the 

mathematics, this is in the form of the texture formulas that are applied to each ROI once the 

ROI binary file is loaded onto the set of images (detailed in chapter 3). The texture analysis 

formulas as shown previously in 5.1.2.3 had to be mathematically simplified and transformed 
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into MATLAB code so that they could be applied once a co-occurrence matrix had been 

generated. There are in total 16 texture parameters [48], 14 of which were originally proposed 

by Haralick [53] which give information about the texture of any given image, primarily for the 

purpose of this study breast MRI images and the lesions identified within them. In order to 

ensure a robust software application was developed the software life cycle was followed as 

outlined in section 3.1. 

5.1.4 Results 

For the texture analysis calculations the software application utilises ROIs from breast images 

across multiple slices, to provide a complete assessment of the volume of tumour present. 

Over the 100 patient datasets examined the pixel count for each patient ranged from 220 to 

69725 pixels, with a median count of 6424.5 pixels. Figure 5.1 shows a snapshot of 6 slices 

from a patient undergoing neoadjuvant chemotherapy; the images show the variable 

appearance of the tumour through the slices and the presence of central necrosis. All the data 

used for PR/NR and nodal status determination was found to be normally distributed and 

hence  -tests were performed. Similarly t-tests were performed on the data found to be 

normally distributed for the group TNBC vs. all others, some of this data was non-normally 

distributed and Mann-Whitney tests were performed in those cases. Tumour grade data also 

contained a mixture of normally distributed and non-normally distributed data and 

appropriate tests were performed.  

5.1.4.1 Response to Neoadjuvant Chemotherapy (% change in longest diameter) 

 

Table 5.1 shows the mean/standard deviation (for normally distributed data) or median/range 

(for non normally distributed data) and p-values for all 16 texture parameters with highlighted 

areas demonstrating significant differences between groups for the results obtained with 16 

grey levels and at the 2 minute post contrast time point. Table 5.2 summarises the significant 

differences in texture  between PR and NR patients across all time points and grey levels. It is 

evident that    and     provide consistent significant differences between partial responders 
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and non-responders at 1 and 2 minutes post contrast administration, with p-values ranging 

from 0.039 to 0.048. 

Texture parameters Mean value ± Standard Deviation P value 

NR PR 

16 grey levels (2min post contrast) 

   (angular 2nd moment) 0.010±0.001 0.010±0.001 0.640 

   (contrast) 8.89 ± 2.05 8.02 ± 1.86 0.042 

   (correlation) 0.80±0.05 0.81±0.05 0.083 

   (variance) 16.41±1.24 16.70±1.09 0.244 

   (inv diff moment) 0.41±0.04 0.42±0.04 0.130 

   (sum average) 17.64±0.36 17.65±0.35 0.918 

   (sum variance) 74.79±3.10 75.07±2.68 0.654 

   (sum entropy) Median:4.94 
Min:4.81 
Max:4.95 

Median:4.94 
Min:4.91 
Max:4.95 

0.468mw 

   (entropy) 7.14±0.19 7.11±0.15 0.348 

    (difference variance) 4.20 ± 0.85 3.83 ± 0.82 0.043 

    (diff entropy) 2.72±0.17 2.66±0.16 0.072 

    (info measure corr 1) -0.21±0.05 -0.22±0.04 0.397 

    (info measure corr 2) 0.89±0.04 0.90±0.03 0.161 

    (maximal corr coeff) 0.82±0.05 0.83±0.04 0.156 

    (cluster shade) -56.92±24.48 -55.97±30.32 0.871 

    (cluster prominence) 10579.32±690.
51 

10620.57±574.32 0.763 

Table 5.1: Comparison of PR and NR (determined by greater than or less than 50% change in 

largest diameter). Mean/SD or median/range and p-values for all texture parameters using 16 

grey levels at the 2 minute post-contrast time point are shown. P-values determined using t-

test or Mann Whitney test (labelled mw) as appropriate. 

Grey levels 

It is further evident from Table 5.2 that varying the number of grey levels utilised has little 

effect on the results at 2 minutes post contrast, possibly due to the fact that at all the varying 

grey levels counting statistics are high regardless due to using a multi slice approach. Minimal 

effect was noted at 1 minute post contrast where    and     were borderline significant (p = 

0.053 and p = 0.064 respectively), and thus not shown in table 5.2 at 32 grey levels. 

Time points 

Significant differences were consistently seen at 1 and 2 minute post contrast time points. No 



159 
 

significant differences were seen on the pre-contrast phase and no significant differences 

reported at 3 and 4 minutes post contrast. The 5 minute post-contrast data was only 

significantly different when using 64 grey levels. 

 Texture parameters Mean value ± Standard Deviation P value 

NR PR 

8 grey levels (1min post contrast) 

   (contrast) 2.32 ± 0.50 2.10 ± 0.48 0.041 

    (difference variance) 1.18 ± 0.22 1.09 ± 0.21 0.046 

16 grey levels 

   (contrast) 8.94 ± 2.05 8.05 ± 1.94 0.040 

    (difference variance) 4.23 ± 0.86 3.86 ± 0.83 0.044 

64 grey levels 

   (contrast) 141.2 ± 32.92 126.8 ± 31.07 0.039 

    (difference variance) 64.80 ± 13.64 58.94 ± 13.21 0.044 

8 grey levels   (2min post contrast) 

   (contrast) 2.31 ± 0.51 2.09 ± 0.46 0.045 

    (difference variance) 1.17 ± 0.22 1.08 ± 0.21 0.047 

16 grey levels 

   (contrast) 8.89 ± 2.05 8.02 ± 1.86 0.042 

    (difference variance) 4.20 ± 0.85 3.83 ± 0.82 0.043 

32 grey levels 

   (contrast) 35.21 ± 8.26 31.70 ± 7.46 0.040 

    (difference variance) 16.26 ± 3.42 14.77 ± 3.28 0.040 

64 grey levels 

   (contrast) 140.5 ± 33.09 126.4 ± 29.89 0.040 

    (difference variance) 64.46 ± 13.71 58.50 ± 13.10 0.039 

64 grey levels (5min post contrast) 

    (difference variance) 63.38 ± 14.42 56.61 ± 116.41 0.048 

Table 5.2: Summary of significant differences in texture parameters between PR and NR 

patients. The number of grey levels employed is detailed for each texture parameter. 
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5.1.4.2 TNBC (ER–negative PR–negative HER2–negative) vs. all others 

 

Table 5.3 shows the mean/standard deviation or median/range and p-values for the TNBC vs. 

all other types for all 16 texture parameters between groups for 16 grey levels at the 2 minute 

post contrast time point. Highly significant differences were obtained for   ,   ,     and     (p-

values 0.001 to 0.012) with  a p-value of 0.023 obtained for   . Table 5.4 provides further 

results for these texture parameters that showed significant differences in texture based on 

TNBC vs. all other types. 

Texture parameters Mean value ± Standard Deviation P value 

TNBC All others 

16 grey levels (2min post contrast) 

   (angular 2nd moment) 0.010±0.001 0.010±0.001 0.467 

   (contrast) 8.56±2.22 8.42±1.81 0.775 

   (correlation) 0.80±0.05 0.81±0.04 0.569 

   (variance) 16.84±1.23 16.10±1.06 0.127 

   (inv diff moment) 0.42±0.04 0.41±0.03 0.491 

   (sum average) 17.42±0.35 17.76±0.25 <0.001 

   (sum variance) 76.12±2.92 74.29±2.60 0.011 

   (sum entropy) Median:4.94 
Min:4.91 
Max:4.95 

Median:4.94 
Min:4.81 
Max:4.95 

0.023mw 

   (entropy) 7.13±0.18 7.12±0.16 0.930 

    (difference variance) 4.11±0.95 3.98±0.80 0.555 

    (diff entropy) 2.70±0.19 2.69±0.15 0.961 

    (info measure corr 1) -0.22±0.05 -0.22±0.04 0.953 

    (info measure corr 2) 0.89±0.04 0.89±0.03 0.900 

    (maximal corr coeff) 0.82±0.05 0.82±0.04 0.594 

    (cluster shade) -43.00±26.21 -63.65±20.83 0.001 

    (cluster prominence) 10856.51±595.
89 

10467.12±588.46 0.012 

Table 5.3: Comparison of TNBC vs. all other combinations of these three markers. Mean/SD or 

median/range and p-values for all texture parameters using 16 grey levels at the 2 minute 

post-contrast time point are shown. P-values determined using t-test or Mann Whitney test 

(labelled mw) as appropriate. 

Time points 

From Table 5.4 the results clearly show that the greatest number of significant differences are 

seen at 1-3 minute post contrast time points. At the 1 minute post contrast time point 

significant differences were found for texture parameters       ,  ,    ,      and    . At 2 and 3 
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minute post contrast time points significant differences were found for texture parameters    

,  ,    ,      and    . At 4 and 5 minute post contrast time points significant differences were 

only found for texture parameters     and    . No significant differences were reported for the 

pre-contrast phase.  

Grey levels 

From Table 5.4 it appears that the number of grey levels used had minimal effect as significant 

differences were reported across all grey levels (8, 16, 32 and 64) for the majority of 

parameters. The only exception to this was for   , sum entropy where results were variable 

between grey levels. 

Texture Parameter Grey 
Levels 

P value 

(1 min post contrast) 

   (variance) All <0.041 

   (sum average) All <0.001 

   (sum variance) All <0.002 

   (sum entropy) 16, 64 <0.025 

    (cluster shade) All <0.005 

    (cluster prominence) All <0.003 

(2 min post contrast) 

   (sum average) All <0.001 

   (sum variance) All <0.015 

   (sum entropy) 16, 32, 64 <0.045 

    (cluster shade) All <0.001 

    (cluster prominence) All <0.021 

(3 min post contrast) 

   (sum average) All <0.001 

   (sum variance) All <0.027 

   (sum entropy) 16, 32, 64 <0.049 

    (cluster shade) All <0.004 

    (cluster prominence) All <0.024 

(4 min post contrast) 

   (sum average) All <0.001 

    (cluster shade) All <0.008 

(5 min post contrast) 

   (sum average) All <0.001 

    (cluster shade) All <0.001 

Table 5.4: Summary of significant differences in texture parameters between TNBC vs. all other 

immuno-receptor sub-types. The number of grey levels employed is detailed for each texture 

parameter.  
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5.1.4.3 Nodal status data (Node-negative vs. Node-positive) 

 

Table 5.5 shows the mean/standard deviation and p-values for all 16 texture parameters for 16 

grey levels at the 3 minute post contrast time point. Table 5.6 summarises the significant 

differences in texture found between node -ve and node +ve patients.  

Time points 

From table 5.6 the results clearly show significant differences at 2-5 minute post contrast time 

points, but with the most significant seen at 3 minutes with p-values ranging from 0.015 to 

0.021. 

Grey levels 

From Table 5.6 it appears that the number of grey levels used had minimal effect as similar 

significant differences were found across all grey levels (8, 16, 32 and 64). The only exception 

to this was for 4 minutes post contrast where results were more variable.  
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Texture parameters Mean value ± Standard Deviation P value 

Node -ve Node +ve 

16 grey levels (2min post contrast) 

   (angular 2nd moment) 0.010±0.001 0.010±0.001 0.443 

   (contrast) 8.43±2.15 8.57±2.00 0.740 

   (correlation) 0.80±0.05 0.80±0.05 0.964 

   (variance) 16.58±1.39 16.50±1.07 0.779 

   (inv diff moment) 0.42±0.04 0.41±0.38 0.521 

   (sum average) 17.53 ± 0.38 17.71 ± 0.33 0.016 

   (sum variance) 75.01±3.40 74.83±2.56 0.783 

   (sum entropy) Median:4.94 
Min:4.82 
Max:4.95 

Median:4.94 
Min:4.91 
Max:4.95 

0.592 mw 

   (entropy) 7.10±0.19 7.15±0.15 0.259 

    (difference variance) 4.00±0.91 4.03±0.82 0.873 

    (diff entropy) 2.69±0.18 2.71±0.16 0.560 

    (info measure corr 1) -0.22±0.05 -0.21±0.04 0.234 

    (info measure corr 2) 0.90±0.04 0.89±0.03 0.266 

    (maximal corr coeff) 0.82±0.05 0.82±0.05 0.632 

    (cluster shade) -47.57 ± 36.83 -62.58 ± 21.73 0.021 

    (cluster prominence) 10629.26 
±737.93 

10599.89±568.24 0.832 

Table 5.5: Comparison of Nodal status of patients. Mean/SD or median/range and p-values for 

all texture parameters using 16 grey levels at the 3 minute post-contrast time point are shown. 

P-values determined using t-test or Mann Whitney test (labelled mw) as appropriate. 
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Texture parameters Mean value ± Standard Deviation P value 

Node -ve Node +ve 

8 grey levels   (2min post contrast) 

   (sum average) 9.29 ± 0.18 9.36 ± 0.159 0.041 

    (cluster shade) -6.41 ± 4.01 -7.88 ± 2.44 0.039 

16 grey levels 

   (sum average) 17.58 ± 0.37 17.73 ± 0.32 0.043 

    (cluster shade) -51.05 ± 32.13 -63.23 ± 19.37 0.032 

32 grey levels 

   (sum average) 34.17 ± 0.74 34.47 ± 0.65 0.044 

    (cluster shade) -409.8 ± 258.1 -505.9 ± 154.5 0.035 

64  grey levels 

   (sum average) 67.34 ± 1.49 67.92 ± 1.30 0.050 

    (cluster shade) -3272 ± 2071 -4012 ± 1223 0.042 

8 grey levels  (3min post contrast) 

   (sum average) 9.26 ± 0.19 9.35 ± 0.16 0.015 

    (cluster shade) -5.93 ± 4.49 -7.79 ± 2.68 0.020 

16 grey levels 

   (sum average) 17.53 ± 0.38 17.71 ± 0.33 0.016 

    (cluster shade) -47.57 ± 36.83 -62.58 ± 21.73 0.021 

32 grey levels 

   (sum average) 34.06 ± 0.77 34.42 ± 0.65 0.016 

    (cluster shade) -381.2 ± 295.2 -503.6 ± 173.8 0.019 

64 grey levels 

   (sum average) 67.11 ± 1.54 67.85 ± 1.30 0.016 

    (cluster shade) -3042 ± 2364 -4027 ± 1380 0.018 

8 grey levels  (4 min post contrast) 

   (sum average) 9.241 ± 0.194 9.327 ± 0.163 0.024 

16 grey levels 

   (sum average) 17.49 ± 0.394 17.65 ± 0.35 0.043 

32 grey levels 

   (sum average) 33.98 ± 0.79 34.33 ± 0.67 0.025 

    (cluster shade) -356.8 ± 318.7 -468.4 ± 193.5 0.048 

64 grey levels 

   (sum average) 66.97 ± 1.59 67.67 ± 1.33 0.024 

    (cluster shade) -2846 ± 2541 -3750 ± 1545 0.044 

8 grey levels  (5 min post contrast) 

   (sum average) 9.23 ± 0.20 9.31 ± 0.17 0.040 

16 grey levels 

   (sum average) 17.47 ± 0.39 17.63 ± 0.34 0.038 

32 grey levels 

   (sum average) 33.94 ± 0.79 34.27 ± 0.67 0.041 

Table 5.6: Summary of significant differences in texture parameters between node positive and 

node negative patients. The number of grey levels employed is detailed for each texture 

parameter. 
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5.1.4.4 Tumour grade derived from pre-treatment biopsy 

 

Table 5.7 shows the mean/standard deviation or median/range and p-values for all 16 texture 

parameters for 16 grey levels at the 2 minute post contrast time point. Table 5.8 summarises 

the significant differences in texture found between patients biopsy grade. Significant 

differences were shown for parameters       ,  ,    ,      and    . 

Texture parameters Mean value ± Standard Deviation P value 

Bi Gr 1 or 2 Bi Gr 3 

16 grey levels (2min post contrast) 

   (angular 2nd moment) 0.010±0.001 0.010±0.001 0.282 

   (contrast) 8.78±1.93 8.28±2.04 0.239 

   (correlation) 0.80±0.05 0.81±0.49 0.243 

   (variance) 16.19±1.13 16.74±1.21 0.031 

   (inv diff moment) 0.41±0.03 0.42±0.04 0.088 

   (sum average) 17.80±0.24 17.57±0.39 0.001 

   (sum variance) 73.92±2.81 75.44±3.02 0.016 

   (sum entropy) Median:4.94 
Min:4.81 
Max:4.95 

Median:4.94 
Min:4.91 
Max:4.95 

0.020mw 

   (entropy) 7.14±0.17 7.12±0.16 0.603 

    (difference variance) 4.12±0.85 3.96±0.85 0.354 

    (diff entropy) 2.72±0.15 2.68±0.18 0.211 

    (info measure corr 1) -0.22±0.05 -0.22±0.04 0.625 

    (info measure corr 2) 0.89±0.03 0.89±0.04 0.391 

    (maximal corr coeff) 0.82±0.05 0.82±0.05 0.584 

    (cluster shade) -64.58±17.72 -51.74±30.97 0.023 

    (cluster prominence) 1.04x   ±630.
37 

1.07x   ±646.06 0.020 

Table 5.7: Comparison of Biopsy grade of patients. Mean/SD or median/range and p-values for 

all texture parameters using 16 grey levels at the 2 minute post-contrast time point are shown. 

P-values determined using t-test or Mann Whitney test (labelled mw) as appropriate. 

Time points 

From table 5.8 the results clearly show most significant differences at 1-3 minute post contrast 

time points for the six textural parameters       ,  ,    ,      and    , demonstrating consistent 

differences between groups. 



166 
 

Grey levels 

From Table 5.8 it appears that the number of grey levels used had minimal effect as similar p-

values were obtained across all grey levels (8, 16, 32 and 64). 

Texture Parameter Grey 
Levels 

P value 

(1 min post contrast) 

   (variance) All <0.028 

   (sum average) All 0.001 

   (sum variance) All <0.016 

   (sum entropy) 16,64 <0.020 

    (cluster shade) 8,16,64 <0.037 

    (cluster prominence) All <0.025 

(2 min post contrast) 

   (variance) All <0.039 

   (sum average) All 0.001 

   (sum variance) All <0.022 

   (sum entropy) 16.32.64 <0.030 

    (cluster shade) All <0.026 

    (cluster prominence) All <0.029 

(3 min post contrast) 

   (variance) All <0.044 

   (sum average) All 0.001 

   (sum variance) All <0.024 

   (sum entropy) 16,32,64 <0.024 

    (cluster shade) All <0.023 

    (cluster prominence) All <0.024 

(4 min post contrast) 

   (sum average) All 0.003 

   (sum variance) 8,32,64 <0.047 

   (sum entropy) 16,32,64 <0.044 

    (cluster shade) All <0.012 

    (cluster prominence) 8,32,64 <0.055 

(5 min post contrast) 

   (sum average) All <0.004 

   (sum entropy) 32 <0.046 

    (cluster shade) All <0.012 

Table 5.8: Summary of significant differences in texture parameters between grade 1/2 and 

grade 3 patients. The number of grey levels employed is detailed for each texture parameter. 
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5.1.4.5 Summary 

 

The most significant differences in texture parameters were found at the 1-3 minute post 

contrast time points. Nine of the 16 texture parameters showed significant differences:        

and     for NR/PR data,     and     for nodal status; and       ,  ,    ,      and     for the TNBC 

and Biopsy grade datasets. The number of significant differences are summarised in figure 5.9. 

 

Figure 5.9: summary of significant differences for Nodal status, NR/PR, TNBC and biopsy grade 

data 

Figure 5.10 shows example images from a representative slice of patients with (a) low    (3.93) 

and     (1.97) values compared with (b) high    (13.14) and     (5.70) values where increased 

heterogeneity is evident. Patient in image (a) categorised as follows; biopsy grade group: 3, 

TNBC: all others, Nodal status: -ve, response status: PR. Image (b) patient had biopsy grade 

group: 1 or 2, TNBC: TNBC, Nodal status: +ve, response status: NR. 

Figure 5.11 shows representative slices with (a) high (18.22) and (b) low (16.67)    values. 

Image (b) shows a necrotic tumour where the core of the lesion has not taken up contrast 

agent and therefore appears overall darker with low    value in comparison to the image in (a). 

Patient in image (a) categorised as follows; biopsy grade group: 3, TNBC: all others, Nodal 
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status: +ve, response status: PR. Image (b) patient had biopsy grade group: 3, TNBC: TNBC, 

Nodal status: +ve, response status: NR. 

Figure 5.10 demonstrates images with (a) high and (b) low    (4.95, 4.91 respectively) and     

(11962.79, 9228.78) values with the higher values appearing more uniform. Patient in image 

(a) categorised as follows; biopsy grade group: 3, TNBC: TNBC, Nodal status: -ve, response 

status: NR. Image (b) patient had biopsy grade group: 3, TNBC: all others, Nodal status: +ve, 

response status: information unavailable. 

a)   b)  

Figure 5.10: Images obtained at 2 minutes post contrast, in breast cancer patients prior to 

undergoing neoadjuvant chemotherapy. (a) Image from patient age 48, biopsy grade 3 (4 

cycles EC, 4 cycles Docetaxel). Patient subsequently defined as partial responder with a >50% 

reduction in tumour size with low    and     values for texture. (b) Image from patient age 39, 

biopsy grade 2 (4 cycles EC, 4 cycles Epirubicin and cyclophosphamide/paclitaxel). Patient 

subsequently defined as non responder with a 5% reduction in tumour size with high    and     

values 
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a)  b)  

Figure 5.11: Images from breast cancer patients prior to undergoing neoadjuvant 

chemotherapy obtained at 2 minutes post contrast time point. (a) Image from a patient age 48, 

biopsy grade 3 (4 cycles EC, 4 cycles Docetaxel). Patient subsequently defined as not triple 

negative with a 94.3% reduction in tumour size with a high    value for texture. (b) Image from 

a patient age 43, biopsy grade 3 (4 cycles EC, 4 cycles Docetaxel). Patient subsequently defined 

as ER- PR- HER2 –ve with a 33.9% increase in tumour size with a low    value  
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a)  b)  

Figure 5.10: Images taken from patients with breast cancer prior to undergoing neoadjuvant 

chemotherapy taken at 2 minutes post contrast. (a) Sagittal image from a patient age 42, 

biopsy grade 3 (4 cycles EC, 3 cycles Docetaxel). Patient subsequently defined as ER- PR- HER2 –

ve group with a 45.2% reduction in tumour size with high    and     values for texture. (b) 

Sagittal image from a patient age 46, biopsy grade 3 (4 cycles Epirobicin and 

cyclophosphamide, 4 cycles Taxotere and Tamoxifen and then switched to Aromasin and 

radiotherapy). Patient subsequently defined as not triple negative with low    and     values 
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5.1.5 Discussion 

 

The results presented in this study demonstrated significant differences in textural features 

between partial responders and non responders to chemotherapy; the study showed that 

significant differences were found throughout all choice of grey levels when using histogram 

equalisation. It has also highlighted the importance of contrast enhanced MRI as no significant 

differences in texture were found in the pre contrast time point images, and more textural 

features showed significant differences around the 1-2 minute post contrast time points.  

In Summary as per figure 5.9 the results show the highest number of significant differences in 

texture parameters were found at 1-2 minute post contrast. Figure 5.9 illustrates the fact that 

75% of significant differences were found at 1 to 3 minutes post contrast time points. 

Consistently significant differences were noted across all grey levels between PR and NR 

groups at the 2 minute post contrast time point for    (contrast: a measure of local image 

variation [46]) and     (difference in variance: a measure of variation in the difference in grey 

levels between voxel pairs [46]).    and     showed higher values for non responders 

suggesting that lesions with increased heterogeneity can be expected to have reduced 

chemotherapeutic response.  

For TNBC data consistent significant differences across all grey levels were noted at 2 and 3 

minute post contrast time points for texture parameters    (sum average:  measure of overall 

image brightness [46]),    (sum variance: measure of how spread out the sum of the grey levels 

of voxel pairs is [46]),     and     (cluster shade/ cluster prominence: both gauge the 

perceptual concepts of uniformity and proximity [55]) and across 16, 32 and 64 grey levels for 

   (sum entropy: measure of randomness of the sum of the grey of neighbouring pixels [46]). 

For    the TNBC vs. all others data showed distinctly higher values for ‘all others’ suggesting 

patients with lower values for the texture parameter    have poorer prognosis,    ,    ,     and 

    had higher values for TNBC marker suggesting that patients with higher values in these 
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texture parameters having poor prognosis, and these findings seem to confirm Bhooshan’s 

[46] observations that heterogeneous lesions are characterised by poorer response. 

For Nodal status data consistent significant differences across all grey levels were noted at 2 

and 3 minute post contrast time points for texture parameters    and    . For    higher values 

in data were noted in node +ve suggesting patients with poor prognosis having higher values 

for this texture parameter ,     showed higher values for node –ve data suggesting patients 

with a lower value in     having a poor prognosis. 

For biopsy grade data most significant differences were observed at 1-3 minute post contrast 

time points across all grey levels for parameters   (variance: measure of grey level distribution 

[46]),    ,  ,   ,      and    . 

To summarise node +ve, high grade, TNBC are associated with poorer prognosis and from this 

thesis results appear to be consistently more heterogeneous in appearance. Lesions with 

necrotic areas clearly appear more heterogeneous during contrast enhancement. 

Limitations of this study include the fact that the data was not isotropic although the data was 

acquired using a 3D sequence and subsequently analysed in a multi slice fashion. Drawing ROIs 

on isotropic 3D images would be immensely time consuming whilst with multi slice 2D images 

a more true representation of the tumour is achieved than obtained with a single slice analysis. 

In order to gain isotropic 3D data the images would need to have been acquired using isotropic 

acquisition when patients were initially scanned, this in reality would be difficult to achieve 

with complete coverage without significantly degrading the temporal resolution.  

Another limitation was that within this work a large number of statistical tests were 

performed. Although for the purpose of hypothesis generation the number of tests is less 

critical there is evidently a potential for type 1 errors to occur. However since the results 

appear to be relatively consistent across the number of grey levels and time points this 

indicates that the results were less likely due to chance. 
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Reducing grey levels improves counting statistics per co-occurrence matrix element and is 

understood to have some effect on discriminatory power. This wasn’t found to be the case as 

it was noted that data was consistent across all grey levels. This needs further investigation as 

clearly having for example 2 grey levels would mean only a black and white image and would 

be difficult to distinguish one lesion from another. On an image with a higher number of grey 

levels the co-occurrence matrix would become sparse. The texture analysis results of an image 

analysed using 2 grey levels would be different to the one with a high number of grey levels. 

Further investigation could involve using a more varying number of grey levels as well as 

varying the distance between pixel pairs in the co-occurrence matrices. 

Finally critics could argue that the study did not have a very large patient group. Although data 

from 100 patients was used during analysis there was not always a proportional split of data 

available. For example the group TNBC only contained 22 patients which was analysed against 

all other combinations of these markers having 49 patients. There was however a more 

proportional data representation with partial/non-responders data having 49 N/R and 40 P/R 

split. Nevertheless the results are encouraging enough to warrant further investigation in a 

larger patient cohort. 

In conclusion this work has highlighted that textural differences between groups (based on 

biopsy grade or TNBC status) are apparent and appear to be most evident 1- 3 minutes post-

contrast administration. Whilst the large number of statistical tests undertaken necessitates a 

degree of caution in interpreting the results, the fact that significant differences are 

consistently observed is encouraging.  
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5.2 Single slice vs. multi slice Texture analysis 

5.2.1 Introduction 

 

In section 5.1 a study was performed to systematically assess the efficacy of DCE-MRI based 

textural analysis in predicting response to chemotherapy in a cohort of breast cancer patients. 

Significant differences for texture with respect to nodal status and partial responders vs. non 

responders were found [85]. This section aims to compare texture analysis on the same data 

cohort but using a single slice and single ROI to verify if texture analysis works best on multi or 

single slice MR images. If proven that single slice works just as well this would save processing 

time by 4 fold (17 minutes per patient down to 4 minutes) as well as a significant reduction in 

time taken to define the ROI. Figures 5.11 and 5.12 show examples of the data in single slice 

and multi-slice forms. 

5.2.2 Methods  

100 patients were scanned on a 3.0T HDx scanner immediately prior to neo-adjuvant 

chemotherapy treatment. For all patients a 3D dynamic dataset was acquired using VIBRANT 

(FOV 20×20 cm, acquisition matrix 220×160, slice thickness 2 mm, 12 phases with average 

tdel=33.7 s, range 25.5-44.7 s) Malignant tissue ROIs were generated semi-automatically on all 

slices utilising early arterial phase data. Texture analysis was then performed on 2 minute post-

contrast data, the reason being that 2 minute post-contrast data showed the best results for 

multi slice data therefore this time point was also used on single slice data. To prevent 

sparseness within subsequently calculated co-occurrence matrices the ROI data underwent 

grey level decimation via histogram equalisation. ROI data was reduced to 16 grey levels 

(reducing the number of grey levels improves SNR at the expense of discriminatory power). 

Tests were carried as as outlined in 5.1 but for response to chemotherapy and nodal status 

data only and were repeated on a single slice as opposed to multi slice in 5.1. The single slices 

were selected on the basis of largest ROI from each selection of slices in an attempt to try and 

cover the largest possible cross sectional area of the lesion.  
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figure 5.11: single slice image of breast cancer patient undergoing neoadjuvant chemotherapy 

 

figure 5.12: multi slice images of breast cancer patient undergoing neoadjuvant chemotherapy 

5.2.3 Results 

 

Recalling from the previous result on multi slice data. Nodal status was determined in 91 

patients (45 node –ve vs. 46 node +ve) and response data was available in 89 patients (40 

partial responders vs. 49 non-responders). Response data refers to response to chemotherapy 

with respect to longest diameter of lesion where the decrease in cross sectional area was 

greater than 50%. Regarding nodal status significant differences in f6 (sum average) and f15 

(cluster shade) were noted at 2 minutes post-contrast administration for 16 grey levels. 

Differences were noted between partial responders and non-responders for f2 (contrast) and 

f10 (difference variance). The same tests were repeated for single slice ROIs and no significant 

differences in texture were seen for nodal status or partial responders vs. non responders data 

(tables 5.9 and 5.10). A paired sample test for the single slice data against the multiple slice 

data was performed to establish whether values were in fact significantly different (table 5.11). 

The paired test revealed that all except parameter f16 showed p-values of <0.002 indicating 

texture data between multi and single was actually significantly different.  
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Table 5.9: PR vs. NR for multi slice (left) and single slice (right), parameters not listed showed 

no significant differences  

Table 5.10: Nodal status (node +ve vs. node –ve) for multi slice (left) and single slice (right), 

parameters not listed showed no significant differences  

 

Table 5.11: Paired actual data from single slice with multiple slice texture parameters 
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5.2.5 Discussion 

 

Single vs. multi slice results showed significant differences of <0.002 for all parameters except 

f16 in a paired sample comparison. Significant differences in f6 and f15 for nodal status, and f2 

and f10 for response, are observed when run on multi slice MR images, but when tested with 

single slice data no significant differences were observed when only the largest ROI was 

analysed. 

The study shows taking the largest cross sectional area does not necessarily highlight the most 

important region in terms of response discriminant. Despite the reduction in processing time 

clearly with single slice texture analysis we lose counting statistics and important tumour 

information is evidently missed. This appears to justify the use of multi slice data in textural 

analysis to maximise counting statistics. Texture analysis on small lesions must be treated with 

a degree of caution. 
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5.3 PCA & Logistic regression 

5.3.1 Logistic regression (LR) 

 

Logistic regression is an analytical technique which can be powerful when the outcome 

variable is dichotomous. With an increase in researchers having easy access to sophisticated 

statistical software LR has increased in popularity [86]. In this study logistic regression is used 

for the prediction of a dichotomous outcome for nodal status, PR/NR (with respect to lesion 

diameter), TNBC and biopsy grade data all of which were analysed for their textural features 

earlier in this chapter. Backward LR analysis was performed for 1 and 2 minute post contrast 

texture data only for 16 grey levels. This starts off with all 16 parameters and removes ones 

with p-values > 0.05 (least significant) and keeps performing LR until parameters in the end are 

the ones that can no longer be removed by LR, reporting the most significant parameters that 

would have an effect on outcome. LRA output consists of a single probability variable for each 

case (PLRA). This is a continuous variable from 0 to 1 indicating the degree of certainty in 

classification. A LRA model is described by:  

         
 

       and           
   

where each of the k variables are denoted by   , their weighting factors by   , and C is 

constant. 

5.3.1.2 Response to Neoadjuvant Chemotherapy (% change in longest diameter) 

 

Table 5.13 shows the classification table for the response data at 1 minute post contrast time 

point, it shows how once the z value was calculated SPSS statistics software predicted data 

split values and displays percentage correct values. For table 5.13: 

    z = 34.381f5 + (-881.432)f1 + (-6.027) 

Table 5.14 highlights the classification table at 2 minutes post contrast time point 

where z = -43.767f3 + (-1.833)f2 + (-986.745)f1 + 60.033  



179 
 

1min Classification Table
a
 

 Observed Predicted 

 PR_or_NR 

Percentage 

Correct 

 

Non-responder 

Partial 

responder 

Step 1 PR_or_NR Non-responder 37 12 75.5 

Partial responder 23 17 42.5 

Overall Percentage   60.7 

a. The cut value is .500 

Table 5.13 Classification table for response to chemotherapy data at 1 minute post contrast 

time point 

2min Classification Table
a
 

 Observed Predicted 

 PR_or_NR 

Percentage 

Correct 

 

Non-responder 

Partial 

responder 

Step 1 PR_or_NR Non-responder 32 17 65.3 

Partial responder 17 23 57.5 

Overall Percentage   61.8 

a. The cut value is .500 

Table 5.14 Classification table for response to chemotherapy data at 2 minutes post contrast 

time point 

5.3.1.3 TNBC (ER–negative PR–negative HER2–negative) vs. all others 

Table 5.15 shows the classification table for the TNBC data at the 1 minute post contrast time 

point  

where z = -0.046f15 + 174.736f12 +(-41.789)f11+(-0.946)f7+(-109.045)f5+4996.307f1+217.055 

Table 5.16 shows the classification table for the TNBC data at the 1 minute post contrast time 

point  

where z = -1.548f10+(-0.602)f7+52.341 
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1min Classification Table
a
 

 Observed Predicted 

 ER_PR_HER2 Percentage 

Correct  E-P-H- all others 

Step 1 ER_PR_HER2 E-P-H- 12 10 54.5 

all others 6 43 87.8 

Overall Percentage   77.5 

a. The cut value is .500 

Table 5.15 Classification table for TNBC data at the 1 minute post contrast time point 

 

 

 

2min Classification Table
a
 

 Observed Predicted 

 ER_PR_HER2 Percentage 

Correct  E-P-H- all others 

Step 1 ER_PR_HER2 E-P-H- 9 13 40.9 

all others 5 44 89.8 

Overall Percentage   74.6 

a. The cut value is .500 

Table 5.16 Classification table for TNBC data at 2 minutes post contrast time point 

 

5.3.1.4 Nodal status data (Node-negative vs. Node-positive) 

Table 5.17 shows the classification table for the nodal status data at the 1 minute post contrast 

time point  

where z = 61.337f14+166.956f8+4.190f6+1.723f2+(-962.808) 

Table 5.18 shows the classification table for the nodal status data at the 2 minutes post 

contrast time point  

where z = -0.015f16+(-0.076)f15+63.842f14+10.973f10+744.187f8+(-2.793)f7+5.121f6+(-

404.652)f5+15.570f4+13222.73f1+(-3707.466) 
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1min Classification Table
a
 

 Observed Predicted 

 Nodes Percentage 

Correct  Node -ve Node +ve 

Step 1 Nodes Node -ve 30 15 66.7 

Node +ve 16 30 65.2 

Overall Percentage   65.9 

a. The cut value is .500 

Table 5.17 Classification table for nodal status data at the 1 minute post contrast time point 

 

 

2min Classification Table
a
 

 Observed Predicted 

 Nodes Percentage 

Correct  Node -ve Node +ve 

Step 1 Nodes Node -ve 33 12 73.3 

Node +ve 9 37 80.4 

Overall Percentage   76.9 

a. The cut value is .500 

Table 5.18 Classification table for nodal status data at 2 minutes post contrast time point 

 

5.3.1.5 Tumour grade derived from pre-treatment biopsy 

Table 5.19 shows the classification table for the biopsy grade data at the 1 minute post 

contrast time point  

where z = -99.993f13+(-220.730)f12+44.187f11+149.080f5+2.730f4+(-5181.843)f1+(-

134.559) 

Table 5.20 shows the classification table for the biopsy grade data at the 2 minutes post 

contrast time point  

where z = -2.199f6+39.269 
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1min Classification Table
a
 

 Observed Predicted 

 Bi_Gr_all_3 Percentage 

Correct  Grade 1 or 2 Grade 3 

Step 1 Bi_Gr_all_3 Grade 1 or 2 18 20 47.4 

Grade 3 10 45 81.8 

Overall Percentage   67.7 

a. The cut value is .500 

Table 5.19 Classification table for biopsy grade data at the 1 minute post contrast time point 
 

2min Classification Table
a
 

 Observed Predicted 

 Bi_Gr_all_3 Percentage 

Correct  Grade 1 or 2 Grade 3 

Step 1 Bi_Gr_all_3 Grade 1 or 2 13 25 34.2 

Grade 3 13 42 76.4 

Overall Percentage   59.1 

a. The cut value is .500 

Table 5.20 Classification table for biopsy grade data at 2 minutes post contrast time point 

 

5.3.1.6 Discussion 

This section has shown that using LR outcome prediction is possible but further work is 

required. The analysis revealed that perfect separation of groups doesn’t appear to be 

possible. A disappointing classification rate of around 60% was observed for response to 

chemotherapy and biopsy grade data. Classification for nodal status and TNBC data appeared 

more promising. Texture analysis in a clinical setting could only be useful as an aid to the 

radiologist’s decision making process when all relevant MR data including pharmacokinetic 

modelling is utilised. 
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5.3.2  Principal component analysis (PCA) 

 

As in section 5.1 when too many statistical tests are performed there exists the possibility that 

the results were simply by chance and therefore it would be beneficial to reduce the 

dimensionality of the data. 

PCA is best explained by Jolliffe “The central idea of principal component analysis (PCA) is to 

reduce the dimensionality of a data set consisting of a large number of interrelated variables, 

while retaining as much as possible of the variation present in the data set. This is achieved by 

transforming to a new set of variables, the principal components (PCs), which are uncorrelated, 

and which are ordered so that the first few retain most of the variation present in all of the 

original variables” [87]. 

In order to calculate PCA the following steps are involved; obtaining the data, calculating the 

covariance matrix, calculating the eigenvectors (eigenvectors are perpendicular to each other 

and explain the variance in the data) and eigenvalues (eigenvectors have corresponding 

eigenvalues, which are ranked in order of size) of the covariance matrix. These steps need not 

be calculated manually as statistical analysis tools such as SPSS will automatically allow 

calculation of PCA on a given dataset. 

For the purposes of this work there were in total 16 texture parameters calculated for each 

patient in the neoadjuvant dataset, each texture parameter was calculated at the 6 different 

time points (pre-contrast, 1 minute to 5 minute post-contrast) and at 4 different grey level 

choices (8, 16, 32, 64). Given all the variables it is evident there is a lot of data present as the 

calculation shows 16 (texture parameters) * 6 (time points) * 4 (grey levels) = 384, giving 384 

individual bits of information per tumour. Clearly the large dimensionality of this data set 

could benefit from being reduced. There are various ways in which this could be achieved, for 

the purpose of this thesis the 6 times points were considered for each texture parameter and 

grey level, for example for the parameter f2 the data at each time point (pre-contrast-5min) at 

16 grey levels was used to apply PCA to. Tables 5.21, 5.22 and the scree plot in figure 5.13 
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highlight the preliminary results achieved. These results echo the findings for each texture 

parameter which all showed similar results after PCA was applied. From table 5.21 it is clear 

how the PCA has split the data into 6 components with component 1 holding 81% of the 

variance in data. Table 5.22 further highlights how component 1 for example has equal 

weighting for all variables (calculating the sum of all the variables and squaring gives an answer 

of 1, indicating PCA uses up each variable fully in its calculation methods). Figure 5.13 

illustrates each components eigenvalue. 

Component Initial Eigenvalues 

  Total % of Variance Cumulative % 

1 4.881 81.345 81.345 

2 .618 10.303 91.649 

3 .359 5.985 97.634 

4 .090 1.504 99.138 

5 .038 .635 99.774 

6 .014 .226 100.000 

Table 5.21:  Total variance explained using PCA extraction method 
 

 Component 

  1 2 3 4 5 6 

f2_preContrast .680 .724 .111 .034 -.020 -.002 

f2_1min .903 -.151 .384 -.028 .115 -.020 

f2_2min .961 -.190 .162 .011 -.092 .079 

f2_3min .978 -.161 -.034 -.011 -.102 -.081 

f2_4min .931 -.076 -.281 .210 .061 .007 

f2_5min .926 .060 -.305 -.210 .043 .018 

Table 5.22: Component Matrix using PCA for 6 components extracted 
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Figure 5.13: Scree plot showing eigenvalues for each of the 6 extracted components using PCA 

This brief example demonstrated that PCA can be utilised in texture analysis. If sufficient 

information is present combining all f parameters at one time point and one grey level choice 

computationally time could be significantly reduced. Any future work would involve taking the 

components with the highest eigenvalues, in this case components 1 and 2 and performing 

analysis on these components as opposed to on the full set of 16 texture parameters. Reducing 

the large dimensionality of this dataset to 2 components would clearly reduce processing time 

significantly whilst retaining information from all 16 parameters as per the rules of PCA.  
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6 Wavelet Analysis 

6.1 Introduction 

 

Wavelets concentrate on looking at the different spatial frequencies within images as 

previously explained in the literature review chapter. Along with Gabor filters and Wigner 

transforms, wavelet transforms are one of the most commonly used time-frequency methods 

for calculating multiscale features in images. Wigner distributions suffer from interference 

between different components of a signal and Gabor filters are considered non-orthogonal in 

redundant features at different scales or channels, nevertheless Gabor filters have been used 

in texture segmentation. A Wavelet transform is a linear operation free from interference and 

is considered a good measure for texture analysis [88]. Many different functions exist that can 

be used as wavelets but the Haar function is especially suitable for image texture. A Haar-like 

feature looks at adjacent rectangular regions in a detection window at a specific location, it 

then sums up the pixel intensities in each region and the difference between these sums is 

calculated. This difference is then used to categorise sections of an image. A simple rectangular 

Haar-like feature can be defined as the difference of the sum of pixels of areas inside the 

rectangle, which can be at any position and scale within the original image [89]. This modified 

feature set is called 2-rectangle feature, in addition there exist 3-rectangle and 4-rectangle 

features. The values indicate certain characteristics of a particular area of the image. Each 

feature type can indicate the existence (or absence) of certain characteristics in the image, 

such as edges or changes in texture. For example, a 2-rectangle feature can indicate where the 

border lies between a dark region and a light region [89]. 

The Haar wavelet is symmetric making it superior to other non-symmetric wavelets. Wavelet 

transform looks at directional variation and in a 2D image the analysis can be done in vertical, 

horizontal and diagonal directions. 
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6.2 One-dimensional Haar wavelet transform 

 

The Haar wavelet is the simplest wavelet basis, here an example will be discussed to get a 

sense of how wavelets work [90]. Consider a  one-dimensional image with a resolution of four 

pixels containing the following values 

[ 9   7   3   5 ] 

This can be represented in the Haar basis by computing a wavelet transform by first averaging  

the pixels together, pair wise giving the new lower resolution image with pixel values 

[ 8   4 ] 

The averaging process has clearly caused some information to be lost. In order to then recover 

the original four pixel values from the two averaged values, some details coefficients need to 

be sorted capturing the missing information. In the above example value 1 is chosen for the 

first detail coefficient, since the average computed is 1 less than 9 and 1 more than 7. The 

single number will allow the first two pixels of the original four-pixel image to be recovered. 

Similarly, the second detail coefficient is -1, since 4 + (-1) = 3 and 4 – (-1) = 5. Thus the original 

image is decomposed into a lower resolution (two-pixel) version and a pair of detail 

coefficients. Recursively repeating this process on the averages gives the full decomposition 

[90] 

Resolution  Average  Detail coefficients  

4   [ 9  7  3  5 ]   

2   [ 8  4 ]   [ 1  -1 ] 

1   [ 6 ]   [ 2 ] 

Finally the wavelet transform (wavelet decomposition) of the original four-pixel image can be 

defined to be the single coefficient representing the overall average of the original image, 

followed by the detailed coefficients in order of increasing resolution. Thus the wavelet 
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transform of the four-pixel original image for the one-dimensional Haar basis is: 

[ 6  2  1  -1 ] 

No information has been lost by this process of recursively averaging and differencing the 

coefficients (known as a filter bank). The original image and the transform both have 4 

coefficients, and given the transform the image can be reconstructed to any resolution by 

recursively adding and subtracting the detail coefficients from the lower resolution versions. 

6.3 Aims 

 

The aims of this research include: 

 Develop a robust software module in addition to the existing package for wavelet 

analysis of MRI data 

 Apply developed software  to cohort of 100 patients undergoing neoadjuvant 

chemotherapy of breast cancer, to help predict tumour response 

6.4 Methods 

 

The data acquisition and MRI protocols were exactly the same as mentioned in the texture 

analysis chapter which utilised the co-occurrence matrix approach. The same patient cohort 

was used and data was again split in the same way for analysis, the software module added to 

the existing software application adhered to software lifecycle as previously followed in the 

texture analysis chapter using co-occurrence method. 

6.4.1 Patient Population 

 

The data acquired from 100 patients, age range of 31-77 years, median age of 48 years, all 

undergoing neoadjuvant chemotherapy for treatment of locally advanced breast cancer at this 

Institute between April 2006 and September 2008 was retrospectively reviewed.  This study 

was approved by the Local Ethics Committee and NHS Trust. Post treatment biopsy grade was 

known in 97 patients (4 not specified, 6 grade 1, 32 grade 2, 55 grade 3). Details of treatment 

regime were available in 95 patients, the majority of whom (57) had a combination of EC 
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(Epirubicin and Cyclophosphamide) and Docetaxel. MR data was acquired prior to treatment 

and information on tumour response was obtained on completion of all cycles of NAC. The 

number of days between initial baseline MR scan and chemotherapy starting ranged from 1-45 

days with a median of 11.5 days.  

After treatment the patients were categorized according to their response to chemotherapy: 

partial responders (PR) corresponding to a decrease in longest diameter of tumour of greater 

than 50% (40 patients) and non-responders (NR) corresponding to a decrease of less than 50% 

(49 patients). Data for remaining 11 patients was not available. 

Data was also split based on factors that are known to influence response: TNBC (22 patients) 

vs. all other combinations of the three appropriate markers (49 patients) with 29 patients data 

unavailable; subdivided into nodal status by examining node negative (45 patients) vs. node 

positive (46 patients) with data in 9 patients not available; and tumour grade derived from pre-

treatment biopsy, biopsy grade 1 or 2 (38 patients) vs. biopsy grade 3 (55 patients) and 7 

patients data was not available. 

6.4.2 MRI Protocol 

 

MR acquisition protocol was as previously stated in section 5.1.2.2. 

6.4.3 Statistical Analysis 

 

Statistical analysis of the wavelet energy parameters was performed to establish whether the 

results were normally or non-normally distributed. The wavelet data was amalgamated and 

further combined with the patient data (PR or NR, Nodal status, TNBC and biopsy grade). 

Mann Whitney and  -tests were executed using SPSS on the combined data as appropriate. 

6.4.4 Wavelet energy parameters 

 

The wavelet coefficient image files were automatically generated using Matlab’s in built 

wavelet toolbox so coding this functionality was not required for the purpose of this study. The 

saved coefficient files were generated using the neoadjuvant patient cohort as per in the 



190 
 

texture analysis study in chapter 5. Only the slices from each patient containing the largest ROI 

were processed using the wavelet analysis tool. A module in the software allowed the 

calculation of the wavelet energy levels by taking as input the generated coefficient image files 

and corresponding ROI file for each patient. Further details are described in the design 

specification section of this thesis (chapter 3) in which the process shows how the coefficient 

images were normalised prior to energy calculation. The energy parameters calculated for 

each ROI image were 12 in total for the Haar function at 4 levels, each level consisting of 3 

directions. Energy levels are calculated as follows: 

                  
      

        
  

       

 
 

Where n is the number of pixels in ROI, both at given scale and sub-band 

In short the basic formula used in this study to calculate wavelet energy is the sum of each 

pixel squared divided by the total number of pixels. ROIs had to be reduced in size for 

successive scales in order to correspond to sub-band image dimensions. The output is a vector 

of features containing energies of wavelet coefficients calculated in sub-bands at successive 

scales. The software module generated for the purpose of this study outputs each patients 

energy levels in an excel spreadsheet where Directions 1,2 and 3 represent horizontal, vertical 

and diagonal directions respectively (fig 6.1) . Figure 6.3 illustrates example 2D wavelet output 

of a breast patient from the neoadjuvant data cohort obtained using the wavelet toolbox in 

Matlab using 4 Haar levels, figure 6.2 shows the original image. 
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Figure 6.1: example output from dicomreader software output of energy levels calculated from 

the wavelet coefficient images generated using Matlab’s wavelet toolbox, where directions 1,2 

and 3 represent horizontal, vertical and diagonal directions respectively. The results correspond 

to images in figures 6.2 and 6.3 

 

Figure 6.2: Original MR image of a breast patient undergoing neoadjuvant chemotherapy, 

patient is 58 year old female. Biopsy grade 3, TNBC, partial responder with respect to 

corresponding to a decrease in longest diameter of tumour of greater than 50%, nodal status 

data was unavailable. This image can be seen in figure 6.3 post 2D Haar wavelet analysis  
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Figure 6.3: 2D wavelet coefficient output of a breast patient from the neoadjuvant data cohort 

obtained using the wavelet toolbox in Matlab using 4 Haar levels and three directions as 

labelled. The wavelet energy transform results can be seen in figure 6.1
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6.5 Results 

The wavelet transform energy values were calculated for the chosen slices, only the slice 

containing the largest ROI was analysed and wavelet coefficients saved, the ROI was then 

registered onto each generated image (images as per figure 6.3) i.e. 12 images per patient, 

because the images are scaled depending on the Haar level each ROI had to be scaled before 

being registered onto the image. Once this was established the energy was calculated and 12 

wavelet parameters output per patient. Energy was calculated for the ROI only and each image 

was normalised between intensity values of 0 and 255 prior to wavelet analysis.  

6.5.1 TNBC (Triple negative breast cancer) vs. non TNBC  

 

Table 6.1 highlights the P values for the wavelet energy values for the three directions and four 

Haar levels that showed significant differences between TNBC and non TNBC. Table 6.2 shows 

all the results for this category at the 5 minute post contrast time point. 
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Wavelet Energy Median; Range P value 

TNBC Non TNBC 

PC_1min 

Haar4 Direction 1 4.19x   ; 
2.20x    – 

3.06x    

6.87x   ; 
5.87x    – 
1.05x    

0.042 (Mann Whitney) 

PC_2min 

Haar4 Direction 1 4.85x   ; 
3.01x    – 

3.29x    

7.85x   ; 
4.61x    – 
1.01x    

0.050 (Mann Whitney) 

PC_3min 

Haar3 Direction 2 1.03x   ; 
2.82x    – 
3.79x    

1.84x   ; 
2.81x    - 

1.67x    

0.032 (Mann Whitney) 

Haar4 Direction 1 5.38x   ; 
2.45x    - 

3.48x    

8.00x   ; 
3.38x    - 

8.95x    

0.043 (Mann Whitney) 

Haar4 Direction 2 4.57x   ; 
8.18x    - 
4.04x    

1.08x   ; 
441.88 – 

3.12x    

0.047 (Mann Whitney) 

PC_4min 

Haar3 Direction 2 1.17x    
(mean) 

±9.11x   (sd) 

2.13x   (mean) 
±2.04x   (sd) 

0.038 

PC_5min 

Haar4 Direction 1 6.48x    
(mean) 

±7.51x   (sd) 

1.29x   (mean) 

±1.51x   (sd) 

0.027 

Haar4 Direction 2 3.79x   ; 
7.48x    - 

3.69x    

9.08x   ; 
9.88 - 3.47x    

0.045 (Mann Whitney) 

Table 6.1: Summary for all time points including the mean/standard deviation or median/range 

and p-values for the wavelet transform energy parameters that showed significant differences 

between TNBC and non TNBC 
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Wavelet Energy Mean ± standard deviation P value 

TNBC Non TNBC 

PC_5min 

Haar1 Direction 1 2.74x    
±2.75x    

2.75 x    
±1.17x    

0.967 

Haar1 Direction 2 2.44x    
±1.48x    

2.88x     
±1.34x    

0.231 

Haar1 Direction 3 26.27±10.74 29.37±11.34 0.292 

Haar2 Direction 1 2.52x    
±1.44 x    

2.84x    
±1.42x    

0.397 

Haar2 Direction 2 1.99x    
±1.10 x    

2.51 x    
±1.15x    

0.083 

Haar2 Direction 3 5.04 x    
±2.49 x    

5.64x    
±2.62x    

0.379 

Haar3 Direction 1 1.57 x    
±1.27 x    

1.84x    
±1.23x    

0.417 

Haar3 Direction 2 1.21x    
±9.53 x    

2.00x    
±1.84x    

0.063 

Haar3 Direction 3 Median: 
3.10x    

Range: 
1.16x    – 
1.44x    

Median: 3.96x    
Range: 7.30x    

– 3.10x    

0.161 (Mann Whitney) 

Haar4 Direction 1 6.48x    
±7.51x    

1.29x    

±1.51x    

0.027 

Haar4 Direction 2 Median: 
3.79x    

Range: 
7.48x    - 

3.69x    

Median: 9.08x    
Range: 9.88 - 

3.47x    

0.045 (Mann Whitney) 

Haar4 Direction 3 Median: 
1.18x    

Range: 3.95 
x    – 

8.33x    

Median: 1.89x    
Range: 6.05 x     

- 1.53x    

0.168 (Mann Whitney) 

Table 6.2: Results at 5 minute post contrast time point showing the mean/standard deviation 

or median/range and p-values for the wavelet transform energy parameters markers. P-values 

highlighted showed significant differences between TNBC and non TNBC 

Time points 

The Haar level 4 direction 1 (horizontal) noted significant differences at 1,2,3 and 5 minutes 

post contrast time points. Haar level 4 direction 2 (vertical) and Haar level 3 direction 2 also 

showed 2 significant differences each. No significant differences were reported at pre-contrast 

phase. It is unclear why energy levels calculated in the diagonal direction revealed no 
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significant differences. It is worth noting that when looking at MR images in the diagonal 

direction the pixel to pixel distances are further apart than when looking in horizontal or 

vertical directions. Also all significant differences were found at levels 3 or 4 only. 

6.5.2 PR or NR (% change in longest diameter) 

 

Table 6.3 highlights the P values for the wavelet energy values for the three directions and four 

Haar levels that showed significant differences in wavelet energy based on PR or NR (partial 

responders or non-responders with respect to longest diameter of lesion). Table 6.4 shows all 

the results for this category at the 5 minute post contrast time point. 

Wavelet Energy Mean value ± Standard Deviation P value 

NR  PR  

No contrast 

Haar1 Direction 2 1.43x   ±1.12 
x    

9.82±65.23 0.020 

PC_1min 

Haar1 Direction 2 3.87 x    
±2.10 x    

287.52±139.18 0.009 

Haar1 Direction 3 34.93±15.30 28.72±12.42 0.042 

Haar2 Direction 2 3.17x   ±1.68
x    

2.55x   ±1.03x

    

0.036 

Haar2 Direction 3 7.18 x    
±3.30 x    

5.70 x    ±2.99 
x    

0.031 

PC_2min 

Haar1 Direction 2 3.70 x    
±1.95 x      

2.63 x    
±1.17x    

0.002 

Haar1 Direction 3 34.32±14.59 27.86±11.00 0.023 

Haar2 Direction 2 3.13x   ±1.51
x    

2.37x   ±874.86 0.004 

Haar2 Direction 3 7.02 x    
±3.11 x    

5.56 x    
±3.02x    

0.029 

Haar3 Direction 3 Median: 
4.11x    

Range: 689.68 
– 5.36x    

Median: 3.36x    
Range: 769.24 – 

8.87x    

0.025 (Mann Whitney) 

PC_3min 

Haar1 Direction 2 3.45 x    
±1.94 x    

2.51 x    
±1.09x    

0.008 

Haar2 Direction 2 2.95x   ±1.35
x    

2.29x    
±8.82x    

0.007 

Haar3 Direction 3 Median: 
3.95x    

Range: 
1.12x    – 
5.78x    

Median: 3.06x    
Range: 725.43 – 

1.03x    

0.021 (Mann Whitney) 
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PC_4min 

Haar1 Direction 2 3.10 x    
±1.42 x    

2.27 x    
±1.10x    

0.003 

Haar2 Direction 2 2.64x    
±1.23x    

2.06x   ±925.26 0.013 

Haar3 Direction 2 Median: 
1.57x    

Range: 
4.11x    – 

1.33x    

Median: 1.07x    
Range: 1.02x   – 

5.44x    

0.024 (Mann Whitney) 

Haar3 Direction 3 Median: 
3.78x    

Range: 859.17 
– 3.78x    

Median: 2.50x    
Range: 158.81 – 

1.19x    

0.011 (Mann Whitney) 

PC_5min 

Haar1 Direction 2 3.05 x    
±1.41 x    

2.33 x    
±1.12x    

0.014 

Haar2 Direction 2 2.66x    
±1.26x    

2.10x   ±993.07 0.029 

Haar3 Direction 2 2.10x    
±1.83x    

1.25x   ±8.26x
    

0.006 

Haar3 Direction 3 Median: 
4.00x    

Range: 
1.12x   – 
3.10x    

Median: 2.68x    
Range: 8.21 x    

– 1.47x    

0.012 (Mann Whitney) 

Table 6.3: The P values for the wavelet energy values for the three directions and four Haar 

levels that showed significant differences in wavelet energy based on PR or NR (partial 

responders or non-responders with respect to longest diameter of lesion) 
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Wavelet Energy Mean ± standard deviation P value 

NR  PR  

PC_5min 

Haar1 Direction 1 3.01x    
±1.53x    

2.69 x    
±1.19x    

0.297 

Haar1 Direction 2 3.05 x    
±1.41 x    

2.33 x    
±1.12x    

0.014 

Haar1 Direction 3 30.31±13.36 26.68±11.29 0.191 

Haar2 Direction 1 3.15x    
±1.73 x    

2.53x    
±1.45x    

0.085 

Haar2 Direction 2 2.66x    
±1.26x    

2.10x   ±993.07 0.029 

Haar2 Direction 3 6.16 x    
±3.35 x    

5.10 x    
±2.50x    

0.116 

Haar3 Direction 1 1.93 x    
±1.37 x    

1.67x    
±1.21x    

0.380 

Haar3 Direction 2 2.10x    
±1.83x    

1.25x   ±8.26x

    

0.006 

Haar3 Direction 3 Median: 
4.00x    

Range: 
1.12x   – 
3.10x    

Median: 2.68x    
Range: 8.21 x    

– 1.47x    

0.012 (Mann Whitney) 

Haar4 Direction 1 Median: 
7.76x    

Range: 
3.22x   – 

7.77x    

Median: 5.64x    
Range: 2.74 x    

– 3.48x    

0.204 (Mann Whitney) 

Haar4 Direction 2 1.03 x    
±1.83 x    

1.25x    
±8.26x    

0.305 

Haar4 Direction 3 Median: 
1.71x    

Range: 
3.95x   – 

2.12x    

Median: 1.72x    
Range: 9.96x    

– 8.33x    

0.643 (Mann Whitney) 

Table 6.4: Results at 5 minute post contrast time point showing the mean/standard deviation 

or median/range and p-values for the wavelet transform energy parameters markers. P-values 

highlighted showed significant differences between PR or NR (partial responders or non-

responders with respect to longest diameter of lesion) 

Time points 

This group showed significant differences in wavelet energy values at all time points. With the 

exception of no contrast time point all other 1 minute to 5 minute post contrast time points 

showed at least 3 energy wavelet parameters as having significant differences. The parameter 
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for Haar level 1 in the vertical direction was the only one that showed consistency in significant 

differences across all pre and post contrast time points. In total this group highlighted 21 

significant differences across all of the time points. 

6.5.3 Nodal status; Node-negative vs. Node-positive 

 

Table 6.5 highlights the P values for the wavelet energy values for the three directions and four 

Haar levels that showed significant differences in wavelet energy based on nodal status. Table 

6.6 shows all the results for this category at the 5 minute post contrast time point. 

Wavelet Energy Median; Range P value 

Node -ve Node +ve 

No contrast 

Haar3 Direction 2 3.40x   ; 
57.20 – 

3.72x    

7.14x   ; 
635.39– 3.16x    

0.023 (Mann Whitney) 

PC_5min 

Haar3 Direction 2 1.08x   ; 
2.44x   – 

1.17x    

1.84x   ; 
1.95x   – 
4.60x    

0.030 (Mann Whitney) 

Table 6.5: The P values for the wavelet energy values for the three directions and four Haar 

levels that showed significant differences in wavelet energy based on Nodal status 

  



200 
 

Wavelet Energy Mean ± standard deviation P value 

Node -ve Node +ve 

PC_5min 

Haar1 Direction 1 3.01x    
±1.63x    

2.88 x    
±1.12x    

0.648 

Haar1 Direction 2 2.71x    
±1.30x    

2.95x     
±1.34x    

0.400 

Haar1 Direction 3 29.39±14.04 30.09±10.96 0.795 

Haar2 Direction 1 2.99x    
±1.83 x    

2.93x    
±1.39x    

0.842 

Haar2 Direction 2 2.36x    
±1.24 x    

2.66x    
±1.12x    

0.246 

Haar2 Direction 3 5.57 x    
±3.42 x    

6.15x    
±2.60x    

0.372 

Haar3 Direction 1 1.99 x    
±1.49 x    

1.67x    
±1.09x    

0.266 

Haar3 Direction 2 Median:1.08x
    

Range:2.44x

   – 1.17x    

Median:1.84x    
Range:1.95x   – 

4.60x    

0.030 (Mann Whitney) 

Haar3 Direction 3 Median:3.17 
x    

Range:1.18x
    -3.10 x     

Median:4.17 x    
Range:7.30x    -
1.48 x     

0.164 (Mann Whitney) 

Haar4 Direction 1 Median:6.49x

    
Range:6.85 
x   -5.96 

x    

Median:6.63x    
Range:2.74 x   -

7.77 x    

0.788 (Mann Whitney) 

Haar4 Direction 2 8.20 x    
±8.51 x    

1.06x    
±8.56x    

0.211 

Haar4 Direction 3 Median:1.66 
x    

Range:6.05 
x   - 1.53 

x    

Median:1.85x    
Range:9.96x   -

2.12 x    

0.366 (Mann Whitney) 

Table 6.6: Results at 5 minute post contrast time point showing the mean/standard deviation 

or median/range and p-values for the wavelet transform energy parameters markers. P-values 

highlighted showed significant differences between Node -ve and Node +ve 

Time points 

There were only 2 significant differences noted for the nodal status group, both were for the 

parameter at Haar level 3 in the vertical direction, one was at the no contrast time point and 

the second at the 5 minute post contrast (wash out) time point suggesting that there are no 

wavelet energy differences during the initial contrast enhancement. 
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6.5.4 Biopsy grade 

 

Table 6.7 highlights the P values for the wavelet energy values for the three directions and four 

Haar levels that showed significant differences in wavelet energy based on biopsy grade. Table 

6.8 shows all the results for this category at the 5 minute post contrast time point. 

Time points 

This group showed significant differences in wavelet energy values at all times points. At all pre 

and post contrast time points this group showed 1-2 energy parameters with significant 

differences with the exception of 5 minute post contrast time point showing significant 

differences in 4 of the parameters. The parameter for Haar level 3 in the vertical direction was 

the only one that showed consistency in significant differences across all post contrast time 

points. In total this group highlighted 12 significant differences across all of the time points. 
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Wavelet Energy Median; Range P value 

Bi Grade 1or2 Bi Grade 3  

No contrast 

Haar3 Direction 1 7.27x   ; 
647.79 - 

2.84 x    

4.37x   ; 
199.04 - 

2.60 x    

0.038 (Mann Whitney) 

PC_1min 

Haar2 Direction 2 3.26x   (mea
n) ±1.50 
x   (sd) 

2.63x   (mean) 
±1.40 x   (sd) 

0.038 

Haar3 Direction 2 1.80x   ; 
3.25 x    - 

1.18 x    

1.30x   ; 
3.18 x    - 
5.28 x    

0.049 (Mann Whitney) 

PC_2min 

Haar2 Direction 2 3.16x   (mea
n) ±1.30 
x   (sd) 

2.51x   (mean) 
±1.29 x   (sd) 

0.019 

Haar3 Direction 2 2.46x   (mea
n)±1.59 
x   (sd) 

1.59 x   (mean) 
±1.10 x   (sd) 

0.045 

PC_3min 

Haar2 Direction 2 2.96x   (mea
n) ±1.23 
x   (sd) 

2.40 x   (mean) 
±1.15 x   (sd) 

0.025 

Haar3 Direction 2 1.77x   ; 
3.31 x    - 

1.67 x    

1.22x   ; 
2.81 x    - 
4.45 x    

0.016 (Mann Whitney) 

PC_4min 

Haar3 Direction 2 2.25x   (mea
n)±2.21 
x   (sd) 

1.32 x   (mean) 
±9.60 x   (sd) 

0.019 

PC_5min 

Haar3 Direction 1 2.23x   (mea
n)±1.38 
x   (sd) 

1.61 
x   (mean)±1.20 

x   (sd) 

0.028 

Haar3 Direction 2 1.52x   ; 
1.95 x    - 

1.17 x    

9.57x   ; 
2.36 x    - 
4.62 x    

0.007 (Mann Whitney) 

Haar3 Direction 3 3.96x   ; 
1.23 x    - 
3.10 x    

3.05x   ; 
730.50 - 

1.47 x    

0.034 (Mann Whitney) 

Haar4 Direction 1 8.87x   ; 
5.74 x    - 

5.97 x    

5.45x   ; 
3.79 x    - 

7.77 x    

0.037 (Mann Whitney) 

Table 6.7: The P values for the wavelet energy values for the three directions and four Haar 

levels that showed significant differences in wavelet energy based on biopsy grade 
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Wavelet Energy Mean ± standard deviation P value 

Bi Grade 1or2 Bi Grade 3  

PC_5min 

Haar1 Direction 1 3.13x    
±1.67x    

2.71 x    
±1.20x    

0.167 

Haar1 Direction 2 2.81 x    
±1.23 x    

2.62 x    
±1.35x    

0.500 

Haar1 Direction 3 31.05±14.81 27.42±10.93 0.191 

Haar2 Direction 1 3.33x    
±1.88 x    

2.64x    
±1.41x    

0.051 

Haar2 Direction 2 2.64x    
±1.26x    

2.22x    
±1.10x    

0.101 

Haar2 Direction 3 6.27 x    
±3.61 x    

5.26 x    
±2.47x    

0.121 

Haar3 Direction 1 2.23x   ±1.38 
x    

1.61 x   ±1.20 
x    

0.028 

Haar3 Direction 2 Median:1.52x
    

Range:1.95 
x    - 

1.17 x    

Median:9.57x    
Range:2.36 x    - 

4.62 x    

0.007 (Mann Whitney) 

Haar3 Direction 3 Median:3.96x
   ; 

Range:1.23 
x    - 

3.10 x    

Median:3.05x    
Range:730.50 - 

1.47 x    

0.034 (Mann Whitney) 

Haar4 Direction 1 Median:8.87x

    
Range:5.74 

x    - 

5.97 x    

Median:5.45x    
Range:3.79 x    - 

7.77 x    

0.037 (Mann Whitney) 

Haar4 Direction 2 Median:7.25x 
x    

Range:9.88 – 
3.47 x    

Median:4.47x 
x    

Range:7.48 x    

– 3.69 x    

0.728 (Mann Whitney) 

Haar4 Direction 3 Median:2.07x 
x    

Range:6.05 
x    – 

1.53x    

Median:1.44x 
x    

Range:3.58 x    

– 2.12x    

0.163 (Mann Whitney) 

Table 6.8: Results at 5 minute post contrast time point showing the mean/standard deviation 

or median/range and p-values for the wavelet transform energy parameters markers. P-values 

highlighted showed significant differences for biopsy grade 
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Figure 6.4: Summary of significant differences for all data groups for wavelet energy values 

 

6.6 Discussion 

 

The results presented in this chapter demonstrated significant differences in wavelet analysis 

energy parameters between partial responders and non responders of chemotherapy. Unlike 

texture analysis using Haralicks co-occurrence method in which the importance of contrast 

enhanced MRI was seen as only 2 significant differences in texture were found in the pre 

contrast time point images, wavelet analysis suggests that differentiating between groups can 

be successfully found in the pre-contrast stage. There were certain groups that clearly only 

showed significant differences post contrast such as TNBC vs. non TNBC. On the other hand 

nodal status only showed significant differences in the pre-contrast and washout phases. 

Groups such as PR vs. NR (% change in longest diameter) highlighted larger number of 

significant differences in post contrast time points than in pre-contrast. These results are 

summarised in figure 6.4. 

Of the 43 significant differences highlighted in figure 6.4 for all the different groupings, 

wavelet analysis clearly shows the 5 minute post contrast time point performing better than 
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the others, pre-contrast time points showed the least number of significant differences and 1-

4 minute post contrast time points were more consistent. It can be seen from figure 6.4 that 

for all the time points (pre-contrast, 1, 2, 3, 4 and 5 minutes post contrast) the significant 

differences were 6.98%, 16.28%, 18.6%, 18.6%, 13.95% and 25.58% respectively. 

With respect to the different Haar levels (1, 2, 3 and 4) there the split in significant differences 

was 18.6%, 22.3%, 41.9% and 16.3% respectively, indicating that Haar level 3 revealed the 

most and Haar 4 the least significant differences. With respect to direction of wavelets 

analysed 16.3% of the differences were found in the horizontal direction, 62.8% vertical and 

20.9% in the diagonal directions. 

6.7 Conclusions 

 

This work has highlighted that wavelet analysis energy levels can show differences between 

groups (based on TNBC, PR or NR with respect to % change in longest diameter, nodal status 

and biopsy grade) and are seen throughout all time points (pre and post contrast 

administration) with the highest number of total significant differences noted at 5 minutes 

post contrast. The vertical directions contain over 62% of the results, this directional bias is 

unexpected and somewhat surprising and would require further investigation in a larger data 

cohort, in addition it may be worth investigating into the fact that all the images acquired for 

this thesis have phase encoding in the vertical direction. 
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7 Texture Mapping 

7.1 Introduction 

 

Texture analysis was used to assess MR images in chapter 5 in which as with most previous 

studies, it was performed using generated areas investigating known ROI’s. In addition to 

helping to score lesions using BI-RADS (section 2.3), MRI is also used as a screening tool. As 

with mammography any one patient can contain huge volumes of data, this is overcome by 

CAD systems to allow automated analysis. The idea behind the study in this chapter is to 

highlight areas of interest (possible lesions) using an additional function of the in house 

generated software tool, these highlighted areas can then be marked and used as an aid by 

radiologists for further investigation. This study aims to texture map DCE MR images of breast 

patients utilising the co-occurrence method but on a pixel by pixel basis in order to determine 

threshold values for normal, benign and malignant tissue and ultimately creating a 

functionality within the developed software to highlight hotspots outlining areas of interest 

(possible lesions).  Benign and normal data was taken from screening data and malignant data 

from known malignancies. 

7.2 Aims 

 

The software developed for texture analysis will be extended; a texture mapping facility will be 

added which will analyse any given image pixel by pixel and perform texture analysis on each 

individual pixel, the result will be one new map per texture parameter (16 texture parameters 

as outlined in chapter 5). From the resulting maps individual pixel values will be analysed and 

processed in an attempt to try and threshold values for benign and malignant lesions as well as 

normal breast tissue. Once this is achieved these threshold values will aid in developing the 

software further to achieve a hot spot (lesion) detection functionality which will allow a user of 

the software to take any of the 16 texture mapped output image files and the software will 

automatically highlight hotspots (areas of interest) that may contain a lesion.  
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7.3 Methods 

 

Data acquired was a series of high resolution 3D T1 weighted images of breast patients [TR 

range 4-4.8ms, TE range 1.5-1.9ms/Fr, 20x20cm or 22x22cm FOV, 256x256 matrix, 4-5.4mm 

slice thickness]. The study analysed images from 2 minute post contrast time points including 

20 normal breast patients, 21 with known benign (taken from MR screening data) and 17 with 

known malignant (taken from MR breast images of known malignancies) lesions.  

7.3.1 Segmentation 

 

Segmentation was semi-automated within the software the user to highlight the area from 

nipple to chest wall prior to performing texture mapping. The user selects start and end points 

of where the image is to be segmented, the idea being this removes the chest wall area as well 

as noise present in front of the nipple area thus reducing the processing time of the mapping 

function. In fact by doing this for any given single breast image processing time was reduced 

from 15 to 4 minutes.  

7.3.2 Pixel by pixel mapping 

 

The software was an extension of the previously generated application where the author 

successfully used texture analysis using the co-occurrence matrices method to predict 

chemotherapy response in breast patients [85] as seen in chapter 5. Texture mapping was 

performed on the slice with the largest cross section of disease once the images had been 

segmented. The software used was an extension of the previously created application 

therefore all the underlying mathematical formulas and co-occurrence matrices method 

including histogram equalisation techniques and grey level variations used are the same as per 

the texture analysis covered in chapter 5. The biggest different in this study was the fact that 

the texture analysis was performed on a pixel by pixel basis on the whole image as opposed to 

a pre drawn ROI. The texture mapped output of that given pixel is placed in a new image (16 in 

total, one for each texture parameter) until every pixel is analysed and a map is generated for 

each texture parameter. Texture analysis was performed on a pixel by pixel basis specifying a 
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matrix size surrounding each pixel, from this a co-occurrence matrix is calculated for each pixel 

in the original image (figures 7.1 and 7.2), the result is that an image map is output for each of 

the 16 texture parameters. Larger matrix sizes will result in more blurred images for each 

texture parameter whereas smaller matrix sizes will have lower counting stats and if noise is 

present then the image becomes less accurate (figure 7.2). In this chapter a 5x5 matrix 

surrounding each pixel was. Figure 7.3 highlights an example of a benign case which has been 

analysed using the texture mapping feature, the figure shows each of the 16 maps produced 

given an MR image as input.  

 

Figure 7.1: illustration shows how the in house software treats the surrounding pixels based on 

the specified matrix size, from this the co-occurrence matrix is calculated 
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Figure 7.2: calculation for different matrix sizes (3, 5 and 7) clearly produce different 

corresponding co-occurrence matrices 
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[a]  

[b]  [c]  [d] [e]  

[f] [g] [h] [i]  

[j] [k] [l] [m]  

[n] [o] [p] [q]  

Figure 7.3: original MR image [a] acquired at 2 minute post contrast using a high resolution 3D 

T1 weighted sequence. Patient is a 51 year old female with a benign lesion (highlighted after 

visual inspection and reference to radiological report). Radiologist report stated the lesion as 

having poorly defined margin with surrounding normal parenchyma, biopsy result revealed 

mild duct ectusia in the right breast. Maps were generated post segmentation of original MR 

image using the in house software’s texture mapping feature, the maps [b-q] are of texture 

parameters f1 to f16 respectively using a 5x5 matrix size 
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A module has been developed to search for hotspots in the texture mapped image whereby 

the software feature searches the image pixel by pixel for a specified range of pixel values and 

window size in order to highlight potential lesions. 

7.3.3 FROC Analysis 

The Free Response Operating Characteristic (FROC) curve is based on a regional analysis. The 

FROC paradigm is mainly used in the assessment of medical imaging systems, particularly in 

the evaluation and comparison of CAD algorithms [91, 92].  

FROC analysis works in a similar way to ROC analysis, except that the false positive rate on the 

x-axis is replaced by the number of false positives per image. FROC analysis utilises location 

information, so that if a disease is highlighted in the appropriate location it is rewarded else it 

is penalised. The FROC analysis is more relevant to the clinical practice of radiology, where it is 

not only important to identify disease, but also to offer further guidance regarding other 

characteristics (such as location) of the disease.  

Before FROC data can be analyzed, a definition of a detected region is needed. Although there 

are different opinions in the literature [92-94], in our work we use an ad hoc approach which 

classes the lesion as a detected true positive if the software highlights any part of the lesion. 

Whether this highlights only a fraction of the lesion or goes beyond the lesion it is still 

classified as a true positive. In later optimized versions of the software this could be adapted 

but this study is primarily proof of principle that lesion detection is in fact possible through 

texture mapping. 

7.4 Results 

7.4.1 Segmentation 

 

Images were successfully segmented post processing, Figure 7.4 shows example of a malignant 

case pre and post segmentation 
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[a] [b]  

Figure 7.4: MR image of breast with known malignancy (highlighted area) [a] original image 

and [b] segmented image after elimination of areas posterior to and including the chest wall. 

Noise areas inferior to the nipple have also been removed to improve processing time 

7.4.2 Texture Map 

 

Table 7.1 shows the data from the benign and malignant patients after lesion detection 

(hotspot) feature was executed for the texture parameter f1 using a matrix size of 5. The 

software revealed high overall sensitivity values (59-88%) varying depending on the input 

variables used for f1. The average number of false positives per patient also varied depending 

on input variable from 0.4–5. The filtering technique involved viewing the histogram of each 

image and taking the lowest or middle range of values and use these as the input variables for 

identifying pixels as areas of interest. In addition changing matrix sizes allowed for average 

pixel value search regions to be varied. 

Table 7.2 shows the data from the benign and malignant patients after lesion detection 

(hotspot) feature was executed for the texture parameter f9 using a matrix size of 5. The 

software revealed high overall sensitivity values (74-94%) varying depending on the input 

variables used for f9. The average number of false positives per patient also varied depending 

on input variable from 2–5.  
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 Lesion identified (ignoring edges/noise) 
Yes = 1/no = 0 

No. Of additional areas (non lesion, not 
including edge outline/noise) joint areas 
classed as one lesion 

*S1 *S2 *S3 *S4 *S5 *S1 *S2 *S3 *S4 *S5 

B2  1 1 1 1 0 2 3 3 1 1 

B4 1 1 1 0 0 4 2 1 0 0 

B5 0 0 0 0 0 5 2 2 1 1 

B6 1 1 0 0 0 6 3 4 2 1 

B7 1 1 1 1 1 3 3 3 1 1 

B8 0 0 0 0 0 2 0 0 0 0 

B9 1 1 1 0 0 3 0 0 0 0 

B10 1 1 1 1 1 3 1 2 2 1 

B11 1 1 1 1 1 3 1 1 0 0 

B13 1 1 0 0 0 2 1 1 0 0 

B15 1 1 1 1 1 1 0 0 0 0 

B16 1 1 1 1 1 7 5 3 3 0 

B19 0 0 0 0 0 3 3 2 1 0 

B20 1 1 1 1 1 2 2 3 1 0 

B21 1 1 1 1 1 3 2 2 1 1 

B23 1 1 1 1 0 8 4 2 1 0 

B24 1 1 0 0 0 6 2 2 1 1 

M1  1 1 1 1 1 4 1 0 0 0 

M2 1 1 1 1 1 4 2 1 0 0 

M3 0 0 0 0 0 8 5 1 0 0 

M4 1 1 1 1 0 6 3 2 1 1 

M5 1 1 1 1 0 7 7 2 2 0 

M6 1 1 1 1 1 6 2 1 0 0 

M7 1 1 1 1 1 9 8 3 2 2 

M8 1 1 1 1 1 9 5 3 2 2 

M9 1 1 1 1 1 7 4 1 0 0 

M10 1 1 1 1 1 12 5 1 1 0 

M11 1 1 1 1 1 4 2 0 0 0 

M12 1 1 1 1 0 4 4 3 2 1 

M13 1 1 1 1 1 8 4 1 1 1 

M14 1 1 1 1 1 8 3 0 0 0 

M15 1 1 1 1 1 3 0 0 0 0 

M16 1 1 1 1 1 6 5 1 0 0 

M17 1 1 1 1 1 3 1 0 0 0 

Sensiti
-vity 88.2 88.2 79.4 73.5 58.8      

Avg      5.0 2.8 1.5 0.8 0.4 

Table 7.1: Texture parameter f1 for benign (B) and malignant (M) cases, where *s1 = matrix 

size: 3, BIN size: 10, histogram value range: lowest (0.8-0.9), *s2 = matrix size: 5, BIN size: 10, 

histogram value range: lowest (0.8-0.9), *S3= matrix size: 7, BIN size: 10, histogram value 

range: lowest (0.8-0.9), *s4 = matrix size: 9, BIN size: 10, histogram value range: lowest (0.8-

0.9), *s5 = matrix size: 11, BIN size: 10, histogram value range: lowest (0.8-0.9) 
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case id Lesion identified (ignoring edges/noise) 
Yes = 1/no = 0 

No. Of additional areas (non lesion, not 
including edge outline/noise) joint areas 
classed as one lesion 

*S1 *S2 *S3 *S4 *S5 *S1 *S2 *S3 *S4 *S5 

B2  1 1 1 1 1 2 2 2 1 1 

B4 1 1 1 0 0 5 4 3 2 0 

B5 1 0 0 0 0 6 3 3 3 3 

B6 1 1 1 0 0 8 7 4 4 4 

B7 1 1 1 1 1 9 5 4 2 2 

B8 1 0 0 0 0 2 2 1 0 0 

B9 1 1 1 0 0 5 4 3 2 2 

B10 1 1 1 1 1 4 2 1 1 1 

B11 1 1 1 1 1 5 6 2 1 1 

B13 1 1 0 0 0 5 3 1 1 1 

B15 1 1 1 1 1 2 2 2 2 2 

B16 1 1 1 1 1 8 6 3 3 2 

B19 0 0 0 0 0 4 4 2 2 1 

B20 1 1 1 1 1 2 2 2 1 0 

B21 1 1 1 1 1 4 3 2 2 2 

B23 1 1 1 1 1 9 5 3 3 1 

B24 1 1 1 0 0 7 7 5 5 4 

M1  1 1 1 1 1 6 3 3 3 3 

M2 1 1 1 1 1 2 2 3 3 2 

M3 0 0 0 0 0 6 4 3 1 1 

M4 1 1 1 1 1 7 3 2 2 2 

M5 1 1 1 1 1 5 3 4 2 2 

M6 1 1 1 1 1 7 4 3 2 1 

M7 1 1 1 1 1 5 5 4 2 1 

M8 1 1 1 1 1 9 8 7 7 6 

M9 1 1 1 1 1 7 5 2 2 2 

M10 1 1 1 1 1 6 4 3 2 2 

M11 1 1 1 1 1 2 1 0 0 0 

M12 1 1 1 1 1 5 7 6 6 6 

M13 1 1 1 1 1 5 4 2 1 1 

M14 1 1 1 1 1 6 7 7 7 4 

M15 1 1 1 1 1 5 5 4 4 4 

M16 1 1 1 1 1 5 3 3 3 1 

M17 1 1 1 1 1 5 4 4 4 4 

Sensiti 
-vity 94.1 88.2 85.3 73.5 73.5      

Avg      5.3 4.1 3.0 2.5 2.0 

Table 7.2: Texture parameter f9 for benign (B) and malignant (M) cases, where*s1 = matrix 

size: 9, BIN size: 10, histogram value range: lowest (0.416-0.832), *s2 = matrix size: 9, BIN size: 

8, histogram value range: lowest (0.52-1.04), *S3= matrix size: 9, BIN size: 4, histogram value 

range: lowest/second lowest (1.04-2.08), *s4 = matrix size: 9, BIN size: 13, histogram value 

range: middle (1.91-2.24) 
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Table 7.3 shows the data from the benign and malignant patients after lesion detection 

(hotspot) feature was executed for the texture parameter f13 using a matrix size of 5. The 

software revealed high overall sensitivity values (62-94%) varying depending on the input 

variables used for f13. The average number of false positives per patient also varied depending 

on input variable from 2–6.3.  

Benign cases  

Figures 7.5-7.8 show the software output highlighting lesions of interest in a patient identified 

with a benign lesion. Figure 7.5 shows the original image with lesion area highlighted using the 

radiology report and visual inspection. Figure 7.6-7.8 show the image maps for texture 

parameters f1, f9 and f13 respectively. In the cases such for f9 and f13 the edges highlighted were 

ignored and not counted as part of false positive areas of interest as this is a flaw of the 

segmentation feature that would need optimising in the future that is allowing the edges to be 

highlighted as areas of interest. 
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case id Lesion identified (ignoring edges/noise) 
Yes = 1/no = 0 

No. Of additional areas (non lesion, not 
including edge outline/noise) joint areas 
classed as one lesion 

*S1 *S2 *S3 *S4 *S5 *S1 *S2 *S3 *S4 *S5 

B2  1 1 1 0 0 2 3 3 2 0 

B4 1 1 0 0 0 7 4 3 1 0 

B5 0 0 0 0 0 5 3 3 4 3 

B6 1 1 1 0 0 10 5 3 3 2 

B7 1 1 1 1 1 9 4 2 2 2 

B8 0 0 0 0 0 4 0 0 0 0 

B9 1 1 1 0 0 6 3 3 3 3 

B10 1 1 1 1 1 6 1 1 2 1 

B11 1 1 1 1 1 4 4 1 1 1 

B13 1 1 0 0 0 3 3 1 1 1 

B15 1 1 1 1 1 3 2 2 2 2 

B16 1 1 1 1 1 8 3 3 2 0 

B19 1 0 0 0 0 7 2 2 0 0 

B20 1 1 1 1 1 3 2 2 1 1 

B21 1 1 1 1 1 4 3 3 3 3 

B23 1 1 1 0 0 6 3 1 0 0 

B24 1 1 0 0 0 9 9 6 5 6 

M1  1 1 1 1 1 5 5 3 3 5 

M2 1 1 1 1 1 5 4 4 3 3 

M3 1 0 0 0 0 5 4 1 1 1 

M4 1 1 1 1 0 6 5 3 3 2 

M5 1 1 1 1 1 6 4 2 0 0 

M6 1 1 1 1 1 4 4 2 2 2 

M7 1 1 1 1 1 10 4 2 1 2 

M8 1 1 1 1 1 6 8 6 6 5 

M9 1 1 1 1 1 11 6 2 2 2 

M10 1 1 1 1 1 10 4 2 2 2 

M11 1 1 1 1 1 4 1 1 0 0 

M12 1 1 1 1 0 6 7 7 7 5 

M13 1 1 1 1 1 11 6 3 3 3 

M14 1 1 1 1 1 9 8 7 5 5 

M15 1 1 1 1 1 6 4 3 3 3 

M16 1 1 1 1 1 7 4 2 2 1 

M17 1 1 1 1 1 7 5 5 5 5 

Sensiti 
-vity 94.1 88.2 79.4 67.6 61.8      

Avg      6.3 4.03 2.8 2.4 2.1 

Table 7.3: Texture parameter f13 for benign (B) and malignant (M) cases, were *s1 = matrix 

size: 3, BIN size: 10, histogram value range: lowest (0.0999-0.2), *s2 = matrix size: 5, BIN size: 

10, histogram value range: lowest (0.0999-0.2), *S3= matrix size: 7, BIN size: 10, histogram 

value range: lowest (0.0999-0.2), *s4 = matrix size: 9, BIN size: 10, histogram value range: 

lowest (0.0999-0.2), *s5 = matrix size: 11, BIN size: 10, histogram value range: lowest (0.0999-

0.2) 

 



217 
 

 

Figure 7.5: Original MR image with lesion area highlighted after visual inspection and reference 

to radiology report. Image acquired at 2 minutes post contrast using a high resolution 3D T1 

weighted sequence. Patient is a 40 years old female with a benign lesion (fibrodenoma and 

corresponding fibrocystic disease) in the left breast 

 

Figure 7.6:  f1 (angular second moment) map after lesion detection using hotspot analysis. In 

this case the lesion is highlighted automatically (blue areas) alongside additional areas of 

interest 
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Figure 7.7:  f9 (entropy) map after lesion detection using hotspot analysis. In this case the lesion 

is highlighted automatically (blue areas) alongside additional areas of interest 

 

Figure 7.8:  f13 (information measure of correlation 2) map after lesion detection using hotspot 

analysis. In this case the lesion is highlighted automatically (blue areas) alongside additional 

areas of interest 
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Malignant cases 

Figures 7.9-7.12 show the software output highlighting lesions of interest in a patient 

identified with a malignant lesion. Figure 7.9 shows the original image with lesion area 

highlighted using the radiology report and visual inspection. Figures 7.10-7.12 show the image 

maps for texture parameters f1, f9 and f13 respectively. As before in the cases for f9 and f13 the 

edges highlighted were ignored and not counted as part of false positive areas of interest. 

 

Figure 7.9: Original MR image with lesion area highlighted after visual inspection and reference 

to radiology report. Image acquired at 2 minutes post contrast using a high resolution 3D T1 

weighted sequence. Patient is a 46 years old female with a malignant lesion in the left breast 
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Figure 7.10: f1 (angular second moment) map after lesion detection using hotspot analysis. In 

this case the lesion is highlighted automatically (blue areas) alongside additional areas of 

interest 

 

Figure 7.11: f9 (entropy) map after lesion detection using hotspot analysis. In this case the 

lesion is highlighted automatically (blue areas) alongside additional areas of interest 
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Figure 7.12: f13 (information measure of correlation 2) map after lesion detection using hotspot 

analysis. In this case the lesion is highlighted automatically (blue areas) alongside additional 

areas of interest 

Normal cases 

Figures 7.13-7.16 show the software output highlighting areas of interest in a normal patient. 

Figure 7.13 shows the original image. Figures 7.14-7.16 show the image maps for texture 

parameters f1, f9 and f13 respectively. As before in the cases for f9 and f13 the edges highlighted 

were ignored and not counted as part of false positive areas of interest. As these are normal 

cases any lesion of interest is a false positive. 
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Figure 7.13: Original MR image of a normal patient. Image acquired at 2 minutes post contrast 

using a high resolution 3D T1 weighted sequence. Patient is a 39 years old female 

 

Figure 7.14: f1 (angular second moment) map after lesion detection using hotspot analysis. In 

this case the lesions of interest are highlighted automatically (blue areas) 
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Figure 7.15: f9 (entropy) map after lesion detection using hotspot analysis. In this case the 

lesions of interest are highlighted automatically (blue areas) 

 

Figure 7.16: f13 (information measure of correlation 2) map after lesion detection using hotspot 

analysis. In this case the lesions of interest are highlighted automatically (blue areas) 
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7.4.3 FROC analysis 

The FROC analysis in figure 7.17 shows the data from tables 7.1-7.3 for the three texture 

parameters f1, f9 and f13 and displays the sensitivity against the false positives per patient, 

highlighting that higher sensitivity is achievable at the expense of a higher number of false 

positive lesions. Figure 7.3[a] shows an example of a patient with a benign lesion, figures 7.18 

and 7.19 show its corresponding texture mapped outputs for the texture parameter f1 with 

zero false positives (fig 7.18) and high number of false positives (fig 7.19), in both examples the 

true positive is also highlighted. Figure 7.17 shows the data as having around 60-95% 

sensitivity when benign and malignant data is combined.   

 

Figure 7.17: FROC analysis for benign and malignant data for texture parameter f1, f9 and f13. 

The analysis shows that sensitivity gradually increases with false positives per patient 
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Figure 7.18: output showing patient in image in figure 7.3[a] after texture mapping performed 

and lesion detection function used to highlight suspicion regions. This example showed no false 

positives and highlighted the lesion (blue) 

 

Figure 7.19: output showing patient in image in figure 7.3[a] after texture mapping performed 

and lesion detection function used to highlight suspicion regions. This example showed 7 false 

positives and highlighted the lesion as well. In this example edge of breast highlighted also in 

blue was not included in the count for false positive areas of interest 

7.5 Discussion 

 

This study has generated and analysed texture maps for normal, benign and malignant cases 

and has established that lesion detection is possible. This has potential as a screening tool 

although the hotspot lesion detection feature needs further optimisation in order to decrease 

the number of false positives and increase true positives. The segmentation feature of the 

software is relatively unsophisticated and would need further work in order to segment breast 
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tissue more accurately to eliminate noise and reduce false positives arising from the skin 

surface.  Although an erosion feature was programmed into the software this was not used for 

this study as it seemed to incorrectly remove breast tissue in some cases instead of just 

eliminating breast edges. Optimisation of the erosion feature could be explored which was 

programmed as a function but not used in the analysis due to its in ability to distinguish breast 

from noise accurately.  

The FROC analysis has provided useful insight into the data highlighting that overall sensitivity 

of a true positive lesion is good with sensitivity of benign and malignant combined of 60-95% 

(figure 7.17). Higher sensitivity is achieved at the expense of an increase in the number of false 

positives per patient. Only three of the 16 texture parameters were analysed due to the large 

amount of time required to analyse each parameter and measure its false positive rate and 

sensitivity. The texture maps have already been generated therefore this is something that can 

be reserved for a further study. This further work could indicate (especially if data is used in 

combination) that not all 16 texture parameters are needed - the goals may be achieved by 

using a single or a select few parameters as was done in this study using 3 parameters. Of the 3 

parameters analysed f1 appears to have the greatest area under the curve and therefore offers 

the most promise of any individual parameter. 

Future work in order to optimise the analysis process would include looking at the other 13 

texture parameters and running the same input variables. This study chose to look at texture 

parameter maps for f1, f9 and f13 as initial testing of these parameters using mock input 

variables worked well but looking at other parameters could possibly yield better results. 

Although the three parameters assessed used a thresholding method involving simple 

histogram based technique which took a set range from each texture map histogram, other 

means of thresholding need to be explored. One possible technique could be looking at each 

texture map on a pixel level at the known lesion area for all texture maps and attempt to look 

for patterns amongst pixel values of lesions and attempt to generate threshold values unique 
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to each texture parameter. Adjusting the variables further could be explored for example 

varying the matrix sizes used to include matrix sizes not explored in current tests. At the 

moment only 17 benign and 17 malignant cases were tested, once additional and more 

optimum input variables are established for the lesion detection feature a larger data cohort 

would yield a more accurate FROC analysis. Further testing is also needed to reduce the 

number of false positives especially in normal breast data. 

From a software user perspective instead of showing lesion area on the texture mapped 

image, the whole process could be hidden and the user (radiologist) would simply run analysis 

and suspicion regions would be highlighted on the original MR image. 
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8 Shape Analysis 

8.1 Introduction 

 

Unlike in texture analysis where the most commonly used statistical technique due to its ability 

to study the 2nd order statistics of pixels at different spacings and angles is the Haralick model 

[95], the optimal shape features are not evident and there exists various ways of calculating 

mathematically the geometry of a given shape or lesion, from traditional means like circularity 

to features such as moment analysis. Bhooshan et al [46] used shape (geometric) analysis 

along with other computerised methods such as texture and kinetic features on DCE-MRI 

breast lesions in an attempt to make use of them as prognostic markers. The circularity feature 

proved to be an effective way of classifying Invasive Ductal Carcinoma (IDC) versus Ductal 

Carcinoma In Situ (DCIS) lesion. The study also recognised that DCIS can appear to be a mass-

like enhancement; thus in their analysis both morphological and kinetic features were used for 

classification purposes. In this study an attempt is made to use shape parameters to assess 

tumour surface irregularity, and as a predictor of response to chemotherapy using a select few 

of the available shape descriptors. 

8.2 Methods 

 

100 patients were scanned on a 3.0T HDx scanner immediately prior to neo-adjuvant 

chemotherapy treatment. For all patients a 3D dynamic dataset was acquired using VIBRANT 

(FOV 20×20 cm, acquisition matrix 220×160, slice thickness 2 mm, 12 phases with average 

tdel=33.7 s, range 25.5-44.7 s) Malignant tissue ROIs were generated semi-automatically on all 

slices utilising early arterial phase data. Shape analysis was then performed on pre-contrast 

and 1, 2, 3, 4 and 5 minutes post-contrast data for the shape descriptors that involved pixel 

intensity in their calculations. For the other descriptors of shape that involved looking at the 

shape of the ROI only (normalised radial lengths, convexity and circularity), one given time 

point was taken (namely 2 minute post contrast) as the results for these shape descriptors do 

not take into account any pixel intensity values from the image therefore output would be the 
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same regardless of time point. The shape descriptors were output using an in house developed 

software application and included calculations involving radial length, convexity, circularity, 

moments, eigenvalue and eccentricity.  

Radial length is the distance between a given point on the tumour surface and the tumour 

centroid, see figure 8.1. Once radial length was obtained the normalised radial lengths and 

mean normalised radial length were also calculated to remove size dependency. In addition 

the standard deviation of the normalised radial length was calculated which shows how much 

variation or “dispersion” there is from the average. A standard deviation value of 0 would 

suggest a circle. Skewness of normalised radial length was also measured as illustrated by 

figure 8.2 where a negative skew occurs when the bulk of the values lie to the right of the 

mean, a positive skew occurs when the bulk of the values lie to the left of the mean and a zero 

value indicates that the values are relatively evenly distributed on both sides of the mean. The 

final calculation involving radial length was kurtosis of normalised radial length, kurtosis 

measures whether the data is peaked or flat relative to a normal distribution as illustrated in 

figure 8.3. 
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Figure 8.1: illustrates how on a given shape or lesion the radial lengths and centroid are 

determined and from these the NRL and meanNRL are calculated. The shrunk version of the 

shape in the bottom left of the figure shows that because the data is normalised size makes no 

difference as the NRL will be the same so long as the shape is not changed 

 

figure 8.2 [96]: illustrates how the bulk of the values in a negative skew (left) lie to the right of 

the mean, in  a positive skew (right) bulk of the values lie to the left of the mean 
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Figure 8.3 [97]: The graphs show low vs. high kurtosis. Kurtosis is a parameter that describes 

the shape of a random variables probability density function (PDF). Consider the two PDFs in 

the illustration above, these graphs illustrate the notion of kurtosis. The PDF of the right has 

higher kurtosis than the PDF on the left. It is more peaked in the centre and it has fatter tails 

Convexity measures the number or size of concavities in a shape. Tumours can be spiculated 

suggesting invasion into the surrounding tissue with benign tumours tending to be less 

spiculated and having well-circumscribed margins (fig 8.4). Thus a measure of convexity could 

be useful. First the convex hull of the shape is calculated by taking the smallest convex polygon 

that can contain the region (see figure 8.5 for illustration). Convexity is then calculated as 

shape area/convex hull area expressed as a percentage. Since a circle or ellipse has no 

concavities they will have 100% convexity.   

a) b)  

Figure 8.4 [98]: MRI of breast fibroadenoma with well-circumscribed margins (a) and MRI of 

invasive breast carcinoma with spiculated margins (b) 
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Figure 8.5: illustrates how convexity is measured by first calculating the convex hull of the 

shape. The convex hull is the smallest polygon that can contain the region on the image, this is 

region A +  regions B. The convexity of the image can be calculated using the formula 

A/(A+B)*100 

Circularity sometimes referred to as compactness is a measure of how closely packed a shape 

is or not. The formula is perimeter²/area with the most compact shape being a circle (4π), all 

other shapes have compactness values larger then 4π. 

Image moments are a measure of a shapes statistical properties, where the first few terms 

give general shape and later terms fill in finer details (see figure 8.6). Moments are unique in 

that they are translate, rotate and scale invariant. The shape can be perfectly reconstructed if 

enough moments have been calculated. For the purpose of this study calculations included μ00, 

μ01, μ10, μ02, μ11, μ20, μ30, μ03, μ21 and μ12. The following formulas illustrate how 1d moments are 

calculated 
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The above formulas show some familiar 1D moment calculations where f(x) represents pixel 

intensity value for the xth pixel. As the moments increase the various calculations can be 

obtained by increasing the power of the variation around the mean i.e. 2nd moment is variance 
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and 3rd moment is skew and so on. The nth moment about the mean is known as the nth central 

moment illustrated here 

  

 

In a similar way the following formula illustrates how the various moments are calculated for 

2D. 
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Central moments for 2D objects where x  and y  (above) are the coordinates of the centre of 

mass given by the following formula 
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With  00 the area of the object, the eigen vectors of this matrix correspond to the major and 

minor axes of the image intensity. By finding the eigenvalues of the covariance matrix we can 

find the eccentricity of the shape.  

 

Figure 8.6: illustrates image moments and how the first few terms based on statistical 

properties give the general shape of the image and later terms look at finer details 
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Eigenvalue 

The eigenvectors of a square matrix are the non-zero vectors which once multiplied by the 

matrix, remain either proportional to the original vector (change only in magnitude, not in 

direction) or become zero. Each eigenvectors corresponding eigenvalue is the factor by which 

the eigenvector changes when multiplied by the matrix [99]. Figure 8.7 illustrates an 

eigenvector. 

 

Figure 8.7 [99]: In this shear mapping the red arrow changes direction but the blue arrow does 

not. Therefore the blue arrow is an eigenvector, with eigenvalue 1 as its length is unchanged 

Eccentricity is a measure of ratio of the longest cord of the shape to the longest cord 

perpendicular to it. The value is between 0 and 1, an ellipse whose eccentricity is 0 is actually a 

circle, while an ellipse whose eccentricity is 1 is a line segment (fig 8.8). The application 

created for this study takes into account pixel intensity and not just shape of lesion therefore 

eccentricity values differ depending on time point and grey levels used. Hence the largest cord 

is not necessarily the largest physical distance (fig 8.8). The formula for eccentricity is   

   
  

  
 

Where    is the distance from the centre to the focus of the ellipse and    is the distance 

from the centre to a vertex. 
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Calculations involving radial lengths (including mean, standard deviation, skewness and 

kurtosis), circularity and convexity were only performed at a single time point as these are 

descriptors of shape that do not take into account image pixel intensity values and hence the 

output would be the same regardless of which time point is taken for the calculation. All the 

other calculations i.e. calculations involving moments, eigenvalues and eccentricity take into 

account the underlying pixel intensity values and were therefore performed for all time points. 

All calculations were implemented on the slice with the largest distinct ROI area. 

 

Figure 8.8: eccentricity is the  ratio of the longest chord of the shape to the longest chord 

perpendicular to it. The value is between 0 and 1, an ellipse whose eccentricity is 0 is actually a 

circle, while and ellipse whose eccentricity is 1 is a line segment. If image pixel intensity is also 

taken into account rather than just the shape of lesion then values will differ depending on time 

point in acquisition and grey levels used when analysing image 

8.3 MRI Protocol 

 

MR acquisition protocol was as previously stated in section 5.1.2.2 
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8.4 Results 

  

After treatment the patients were categorized according to their response to chemotherapy: 

partial responders (PR) corresponding to a decrease in longest diameter of tumour of greater 

than 50% (40 patients) and non-responders (NR) corresponding to a decrease of less than 50% 

(49 patients). Data for remaining 11 patients was not available. 

Data was also split based on factors that are known to influence response: TNBC (22 patients) 

vs. all other combinations of the three appropriate markers (49 patients) with 29 patients data 

unavailable; subdivided into nodal status by examining node negative (45 patients) vs. node 

positive (46 patients) with data in 9 patients not available; and tumour grade derived from pre-

treatment biopsy, biopsy grade 1 or 2 (38 patients) vs. biopsy grade 3 (55 patients) and 7 

patients data was not available. 

The  data contained a mixture of normally distributed and non-normally distributed data and 

appropriate tests were performed, where data was found to be normally distributed t-tests 

were performed and for non-normally distributed data Mann-Whitney tests were performed 

using SPSS. As stated earlier in this chapter (section 8.2) the shape descriptors containing 

calculations of Normalised Radial Length (NRL), convexity and circularity do not take into 

account pixel intensity of the ROI values and therefore the results were the same across all pre 

and post-contrast time points for these 6 shape parameters. Hence if results show significant 

difference for kurtosisNRL shape parameter at 2 minute post contrast time point then this 

would be consistent across all time points. The box plots show the distribution of the nodal 

status data against circularity parameter (fig 8.9) and TNBC data against the kurtosisNRL shape 

descriptor (fig 8.10). The box plot for nodal status data shows that circularity mean values vary 

significantly for node +ve and node -ve but there is still a considerable amount of data overlap 

(p-value = 0.001). With the TNBC data the kurtosisNRL mean values are not that much 

different (p-value = 0.026) having considerable data overlap between TNBC and non-TNBC 

data. 
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Figure 8.9: box and whisker plot showing distribution of nodal status data for the circularity 

shape descriptor 

 

Figure 8.10: box and whisker plot showing distribution of TNBC data for the kurtosisNRL shape 

descriptor 
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8.4.1 Response to Neoadjuvant Chemotherapy (% change in longest diameter) 

 

Table 8.1 shows the mean/standard deviation or median/range and p-values for all shape 

parameters for the results obtained at the 2 minute post contrast time point. There were no 

significant differences to report between groups.  

Time points 

No significant differences were seen on the pre-contrast or any of the post contrast phases.  
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Shape 
parameter 

Mean value ± Standard Deviation P value 

NR PR 

2min post contrast 

Mean NRL 0.77±0.13 0.74±0.15 0.473 

Stdev NRL 0.14±0.07 0.15±0.08 0.662 

Skewness NRL -0.03±0.33 -0.02±0.31 0.918 

Kurtosis NRL -1.07±0.50 -1.10±0.30 0.764 

Convexity 77.07±13.14 76.95±14.48 0.966 

Circularity 0.44±0.24 0.43±0.21 0.942 

μ00 1.11x   ±8.13x    1.34x   ±1.02x    0.242 

μ01 0.5x    ±6.5x     -0.0x    ±1.11x    0.758 

μ10 Median:0.0x     
Min:-3.2x     
Max:8.5x     

Median: 1.5x     
Min: -2.1x     
Max:3.4x     

0.106 mw 

μ02 Median:6.53x    
Min:4.89x    
Max:1.29x    

Median: 7.74x    
Min: 7.80x    
Max:1.98x    

0.723 mw 

μ11 Median:-3.13x    
Min:-4.41x    
Max:1.59x    

Median: -3.30x    
Min: -4.74x    
Max:9.45x    

0.792 mw 

μ20 Median:6.16x    

Min:2.80x    
Max:1.80x    

Median: 6.50x    
Min: 1.73x    
Max:1.15x    

0.463 mw 

μ30 Median:-9.49x    
Min:-8.57    
Max:3.17x    

Median: -2.79x    
Min: -2.08x     
Max:1.39x     

0.433 mw 

μ03 Median:-1.35x    
Min:-2.57x    
Max:1.68x     

Median: 2.97x    
Min: -1.26x     
Max:3.08x    

0.760 mw 

μ21 Median:2.44x    
Min:-6.68x    
Max:1.34x     

Median: 6.23x    
Min: -2.48x     
Max:6.26x    

0.463 mw 

μ12 Median:2.99x    
Min:-3.41x    
Max:4.58x     

Median: 9.13x    
Min: -2.73x     
Max:4.41x    

0.980 mw 

Eigen value 1 Median:47.90 
Min:3.34 

Max:407.65 

Median: 49.34 
Min: 4.95 

Max:283.00 

0.882 mw 

Eigen value 2 Median:104.69 
Min:5.98 

Max:737.15 

Median: 117.14 
Min: 23.82 

Max:1.38x    

0.650 mw 

Eccentricity 0.70±0.14 0.71±0.19 0.757 

Table 8.1: Comparison of shape parameters between PR and NR patients. Mean/SD or 

median/range and p-values for all shape parameters at the 2 minute post-contrast time point 

are shown. P-values determined using t-test or Mann Whitney test (labelled mw) as 

appropriate 
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8.4.2 TNBC (ER–negative PR–negative HER2–negative) vs. all others 

 

Table 8.2 shows the mean/standard deviation or median/range and p-values for all the shape 

parameters with highlighted areas demonstrating significant differences between groups for 

the results obtained at the 2 minute post contrast time point. Table 8.3 summarises the 

significant differences in shape between TNBC and non-TNBC patients across all time points. In 

this instance the shape descriptor kutosisNRL was the only parameter that showed a  

significant difference with a p-value of 0.026.  

Time points 

Significant differences were observed for the parameter kurtosisNRL. Since this parameter 

does take into account pixel intensity the result would be the same across all time points 

(Table 8.3). 
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Shape 
parameter 

Mean value ± Standard Deviation P value 

TNBC All others 

2min post contrast 

Mean NRL 0.77±0.15 0.76±0.15 0.804 

Stdev NRL 0.13±0.08 0.14±0.08 0.576 

Skewness NRL -0.03±0.36 0.94x    ±0.35 0.731 

Kurtosis NRL -0.81 ± 0.74 -1.11 ± 0.35 0.026 

Convexity 74.42±14.71 76.56±13.92 0.559 

Circularity 0.38±0.21 0.44±0.24 0.341 

μ00 1.30x   ±9.50x    1.21x   ±8.63x    0.692 

μ01 1.21x    ±1.02x
     

0.24x    ±8.34x     0.673 

μ10 Median:0.9x     
Min:-3.2x     
Max:3.4x     

Median:0.9 x     
Min:-5.3 x     
Max:2.2 x     

0.931 mw 

μ02 Median:1.14x    
Min:7.80x    
Max:1.98x    

Median:7.65 x    
Min:4.89 x    
Max:1.29 x    

0.542 mw 

μ11 Median:-2.29x    
Min:-4.74x    
Max:9.45x    

Median:-3.63 x    
Min:-4.41 x    
Max:3.95 x    

0.263 mw 

μ20 Median:1.22x    
Min:1.73x    
Max:1.15x    

Median:6.36 x    

Min:2.80 x    
Max:1.80 x    

0.263 mw 

μ30 Median:-3.00x    
Min:-2.08x     
Max:7.08x    

Median:-1.48 x    
Min:-2.12 x     
Max:5.51 x    

0.419 mw 

μ03 Median:-2.73 x    
Min:-1.26 x     
Max:2.76 x     

Median:-1.35 x    
Min:-3.81 x    
Max:7.51 x    

0.619 mw 

μ21 Median:-3.66 x    
Min:-2.48 x     
Max:5.02 x    

Median:2.44 x    
Min:-6.68 x    
Max:6.26 x    

0.682 mw 

μ12 Median:1.13 x    
Min:-2.73 x     
Max:1.08 x     

Median:8.08 x    
Min:-3.41 x    
Max:1.58 x     

0.441 mw 

Eigen value 1 Median:74.98 
Min:4.95 

Max:378.18 

Median:46.10 
Min:3.34 

Max:371.72 

0.192 mw 

Eigen value 2 Median:147.78 
Min:23.82 
Max:1.38 

Median:97.67 
Min:5.98 

Max:737.15 

0.139 mw 

Eccentricity 0.73±0.18 0.70±0.16 0.481 

Table 8.2: Comparison of significant differences in shape parameters between TNBC and non-

TNBC patients. Mean/SD or median/range and p-values for all shape parameters at the 2 

minute post-contrast time point are shown  
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shape parameters Mean value ± Standard Deviation P value 

TNBC All others 

All phases 

Kurtosis NRL -0.81 ± 0.74 -1.11 ± 0.35 0.026 

Table 8.3: Summary of significant differences in shape parameters between TNBC and non-

TNBC patients 

8.4.3 Nodal status data (Node-negative vs. Node-positive) 

 

Table 8.4 shows the mean/standard deviation or median/range and p-values for all shape 

parameters with highlighted areas demonstrating significant differences between groups for 

the results obtained at the 2 minute post contrast time point. Significant differences were 

noted for the shape parameters convexity and circularity with p-values of 0.003 and 0.001 

respectively. Table 8.5 summarises the significant differences in shape between nodal status 

patients across all time points. 

Time points 

Significant differences were seen on the pre-contrast and 5 minute post-contrast time point 

for one of the moments shape calculations μ03, which showed a p-value of 0.046 and 0.043 

respectively highlighting a significant difference in this shape descriptor between nodal status 

data (Table 8.5). In addition significant differences were observed for the parameters 

convexity and circularity but with this parameter being of those that do not take into account 

pixel intensity the result would be the same across all time points. 
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Shape 
parameter 

Mean value ± Standard Deviation P value 

Node -ve Node +ve 

2min post contrast 

Mean NRL  0.76±0.14 0.75±0.15 0.722 

Stdev NRL 0.14±0.07 0.14±0.08 0.893 

Skewness NRL -0.6±0.32 0.01±0.30 0.320 

Kurtosis NRL -1.11±0.35 -1.05±0.48 0.502 

Convexity 80.78 ± 12.76 72.21 ± 14.10 0.003 

Circularity 0.51 ± 0.22 0.36 ± 0.21 0.001 

μ00 Median:7.46 x    
Min:8.26 x    
Max:4.21 x    

Median:9.49 x    

Min:2.30 x    
Max:3.33 x    

0.400 mw 

μ01 -1.2 x    ±9.3x     1.9x    ±8.0 x     0.085 

μ10 Median:1.3 x     
Min:-3.2 x     
Max:8.5 x     

Median:0.8 x     
Min:-2.1 x     
Max:2.2 x     

0.880 mw 

μ02 Median:4.91 x    
Min:4.89 x    
Max:1.98 x    

Median:8.78 x    
Min:5.87 x    
Max:1.29 x    

0.158 mw 

μ11 Median:-1.67 x    
Min:-4.74 x    
Max:9.45 x    

Median:-4.63 x    
Min:-4.41 x    
Max:3.95 x    

0.068 mw 

μ20 Median:5.21 x    
Min:2.80 x    
Max:1.75 x    

Median:7.76 x    
Min:4.03 x    

Max:1.39 x     

0.541 mw 

μ30 Median:-2.28 x    
Min:-2.08 x     
Max:7.08 x    

Median:3.15 x    
Min:-8.57 x    
Max:1.39 x     

0.222 mw 

μ03 Median:-5.94 x    
Min:-1.26 x     
Max:3.08 x    

Median:7.32 x    
Min:-2.42 x    
Max:1.68 x     

0.313 mw 

μ21 Median:5.97 x    
Min:-2.48 x     
Max:1.34 x     

Median:-1.02 x    
Min:-6.68 x    
Max:6.26 x    

0.158 mw 

μ12 Median:4.37 x    
Min:-2.73 x     
Max:6.60 x    

Median:1.16 x    
Min:-3.41 x    
Max:1.58 x     

0.246 mw 

Eigen value 1 Median:47.90 
Min:3.36 

Max:283.00 

Median:48.73 
Min:13.81 

Max:407.65 

0.437 mw 

Eigen value 2 Median:92.28 
Min:5.98 
Max:1.38 

Median:122.55 
Min:29.32 

Max:737.15 

0.136 mw 

Eccentricity 0.68±0.17 0.73±0.15 0.142 

Table 8.4: Comparison of significant differences in shape parameters between Nodal status 

patients data. Mean/SD or median/range and p-values for all shape parameters at the 2 

minute post-contrast time point are shown  
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shape parameters Mean value ± Standard Deviation P value 

Node -ve Node +ve 

All phases 

Convexity 80.78 ± 12.76 72.21 ± 14.10 0.003 

Circularity 0.51 ± 0.22 0.36 ± 0.21 0.001 

Pre contrast 

Mu03 -3.21 x   ±1.62x    3.65x   ±1.61x    0.046 

5 min post contrast 

Mu03 -4.90 x   ±2.21x    7.41x   ±3.25x    0.043 

Table 8.5: Summary of significant differences in shape parameters between nodal status 

patients data 

8.4.4 Tumour grade derived from pre-treatment biopsy 

 

Table 8.6 shows the mean/standard deviation or median/range and p-values for all shape 

parameters for the results obtained at the 2 minute post contrast time point. There were no 

significant differences to report between biopsy grade groups.  

Time points 

No significant differences were seen on the pre-contrast or any of the post contrast phases. 
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Shape 
parameter 

Mean value ± Standard Deviation P value 

Biopsy grade 1 or 2 Biopsy grade 3 

2min post contrast 

Mean NRL 0.74±0.14 0.78±0.15 0.272 

Stdev NRL 0.15±0.07 0.13±0.08 0.315 

Skewness NRL -0.03±0.29 -0.05±0.34 0.757 

Kurtosis NRL -1.05±0.52 -0.95±0.64 0.435 

Convexity 75.51±15.64 76.92±12.81 0.636 

Circularity 0.44±0.24 0.42±0.21 0.601 

μ00 1.08 x   ±8.06 x    1.36 x   ±1.05 x    0.167 

μ01 1.0 x    ±8.9 x     -1.2 x    ±7.8 x     0.194 

μ10 Median:1.1x     
Min:-2.0 x     
Max:2.2 x     

Median:0.6 x     
Min:-1.01 x     
Max:8.5 x     

0.827 mw 

μ02 Median:5.21 x    
Min:4.89 x    
Max:1.29 x    

Median:7.83 x    
Min:7.80 x    
Max:1.98 x    

0.189 mw 

μ11 Median:-1.13 x    
Min:-4.41 x    
Max:3.95 x    

Median:-3.75 x    
Min:-3.19 x    
Max:9.45 x    

0.344 mw 

μ20 Median:4.20 x    

Min:2.80 x    
Max:1.80 x    

Median:8.24 x    
Min:1.73 x    
Max:2.32 x    

0.080 mw 

μ30 Median:-2.82 x    
Min:-8.57 x    
Max:1.39 x     

Median:-1.63 x    
Min:-2.12 x     
Max:7.08 x    

0.696 mw 

μ03 Median:-2.80 x    
Min:-2.42 x    
Max:1.68 x     

Median:5.29 x    
Min:-1.26 x     
Max:2.76 x     

0.755 mw 

μ21 Median:4.83 x    
Min:-6.68 x    
Max:6.26 x    

Median:1.74 x    
Min:-2.48 x     
Max:1.34 x     

0.645 mw 

μ12 Median:1.19 x    
Min:-3.41 x    
Max:1.58 x     

Median:1.05 x    
Min:-2.73 x     
Max:1.08 x     

0.101 mw 

Eigen value 1 Median:38.53 
Min:3.36 

Max:407.65 

Median:51.57 
Min:4.95 

Max:378.18 

0.059 mw 

Eigen value 2 Median:89.89 
Min:5.98 

Max:737.15 

Median:123.51 
Min:23.81 

Max:1.38 x    

0.114 mw 

Eccentricity 0.71±0.15 0.70±0.17 0.806 

Table 8.6: Comparison of significant differences in shape parameters between tumour grade 

patients data. Mean/SD or median/range and p-values for all shape parameters at the 2 

minute post-contrast time point are shown  
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8.4.5 Summary 

 

Significant differences were seen in descriptors of convexity (p=0.003) and circularity (p=0.001) 

for the nodal status data. For the triple negative data significant differences were seen in 

kurtosis of normalised radial length (p=0.026). Some significant differences were found in the 

calculations for moments but these were not consistent across time points. No significant 

differences in shape descriptors were seen for response to neoadjuvant chemotherapy and 

biopsy grade data groups. Figures 8.11 and 8.12 illustrate some of the shape descriptors on MR 

images of the breast from the neoadjuvant chemotherapy data used for shape analysis. Figure 

8.11 has low circularity and convexity values and high eccentricity value due to the lesions 

elongated shape.  Figure 8.12 has high circularity and convexity values and low eccentricity 

value due to the lesion being rounder in nature. 

 

Figure 8.11: lesion with eccentricity value of 0.96, circularity 0.15, convexity 34.8, skewness NRL 

0.27, and kurtosis NRL -0.91, ROI size 819 pixels 
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Figure 8.12: lesion with eccentricity value of 0.34, circularity 0.70, convexity 91.2, skewness NRL 

-0.19, and kurtosis NRL -1.37, ROI size 681 pixels 

8.5 Discussion 

 

This work has highlighted that although shape is a known factor used to distinguish benign and 

malignant lesions it does not seem that useful in predicting response. Some differences 

between groups were seen in shape descriptors, but unlike our earlier study using texture 

analysis in the same data cohort [85] gave a much higher and more consistent range of 

significant differences. Shape descriptors when combined with other morphological analysis 

techniques such as texture analysis may provide a small amount of additional information. 

When used on its own from the results seen in this study it appears to have relatively little use 

as a prognostic indicator for chemotherapy response prediction in breast cancer.  

The limitations of this study included the fact that only a single cross section using the largest 

ROI for each patient was analysed, giving only a 2D representation of the tumour. When 

compared to previous texture analysis work [85] where multi slice 2D ROIs were used to try 

and give a more accurate representation of the tumour. Chapter 5 proved that multi slice 

texture analysis due to its higher counting stats was a good prognostic indicator in 

chemotherapy response prediction in breast cancer, yet when the same was applied to only a 

single slice using the largest cross sectional ROI the results were disappointing. Using a similar 

approach of multi slice analysis for the purpose of shape analysis could be a possible future 
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area of exploration, in practice this would probably be more complex in terms of coding such a 

feature. Aggregate measure of 2D shape may not be very representative of overall shape of a 

lesion. The alternative is to use 3D shape analysis which requires isotropic data and different 

mathematical models (e.g. sphericity). Another limitation is that the ROIs were semi-automatic 

(allowing manual editing), a hand drawn ROI with human error could undoubtedly have a large 

impact on shape and ultimately affect descriptors of shape when shape analysis is performed. 

As stated earlier in the chapter only a hand full of shape descriptors were explored in this 

study, many more exist, in particular the author would encourage any future work to look at 

margin sharpness of lesion. Levman [100] proposed a new technique and combined it with an 

existing method [101, 102] . Levman’s [100] edge sharpness measurement is computed using 

voxels close to the edge of the lesion but still remaining within the lesion, it also accounts for 

voxels immediately neighbouring the lesion that are outside the lesion. The study utilised this 

method for the diagnosis of breast cancer. After comparison Levman found quantifying 

sharpness or variability of tumours margin performed best at the earlier time point. In 

conclusion this new mathematical method for measuring margins of lesion from breast MRI 

presented higher sensitivity (77%) and specificity 65%) than pre-existing mathematical 

sharpness measurements [101, 102] and could be useful in helping discriminate between 

malignant and benign lesions. It would be worth exploring this new method to test its 

usefulness as a prognostic indicator in chemotherapy response prediction in breast cancer, 

along with any other shape descriptors not used in this thesis. 
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9 Conclusions 

 

This thesis has reviewed and outlined the importance of morphology in MR images in 

identifying and categorising lesions including the utility of the BI-RADS lexicon. It then went on 

to look at previous research in attempting to quantify MR images in both medical and non-

medical fields, and found previous studies in the brain and breast had provided meaningful 

results when using various calculations of texture and shape analysis methods.  

The author programmed a robust software package using the full software lifecycle to enable 

texture and shape analysis of MR images of the breast. Texture analysis reliably demonstrated 

its ability to differentiate between varying grades of foam in an agar embedded phantom 

despite them appearing visually indistinguishable on an MR image. High repeatability was  

demonstrated for these phantoms, with 12 of the 16 texture parameters being more 

repeatable with the larger ROI than the smaller ROI, this shows that the co-occurrence method 

of texture analysis relies heavily upon having high counting statistics This indicates that in 

clinical images distinguishing smaller lesions using texture analysis may be problematic. In a 

clinical setting repeatability will probably be worse due to lower SNR from clinical images.    

Texture analysis using the Haralick co-occurrence and wavelet transform methods proved 

successful as prognostic indicators in chemotherapy response prediction in breast cancer using 

a neoadjuvant dataset. The most textural differences were noted between groups (based on 

biopsy grade or TNBC status) and appeared most evident 1- 3 minutes post-contrast 

administration. Furthermore no difference in texture was noted when a single slice was 

analysed as opposed to multi slice, further justifying the need for multi slice analysis in order 

to maximise counting statistics. Wavelet analysis energy levels can show differences between 

groups (based on TNBC, PR or NR with respect to % change in longest diameter, nodal status 

and biopsy grade) and are seen throughout all time points (pre and post contrast 

administration) with the highest number of total significant differences noted at 5 minutes 

post contrast.  
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The texture analysis technique using co-occurrence methods were then applied on a pixel by 

pixel basis to ultimately generate texture maps, this feature in the software allows the 

detection of suspicious lesions in MRI screening data with potential utility as an objective first 

reader. The study generated and analysed texture maps for normal, benign and malignant 

cases and established that lesion detection was possible. This has potential as a screening tool 

although the hotspot lesion detection feature needs further optimisation in order to decrease 

the number of false positives and increase the number of true positives.     

Shape analysis using traditional shape descriptors such as circularity and convexity as well as 

moments calculations were less successful in predicting treatment response. Significant 

differences were seen in descriptors of convexity and circularity for the nodal status data. For 

the triple negative data significant differences were seen in kurtosis of normalised radial 

length. Some significant differences were found in the calculations for moments but these 

were not consistent across time points. No significant differences in shape descriptors were 

seen for response to neoadjuvant chemotherapy and biopsy grade data groups. It should be 

noted that whilst only a select few shape descriptors were explored, many more exist and 

recent literature has shown success in measure of margin sharpness of lesion. This could be a 

future area of exploration.  
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10 Future Work 

 

From a software perspective the author would like to highlight that although the package 

created is robust and mathematically correct in its calculations of various texture and shape 

parameters, the software itself as with any new application does lack functionality from a 

usability aspect. None of the known errors affect the ability to generate high quality results, 

the problems that exist are merely from a usability aspect where some features are hard 

coded when they should be user selectable via the GUI screen. There also exist some functions 

which could in the future be combined as one single function from the users point of view. If 

this software package was ever to be released on a commercial scale or made available to 

other researchers these would need to be addressed, as this is an unlikely scenario for the 

purpose of this thesis they are documented in the user manual. Had there not been time 

limitations the author would have liked to integrate the software application with an 

environment such as .NET, this would not have only allowed the creation of a more sleek GUI, 

in addition it would give the software the ability to be hosted online available for the research 

community to use. The current software is written using MATLAB which due to its matrices 

based features proved one of the most efficient environments for DICOM image manipulation, 

the drawback of using MATLAB is that the GUI modules are not as good as the likes of .NET and 

cannot be hosted online. This can be overcome by integrating the current code with .NET 

coding environment. The author would also like to highlight that generating a well 

documented software adhering to the software life cycle was not a requirement of the thesis 

but the author being from a computer science background felt this was the only way to ensure 

the final products robustness and to ensure high quality results and accuracy compared to 

previous similar studies. In addition a well documented piece of software allows for ease of 

understanding particularly in support of any future development. 

Texture analysis reliably demonstrated its ability to differentiate between varying grades of 

foam in an agar embedded phantom despite them appearing visually indistinguishable on an 



252 
 

MR image. This study proved that texture analysis demonstrates good repeatability in MR. This 

experiment could be repeated using a phantom that closely maps that of breast tissue. 

Reducing grey levels improves counting statistics per co-occurrence matrix element and is 

understood to have some effect on discriminatory power. This wasn’t found to be the case in 

chapter 5.1 as it was noted that data was consistent across all grey levels when assessing 

chemotherapeutic response using texture analysis. This needs further investigation as clearly 

having for example 2 grey levels would mean only a black and white image and would be 

difficult to distinguish one lesion from another. On an image with a higher number of grey 

levels the co-occurrence matrix would become sparse. The texture analysis results of an image 

analysed using 2 grey levels would be different to the one with a high number of grey levels. 

Further investigation could involve using a more varying number of grey levels as well as 

varying the distance between pixel pairs in the co-occurrence matrices. Whilst the large 

number of statistical tests undertaken necessitates a degree of caution in interpreting the 

results, the fact that significant differences are consistently observed is encouraging. Using a 

larger data cohort could further prove the ability of texture analysis as a chemotherapy 

response predictor.  

The underlying texture analysis code using the Haralick method could be applied utilising a 3D 

co-occurrence matrix method as this would be in line with current studies that show evidence 

that a 3D co-occurrence matrix yields better results than a 2D version. In order to utilise such a 

method isotropic data would be required.  

PCA was briefly introduced in chapter 5.3 in an attempt to reduce the dimensionality of the 

large data set. Further analysis combining all f parameters at one time point and one grey level 

choice could significantly reduce computation time if sufficient information is found to be 

present.  
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Chapter 6 looked at wavelet analysis as a method of texture analysis, the work highlighted that 

wavelet analysis energy levels can show differences between groups (based on TNBC, PR or NR 

with respect to % change in longest diameter, nodal status and biopsy grade). The vertical 

directions using the Haar wavelet contained over 62% of the results, this directional bias was 

somewhat surprising and would require further investigation in a larger data cohort. 

Chapter 7 looked at lesion detection using texture mapping. This study generated and analysed 

texture maps for normal, benign and malignant cases and established that lesion detection 

was possible. This has potential as a screening tool although the hotspot lesion detection 

feature needs further optimisation in order to decrease the number of false positives and 

increase true positives. The segmentation feature of the software is relatively unsophisticated 

and would need further work in order to segment breast tissue more accurately to eliminate 

noise and reduce false positives arising from the skin surface.  Although an erosion feature was 

programmed into the software this was not used for this study as it seemed to incorrectly 

remove breast tissue in some cases instead of just eliminating breast edges. Only three of the 

16 texture parameters were analysed due to the large amount of time required to analyse 

each parameter and measure its false positive rate and sensitivity. The texture maps have 

already been generated therefore this is something that can be reserved for a further study. 

This further work could indicate (especially if data is used in combination) that not all 16 

texture parameters are needed - the goals may be achieved by using a single or a select few 

parameters as was done in this study using 3 parameters. This study chose to look at texture 

parameter maps for f1, f9 and f13 as initial testing of these parameters using mock input 

variables worked well but looking at other parameters could possibly yield better results. In 

addition other means of thresholding need to be explored. At the moment only 17 benign and 

17 malignant cases were tested, once additional and more optimum input variables are 

established for the lesion detection feature a larger data cohort would yield a more accurate 

FROC analysis. Further testing is also needed to reduce the number of false positives especially 

in normal breast data. 
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For the shape analysis work using a similar approach of multi slice analysis as was used in the 

texture analysis work in chapter 5 could be a possible future area of exploration, in practice 

this would probably be more complex in terms of coding such a feature. Aggregate measure of 

2D shape may not be very representative of overall shape of a lesion. The alternative is to use 

3D shape analysis which requires isotropic data and different mathematical models (e.g. 

sphericity). In addition it must be noted that only a hand full of shape descriptors were 

explored in this study, many more exist, in particular the author would encourage any future 

work to look at margin sharpness of lesion.  
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11 Appendices 

11.1 User Manual  

 

The software is available to use for the purpose of research with prior consent and 

arrangement from either the author or Dr Peter Gibbs on site at the MRI Centre, Hull Royal 

Infirmary, University of Hull. This is the user manual for the DicomReader software created for 

the purpose of this research PhD. Although a compiled version of the software will run on any 

PC or MAC without the need to install MATLAB developer tools some features are restricted 

and can only be used if a full version of MATLAB is installed. These are MATLAB only built in 

features such as the wavelet toolbox and imtool function used to read pixel values. Also some 

processing may require hard coding which again can only be done if a user has MATLAB 

developer tool installed with the imaging toolbox. This is however, even in its compiled form, 

fully functional software. Due to the fact its main purpose was a particular research study and 

not for commercial distribution or sales users may experience limited functionality. Saying this 

the full software lifecycle has been adhered to including testing especially in order to maintain 

the integrity of any applied formulas and algorithms of texture and shape. There are also 

various options that have been left in which were initially only coded for testing purposes such 

as the load chessboard function, these may be removed in later versions of the software. 
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11.1.1 Perform Texture Analysis on a single Image 

 

Step 1: 

 

From the file menu select ‘Load Dicom Image Dataset’ if wanting to look at a whole series of 

images or select ‘load single Image’ if loading any other image format. 

Step 2: 

 

Select the directory where dicom image series are stored on your computer.  
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step 3: 

 

The above screen will now be displayed and the user can adjust slice and phase numbers using 

the vertical sliders and adjust brightness and contrast using the horizontal sliders. Note phase 

sliders will not work when loading single images in non dicom formats 

Step 4: 

 

You can either load an existing saved ROI file by going to the File menu and selecting ‘load ROI 

from mat file’ or you can draw an ROI on the current image from the tools menu and selecting 

‘Draw ROI’ sub menu  
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Step 5: 

 

At this point a cursor will appear that will allow the user to freehand draw a region similar to 

the pencil tool found in most paint programs. Click on a point where the user wants to start 

drawing the region and once you have finished click on the screen for a second time at the end 

point. Note when drawing a ROI using this tool the software will display the ROIs data as 

shown on the screen in step 6. 

Step 6: 

 

If the user wants to save the ROI that they have just drawn this can be done by going to the file 

menu and selecting ‘save ROI as .mat file’ and giving it the name they wish and saving it in any 

location on the computer.  
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Step 7: 

 

The user now needs to go to tools menu and select ‘calc ROI properties’ sub menu and the 

screen above will be displayed. Here the user can select the number of grey levels normally 

either 8, 16, 32 or 64. The user can choose to have the ROI histogram equalised or not by using 

the radio buttons and then click ‘OK’ button to continue.  

Step 8: 

 

Once back on the main screen the user now needs to click again on the tools menu and select 

the ‘Texture Analysis’ sub menu and a popup menu will appear for the user to confirm if they 

wish to export the results to an excel spreadsheet. If the user does click ‘Yes’ an excel file will 

be saved in the same directory and with the same name as the original image location. The file 
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will look similar to the spreadsheet screenshot shown below and this concludes texture 

analysis on a single slice. Note: at the point of writing the user manual the file location to be 

saved was hard coded in saveAsExcel.m file. Users of the software will temporarily need to 

hardcode this if they wish to change the location, later versions of the software will add 

additional features to allow user to specify where file is to be saved. 
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11.1.2 Perform Texture Analysis on all slices with corresponding ROIs 

 

For this function the user has a series of images saved in Dicom format and wishes to perform 

texture analysis using ROIs saved in binary file format. The feature will match up the ROIs to 

the corresponding slices and perform texture analysis on multiple slices.  

Step 1: 

 

From the file menu select ‘Load Dicom Image Dataset’ 

Step 2: same as step 2 in ‘Perform Texture Analysis on a single Image’ section of user manual 

Step 3: same as step 3 in ‘Perform Texture Analysis on a single Image’ section of user manual 

Step 4: 

 

Go to file menu and select/click on the ‘Load .RGN file and perform Texture Analysis’ sub menu  
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Step 5: 

 

Select the ROI file with file extension .rgn corresponding to the series of images by double 

clicking he correct file 

Step 6: 

 

The user will be prompted by another screen where you can select number of grey levels and if 

the ROI should be histogram equalised or not prior to processing. Click ‘OK’ 
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Step 7: 

 

A status bar similar to the one above will appear in the MATLAB command window 

Step 8: 

 

A popup menu will appear for the user to confirm if they wish to export the results to an excel 

spreadsheet. If the user does click ‘Yes’ an excel file will be saved in the same directory and 

with the same name as the original image location. The file will look similar to the spreadsheet 

screenshot shown below and this concludes texture analysis on a multiple slice using ROI file. 

User will also be able to scroll through the slices and see the loaded ROIs on each slice change, 

the correct slice will be automatically drawn onto each slice (if the .rgn file contained a ROI for 

the corresponding slice number). These ROIs and individual images can be saved using the 

‘save ROI as .mat file’ under file menu and ‘save image as tiff’ sub menu. 
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 Note: at the point of writing the user manual the file location to be saved was hard coded in 

saveAsExcel.m file, users of the software will temporarily need to hardcode this if they wish to 

change the location, later versions of the software will add additional features to allow user to 

specify where file is to be saved. 

11.1.3 ROI draw, save and load 

 

See steps 4-6 in the ‘Perform Texture Analysis on a single Image’ section of the user manual 

11.1.4 Perform shape analysis 

 

Very similar to texture analysis, as per sections ‘Perform Texture Analysis on a single Image 

´and ‘Perform Texture Analysis on all slices with corresponding ROIs’ in the user manual. The 

user can load an ROI or draw an ROI using the draw ROI function or load .rgn file containing all 

the ROIs on the corresponding series of images using the ‘load .rgn and perform shape 

analysis’ under the file menu. The software will automatically take the largest ROI and perform 

shape analysis on that region and the output will be saved in the root directory (normally C:) 

on computer. For a single ROI the user can simply select ‘shape analysis  under the tools menu. 
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The major difference for shape analysis is that the user does not input any additional 

parameters as with texture analysis. 

  

11.1.5 Perform texture mapping and hotspot search (scan image) 

 

Step 1: 

 

When faced with the main screen load an image either by loading a series of images via the 

‘load Dicom Image dataset’ sub menu under file menu or by selecting ‘load single image’ sub 

menu.  
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Step 2: 

 

When desired image is on screen first a user can choose to segment the image, this is optional 

but segmenting the image will mean much faster processing time. Under the tools menu select 

segment image sub menu 

Step 3: 
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With the cursor select the start point by clicking the mouse (example nipple) and end point by 

clicking the mouse (example chest wall begins) and the image will be segmented ie anything 

before nipple will disappear (usually noise) and anything after the chest wall starts will also 

disappear  as per screenshot below 

 

Step 4: 

  

This is another optional step if the user wishes to save the segment point coordinates they can 

at this point by selecting the file menu and clicking on the sub menu ‘save segment points’ 

then save them anywhere on their computer. In addition the segmented version of the image 

can also be saved as a .tiff file by again going to the file menu and clicking on ‘save current 

image as .tiff’. Similarly if an image is already loaded and the user wished to apply previously 

saved segment coordinates to that image they can do so by going to file menu and selecting 

‘load segment points from file’ sub menu. 
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Step 5: 

 

The user is now ready to texture map by clicking on the tools menu and selecting the ‘texture 

map’ sub menu 

Step 6: 

 

A pop up window will appear which will allow the user to input number of grey levels and 

histogram equalisation option. The matrix size of the texture mapping pixels can also be 

selecting or left to the default size of 5 and also in which direction the user wishes the 

calculation of the co-occurrence matrix to take place. By default the system uses the average 

of all directions which is also available as an option in the texture mapping function. Once the 

user is happy with their selection click the ‘OK’ button and processing will begin with a 

progress bar displayed in the MATLAB command window similar to the one in the screen shot 
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below. Processing depends on the size of the image and how much segmentation was done 

and can take anything from 2 minutes to 45 minutes. Once complete a message will be 

displayed in the MATLAB command window informing the user where the file has been saved 

as per screenshot below. The files will be saved as .tiff files and will consist of 16 new images 

one per texture parameter. 

 

Step 7: 

This is another optional step not part of the software but part of MATLAB in which the user can 

analyse the texture mapped images by opening them up using MATLABs imtool feature, this 

will only work with a full version of MATLAB developer tool with imaging toolbox. The user can 

first adjust the contrast if the image is not clear by clicking on the imtool tools menu and 

selecting ‘adjust contrast’ sub menu. 
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Step 8: 

Again an optional step not part of the software but part of MATLAB. The user can select the 

pixel tool from the imtool tools menu and can then use the tool to look at individual pixel 

values overlaid on the actual image. 

  

Step 9: 

 

In the dicomreader software the user can select the texture mapped images and open an 

image using the ‘load single image’ sub menu ready to use the hotspot feature 
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Step 10: 

 

Under tools menu select view histogram for current image. 

Step 11: 

 

Once the histogram appears (this is a Matlab feature, so may only work with full MATLAB 

version and imaging tool box) on the tools menu select ‘data cursor’ and place the cursor on 

any of the histogram bars to get the bin edge values (these will be used for min and max values 

later). Note the bin size is hardcoded for each f (texture) parameter as the optimum differs for 

each one. This is done by altering the code in the viewHistogram.m file (again this is only 

something a developer can do with full MATLAB version, but later versions of this software will 

allow the user to set this).   
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Step 12: 

 

The user can click the ‘scan image for HOTSPOTS’ function under the tools toolbar in the 

dicomreader software window.  

Step 13: 

 

A new pop up window will appear. The user can enter the bin values from step 11 as the min 

and max and enter a matrix size (again this is something tweaked for each f parameter). The 

user can  click scan image once appropriate values have been entered. Table 11.1 shows 

example values that could be used for each f parameter (these are just samples and are not 

the correct tweaked versions) table 11.1 is optimised for the eroded texture maps whereas 

table 11.2 is more appropriate for the raw texture mapped output images (these are 

recommended due to higher accuracy but in some cases edges will have to be ignored) 
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 Matrix size Set Bin Size (in code) Value range to use from histogram 

F1 7 10 Lowest 

F2 9 200 highest 

F3 - - - 

F4 9 200 highest 

F5 3 150 highest 

F6 3 200 highest 

F7 5 200 highest 

F8 3 300 highest 

F9 9 10 Lowest 

F10 5 300 highest 

F11 3 300 highest 

F12 - - - 

F13 5 10 Lowest 

F14 5 150 highest 

F15 - - - 

F16 7 1500 highest 

Table 11.1: Optimal parameter settings for eroded texture maps 

 Matrix 
size 

Set Bin Size 
(in code) 

Value range to use from 
histogram 

Additional notes 

F1 7 10 Lowest Mostly 0.8 – 0.9 

F2 9 200 highest  

F3 - - -  

F4 9 45 highest  

F5 9 5 lowest  

F6 7 50 Take the bin range from the 
highest value (x axis) in 

histogram  

 

F7 3 1250 highest Use bin values mid to max 

F8 3 13 lowest Ignore edges 

F9 9 10 Lowest Ignore edges 

F10 5 300 highest Ignore edges and use bin 
values mid to max 

F11 7 10 lowest  

F12 - - -  

F13 5 10 Lowest Ignore edges 

F14 3 10 highest Ignore edges and use bin 
values mid to max 

F15 - - -  

F16 7 1500 highest Ignore edges and use bin 
values mid to max 

Table 11.2: Optimal parameter settings for raw texture map. 
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Step 14: 

 

Suspected lesions or hotspots depending on the min/max and matrix size will be highlighted 

on the current image as above 

Step 15: 

An additional feature also exists to calculate and output into a spreadsheet min, max and 

mean pixel values for the current texture mapped image but this has not been added as a 

function in the GUI but can be run by a developer using a full version of MATLAB 

This concludes texture mapping, other features not mentioned do exist but they are fairly self 

explanatory. For example, selecting the info menu user can view the dicom header information 

of the current dicom image on screen. 

11.1.6 Perform wavelet analysis 

 

Within DicomReader software the user can perform wavelet analysis based on the seven types 

of wavelet transforms available, but this can only be done with a full developer version of 

Matlab as the software uses Matlabs Wavelet Toolbox. The coefficient files for the seven 

wavelet types can be viewed and saved but the software only produced wavelet energy values 

for Haar wavelet transforms as this was the only one needed for the purpose of this research. 

Step 1: 
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Select the Wavelet Toolbox feature from the Tools>Wavelets menu bar, the Wavelet toolbox 

shown in step 2 is loaded 

Step 2: 

 

In order to load an image into the Matlab workspace in the command window type in the 

following code which will load an Image (I) and a normalised version of the image (I2), this 

code is also available in the normaliseImage.m file but its easier to type straight in to the 
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command window as this part of the software doesn’t allow user to load an Image into the 

workspace that can be seen by the wavelet toolbox in a GUI type fashion. 

I = dicomread('C:\PhD Data\neoadjuvantData\PC_1min\E09578\IM13'); 

%change this to point to image user wishes to analyse 

maxI = max(I(:)); 

I2 = double(I)./double(maxI).*255; 

Now returning to the Wavelet Toolbox interface as shown above go to the ‘Two-Dimensional’ 

heading and click on the ‘Wavelet 2-D’ button 

Step 3: 

 

Under the file menu go to Import from workspace>Import Image. 

Step 4: 

 

In the pop up window that appears select image I2 from the workspace that you loaded earlier 

in step 2 and click the ok button 



277 
 

Step 5: 

 

The image will now appear in the wavelet toolbox window. In the top right hand corner select 

in the drop down menus wavelet type ‘Haar’ and Level ‘4’ and click ‘Analyse’, the screen will 

display the wavelet images. 

Step 6: 
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From the file menu select save>coefficients and when prompted save the file in an appropriate 

directory with a relevant name and click save. 

This marks the end of the Matlabs wavelet toolbox use, exit the toolbox and go back to the 

DicomReader interface. 

Step 7: 

 

From the DicomReader go to Tools>Wavelets>Load coefficient file & calc Wavelet energy, user 

will be prompted to select the coefficient file which was created in step 6 and select the 

corresponding ROI file. Once correct files are selected click ‘Open’ and the processing will 

begin, the command window will display a ‘successful’ message when processing is complete 

and an excel spreadsheet will be output containing the energy values for the wavelet 

coefficient file. The command window will tell the user where this file has been saved. 

Step 8: 

 

Excel spreadsheet can be viewed and display the energy values.  
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11.2 Conference presentations 

 

1. Gibbs P, Ahmed A. Texture Analysis of DCE-MRI of the Breast as a Predictor of 

Response. In 19th ISMRM Annual meeting. 2011. Montreal: ISMRM (e-poster) 

2. Ahmed A, Gibbs P, Pickles MD and Turnbull LW. Texture Analysis and Texture Mapping 
Software for High Field Strength MRI Breast Data. Clinical Biosciences Institute 
Research Day, Hull, UK. (July 2010) (Poster) 

3. Ahmed A, Gibbs P, Pickles MD and Turnbull LW. Texture Analysis for chemotherapy 
response prediction in Breast Cancer. Yorkshire Cancer Research (YCR) Annual Scientific 
Meeting, Harrogate, UK. (June 2011)  (Poster) 

4. Ahmed A, Gibbs P, Pickles MD and Turnbull LW. Software for Lesion Detection of DCE 
MR Images of the Breast using Texture Mapping. Yorkshire Cancer Research (YCR) 
Annual Scientific Meeting, Harrogate, UK. (June 2012)  (Poster) 

5. Ahmed A, Gibbs P, Pickles MD and Turnbull LW. Texture Analysis for chemotherapy 

response prediction in Breast Cancer. In 20th British chapter ISMRM Postgraduate 

symposium, Cambridge, UK. (June 2011)  (Talk) 

6. Ahmed A, Gibbs P, Pickles MD and Turnbull LW. Texture Analysis Software for 

chemotherapy response prediction in Breast Cancer. North of England Oncology 

Association, 3rd North of England Breast Cancer Symposium, University of Hull, UK. 

(May 2011) (Poster) 

7. Ahmed A, Gibbs P, Pickles MD and Turnbull LW. Texture Analysis of DCE Breast 

Imaging: Single slice vs. multi slice. In 20th ISMRM Annual meeting. 2012. Melbourne, 

Australia: ISMRM (e-poster) 

8. Ahmed A, Gibbs P, Pickles MD and Turnbull LW. Software for Lesion Detection of DCE 

MR Images of the Breast using Texture Mapping. In 21st British chapter ISMRM 

Postgraduate symposium, Bristol, UK. (March 2012)  (Poster) 

9. Ahmed A, Gibbs P, Pickles MD and Turnbull LW. Software for lesion detection in MR 

images of the breast using texture mapping. In International Journal of Computer 

Assisted Radiology and Surgery (CARS) Vol 7, page s253, Pisa, Italy. (June 2012)  (Talk) 

10. Ahmed A, Gibbs P, Pickles MD and Turnbull LW. Texture analysis software for 

chemotherapy response prediction in breast cancer. In International Journal of 

Computer Assisted Radiology and Surgery (CARS) Vol 7, page s254, Pisa, Italy. (June 

2012)  (Talk) 

11. Ahmed A, Gibbs P, Pickles MD and Turnbull LW. Software for chemotherapy response 

prediction in DCE breast images using shape descriptors. In International Journal of 

Computer Assisted Radiology and Surgery (CARS) Vol 7, page s486, Pisa, Italy. (June 

2012)  (Poster) 
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11.3 Publications 

 

Accepted 

1. Texture Analysis in assessment and prediction of chemotherapy response in Breast 

Cancer, JMRI, accepted pending minor revisions, Sept 2012. Abstract: 

Purpose 

This paper systematically assesses the efficacy of DCE-MRI based textural analysis in predicting 

response to chemotherapy in a cohort of breast cancer patients. 

Materials and Methods 

100 patients were scanned on a 3.0T HDx scanner immediately prior to neo-adjuvant 

chemotherapy treatment. A software application to utilise texture features based on 

cooccurence matrices was developed. Texture analysis was performed on pre-contrast and 1-5 

minutes post-contrast data. 

Patients were categorised according to their chemotherapeutic response: partial responders 

corresponding to a decrease in tumour diameter over 50% (40) and non-responders 

corresponding to a decrease of less than 50% (4). Data was also split based on factors that 

influence response: TNBC (22) vs. non TNBC (49); node negative (45) vs. node positive (46); 

and biopsy grade 1 or 2 (38) vs. biopsy grade 3 (55). 

Results 

Parameters    (contrast),    (variance),     (difference in variance),    (sum average),    (sum 

variance),    (sum entropy),    (cluster shade) and     (cluster prominence) showed significant 

differences between responders and partial responders of chemotherapy. Differences were 

mainly seen at 1-3 minutes post-contrast administration. No significant differences were found 

pre-contrast administration. Node +ve, high grade, TNBC are associated with poorer prognosis 

and appear to be more heterogeneous in appearance according to texture analysis.   
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