1,324 research outputs found

    Table Search, Generation and Completion

    Get PDF
    PhD thesis in Information technologyTables are one of those “universal tools” that are practical and useful in many application scenarios. Tables can be used to collect and organize information from multiple sources and then turn that information into knowledge (and, ultimately, support decision-making) by performing various operations, like sorting, filtering, and joins. Because of this, a large number of tables exist already out there on the Web, which represent a vast and rich source of structured information that could be utilized. The focus of the thesis is on developing methods for assisting the user in completing a complex task by providing intelligent assistance for working with tables. Specifically, our interest is in relational tables, which describe a set of entities along with their attributes. Imagine the scenario that a user is working with a table, and has already entered some data in the table. Intelligent assistance can include providing recommendations for the empty table cells, searching for similar tables that can serve as a blueprint, or even generating automatically the entire a table that the user needs. The table-making task can thus be simplified into just a few button clicks. Motivated by the above scenario, we propose a set of novel tasks such as table search, table generation, and table completion. Table search is the task of returning a ranked list of tables in response to a query. Google, for instance, can now provide tables as direct answers to plenty of queries, especially when users are searching for a list of things. Figure 1.1 shows an example. Table generation is about automatically organizing entities and their attributes in a tabular format to facilitate a better overview. Table completion is concerned with the task of augmenting the input table with additional tabular data. Figure 1.2 illustrates a scenario that recommends row and column headings to populate the table with and automatically completes table values from verifiable sources. In this thesis, we propose methods and evaluation resources for addressing these tasks

    CERN openlab Whitepaper on Future IT Challenges in Scientific Research

    Get PDF
    This whitepaper describes the major IT challenges in scientific research at CERN and several other European and international research laboratories and projects. Each challenge is exemplified through a set of concrete use cases drawn from the requirements of large-scale scientific programs. The paper is based on contributions from many researchers and IT experts of the participating laboratories and also input from the existing CERN openlab industrial sponsors. The views expressed in this document are those of the individual contributors and do not necessarily reflect the view of their organisations and/or affiliates

    A hybrid algorithm for Bayesian network structure learning with application to multi-label learning

    Get PDF
    We present a novel hybrid algorithm for Bayesian network structure learning, called H2PC. It first reconstructs the skeleton of a Bayesian network and then performs a Bayesian-scoring greedy hill-climbing search to orient the edges. The algorithm is based on divide-and-conquer constraint-based subroutines to learn the local structure around a target variable. We conduct two series of experimental comparisons of H2PC against Max-Min Hill-Climbing (MMHC), which is currently the most powerful state-of-the-art algorithm for Bayesian network structure learning. First, we use eight well-known Bayesian network benchmarks with various data sizes to assess the quality of the learned structure returned by the algorithms. Our extensive experiments show that H2PC outperforms MMHC in terms of goodness of fit to new data and quality of the network structure with respect to the true dependence structure of the data. Second, we investigate H2PC's ability to solve the multi-label learning problem. We provide theoretical results to characterize and identify graphically the so-called minimal label powersets that appear as irreducible factors in the joint distribution under the faithfulness condition. The multi-label learning problem is then decomposed into a series of multi-class classification problems, where each multi-class variable encodes a label powerset. H2PC is shown to compare favorably to MMHC in terms of global classification accuracy over ten multi-label data sets covering different application domains. Overall, our experiments support the conclusions that local structural learning with H2PC in the form of local neighborhood induction is a theoretically well-motivated and empirically effective learning framework that is well suited to multi-label learning. The source code (in R) of H2PC as well as all data sets used for the empirical tests are publicly available.Comment: arXiv admin note: text overlap with arXiv:1101.5184 by other author

    Semi-Supervised Named Entity Recognition:\ud Learning to Recognize 100 Entity Types with Little Supervision\ud

    Get PDF
    Named Entity Recognition (NER) aims to extract and to classify rigid designators in text such as proper names, biological species, and temporal expressions. There has been growing interest in this field of research since the early 1990s. In this thesis, we document a trend moving away from handcrafted rules, and towards machine learning approaches. Still, recent machine learning approaches have a problem with annotated data availability, which is a serious shortcoming in building and maintaining large-scale NER systems. \ud \ud In this thesis, we present an NER system built with very little supervision. Human supervision is indeed limited to listing a few examples of each named entity (NE) type. First, we introduce a proof-of-concept semi-supervised system that can recognize four NE types. Then, we expand its capacities by improving key technologies, and we apply the system to an entire hierarchy comprised of 100 NE types. \ud \ud Our work makes the following contributions: the creation of a proof-of-concept semi-supervised NER system; the demonstration of an innovative noise filtering technique for generating NE lists; the validation of a strategy for learning disambiguation rules using automatically identified, unambiguous NEs; and finally, the development of an acronym detection algorithm, thus solving a rare but very difficult problem in alias resolution. \ud \ud We believe semi-supervised learning techniques are about to break new ground in the machine learning community. In this thesis, we show that limited supervision can build complete NER systems. On standard evaluation corpora, we report performances that compare to baseline supervised systems in the task of annotating NEs in texts. \u

    Spinoff 1997: 25 Years of Reporting Down-to-Earth Benefits

    Get PDF
    The 25th annual issue of NASA's report on technology transfer and research and development (R&D) from its ten field centers is presented. The publication is divided into three sections. Section 1 comprises a summary of R&D over the last 25 years. Section 2 presents details of the mechanisms NASA uses to transfer technology to private industry as well as the assistance NASA provides in commercialization efforts. Section 3, which is the focal point of the publication, features success stories of manufacturers and entrepreneurs in developing commercial products and services that improve the economy and life in general

    Perception-aware Tag Placement Planning for Robust Localization of UAVs in Indoor Construction Environments

    Full text link
    Tag-based visual-inertial localization is a lightweight method for enabling autonomous data collection missions of low-cost unmanned aerial vehicles (UAVs) in indoor construction environments. However, finding the optimal tag configuration (i.e., number, size, and location) on dynamic construction sites remains challenging. This paper proposes a perception-aware genetic algorithm-based tag placement planner (PGA-TaPP) to determine the optimal tag configuration using 4D-BIM, considering the project progress, safety requirements, and UAV's localizability. The proposed method provides a 4D plan for tag placement by maximizing the localizability in user-specified regions of interest (ROIs) while limiting the installation costs. Localizability is quantified using the Fisher information matrix (FIM) and encapsulated in navigable grids. The experimental results show the effectiveness of our method in finding an optimal 4D tag placement plan for the robust localization of UAVs on under-construction indoor sites.Comment: [Final draft] This material may be downloaded for personal use only. Any other use requires prior permission of the American Society of Civil Engineers and the Journal of Computing in Civil Engineerin

    Advances in Human Robot Interaction for Cloud Robotics applications

    Get PDF
    In this thesis are analyzed different and innovative techniques for Human Robot Interaction. The focus of this thesis is on the interaction with flying robots. The first part is a preliminary description of the state of the art interactions techniques. Then the first project is Fly4SmartCity, where it is analyzed the interaction between humans (the citizen and the operator) and drones mediated by a cloud robotics platform. Then there is an application of the sliding autonomy paradigm and the analysis of different degrees of autonomy supported by a cloud robotics platform. The last part is dedicated to the most innovative technique for human-drone interaction in the User’s Flying Organizer project (UFO project). This project wants to develop a flying robot able to project information into the environment exploiting concepts of Spatial Augmented Realit

    Using learning from demonstration to enable automated flight control comparable with experienced human pilots

    Get PDF
    Modern autopilots fall under the domain of Control Theory which utilizes Proportional Integral Derivative (PID) controllers that can provide relatively simple autonomous control of an aircraft such as maintaining a certain trajectory. However, PID controllers cannot cope with uncertainties due to their non-adaptive nature. In addition, modern autopilots of airliners contributed to several air catastrophes due to their robustness issues. Therefore, the aviation industry is seeking solutions that would enhance safety. A potential solution to achieve this is to develop intelligent autopilots that can learn how to pilot aircraft in a manner comparable with experienced human pilots. This work proposes the Intelligent Autopilot System (IAS) which provides a comprehensive level of autonomy and intelligent control to the aviation industry. The IAS learns piloting skills by observing experienced teachers while they provide demonstrations in simulation. A robust Learning from Demonstration approach is proposed which uses human pilots to demonstrate the task to be learned in a flight simulator while training datasets are captured. The datasets are then used by Artificial Neural Networks (ANNs) to generate control models automatically. The control models imitate the skills of the experienced pilots when performing the different piloting tasks while handling flight uncertainties such as severe weather conditions and emergency situations. Experiments show that the IAS performs learned skills and tasks with high accuracy even after being presented with limited examples which are suitable for the proposed approach that relies on many single-hidden-layer ANNs instead of one or few large deep ANNs which produce a black-box that cannot be explained to the aviation regulators. The results demonstrate that the IAS is capable of imitating low-level sub-cognitive skills such as rapid and continuous stabilization attempts in stormy weather conditions, and high-level strategic skills such as the sequence of sub-tasks necessary to takeoff, land, and handle emergencies
    • …
    corecore