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ABSTRACT 

 
Modern autopilots fall under the domain of Control Theory which utilizes Proportional 

Integral Derivative (PID) controllers that can provide relatively simple autonomous control of 

an aircraft such as maintaining a certain trajectory. However, PID controllers cannot cope with 

uncertainties due to their non-adaptive nature. In addition, modern autopilots of airliners 

contributed to several air catastrophes due to their robustness issues. Therefore, the aviation 

industry is seeking solutions that would enhance safety. A potential solution to achieve this is 

to develop intelligent autopilots that can learn how to pilot aircraft in a manner comparable 

with experienced human pilots. This work proposes the Intelligent Autopilot System (IAS) 

which provides a comprehensive level of autonomy and intelligent control to the aviation 

industry. The IAS learns piloting skills by observing experienced teachers while they provide 

demonstrations in simulation. A robust Learning from Demonstration approach is proposed 

which uses human pilots to demonstrate the task to be learned in a flight simulator while 

training datasets are captured. The datasets are then used by Artificial Neural Networks 

(ANNs) to generate control models automatically. The control models imitate the skills of the 

experienced pilots when performing the different piloting tasks while handling flight 

uncertainties such as severe weather conditions and emergency situations. Experiments show 

that the IAS performs learned skills and tasks with high accuracy even after being presented 

with limited examples which are suitable for the proposed approach that relies on many single-

hidden-layer ANNs instead of one or few large deep ANNs which produce a black-box that 

cannot be explained to the aviation regulators. The results demonstrate that the IAS is capable 

of imitating low-level sub-cognitive skills such as rapid and continuous stabilization attempts 

in stormy weather conditions, and high-level strategic skills such as the sequence of sub-tasks 

necessary to takeoff, land, and handle emergencies. 

 

 

 

 

 

 



IMPACT STATEMENT  

 

The Intelligent Autopilot System (IAS) is proposed, which is a fully autonomous autopilot 

powered by Artificial Neural Networks capable of providing unprecedented abilities to control 

and fly various types of aircraft. By using Artificial Neural Networks and the Learning from 

Demonstration concept, the IAS introduces the possibility to transfer human intelligence, 

intuitions, training, and skills that experienced pilots have to a system. The IAS requires few 

examples and small training datasets which speeds up development and enhances performance. 

The proposed approach eliminates the “black-box” issue and allows the possibility to undergo 

strict verification and validation for aviation certification purposes. The IAS has proved its 

ability to autonomously fly in simulation by executing complete flight cycles from takeoff to 

landing, and handling extreme conditions that can go beyond the capabilities of modern 

autopilots and experienced human pilots as well according to a recent evaluation by Oman Air. 

Introducing the IAS to the aerospace industry can enhance safety through its ability to provide 

intelligent control solutions that can handle emergency situations and extreme weather 

conditions, and lower costs by reducing the number of pilots in cockpits, or minimizing ground 

control costs associated with Unmanned Aircraft Systems for various applications including 

civilian and military. From academia to the aerospace industry, we have been collaborating to 

develop, train, and evaluate the IAS by working closely with experienced pilots of airliners to 

receive their inputs and training demonstrations for the IAS, and by signing agreements with 

some of the leaders of the aerospace industry to investigate the possibility of adopting the 

proposed approach of the IAS. Multiple research papers have been published describing the 

development journey of the IAS which in addition, has been highlighted in various 

international academic and industry-based conferences and events, and featured in multiple 

news articles in some of the most popular magazines around the world such as the Economist, 

BBC Focus, WIRED, Plane & Pilot Magazine, and Flight Safety Australia. 
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1. INTRODUCTION 

Flying an aircraft is a safety-critical job. It requires comprehensive education, training, and 

practice to prepare pilots for this career. This ranges from relatively short courses when 

intending to acquire a licence suitable for flying light airplanes powered by propeller-based 

engines, to long and extensive courses when intending to acquire a license suitable for flying 

large airliners powered by jet engines.      

Pilots of passenger aircraft learn to perform piloting tasks that are required during the 

different phases of the flight, which comprise the flight cycle [1]. Performing a complete flight 

cycle starts with a ground-run on the runway to gain speed, rotate after a certain airspeed is 

achieved, climb, cruise while navigating between waypoints, descend, prepare for final 

approach while intercepting the landing runway path line, touchdown, flare, and lower airspeed 

before coming to a full stop [1]. Pilots are trained to perform landing under difficult weather 

conditions such as strong crosswind, and abort landing by executing a go-around if needed [1]. 

In addition, Human pilots learn to handle flight uncertainties or emergency situations such as 

severe weather conditions or system failure [1]. For example, pilots are exposed to scenarios 

of forced or emergency landing, where gliding is performed, which is the reliance on the 

aerodynamics of the aircraft to glide for a given distance while altitude is lost gradually when 

the aircraft has lost thrust due to full engine failure in relatively high altitudes [1]. 

For much of the time, human pilots are not in control of the aircraft. They perform takeoff 

manually, then engage the Automatic Flight Control System (AFCS/Autopilot) shortly after 

takeoff [2]. During final approach before landing, the human pilots disengage the AFCS to land 

manually unless visibility is too poor which requires an automatic landing via the Autoland 

feature of the AFCS [2]. Automatic Flight Control Systems or autopilots are used to control 

the trajectory of the aircraft by manipulating the control surfaces of the aircraft such as the 

elevators, ailerons, and rudder in three different axis which are pitch, roll, and yaw [2]. 

Autopilots are highly limited, capable of performing minimal piloting tasks in non-emergency 

conditions [2]. Autopilots are not capable of handling flight emergencies such as engine failure, 

fire, performing a Rejected Takeoff, or a forced (emergency) landing [2]. Although modern 

autopilots can maintain or hold a desired heading, speed, altitude, and even perform auto-land, 

they cannot handle complete flight cycles automatically, and they must be engaged and 

operated manually by the human pilots to constantly change and update the desired parameters, 

and they cannot handle severe weather conditions, such as strong crosswind components 
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combined with wind shear, gust, and turbulence [2]. Strong turbulence, for example, can cause 

the autopilot to disengage or even attempt an undesired action which could jeopardise flight 

safety [2]. The limitations of autopilots require constant monitoring of the system and the flight 

status by the flight crew, which could be stressful especially during long flights [3]. On the 

other hand, trying to anticipate everything that could go wrong with a flight, and incorporating 

that into the set of rules or control models “hardcoded” in an AFCS is infeasible [3]. There 

have been reports either discussing the limitations of current autopilots such as the inability to 

handle severe weather conditions, or blaming autopilots for several aviation catastrophes [3]. 

One such example was Air France flight AF447 on June 1st, 2009 where the aircraft entered a 

severe turbulence zone forcing it to climb steeply and stall. Shortly after that, the autopilot 

disengaged causing the aircraft to lose altitude dramatically. Unfortunately, it was too late for 

the flight crew to rectify the situation [4] [5]. Although the investigation concluded that the 

incident was a result of a series of events that was initiated by the autopilot disengaging itself 

after the aircraft's Pitot tubes froze, and placed the blame on the pilots’ lack of situational 

awareness and their failure to initiate the appropriate procedure, Paul Salmon et al [6] argue 

that blaming the pilots is inappropriate, instead, the lack of designing flight control systems 

that are equipped with adequate situational awareness capabilities when a sensor fails for 

example is the main problem.  

One solution to overcome the limitations of conventional AFCS is to introduce intelligent 

cockpit autonomy capabilities. This can be achieved by developing intelligent autopilots that 

use a combination of Apprenticeship Learning and Machine Learning to learn how to handle 

the different piloting tasks including dealing with uncertainties and emergencies. 

Apprenticeship Learning or Learning from Demonstration is defined as the task of learning 

from an expert by observing demonstrations of the task to be learned given by the expert [7]. 

This type of knowledge acquisition depends generally on a real-time or hands-on practical 

transfer of knowledge and skills from expert trainers to trainees. An example is the use of 

simulators which are designed to simulate the real task a human operator is expected to 

experience. Learning from demonstrations can be effective in the sense that learners observe 

the actual performance of the task to be learned which significantly helps to capture the set of 

actions and rules required to perform the task successfully.  

In a similar way, Machine Learning learns models from training data that allow a system to 

perform a given task autonomously. For instance, Artificial Neural Networks (ANNs) which 
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are loosely inspired by the neurons and synapsis in biological brains, can be used to generate 

models from training data [7]. Similar to how humans learn how to perform a given task by 

observing demonstrations by teachers, Machine Learning methods can use the demonstrations 

as training data containing inputs which represent information about the current state, and 

outputs which represent actions that can be taken given the state [8]. To achieve this, a mapping 

between each moment of the state (input), and the appropriate action (output) is generated and 

used as training data for the Machine Learning method [8]. After training, the system can be 

presented as a closed-loop system which continuously takes inputs, and produces the 

appropriate outputs over time [9]. The result can be viewed as a control system which is 

continuously performing a given control task (producing actions based on state information).  

 However, there are challenges and limitations when applying the concept of teaching a 

control system how to perform given tasks by utilizing the demonstrations of these given tasks 

(training data). For example, not all control problems involve basic linear actions [10]. In fact, 

some control problems require sets of complex tasks that could represent rapid and dynamic 

continuous actions such as trying to correct the path of a vehicle in difficult conditions, and 

other more general tasks that could be parts of a strategic goal such as the successful travel of 

the vehicle from point A to point B autonomously [10].  

Therefore, to successfully tackle a given control problem using Machine Learning by 

learning from demonstrations, an appropriate learning method is required to ensure the 

generation of control models capable of handling the set of tasks required for the given control 

problem. In addition, the generated models should be able to accurately mimic the performance 

of the teacher (represented by the demonstrations) to ensure the generation of autonomous 

behaviour comparable with the behaviour of the human teacher.    

This work aims to address the problem of robustness and limited capabilities that modern 

autopilots of large jets suffer from by proposing a novel intelligent autopilot which introduces 

the possibility to transfer the skills of experienced human pilots to a system. The proposed 

approach is to train the intelligent autopilot by demonstrations representing different piloting 

tasks provided by human teachers. 

This work aims to prove: 

Learning from Demonstration enables automated flight control comparable with 

experienced human pilots. 
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In this work, Learning from Demonstration means the use of aircraft-piloting 

demonstrations as training data. The demonstrations are provided by human teachers in a 

professional flight simulator. Initial research and development made use of demonstrations 

provided by the author of this work in order to avoid delays. The final stages of this work then 

made use of professional demonstrations provided by an experienced pilot who is Captain 

Khalid Al Hashmi, Senior Manager Crew Training at Oman Air. All the demonstrations were 

provided in the flight simulator X-Plane 10 Pro which is used by the aerospace industry due to 

its ability to provide professional simulation capabilities, and the possibility to integrate it with 

external systems1. The simulated aircraft models were Cirrus (light single-jet engine), Boeing 

B777, and Boeing B787 as it was intended to experiment using different models ranging from 

light aircraft to more complex and large multi-jet engine aircraft. In the training data, the inputs 

which represent the flight data, and the outputs which represent the piloting commands are 

mapped. The mapping can be handled by multiple Artificial Neural Networks (ANNs) which 

is a popular Machine Learning method applied to generate models representing the mapping 

between inputs and outputs [7]. By breaking the problem into smaller sub-problems, each 

piloting task can be handled by a dedicated ANN. The methodology for comparing the 

behaviour of the proposed intelligent autopilot with its human teacher was achieved by running 

multiple tests in the flight simulator to collect continuous flight data and autonomous control 

data representing the performance of the proposed intelligent autopilot, and comparing them 

with the performance of the human teacher to prove performance equivalency. The compared 

data include altitude, speed, climb and sink rates, and different angles such as pitch, roll, path-

line, and glideslope. The statistical methods used to test the performance include Mean 

Absolute Error (MAE), Mean Absolute Deviation (MAD), and the Two One-Sided Test 

(TOST) for equivalency. The comparisons cover performing complete flight cycles that include 

ground-run, takeoff, climb, cruise, descend, and landing in the presence of varying weather 

conditions and emergency situations. 

In order to provide evidence to support the hypothesis, this work is subdivided into the 

following objectives: 

1. Proving the possibility to teach a flight control system how to perform basic flights. 

2. Teaching the system how to handle emergency situations. 

3. Teaching the system how to perform complete flights including navigation and landing. 

 
1 X-Plane for Professional Use:  https://www.x-plane.com/pro/ [accessed 2018] 
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4. Teaching the system how to handle severe weather landing. 

5. Teaching the system how to behave like experienced human pilots of airliners by 

learning from professional demonstrations provided by an experienced pilot unlike the 

demonstrations used for objectives 1 to 4 which were provided by the author of this 

work.  

Since it is intended to prove the possibility of teaching Artificial Neural Networks (ANNs) 

how to behave like experienced human pilots, the ANNs should acquire the ability to perform 

continuous and dynamic tasks such as correcting the path of the aircraft especially in difficult 

conditions such as during final approach when the aircraft’s speed is relatively slow which 

hinders manoeuvrability, and in the presence of severe weather conditions. In addition, the 

ANNs should acquire the ability to perform sets of tasks aimed towards achieving a strategic 

goal such as flying from airport A to airport B, or dealing with an emergency such as engine 

fire. Therefore, the reason for choosing the above objectives is the comprehensive scope they 

cover including continuous and dynamic tasks, and strategic sets of tasks which are essential 

to acquire the overall ability of flying airplanes.  

This work however, does not consider related challenges such as sensory faults or 

deprivation which can affect the performance of such autonomous systems. In addition, faults 

of flight control surfaces during flights are not considered.  

This thesis is structured as follows: chapter 2 is a literature review which covers the control 

problem, related work on utilizing Learning from Demonstration in autonomous flying, and 

handling autonomous flights including navigation and landing under uncertainties. Chapter 3 

explains the proposed Intelligent Autopilot System (IAS), the methodologies applied for 

designing and testing the IAS, and the first prototype of the IAS designed to prove the 

possibility of transferring human pilots’ skills and abilities to a flight control system, to enable 

it to perform basic flights autonomously. Chapter 4 explains the second prototype of the IAS 

designed with the objective to learn how to handle emergency situations. Chapter 5 explains 

the third prototype of the IAS designed with the objective to learn how to perform complete 

flights including navigation and landing. Chapter 6 explains the fourth prototype of the IAS 

designed with the objective to learn how to handle severe weather landing. Chapter 7 explains 

the fifth prototype of the IAS designed to behave like experienced human pilots of airliners. 

The five chapters which explain the prototypes include experiments, results that compare the 

behaviour of the human pilot with the behaviour of the IAS when applicable, as well as 
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comparisons between the prototypes of the IAS, and analysis. Chapter 8 provides conclusions, 

and chapter 9 discusses future work. The appendix of this thesis contains copies of five research 

papers which were submitted and published to relevant conferences and journals.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



15 
 

2. LITERATURE REVIEW  

In this chapter, review and analysis are provided of the state-of-the-art literature of control 

automation in aerospace with a focus on related non-linear and robust methods, mainly 

Artificial Neural Networks, transfer of skills and abilities to machines, and autonomous flying 

in uncertain conditions.  

2.1 Controllers 

2.1.1 Non-Adaptive Linear Controllers  

Current operational autopilots fall under the domain of Control Theory [9]. Classic and 

modern autopilots rely on controllers such as the Proportional Integral Derivative (PID) 

controller, and Finite-State automation [10]. Non-adaptive linear controllers such as 

Proportional Integral Differential (PID) controllers are extensively used in the aerospace 

domain for manned and unmanned aircrafts ranging from fixed-wing airliners to Micro Aerial 

Vehicles (MAV) [10]. PID controllers are used to provide adequate trajectory-tracking applied 

to control the aircraft’s surface controllers such as rudders, ailerons, and elevators by sending 

control commands to their actuators [10]. PID controllers have a pre-designed gain factor or 

control law applied continuously to transform the vehicle from the current state to the desired 

state by calculating the gain which should be applied based on the proportional error, the 

integral error, and the differential error [10]. PID controllers are capable of providing relatively 

simple autonomous control of an aircraft such as maintaining a certain trajectory by controlling 

speed, pitch, and roll [10]. However, PID controllers cannot cope with uncertainties due to their 

non-adaptive nature [10]. Another limitation of PID controllers is the extensive tuning 

requirement of the controllers where gains are tuned to specific aerial platforms, which makes 

it difficult to transfer the tuned controllers to different aerial platforms [11]. 

 

2.1.2 Adaptive Non-Linear Controllers 

Due to the current need to develop intelligent flight controllers for fixed-wing aircrafts that 

are capable of handling flight uncertainties, the classic control theory field is being extended 

by adding intelligent components capable of enhancing and aiding conventional controllers 

used by modern aircrafts [12]. Unlike non-adaptive conventional controllers which are 

designed based on linearized aircraft models, adaptive nonlinear controllers are expected to be 

the next generation of flight controllers due to their ability to handle uncertainties affecting 

gain performance which is one of the limitations of current conventional flight controllers [13].     
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To have further autonomy under normal conditions such as executing a flight path by an 

autopilot, a Simultaneous Localization and Mapping (SLAM) algorithm is coupled with the 

PID controllers [14]. In large scale aircraft, such as fixed-wing airliners, the flight control 

computers use several on-board sensor data such as speed and altitude, and satellite data such 

as Global Positioning System (GPS) data to determine localization of the aircraft and path 

mapping [14]. Recent research effort has been focusing on investigating and introducing 

different SLAM methods to achieve better locomotion. For example, Machine Learning 

methods such as computer vision algorithms are used to achieve autonomous navigation 

capabilities for small scale Unmanned Aerial Vehicles (UAVs) where GPS signals are weak or 

unavailable [14]. Such scenarios can be observed with indoors MAVs which apply a different 

set of sensors such as stereo vision, laser, infrared, or ultrasonic [15] [16] to first, generate a 2-

D or 3-D map of the environment, and then, determine proportional distance values which are 

processed and sent to the PID controllers as current state inputs that are used to generate gain 

outputs [14].  

Green et al [17] presented an autonomous navigation system based on a depth perception 

optic flow microsensor capable of Autonomous Take-off and Landing (ATOL). While auto 

take-off was achieved by simple increasing throttle to full power and deflecting elevators, auto 

landing was achieved by the following: 1. a microcontroller takes an initial reading from the 

optic flow sensor, 2. the reading is considered as the desired value (distance to landing pad), 

and 3. the controllers adjust throttles (gain) based on continuous readings of distance (error 

between current and desired positions) in a fashion similar to how PID controllers operate [17].   

Bills et al [18] proposed a Machine Learning based technique that does not require 2-D or 

3-D map generation, but rather relies on classification and computer vision algorithms for 

indoors MAVs. First, an on-board camera takes images of the environment ahead, then, Canny 

edge detector algorithm is applied to detect edges, and the probabilistic Hough transform 

algorithm is used to detect long lines [18]. The results are used to classify the environment as 

a corridor or a staircase, and depth images generated from the camera are analysed to detect 

obstacles (pixel’s level of grey) [18]. Finally, the generated data is processed and sent as inputs 

to PD microcontrollers to control the MAV and navigate through the corridor or the staircase 

[18].   This  technique which focuses on utilizing  Machine  Learning  based  computer  vision  
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TABLE 2.1 
RESEARCH PAPERS ADDRESSING MACHINE LEARNING BASED COMPUTER VISION 

ALGORITHMS TO ACHIEVE AUTONOMOUS COLLISION FREE NAVIGATION 

 

Description Reference 

Fly-inspired visual sensors for autonomous micro-flyers [19] 

A 2-D vision system that sends velocity commands to a low-level controller [20] 

A stereo-vision system that remaps the world onto a cylindrical co-ordinate system which 

simplifies range computations and collision avoidance  

[21] 

Using an optic flow sensor for velocity and position estimation for indoors UAVs  [22] 

A visual odometer that estimates the vehicle's ego-motion by extracting and tracking 

visual features, using an on-board camera 

[23] 

Estimating the altitude of a UAV from top-down aerial images taken from a single on-

board camera 

[24] 

Mapping the image errors onto the actuator space via a depth-independent interaction 

matrix 

[25] 

A vision system and imitation learning techniques to train a MAV controller how to avoid 

obstacles 

[26] 

UAV Landing Using Computer Vision Techniques for Human Detection [27] 

A Computer Vision Line-Tracking Algorithm for Automatic UAV Photovoltaic Plants 

Monitoring Applications 

[28] 

Swaying displacement measurement for structural monitoring using computer vision and 

an unmanned aerial vehicle 

[29] 

Visual Object Detection For Autonomous UAV Cinematography [30] 

Real-Time SLAM Based on Image Stitching for Autonomous Navigation of UAVs in 

GNSS-Denied Regions 

[31] 

UAV path automation using visual waypoints acquired from the ground [32] 

Learning Pose Estimation for UAV Autonomous Navigation and Landing Using Visual-

Inertial Sensor Data 

[33] 

 

algorithms to achieve autonomous collision free navigation have investigated in many research 

papers as Table 2.1 shows.  

Other techniques aimed at enhancing conventional controllers were investigated such as the 

introduction of Genetic Algorithms as a PID gain tuning approach [34]. First, PID controllers 

responsible for controlling the three axis of flight (pitch, Yaw, and Roll) were tuned using 

Roulette selection function and a two-point crossover properties of Genetic Algorithm in 

Matlab [34]. Then, the optimized gain values are sent to the controllers as enhanced gain values 

compared with the gain values generated from the PID controllers alone [34].  
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In [35], an autopilot design that utilizes a combination of indirect adaptive controller with 

approximate feedback linearisation is proposed to tackle the challenging problem of providing 

fast response and minimum tracking error for missiles. The introduction of adaptation enhanced 

closed-loop control robustness, and approximate feedback linearisation tackled the issue of 

unstable zero dynamics [35]. The proposed approach can be used for nonlinear missiles with 

uncertain parameters, which is supported by the desirable results in simulation [35].    

In [36], an active disturbance rejection control (ADRC) strategy based on fuzzy control is 

proposed, which is designed to improve the ability of anti-interference, meanwhile, fuzzy 

control is adopted to adjust the ADRC parameters online, which makes control performance 

better. Simulation results show that compared with conventional PID the Fuzzy-ADRC 

strategy can suppress the disturbances quickly and efficiently, with higher control accuracy, 

stronger robustness and so on [36]. In [37], a fuzzy self-tuning PID (FSPID) controller to tackle 

the disadvantages of conventional PID controllers in aircraft autopilots is proposed where fuzzy 

self-tuning PID tunes the PID parameters to achieve the optimal performance, which based on 

the results in simulation, the proposed controller can adaptively improve the system response 

by on-line setting of PID parameters. Other methods were used to enhance the pitch control 

performance such as Linear Quadratic Regulator (LQR) [38], and Fuzzy Logic Controllers 

(FLC) [39].           

A large amount of research effort aimed towards the development of such intelligent flight 

controllers adopted Artificial Neural Networks (ANNs) as the method of choice [7]. In this 

context, ANNs have been applied to enhance conventional controllers by adding adaptation 

capacities in three ways: 1. Aiding autopilot adaptive controllers, 2. Fault tolerance, and 3. 

Prediction of aerodynamic. The efforts have been focusing on enhancing stability and 

navigation [7].     

2.1.2.1 Artificial Neural Networks 

Artificial Neural Networks (ANNs) are popular learning methods due to their ability to 

handle highly dynamic real-time large volumes of data [7]. They are a highly-interconnected 

system capable of processing data through their dynamic state response to external inputs [7]. 

Although Artificial Neural Networks are sometimes referred to as slow learners, as soon as the 

learning model is generated, ANNs are very fast classification and regression techniques that 

are suitable for applications running in dynamic and high-speed environments [40] such as 

electrical circuits management and analysis [41], and high frequency trading [42]. ANNs are 
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also used in robotics applications due to their capability of handling large amounts of real-time 

noisy sensor data [43] [44]. The latter resemble the Intelligent Autopilot System (IAS) which 

should be able to receive real-time flight status data from multiple sensors, process the data, 

and apply the appropriate control commands actions given the current flight state. 

2.1.2.2 Artificial Neural Networks -Based Adaptive Non-Linear Controllers 

Pashilkar et al [45] presented a neural-aided controller which does not replace the 

conventional controllers used by the aircraft’s autopilot, but aids them by enhancing the fault 

tolerant measures during windy landings. In such scenarios, the possibility to encounter a fault 

represented by a jammed surface controller is increased [45]. For example, an elevator, or an 

aileron, or both could get stuck at a certain deflection due to strong winds [45]. The neural-

aided controller applies an error feedback learning approach, and a Dynamic Radial Basis 

Function neural network which uses online learning to enhance the outputs sent to the surface 

controllers by the conventional controller which is not able to cope with fault [45]. The neural-

aided controller outputs act as weights which increase or decrease the values of the 

conventional controllers’ output values to cope with the deflection caused by the jammed 

surface controller, and ensure a safe landing [45].  

Under NASA’s Intelligent Flight Control System (IFCS) program, Soares et al [46] 

proposed an adaptive intelligent controller called G-2 which is based on neural networks. G-2 

aids the aircraft’s conventional controllers by compensating for errors caused by faults [46]. 

The faults are represented by surface controller failures, or dynamic failures caused by 

modelling errors [46]. Neural networks were applied to output command augmentation signals 

to reimburse for the errors caused by faults [46]. Conventional controllers such as the widely 

used PID (Proportional Integral Differential) controllers suffer from a limitation represented 

by the inability to change the gains of the system -also known as proportionality constants- 

after the system starts operating [46]. At this point, only one solution can be applied to tackle 

this problem, which is to stop the system, perform gain re-tuning, and restart the system, which 

might not always be practical [46]. Therefore, neural networks were introduced to eliminate 

this problem, and to replace the fixed gains by actually learning what the gains should be, and 

incorporating them with the actual output of the conventional controller [46]. 

Artificial Neural Networks have been applied as nonlinear dynamic models to aid the 

controllers of small scale unmanned Aerial Vehicles (UAV) as well.  For example, neural 

network controllers were introduced to aid the trajectories controllers of a hexacopter [47], and 
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a quadrotor drone [48]. The main goal is to reduce the inverse errors, and ensure a more stable 

flight [47] [48]. The results show the ability of neural-based controllers to enhance the 

robustness of conventional controllers of drones in a fashion similar to the enhancements 

achieved for fixed-wing aircrafts [47] [48]. Other than stability, ANNs have been applied to 

small scale UAVs to enhance position tracking controllers using integral of the Signum of the 

error (RISE) feedback along with ANNs, which proved to be an effective approach based on 

accuracy results [49].  

The possibility to enhance the stability of unstable UAVs using ANNs has been investigated 

in [50]. Here, the concept of aiding conventional controllers using ANNs has been applied to 

maintain a steady pitch rate via ANNs with linear filters and backpropagation to approximate 

the control law [50]. Offline-training coupled with finite time training was applied to enhance 

stability, while online-training was applied to compensate for flight uncertainties caused by 

aerodynamic and surface control problems [50]. Results showed the ability of ANNs to 

enhance the capabilities of conventional controllers to maintain stability for unstable UAVs 

[50].      

The instability problem found in many aerial vehicles can be clearly seen in helicopters due 

to their extremely non-linear aerodynamic characteristics [51]. For such platforms, a different 

set of control theory-based controllers are usually used to overcome the aerodynamic issues 

such as Direct Inverse Controllers (DIC) [51]. To enhance the performance of the DIC, an 

ANN was applied to investigate the possibility to adapt to variations in the dynamic of the 

system [51]. The ANN was capable of learning the dynamics of a drone helicopter performing 

a hover-hold [51]. The main advantage was the ANNs ability to cancel out unnecessary 

dynamics data distorting the hover-hold control command as per the results [51].  

A different unstable platform can be observed in experimental Hypersonic Flight Vehicles 

(HFV) [52]. ANNs have been applied to the problem of trajectory control and navigation for 

HFVs as well. Xu et al [52] proposed neuro-controllers to tackle the HFVs problems of motion 

equations high complexity, and the lack of knowledge of the aerodynamic parameters of HFVs. 

The neuro-controllers were designed to mimic nonlinear adaptive and dynamic controllers via 

the back-steeping technique capable of controlling the aircraft’s altitude and velocity from an 

initial flight state to a desired trim. The results showed the proposed approach’s ability to 

provide better control for HFVs [52].   
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Fighter jets are also known as unstable aerial platforms [53]. Savran et al [53] proposed yet 

another adaptive and dynamic nonlinear controllers based on ANNs to aid the conventional 

controllers operating on-board F-16 fighter jets. The proposed control system was designed to 

handle the compensation issue of uncertainties caused by system failures [53]. The work was 

done by: 1. modelling the dynamic behaviour of the nonlinear model of the F-16 fighter jet, 

and 2. designing ANN based PID controllers capable of enhancing the system’s gain attempts 

through online-training and backpropagation [53]. Results showed the proposed systems ability 

to yield good results for fault tolerance [53].    

In [54], an interesting approach is proposed to develop a control technique for an unusual 

aerial fuselage which is a spherical UAV. To tackle this challenging problem, a nonlinear 

control theory combined with Adaptive Neural-Networks Disturbance Observer (NN-DOB) is 

proposed to control the attitude and altitude of the UAV in the presence of model uncertainties 

and external disturbance [54]. Experiments in simulation showed that the proposed approach 

estimated the uncertainties effectively without prior knowledge [54].     

The research effort aimed towards enhancing navigation using ANNs have gained interest 

in the missile navigation context. Rajagopalan et al [55] proposed the substitution of 

conventional Proportional Navigation (PN) guidance controllers with ANN based controllers 

due to PN controllers’ limitations hovering mainly around the need for faster and more accurate 

calculations and approximations [55]. Results showed a faster throughput is possible when 

using ANN controllers instead of PN controllers due to the ability of ANNs to process data in 

parallel [55].     

Using Artificial Neural Networks as intelligent controllers was expanded in a very 

interesting research conducted by DeMarse et al [56]. In their work, a living neuronal network 

extracted from a rat’s brain, and cultured on a microelectrode array was trained to provide 

simple aid to a simulated aircraft’s conventional controllers [56]. The living network was used 

as a matrix of weights that has the ability to measure and manipulate feedback control to 

stabilize a simulated aircraft [56]. The errors generated by the gains of the aircraft’s controllers 

were compensated by measuring the proportional feedback using the calculated synaptic 

weights between neurons within the rat cortical network [56]. 

The same concept of enhancing the capabilities of conventional controllers by adding 

adaptive capabilities to handle nonlinearities using Artificial Neural Networks has been 

investigated and applied in various research papers as Table 2.2 shows. 
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2.1.2.3 Multiple Controllers & Sensors  

The break-down approach of problems into smaller sub-components was applied early in 

the work of Rodney Brooks [71] where a multi-layered hierarchy representing a decomposition 

of a complex behaviour into sub-behaviours is proposed. Each sub-behaviour represents an 

agent responsible for a particular behaviour competence [71]. For example, the lowest or the 

zeroth layer of a robot could be dedicated for the purpose of avoiding obstacles [71]. After that, 

the first layer could be dedicated for the purpose of wandering around the environment in which 

the robot is located [71]. Then, the second layer could be dedicated for the purpose of exploring 

 

TABLE 2.2 
RESEARCH PAPERS ADDRESSING ENHANCED CONTROLLERS BY ADDING ADAPTIVE 
CAPABILITIES TO HANDLE NONLINEARITIES USING ARTIFICIAL NEURAL NETWORKS 

 

Description Reference 

Verification and validation techniques for non-adaptive ANN based controllers [57] 

Neural Network Identification for modelling the nonlinear dynamics of a miniature helicopter  [58] 

Incorporating a neural network with real-time learning capability in a flight control architecture [59] 

An adaptive controller design method based on neural network for reconfigurable flight control 

systems in the presence of variations in aerodynamic coefficients 

[60] 

UAV parameter estimation using Iterative Bi-Section Shooting, Artificial Neural Network, and 

“Hybrid ANN_IBSS” 

[61] 

Adaptive UAV autopilot design using two-stage dynamic inversion, and feedback dynamic 

inversions based on a command augmentation system 

[62] 

Single Neural Adaptive PID Control for Small UAV Micro-Turbojet Engine [63] 

Neural-Networks Control for Hover to High-Speed-Level-Flight Transition of Ducted Fan 

UAV With Provable Stability 

[64] 

Universal Adaptive Neural Network Predictive Algorithm for Remotely Piloted Unmanned 

Combat Aerial Vehicle in Wireless Sensor Network 

[65] 

Adaptive Neural Motion Control of a Quadrotor UAV [66] 

Adaptive Neural Fault-Tolerant Control for the Yaw Control of UAV Helicopters with Input 

Saturation and Full-State Constraints 

[67] 

Neural Network-based Adaptive Backstepping Controller for UAV Quadrotor system [68] 

Adaptive tracking control of an unmanned aerial system based on a dynamic neural-fuzzy 

disturbance estimator 

[69] 

Neural PD Controller for an Unmanned Aerial Vehicle Trained with Extended Kalman Filter [70] 
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the overall environment [71]. All these layers of sub-behaviours work together simultaneously 

to achieve the strategic goal which could be the successful travel from the starting point to the 

end without colliding with obstacles [71]. The layers receive inputs as data provided by the 

sensors of the robot, then, work in parallel to generate output data used as control command 

for the actuators [71].  

The problem of coordinating multiple sensor-motor architectures found in complex robotic 

systems is challenging due to the simultaneous and dynamic operation of these motors while 

insuring rapid and adaptive behaviour, and due to the need to properly handle the fusion of data 

from disparate sources [72]. In nature, animals manage this problem by the large number of 

neural circuits in the animals’ brains [72]. For example, neural circuits which are responsible 

for motion are connected to the muscles (motor systems), and operate simultaneously and 

dynamically while handling changes in the environment [72]. This has inspired the field of 

complex robotics to develop multiple neural-based controllers and integrate them together to 

tackle larger problems such as long-endurance locomotion under uncertainties [72]. In [72], 

the problem of coordinating multiple sensor-motor architectures is addressed in the context of 

walking by developing a neural circuit which generates multiple gaits adaptively, and 

coordinates the process of walking with different behavioural-based processes in a hexapod 

robot. The results showed the ability of biology-inspired system to detect and stabilize multiple 

instability scenarios, and to determine what needs to be controlled at each moment which 

allows the system to handle changes in the environment [72].   

Multiple Artificial Neural Networks were applied to the problem of detecting roads visually. 

In [73], different inputs are fed into multiple ANNs to handle multiple segments of the image. 

The proposed approach allows the system to detect and classify multiple factors of the 

environment ahead which leads to an enhanced performance compared with other computer-

vision solutions [73]. 

In [74], Multiple ANNs were applied to tackle the limitations problem of traffic light control 

systems that are based on conventional mathematical methods. In simulation, the results 

showed that the approach of using multiple ANNs to address this problem presented an 

improvement in performance compared with other methods [74].  

Another proposed system inspired by biology is presented in [75], which is designed to 

handle the challenging problem of gesture recognition. The system shares similarities with the 

human visual system by developing multiple spiking ANNs [75]. The outputs of the spiking 
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ANNs are used to generate a fusion of multiple data from different segments of the gesture 

[75]. The results proved the system’s ability to handle dynamic visual recognition with the 

presence of complex backgrounds [75]. 

The approach of segmenting or breaking down the problem, and using multiple ANNs to 

handle the generated multiple segment showed the potential to enhance the properties of ANNs 

as explained in [76]. A large ANN is split into parallel circuits that resemble the circuits of the 

human retina [76]. During training, the Backpropagation algorithm runs in each circuit 

separately. This approach does not only decrease training time, but it also enhances 

generalization [76].    

Having multiple sensors, control surfaces, low-level control components, high-level control, 

etc., require an approach that can take all these different components and tasks into 

consideration, and provide an architecture that can utilise and operate all these components in 

harmony to achieve the overall goal. In [77], an open-source rational agent architecture is 

proposed, which aims to provide autonomous decision-making and reconfigurability to suit 

different platforms. The proposed approach provides a hybrid architecture to separate the high-

level autonomous decision-making from continuous or low-level control components, which 

makes decision strategy verifiable, and allows a modular approach to the architecture [77]. This 

approach introduces a high level of flexibility where different components can be added, 

removed, or replaced to suit the different requirements [77].   

 

2.1.3 Analysis of the Controllers Literature  

Analysing the literature and the state-of-the-art of both non-adaptive linear controllers and 

adaptive non-linear controllers shows the superiority of the latter when handling the non-linear 

conditions present in the environment and the different models of multiple flying platforms.  

Non-linear adaptive controllers are also capable of handling uncertainties such as adapting to 

a surface controller fault [14-17], [34]. 

Introducing Machine Learning based approaches, aided controllers by adding an extra level 

of adaptivity to handle more complex nonlinearities present in highly unstable aerial platforms 

such as fighter jets and Hypersonic Flight Vehicles (HFV) [52]. Artificial Neural Networks 

(ANNs) seem to be a very popular choice due to their ability to handle highly dynamic real-

time large volumes of data [41], [42]. 
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Literature suggests that conventional controllers such as Proportional Integral Derivative 

(PID) controllers even when enhanced are not capable of learning a high-level task comprising 

of a sequence of multiple sub-tasks [10]. For example, learning a full take-off task which is 

comprised of a sequence of sub-tasks (release brakes, increase throttle and set to maximum 

power, wait until a certain speed is achieved then deflect elevators, wait until a certain altitude 

is achieved then retract gear, etc.) is beyond the capacities of these conventional controllers, 

which means, performing a fully autonomous flight by relying just on conventional controllers 

is not feasible [10]. On the other hand, manually designing and developing all the necessary 

controllers to handle the complete spectrum of flight scenarios and uncertainties ranging from 

normal to emergency situations might not be the ideal method due to feasibility limitations 

such as the difficulty in covering all possible eventualities [10].  

Replacing PID controllers with Artificial Neural Networks, or enhancing these controllers 

by adding an ANN layer, proved to tackle the robustness issue of PID controllers [46-70]. In 

addition, breaking down the problem by using multiple ANNs instead of one large ANN 

delivered superior results [71] [72]. The latter approach which is inspired by biological neural 

circuits in the brain, each dedicated to a certain task, such as controlling a specific part of the 

biological body, proved to be an excellent approach for problems that require a fusion of 

sensory data, and the control and manipulation of multiple components, such as the problem 

of autonomous flying [71] [72]. By following this approach, the results showed the ability of 

such multiple ANNs-based systems to provide higher levels of accuracy since each ANN is 

carefully designed and trained to handle a specific segment, rather than the whole problem [73] 

[74]. 

2.2 Learning from Demonstration 

Learning a model represented by a mapping between states in an environment and actions 

or behaviours is one of the main goals in the field of robotic systems. Learning this mapping 

or policy gives robotic systems the ability to perform actions or behaviours autonomously given 

the current state of the environment. Developing a policy manually is usually a challenging 

task especially if there are more than one policy required to allow the system to perform a set 

of tasks without human intervention [78]. Therefore, Machine Learning approaches have been 

investigated and applied to aid the process of policy learning [78]. An interesting approach 

known as Learning from Demonstration (LFD) has been applied where robotic systems learn 

policies that govern successful performance of tasks by first, observing a human expert while 
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performing the tasks to be learned, and then, performing the same tasks autonomously after 

generating learning models [78]. The demonstrations can be defined as sequences of pairs or 

mappings between the environment’s states and actions or behaviours that can be logged as 

training datasets [78]. After that, Machine Learning algorithms can be applied to generate 

behaviour models or policies from the demonstration datasets [78]. 

Learning from Demonstration has been applied by following different Machine Learning 

approaches. Authors gave LFD different names based on the followed Machine Learning 

approach such as Behavioural Cloning [79], and Apprenticeship Learning [8]. Learning by 

Imitation is split into two main parts each with its own objectives: 1. learning a policy or a low-

level task which could represent a direct mapping between states and relative actions, and 2. 

learning a reward function or a high-level task which could represent a specific goal to be 

achieved [8] [79].  

In the aviation context, Iiguni et al [80] presented a Learning from Demonstration approach 

for autonomous flight control that relies on Nearest Neighbours (kNN) or (mNN). This 

approach uses a k-d tree structure method to search for the current state of the environment in 

a priori to locate the previously recorded nearest neighbours to the current state [80]. The 

nearest neighbour to the current state can then be used to estimate the appropriate actions 

recommended for the current state, and build a Linear Local Model (LLM) [80]. This step is 

constantly repeated by discarding the generated model and forming a new one based on the 

change of states [80]. More recently, Matsumoto et al [81] proposed a similar learning approach 

that depends on Learning from Demonstration (LFD) to capture the human pilot’s skills and 

apply them in an autonomous Unmanned Aerial System (UAS) to achieve the same level of 

safety observed in civil aviation [81].      

2.2.1 Behavioral Cloning 

Sammut et al [82] presented an early attempt to develop an autopilot that can learn by 

imitation. A Decision Tree learning algorithm was used to capture the set of rules or high-level 

tasks required to fly an aircraft in a flight simulator [82]. The rules were transformed into a 

collection of If-Statements that govern the control commands sent by the autopilot [82]. The 

autopilot was able to perform a sequence of piloting tasks as follows: take-off and climb to a 

certain altitude, level out the aircraft and cruise for a certain distance, perform a series of 

waypoint checks, descend and land [82]. This set of tasks was performed by three human pilots 

in a flight simulator [82]. While the human pilots demonstrated the tasks, the states of the flying 



27 
 

environment were coupled with events or actions performed by the demonstrators, and logged. 

The log contained about 90,000 events comprised of 1,000 events for each pilot flying 30 times 

[82]. The reason behind collecting a large number of events from each demonstrator was to 

present the learning algorithm with sufficient data to deduce the rules to be learned [82]. 

Another reason was due to the method followed to collect data, which made it difficult for the 

learning algorithm to deduce the rules [82]. For example, during demonstrations, the human 

pilots followed a visual approach to navigate from one checkpoint to another, where a certain 

landmark for instance was used to indicate that the current checkpoint was met, and it was time 

to follow a different heading to navigate to the next checkpoint [82]. In addition to that, and to 

avoid having to gather more flight examples, a data analysis process using C4.5 had to be done 

to assist the learning algorithm to deduce the rules, especially that each pilot or demonstrator 

flow the aircraft differently, which introduced variations in the collected logs or datasets [82]. 

Even though C4.5 was never developed to learn reactive strategies, the authors favoured it 

because they were familiar with it, and because of its reliability [82]. Another limitation of the 

C4.5 faced by the authors, was the need to have discrete values as class labels instead of the 

aircraft’s surface controllers (ailerons, elevators) continuous values [82]. This limitation called 

for an additional processing step which broke down the action settings into sub-ranges that can 

be labelled using discrete values [82]. After generating the control or piloting rules from the 

decision trees, they were transformed into blocks of If-Statements written in the programming 

language C [82]. The If-Statements continuously checked for certain conditions, and applied 

appropriate actions [82]. For example, just before take-off, an If-Statement checked in a closed 

loop fashion if the speed exceeded a certain value before deflecting the elevators in order for 

the aircraft to leave the ground [82].  

In a different research paper, Sammut [83] elaborated on the main challenge faced while 

working on the autopilot [83] mentioned above. The main challenge was the inability of the 

Decision Tree based induction program to deduce complex relationships present in the highly 

dynamic and noisy continuous data [83]. This highly dynamic data contain complex 

relationships between different states and actions which represent the sub-cognitive or low-

level and rapid actions performed by skilled human demonstrators given rapid changes in the 

state or the environment [83].  

Behavioural Cloning has been applied in other contexts as well. Sheh et al [84] applied 

Behavioural Cloning to mimic a traverse obstacle avoidance task performed by an expert. 
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Through Decision Tree learning, their model captures the decision-making process performed 

after observing high dimensional sensory inputs such as Depth images [84].  

2.2.2 Apprenticeship Learning 

Recent research effort proposed a strategy aimed towards capturing and learning human user 

models through the concept of Apprenticeship Learning using Inverse Reinforcement 

Learning, either by considering a Markov decision process proposed by Pieter Abbeel and 

Andrew Y. Ng [8], or by considering Gradient methods proposed by Neu et al [85]. These 

methods in general do not depend on receiving a Reward Function in advance, which is how 

classic Reinforcement Learning works, instead, the proposed approach attempts to find a 

reward function by observing how a human expert demonstrates the task to be learned by the 

system [8] [85]. Apprenticeship Learning eliminates the need to explicitly present the rewards, 

policies, and strategies manually, which could be difficult or unfeasible tasks [8] [85]. This has 

opened the window to apply Apprenticeship Learning to a wide range of contexts ranging from 

navigation, to video games, and music [8] [85]. Asta et al [86] proposed an interesting approach 

for vehicle routing using a Hyper-heuristic method. Their approach follows a Supervised 

Learning method, which generates classifiers that capture various actions an expert performs 

while the search process is taking place [86]. After that, the classifiers are used to generate a 

Hyper-heuristic learning model, which is potentially capable of generalizing the actions of the 

expert hyper-heuristic while solving unseen instances [86]. Messer et al [87] also applied 

Apprenticeship Learning through Inverse Reinforcement Learning to discover a reward 

function in a musical context. While experts generated melodies, their behaviour was used by 

the learning agent to discover a reward function [87]. The reward function was used to generate 

new melodies [87]. 

Abbeel et al [88] applied Apprenticeship learning to a difficult dynamic control system to 

teach controllers of a helicopter how to perform acrobatic manoeuvres autonomously. 

Applying Apprenticeship Learning proved to be an efficient learning technique to capture the 

expert demonstrator’s skills [88]. To learn how to perform a specific manoeuvre, a multiple 

number of demonstrations by an expert were captured [88]. The goal was to consider 

observations as noisy attempts from the expert to perform the desired manoeuvre successfully 

[88]. An Expectation–maximization algorithm that implements a modified Kalman Smoother 

along with a Dynamic Programming algorithm to deduce the desired trajectory model of the 

manoeuvre were applied [88]. The main reported challenge was the difficulty to capture high-
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level dynamic models present in complex manoeuvres which consist of multiple reward 

functions or sub-tasks rather than just one [88]. 

To tackle the Inverse Reinforcement Learning problem of assuming that the demonstrator 

is trying to maximize a single reward function, Michini et al [89] proposed a different approach 

where the demonstrator is assumed to be trying to maximize a set or sequence of sub-tasks 

representing multiple reward functions rather than a single one [89]. A Bayesian nonparametric 

reward-learning framework was proposed which infers multiple reward functions or goals 

chained together from a single demonstration containing all of the goals [89]. The proposed 

approach handles both continuous and discrete values by applying Gaussian process reward 

representations [89]. This approach presented results showing the advantage of assuming that 

the demonstrator is trying to maximize multiple reward functions rather than just one [89].    

2.2.3 Analysis of the Learning from Demonstration Literature   

Analysing the literature and the state-of-the-art of Learning from Demonstration (LFD) 

leads to the conclusion that there are two main schools of thought. One school tends to use the 

term Behavioural Cloning [82] to describe learning by imitation or LFD. This school focuses 

one using supervised learning methods, mainly Decision Tree/Random Forest learning to 

capture the human expert’s model of high-level/strategic tasks [82-84]. The trees model the 

rules and thresholds that are constantly checked to control the transfer from one action to 

another within a sequence. Sammut et al [82] were able to capture the general rules of take-off, 

climb, cruise, and landing, but reported challenges when trying to capture dynamic and real-

time continuous actions. This school in general reported the same challenges and difficulties 

when trying to capture the human expert’s model of low-level tasks or actions that represent 

the rapid and continuous sub-cognitive actions performed by a human expert in a highly 

dynamic environment [82].  

On the other hand, the other school of thought uses the term Apprenticeship Learning [8] to 

describe learning by imitation. This school focuses on using a modified form of Reinforcement 

Learning called Inverse Reinforcement Learning [85-88]. While the concept of Reinforcement 

Learning allows a given system to explore an environment and exploit the available knowledge 

to generate policies and maximize reward functions, Inverse Reinforcement Learning allows 

the system to observe an expert who is believed to be trying to maximize a reward function. 

Unlike Reinforcement Learning where the reward is not explicitly given, the Inverse 

Reinforcement Learning concept makes the reward available and is represented as the expert’s 
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actions towards the successful completion of a task, in a fashion similar to supervised learning. 

In a notable contrast, Abbeel et al [89] succeeded in capturing low-level highly dynamic models 

representing an expert helicopter pilot performing complex manoeuvres. However, they 

reported challenges when trying to capture a main model that explains the high-level tasks or 

actions/strategies the human pilot is performing to manage the smooth transition from one 

manoeuvre to another or from one set of related rapid sub-tasks to another [89]. In other words, 

they reported the difficulty of capturing a sequence of sub-tasks or reward functions that 

makeup a complete general or high-level task rather than just a single reward function.   

Literature suggests that supervised learning methods were relatively straightforward to 

apply in the context of LFD [82-84]. Even when Reinforcement Learning was the method of 

choice, it had to be modified [85-88] in a fashion that rather resembles supervised learning in 

“spirit”. This was done by presenting the rewards that are not explicitly given in traditional 

Reinforcement Learning problems in a way that is similar to presenting training datasets where 

the labels or desired outputs are known, hence the term Inverse Reinforcement Learning [8].  

Other than being popular classification techniques, Decision Tree/Random Forest learning 

algorithms represent efficient tools for inferring how the learning model was achieved due to 

their relatively easy to visualize and understand tree structure [82]. The structure allows the 

inference or understanding of how the decisions are made from the root across branches to the 

terminal leaves [82]. However, they are probably not the appropriate method for handling noisy 

and dynamic numerical values [83]. Literature suggests that the challenges reported when 

trying to handle noisy and dynamic numerical values are due to this nature of Decision 

Tree/Random Forest learning algorithms [83]. On the other hand, using Inverse Reinforcement 

Learning along with a suitable optimization technique proved to be able to handle noisy and 

dynamic numerical values, however, capturing the higher set of strategic tasks was challenging 

[8]. In [90], a comparison between a Random Forest Behavioural Cloning learning approach 

and Inverse Reinforcement Leaning approach was conducted. In their work, the Random Forest 

Behavioural Cloning learning approach performed better than the Reinforcement Leaning 

approach in the task of predicting Ground Delay Programs at airports, although both techniques 

struggled to predict when a delay is started and when it is cancelled [90]. Literature suggests 

that the better performance of Behavioural Cloning is due to its capability to capture high-level 

tasks such as managing airports’ Ground Delay Programs that are not necessarily as dynamic 

as traversing or flying for example [90]. This comparison suggests a strong evidence to support 

the argument of Random Forest for capturing high-level models versus Inverse Reinforcement 



31 
 

Learning for capturing low-level models. The airports’ Ground Delay Program problem is more 

likely to be a strategic (high-level) problem rather than a highly dynamic low-level problem, 

hence the better performance of Random Forest learning compared with Inverse Reinforcement 

Learning. In addition, The work of Bloem et al [90] suggests that Behavioural Cloning is 

suitable for high-level tasks, while Apprenticeship Learning is suitable for low-level tasks.                  

Extended analysis leads to the conclusion that in general, breaking down the problem of 

learning in the context of Learning by Imitation, or looking at the tasks to be captured as 

collections of strongly related sub-tasks enhances the learning model. This was observed in the 

work of Michini et al. [89]   

The key concept summarized from the analysis of the literature, is the importance of initially 

analysing the given LFD problem to identify whether it is a low-level tasks/actions problem, a 

high-level tasks/actions problem, or in most cases, a combination of both. It is important to 

consider the appropriate learning method for both low-level and the high-level learning parts 

of the problem. 

2.3  Autonomous Flying 

The following section discusses recent research effort related to the scope of this work, 

which covers general aircraft control, handling emergency situations, navigation, landing, and 

flying under severe weather conditions, autonomously.    

2.3.1 General Aircraft Control  

To autonomously control an aircraft, the autopilot must manipulate the control surfaces and 

other control interfaces to perform the general tasks of piloting such as using the ailerons for 

banking or turning, the elevators for pitch maintenance, the elevators’ trim for altitude 

maintenance, the throttle for speed maintenance, flaps for drag control, etc.   

Controlling the aircraft’s roll by using the ailerons is in the heart of navigation and path 

interception. In [91], an autopilot system that uses sliding mode control (SMC) method is 

proposed. The results show enhanced performance using MATLAB/Simulink environment 

[91]. A variant of the sliding technique used in [91] is used in [92] as well. The proposed SMC 

algorithm-based on nonlinear sliding surface is derived using the kinematic equations for bank-

to-turn vehicles [92]. In addition, utilizing the rudder ensures the interception of the runway’s 

centreline during takeoff and landing in the presence of crosswind. In [93], a grid method for 

computing the value function and optimal feedback strategies for the control and disturbance 
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is used to optimize the control of the rudder by handling nonlinear and linearized model of the 

aircraft on the ground. During final approach, maintaining a desired glideslope ensures safe 

and soft landings. In [94], controllers that modify the reference model associated with 

aircraft pitch angle are proposed. The control of the pitch angle and longitudinal velocity is 

performed by a neural network adaptive control system, based on the dynamic inversion 

concept [94]. In [95], a network model optimization algorithm based on onboard flight recorder 

data is suggested. For altitude control, a non-minimum phase (NMP) dynamic control systems 

is proposed in [96] where an invert closed loop system performed better than conventional 

Linear Quadratic Gaussian (LQG) when holding a given altitude. In [97], Artificial Neural 

Network’s direct inverse control (DIC-ANN) with the PID control system is proposed where 

the linearization simplified the solving process for such mathematical based model, omitting 

the nonlinear and the coupling terms is unsuitable for the dynamics of the multirotor vehicle. 

Applying intelligent control methods to aircraft speed control is investigated in [98] where a 

speed command controller is enhanced by applying a command filter as well as an additional 

feed forward command. For flaps control, [99] proposes a dynamic flaps controller that 

continuously adjusts the flaps settings based on speed to achieve optimal flight dynamics 

throughout the flight. In addition, the controllability of a flap-controlled system is analysed 

based on nonlinear controllability theory [99].    

2.3.2 Emergency Situations 

Overcoming emergency situations is covered in recent research effort, mainly by 

investigating control systems that are fault-tolerant. When examining fault-tolerant systems, a 

fault is “an unpermitted deviation of at least one characteristic property of the system from the 

acceptable, usual, standard condition.” [100], while failure “is a permanent interruption of a 

system’s ability to perform a required function under specified operating conditions.” [100]. 

To handle faults and failures, recent research effort has been focusing on designing Fault 

Detection and Diagnosis (FDD) systems that can either stream information to ground crew 

members especially in the case of UAVs, or feed fault-tolerant systems that are capable of 

handling such system faults [100]. The first type of such systems are known as the Passive 

Fault-tolerant Controllers which can handle moderate faults such as parameters deviations by 

using a robust feedback controller [96]. However, if the faults are beyond the capabilities of 

such controllers, another type of fault-tolerant systems becomes a necessity [100]. This type is 

known as an Active fault-tolerant control system which includes a separate FDD system that 

adds and extended and enhanced level of fault-tolerance capabilities [100]. An example of a 
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successful intervention of ground crew members that were alerted of the failure by the FDD 

system, is the emergency landing of a U.S. Airforce Global Hawk UAV [100]. The ground 

crew were able to execute a successful gliding descent remotely [100]. 

In [101], a Fault Detection and Diagnosis system is proposed for UAVs. The system 

continuously monitors the flight status and the systems’ conditions, and detects faults or 

undesired behaviour, which are sent to the ground crew to manually intervene [101]. 

In case of emergency situations such as system failure conditions, mainly engine failure or 

fire, flight instruments failure, or control surface damage or failure, continuing to fly becomes 

either impossible or can introduce a serious threat to the safety of the flight, therefore, a forced 

or emergency landing on a suitable surface such as a flat field becomes a must especially if it 

is not possible to return safely to the runway [102]. In [102], an emergency landing control is 

proposed for an Unmanned Aerial Vehicle by segmenting the emergency landing period into 

four sub-levels known as slipping guiding, straight line down, exponential pulling up, and 

shallow sliding [102]. Each level uses different control strategies aimed at insuring the safe 

execution of the complete emergency landing [102]. For example, during the exponential 

pulling up level, the system maintains a certain pitch without causing the UAV to stall [102]. 

Using a simulator, the proposed approach showed its ability to handle emergency landing 

[102]. 

 

2.3.3 Navigation 

Autonomous navigation is the ability of the travelling vehicle to estimate the state of its 

trajectory automatically [103]. In autonomous aerial systems, such as UAVs or cruise missiles, 

it is common to estimate the state of trajectory by fusing data from multiple navigation systems 

such as the Inertial Navigation System (INS) and the Global Navigation Satellite System 

(GNSS) such as the Global Positioning System (GPS) [103]. It is also possible to fuse 

additional data from different types of systems such as vision-based navigation systems [103]. 

The latter can be used either as an additional layer to enhance accuracy, or to be used on its 

own in situations where GPS signals are either unavailable, or at the risk of being jammed 

[103]. Such alternative systems are also used to tackle the problem of low-cost INS which can 

worsen if the travelling system is small and lightweight such as small UAVs which are affected 

more by the accumulating drifting errors over time [103].       

In [104], an image matching system which uses aerial images acquired during flights in 

addition to aerial georeferenced images, is proposed to estimate the position of a UAV. The 
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proposed image matching system applies image-edge detection algorithms to the acquired 

images, and the posterior automatic image registration to estimate the location of the UAV 

[104]. An Artificial Neural Network (ANN) with an optimal architecture set by the Multiple 

Particle Collision Algorithm (MPCA) is used to detect the edges, while the automatic image 

registration is acquired through a cross-correlation process [104]. 

Different navigation and path planning approaches are being investigated as well. In [105], 

an algorithm based on inspection path planning is proposed, which is tailored inherently for 

structural inspection. The proposed algorithm is designed to computes full coverage and 

collision–free paths depending on a model of the UAV’s nonholonomic constraints [105]. The 

inspection path is computed using a mesh–model representation of the desired area of traverse, 

by continuously attempting to calculate configurations of viewpoint which presents the desired 

coverage of the area, while applying the Lin-Kernighan heuristic [106] to achieve the best path 

while taking into consideration the motion constraints of the UAV [107]. A resampling of the 

viewpoint technique applies randomized sampling, which allows the designed algorithm to 

achieve continuous enhancements of the path cost without affecting the desired area to be 

covered [107]. In addition, navigation with a collision avoidance capability is achieved by 

applying Boundary Value Solver and a motion planner [107] for the used UAV model [107]. 

In [108], an autonomous navigation approach which does not rely on known artificial land-

based synergic waypoints for UAVs, is proposed. The approach utilizes Speed Up Robust 

Features (SURF) which uses a Kalman filter that is based on multi-rate indirect and feedback 

error correction [108]. The latter is designed to integrate the measured data of the optical flow 

between two frames with the measured data of a Strap Down Inertial Navigation System 

(SINS), in addition to the readings of the altimeter, the laser range finder, and the electronic 

compass [108]. 

Given the current ability of the modern Global Positioning System (GPS) to provide 

superior location accuracy, recent research effort is investigating autonomous navigation 

systems that rely on GPS alone, such as the work presented in [109], where a cost-efficient 

cruise control system is designed for a GT-500 recreational aircraft using affordable and off-

the-shelve components such as an Arduino system. GPS works by using receivers that receive 

signals sent from GPS satellites to determine the location through an approach known as 

Trilateration [110]. The latter is commonly mistaken for another process known as 

Triangulation which measures angles, while Trilateration measures distances [110]. GPS 
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measures longitude, latitude, and altitude in a three-dimensional world, where four satellites 

are needed to provide an accurate location [110]. Therefore, any given GPS receiver is required 

to be in line of sight of four or more GPS satellites always [110]. The four GPS satellites 

provide four different distances to a given object or location which is positioned on a sphere x 

distance from satellite 1, y distance from satellite 2, z distance from satellite 3, and w distance 

from satellite 4 [110]. The four distances are used to accurately determine the location [110]. 

GPS satellites use L-band radio waves which has an operating frequency that ranges between 

1 and 2 GHz in the radio spectrum [110]. L-band frequencies have a wavelength that ranges 

between 15 and 30 cm [110]. The wavelengths of the L-band frequencies are able to penetrate 

all types of weather conditions including thick clouds due to their high bandwidth which is 

excellent for the purpose of modulating code, and introduces the advantage of making it easier 

for antennas to receive signals while needing low directionality due to their wide beam width 

[110].  

For aviation, the newest L5 frequency is used, which is 1,176.45 MHz with a wavelength of 

25.48 cm [111]. This L5 band “is protected worldwide for aeronautical radio-navigation use, 

and will support aviation safety-of-life applications [111]. The addition of L5 will make GPS 

a more robust radio-navigation service for many aviation applications, as well as all ground-

based users (maritime, railways, surface, shipping, agriculture, recreation, etc.)” [111]. GPS 

gives the desired level of aviation safety and efficiency during flights by offering an accurate 

3D position determination during all phases of the flight [111]. This allows pilots to fly any 

desired path or route without having to rely on ground-based waypoints, especially while flying 

over data-sparse areas like oceans [111]. GPS is also able to give accurate locations when 

approaching landing runways which greatly enhances both safety and operational benefits as 

well [111]. One of the recent additions to the Global Positioning System is the application of 

the Wide Area Augmentation System (WAAS), which when coupled with the recent 

introduction of the L5 frequencies, GPS errors which are caused by the ionosphere are greatly 

minimized which adds to the reliability of the Global Positioning System [111]. 

In [112], a GPS based generic trajectory prediction and smoothing algorithm is proposed. 

The algorithm is deigned to be able to handle both accurate frequency legs, and inaccurate legs 

that are present in old flight procedures, that have not been updated using advanced Flight 

Management Systems (FMS) [112]. Handling inaccurate legs is done by obtaining the exact 

coordinates of the start and end points of each leg via computations of the performance and the 

geodetic measurements, while smooth transitions are obtained between adjacent legs using 
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Radio Frequency (RF) legs [112]. The estimation of the desired trajectory is calculated using 

numerical integration of the different states of the aircraft given the flight path [96].  

2.3.4 Landing 

Pilots operating Remotely Piloted Aircraft Systems (RPAS) or UAVs do not get to feel the 

aircrafts they are flying as on-board pilots do [113]. Feeling the forces of the surrounding 

environment such as the wind, and the aircraft itself, such as getting a feel of how the engines 

are behaving, the vibrations, motions, and so on, is not possible for ground pilots [113]. The 

lack of this on-board sensing affects the situational awareness which is a crucial factor that 

pilots depend on especially during the most difficult flight phases such as landing [113]. 

Therefore, most UAV accidents happen during landing [113]. In addition, performing an 

optimum landing all the time is important for maintenance cost reduction, and durability 

preservation [113]. So, investigating the possibilities of developing autonomous landing 

systems (Auto Land) for UAVs has been a significant challenge, and is being covered in recent 

research effort [113].  

In [113], a landing sequence algorithm is proposed, which can either be initiated by the 

ground pilot, or automatically during emergency situations such as the loss of connection 

between the UAV and the ground command and control station. The proposed landing system 

utilizes the Global Positioning System (GPS) along with geometry to orient the UAV to a 

desirable point in space from which it can initiate the descend process [113]. The algorithm 

works by plotting multiple slopes via MATLAB, and are considered as potential descend paths 

that the UAV can follow, in a fashion like creating a virtual inverted cone, where the circular 

base of the cone can act as a potential point of descend, and the taper surface can be considered 

as the glide path [113]. First, a comparison between the UAV’s position, and the starting point 

of each generated slope is performed [113]. Then, the closest starting point is designated as the 

chosen point of descend, and the UAV is autonomously flown to that point, and finally, the 

landing process is initiated [113]. The proposed system does not rely on ground-based support 

systems such as Instrument Landing Systems (ILS) [113]. 

A landing system inspired by the Global Positioning System (GPS) is proposed in [114]. 

The system is intended for autonomous UASs landing on aircraft carriers when GPS signals 

are denied [114]. This design of the system incorporates several radio transmitters which 

operate like GPS satellite transmitters, and are positioned on the deck of the aircraft carrier 

[114]. The transmitters, and the receivers that are integrated with the aircraft, are equipped with 
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antennas that are specially designed to provide extra directional information to be gained during 

each transmission [114]. The proposed system can calculate the Pseudo-Range (PR) between 

the transmitter and the receiver, and in addition, calculate the Angle of Attack (AoA), and the 

Angle of Transmission (AoT) as well [114]. The autonomous and accurate interception of the 

landing runway line requires the integration of the readings generated from the Inertial 

Measurement Unit (IMU) of the aircraft, and the Radio Frequency (RF) sensors [114]. The 

proposed system can utilize two different navigation filters, an Unscented Kalman Filter 

(UKF), and a Nonlinear Maximum Likelihood Estimator (NLMLE) [114]. 

Other than GPS guided landing, different solutions are being investigated. In [115], an 

autonomous landing system for fixed-wing Unmanned Aerial Systems (UAS) that depends on 

ground instruments is proposed. The system utilizes a passive Ultra Wide Band (UWB) 

positioning network which listens to the UWB signals that are continuously sent from the UAS 

[115]. The UWB positioning network requires minimal UWB communications, and does not 

interfere with the Radio Frequency (RF) signals that are used by different systems in the airport 

[115]. The proposed system calculates the position of the UAS through the UWB signals that 

are sent from the aircraft, then, the runway alignment information is sent back to the aircraft 

via a protected aviation communication channel, in a fashion that is similar to how current 

Instrument Landing Systems (ILS) work [115]. 

To achieve higher levels of accuracy required for landing on significantly small, or moving 

landing runways such as aircraft carriers, some recent research effort is focusing on fusing 

multiple guidance systems, such as the work presented in [116]. The proposed system works 

by fusing readings from multiple systems or sensors including GPS, the aircraft’s INS, the 

aircraft carrier’s INS, and a vision-based navigation system mounted on the aircraft [116]. The 

system computes the aircraft-ship relative position, while the acceleration and velocity of the 

ship are sent to the aircraft via a dedicated data-link [116]. The aircraft-ship relative position, 

and the relative velocity are added to the state vector, and the relative position information 

retrieved from GPS, along with the airborne INS, the carrier’s INS, and the vision-based 

navigation system are utilized to build the vector via a Kalman filter. Finally, the relative 

position information having the same period as the one generated from the INS is calculated 

[116]. 

Vison-based landing systems are being considered to serve as either sole landing systems or 

to support other landing systems [117][118][119]. In [119], a landing approach which utilizes 
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a combination of Strap Down Inertial Navigation System (SINS), and a vision-based system is 

proposed for autonomous landing. The system works by calculating the trajectory during the 

glide phase and the flare phase, while the navigation output is computed using the SINS [119]. 

Next, during the glide phase, a certain object is positioned on the landing runway, which is 

captured by the UAV’s camera, and used to estimate the interception accuracy of the runway 

line [119]. The drift errors of the SINS are corrected using a Kalman filter [119]. During the 

flare phase, the edges of the runway and the centre line are detected through the vision system, 

which are used to estimate the desired position of the UAV [119]. 

In [120], A comprehensive Autoland design for a representative model of a twin-engine 

commercial aircraft is proposed where a cascaded control structure is selected which resembles 

integrator chains. The classical loop shaping is used to design the individual control loops 

where the emphasis is on providing a complete and comprehensive qualitative design strategy 

[120]. In [121], a control system architecture with strong disturbance rejection characteristics 

for Unmanned Aircraft is presented where the primary objective is to accurately land a fixed-

wing aircraft under adverse weather conditions. A synergistic controller architecture is 

presented, where the aim is to design a structure capable of executing one of three landing 

techniques, or combination thereof, by simply activating various controllers at different stages 

of the landing phase [121]. An acceleration-based controller architecture is used for the inner-

loop controllers to reject disturbances at the acceleration level before they manifest as 

deviations in inertial position and velocity [121]. [122] proposes an autonomous approach and 

landing navigation method whose accuracy is comparable with Inertial/Differential GPS 

(DGPS) integration. The method integrates inertial data, forward-looking infrared (FLIR) 

images, and runway geographic information to estimate kinetics states of aircraft during 

approach and landing [122]. An existing method is enhanced to robustly detect runway, 

accurately extract three vertexes of runway contour from FLIR images and synthesize the 

virtual runway features by runway geo-information and aircraft’s pose parameters [122]. Then, 

real and synthetic runway features are used to create vision cues and integrate them with inertial 

data in square-root unscented Kalman filter to estimate the motion errors [122]. [123] proposes 

an improved multi-group swarm-based optimization method that can not only optimize the 

parameters of the lateral flight control system, but also find diversity solutions of the underlying 

optimization problem. During the optimizing process, several swarm groups are generated to 

search potential areas for the optimal solution [123]. These groups exchange information with 
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each other during the searching process and focus on their different but continuous spaces 

[123]. 

2.3.5 Severe Weather Navigation & Landing 

The effect of wind disturbance affecting the performance of autonomous navigation systems 

or UAVs is being simulated and analysed in recent research effort to investigate possible 

solutions to this problem which significantly affects small fixed-wing UAVs due to their 

relatively light weight, and lower thrust capability [124] [125]. Wind disturbance causes the 

UAV to drift from the desired course, and when added to the accumulated errors of the 

navigation systems, maintaining a desired flight path or course becomes a significant challenge 

[124] [125]. 

In [126], the physical properties of the Vehicle Dynamic Model (VDM) are used to study 

the effects of wind on navigation systems in addition to the control inputs within the algorithm 

of the navigation filter. The latter is used to investigate the possibility of increasing the accuracy 

as well as the reliability of the autonomous navigation system [126]. The proposed approach 

utilizes solutions to the VDM equations to present an estimation of the UAV’s position, its 

velocity, and attitude, which are updated within the navigation filter based on the available 

observations, while the navigation filter provides an estimation of wind velocity and the 

parameters of the dynamic model [126]. Monte Carlo based simulations via real three-

dimensional wind velocity data are used to investigate the possibility of enhancing the 

performance of the autonomous navigation system in the presence of dynamic fluctuations in 

wind velocity [126]. 

In [127], the authors proposed an approach to tackle strong wind effects during flights. The 

approach estimates wind effects that are steady and strong in nature, and delivers a 

manoeuvring strategy to tackle such conditions [127]. Wind effects estimation utilizes the 

Global Positioning System (GPS) velocity via a new filter design that does not require airspeed 

readings [127]. Then, the calculated estimation of the wind effects is used to force the UAV to 

enter a crabbing manoeuvre in a direction that is perpendicular to the direction of wind [127]. 

This technique allows the UAV to avoid significant drifting from the desired flight path [127]. 

The proposed algorithm applies the vector relation between the wind velocity, air, and ground 

to calculate an estimation of the steady wind effects such as the crosswind component, and the 

airspeed using a recursive least square algorithm which exploits the geometric relation between 

the inertial velocity and the effects of wind [127]. In addition, a basic guidance approach is 
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included to handle the challenge of maintaining a low speed flight under strong wind conditions 

[127]. 

Landing in the presence of crosswind conditions requires a final approach that is carefully 

flown to ensure the desired position of the aircraft on the glide path, and the appropriate 

interception of the line that represents the centreline of the runway [128]. This must be handled 

before the initiation of the flare stage which is the slight lift of the aircraft’s nose just before 

touchdown to decrease the sink-rate, and land the aircraft on the main landing-gear first [128]. 

The final stage is what is known as the Decrab stage which is the cancellation of the crabbing 

orientation, and aligning the aircraft’s fuselage with the centreline of the runway [128]. To 

tackle crosswind during an approach, two methods are used, the first method is known as 

Crabbing where a certain degree of drift or crab is induced to change the orientation of the 

aircraft’s nose heading towards the direction of the wind [128]. The second method is known 

as Wing-down, in which a steady sideslip is induced to tackle the drift caused by the crosswind 

[128]. In practice, it is common to combine both methods, following degrees which could vary 

during the approach phase [129]. For the Boeing 777 of which a simulated model is used in 

this work, the maximum crosswind components are 45 knots for a dry runway, and 40 knots 

for a wet runway [128]. 

The three stages performed during crosswind landing which are the crab stage, the flare 

stage, and the decrab stage require a set of high skills to be possessed by the human pilot [130]. 

These skills are being analysed in multiple research effort to investigate the possibility of 

designing autonomous landing systems that are equipped with synthetic versions of these skills 

[130]. Artificial Neural Networks (ANNs) were used for the purpose of estimating a mapping 

relationship between the given situation, and the human pilot inputs [130] [131]. In addition, 

the possibility of using conventional Control Theory fault tolerance techniques, that are used 

for Proportional Integral Derivative (PID) controllers to tackle the crosswind landing 

challenge, is being investigated [132]. For example, applying Integral Windup handling 

methods which are used in situations where a large change happens, and a significant error 

accumulation causes overshooting, which is similar to the overshooting or drifts from the 

desired path line caused by crosswind [132]. 

2.3.6 The Intelligent Autopilot System (IAS) 

In a report [133] prepared for NASA by Honeywell Aerospace and Defence, the Intelligent 

Autopilot System (IAS) described in this thesis is briefly evaluated with the emphasis on the 
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problem-breakdown approach of the IAS where multiple and independent small components 

designed to handle specific tasks are managed by a high-level component, which is in line with 

the recommendations of the report. However, [133] mistakenly claims that the IAS uses Inverse 

Reinforcement Learning where capturing a sequence of sub-tasks or reward functions that 

makeup a high-level task becomes quite challenging [7]; in fact, the IAS uses Supervised 

Learning by applying fully connected single-hidden-layer Artificial Neural Networks (ANNs), 

which is a method that can undergo Verification and Validation (V&V) given the absence of a 

black-box. [133] emphasizes the need for assuring that the intelligent control system must not 

behave unexpectedly and must have a certain level of situational awareness where the 

behaviour is altered to handle an emergency for example. Although the IAS is a proof-of-

concept designed to prove the possibility of introducing intelligent autonomy to the cockpit, 

not a fully developed mature autopilot, attention was given to the assurance points by making 

sure the training datasets contain specific patterns that guarantee the elimination of unexpected 

behaviour. In addition, the IAS is capable of detecting several unusual conditions such as 

emergency situations where the behaviour is altered to cope with the situation. 

2.3.7 Analysis of the Literature of Autonomous Flying 

In addition of having limited capabilities, modern autopilots can contribute to catastrophes 

since they can only operate under certain conditions that fit their design and programming, 

otherwise, they cede control to the pilots, and with the lack of proper situational awareness and 

reaction, the result could be fatal [4]. Therefore, introducing intelligent autonomy to the 

aviation industry through developing intelligent control techniques that fit into an overall flight 

management system capable of making the highest level of decisions, is expected to 

significantly enhance safety, and lower costs [134]. Manned aircrafts especially airliners 

require significant attention to enhance safety by addressing the limitations of modern 

autopilots and flight management systems, and the human error factor as well. 

However, the current focus of the relevant and recent research effort is on Unmanned 

Aircraft Systems (UAS) especially small and micro drones [87-127] by introducing solutions 

that may not be suitable for medium to large jets, although the civil aviation sector that uses 

these jets is the largest with the highest risk and costs. Although the literature review provided 

in section (2.2 Autonomous Flight) presents valid solutions to the autonomous flying problem 

when it comes to navigation, landing, and handling severe weather, the solutions were intended 

for platforms that are not part of the scope of this work. Using computer vision for example 

proved to enhance accuracy [117] [118], however, airliners are not equipped with such sensors. 
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The proposed techniques that tackle the wind effect may work well with light-weight platforms, 

but not necessarily with heavy platforms such as airliners. Therefore, it is not possible to 

provide a thorough analysis of the related literature in this section. The only exception is the 

work presented in [130] and [131], where the crabbing technique performed by pilots during 

crosswind landing is analysed using Artificial Neural Networks, however, the authors did not 

provide an approach aimed towards applying the analysed results in autonomous systems fit 

for such airplanes. 

It is clear that intelligent autonomy is covered in the literature in many recent research 

papers, however, the work is dedicated to tackling specific flight automation problems such as 

maintaining speed or altitude rather than proposing comprehensive cockpit autonomy solutions 

such as the IAS. In most papers, the authors tackle the robustness issues of PID controllers that 

modern autopilots rely on by applying a layer of intelligent control to those conventional 

controllers such as adding Artificial Neural Networks or Fuzzy Logic to the PID controllers 

closed loop to enhance performance and accuracy [37] [96] instead of fully replacing them with 

intelligent control solutions, which increases the complexity of the proposed solution rather 

than attempting to simplify it. Therefore, given the lack of work that studies airliners, and the 

significant need for such work, solutions that can be applied to multiple aircraft categories 

especially large jets such as airliners and cargo airplanes are proposed in this work.   
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3. PROTOTYPE 1 (METHODOLOGY & BASIC FLYING) 

This work aims to address the problem of robustness and limited capabilities that modern 

autopilots of large jets suffer from by proving the hypothesis that Learning from Demonstration 

enables automated flight control comparable with experienced human pilots. To provide 

evidence to support the hypothesis, an autopilot that utilises Learning from Demonstration must 

be designed to prove the possibility of learning from human pilots how to perform piloting 

tasks, perform full flight cycles, handle emergencies and uncertainties including severe weather 

conditions, and behave like experienced human pilots of airliners. The proposed autopilot must 

undergo iterative testing in the flight simulator covering different scenarios ranging from basic 

piloting tasks to complete flight cycles in normal and severe conditions including emergencies 

in order to compare its capabilities with flights by human pilots. Based on the results of the 

different tests, the capabilities of the proposed autopilot should be improved incrementally to 

cover all the objectives starting from the ability to perform basic piloting tasks, and ending 

with the ability to behave like experienced human pilots of airlines.      

The proposed Intelligent Autopilot System (IAS) can be viewed as an apprentice that 

observes the demonstration of a new task by the human teacher, then, performs the same task 

autonomously after training. A successful generalization of Learning from Demonstration 

should take into consideration the capturing of low-level models and high-level models, which 

can be viewed as rapid and dynamic sub-actions that occur in fractions of a second, and actions 

governing the whole process and how it should be performed strategically. It is important to 

capture and imitate both levels in order to handle flight uncertainties successfully. 

The IAS is made of the following components: a flight simulator, an interface, a database, 

and Artificial Neural Networks. Choosing Artificial Neural Networks (ANNs) for this work is 

due to the analysis of the literature (2.1.3 Analysis of the Controllers Literature) which suggests 

that ANNs are superior methods for handling highly dynamic, and noisy data that are present 

in flight control environments. Conventional controllers such as Proportional Integral 

Derivative controllers are not used since the literature (2.1.1 Non-Adaptive Linear Controllers) 

mentions their inability to learn sequences of tasks and handle uncertainty, instead, the 

proposed system relies on ANNs as the sole controllers. Since further analysis of the literature 

suggests that breaking down a highly dynamic problem yields better results (2.1.2.3 Multiple 

Controllers & Sensors), many Artificial Neural Networks were developed instead of just one, 

each designed to handle specific control. In addition, the literature suggests that using 
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Supervised Learning is straightforward to apply and robust in the context of Learning from 

Demonstration compared with other approaches such as Inverse Reinforcement Learning (2.1.3 

Analysis of the Learning from Demonstration). Therefore, the IAS implementation method has 

the following three steps:  

A. Pilot data collection (labelled training sets collection suitable for Supervised 

Learning).  

B. Training (offline Supervised Learning training using ANNs). 

C. Autonomous control.  

In each step, different IAS components are used. The following sections describe each step and 

the components used in turn.  

The work in this chapter was published in the 2016 International Conference on Unmanned 

Aircraft Systems (ICUAS), Arlington, VA, USA (Appendix B).  

3.1 Pilot Data Collection 

Fig. 3.1 illustrates the IAS components used during the pilot data collection step. 

3.1.1 Flight Simulator 

Before the IAS can be trained or can take control, demonstration data from a pilot must be 

collected. This is performed using X-Plane which is an advanced flight simulator for 

professional applications that provides unprecedented features such as highly accurate 

modelling of physics by using Blade Element Theory which is an engineering process that 

involves breaking the aircraft down into many small elements and then finding the forces on 

each element many times per second [135]. These forces are then converted into accelerations 

which are then integrated to velocities and positions [135]. On the other hand, other flight 

simulators use Stability Derivatives which is a far too simplistic modelling approach [135]. In 

addition, X-Plane provides built-in data I/O, and the ability to simulate various scenarios such 

as emergencies compared with other popular flight simulators such as FlightGear and 

Microsoft X Flight Simulator [135].  
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Fig.  3.1. Block diagram illustrating IAS components used during the pilot data collection step. 

X-Plane is used by multiple organizations and industries such as NASA, Boeing, Cirrus, 

Cessna, Piper, Precession Flight Controls Incorporated, Japan Airlines, and the American 

Federal Aviation Administration.2 It has been used as the simulator of choice in many research 

papers such as [136] [137] [138] [139] [140] [141] [142] to test the performance of the authors’ 

contributions to the autonomous UAV field. X-Plane can communicate with external 

applications by sending and receiving flight status and control commands data over a network 

through User Datagram Protocol (UDP) packets. For this work, the simulator is set up to send 

and receive packets comprising desired data every 0.1 second since initial empirical testing 

indicated that this rate is fast enough to receive and send flight and control data, and at the same 

time, suitable for the hardware capabilities of the computer used for this work. 

3.1.2 IAS Interface   

The IAS Interface is responsible for data flow between the flight simulator and the system 

in both directions. In addition, the Interface contains a Graphical User Interface which provides 

simplified yet sufficient aircraft control buttons including throttle, brakes, gear, elevator, 

aileron, and rudder buttons which can be used to perform basic tasks of piloting an aircraft such 

as take-off in the simulator. It also displays flight data received from the simulator.  

 
2 X-Plane 10 Global  

http://www.x-plane.com [accessed 2015] 
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As mentioned above (3.1.1 Flight Simulator), X-Plane can send and receive flight data and 

control commands through its ports. UDP Packets received from or sent to X-Plane consist of 

41 bytes (40 indexes starting from 0). For example, a UDP raw packet received from X-Plane 

containing the ‘Throttle’ variable is as follows:  

68,65,84,65,64, 25,0,0,0, 9,36,185,62, 0,0,0,0, 0,0,0,0, 0,0,0,0, 0,0,0,0, 0,0,0,0, 0,0,0,0, 

0,0,0,0 

 Decoding this packet gives the following:  

• 68,65,84,65,64: The first 4 bytes is an identifier representing “DATA” (the fifth is 

ignored). 

• 25,0,0,0: Byte 6 is the value that refers to a specific data in X-Plane’s input/output table. 

In this example, index 25 refers to ‘Throttle Command’.  

• The remaining 32 bytes represent the value of the data. It is made of eight groups of 

four bytes, or eight single precision floating-point numbers. In this case 9,36,185,62 

gives (0.361809) after converting the four bytes to a single precision floating point, 

which is the value of the current engine thrust. The remaining zeros indicate that there 

are no further data in this particular example (single-engine aircraft). 

When receiving more than one value from the simulator, the next value is added to the UDP 

packet after the end of the previous one. For example, a UDP raw packet containing two 

variables: ‘Gear/Brakes’ (handled in one packet) and ‘Throttle’ is as follows:  

68,65,84,65,64, 14,0,0,0, 0,0,128,63, 0,0,128,63, 0,0,0,0, 0,0,0,0, 0,192,121,196, 0,192,121,196, 

0,192,121,196, 0,192,121,196, 25,0,0,0, 149,20,16,62, 0,0,0,0, 0,0,0,0, 0,0,0,0, 0,0,0,0, 0,0,0,0, 

0,0,0,0, 0,0,0,0 

Decoding this packet gives the following:  

• The first variable (index 14 in X-Plane input/output table) refers to ‘Gear/Brakes’. The 

decoded values for 0,0,128,63 are 1 (Down) for ‘Gear’ and also 1 (ON) for ‘Brakes’.   

• Since the first variable data ends at element (40), the next variable starts at element 

(41), which represents as before, the index of the variable in X-Plane. “DATA” is not 

sent again. 

X-Plane has a data input/output window in its user interface where users can pick the 

variables that the simulator sends and receives. Each variable refers to a certain control 
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interface or surface such as the throttle or ailerons. A simple formula to calculate how many 

variables are included in a packet is as follows:  

v = (b – 5) / 36   (3.1) 
 

where v is the number of variables, b is the number of bytes, (36) is the number of bytes in 

each variable excluding “DATA” and the ignored fifth byte, and 5 is the first five bytes 

(“DATA” + the ignored 5th byte). 

The same method of UDP row packets communication is applied when sending UDP 

packets to the simulator from an external application. The exact same structure of the UDP raw 

packet used when receiving from X-Plane as explained above is used for sending as well. When 

sending packets, the number of variables to be sent to X-Plane is known since each variable 

represent a specific control interface or surface, therefore, the number of bytes must be 

determined based on the number of variables to be sent. The latter can be achieved as follows:  

              b = 36v + 5               (3.2) 

Data collection is started immediately before demonstration. Then, the pilot uses the 

Interface to perform the piloting task to be learned. The Interface collects flight data from X-

Plane over the network using UDP packets, and collects the pilot’s actions while performing 

the task, which are also sent back to the simulator as manual control commands. The Interface 

organizes the collected flight data received from the simulator (inputs), and the pilot’s actions 

(outputs) into vectors of inputs and outputs, which are sent to the database every 1 second. 

3.1.3 Database   

An SQL Server database stores all data captured from the pilot demonstrator and X-Plane, 

which are received from the Interface. The database contains tables designed to store: 1. 

continuous flight data as inputs, and 2. pilot’s actions as outputs. These tables are then used as 

training datasets to train the Artificial Neural Networks of IAS.    

3.2 Training 

3.2.1 Artificial Neural Networks 

After the human pilot data collection step is completed, Artificial Neural Networks are used 

to generate learning models from the captured datasets through offline training. Fig. 3.2 

illustrates the training step.  
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Fig.  3.2. Block diagram illustrating IAS components used during training. 

 

The method for choosing ANN topologies in this work is based on an implication [143] 

which indicates that direct mapping problems requiring more than one hidden layer are rarely 

encountered,  and compared with Deep Learning, this approach means that the system is more 

understandable and easier to test and verify compared with single deep solutions which are 

black-boxes that are difficult to interpret [143]. In addition, it is suggested that to avoid under-

fitting caused by too few neurons in the hidden layer, or over-fitting caused by too many 

neurons, the number of hidden neurons should be less than or equal to twice the size of the 

input layer [144]. 

The design approach of the ANNs breaks down the different tasks required for flying, that 

take place during the multiple flight phases. The break-down approach methodology identifies 

each control interface or surface of the aircraft, and assigns a dedicated ANN to manipulate it. 

For example, to control the aircraft’s pitch, the control surfaces of the aircraft that are used for 

this purpose are the elevators, therefore, a dedicated ANN is designed and trained to manipulate 

the elevators for the purpose of controlling the aircraft’s pitch. Another example is designing 

and training a dedicated ANN for the purpose of controlling the aircraft’s gear. The alternative 

for the proposed break-down approach is designing and training a single or few large ANNs 

that manipulate all the required interface and control surfaces of the aircraft, however, this 

would yield a large ANN that could represent a black-box which is difficult to design, train, 

and interpret. In addition, if a single control component requires redesigning or further 

enhancement, the single large ANN which controls all the other control components must be 

redesigned and retrained, which could affect the overall performance and hinder progress. 

Therefore, the proposed break-down approach allows for the ability to isolate any single control 

component for the purpose of maintenance or enhancement without affecting the overall 

system. 
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The ANNs (control commands) dictate the required inputs that correlate to the desired 

outputs. For example, the ground-run phase, where the pilot attempts to gain speed required 

for takeoff, is done  by  releasing  brakes  (output)  and  pushing  to  full  throttle  (output)  

while monitoring airspeed (input), and the task of keeping the aircraft on the centreline of the 

runway is done by using the ruder (output) based on the heading (input). For these tasks, two 

ANNs can be designed. The first would control the brakes and throttle based on airspeed (task 

1), and the second would control the rudder (task 2) based on heading, by predicting the 

appropriate control commands based on the relevant flight data inputs. 

In empirical experiments to evaluate the approach of normalizing the training data to values 

between 0 and 1 versus keeping the values unnormalized, the latter resulted in lower training 

Mean Squared Error compared with normalized training datasets as suggested in [145]. In 

addition, scaling the inputs to make them a magnitude closer to the outputs resulted in lower 

Mean Squared Error as well compared with unscaled inputs. An example of scaling to achieve 

a close magnitude of the inputs and outputs is illustrated in Table 3.1 which shows the climb 

rate inputs captured from the appropriate aircraft instrument in the flight simulator before and 

after scaling to suite the outputs of the elevators trim in this example.  Since the essence of the 

IAS is control function approximation, following this approach which is suitable for such 

problems as suggested in [145] proved to yield better models with lower Mean Squared Error. 

Additional empirical experiments were conducted to evaluate whether applying the Sigmoid 

activation function (3.3) [144] for training datasets with positive values would yield better 

results compared with applying the Hyperbolic Tangent activation function (3.4) [144] to train 

ANNs on all training datasets (positive and negative). However, using (3.3) when the training 

datasets consist of positive values only, resulted in lower training Mean Squared Error 

compared with using (3.4).  

Therefore, the approach of using unnormalized values, scaling, and applying (3.3) when the 

datasets contain only positive values, is applied uniformly throughout this work.  

 

TABLE 3.1 
SCALING THE INPUTS BY DIVIDING THEM BY 1000 TO ACHIEVE A CLOSER MAGNITUDE TO 

THE OUTPUTS 
Unscaled Inputs Outputs Scaled Inputs Outputs 

-2810 0.566 -2.810 0.566 
-2532 0.45 -2.532 0.45 
-2235 0.312 -2.235 0.312 
-1521 0.23 -1.521 0.23 



50 
 

-500 0.11 -0.500 0.11 
0 0 0 0 

491 -0.123 0.491 -0.123 
1600 -0.219 1.600 -0.219 
2190 -0.323 2.190 -0.323 
2559 -0.46 2.559 -0.46 
2796 -0.5 2.796 -0.5 

 

During training, the datasets are retrieved from the database. Then, the datasets are fed to 

the ANNs. Next, Sigmoid (3.3) and Hyperbolic Tangent (Tanh) (3.4) functions are applied for 

the neuron activation step, where � is the exponential function, and x is the neuron output:   

         �(�) =  
�

�	 
��
                            (3.3) 

      �(�) =  ��ℎ (�)                (3.4)                     

The Sigmoid activation function (3) is used by ANN 1 since all input and output values are 

positive, while Tanh (3.4) is used by ANN 2, 3, and 4 since the datasets contain few negative 

values: pitch (ANN 2), rudder (ANN 3), roll, and aileron (ANN 4). 

Next, Backpropagation is applied. Based on the activation function, (3.5) [144], or (3.6) 

[144] are applied to calculate the derivatives of the relevant activation function, where phi 

(�) of x is the result of the activation function: 

       �′(�) = �(�)(1 −  �(�))                       (3.5) 

         �′(�) = 1.0 −  �� (�)                           (3.6) 

Finally, coefficients of models (weights and biases) are updated using (3.7) [144], where � 

is the learning rate, 
��

��(�)
 is the gradient, � is the momentum, and ��(� �) is the change in the 

previous weight:  

                                              ��(�) =  −� 
��

��(�)
+  ���(� �)               (3.7) 

When training is completed, the learning models are generated, and the free parameters or 

coefficients represented by weights and biases of the models are stored in the database.  

Since training is done offline, an Artificial Neural Network training software was developed 

for this purpose using C# and Microsoft Visual Studio 2015. No third-party libraries or 

resources were used for this software, and all the functionalities were developed from scratch. 

For ease of use and flexibility, the training software has a Graphical User Interface (GUI) as 

Fig. 3.3 shows, which allows the user to select several options before learning starts. The user 



51 
 

can select the training dataset source, enter the preferred Learning Rate (α) which is a positive 

scalar that dictates the size of the step or the magnitude by which the weights are updated [144], 

and the Momentum (µ) which accumulates an exponentially decaying moving average of past 

gradients and continues to move in their direction to avoid falling in a local optima [144]. In 

addition, the user can select the preferred activation function, select the number of epochs, the 

desired minimum error, the ANN topology (number of hidden neurons and hidden layers), 

evaluate the learning results, and compare the generated learning model against a validation 

set (compare the Training Mean Squared Error against the Test Mean Squared Error). The user 

can save the learning model coefficients in the database.     

In empirical experiments to identify the optimum values of the Learning Rate (α), the 

Momentum (µ), and the number of epochs suitable for training the ANNs in this work given 

the similarity between the different training datasets in size, number of features, and number 

of labels, setting the Learning Rate (α) value at 0.1, the Momentum (µ) at 1, and the training 

epochs to a maximum of 10,000 resulted in better conversion and lower training Mean Squared 

Error. Therefore, the latter training settings are applied uniformly throughout this work. 

3.3 Autonomous Control  

Once trained, the IAS can now be used for autonomous control. Fig. 3.4 illustrates the 

components used during the autonomous control step.  

3.3.1 IAS Interface 

Here, the Interface retrieves the coefficients of the models from the database for each trained 

ANN, and receives flight data from the flight simulator every 0.1 second. The Interface 

organizes the coefficients into sets of weights and biases, and organizes data received from the 

simulator into sets of inputs for each ANN. The relevant coefficients, and flight data input sets 

are then fed to the ANNs of the IAS to produce outputs.   The outputs of the ANNs are sent to 

the Interface which sends them to the flight simulator as autonomous control commands using 

UDP packets every 0.1 second. 
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Fig.  3.3. GUI of the ANN training software. 

 

 

 

Fig.  3.4. Block diagram illustrating IAS components used during autonomous control. 

 

3.3.2 Artificial Neural Networks 

The relevant set of flight data inputs received through the Interface is used by each ANN 

input neurons along with the relevant coefficients to predict and output the appropriate control 

commands given the flight status by applying (3.3) and (3.4). The values of the output layer 
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are continuously sent to the Interface which sends them to the flight simulator as autonomous 

control commands. 

3.4 Testing the Proposed Methodology  

To test the proposed development, training, and testing methodology of this work, the first 

prototype was designed with the objective to prove the ability of Artificial Neural Networks to 

learn piloting tasks by generating learning models from training datasets containing 

demonstrations performed by a human teacher in a flight simulator. The learning models should 

capture low-level and high-level skills and abilities that would enable the IAS to perform basic 

flights under calm and severe weather conditions.    

For the objective of achieving autonomous basic flying, the IAS should imitate the 

behaviour of the human pilot during the ground-run, takeoff, climb, and cruise phases since 

these flight phases are relatively less complex compared to other challenging flight phases such 

as final approach and landing. During each of these segregated four phases, the IAS should be 

able to manipulate a number of controls including brakes, throttle, rudder, ailerons, and 

elevators, based on a number of flight data inputs including speed, altitude, pitch, roll, and 

heading. To achieve this, and based on the four segregated phases, a break-down of the overall 

problem to four independent and small tasks, each requiring the monitoring and manipulation 

of different inputs and controls, is required. 

Based on the approach mentioned in section (3.2 Training), four feedforward Artificial 

Neural Networks were designed. Each ANN is designed and trained to handle specific controls. 

ANN 1 takes speed and altitude values as inputs, and predicts throttle, gear, and brakes values. 

ANN 2 takes speed, altitude, and pitch values as inputs, and predicts elevators value. ANN 3 

takes the roll value as input, and predicts ailerons value. ANN 4 takes the heading value as 

input, and predicts the rudder value. The topologies of the four ANNs are illustrated in Fig. 

3.5. 

3.4.1 Experiments on Prototype 1 

In order to assess the effectiveness of the proposed approach, the Intelligent Autopilot 

System was tested in two experiments:  

1. autonomous flying under calm weather 

2. autonomous flying under stormy weather  
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Fig.  3.5. Topology of ANN 1 trained to handle throttle, gear and brakes (top left), topology of ANN 2 trained to 
handle elevator control (top right), topology of ANN 3 trained to handle aileron control (bottom left), and 

topology of ANN 4 trained to handle rudder control (bottom right). 

 

Each experiment is composed of 10 attempts by the IAS to fly autonomously under the 

given weather conditions. Fig. 3.6 illustrates a break-down of the piloting task to be learned, to 

four sub-tasks based on time. Each attempt lasted for 182 seconds. The human pilot who 

provided the demonstrations is the author. Before using a large jet (airliner) in the simulator to 

prove the possibility of teaching an autopilot how to fly, and since this chapter aims to prove 

the possibility of teaching an autopilot basic piloting tasks, using a light single-engine aircraft 

for this purpose is a suitable option given that such aircraft is relatively simpler to control, and 

responds quickly to pilot inputs. The latter is similar to how human pilot students start learning 

using a light single-engine aircraft. Therefore, the simulated aircraft used for the experiments 

in this chapter is Cirrus Vision SF50. The experiments are as follows: 

3.4.1.1 Autonomous Flying under Calm Weather  

The purpose of this experiment is to assess the behaviour of the IAS compared with the 

behaviour of the human pilot under calm weather conditions.  

3.4.1.1.1 Data Collection  

In this experiment, the human pilot used the IAS Interface to perform the following in the 

flight simulator:  takeoff,  gaining  altitude,  and  maintaining  a slower climb rate with a fixed  

ANN 1 ANN 2 

ANN 3 ANN 4 
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Fig.  3.6. Piloting tasks in performed in the four flight phases over time. 

 

vector, under calm weather with null readings of wind gusts and turbulence. The performed 

tasks in the initial four flight phases lasted for 182 seconds as Fig. 3.6 shows. While the pilot 

performed the demonstration, the Interface collected speed and altitude as simulator inputs, 

throttle, gear, and brakes as pilot outputs, and elevator control data (speed, altitude, pitch as 

simulator inputs, and elevator as pilot output). Using only one demonstration in calm weather 

conditions, the Interface stored collected data as training datasets in the database. 

An additional data collection process was initiated to capture and compare the aircraft’s 

Automatic Flight Control (AFC)/Autopilot performance with the IAS under calm weather 

conditions. Due to the AFC’s inability to take-off, it was engaged at an altitude of 1600 ftmsl. 

The AFC was set to climb to an altitude of 6000 ftmsl at a rate of 1500 ftmsl per minute. 

3.4.1.1.2 Training 

For this experiment, ANN 1 (throttle, gear, and brakes control), and ANN 2 (elevator 

control) were trained until low Mean Squared Error (MSE) values were achieved (below 0.1). 

Since single-hidden-layer ANNs are used for training, and since the training datasets are small 

given that a single demonstration was provided, training requires a short time to be completed 

(under 10 minutes).  
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3.4.1.1.3 Autonomous Control 

After training the ANNs on the relevant training datasets, the aircraft was reset to the runway 

in the flight simulator, calm weather conditions were chosen, and the IAS was engaged. ANN 

1 (throttle, gear, and brakes control), and ANN 2 (elevator control) operate simultaneously to 

control the aircraft autonomously. Through the Interface, they receive: 1. continuous flight data 

from the flight simulator as inputs, and 2. coefficients of models from the database (calm 

weather throttle, gear, brakes, and elevator control models) to predict and output control 

commands that are sent to the flight simulator. This process allows the IAS to perform learned 

tasks: takeoff, gaining altitude, and maintaining a slow climb rate with a fixed vector 

autonomously. This was repeated 10 times to assess performance consistency.    

3.4.1.2 Autonomous Flying under Stormy Weather  

The purpose of this experiment is to assess the behaviour of the Intelligent Autopilot 

compared with the behaviour of the human pilot under stormy weather conditions. 

3.4.1.2.1 Data Collection  

 In this experiment, the human pilot used the IAS Interface to perform the following in the 

flight simulator: takeoff, gaining altitude, and maintaining a slower climb rate with a fixed 

vector, under stormy weather. The weather conditions included: wind gusts reaching up to 33 

knots, wind directions flowing from all directions (0 to 360 degrees clockwise deviation from 

north), local turbulence up to 0.19, and rain and hail perception up to 68 mm. 

While the pilot performed the demonstration, the Interface collected rudder control and 

aileron control data, and stored them as two training datasets in the database.  

Two demonstrations were required to capture the skill needed to keep the light aircraft on 

the runway during strong crosswinds using rudders, and only one demonstration of roll 

stabilization using ailerons was presented to the system. To test the system’s ability to 

generalize well in unseen conditions, no new throttle, gear, brakes, and elevator control data 

was collected under stormy weather conditions; instead, the data collected for these controls in 

Experiment 1 were reused. This aims to test the ability of the models generated under calm 

weather conditions to generalize in the unseen stormy weather conditions.    

During taxi speed gain on the runway, the human pilot attempted multiple heading 

corrections using the rudder to stay on the runway while strong crosswinds pushed the aircraft 

right and left. After take-off, the human pilot constantly corrected the roll deviation by 

controlling the ailerons. 
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An additional data collection process was initiated to capture and compare the aircraft’s 

AFC performance with the IAS under stormy weather conditions with the same settings used 

in experiment 1. It should be mentioned that the AFC disengaged itself multiple times while 

flying through the storm which made it difficult to capture a complete demonstration, 

especially when the strong winds affected the aircraft’s stability and caused it to stall. 

3.4.1.2.2 Training 

For this experiment, ANN 3 (rudder control), and ANN 4 (aileron control) were trained until 

low Mean Squared Error (MSE) values were achieved (below 0.1). Preliminary empirical 

testing showed that for this task, to generate the desired behaviour, the model must be trained 

until the MSE value is slightly below 0.1 compared with values larger than 0.1. Since single-

hidden-layer ANNs are used for training, and since the training datasets are small given that 

few demonstration were provided, training requires a short time to be completed (under 10 

minutes). 

3.4.1.2.3 Autonomous Control 

After training the ANNs on the relevant training datasets, the aircraft was reset to the runway 

in the flight simulator, stormy weather conditions were chosen, and the IAS was engaged. ANN 

1 (throttle, gear, and brakes control), ANN 2 (elevator control), ANN 3 (aileron control), and 

ANN 4 (rudder control) operate simultaneously to control the aircraft autonomously. Through 

the Interface, they receive: 1. continuous flight data from the flight simulator as inputs, and 2. 

coefficients of models from the database (calm weather throttle, gear, brakes, and elevator 

control models, and stormy weather rudder and aileron control models) to predict and output 

control commands that are sent to the flight simulator. This process allows the IAS to perform 

learned tasks: takeoff, gaining altitude, and maintaining a slow climb rate with a fixed vector 

autonomously, while continuously correcting the aircraft’s heading and roll. This was repeated 

10 times to assess performance consistency.    

3.4.2 Results of Experiments on Prototype 1 

The following section describes the results of the conducted tests. The 10 attempts by IAS 

to fly autonomously in each experiment (calm and stormy weather) were averaged and 

compared with the performance of the human pilot and the aircraft’s AFC using the statistical 

methods Mean Absolute Error (MAE) and Mean Absolute Deviation (MAD). MAE is used to 

measure the error in consistency when performing a specific task by the IAS, while MAD is 

used to analyse the difference between the performance of the IAS and the human pilot or the 

AFC by measuring and comparing the variability in data. In addition, Behaviour Charts are 
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used to compare the behaviour deviation between the continuous variables representing the 

actions performed by the human pilot and the IAS. 

3.4.2.1 Experiment 1 (Calm Weather Condition) 

Two models were generated with the following MSE values as table 3.2 shows. Table 3.3 

lists the accuracy assessment results by comparing the behaviour of IAS with the behaviour of 

the human pilot in the calm weather experiment. Table 3.4 lists the accuracy assessment results 

by comparing the behaviour of IAS with the behaviour of the aircraft’s AFC in the calm 

weather experiment.  

Fig. 3.7, 3.8, and 3.9 illustrate the Intelligent Autopilot’s control commands compared with 

the human pilot. Fig. 3.10 and 3.11 illustrate altitude and speed over time comparisons between 

the human pilot, the Intelligent Autopilot System, and the aircraft’s AFC. 

TABLE 3.2 
THE RESULTING MEAN SQUARED ERROR VALUES OF THE MODELS GENERATED AFTER 

TRAINING THE RELEVANT ANNS UNDER CALM WEATHER  
 

 

 

TABLE 3.3 
IAS ACCURACY ASSESSMENT RESULTS IN CALM WEATHER. MAE IS USED TO MEASURE THE 

ERROR BETWEEN THE OUTPUTS OF THE IAS AND THE HUMAN PILOT WHEN PERFORMING FIVE 
DIFFERENT TASKS. MAD GIVES THE VARIABILITY OR STATISTICAL DISPERSION FOR THE IAS 

AND THE HUMAN PILOT.  
 

 

 
TABLE 3.4 

IAS ACCURACY ASSESSMENT RESULTS IN CALM WEATHER. MAE IS USED TO MEASURE THE 
ERROR BETWEEN THE OUTPUTS OF THE IAS AND THE AIRCRAFT’S AFC WHEN PERFORMING 

TWO DIFFERENT TASKS. MAD GIVES THE VARIABILITY OR STATISTICAL DISPERSION FOR THE 
IAS AND THE AIRCRAFT’S AFC.  
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Fig.  3.7. (Exp. 1) A comparison between the human pilot and the Intelligent Autopilot’s average, 
maximum, and minimum throttle commands over time during the four flight phases –separated by 

dotted lines- as illustrated in Fig. 3.6. Throttle value 1 refers to 100% throttle.   

 

 

 

 

Fig.  3.8. (Exp. 1) A comparison between the human pilot and the Intelligent Autopilot’s average, 
maximum, and minimum gear commands over time. Gear value 1 refers to deployed gear, and 0 refers 

to retracted gear.  
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Fig.  3.9 (Exp. 1) A comparison between the human pilot and the Intelligent Autopilot’s average, 
maximum, and minimum elevator commands over time. An elevator value of 0.2 refers to 20 degrees 

deflection of the elevators. 

 

 

 

Fig.  3.10. (Exp. 1) A comparison between the human pilot, the aircraft’s AFC/Autopilot, and the 
Intelligent Autopilot’s average, maximum, and minimum altitude over time. 

 

 



61 
 

 

Fig.  3.11. (Exp. 1) A comparison between the human pilot, the aircraft’s    AFC/Autopilot, and the 
Intelligent Autopilot’s average, maximum, and minimum speed over time. 

 

 

Fig. 3.12 shows the autonomously controlled aircraft immediately after take-off, while Fig. 

3.13 shows the ANNs’ outputs of the IAS where throttle is set to full power, and the elevators 

are set to a deflection of 0.2 degrees.     

 

 

Fig.  3.12.  The autonomously controlled aircraft immediately after take-off. 
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Fig.  3.13. The right part of the IAS shows the ANN’s outputs or control commands applied to the aircraft at the 

flight moment shown in Fig. 3.12. 

 

 

 

 

Fig. 3.14 shows the autonomously controlled aircraft shortly after take-off, while Fig. 3.15 

shows the ANNs’ outputs of the IAS causing the gear to retract.     

 

 

Fig.  3.14. The autonomously controlled aircraft shortly after take-off with the gear being retracted. 
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Fig.  3.15. The right part of the IAS shows the ANN’s outputs or control commands applied to the aircraft at the 

flight moment shown in Fig. 3.14. Here, the ANNs sent the command to retract gear. 

 

 

 

 

Fig. 3.16 shows the autonomously controlled aircraft during the smooth ascend and cruise 

phase, while Fig. 3.17 shows the ANNs’ outputs of the IAS suitable for this flight phase.     

 

 

Fig.  3.16. The autonomously controlled aircraft during the smooth ascend and cruise phase. 
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Fig.  3.17. The right part of the IAS shows the ANN’s outputs or control commands applied to the aircraft at the 

flight moment shown in Fig. 3.16. Here, the IAS decreased the throttle and maintained a smooth ascend 

eventually leading to the cruise phase. 

3.4.2.2 Experiment 2 (Stormy Weather Condition) 

Two models were generated with MSE values as table 3.5 shows. Table 3.6 lists the 

accuracy assessment results by comparing the behaviour of IAS with the behaviour of the 

human pilot in the stormy weather experiment. Table 3.7 lists the accuracy assessment results  

TABLE 3.5 
THE RESULTING MEAN SQUARED ERROR VALUES OF THE MODELS GENERATED AFTER 

TRAINING THE RELEVANT ANNS UNDER STORMY WEATHER. 
 

 

 

TABLE 3.6 
IAS ACCURACY ASSESSMENT RESULTS IN STORMY WEATHER. MAE IS USED TO MEASURE THE 

ERROR BETWEEN THE OUTPUTS OF THE IAS AND THE HUMAN PILOT WHEN PERFORMING 
SEVEN DIFFERENT TASKS. MAD GIVES THE VARIABILITY OR STATISTICAL DISPERSION FOR 

THE IAS AND THE HUMAN PILOT.  
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TABLE 3.7 

IAS ACCURACY ASSESSMENT RESULTS IN STORMY WEATHER. MAE IS USED TO MEASURE THE 
ERROR BETWEEN THE OUTPUTS OF THE IAS AND THE AIRCRAFT’S AFC WHEN PERFORMING 

TWO DIFFERENT TASKS. MAD GIVES THE VARIABILITY OR STATISTICAL DISPERSION FOR THE 
IAS AND THE AIRCRAFT’S AFC.  

 

 

 

by comparing the behaviour of IAS with the behaviour of the aircraft’s AFC in the stormy 

weather experiment. 

Fig. 3.18, 3.19, and 3.20 illustrate the IAS control commands compared with the human 

pilot in the stormy weather experiment. Fig. 3.21 and 3.22 illustrate altitude and speed over 

time comparisons between the human pilot, the IAS, and the aircraft’s AFC in the stormy 

weather experiment. Fig. 3.23 generated from sample heading/rudder data, illustrates a 

comparison between the human pilot and IAS heading correction attempts using the rudder. 

Fig. 3.24 generated from sample roll/aileron data illustrates the comparison between the human 

pilot and the IAS roll correction attempts using the ailerons. 

 

 

Fig.  3.18. (Exp. 2) A comparison between the human pilot and the Intelligent Autopilot’s average, 
maximum, and minimum throttle commands over time during the four flight phases –separated by dotted 

lines- as illustrated in Fig. 3.6. Throttle value 1 refers to 100% throttle.   
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Fig.  3.19. (Exp. 2) A comparison between the human pilot and the Intelligent Autopilot’s average, 
maximum, and minimum gear commands over time. Gear value 1 refers to deployed gear, and 0 refers to 

retracted gear. 

 

 

 

 

Fig.  3.20. (Exp. 2) A comparison between the human pilot and the Intelligent Autopilot’s average, 
maximum, and minimum elevator commands over time. An elevator value of 0.2 refers to 20 degrees 

deflection of the elevators. 
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Fig.  3.21. (Exp. 2) A comparison between the human pilot, the aircraft’s AFC/Autopilot, and the Intelligent 
Autopilot’s average, maximum, and minimum altitude over time. 

 

 

 

 

Fig.  3.22. (Exp. 2) A comparison between the human pilot, the aircraft’s AFC/Autopilot, and the 
Intelligent Autopilot’s average, maximum, and minimum speed over time. 
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Fig.  3.23. (Exp. 2) A comparison between the human pilot and the Intelligent Autopilot’s average, 
maximum, and minimum heading correction attempts. The middle part between the two dotted lines is the 

area where no corrections are required (based on a heading of 187 degrees). The right part illustrates a 
deviation in heading towards the right, while the left part illustrates a deviation in heading towards the left. 

A rudder value of 0.2 refers to 20 degrees deflection of the rudder. 

 

Fig.  3.24. (Exp. 2) A comparison between the human pilot and the Intelligent Autopilot’s average, 
maximum, and minimum roll correction attempts. The middle part between the two dotted lines is the area 
where no corrections are required. The right part illustrates a deviation in roll towards the right, while the 

left part illustrates a deviation in roll towards the left. An aileron value of 0.1 refers to 10 degrees deflection 
of the ailerons. 
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Fig. 3.25 shows the autonomously controlled aircraft during taxi (speed gain) before take-

off. The aircraft is affected by strong crosswind blowing from the right side, which pushed the 

aircraft to the left of the runway’s centre. Fig. 3.26 shows the ANNs’ outputs of the IAS where 

rudders are controlled by the system to correct the aircraft’s heading deviation.     

 

Fig.  3.25. The autonomously controlled aircraft during taxi (speed gain) before take-off. Here, crosswind 
blowing from the right side caused the aircraft to deviate from the centre of the runway to the left. 

 

 

 

 

 

Fig.  3.26. The right part of the IAS shows the ANN’s outputs or control commands applied to the aircraft at the 
flight moment shown in Fig. 3.25. Here, the IAS set the rudders to 0.1 degrees (turn right) to counter the effect 

of crosswind blowing from the right side. 

 

 

0 
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Fig. 3.27 shows the autonomously controlled aircraft after take-off where the aircraft’s roll 

is affected by the strong winds, while Fig. 3.28 shows the ANNs’ outputs of the IAS where 

ailerons are controlled by the system to correct the aircraft’s roll deviation.     

 

 

Fig.  3.27. The autonomously controlled aircraft after take-off where the aircraft’s roll is affected by the 
strong winds causing it to roll left. 

 

 

 

 

Fig.  3.28. The right part of the IAS shows the ANN’s outputs or control commands applied to the aircraft at the 
flight moment shown in Fig. 3.23. Here, the IAS set the ailerons to 0.05 degrees (roll right) to counter the effect 

of strong winds causing the aircraft to roll left. 

 

 

 

0 
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3.4.2 Analysis 

As can be seen in Figs 3.7 to 3.11, experiment 1 (calm weather condition) presented very 

desirable results. The IAS was capable of imitating the human pilot’s actions and behaviour. 

The latter is supported by the results presented in tables 3.3 and 3.4 which show a difference 

of no more than 4% and 3% consecutively in the values of the Mean Absolute Deviation 

(MAD) when comparing the IAS with the human pilot and the aircraft’s AFC as well. In 

addition, the small Mean Absolute Error (MAE) values in tables 3.3 and 3.4 show the 

consistency of the performance of the IAS when manipulating the different controls. However, 

the altitude MAE value is relatively high which indicates a need to enhance the performance 

of the IAS when maintaining altitude.     

As can be seen in Figs 3.18 to 3.24, experiment 2 (stormy weather condition) showed the 

ability of IAS to imitate rapid stabilization actions, and generalize well in unseen conditions. 

The system used the calm weather models to fly in stormy conditions gracefully. The latter is 

supported by the results presented in tables 3.6 and 3.7 which show a difference of no more 

than 10% and 3% consecutively in the values of the Mean Absolute Deviation (MAD) when 

comparing the IAS with the human pilot and the aircraft’s AFC as well. In addition, the small 

Mean Absolute Error (MAE) values in tables 3.6 and 3.7 show the consistency of the 

performance of the IAS when manipulating the different controls. However, the altitude MAE 

value is relatively high which also indicates a need to enhance the performance of the IAS 

when maintaining altitude.  

The system was able to imitate multiple human pilot’s skills and behaviour after being 

presented with very limited examples (1 example for throttle, gear, and brakes, 1 example for 

elevator control, 1 example for aileron control, and 2 examples for rudder control). The results 

show that the Intelligent Autopilot System continued to stabilize the aircraft in difficult weather 

condition as Fig. 3.24 shows, while the AFC of the simulated aircraft disengaged itself multiple 

times.  

It should be mentioned that given his lack of flying experience, the human pilot found it 

difficult to provide stable demonstrations as shown by the oscillations, but despite receiving 

this data as training, the IAS learned to fly smoothly - indeed smoother than the human pilot 

as can be seen in Figs 3.11 and 3.22. 
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The complete learning process starting from the demonstration of the specific task by the 

human pilot, and ending with the automatic generation of the learning model takes less than 20 

minutes. 

Informal trials were also performed with the IAS in which the aircraft was put into a variety 

of situations that it had not been trained to handle (e.g., a stall, inversion, etc.). In all cases the 

IAS was able to stabilize the aircraft safely on its own. 

The results prove that the first objective of using Artificial Neural Networks to learn low-

level and high-level piloting skills and abilities from training datasets representing 

demonstrations given by human teachers, was achieved. 

However, at this point, the IAS is not capable of handling emergencies such as engine 

problems, emergency landing, etc. It is also not capable of performing complete flights which 

must include navigating, and landing. 

3.5 Summary 

To summarize, the objective of proving the ability of Artificial Neural Networks to learn 

basic piloting tasks was achieved through developing multiple ANNs each designed and trained 

to handle a specific control problem by generating models from training datasets that captured 

demonstrations performed by a human teacher in a flight simulator. The proposed training 

methodology which relies on capturing the demonstrations by the interface of the IAS and 

storing them as training datasets in the database for offline learning proved to be efficient and 

effective. In addition, processing the data before training by scaling the inputs and outputs 

without having to normalize them, and applying the Sigmoid activation function for datasets 

with positive values, and the Hyperbolic Tangent function for datasets containing negative 

values generated excellent models with low Mean Squared Error values. The generated models 

were able to capture low-level and high-level skills and abilities that enabled the IAS to perform 

basic flights under calm and severe weather conditions. This provides evidence to support the 

hypothesis of this work aimed towards proving the possibility to teach a flight control system 

piloting skills. 
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4. PROTOTYPE 2 (HANDLING EMERGENCIES) 

After the first objective of using Artificial Neural Networks to learn basic piloting tasks 

from training datasets representing demonstrations given by human teachers was achieved, the 

purpose of the second prototype was to achieve the objective of teaching ANNs complex 

piloting tasks. The tasks represent the ability to handle multiple emergency situations including 

Rejected Takeoff (RTO), engine failure and fire, and emergency landing, in addition to 

maintaining a desired altitude. Performing these tasks represent new abilities that the first 

prototype of the IAS did not have. Since this work aims to teach autopilots of large jets (mainly 

airliners) how to perform different piloting tasks, and since the work in the previous chapter 

(3. Prototype 1 (Methodology & Basic Flying)) proved the possibility of teaching an autopilot 

of a light aircraft how to perform piloting tasks, the work in this chapter presents the transition 

from a light aircraft to an airliner in the flight simulator. 

The work in this chapter was published in the 2016 IEEE Symposium Series on 

Computational Intelligence (SSCI), Athens, Greece. (Appendix B).  

To achieve the second objective mentioned above, the IAS should imitate the behaviour of 

the human pilot when handling emergency situations including Rejected Takeoff (RTO), 

engine(s) failure or fire while airborne, emergency landing, and maintaining cruise altitude. 

The previously gained skills from prototype 1 which allowed the IAS to perform autonomous 

basic flights such as takeoff and cruise along with the components developed to achieve those 

skills remain without change. In this chapter, new skills should be learned, and their relevant 

components must be developed to equip the IAS with the capability to handle a difficult 

problem within this work’s scope of autonomous flying, which is the ability to handle 

emergency situations. Each emergency situation should be considered as a segregated problem 

for which specific components must be developed to allow the IAS to manipulate a number of 

controls such as reverse thrust, fuel valve, and fire extinguishing system to handle the different 

emergency scenarios. In addition, it is required to include a new component which should act 

as managing or supervising program that can detect the different emergency situations, and 

based on that, activate certain components suitable for the given situation. 

To achieve the desired behaviours mentioned in the paragraph above, the IAS should learn 

four new tasks. Out of the four tasks, three are related to emergency situations (handling 

rejected takeoff, emergency landing, and single-engine failure or fire). The reason for choosing 
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these specific emergency situations is the ability of the flight simulator X-Plane to simulate 

them. X-Plane can also simulate other emergency situations such as electric failures, hydraulic 

failures, etc., however, such emergency situations require understanding how the electric and 

hydraulic systems of the aircraft operate, and how to handle their potential faults which do not 

fall under the scope of this work. The fourth task that the IAS should learn is the ability to 

maintain a given cruise altitude since prototype 1 was not capable of handling such important 

task. New ANNs were then assigned each task. 

The approach of breaking down control problems by isolating each control task, identifying 

the aircraft’s control interfaces or surfaces that are used to handle each task, and designing and 

training dedicated ANNs for each task is followed in this chapter since this approach proved to 

yield good results as the experiments conducted on the first prototype showed, which is in line 

with the literature (2.1.2.3 Multiple Artificial Neural Networks & Sensors).  

The problem of handling rejected takeoff was segregated as a subtask of the main task of 

handling emergencies. The control interfaces of the aircraft that are used to handle this subtask 

are the brakes, throttle, and reverse thrust. In addition to applying the brakes, the throttle is 

increased to full, and reverse thrust is applied to project thrust in the opposite direction to bring 

the aircraft to a full stop. Therefore, a new ANN should be designed and trained to manipulate 

these control interfaces. To achieve this, the ANN should be trained to take speed and engine 

status as inputs, and based on these inputs, generate control commands to the brakes, throttle, 

and reverse thrust as outputs.  

The second emergency subtask is handling emergency landings when all engines fail while 

airborne. In this case, the aircraft should maintain a positive pitch to continue gliding while 

speed and altitude decrease gradually until the point of impact on the ground to avoid a nose-

first scenario. The control surfaces of the aircraft that are used to handle this subtask are the 

elevators. Since the elevators are used to control the aircraft’s degree of pitch to insure a smooth 

emergency landing, a new ANN should be designed and trained to manipulate the elevators. 

To achieve this, the ANN should be trained to take pitch as an input, and generate control 

command to the elevators as output.  

The third emergency subtask is handling engine(s) fire or single-engine failure. The control 

interfaces of the aircraft that are used to handle the fire situation subtask are the fire 

extinguisher, throttle, and fuel valve. As soon as fire is detected, the fire extinguisher should 

be used simultaneously with the fuel valve control interface to extinguish the fire and cut the 
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supply of fuel. In addition, the throttle is increased to full to burn the fuel left in the engine(s) 

on fire. Therefore, a new ANN should be designed and trained to manipulate these control 

interfaces. To achieve this, the ANN should be trained to take fire sensor reading as input, and 

generate control commands to the fire extinguisher, fuel valve, and throttle as outputs. 

Regarding single-engine failure while airborne, no additional ANNs were designed since the 

aircraft can continue flying although one engine has failed, therefore, the same ANNs from 

prototype 1 (chapter 3) are used to continue flying.  

The final task is maintaining a given cruise altitude. According to the literature [1], the 

engine(s) thrust can be used to alter the altitude of the aircraft by increasing the throttle which 

increases lift and causes the aircraft to climb, or by decreasing the throttle which decreases lift 

and causes the aircraft to sink. In addition, the elevators can be used to maintain a horizontal 

pitch degree during climb and sink. In this case, the control interface and surfaces of the aircraft 

that are used to maintain altitude are the throttle and the elevators, therefore, two new ANNs 

should be designed and trained to take altitude as input, and generate control command to the 

throttle as output, and take pitch as input, and generate control command to the elevators as 

output.        

In addition, ANN 1 from the first prototype is now called the Taxi Speed Gain ANN, and it 

is now dedicated for the taxi speed gain/ground run phase only. This is achieved by training 

the ANN to handle just one flight phase (taxi speed gain/ground run) instead of all, which 

represents a further problem break-down that not only breaks down control tasks, but also, 

follows the break-down of flight phases (as Fig. 3.6 from Chapter 3 shows) and assigns the 

relevant ANNs to each phase instead of all. The Taxi Speed Gain ANN is modified by 

removing the unnecessary altitude input which is not needed anymore since no altitude 

maintenance is required during the taxi speed gain/ground run phase. The same applies to the 

gear output which is removed since it is needed during the takeoff phase when the gear is 

retracted. ANN 2 from the second prototype, which was used during all flight phases to control 

pitch, is now called the Takeoff ANN, and it is only used during the takeoff phase to achieve 

the initial positive climb. This ANN is modified by removing the unnecessary speed input since 

full throttle is applied during the takeoff phase. In addition, gear and throttle outputs are added 

to the elevators output of the Takeoff ANN since they are needed during the takeoff phase.          

Nine feedforward Artificial Neural Networks now comprise the core of the IAS. The 

additional six ANNs were designed based on the same approach mentioned in section (3.2 
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Training). Each ANN is designed and trained to handle specific controls and tasks. The ANNs 

are: Taxi Speed Gain ANN which controls brakes and throttle during the ground-run phase, 

Takeoff ANN which controls gear, elevators, and throttle during takeoff, Rejected Takeoff 

ANN which controls brakes, throttle, and reverse thrust to reject/abort takeoff if necessary, 

Aileron ANN (from prototype 1), Rudder ANN (from prototype 1), Cruise Altitude ANN 

which maintains altitude by controlling throttle, Cruise Pitch ANN which maintains levelled 

pitch by controlling the elevators, Fire Situation ANN which activates the fire extinguisher, 

closes fuel valves, and controls throttle in case of engine fire, and Emergency Landing Pitch 

ANN which maintains a given pitch when gliding during emergency landing. The inputs and 

outputs which represent the gathered data and relevant actions, and the topologies of the ten 

ANNs are illustrated in Fig. 4.1.  

 

 

 

Fig.  4.1. Inputs, outputs, and the topologies of the ten ANNs representing the core of the Intelligent 

Autopilot System. Each ANN is designed and trained to handle a specific task. 
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Following the approach of breaking down the problem and flight phases by designing ANNs 

that are only used during specific flight phases, requires a method to control these ANNs. This 

method should be able to detect the current flight phase, and based on it, perform certain tasks. 

To achieve this, a straightforward method should be developed since designing a 

comprehensive flight management system does not fall under the scope of this work because it 

would be infeasible for one researcher to achieve during a PhD and would distract from the 

hypothesis. The method should perform continuous checks to prove certain conditional 

statements to be true or false. Based on the latter (true or false), certain tasks should be 

performed. For example, if the aircraft is on the runway before takeoff, the method should be 

able to detect that the current flight phase is taxi speed gain/ground run by returning “true” for 

this flight phase, and returning “false” for the remaining flight phases, then, activating the Taxi 

Speed Gain ANN, and deactivating the other ANNs that are relevant to the remaining flight 

phases. This method was tested to ensure its robustness by exposing it to the different flight 

phases in the flight simulator, and ensuring it can detect the correct flight phase, and activate 

the relevant ANNs. To achieve this, the Flight Manager program was designed and added to 

the Intelligent Autopilot System. 

The Flight Manager is a program which resembles a Behaviour Tree [146]. The purpose of 

the Flight Manager is to manage the ten ANNs of the IAS by deciding which ANNs are to be 

used simultaneously at each moment given the flight phase. The Flight Manager starts by 

receiving flight data from the flight simulator through the interface of the IAS, detects the flight 

condition and phase by examining the received flight data, and decides which ANNs are 

required to be used given the flight condition (normal/emergency/fire situation) and phase (taxi 

speed gain/takeoff/cruise/emergency landing). Fig. 4.2 illustrates the process which the Flight 

Manager follows. The Flight Manager receives flight data including engine(s) readings, and 

fire status which are used to detect emergencies. In addition, the Flight Manager uses speed, 

and altitude data to decide when to switch from the taxi speed gain phase to the takeoff phase, 

and from the latter to the cruise phase. The thresholds of engine readings, speed, and altitude 

which dictate a switch between phases or conditions can be changed to suite multiple types of 

aircraft, weights, etc. The thresholds used for the work in this chapter were chosen based on 

empirical testing that was conducted to identify the thresholds which are suitable for the aircraft 

used in this chapter as table 4.1 shows. However, these thresholds are corrected in chapter 7 

with the assistance of an experienced pilot, and here the precise values are secondary to the 

main aim of developing a working system. The Flight Manager program was iteratively 
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developed using literature on appropriate procedures and flight phases where necessary and 

improved via preliminary experiments. Based on understanding what the flight phases are and 

how transitions from one flight phase to the next should be carried out, and based on 

understanding what procedures are carried out when the selected emergency situations happen, 

the Flight Manager program performs continuous checks to prove the conditional statements 

(true or false) that dictate the transitions to the next flight phase, or the transition from a normal 

flight to handling an emergency by applying the appropriate procedures. The procedures that 

the Flight Manager program applies are represented by activating the appropriate ANNs for 

each flight phase or emergency situation, and stopping the other ANNs that are suitable for the 

other phases or situations as Fig. 4.2 shows.    

 

 

 

Fig.  4.2. A Flowchart illustrating the process which the Flight Manager program follows to decided which 
ANNs are to be used. The Rudder ANN is constantly active during the ground-run/taxi speed gain phase, the 

Cruise Pitch, and Cruise Altitude ANNs are constantly active during the cruise phase, and the Aileron ANN is 
constantly active during the takeoff and cruise phases. 
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TABLE 4.1 
THE DIFFERENT THRESHOLDS TYPES & VALUES USED BY THE FLIGHT MANAGER PROGRAM 

TO DETECT THE FLIGHT PHASE OR CONDITION, AND APPLY THE APPROPRIATE DECISION  
 

Threshold Type and Value Detected Phase/Condition and Decision  

If both engines RPM is below 1000 rpm All engines failure – Rejected 
Takeoff/Emergency Landing 

If there is an RPM difference between engines 
of 10 rpm or more 

Single engine failure - Rejected 
Takeoff/Emergency Landing 

If engine(s) forces reading is below 5000 lb Single or all engine(s) failure - Rejected 
Takeoff/Emergency Landing 

If speed during taxi speed gain/ground run is 
equal to or above 130 knots 

Transition from taxi speed gain/ground run to 
takeoff  

If altitude is equal to or above 4000 ft.  Transition from takeoff to cruise 
 

 

4.1 Experiments on Prototype 2 

Here, the new approach is to segment the training dataset of taxi speed gain, takeoff, and 

climb into three different sets that are handled separately by three ANNs (Taxi Speed Gain 

ANN, Takeoff ANN, and Cruise ANN) instead of just one ANN. Prototype 2 also introduces 

four new ANNs in order to learn flight emergency procedures for the first time. 

In order to assess the effectiveness of the new approach, the Intelligent Autopilot System 

was tested in four experiments:  

1. Rejected takeoff  

2. Emergency landing  

3. Maintaining a cruising altitude  

4. Handling single-engine failure/fire while airborne.  

Each experiment is composed of 20 attempts by the IAS to perform autonomously under the 

given conditions. 

The human pilot who provided the demonstrations is the author. The simulated aircraft used 

for the experiments is a Boeing 777 since unlike the simple process of flight which is relatively 

universal between aircraft, the procedures for emergency procedures may differ among 

different types of aircraft, and since this work is ultimately aimed at airliners, it now makes 

sense to transition to this more complex aircraft. 
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4.1.1 Rejecting Takeoff 

The purpose of this experiment is to assess the behaviour of the IAS compared with the 

behaviour of the human pilot when a Rejected Takeoff (RTO) is required. 

4.1.1.1 Data Collection 

In this experiment, the human pilot used the IAS Interface to perform the following in the 

flight simulator: reject takeoff when one engine fails or catches fire, and when two engines fail 

or catch fire (one demonstration for each scenario). The flight simulator was set to simulate the 

failure or fire conditions for one or two engines immediately after the user presses a hot key on 

the keyboard. Rejecting takeoff is performed by going to full reverse thrust and engaging 

brakes. In case of fire, the human pilot turned off the fuel valve, turned on the fire extinguishing 

system, and went to full throttle to burn the fuel left in the engine(s). While the pilot performed 

the demonstration, the Interface collected speed and engine status as inputs, and brakes, 

throttle, and reverse thrust control data as outputs. The Interface stored the collected data in the 

database as the training dataset for the Rejected Takeoff ANN. The Interface also collected fire 

sensor readings as input, and fire extinguisher, throttle, and fuel valve control data as outputs. 

The Interface stored the collected data in the database as the training dataset for the Fire 

Situation ANN. 

4.1.1.2 Training 

For this experiment, the Rejected Takeoff ANN, and the Fire Situation ANN were trained 

until low Mean Squared Error (MSE) values were achieved (below 0.001). Since single-

hidden-layer ANNs are used for training, and since the training datasets are small given that a 

single demonstration was provided, training requires a short time to be completed (under 10 

minutes). 

4.1.1.3 Autonomous Control 

After training the ANNs on the relevant training datasets, the aircraft was reset to the runway 

in the flight simulator to test autonomous RTO multiple times under different scenarios (one 

and two engine(s) failure and fire), the simulator was set to simulate the desired emergency 

scenario, and the IAS was engaged. When the flight manager detects the emergency, it stops 

the Taxi Speed Gain ANN, and runs the Rejected Takeoff ANN and the Fire Situation ANN 

simultaneously to reject takeoff and handle fire autonomously. Through the Interface, ANNs 

receive: 1. Relevant flight data from the flight simulator as inputs, and 2. Coefficients of the 

relevant models from the database to predict and output control commands that are sent to the 

flight simulator. This process allows the IAS to autonomously perform the learned task: 
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rejecting takeoff if necessary. This was repeated 20 times for each scenario to assess 

performance consistency. 

4.1.2 Emergency Landing  

The purpose of this experiment is to assess the behaviour of the IAS compared with the 

behaviour of the human pilot when a forced or emergency landing is required. 

4.1.2.1 Data Collection  

 In this experiment, the human pilot used the IAS Interface to perform the following in the 

flight simulator: emergency landing when two engines fail or catch fire (one demonstration for 

each scenario). The flight simulator was set to simulate the failure or fire conditions for two 

engines immediately after the user presses a hot key on the keyboard. Emergency landing is 

performed by maintaining a controlled glide using the elevators to ensure a gradual loss of 

speed and altitude without stalling the aircraft by maintaining a slight positive pitch. If there is 

any power left in the engines, the throttle is used to aid the gliding phase. In case of fire, the 

human pilot turned off the fuel valve, and turned on the fire extinguishing system. In this 

scenario going to full throttle to burn the fuel left in the engines is not possible since both 

engines do not have sufficient power. While the pilot performed the demonstration, the 

Interface collected pitch as input, and elevator control data as output. The Interface stored the 

collected data in the database as the training dataset for the Emergency Landing Pitch ANN. 

The Interface also collected altitude as input, and throttle control data as output. The Interface 

stored the collected data in the database as the training dataset for the Emergency Landing 

Altitude ANN. 

4.1.2.2 Training 

For this experiment, the Emergency Landing Pitch ANN, and the Emergency Landing 

Altitude ANN were trained until low Mean Squared Error (MSE) values were achieved (below 

0.001 for the Emergency Landing Pitch ANN and below 0.2 for the Emergency Landing 

Altitude ANN). Since single-hidden-layer ANNs are used for training, and since the training 

datasets are small given that a single demonstration was provided, training requires a short time 

to be completed (under 10 minutes). 

4.1.2.3 Autonomous Control 

After training the ANNs on the relevant training datasets, the aircraft was reset to the runway 

in the flight simulator to test autonomous emergency landing multiple times under different 

scenarios (both engines failure or fire), the simulator was set to simulate the desired emergency 
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scenario, and the IAS was engaged. After the IAS took the aircraft airborne, and when the flight 

manager detects the emergency, it stops the Takeoff ANN (during climb), or the cruise ANNs, 

and runs the Emergency Landing Pitch ANN, and the Emergency Landing Altitude ANN 

simultaneously to maintain a controlled glide while descending to the ground. Through the 

Interface, the ANNs receive: 1. Relevant flight data from the flight simulator as inputs, and 2. 

Coefficients of the relevant models from the database to predict and output control commands 

that are sent to the flight simulator. This process allows the IAS to autonomously perform 

learned task: emergency landing by maintaining a controlled glide. This was repeated 20 times 

for each scenario to assess performance consistency. 

4.1.3 Maintaining a Cruising Altitude  

The purpose of this experiment is to assess the behaviour of the IAS compared with the 

behaviour of the human pilot while maintaining a desired cruising altitude. 

4.1.3.1 Data Collection  

In this experiment, the human pilot used the IAS Interface to maintain a cruising altitude in 

the flight simulator by increasing and decreasing the throttle, and by using the elevator to 

maintain a fairly levelled pitch (one demonstration). While the pilot performed the 

demonstration, the Interface collected altitude as input, and throttle control data as output. The 

Interface stored the collected data in the database as the training dataset for the Cruise Altitude 

ANN. The Interface also collected pitch as input, and elevator control data as output. The 

Interface stored the collected data in the database as the training dataset for the Cruise Pitch 

ANN. 

4.1.3.2 Training 

For this experiment, the Cruise Altitude ANN, and the Cruise Pitch ANN were trained until 

low Mean Squared Error (MSE) values were achieved (below 0.02 and 0.001 respectively). 

Since single-hidden-layer ANNs are used for training, and since the training datasets are small 

given that a single demonstration was provided, training requires a short time to be completed 

(under 10 minutes).   

4.1.3.3 Autonomous Control 

After training the ANNs on the relevant training datasets, the aircraft was reset to the runway 

in the flight simulator to test the ability of maintaining a desired cruise altitude autonomously, 

and the IAS was engaged. After the IAS took the aircraft airborne, continued to climb, and 

reached the proximity of the desired altitude, the system’s ability to maintain the given altitude 
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was observed. Through the Interface, the ANNs receive: 1. Relevant flight data from the flight 

simulator as inputs, and 2. Coefficients of the relevant models from the database to predict and 

output control commands that are sent to the flight simulator. This process allows the IAS to 

autonomously perform learned task: maintain a desired cruising altitude. This was repeated 20 

times for each scenario to assess performance consistency. 

4.1.4 Handling Single-Engine Failure/Fire while Airborne   

The purpose of this experiment is to assess the behaviour of the IAS in case of an engine 

failure or fire while airborne. 

4.1.4.1 Data Collection  

In this experiment, the human pilot did not provide an explicit demonstration for the single-

engine failure. Instead, it was intended to test the already trained ANNs, and determine whether 

their models are able to generalize well in this new scenario where the failed engine creates a 

drag, and forces the aircraft to descend, and creates a yaw deviation towards the failed engine’s 

side. 

4.1.4.2 Training 

For this experiment, the previously trained models of the Cruise Altitude ANN, the Cruise 

Pitch ANN, and the rudder ANN from prototype 1 were used. 

4.1.4.3 Autonomous Control 

After setting the simulator to simulate the desired emergency scenario (single-engine failure 

or fire), and after the IAS took the aircraft airborne, when the flight manager detects the 

emergency, it continues to use the same ANNs (Takeoff ANN, or cruise ANNs), and runs the 

Fire Situation ANN if fire is detected, to fly autonomously using the power left from the engine 

that operates normally. Through the Interface, the ANNs receive: 1. Relevant flight data from 

the flight simulator as inputs, and 2. Coefficients of the relevant models from the database to 

predict and output control commands that are sent to the flight simulator. This was repeated 20 

times for each scenario to assess performance consistency. Throughout all the experiments, the 

Rudder and Aileron ANNs from prototype 1 are used normally during the different phases. 

4.2 Results of Experiments on Prototype 2 

The following section describes the results of the conducted tests. The 20 attempts by the 

IAS to handle each scenario autonomously were averaged and compared with the performance 

of the human pilot when applicable. 
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4.2.1 Experiment 1 (Rejecting Takeoff) 

Two models were generated with the MSE values as table 4.2 shows. Fig.  4.3 illustrates the 

behaviour of the IAS when controlling the transition of flight modes under normal conditions, 

while Fig.  4.4 illustrates the behaviour of the IAS when engine(s) failure or fire is detected 

and a Rejected Takeoff (RTO) is performed. The results of the 20 experiments showed 

consistency by following the correct procedure in each experiment with a 100% accuracy rate. 

 

TABLE 4.2 
THE RESULTING MEAN SQUARED ERROR VALUES OF THE MODELS GENERATED AFTER 

TRAINING THE RTO & FIRE SITUATION ANNS  
 

ANN MSE 

Rejected Takeoff ANN 0.000999 
Fire Situation ANN 0.000999 

 

 

 

Fig.  4.3. 20 observations of the behaviour of the IAS when controlling the transition of flight modes under 
normal conditions. The IAS was able to execute the transitions between flight phases and activate the relevant 

ANNs at the desired transition points (t2, t3) with an accuracy of 100%. 
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Fig.  4.4. (Rejected Takeoff experiment) 20 observations of the behaviour of the IAS when engine(s) failure or 
fire is detected and a Rejected Takeoff (RTO) is performed. The IAS was able to activate the relevant ANNs at 

the desired transition point (t2) with an accuracy of 100%. The Fire Situation ANN was activated only when fire 
is detected. 

 

4.2.2 Experiment 2 (Emergency Landing) 

Two models were generated with the MSE values as table 4.3 shows. Fig. 4.5 and 4.6 

illustrate a comparison between the human pilot and the IAS while maintaining a positive pitch 

during emergency landing, and their altitude (sink rate). The pitch Mean Absolute Deviation 

(MAD) results (0.024 for the IAS and 0.196 for the human pilot) show less deviation and a 

steady behaviour of the IAS due to the good model fit as can be seen in Fig.  4.5. Fig.  4.7 

illustrates the behaviour of the IAS when both engines failure or fire is detected and a forced 

or emergency landing is performed. The results of the 20 experiments showed consistency by 

following the correct procedure in each experiment with a 100% accuracy rate. Fig. 4.8 shows 

the G-Load factor before and upon impact during ten different emergency landings performed 

by the IAS, and one manually induced crash landing. The G-Load factor is the ratio of the lift 

of a given aircraft to its weight which provides a measure of the stress to which the aircraft 

structure is subjected, and its unit is referred to as g [1]. The flight simulator X-Plane measures 

the G-Force effect on the aircraft’s frame. It can be set to display an alert message to the user 

when the safe threshold is exceeded which means the aircraft’s frame was wrecked. When the 

latter happens, the simulation session ends. For this experiment, X-Plane was set to simulate 

full G-Load effects on the aircraft.  
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TABLE 4.3 
THE RESULTING MEAN SQUARED ERROR VALUES OF THE MODELS GENERATED AFTER 

TRAINING THE EMERGENCY LANDING ANNS  
 

ANN MSE 

Emergency Landing Pitch ANN 0.000997 
Emergency Landing Altitude ANN 0.196117 

 

 

Fig.  4.5. (Emergency landing experiment) A comparison between the human pilot and the Intelligent Autopilot 
System’s pitch during emergency landing. Since the human pilot demonstrator struggled to maintain a desired 
positive pitch due to lack of experience, the good fit of the generated model resulted in a steady performance 

which is better than the human teacher. 

 

 

Fig.  4.6. (Emergency landing experiment) A comparison between the human pilot and the Intelligent Autopilot 
System’s altitude during emergency landing. The results show a close sink rate of about 1500 ftagl per minute. 
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Fig.  4.7. (Emergency landing experiment) 20 observations of the behaviour of the IAS when both engines 
failure or fire is detected during either take off or cruise, and an emergency landing is performed. The IAS was 

able to activate the relevant ANNs at the desired transition point (t2) with an accuracy of 100%. The Fire 
Situation ANN is used only when fire is detected. 

 

 

Fig.  4.8. (Emergency landing experiment) The G-Load factor that the aircraft experienced just before impact 
(airborne) and upon ground impact. The different shades of green represent the G-Load factor during 10 

different emergency/crash landings performed by the IAS. The blue line represents the G-Load factor resulting 
from a manual emergency/crash landing performed by the author. 
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4.2.3 Experiment 3 (Maintaining a Cruise Altitude) 

Two models were generated with the MSE values as table 4.4 shows. Fig.  4.9 and 4.10 

illustrate a comparison between the human pilot and the IAS while maintaining a desired 

cruising altitude. The altitude Mean Absolute Deviation (MAD) results (85.8 for the IAS and 

204.58 for the human pilot) shows less deviation of altitude and a steady behaviour of the IAS 

due to the good model fit as can be seen in Fig.  4.9. 

 

TABLE 4.4 
THE RESULTING MEAN SQUARED ERROR VALUES OF THE MODELS GENERATED AFTER 

TRAINING THE CRUISE ANNS  
 

ANN MSE 

Cruise Altitude ANN 0.017574 
Cruise Pitch ANN 0.000835 

 

 

 

 

 

Fig.  4.9. (Maintaining a cruise altitude experiment) A comparison between the human pilot and the Intelligent 
Autopilot System’s altitude during cruising. While the human pilot demonstrator struggled to maintain a desired 

cruise altitude of 20,000 ftagl, the IAS performed better due to the good fit of the generated model. 
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Fig.  4.10. (Maintaining a cruise altitude experiment) The IAS manipulation of throttle to maintain a desired 
cruise altitude of 20,000 ftagl compared with the human pilot. The IAS manipulated the throttle smoothly 

compared with the human pilot due to the good fit of the generated model. 

 

4.2.4 Experiment 4 (Handling Single-Engine Failure/Fire while Airborne) 

As mentioned above (4.1.4.1 Data Collection), the human pilot did not provide an explicit 

demonstration for the single-engine failure scenario. Instead, it was intended to test the already 

trained ANNs, and determine whether their models are able to generalize well in this new 

scenario’s experiment. Fig.  4.11 illustrates the behaviour of the IAS when a single-engine fails 

or catches fire during takeoff or cruise. The system was intended to carry on flying, apply the 

rudder ANN from prototype 1, and run the Fire Situation ANN in case of fire. The results of 

the 20 experiments showed consistency by following the correct procedure in each experiment 

100% of the time. Fig. 4.12 illustrates how the IAS continues to fly while losing altitude 

gradually compared with the aircraft’s autopilot under the same situation. 
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Fig.  4.11. (Handling single-engine failure/fire experiment) 20 observations of the behaviour of the IAS when a 
single engine failure or fire is detected during either take off or cruise. The IAS was able to activate the relevant 
ANNs at the desired transition point (t2) with an accuracy of 100%. The ANNs used during Take Off or Cruise 
perform the same tasks as Fig.  4.3 shows, while the Aileron ANN continues to correct roll. The Fire Situation 

ANN is used only when fire is detected.  

 

 

Fig.  4.12. (Handling single-engine failure/fire experiment) Comparing the altitude loss rate of the IAS and the 
aircraft’s AFCS. Since the AFCS is not aware of the single engine failure situation, it compensates by increasing 
the throttle aggressively, which results in a smaller altitude loss rate, but might put excessive stress on the single 

operating engine. 
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4.3 Analysis  

Fig. 4.4 shows the rejected takeoff experiment where the IAS was capable of imitating the 

human pilot’s actions and behaviour with an accuracy of 100% by following the correct 

procedure in each experiment accurately. The resulted ability of the Flight Manager program 

to handle the transitions from each flight phase to the next, and the ability to detect and handle 

the emergency situations mentioned in this chapter with an accuracy of 100% proved the 

suitability of the straightforward design approach which relies on conditional statements to 

detect the different flight phases and emergency situations.     

Fig. 4.5 to 4.7 (the emergency landing experiment) show the ability of the IAS to imitate 

the human pilot’s demonstration of controlling an emergency landing. In fact, due to the good 

fit of the generated model, the IAS performed better than the human pilot by maintaining the 

required pitch degree (around 1.5 degrees) without the oscillations present in the demonstration 

of the human pilot as Fig. 4.5 shows. The IAS was able to perform the learned sink rate which 

enabled the aircraft to hit the ground smoothly without being severely wrecked. Fig. 4.8 

illustrates the G-Load factor that the aircraft experienced during multiple emergency/crash 

landings performed by the IAS where the G-Load factor remained below 1.3 g (1.3 times the 

aircraft’s weight) compared to more than 4 g (4 times the aircraft’s weight) resulting from a 

manual emergency landing performed by the author. The latter results show that the 

performance of the IAS when maintaining the desired pitch and sink rate insured smooth crash-

landings upon impact. Having a dedicated ANN to control the aircraft’s pitch during 

emergency/crash landings by maintaining a positive pitch of around 1.5 degrees as Fig. 4.5 

shows, resulted in the ability to perform emergency/crash landings successfully without 

wrecking the aircraft’s structure. It should be mentioned that selecting a suitable landing 

surface is not within the scope of this work. 

Fig. 4.9 and 4.10 (maintaining a cruise altitude experiment) show the ability of the IAS to 

learn how to use the throttle and the elevators to maintain a given altitude. They illustrate the 

ability of the IAS to perform better than the human pilot teacher due to the achieved good fit 

of the generated models. Segregating the altitude maintenance task to two sub-tasks by having 

a dedicated ANN to control the throttle based on altitude, another dedicated ANN to control 

the elevators based on the aircraft’s pitch, and having both ANNs operate simultaneously 

resulted in the ability to handle the new task of altitude maintenance as the results show 
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compared to prototype 1 which was not equipped with the capability of maintaining cruise 

altitude.  

As can be seen in Fig. 4.11 and 4.12, the IAS was capable of using the already learned 

models to continue flying while gradually losing altitude due to a single engine failure. The 

aircraft’s standard autopilot maintained a better altitude by aggressively increasing the thrust 

of the remaining operational engine to maintain the manually selected cruise speed. By doing 

so, additional lift was provided which allowed for the better altitude maintenance when a single 

engine failed compared to the IAS. This shows the importance of having the capability of 

maintaining speed which is required during all the different flight phases as well. Therefore, 

this capability should be added to the IAS to achieve better autonomous piloting capabilities.   

The IAS was able to imitate multiple human pilot’s skills and behaviour after being 

presented with very limited examples. This is due to the approach of segmenting the problem 

of autonomous piloting while handling uncertainties into small blocks of tasks, and assigning 

multiple ANNs specially designed and trained for each task, which resulted in the generation 

of models with small error values as tables 4.2, and 4.3 show. 

The results proved the hypothesis that ANNs can learn complex tasks representing the 

ability to handle multiple emergency situations including Rejected Takeoff (RTO), engine 

failure and fire, and emergency landing, in addition to the newly added ability of maintaining 

a desired cruise altitude. 

4.4 Summary 

To summarize, the objective of teaching Artificial Neural Networks how to handle complex 

emergency tasks was achieved by developing additional ANNs each designed and trained to 

handle specific tasks representing the ability to handle multiple emergency situations including 

Rejected Takeoff (RTO), engine failure and fire, and emergency landing. In addition, the task 

of maintaining a desired altitude is now one of the capabilities of the IAS compared to 

Prototype 1 which was not able to do so. The design and training approach of the IAS enabled 

the smooth transition to a more complex and larger aircraft with multiple engines (Boeing 

B777). The introduction of the Flight Manager program provided the ability to manage the 

different ANNs that comprise the IAS by continuously monitoring the flight condition, and 

reacting accordingly by activating the suitable ANNs given the flight condition or phase. The 

work in this chapter provides additional evidence to support the hypothesis of this work aimed 

towards proving the possibility to teach a flight control system piloting skills. 
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5. PROTOTYPE 3 (NAVIGATION & LANDING) 

After the first and second objectives of using Artificial Neural Networks to learn basic flying 

and handle complex tasks such as emergency situations were achieved, the purpose of the third 

prototype was to achieve the objective of teaching ANNs how to takeoff from airport A, 

navigate to airport B, and land safely. Performing these tasks represent new abilities that the 

first and second prototypes of the IAS did not have. 

The work in this chapter was published in the 2017 IEEE Symposium Series on 

Computational Intelligence (SSCI), Hawaii, USA. (Appendix B).  

To achieve the third objective mentioned above, the IAS should imitate the behaviour of the 

human pilot when banking the airplane to follow the flight course. The IAS should also imitate 

the behaviour of the human pilot when performing final approach and landing in airports. While 

the previously gained skills from prototypes 1 and 2 along with the components developed to 

achieve those skills remain without change, new skills should be learned, and their relevant 

components must be developed to equip the IAS with the capability to handle a challenging 

problem within this work’s scope of autonomous flying, which is the ability to navigate and 

land safely. The problem should be segregated into two different flight phases (final approach, 

and landing) based on the problem break-down approach followed in this work. For each flight 

phase, specific components must be developed to handle the new tasks of final approach and 

landing by identifying the required control interfaces and surfaces that are used during these 

flight phases, and developing new ANNs that are dedicated to each segregated task. In addition, 

a modification should be performed on the Aileron ANN from prototype 1 to learn the new 

task of following a flight course represented by path lines between GPS coordinates.   

The task of autonomous navigation and landing was segregated into four subtasks. The first 

subtask is following a navigation path based on GPS waypoints, which is the standard 

navigation method used by airliners nowadays [1]. The control surfaces of the aircraft that are 

used to handle this subtask were identified based on the literature [1], which are the ailerons 

that are used to control the aircraft’s roll degree. Therefore, ANN 3 from prototype 1 (chapter 

3) should be modified to account for path following in addition to controlling the aircraft’s roll 

degree. To achieve this, the modified ANN should take the roll degree and an additional value 

which indicates how far the aircraft is from the path line representing the flight course as inputs, 

and generate control commands to the ailerons as output. The second subtask is handling the 
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final approach flight phase. This subtask is segregated into three additional subtasks. The first 

is controlling the aircraft’s pitch during final approach which is performed using the aircraft’s 

elevators. To achieve this, a new ANN should be designed and trained to take the aircraft’s 

pitch degree as input, and generate the control commands as outputs to the elevators which 

were identified as the appropriate control surfaces for this tasks according to the literature [1]. 

The second is controlling the aircraft’s glide towards the landing runway. The control interface 

and surfaces that are used for this subtask are the throttle, the flaps, and the elevators trim [1]. 

Therefore, a new ANN should be designed and trained to take the altitude and speed as inputs, 

and generate control commands to the throttle, flaps, and the elevator’s trim as outputs. The 

third is controlling the aircraft’s gear before landing. To achieve this, a new ANN should be 

designed and trained to take altitude as input, and based on that, generate control command to 

the aircraft’s gear as output. The final subtask is performing landing procedures after 

touchdown. To achieve this, a new ANN should be designed and trained to take speed as input, 

and based on that, generate control commands to the aircraft’s brakes, reverse thrust, and speed 

brakes as outputs. These control interface and surfaces are used to bring the aircraft to a full 

stop after touchdown [1].   

Fourteen feedforward Artificial Neural Networks now comprise the core of the IAS. The 

additional four ANNs were designed based on the same approach mentioned in section (3.2 

Training). Each ANN is designed and trained to handle specific controls and tasks. The new 

ANNs are: Final Approach ANN which controls throttle, flaps, and elevators trim to maintain 

altitude descending during the final approach phase, Final Approach Pitch ANN which controls 

the elevators to maintain a positive pitch during the final approach phase, Gear ANN which 

engages landing gear when a certain altitude is reached, and Landing ANN which controls 

reverse thrust, brakes, and speed brakes after touchdown to slow down the aircraft on the 

landing runway, and bring it to a full stop. The inputs and outputs which represent the gathered 

data and relevant actions, and the topologies of the ANNs are illustrated in Fig. 5.1. 

The Flight Manager program from prototype 2 was extended to give it the ability to generate 

a navigation course for the Aileron ANN to follow, and handle the flight phases necessary for 

landing, which are the final approach phase, and the landing phase. 
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Fig.  5.1. Inputs, outputs, and the topologies of the new ANNs of prototype 3. 

 

The Flight Manager generates a flight course to the destination airport of choice based on 

stored GPS waypoints as Fig. 5.2 illustrates by applying (5.1) [147] to calculate the bearing 

(heading) between the GPS coordinates (latitude and longitude) of the waypoints.  

� = atan2(sin(Δλ)cos(Φ2), cos(Φ1)sin(Φ2)cos(Δλ))   (5.1) 

where Φ1 is the latitude of the start point (waypoint 1), Φ2 is the latitude of the end point 

(waypoint 2), and Δλ is the difference between the longitudes of the end point (waypoint 2) 

and the first point (waypoint 1).  

The program constantly measures the deviation between the aircraft’s position and the 

current path line of the flight course represented by the angle between the line that starts at the 

location point of the aircraft and ends at the location point of the next waypoint, and the line 

that starts at the location point of the previous waypoint and ends at the location point of the 

next waypoint as Fig.  5.3 illustrates.  

The Flight Manager calculates the difference between the bearing of the path line to be 

intercepted, and the aircraft’s current bearing, then, it adds the angle to the bearing difference 

as a momentum value (5.2). As the aircraft’s current bearing becomes closer to the desired 

bearing, and as the angle becomes smaller, the difference becomes smaller as well, which leads 

to a gradual interception of the path line, and avoids undesired undershooting or overshooting  
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Fig.  5.2. A flight course from a departure airport to a landing airport consisting of three path lines and their 
bearings/headings, which connect the three pre-stored GPS coordinates waypoint. 

 

 

Fig.  5.3. The angle between the line from the aircraft’s location X and the next waypoint Y, and the line from 
the previous waypoint Z and the next waypoint Y. 
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as Fig.  5.4 illustrates. The difference is fed to the modified Aileron ANN from prototype 1, 

which now takes the difference in addition to roll as inputs, and outputs the appropriate ailerons 

control commands as Fig.  5.5 shows.  

ailerons ANN input = (current bearing – desired bearing) + angle (5.2) 

The Top of Descent (TOD) is the point at which descending towards the destination airport 

is initiated. In this work, the Flight Manager calculates the TOD by multiplying the altitude by 

0.003 3. If the result is less than the distance (in kilometres) to the landing runway, then the 

TOD is reached, and the descending process starts.  

The Glideslope is an altitude slope of a given degree, which leads to a touchdown on the 

landing runway. The Flight Manager generates a virtual altitude slope by dividing the distance 

to the runway by 10. The latter method is used based on preliminary empirical testing, however, 

this method is updated in chapter 7 by using the standard glideslope interception technique that 

utilizes the elevator’s trim. Fig. 5.6 illustrates how the Flight Manager generates the glideslope. 

 

 

 

 

Fig.  5.4. An example illustrating how the Flight Manager updates the bearing to be followed based on the 
difference between the bearing of the path line to be intercepted, and the aircraft’s bearing. The angle between 

the aircraft and the path line is added to the difference to ensure a gradual interception. 

 

 
3 How to compute the TOD (Top of Descent) - Thumb rule. https://community.infinite-flight.com/ [accessed 2018] 
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Fig.  5.5. The modified Aileron ANN which now takes the difference in bearings (angle added to it) in addition 
to roll to predict the appropriate aileron control command during navigation. 

 

 

Fig.  5.6. The Glideslope generated by continuously calculating the altitude during the final approach descent 
which leads to a touchdown on the landing runway. The desired altitude is the distance to the runway divided by 

10. 

 

 

Fig.  5.7. The ANNs used during the different phases of the flight. 

 

Fig.  5.7 illustrates the ANNs used during the different flight phases, and Fig.  5.8 illustrates 

the process which the Flight Manager follows to handle the different flight phases from takeoff 

to landing. 
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Fig.  5.8. A Flowchart illustrating the process which the Flight Manager program follows to decided which 
ANNs are to be used, and how to handle flight phases and navigation points transitions. 
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5.1 Experiments on Prototype 3  

This section discusses the experiments conducted on the modified Aileron ANN which can 

now bank, and intercept a path line, in addition to controlling the roll degree. This section also 

discusses the experiments conducted on the new ANNs that are used during the final approach, 

and landing phases. 

The experiments were conducted under calm weather conditions with nil wind speed.  

To assess the effectiveness of the proposed approach, the Intelligent Autopilot System was 

tested in three experiments:  

1. Banking turn and path line interception  

2. Final approach 

3.  Landing.  

Each experiment is composed of 50 attempts by the IAS to perform autonomously under the 

given conditions. The human pilot who provided the demonstrations is the author. The 

simulated aircraft used for the experiments is a Boeing 777 as it is intended to experiment using 

a complex and large model with more than one engine rather than a light single-engine model.  

5.1.1 Banking Turn and Path Line Interception 

The purpose of this experiment is to assess the behaviour of the IAS compared with the 

behaviour of the human pilot when performing a banked turn, and to assess the path line 

interception technique. 

5.1.1.1 Data Collection  

In this experiment, the human pilot used the IAS Interface to change the aircraft’s heading 

by performing a banked turn through maintaining a roll of 25 to 35 degrees which is the 

standard roll degree for airliners when banking to change the flight course [1]. While the pilot 

performed the demonstration, the Interface collected roll and difference values as inputs, and 

aileron control value as output. The Interface stored the collected data in the database as the 

training dataset for the Aileron ANN.  

5.1.1.2 Training 

For this experiment, the Aileron ANN was trained until a low Mean Squared Error (MSE) 

value was achieved (below 0. 1). Since single-hidden-layer ANNs are used for training, and 
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since the training datasets are small given that a single demonstration was provided, training 

requires a short time to be completed (under 10 minutes). 

However, when the aircraft is close to the path line to be intercepted, a large banking turn 

of 25 to 35 degrees of roll can cause the aircraft to constantly overshoot the path line instead 

of intercepting it smoothly. So, instead of training an additional Aileron ANN that performs 

banking turns through smaller degrees of roll, the same generated ANN model can be 

stimulated differently to alter its behaviour by feeding its input neuron with values that are 

much smaller than the values present in the training dataset. The latter exploits the 

generalization effect which causes the model to behave differently based on the unseen smaller 

inputs. To achieve this in this experiment, before feeding the difference input neuron of the 

Aileron ANN with the difference value, the difference is reduced to just 30% of its actual value, 

which was found through extensive preliminary experiments. This approach was tested 

between two waypoints represented by a straight path line. 

5.1.1.3 Autonomous Control 

After training the ANN on the relevant training dataset, the aircraft was reset to the runway 

in the flight simulator to test autonomous banking turn and path line interception. After takeoff, 

when the Flight Manager updates the path sequence of the flight course, calculates the new 

heading, the angle, and the difference, the Aileron ANN performs a banked turn to minimize 

the difference, and eventually, intercept the path line gradually. Through the Interface, the 

ANN receives: 1. relevant flight data from the flight simulator as inputs, and 2. coefficients of 

the relevant models from the database to predict and output control commands that are sent to 

the flight simulator. This process allows the IAS to autonomously perform the learned task: 

autonomous banking turn and path line interception. This was repeated 50 times to assess 

performance consistency.    

5.1.2 Final Approach 

The purpose of this experiment is to assess the behaviour of the IAS compared with the 

behaviour of the human pilot during the final approach phase. 

5.1.2.1 Data Collection  

 In this experiment, the human pilot used the IAS Interface to perform the following in the 

flight simulator: maintain a positive pitch of about 3 to 4 degrees during the final approach 

phase to decrease airspeed without causing a stall, and to ensure a flare immediately after 

touchdown, engage full flaps when the airspeed is less than 260 knots, and engage the landing 
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gear when the altitude decreases to 1500 ftagl. The desired descent altitude is continuously 

updated by the Flight Manager. While the pilot performed the demonstration, the Interface 

collected airspeed and altitude as inputs, and flaps as output. The Interface stored the collected 

data in the database as the training dataset for the Final Approach Altitude ANN. The Interface 

also collected altitude as input, and landing gear control data as output. The Interface stored 

the collected data in the database as the training dataset for the Landing Gear ANN. 

5.1.2.2 Training 

For this experiment, the Final Approach Altitude ANN, and the Landing Gear ANN were 

trained until low Mean Squared Error (MSE) values were achieved (below 0.01). Since single-

hidden-layer ANNs are used for training, and since the training datasets are small given that a 

single demonstration was provided, training requires a short time to be completed (under 10 

minutes). 

5.1.2.3 Autonomous Control 

After training the ANNs on the relevant training datasets, the aircraft was reset to the runway 

in the flight simulator to test the autonomous final approach procedures. After entering the final 

approach flight phase, and when the desired airspeed is reached, the Final Approach Altitude 

ANN engages flaps, and when the desired altitude is reached, the Landing Gear ANN engages 

the landing gear. Through the Interface, the ANNs receives: 1. relevant flight data from the 

flight simulator as inputs, and 2. coefficients of the relevant models from the database to predict 

and output control commands that are sent to the flight simulator. This process allows the IAS 

to autonomously perform the learned final approach procedures. This was repeated 50 times to 

assess performance consistency. 

5.1.3 Landing  

The purpose of this experiment is to assess the behaviour of the IAS compared with the 

behaviour of the human pilot when performing landing procedures. 

5.1.3.1 Data Collection  

In this experiment, the human pilot used the IAS Interface to perform the landing procedures 

immediately after touchdown, by engaging reverse thrust, brakes, and speed brakes. While the 

pilot performed the demonstration, the Interface collected airspeed as input, and reverse thrust, 

brakes, and speed brakes control data as outputs. The Interface stored the collected data in the 

database as the training dataset for the Landing ANN. 
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5.1.3.2 Training 

For this experiment, the Landing ANN was trained until low Mean Squared Error (MSE) 

values were achieved (below 0.01). Since single-hidden-layer ANNs are used for training, and 

since the training datasets are small given that a single demonstration was provided, training 

requires a short time to be completed (under 10 minutes). 

5.1.3.3 Autonomous Control 

After training the ANN on the relevant training dataset, the aircraft was reset to the runway 

in the flight simulator to test the ability of performing the landing procedures autonomously, 

and the IAS was engaged. After the IAS took the aircraft airborne, navigated to the destination 

airport, and touched down, the system’s ability to perform the landing procedures of engaging 

reverse thrust, brakes, and speed brakes was observed. Through the Interface, the ANN 

receives: 1. relevant flight data from the flight simulator as inputs, and 2. coefficients of the 

relevant models from the database to predict and output control commands that are sent to the 

flight simulator. This process allows the IAS to autonomously perform learned landing 

procedures. This was repeated 50 times to assess performance consistency. 

5.2 Results of Experiments on Prototype 3 

The following section describes the results of the conducted tests. 

5.2.1 Experiment 1 (Banking turn and path line interception) 

One model was generated for the Aileron ANN with an MSE value of 0.0954. Fig.  5.9 

illustrate a comparison between the human pilot and the IAS when performing a banked turn 

to change the aircraft’s bearing by 145 degrees over a period of 40 seconds. The Mean Absolute 

Deviation (MAD) results of the roll degrees over time (5.02 for the IAS (average) and 4.34 for 

the human pilot) show a close behaviour between the system and its teacher. Fig. 5.10 

illustrates the smaller roll degrees when intercepting a path line after altering how the 

difference input neuron is stimulated by reducing the input’s value to just 30% of its actual 

value. Fig. 5.11 illustrates how altering the input value by reducing it to 10% and 50% causes 

the Ailerons ANN to generate different control commands to the ailerons which resulted in 

different roll degree values of  around 3 degrees (10% of the full roll degree of 30), and around 

15 degrees (50% of the full roll degree of 30) without having to retrain the ANN to produce 

those different roll degrees. Fig. 5.12 shows that the reduction of 30% was selected after 

comparing different reduction rates where applying 30% of the actual value resulted in the 

desired interception of the path line without overshooting. Since the experiments took place 
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while intercepting the same path line of the flight course under the same weather conditions 

(nil wind speed), and since many of the experiments took place in the same segment of the path 

line, many lines overlap as Fig. 5.10 illustrates. 

Fig. 5.13 illustrates how applying the reduced degrees of roll when constantly banking 

(correcting bearing) to intercept a path line, ensure a steady and gradual interception. Fig. 5.14 

illustrates the flight course that the IAS generated and followed autonomously. 

 

 

 

Fig.  5.9. (Banking turn and path line interception experiment). A comparison between the human pilot (orange 
line) and the 50 attempts by the IAS (overlapping green lines) to perform a banked turn to change the aircraft’s 

bearing by 145 degrees over a period of 40 seconds. The good fit of the generated model allowed the IAS to 
maintain a steadier change of roll degrees compared with the human pilot. 
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Fig.  5.10. (Banking turn and path line interception experiment). Smaller degrees of roll when banking 
continuously to intercept a path line. For the 50 attempts (each colour line corresponds to one flight experiment, 

however, most lines are overlapped), the roll is below 9 degrees (suitable for small turns while intercepting) 
compared with a maximum of 31 (suitable for major bearing change) as Fig. 5.9 illustrates. 

 

 

 

 

Fig.  5.11. (Banking turn and path line interception experiment). Changing the stimuli or the input of the 
Ailerons ANN causes the ANN to generate different control command outputs to the aircraft’s ailerons, which 
results in different roll degrees. The blue line represents keeping the input as it is which produces a roll degree 

of about 30 as per the training of the Ailerons ANN. The orange line represents a reduction of 50% which 
produces a roll degree of about 15. The grey line represents a reduction of 10% which produces a roll degree of 

about 3. 
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Fig.  5.12. (Banking turn and path line interception experiment). Changing the stimuli or the input of the 
Ailerons ANN causes the aircraft to behave differently when intercepting the path line (0 degrees). The blue line 

illustrates keeping the input without altering which causes the aircraft to overshoot since the Ailerons ANN is 
generating roll degrees of around 30. The orange line illustrates reducing the input of the Ailerons ANN to 50% 

of its value which causes the aircraft to overshoot as well. The grey line illustrates reducing the input of the 
Ailerons ANN to 40% of its value which still causes the aircraft to overshoot. The yellow line illustrates 

reducing the input of the Ailerons ANN to 30% of its value which allows the aircraft to intercept the path line 
smoothly.           

 

 

Fig.  5.13. (Banking turn and path line interception experiment). 50 attempts (all lines are overlapped) to 
gradually intercept and follow a path line (orange arrow). The interception attempt is represented by the gradual 

decrease of the angle between the aircraft and the path line. 
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Fig.  5.14. (Banking turn and path line interception experiment). The 50 flight courses (overlapped lines) flown 
autonomously by the IAS, starting with takeoff from London Heathrow airport, and landing at Gatwick airport. 
Since the distance between the two airports is short for an airliner, the generated flight course accounts for the 

distance required to perform the final approach phase, and therefore, follows an initial path away from Gatwick. 

 

 

5.2.2 Experiment 2 (Final Approach) 

Two models were generated for this experiment, the Final Approach Altitude ANN model 

with an MSE value of 0.0034, and the Landing Gear ANN model with an MSE value of 0.0046. 

Fig.  5.14 illustrate a comparison between the human pilot and the IAS when extending the 

flaps after the appropriate airspeed is reached. Fig.  5.15 illustrates a comparison between the 

human pilot and the IAS when engaging the landing gear after the appropriate altitude is 

achieved. The lines representing the human behaviour, and the 50 attempts by the IAS in Fig.  

5.14 and 5.15 overlap. Fig. 5.16 illustrates the glideslope followed during the final approach 

phase in 50 experiments resulting in lines that overlap. 
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Fig.  5.15. (Final approach experiment). A comparison between the human pilot and 50 attempts by the IAS 
(overlapped lines) when extending flaps immediately after an airspeed of 260 (ktas) is reached. The results show 

the similarity between the behaviour of the human pilot and the IAS during the 50 attempts. 

 

 

 

 

Fig.  5.16. (Final approach experiment). A comparison between the human pilot and 50 attempts by the IAS 
(overlapped lines) when engaging the landing gear immediately after an altitude of 1500 (ftagl) is reached. The 

results show the similarity between the behaviour of the human pilot and the IAS during the 50 attempts. 
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Fig.  5.17. (Final approach experiment). 50 attempts (overlapped lines) by the IAS to follow the final approach 
glideslope. The glideslope is adjusted by the IAS after descending to an altitude below 1000 (ftagl) to 

compensate for the additional drag generated by the landing gear. 

 

 

5.2.3 Experiment 3 (Landing) 

One model was generated for the Landing ANN with an MSE value of 0.003. Fig. 5.17 

illustrate a comparison between the human pilot and the IAS when engaging the reverse thrust, 

brakes, and speed brakes immediately after touchdown. The lines representing the human 

behaviour, and the 50 attempts by the IAS in Fig. 5.18 overlap. 

 

5.3 Analysis 

As can be seen in Fig. 5.9 (banking turn and path line interception experiment), the IAS was 

not only able to imitate the behaviour of its human teacher when performing a banked turn by 

maintaining a certain degree of roll, it was also able to perform better by being able to maintain 

a steadier change of roll degrees, which is due to the good fit of the generated model. The new 

method of changing the stimuli of the ANN proved its ability to alter the ANN’s behaviour 

without having to retrain it or generate a different learning model. 
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Fig.  5.18. (Landing experiment). A comparison between the human pilot and 50 attempts by the IAS 
(overlapped lines) when engaging reverse thrust, brakes, and speed brakes immediately after touchdown. The 

results show the similarity between the behaviour of the human pilot and the IAS during the 50 attempts. 

 

 

Fig. 5.10 (banking turn and path line interception experiment) shows how changing the 

stimuli represented by the difference value which passes through the input neuron of the 

Ailerons ANN through reducing it by a given percentage caused the ANN to behave differently. 

The latter can be seen as the much smaller degrees of roll (around 8 degrees) maintained by 

the Ailerons ANN although its generated learning model was trained to maintain larger degrees 

of roll (around 30 degrees). This can be seen in Fig. 5.11 as well, which illustrates the 

effectiveness of the proposed stimuli-altering method that eliminates the need to retrain the 

Aileron ANN to produce different roll degrees. Choosing the appropriate reduction rate of the 

input of the Ailerons ANN (30% of the original input value) insured the smooth interception 

of the path line without overshooting as Fig. 5.12 illustrates. The smaller degrees of roll 

maintained when banking or correcting the aircraft’s bearing to intercept a path line, allowed 

the aircraft to gradually intercept and follow the path line while avoiding overshooting as Fig. 

5.13 (banking turn and path line interception experiment) shows, and therefore, the IAS was 

able to follow the generated flight course as Fig. 5.14 (banking turn and path line interception 

experiment) shows, throughout all the experiments.  

The IAS was capable of imitating the human pilot’s actions and behaviour when performing 

the procedures of the final approach phase, by extending the flaps only when a certain airspeed 
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is reached, and engaging the landing gear only when a certain altitude is reached as Fig. 5.15 

and 5.16 (final approach experiment) show. The method covered in prototype 2, which is 

followed by the ANN that is responsible for maintaining a given altitude, proved to be adequate 

for handling a rapidly changing desired altitude which is continuously updated by the Flight 

Manager during the final approach phase. The latter generated a glideslope that led to a 

touchdown on the landing runway, and was maintained by the IAS. However, as soon as the 

extra drag caused by the extracted landing gear generated a larger sink rate which could cause 

a premature touchdown (touching down before reaching the landing runway), the IAS was able 

to autonomously alter the glideslope by following a less steep degree towards the runway as 

Fig. 5.17 (final approach experiment) shows. 

As can be seen in Fig. 5.18 (landing experiment), the IAS was capable of identically 

imitating the human pilot’s actions and behaviour when performing the procedures of the 

landing phase, by engaging the reverse thrust, brakes, and speed brakes immediately after 

touchdown to bring the aircraft to a rapid full stop. 

However, at this point, the IAS is not capable of landing under windy conditions. The 

presence of wind (especially crosswind) during the final approach phase causes the aircraft to 

drift from the centreline of the landing runway as Fig. 5.19 shows. With the lack of sufficient 

speed, and thrust from the engines during the final approach phase since the aim here is to 

descend, the Aileron ANN is not capable of following a straight path line efficiently, which is 

a problem that does not affect the aircraft during other phases of the flight given the availability 

of sufficient speed and thrust. Fig. 5.19 shows that even light wind speeds (around 10 knots) 

causes the aircraft to deviate from the path line although the deviation happens at a point closer 

to the runway compared to stronger winds. Fig. 5.19 also shows that not just crosswind (at 90 

or 270 degrees) causes the aircraft to deviate, but also, 0 (or 360) degrees and 180 degrees 

winds causes the aircraft to deviate. Fig. 5.20 illustrates how such wind conditions deviate the 

aircraft from its flight course by comparing the GPS readings of the track that the aircraft took 

in Fig. 5.20 and Fig. 5.14 just before landing. This means that executing a safe landing at the 

destination airport in windy conditions is not currently possible, and therefore, a solution must 

be applied to aid the Ailerons ANN to keep the aircraft in a straight line during final approach 

even if the weather conditions are severe including the presence of strong crosswind. In 

addition, Fig. 5.21 illustrates that the IAS was not able to handle fluctuating wind conditions 

that change in speed and direction (gust and shear) which was expected since the IAS could 

not handle steady winds that do not change in speed or direction as Fig. 5.19 shows. However, 
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Fig. 5.21 shows that the presence of turbulence alone does not have a similar path deviation 

effect such as crosswind for example. 

 

 

Fig.  5.19. (Landing experiment). The angle between the aircraft and the centreline of the landing runway (0 
degrees) in the presence of different speeds and directions of wind. As soon as the speed of the aircraft reaches 
the speed of the approach flight phase (below 250 knots), the aircraft loses the required momentum to continue 
intercepting the runway’s path line in the presence of windy conditions which causes the aircraft to drift away 

from the runway’s centreline.   

 

 

Fig.  5.20. (Banking turn and path line interception experiment). 6 flight courses (overlapped lines before the 
end of the flight course) flown autonomously by the IAS, starting with takeoff from London Heathrow airport, 
and landing at Gatwick airport. As can be seen, the wind conditions (shown in Fig. 5.19) deviates the aircraft 

from its GPS course just before landing due to the low speed.   
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Fig.  5.21. (Landing experiment). The angle between the aircraft and the centreline of the landing runway (0 
degrees) in the presence of turbulence alone (blue line), and wind gust and shear (orange line). As soon as the 

speed of the aircraft reaches the speed of the approach flight phase (below 250 knots), the aircraft loses the 
required momentum to continue intercepting the runway’s path line in the presence of windy conditions which 

causes the aircraft to drift away from the runway’s centreline.   

 

5.4 Summary 

To summarize, the objective of teaching Artificial Neural Networks how to handle complex 

piloting tasks including the ability to takeoff from airport A, navigate to airport B, and land 

safely, was achieved. This was achieved by developing a GPS based navigation algorithm, and 

teaching the Ailerons ANN how to bank to change heading, and to maintain a flight path. 

Additional ANNs were designed and trained to handle the flight phases associated with 

landing, and the Flight Manager program was extended to handle these new phases. This 

provides additional evidence to support the hypothesis of this work aimed towards proving the 

possibility to teach a flight control system piloting skills. 
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6. PROTOTYPE 4 (SEVERE WEATHER LANDING & GO-AROUND) 

After achieving the first, second, and third objectives of using Artificial Neural Networks 

to learn basic flying, handle complex tasks such as emergency situations, and learn how to fly 

from one airport to another by autonomously navigating and landing safely, the purpose of the 

fourth prototype was to achieve the objective of handling severe weather landing, and go-

around (aborting landing, then reattempting). The severe weather conditions during final 

approach and landing include the presence of strong crosswind, wind shear, gust, and 

turbulence. In addition, higher-level safety would indicate the need to equip the Intelligent 

Autopilot System with the ability to safely abort landing by performing a go-around manoeuvre 

if carrying on with landing would jeopardise the safety of the flight. Performing these tasks 

represent new abilities that the first, second, and third prototypes of the IAS did not have.   

The work in this chapter was published in the 2017 International Workshop on Research, 

Education and Development on Unmanned Aerial Systems (RED-UAS), Linköping, Sweden. 

(Appendix B).  

To achieve the fourth objective mentioned above, the IAS should be able to handle severe 

weather conditions during final approach and landing, especially strong crosswind which 

pushes the aircraft away from the centre line of the landing runway given the relatively low 

speed of the aircraft during these flight phases. In addition, the IAS should also be able to abort 

landing in case of undesired conditions, and attempt a go-around manoeuvre. While the 

previously gained skills from prototypes 1, 2, and 3 along with the components developed to 

achieve those skills remain without change, new skills should be added, and their relevant 

components must be developed to equip the IAS with the capability to handle the quite 

challenging problem of landing safely in the presence of severe weather conditions.  

In the previous chapter (Prototype 3), the ability of landing in a given airport was added to 

the IAS, however, as can be seen in the analysis of the previous chapter (especially Figs 5.19, 

5.20, and 5.21), the IAS was not able to maintain the path line representing the centreline of 

the landing runway in the presence of windy conditions during final approach. This is due to 

the inability of the Ailerons ANN to account for such external forces pushing the aircraft away 

from the centreline of the landing runway. The Ailerons ANN were designed and trained to 

follow a given bearing degree between two GPS points as the previous chapter explains, 

however, if the desired bearing degree is achieved regardless of how far the aircraft is from the 
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landing runway, the Ailerons ANN would continue to maintain that bearing degree even if the 

aircraft is not aligned with the landing runway. Therefore, the Ailerons ANN should be aided 

by a new method which gives them the ability to account for the deviation from the centreline 

of the landing runway by countering the effect of the external forces represented by wind. The 

new method should be able to dynamically update and follow different bearing degrees during 

final approach to counter the drift from the centreline of the landing runway. Since the distance 

between the aircraft and the path line can be calculated as an angle as the previous chapter 

explains, the new method should utilize this angle by calculating its rate of change which 

represents how fast the aircraft is drifting towards or away from the centreline. The latter can 

be used by the IAS to determine the appropriate bearing degree to follow and intercept the 

centreline of the landing runway.                     

To achieve this, the Bearing Adjustment ANN was introduced to predict the necessary 

adjustment of the aircraft’s bearing based on the drift rate towards or away from the path line 

to be intercepted. Preliminary empirical testing was conducted to select a suitable drift rate 

which insures a steady drift towards the centreline (angle of 0 degrees) when the angle is 

already small (the aircraft is close to the centreline of the landing runway). The drift rate should 

not be fast enough to cause large overshooting which could jeopardise the attempt to align the 

aircraft with the runway’s centreline during the risky final approach and landing flight phases. 

Since the IAS is capable of intercepting the centreline steadily in calm weather conditions 

based on the method introduced and explained in the previous chapter, which updates the 

bearing degree to be followed based on the angle (how far the aircraft is from the path line or 

the centreline of the landing runway) until the desired bearing is achieved. Therefore, the drift 

rate of the angle when intercepting the runway’s centreline in calm weather, and captured 

continuously to determine its value which was found to be around 0.0025 degrees every 

decisecond when the aircraft is close to the centreline (the angle between the aircraft and the 

centreline is less than 0.1). However, the method explained in the previous chapter generates 

the same bearing degree given the angle degree between the aircraft and the path line every 

time regardless of the wind conditions. For instance, if the angle value is x, then, the generated 

bearing is always y, however, following bearing y might not be enough to counter the effect of 

crosswind and intercept the centreline, therefore, the new method should take into 

consideration the rate of change of the angle not just its value. The latter method allows for 

generating bearing degrees to be followed by the aircraft that suites the drift caused by the wind 

conditions. The drift rate or the rate of change (RoC) is calculated using (6.1) [148] where 
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 �  −   � is the change in time from timepoint 1 to timepoint 2,  and � � −  � � is the change 

in angle degree from angle 1 to angle 2.  

 

                                             RoC  =   
< =  < >

� =    � > 
                (6.1)  

 

Then, the result is added to the difference between the bearing of the path line to be 

intercepted and the aircraft’s current bearing to generate the required bearing to be followed. 

The difference between the latter and the current bearing of the aircraft is fed to the modified 

Aileron ANN from prototype 3, which now takes the difference as input, and predicts through 

its output neuron, the appropriate control command to the ailerons, to bank, and intercept the 

path line. Fig. 6.1 illustrates the Bearing Adjustment ANN, the Ailerons ANN, and the method 

used to generate the necessary bearing degree to intercept the centreline of the landing runway. 

 The go-around manoeuvre is performed to abort landing by going to takeoff thrust levels, 

pulling up to climb, and retracting the landing gear [1]. This is performed when the pilot decides 

that proceeding with landing might be unsafe, and therefore, it is favourable to climb, go around 

through a given flight course which brings the aircraft back to the point that precedes the final 

approach phase, and reattempt landing [1]. 

Landing safety check techniques are used to ensure that the aircraft is within safe landing 

conditions, otherwise, go-around is initiated. These techniques, such as the Runway Overrun 

Prevention System (ROPS)4 from Airbus, analyse multiple parameters continuously including 

the available landing runway data and condition to ensure safe landing.  

During final approach and just before touchdown, and at a specific altitude that ensures the 

possibility for the aircraft to climb safely before touchdown, the Flight Manager of the IAS 

initiates the continuous landing safety check. Although executing a go-around can take place 

at different altitudes before landing or just after touchdown as well based on the decision of the 

captain [1], for this work, the selected altitude at which this process starts is equal to or greater  

 

 
4 Airbus ROPS. http://www.aircraft.airbus.com/support-services/services/flight-operations/fuel-efficiency-and-runway-
overrun-protection-systems/ [accessed 2017] 
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Fig.  6.1. The Bearing Adjustment ANN which takes the angle rate of change as input, and outputs the bearing 
adjustment value, and the Ailerons ANN which takes the output of the Bearing Adjustment ANN plus the 

bearing difference between the aircraft’s current bearing and the desired bearing along with the roll degree, and 
outputs control commands to the ailerons. 

Control commands to the ailerons 

Roll 

RoC = Drift rate (rate of change of the angle between the aircraft and the 
path centreline) (6.1) 

+ 
Difference between the aircraft’s current 

bearing and the desired bearing  

Bearing adjustment 

� � = θ � 

 � =  @A�BC@� � 

Waypoint 2 

Waypoint 1 

Bearing 
Adjustment ANN 

Ailerons ANN 

� � = θ � 

 � =  @A�BC@� � 
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than 60 (ftagl) based on preliminary empirical testing that was conducted to detect the 

minimum altitude from which the aircraft can takeoff and climb without touching the ground.  

The reason for this is to test the agility of the IAS when shifting from the final moments of the 

final approach flight phase where drag is high because of the low speed, fully extended flaps, 

and the extracted gear, to takeoff and climb which requires overcoming the existing drag. First, 

the Flight Manager checks if the angle between the aircraft and the centreline of the landing 

runway is less than a specific degree based on the runway’s width. Then, it checks if the 

beginning of the landing runway has been reached. Finally, it checks if the remaining distance 

to the end of the runway is safe for landing. The parameters used during this checking process 

can be modified based on the available information about the landing runway such as its width 

and length. If the Flight Manager detects an unsafe landing, it generates a go-around flight 

course based on the available GPS coordinates as Fig.  6.2 illustrates, changes the flight status 

from final approach to takeoff, and activates the takeoff ANN. Fig. 6.3 illustrates the process 

which the Flight Manager follows to handle the go-around process. Fig. 6.3 shows the threshold 

values that were used for this work which were identified by moving the aircraft (taxi) manually 

on the chosen landing runway while measuring the angle to detect the maximum angle value 

that still falls within the runway and do not cross its side edge, in addition to the runway’s 

length measurements. The beginning and end of the landing runway were identified by 

subtracting its length from the distance to the final GPS waypoint which falls at the end of the 

landing runway.      

 

 

 

Fig.  6.2. The generated go-around flight course represented by the blue lines. The aircraft navigates to waypoint 
1, then to waypoint 2, and finally, back to the landing runway. 
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Fig.  6.3. A Flowchart illustrating the process which the Flight Manager program follows to check the landing 
conditions, and initiate a go-around if necessary. This illustrates the new landing components which are added 
to the other normal and emergency flight components of the Flight Manager program illustrated in Fig.  5.8. 

 

6.1 Experiments on Prototype 4 

This section discusses the experiments conducted on the Bearing Adjustment ANN which 

aids the Aileron ANN to intercept a path line under severe weather conditions. This section 

also discusses the experiments conducted on performing go-around. 

The experiments were conducted under severe weather conditions with the presence of 

strong crosswind component (sometimes beyond the maximum demonstrated crosswind 

landing for the Boeing 777 [128]), wind shear, gust, and turbulence as table 6.2 shows.  
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To assess the effectiveness of the proposed approach, the Intelligent Autopilot System was 

tested in two experiments:  

1. Path line interception during final approach  

2. Go-around 

The simulated aircraft used for the experiments is a Boeing 777 as it was intended to 

experiment using a complex and large model with more than one engine rather than a light 

single-engine model. The experiments are as follows: 

6.1.1 Path Line Interception During Final Approach 

The purpose of this experiment is to assess the behaviour of the IAS when intercepting a 

path line that represents the centreline of the landing runway during final approach under severe 

weather conditions.  

6.1.1.1 Data Collection 

No demonstration by the human teacher was provided for the Bearing Adjustment ANN. 

Instead, a synthetic dataset was generated that comprises pilot experience in a different form 

which is a table of values gained via testing as opposed to raw input values gained via flying 

in the simulator by a human demonstrator. The reason for this is the impracticality of gathering 

demonstration data for this specific task as the human pilot was not able to provide consistent 

enough values given the lack of piloting experience. In addition, this was applied with the 

intention to test the ability of the ANNs of the IAS to learn from different types of training 

datasets that do not necessarily comprise demonstrations by human teachers, but rather, 

synthetically generated patterns representing the desired behaviour that the IAS should learn. 

Although the mapping of the inputs and outputs shown in table 6.1 which are used to train the 

Bearing Adjustment ANN could be achieved using a different method such as conditional 

statements (If statements for instance), using an ANN is a faster option compared to manually 

coding the mapping. Furthermore, using an ANN has the advantage of utilizing generalization 

which is needed to handle inputs that were not included in the training dataset, which other 

approaches such as conditional statements cannot handle. This approach can also be applied if 

it is required to rapidly teach the IAS a behaviour without having to collect human pilot 

demonstrations, by providing the necessary data that represents the desired pilot performance 

without having to extract and process the data provided from a human demonstration in the 

simulator.    
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TABLE 6.1 
THE SYNTHETIC DATASET GENERATED FOR THE BEARING ADJUSTMENT ANN. THE ANN IS 

TRAINED TO MAINTAIN A DRIFT RATE OF 0.0025. 
Drift Rate Bearing Adjustment 

0.005 -0.5 
0.0045 -0.4 
0.004 -0.3 

0.0035 -0.2 
0.003 -0.1 

0.0025 0 

0.002 0.1 
0.0015 0.2 
0.001 0.3 

0.0005 0.4 
0 0.5 

-0.0005 0.6 
-0.001 0.7 

-0.0015 0.8 
-0.002 0.9 

-0.0025 1 
 

data, which could take a relatively longer time. Based on preliminary empirical testing, a small 

training dataset was generated for the Bearing Adjustment ANN as Table 6.1 shows. 

6.1.1.2 Training 

For this experiment, the Bearing Adjustment ANN was trained until a low Mean Squared 

Error (MSE) value was achieved (below 0.01). Since single-hidden-layer ANNs are used for 

training, and since the training datasets are small given that a single demonstration was 

provided, training requires a short time to be completed (under 10 minutes). 

6.1.1.3 Autonomous Control 

After training the ANN on the relevant training dataset, the aircraft was reset to the runway 

in the flight simulator, and the IAS was engaged to test the ability of intercepting a final 

approach and landing path line under severe weather conditions autonomously. After the IAS 

took the aircraft airborne, and navigated to the destination airport, the output of the Bearing 

Adjustment ANN was used to assist the Aileron ANN to intercept the final approach path line. 

This was repeated 50 times under different and random weather conditions as Table 6.2 shows, 

to assess consistency. In addition to strong wind, it was intended to test the IAS in the presence 

of other weather conditions that include medium turbulence which is the intensity that does not  
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TABLE 6.2 
THE DIFFERENT WEATHER CONDITIONS USED FOR THE FINAL APPROACH PATH LINE 

INTERCEPTION EXPERIMENT. 

Attempts 

Count 

Wind Speed 

(knots) 

Wind Gust 

(knots) 

Wind Direction 

(degrees) 

Wind Shear 

(degrees) 

10 20 12 0 20 
10 23 14 180 20 
10 27 15 90 22 
10 27 15 270 22 
10 50 0 90 0 

 

cause the aircraft to be uncontrollable or even damage the aircraft’s structure5. Based on 

empirical testing in the simulator, a turbulence intensity value of around 0.015 provides the 

desired medium level intensity. In addition, it was found that a rain precipitation value of 

around 0.3 mm guarantees a wet runway. These turbulence and precipitation values were used 

uniformly throughout the experiments in this chapter. 

6.1.2 Go-around 

The purpose of this experiment is to assess the behaviour of the IAS when performing go-

around (aborting landing, and flying back to the final approach waypoint) autonomously. 

6.1.2.1 Data Collection 

No demonstration by the human teacher was provided for this experiment since there was 

no new skills to be learned. The main purpose of this experiment is to test the ability of the 

Flight Manager to check the required threshold variables as Fig. 6.3 and take the appropriate 

decision accordingly.  

6.1.2.2 Training 

For this experiment, the same approach used in prototype 3 to navigate autonomously from 

a given point A to a given point B is applied. Therefore, no additional training was required. 

6.1.2.3 Autonomous Control 

The aircraft was reset to the runway in the flight simulator to test the autonomous go-around 

task. Just before touchdown, deviation from the path line is induced manually by stopping the 

IAS, and manually engaging the ailerons by the human pilot to deviate from the path line. Then, 

the IAS is started immediately. This approach was applied since the IAS excelled at landing 

 
5 Turbulence  

https://www.weather.gov/source/zhu/ZHU_Training_Page/turbulence_stuff/turbulence/turbulence.htm [accessed 2019] 
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within the safe zone of the landing runway regardless of how severe the weather conditions as 

long as these conditions are not exaggerated to a no-fly condition. To assess consistency, this 

was repeated 10 times under different and random weather conditions with minimum wind 

speed of 20 knots up to 35 knots, and random directions between 0 and 360 degrees including 

shear of 20 degrees. 

6.2 Results of Experiments on Prototype 4 

The following section describes the results of the conducted tests. 

6.2.1 Experiment 1 (Path line interception during final approach) 

One model was generated for the Bearing Adjustment ANN with an MSE value of 0.0089. 

Utilizing the output value of the Bearing Adjustment ANN to enhance the path line interception 

performance, resulted in the system flying the aircraft using a technique known as crabbing, 

where although the aircraft flies in a straight line, the nose of the aircraft is pointed towards a 

bearing different from the bearing of the landing runway’s centreline due to wind conditions 

as Fig.  6.4 illustrates. Unlike other systems where this technique must be explicitly hard-coded, 

here, the IAS naturally discovered the technique itself. 

Figs.  6.5a, 6.5b, and 6.5c  illustrate the different bearings the IAS followed under random 

severe weather conditions as table 6.2 shows, compared with the bearing of the landing runway 

(326 degrees), where Fig. 6.5a show bearings followed when the aircraft was pushed to the left 

side of the landing runway’s centreline, which happens in the presence of east crosswind for 

example, and vice versa (Fig. 6.5b). Fig. 6.5c show the bearings the IAS followed under a 

sustained weather condition with a constant crosswind of 50 knots at 90 degrees. Fig.  6.6 

illustrates the average rate of change of the angle when drifting towards the path line. Fig.  6.7 

illustrates the angle representing the difference between the aircraft’s position, and the 

centreline of the landing runway based on finding the width of the runway as explained above 

and shown in Fig. 6.3 (angle < 0.045 and > -0.045 ). Figs. 6.8 and 6.9 illustrate the crabbing 

manoeuvre performed by the IAS. 
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Fig.  6.4. An illustration of crabbing, where although the aircraft flies in a straight line, the nose of the aircraft is 

pointed towards a bearing different from the bearing of the landing runway’s centreline. 
 

 

 

 

 

 

 

 

 

Fig.  6.5a. 20 attempts showing Aircraft bearings (crabbing) during final approach under severe weather 
conditions at table 7.2 shows, compared with the bearing of the landing runway (326 degrees). The aircraft was 

pushed to the left side of the landing runway’s centreline. 

 

 

 

 

 

 

 

 

 

 

 

 

Fig.  6.5b. 20 attempts showing Aircraft bearings (crabbing) during final approach under severe weather 
conditions at table 7.2 shows, compared with the bearing of the landing runway (326 degrees). The aircraft was 

pushed to the right side of the landing runway’s centreline. 
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Fig.  6.5c. 10 attempts showing Aircraft bearings (crabbing) during final approach under severe weather 
conditions at table 7.2 shows, compared with the bearing of the landing runway (326 degrees). The aircraft was 

pushed to the left side of the landing runway’s centreline. 

 

 

 

 

Fig.  6.6. The average rate of change of the angle when drifting towards the path line in the presence of random 
and severe weather conditions at table 6.2 shows, compared with a desired rate of change of 0.0025 degrees 

every decisecond. 
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Fig.  6.7. 50 lines showing angle values between the aircraft’s position, and the centreline of the landing runway 
(0 degrees) of all the attempts illustrated in Figs.  6.5a, 6.5b, and 6.5c. Based on the width of the landing runway 

used in the experiments, a safe touchdown angle is between 0.045 and -0.045, which is the area between the 
dotted lines (landing runway’s safe touchdown zone). 

 

 

 

 

Fig.  6.8. The crabbing manoeuvre performed by the IAS during final approach, and before touchdown. 
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Fig.  6.9. The crabbing manoeuvre performed by the IAS on touchdown. 

 

6.2.2 Experiment 2 (Go-around) 

No new models were generated for this experiment. Fig.  6.10 illustrates the flight paths that 

the IAS followed autonomously back to the landing runway. Since no strict go-around path 

was applied, the IAS followed two different paths based on the aircraft’s location with respect 

to the landing runway’s centreline, where a position on the right of the runway due to wind 

blowing from the left would cause the IAS to bank right towards the next waypoint, and vice 

versa. 

 

Fig.  6.10. The 10 go-around flight paths followed autonomously by the IAS back to the landing runway. The 
aircraft navigates to waypoint 1, then to waypoint 2, and finally, back to the landing runway. the IAS followed 

two different paths based on the aircraft’s location with respect to the landing runway’s centreline. Birmingham 
airport (BHX) was used. 
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6.3 Analysis 

As can be seen in Figs.  6.5a, 6.5b, and 6.5c (Path line interception during final approach 

experiment), the IAS was able to produce a natural crabbing behaviour in a direction that is 

perpendicular to the constantly changing speed and direction of wind without being explicitly 

trained to do so. In addition, the IAS was able to handle persistent strong crosswind of 50 knots 

at 90 degrees which is beyond the demonstrated crosswind landing of a Boeing 777 as Fig.  

6.5c shows. Keeping the angle rate of change close to 0.0025 degrees despite the random severe 

weather conditions proved the effectiveness of the Bearing Adjustment ANN as Fig.  6.6 (Path 

line interception during final approach experiment) illustrates. In all the attempts, the IAS was 

able to touchdown within the safe landing zone with respect to the centreline of the runway as 

Fig.  6.7 (Path line interception during final approach experiment) illustrates. This compares 

well with prototype 3 of the IAS without the Bearing Adjustment ANN, which was unable to 

land under the same conditions as Figs. 5.19, 5.20, and 5.21 (chapter 5) illustrate. Under most 

weather conditions the IAS was able to land successfully within the safe zone of the landing 

runway to the point where go-around manoeuvres were not needed, therefore, manual 

intervention was required to induce a go-around manoeuvre by stopping the IAS just before 

touchdown, manually banking the aircraft away from the centreline, then restarting the IAS 

immediately as Fig. 6.11 shows. The system was able to detect unsafe landings through the 

Flight Manager, and followed go-around paths back to the landing runway under random 

severe weather conditions successfully as Fig.  6.10 (go-around experiment) illustrates. 

However, at this point, the IAS is not yet capable of piloting an aircraft in manner 

comparable with experienced human pilots of airliners since so far, the system learned from 

the author of this work who is not a pilot. Therefore, the next prototype of the IAS should be 

able to accurately mimic the behaviour of such experienced human pilots during the different 

flight phases from takeoff to landing. The latter requires the IAS to acquire additional 

capabilities that are not yet available. For instance, the IAS is not yet capable of accurately 

maintaining different altitudes as Fig. 4.9 illustrates (chapter 4), it is not able to maintain 

different speeds and manage them properly throughout the different flight phases, and it is not 

able to maintain different climb/sink rates since these capabilities were not added yet but are 

covered in the next chapter. In addition, the IAS does not manipulate the flaps correctly since 

it was trained to extend them fully when a certain altitude is reached before landing as Fig. 5.15 

shows (chapter 5) while it should extend them gradually depending on the altitude [1]. Training 

the IAS to extend the flaps correctly is a task that was left for the next chapter which intends  
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Fig.  6.11. An example of manually deviating the aircraft by the user away from the landing runway before 
landing to induce a go-around manoeuvre. This was done by stopping the IAS before landing, banking (in this 

example to the right) to increase the angle between the aircraft and the centreline of the landing runway beyond 
the safe threshold, and restating the IAS immediately to detect the unsafe angle and initiate a go-around.    

 

While the current IAS can handle severe crosswinds, it is still useful to explore the limits of 

its ability. To achieve this, an additional series of test flights were conducted representing 

crosswind landings in extreme weather conditions with wind speeds up to 70 knots. Fig. 6.12 

shows the results of trying to maintain the centreline of the landing runway (0 degrees) in such 

extreme wind conditions. It is clear that the current prototype of the IAS is not capable of 

handling such extreme conditions. The next chapter will explore further enhancements to the 

IAS to enable it to handle even these conditions. 

6.4 Summary 

To summarize, the objective of teaching Artificial Neural Networks how to handle severe 

weather landing, was achieved by introducing the Bearing Adjustment ANN which takes the 

drift rate of the aircraft away from the path line, into account. The latter process enabled the 

Ailerons ANN to handle severe weather conditions such as strong crosswind during final 

approach and landing. In addition, extending the capability of the Flight Manager program to 

detect unsafe landings, enabled the IAS to perform go-around manoeuvre, by generating a go-

around flight course, and managing the ANNs to re-attempt landing. This provides additional 

evidence to support the hypothesis of this work aimed towards proving the possibility to teach 

a flight control system piloting skills. 
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Fig.  6.12. The angle between the aircraft and the centreline of the landing runway during 10 attempts to land in 
extreme weather conditions. The angle must be between 0.045 and -0.045 degrees especially during the last 

moments of the final approach to ensure landing within the safe touchdown zone of the landing runway as the 
two dashed red lines show on the right side. The extreme weather conditions include 90 degrees crosswind at a 

speed of 50 knots with gust up to 70 knots, wind shear direction of 70 degrees, and strong turbulence. 
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7. PROTOTYPE 5 (LEARNING FROM EXPERIENCED PILOTS) 

After the first, second, third, and fourth objectives of using Artificial Neural Networks to 

learn basic flying, handle emergency situations, learn complex flying including navigation and 

landing, and handle landings in severe weather conditions were achieved, the purpose of the 

fifth prototype was to achieve the objective of piloting an aircraft in a manner comparable with 

experienced human pilots of airliners. Although the previous prototypes presented cockpit 

autonomy capabilities, the Intelligent Autopilot System (IAS) did not fully behave like an 

experienced human pilot of an airliner especially when manipulating the different control 

surfaces to maintain desired parameters such as altitude and the final approach glideslope. This 

is because the IAS was trained using amateur pilot data in order to demonstrate the validity of 

the methods, while waiting for access to experienced pilots. In addition, the previous prototypes 

did not have the ability to maintain desired speeds, climb/sink rates, and correctly control the 

flaps settings. Furthermore, it was decided to investigate the possibility of handling not just 

severe weather during landing, but extreme weather conditions that are beyond the current 

limits and abilities of autopilots (Autoland feature) and human pilots as well. 

To achieve the fifth objective mentioned above, the IAS was enhanced to mimic the 

behaviour of experienced human pilots of airliners by redesigning the system’s Artificial 

Neural Networks and adding new ones to learn from new training data collected from a 

demonstration performed by an experienced human captain. The demonstration was used to 

identify the appropriate control surfaces and interfaces that are used by experienced human 

pilots to perform the different piloting tasks throughout the different flight phases. The tasks 

include the ability to control the different settings of the flaps during takeoff, approach, and 

final approach, maintain a certain pitch during takeoff, maintain manually selected climb rates 

during climb and cruise, maintain manually selected altitudes during cruise, maintain manually 

selected sink rates during descent, maintain the standard glideslope during approach and final 

approach, and maintain manually selected speeds during the different flight phases.  

In this chapter, the IAS (prototype 5) was trained with Oman Air through a collaboration 

project to achieve the desired autonomous behaviour that can be compared with the behaviour 

of experienced human pilots of airliners. The human teacher who provided the demonstrations 

is Captain Khalid Al Hashmi, Senior Manager Crew Training at Oman Air. The simulated 

aircraft used for the experiments is a certified Boeing B787 Dreamliner model which is the 

aircraft that Captain Al Hashmi usually flies in real-life. Fig. 7.1 illustrates the IAS components  
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Fig.  7.1. Block diagram illustrating the IAS components used during the pilot data collection step. 

 

used during the pilot data collection step. Since the design approach of the IAS which utilizes 

Supervised Learning and many small single-hidden-layer ANNs requires single 

demonstrations of the tasks to be learned, Captain Al Hashmi provided one demonstration of a 

short flight from one airport to another in X-Plane. Captain Al Hashmi took off from London 

Heathrow (EGLL), cruised at 10,000 ft, then landed in Birmingham (EGBB). Captain Al 

Hashmi followed the standard piloting procedures where he started the ground-run phase on 

the takeoff runway, rotated, and maintained a 15 degrees pitch angle during takeoff. Then, he 

engaged the aircraft’s autopilot to climb to the cruise altitude of 10,000 ft, to maintain a cruise 

speed of 240 knots, and to follow the preloaded flight path using GPS waypoints. Immediately 

after reaching the Top of Descent (TOD) point, Captain Al Hashmi initiated the approach flight 

phase by updating the speed parameter in the aircraft’s autopilot to 205 knots and starting the 

decent to follow the standard 3 degrees glide slope. Then, he updated the speed parameter to 

reach the landing speed of 150 knots before reaching the final approach flight phase. During 

the latter flight phases, he engaged the flaps at different altitudes to extend them to certain 

degrees accordingly. Finally, after the speed reached 150 knots, and at around 1,500 ft, he 

disengaged the autopilot, and took full control of the aircraft to continue maintaining the 

landing speed and the 3 degrees glideslope until touchdown. 

In the demonstration provided by the experienced captain, executing the different piloting 

tasks was done using different techniques which utilized different control interfaces and 
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surfaces compared to the techniques that the IAS learned so far. First, during takeoff, the 

captain used the same control surfaces which are the elevators, however, he used them to 

maintain a pitch of 15 degrees which the IAS was not trained to maintain. Therefore, ANN 2 

from prototype 1 which handled takeoff should be replaced by a new ANN (Elevators ANN) 

that can maintain a given pitch degree during takeoff by generating control commands to the 

elevators as output. The task of maintaining speed was achieved through using the throttle by 

the standard autopilot after it was engaged and set by the captain to maintain speed. The task 

of maintaining speed was not added to the capabilities of the IAS as it was intended to add it 

after receiving the required demonstration by the experienced captain. To achieve this, a new 

ANN (Throttle ANN) should be designed and trained to handle the task of maintaining speed 

by generating control commands to the throttle as output. To maintain different climb and sink 

rates, the standard autopilot used the elevators trim to achieve this task after manually choosing 

the desired sink or climb rate by the captain. The latter task was not added to the IAS as it was 

intended to add it after receiving the required demonstration by the experienced captain. To 

achieve this, a new ANN (Elevators Trim ANN) should be designed and trained to generate 

control commands to the elevators trim to maintain different climb or sink rates. The task of 

maintaining altitude was handled differently by the standard autopilot which used the elevators 

trim as well to perform this task. In comparison, the IAS used the throttle to maintain altitude 

which although is an acceptable technique for light aircraft, it is not the standard practice for 

large jets according to the experienced captain. Therefore, the Cruise Altitude ANN from 

prototype 2 should be replaced by a new ANN (the same ANN that can maintain climb or sink 

rates, which is the Elevators Trim ANN) that generates control commands to the elevators trim 

to maintain altitude. During final approach, the captain engaged the approach mode in the 

standard autopilot which maintained a glideslope of 3 degrees using the elevators trim. Before 

touchdown, he disengaged the standard autopilot, and continued to maintain the 3 degrees 

glideslope until touchdown using the same control surface. To achieve this task, a new ANN 

(Glideslope Elevators Trim ANN) should be developed and trained to handle this task by 

generating control commands to the elevators trim as output. During takeoff and final approach, 

the experienced captain used the flaps by manually extending the them to different degrees 

gradually that are suitable for takeoff and final approach as well. In comparison, the IAS was 

trained to use the flaps during final approach only by extending them fully before landing, 

therefore, a new ANN (Flaps ANN) should be designed and trained to control the flaps 

appropriately during the two different flight phases as per the given demonstration. 



134 
 

However, to avoid any undershooting or overshooting when attempting to reach a desired 

value such as speed, altitude, or climb rate, the experienced captain and the standard autopilot 

applied the necessary change using the relevant control interface using magnitudes that are 

suitable for the difference between the current value and the desired value. For example, when 

the difference between the current speed and the desired speed is big, the throttle was increased 

to full, then, lowered gradually as the aircraft approached the desired speed. The latter example 

shows that using the rate of change (introduced in the previous chapter to aid the Ailerons 

ANN) is necessary in all the scenarios that require shifting from a given current value to a 

desired value such as speed. Therefore, for each new ANN an additional ANN should be 

designed and trained to capture how the rate of change is managed for the different tasks to 

achieve the desired value. For instance, the input of the new Throttle ANN which controls the 

throttle to maintain speed should be the output of an ANN (Speed ROC -Rate of Change- ANN) 

that takes the difference between the current and desired speeds as input, and outputs the 

desired rate of changed that should be maintained until the desired speed is achieved. These 

rate of change ANNs should capture how the experienced captain and the standard autopilot 

manage the rates of change to achieve the desired value without undershooting or overshooting.                      

The data of interest that was collected and used to train the IAS are the inputs and outputs 

of the different ANNs illustrated in Fig. 7.2, which were used to identify the appropriate flight 

data (inputs), and control surfaces and interfaces (outputs) used by experienced human pilots. 

Fig. 7.2 illustrates how for each new ANN (except the Flaps ANN which does not require 

following certain rates of change), an additional ANN is developed and trained to handle the 

rate of change maintenance. Twenty-two feedforward Artificial Neural Networks now 

comprise the core of the IAS. Each ANN is designed and trained to handle specific control or 

task. The ANNs that are relevant to this prototype are: the Pitch Rate of Change ANN, the 

Elevators ANN, the Altitude Rate of Change ANN, the Elevators Trim ANN, the Speed Rate 

of Change ANN, the Throttle ANN, the Flaps ANN, the Roll ANN, the Ailerons ANN, the 

Heading ANN, the Rudder ANN, the Glideslope Rate of Change ANN, and the Glideslope 

Elevators Trim ANN. Table 7.1 describes the inputs and outputs of the newly developed ANNs.  

In addition to designing and training the new ANNs that capture the professional behaviour 

of the experienced captain through the provided demonstration, an additional challenge was 

tackled by enhancing the capability of an ANN from the previous chapter. Similar to the 

challenge faced by prototype 3 which could not handle windy conditions due to the method 

which relied on updating the bearing degree  gradually to intercept the centreline based on the  
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Fig.  7.2. Inputs, outputs, and the topologies of the ANNs relevant to this work. Each ANN is designed and 
trained to handle a specific task. 

 

value of the angle between the aircraft and the centreline alone without considering the effect 

of external forces (wind), the method used in prototype 4 (Bearing Adjustment ANN) could 

not handle extreme wind conditions although it was able to handle severe wind conditions. The 

same reason applies here as well since updating the bearing degree based on the angle rate of 

change alone was not enough to handle the extreme external forces. This was due to the fact 
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that the IAS was not trained to go beyond certain degrees of roll which could provide the 

necessary momentum to counter the external forces. Therefore, a new method should be 

developed to continuously increase or decrease the roll degree until the aircraft starts to 

overcome the external forces, and move towards the centreline. This means that focusing on 

the roll degree of the aircraft instead of the bearing degree based on the angle rate of change is 

required to handle such extreme conditions since this method guarantees that the aircraft will 

keep increasing its roll degree until it intercepts the centreline successfully regardless of how 

strong the wind is. Therefore, the Bearing Adjustment ANN (from prototype 4) which predicted 

the necessary adjustment of the aircraft’s bearing based on the drift rate (angle rate of change) 

was replaced with the Roll ANN which takes the rate of change of the angle (as calculated in 

prototype 6) as input, and predicts the desired roll degree to bank the aircraft towards the path-

line by continuously increasing or decreasing the roll degree. The Ailerons ANN (from 

prototype 3) which took the difference between the bearing of the path line to be intercepted 

and the aircraft’s current bearing was altered to take the difference between the current roll and 

the desired roll (predicted by the Roll ANN) as input, and predicts the appropriate command 

to be sent to the ailerons to bank as Fig. 7.3 illustrates.  

To apply the technique which relies on the rate of change uniformly across the different 

relevant ANNs, and as a proactive measure to handle the expected extreme wind on tarmac 

after landing, the Rudder ANN should be enhanced. The method of altering the bearing 

(heading) degree used in the previous chapter is introduced in this chapter to the rudder control 

problem to maintain the centreline of the landing runway after touchdown since this method is 

sufficient to keep the aircraft aligned with the centreline after touchdown given the low speed, 

the stability represented by the aircraft being on the ground, and the proven ability -experiments 

of the previous chapter- of this method to perform well in more difficult problem of keeping 

the aircraft aligned with the centreline during final approach (airborne) in severe weather 

conditions. To achieve this, a new ANN (Heading ANN) was designed and trained to take the 

rate of change of the angle between the aircraft and the centreline as input, and predicts the 

desired heading degree that the aircraft should follow. In addition, ANN 4 from prototype 1 

was modified to take the difference between the output of the new Heading ANN, which is the 

desired heading degree, and the desired heading or bearing as input, and outputs control 

commands to the rudder. 
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Fig.  7.3. The Roll ANN which takes the angle rate of change as input, and outputs the desired roll degree, and 
the Ailerons ANN which takes the output of the Roll ANN (desired roll) minus the current roll degree of the 

aircraft, and outputs control commands to the ailerons. 
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TABLE 7.1 
THE ARTIFICIAL NEURAL NETWORKS DEVELOPED FOR THIS WORK, THE FLIGHT PHASE IN WHICH THEY ARE USED, 

AND THEIR DESCRIPTION.  
 

Artificial Neural Network Flight Phase Description 

 

Pitch Rate of Change ANN (new) 

 

Takeoff 

Takes the difference between the 
aircraft’s pitch and the desired pitch as 
input, and predicts the appropriate rate 
of change of pitch degrees that is 
required to reach the desired pitch. 

 

Elevators ANN (enhanced) 

 

Takeoff 

Takes the difference between the 
current rate of change of pitch degrees 
and the desired rate of change 
(predicted by the Pitch Rate of Change 
ANN) as input, and predicts the 
appropriate command to be sent to the 
elevators. 

 

Altitude Rate of Change ANN 
(new) 

 

Cruise 

Takes the difference between the 
aircraft’s altitude and the desired 
altitude as input, and predicts the 
desired rate of change (climb/sink 
rate). 

 

Elevators Trim ANN (new) 

 

Cruise 

Takes the difference between the 
current rate of change and the desired 
rate of change (predicted by the 
Altitude Rate of Change ANN) as 
input, and predicts the appropriate 
command to be sent to the elevators’ 
trim. 

 

Speed Rate of Change ANN (new) 

 

All 

Takes the difference between the 
aircraft’s speed and the desired speed 
as input, and predicts the desired rate 
of change of speed. 

 

Throttle ANN (new) 

 

All 

Takes the difference between the 
current rate of change of speed and the 
desired rate of change (predicted by 
the Speed Rate of Change ANN) as 
input, and predicts the appropriate 
command to be sent to the throttle. 

 

Flaps ANN (new) 

 

Takeoff, Approach, and Final 
Approach 

Takes the aircraft’s altitude and the 
flight phase as inputs, and predicts the 
appropriate command to be sent to the 
flaps. 

 

Roll ANN (new) 

 

All 

Takes the rate of change of the angle 
between the aircraft and the centreline 
as input, and predicts the desired roll 
degree to bank the aircraft towards the 
path-line. 

  Takes the difference between the 
current roll and the desired roll 
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Ailerons ANN (enhanced) All (predicted by the Roll ANN) as input, 
and predicts the appropriate command 
to be sent to the ailerons to bank. 

 

Heading ANN (new) 

 

Landing 

Used on the runway to align the 
aircraft with the centreline of the 
runway. It takes the rate of change of 
the angle between the aircraft and the 
centreline as input, and predicts the 
desired heading degree that the 
aircraft should follow on tarmac to be 
aligned with the centreline of the 
runway. 

 

Rudder ANN (enhanced) 

 

Final Approach, and Landing 

Takes the difference between the 
current heading and the desired 
heading (predicted by the Heading 
ANN), and predicts the appropriate 
command to be sent to the rudder. 

 

Glideslope Rate of Change ANN 
(new) 

 

Approach, and Final Approach 

Takes the difference between the 
aircraft’s glideslope degree and the 
desired glideslope degree as input, and 
predicts the desired rate of change of 
the glideslope angle that is necessary 
to align the aircraft with the desired 
glideslope angle. 

 

Glideslope Elevators Trim ANN 
(new) 

 

Approach, and Final Approach 

Takes the difference between the 
current rate of change of the 
glideslope angle and the desired rate 
of change (predicted by the Glideslope 
Rate of Change ANN) as input, and 
predicts the appropriate command to 
be sent to the elevators’ trim. 

 

Fig. 7.4 illustrates how the Flight Manager (from Prototype 2) was enhanced to manage the 

flight phases as Fig. 7.5 shows by continuously examining the speed and altitude of the aircraft, 

and the distance to the next waypoint to detect the transition points between the different flight 

phases according to the demonstration provided by the experienced human pilot. The Flight 

Manager can now detect the Top of Descent (TOD) point where the aircraft starts the descent 

towards the destination airport by applying (7.1) which is the standard method for calculating 

TOD in airliners [149] compared to the previous method introduced in chapter 5. Although the 

previous method is valid as well, it is not the best practice according to Captain Al Hashmi.    

 

           DEF =   
 ( GH�I�JK
�(LMNOPQ)    GH�I�JK
�(RO�))  /  �TT

U
VW
X�(YZ[\Q)  

                        (7.1) 
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Fig.  7.4. A Flowchart illustrating the process which the Flight Manager program follows to handle the 
transmission between the different flight phases. 

 

 

 

 

Fig.  7.5. The different flight phases followed and managed by the Flight Manager. 

 

if current flight 

phase is still valid, go 

to it directly, 

otherwise continue 
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7.1. Experiments on Prototype 5 

This section discusses the experiments conducted on the newly designed and altered ANNs 

that handle the different piloting tasks by controlling the appropriate control surfaces and other 

control interfaces as learned from the experienced human teacher. This section also discusses 

the experiments conducted on the newly designed and altered ANNs that are used during the 

final approach and landing phases to handle the interception of the runway centreline in 

extreme weather conditions. The experiments were conducted on the Elevators ANN to test the 

ability of maintaining the desired takeoff pitch angle, the new Elevators Trim ANNs to test the 

ability of maintaining different altitudes, climb rates, and the glideslope during approach and 

final approach, the new Throttle ANN to test the ability of maintaining different desired speeds, 

and the modified Flaps ANN to test the ability of extending the flaps correctly. The latter 

capabilities were not available in the previous prototypes of the IAS. Furthermore, additional 

experiments were conducted on the enhanced Ailerons, Rudder, and Roll ANN to handle 

runway centreline maintenance during the final approach and landing flight phases in extreme 

weather conditions beyond the capability of the previous prototypes of the IAS and the 

capabilities of modern autopilots and even human pilots, as well as the Glideslope Elevators 

Trim ANN to test its ability to maintain the desired 3 degrees glideslope in the same extreme 

weather conditions.  

The first set of experiments that test the ability of mimicking the behaviour of experienced 

pilots of airliners were conducted under calm weather conditions, while the remaining set of 

experiments that test the ability to handle the landing runway centreline interception were 

conducted under extreme weather conditions,    

To assess the effectiveness of the proposed approach, the Intelligent Autopilot System (IAS) 

was tested in eight experiments:  

1. Takeoff Pitch Maintenance  

2. Altitude Maintenance  

3. Climb Rate Maintenance 

4. Speed Maintenance  

5. Flaps Setting  

6. Final Approach Glideslope Maintenance 
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7. Runway Centreline Maintenance 

7.1.1 Takeoff Pitch Maintenance 

The purpose of this experiment is to assess the behaviour of the IAS when maintaining the 

15 degrees pitch angle during the takeoff phase, and compare it to the demonstration provided 

by the human pilot. Since no standard modern autopilot is capable of performing autonomous 

takeoff, no comparison with the standard autopilot is provided.  

7.1.1.1 Training  

For this experiment, the Elevators ANN and the Pitch Rate of Change ANN were trained 

until a low Mean Squared Error (MSE) value was achieved (below 0. 01). Since single-hidden-

layer ANNs are used for training, and since the training datasets are small given that a single 

demonstration was provided, training requires a short time to be completed (under 10 minutes). 

7.1.1.2 Autonomous Control  

For this experiment, the aircraft was reset to the runway in the flight simulator, and the IAS 

was engaged to test the ability of maintaining the standard takeoff pitch angle of 15 degrees. 

After the IAS completed the ground-run flight phase on the runway, the output of the Elevators 

ANN and the Pitch Rate of Change ANN were used to hold and maintain the desired pitch 

angle. 

7.1.2 Altitude Maintenance 

The purpose of this experiment is to assess the behaviour of the IAS compared with the 

standard autopilot of the model aircraft when maintaining a given altitude since the human pilot 

used the standard autopilot to handle this task. 

7.1.2.1 Training  

For this experiment, the Elevators Trim ANN and the Climb Rate ANN were trained until a 

low Mean Squared Error (MSE) value was achieved (below 0. 01). Since single-hidden-layer 

ANNs are used for training, and since the training datasets are small given that a single 

demonstration was provided, training requires a short time to be completed (under 10 minutes).   

7.1.2.2 Autonomous Control  

After training the ANNs, the aircraft was reset to the runway in the flight simulator, and the 

IAS was engaged to test the ability of maintaining different altitudes selected manually by the 

user. After the IAS took the aircraft airborne and reached the cruise flight phase, the output of 

the Altitude Rate of Change ANN and the Elevators Trim ANN were used to hold and maintain 
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three different altitudes at three different speeds, and maintain three different altitudes while 

speed is increasing from one speed to another and decreasing from one speed to another. 

7.1.3 Climb Rate Maintenance 

The purpose of this experiment is to assess the behaviour of the IAS compared with the 

standard autopilot of the model aircraft when maintaining a given climb or sink rate while 

changing altitude since the human pilot used the standard autopilot to handle this task.  

7.1.3.1 Training  

For this experiment, the same models generated after training the Elevators Trim ANN and 

the Climb Rate ANN in the previous experiments (A. Altitude Maintenance) were used without 

having to provide additional training. 

7.1.3.2 Autonomous Control  

For this experiment, the aircraft was reset to the runway in the flight simulator, and the IAS 

was engaged to test the ability of maintaining different climb rates selected manually by the 

user. After the IAS took the aircraft airborne and reached the cruise flight phase, the output of 

the Altitude Rate of Change ANN and the Elevators Trim ANN were used to hold and maintain 

six different climb or sink rates.  

7.1.4 Speed Maintenance 

The purpose of this experiment is to assess the behaviour of the IAS compared with the 

standard autopilot of the model aircraft when maintaining a given speed since the human pilot 

used the standard autopilot to handle this task.  

7.1.4.1 Training  

For this experiment, the Throttle ANN and the Speed Rate of Change ANN were trained 

until a low Mean Squared Error (MSE) value was achieved (below 0. 01). Since single-hidden-

layer ANNs are used for training, and since the training datasets are small given that a single 

demonstration was provided, training requires a short time to be completed (under 10 minutes).    

7.1.4.2 Autonomous Control  

After training the ANNs, the aircraft was reset to the runway in the flight simulator, and the 

IAS was engaged to test the ability of maintaining different speeds selected manually by the 

user. After the IAS took the aircraft airborne and reached the cruise flight phase, the output of 

the Throttle ANN and the Speed Rate of Change ANN were used to hold and maintain three 

different speeds at three different altitudes. 
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7.1.5 Flaps Setting 

The purpose of this experiment is to assess the behaviour of the IAS compared with the 

human pilot when extending and retracting the flaps given the altitude during the different 

flight phases.  

7.1.5.1 Training  

For this experiment, the Flaps ANN was trained until a low Mean Squared Error (MSE) 

value was achieved (below 0. 01). Since single-hidden-layer ANNs are used for training, and 

since the training datasets are small given that a single demonstration was provided, training 

requires a short time to be completed (under 10 minutes).    

7.1.5.2 Autonomous Control  

After training the ANN, the aircraft was reset to the runway in the flight simulator, and the 

IAS was engaged to test the ability of correctly deploying and retracting the flaps using 

different settings during the ground-run phase, takeoff, approach, and final approach. The 

output of the Flaps ANN was used to select the different flaps settings. 

7.1.6 Final Approach Glideslope Maintenance 

The purpose of this experiment is to assess the behaviour of the IAS compared with the 

standard autopilot of the model aircraft and the human pilot as well (during the last moments 

of final approach after disengaging the standard autopilot and taking full control) when 

maintaining the standard 3 degrees glideslope during the approach and the final approach flight 

phases in calm weather. In addition, this experiment assesses the behaviour of the IAS 

compared with the standard autopilot (Autoland) when maintaining the standard 3 degrees 

glideslope during the approach and the final approach flight phases in extreme weather 

conditions.  

7.1.6.1 Training  

For this experiment, the Glideslope Rate of Change ANN and the Glideslope Elevators Trim 

ANN were trained until a low Mean Squared Error (MSE) value was achieved (below 0. 01). 

Since single-hidden-layer ANNs are used for training, and since the training datasets are small 

given that a single demonstration was provided, training requires a short time to be completed 

(under 10 minutes).    

7.1.6.2 Autonomous Control  

After training the ANNs, the aircraft was reset to the runway in the flight simulator, and the 

IAS was engaged to test the ability of maintaining the standard 3 degrees glideslope during 
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approach and final approach in calm and extreme weather conditions. After the IAS took the 

aircraft airborne reached the approach flight phase, the output of the Glideslope Rate of Change 

ANN and the Glideslope Elevators Trim ANN were used to maintain the desired glideslope. 

The extreme weather conditions provided strong crosswind, gust, shear, and turbulence. 

7.1.7 Runway Centerline Maintenance  

The purpose of this experiment is to assess the behaviour of the IAS compared with the 

standard autopilot of the model aircraft and the human pilot as well (during the last moments 

of final approach after disengaging the standard autopilot and taking full control) when 

maintaining the centreline of the runway during the approach, final approach, and landing flight 

phases in calm weather. In addition, this experiment assesses the behaviour of the IAS 

compared with the standard autopilot (Autoland) when maintaining the centreline of the 

runway during the approach, final approach, and landing flight phases in extreme weather 

conditions.  

7.1.7.1 Training  

For this experiment, the Roll ANN and the Ailerons ANN were trained until a low Mean 

Squared Error (MSE) value was achieved (below 0. 01). Since single-hidden-layer ANNs are 

used for training, and since the training datasets are small given that a single demonstration 

was provided, training requires a short time to be completed (under 10 minutes).   

7.1.7.2 Autonomous Control  

After training the ANNs, the aircraft was reset to the runway in the flight simulator, and the 

IAS was engaged to test the ability of maintaining the centreline of the landing runway in calm 

and extreme weather conditions. After the IAS took the aircraft airborne and reached the 

approach flight phase, the output of the Roll ANN, the Ailerons ANN, and the Rudder ANNs 

were used to maintain the centreline of the landing runway. The extreme weather conditions 

provided strong wind including crosswind, gust, shear, and turbulence. 

7.2 Results of Experiments on Prototype 5 

The following section describes the results of the conducted tests. 

7.2.1 Experiment 1 (Takeoff Pitch Maintenance) 

Two models were generated for the Elevators ANN and the Pitch Rate of Change ANN with 

Mean Squared Error (MSE) values of 0.004 and 0.001 consecutively. Fig. 7.6 shows the pitch 

degree over time during ten different takeoffs where the IAS is controlling the elevators to 

maintain the standard fifteen degrees pitch angle (the lines in different shades of blue) 
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compared with the demonstration of the human pilot (the green line). Since the standard 

autopilot is not capable of performing takeoff autonomously, no comparison is provided. The 

results show that the means are equivalent according to the Two One-Sided Test (TOST) [150] 

when comparing the performance of the IAS and the experienced captain while maintaining 

the 15 degrees pitch during takeoff (see Table A.1 in Appendix A).  

7.2.2 Experiment 2 (Altitude Maintenance)  

Two models were generated for the Elevators Trim ANN and the Climb Rate ANN with 

MSE values of 0.01 and 0.0003 consecutively. Fig. 7.7, 7.8, and 7.9 illustrate a comparison 

between the IAS and the standard autopilot when maintaining three different altitudes over 

time. Since the human pilot used the standard autopilot to maintain the altitude, the comparison 

is done between the IAS and the standard autopilot. Fig. 7.10 illustrates a comparison between 

prototype 5 of the IAS and prototype 2 when holding an altitude. Prototype 2 used the throttle 

to maintain a given altitude, while prototype 5 uses the correct flight control surface (elevators 

trim) to maintain a given altitude. The results show that the means are equivalent according to 

the TOST when comparing the performance of the IAS and the standard autopilot while 

maintaining three different altitudes (see Tables A.2, A.3, and A.4 in Appendix A).  

 

 

Fig.  7.6. The pitch degrees held by the IAS over time during fifteen different takeoffs (15 different attempts 
represented by the lines in different shades of blue) compared with the single demonstration of the human pilot 

(the green line) when maintaining a 15 degrees pitch.  
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Fig.  7.7. A comparison between the IAS and the standard autopilot when maintaining an altitude of 14000 ft 
(speed is 250 knots).  

 

 

 

Fig.  7.8. A comparison between the IAS and the standard autopilot when maintaining an altitude of 32000 ft 
(speed is 340 knots). 
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Fig.  7.9. A comparison between the IAS and the standard autopilot when maintaining an altitude of 4000 ft 
(speed is 220 knots). 

 

 

 

Fig.  7.10. A comparison between prototype 5 (blue line)  and prototype 2 (orange line) of the IAS when 
maintaining an altitude of 14,000 ft. Prototype 2used the throttle, while prototype 5 uses the elevators trim to 

maintain a given altitude. 
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7.2.3 Experiment 3 (Climb Rate Maintenance)  

The same models generated for altitude maintenance (Experiment 2 Altitude Maintenance) 

were used to maintain a given climb rate without having to retrain the models. Fig. 7.11, 7.12, 

7.13, 7.14, 7.15, and 7.16 illustrate a comparison between the IAS and the standard autopilot 

when maintaining six different climb rates over time. Since the human pilot used the standard 

autopilot to maintain the climb rates, the comparison is done between the IAS and the standard 

autopilot. No comparison with the previous prototypes of the IAS is presented since the 

previous prototypes did not have the ability to maintain climb rates. The results show that the 

means are not equivalent (except for when maintaining a climb rate of -2000) according to the 

TOST when comparing the performance of the IAS and the standard autopilot while 

maintaining six different altitudes (see Tables A.5, A.6, A.7, A.8, A.9 and A.10 in Appendix 

A). 

 

 

 

Fig.  7.11. A comparison between the IAS and the standard autopilot when maintaining a climb rate of 500 
ft/min (speed is 250 knots). 
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Fig.  7.12. A comparison between the IAS and the standard autopilot when maintaining a climb rate of 1500 
ft/min (speed is 280 knots). 

 

 

 

 

 

Fig.  7.13. A comparison between the IAS and the standard autopilot when maintaining a climb rate of 2500 
ft/min (speed is 310 knots). 

 

 

 

 



151 
 

 

Fig.  7.14. A comparison between the IAS and the standard autopilot when maintaining a climb (sink) rate of -
500 ft/min (speed is 230 knots). 

 

 

 

 

 

Fig.  7.15. A comparison between the IAS and the standard autopilot when maintaining a climb (sink) rate of -
1000 ft/min (speed is 240 knots). 
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Fig.  7.16. A comparison between the IAS and the standard autopilot when maintaining a climb (sink) rate of -
2000 ft/min (speed is 270 knots). 

 

7.2.4 Experiment 4 (Speed Maintenance) 

Two models were generated for the Throttle ANN and the Speed Rate of Change ANN with 

MSE values of 0.0009 and 0.0006 consecutively. Fig. 7.17, 7.18, and 7.19 illustrate a 

comparison between the IAS and the standard autopilot when maintaining three different 

speeds over time. Since the human pilot used the standard autopilot to maintain speed, the 

comparison is done between the IAS and the standard autopilot, however, Fig. 7.20 illustrates 

a comparison between the IAS and the human pilot when managing the different speeds 

throughout the complete flight from takeoff to landing. No comparison with the previous 

prototypes of the IAS is presented since the previous prototypes did not have the ability to 

maintain a given speed. The results show that the means are equivalent according to the TOST 

when comparing the performance of the IAS and the standard autopilot while maintaining three 

different speeds (see Tables A.11, A.12, and A.13 in Appendix A).  
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Fig.  7.17. A comparison between the IAS and the standard autopilot when maintaining a speed of 320 knots 
(altitude is 22000 ft.). 

 

 

 

 

 

Fig.  7.18. A comparison between the IAS and the standard autopilot when maintaining a speed of 350 knots 
(altitude is 30000 ft.). 
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Fig.  7.19. A comparison between the IAS and the standard autopilot when maintaining a speed of 230 knots 
(altitude is 10000 ft.). 

 

 

 

 

 

 

Fig.  7.20. A comparison between the IAS (10 flights represented by the overlapping lines in different blue 
shades) and the human pilot (1 demonstration represented by the green line) when managing the different speeds 
over time throughout the complete flight from takeoff to landing (London Heathrow to Birmingham). As can be 

seen, both the IAS and the human pilot accelerated sharply until the cruise speed of 240 knots was achieved, 
then, decelerated gradually until the landing speed of 150 knots was achieved before coming to a full stop on the 

landing runway.  
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7.2.5 Experiment 5 (Flaps Setting) 

One model was generated for the Flaps ANN with an MSE value of 0.006. Fig. 7.21 and 

7.22 show the flaps setting over altitude where Fig. 7.21 shows the flaps setting during the 

ground-run, takeoff, level-up, climb, and cruise flight phases, while Fig. 7.22 shows the flaps 

setting during the cruise, approach, final approach and landing flight phases. Since the standard 

autopilot is not capable of controlling the flaps autonomously, the provided comparison is 

between the IAS and the human pilot. Table 7.2 shows the corresponding flaps settings given 

the deflection value. Table 7.3 shows the mean, minimum, and maximum altitudes that 

correlate to each flaps setting in addition to the standard deviation.  

 

TABLE 7.2 
THE APPLIED FLAPS DEFLECTION VALUES AND THEIR CORRESPONDING FLAPS SETTINGS. 

Flaps Deflection Value Flaps Setting 

0 Flaps Zero 

0.166 Flaps One 

0.332 Flaps Five 

0.664 Flaps Twenty 

1 Flaps Full 

 

 

Fig.  7.21. A comparison between the IAS (10 flights represented by the overlapping lines in different blue 
shades) and the human pilot (1 demonstration represented by the green line) when managing the different flaps 

settings over altitude from takeoff to cruise. 
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Fig.  7.22. A comparison between the IAS (10 flights represented by the overlapping lines in different blue 
shades) and the human pilot (1 demonstration represented by the green line) when managing the different flaps 

settings over altitude from cruise to landing. 

 

 

 

 

  

 

TABLE 7.3 
A COMPARISON BETWEEN THE HUMAN PILOT AND THE IAS WHEN MANAGING THE CORRELATION BETWEEN THE 

ALTITUDE (FT) AND FLAPS SETTING INCLUDING MEAN, MINIMUM, AND MAXIMUM ALTITUDES BY THE IAS THAT 

CORRELATE TO EACH FLAPS SETTING DURING THE DIFFERENT FLIGHT PHASES IN ADDITION TO THE STANDARD 

DEVIATION. 

 

Takeoff to Cruise Cruise to Landing 

Flaps 1 Flaps 0 Flaps 1 Flaps 5 Flaps 20 Flaps Full 

Altitude (Human Pilot) 1800 3800 4150 3450 2330 1890 

MIN Altitude (IAS) 1754 3753 4186 3440 2324 1871 

MAX Altitude (IAS) 1821 3801 4198 3463 2334 1894 

MEAN Altitude (IAS) 1792 3775 4192 3452 2329 1886 

STD (IAS) 20 18 4 7 3 7 
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7.2.6 Experiment 6 (Final Approach Glideslope Maintenance) 

Two models were generated for the Glideslope Rate of Change ANN and the Glideslope 

Elevators Trim ANN with MSE values of 0.0006 and 0.0008 consecutively. Fig. 7.23 illustrates 

a comparison between the IAS, the standard autopilot, and the human pilot (the final moments 

of final approach after the human pilot disengaged the autopilot and took full control of the 

aircraft) when attempting to maintain the standard 3 degrees glideslope during final approach 

in calm weather. Fig. 7.24 and 7.25 illustrate a comparison between the IAS and the standard 

autopilot (Autoland) when attempting to maintain the standard 3 degrees glideslope during 

final approach in extreme weather conditions with the presence of strong wind at a speed of 50 

knots with gust up to 70 knots, wind shear direction of 70 degrees (around 360 degrees), and 

turbulence. The results show that the means are equivalent according to the TOST when 

comparing the performance of the IAS, the experienced human pilot,  and the standard autopilot 

while maintaining the 3 degrees glideslope during final approach (see Tables A.14 and A.15 in 

Appendix A).  

 

 

 

Fig.  7.23. A comparison between the IAS (10 flights represented by the overlapping lines in different blue 
shades), the standard autopilot, and the human pilot after he took full control of the aircraft during the last 

moments of final approach (1 demonstration represented by the green line) when maintaining the 3 degrees 
glideslope angle from final approach to landing in calm weather.  
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Fig.  7.24. 10 different attempts showing the glideslope angle of the aircraft (flown by the IAS) from final 
approach to landing. The goal is to try to maintain the standard 3 degrees glideslope. The weather conditions 
include 360 degrees wind at a speed of 50 knots with gust up to 70 knots, wind shear direction of 70 degrees, 

and minor turbulence.    

 
 
 
 
 
 
 

 
 

Fig.  7.25. 10 different attempts showing the glideslope angle of the aircraft (flown by the standard autopilot) 
from final approach to landing (10 different attempts). The goal is to try to maintain the standard 3 degrees 

glideslope. The weather conditions include 360 degrees wind at a speed of 50 knots with gust up to 70 knots, 
wind shear direction of 70 degrees, and minor turbulence.    
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7.2.7 Experiment 7 (Runway Centerline Maintenance) 

Four models were generated for the Roll ANN, the Ailerons ANN, the Heading ANN, and 

the Rudder ANN with MSE values of 0.0002, 0.001, 0.003, and 0.002 consecutively. Fig. 7.26 

illustrates a comparison between the IAS, the standard autopilot of the aircraft model, and the 

human pilot (the final moments of final approach after the human pilot disengaged the autopilot 

and took full control of the aircraft) when attempting to maintain the centreline of the landing 

runway in calm weather. The results show that the means are equivalent according to the TOST 

when comparing the performance of the IAS, the experienced human pilot, and the standard 

autopilot while maintaining the 0 degrees angle which represents the centreline of the landing 

runway in calm weather (see Table A.16 in Appendix A). Fig. 7.27 shows the angle between 

the aircraft’s location and the centreline of the landing runway before landing in extreme 

weather conditions with the presence of 90 degrees crosswind at a speed of 50 knots with gust 

up to 70 knots, wind shear direction of 70 degrees, and strong turbulence. In the latter weather 

conditions, the standard autopilot kept disengaging every time, therefore, the comparison is 

given between prototype 5 and prototype 4 of the IAS. Prototype 4 of the IAS was able to 

handle severe weather conditions with wind speed up to 50 knots, and a maximum wind shear 

of around 22 degrees. However, to perform a comparison between the IAS and the Autoland 

feature of the standard autopilot without facing the disengagement issue, the weather conditions 

were slightly modified by replacing the 90 degrees crosswind direction with 360 degrees, and 

lowering the intensity of turbulence. Fig. 7.28 and 7.29 illustrate a comparison between the 

IAS and the standard autopilot when attempting to intercept the centreline of the landing 

runway (airborne) in the slightly modified weather conditions. Table 7.4 shows the number of 

successful and unsuccessful attempts of prototype 4 and 5 of the IAS to keep the aircraft within 

the safe zone (angle between 0.05 and -0.05 degrees) during final approach while airborne.  

Fig. 7.30 and 7.31 illustrate a comparison between the IAS and the standard autopilot when 

attempting to intercept the centreline of the landing runway after touchdown in extreme 

weather conditions with the presence of strong wind at a speed of 50 knots with gust up to 70 

knots, wind shear direction of 70 degrees (around 0 degrees), turbulence, and high precipitation 

(wet runway). Table 7.5 shows the number of successful and unsuccessful attempts of the IAS 

and the standard autopilot to keep the aircraft within the safe zone of the runway (angle between 

0.05 and -0.05 degrees) after touchdown while attempting to decrease the speed to taxi speed.   
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Fig.  7.26. A comparison between the IAS (10 flights represented by the overlapping lines in different blue 
shades), the standard autopilot, and the human pilot after he took full control of the aircraft during the last 

moments of final approach (1 demonstration represented by the green line) when maintaining the centreline of 
the landing runway (0 degrees) during final approach (airborne) and landing (on the ground after touchdown) in 
calm weather. The angle must be between 0.05 and -0.05 degrees especially during the last moments of the final 
approach to ensure landing within the safe touchdown zone of the landing runway as the two dashed black lines 

show (right part of the chart). 

 

 

 
 

Fig.  7.27. A comparison between prototype 5 of the IAS (represented by the overlapping lines in different blue 
shades) and prototype 4 of the IAS (represented by the lines in different green shades) during 10 flights each 

when maintaining the centreline of the landing runway (0 degrees) during final approach (airborne). The angle 
must be between 0.05 and -0.05 degrees especially during the last moments of the final approach to ensure 

landing within the safe touchdown zone of the landing runway as the two dashed red lines show on the right 
side. The extreme weather conditions include 90 degrees crosswind at a speed of 50 knots with gust up to 70 

knots, wind shear direction of 70 degrees, and strong turbulence. 
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TABLE 7.4 
RESULTS OF COMPARING PROTOTYPE 5 AND 4 OF THE IAS WHEN ATTEMPTING TO MAINTAIN THE CENTRELINE OF 
THE RUNWAY DURING THE FINAL MOMENTS OF FINAL APPROACH (AIRBORNE) IN EXTREME WEATHER CONDITIONS 

INCLUDING 90 DEGREES CROSSWIND AT A SPEED OF 50 KNOTS WITH GUST UP TO 70 KNOTS, WIND SHEAR 

DIRECTION OF 70 DEGREES, AND STRONG TURBULENCE. SUCCESSFUL ATTEMPTS ARE WITHIN THE ANGLE 

THRESHOLD BETWEEN 0.05 AND -0.05 AND VICE VERSA.    

 
 Runway centreline maintenance 

(airborne) 

 

Pilot Successful 

The IAS (prototype 5) 10 out of 10 
The IAS (prototype 4) 4 out of 10 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

Fig.  7.28. The angle between the aircraft (flown by the IAS) and the centreline of the runway (0) during ten 
different final approach attempts (airborne). The angle must be between 0.05 and -0.05 degrees especially 

during the last moments of the final approach to ensure landing within the safe touchdown zone of the landing 
runway as the two dashed black lines show (right part of the chart). The weather conditions include 360 degrees 
wind at a speed of 50 knots with gust up to 70 knots, wind shear direction of 70 degrees, and minor turbulence.  
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Fig.  7.29. The angle between the aircraft (flown by the standard autopilot) and the centreline of the runway (0) 
during ten different final approach attempts (airborne). The angle must be between 0.05 and -0.05 degrees 

especially during the last moments of the final approach to ensure landing within the safe touchdown zone of the 
landing runway as the two dashed black lines show (right part of the chart). The weather conditions include 360 

degrees wind at a speed of 50 knots with gust up to 70 knots, wind shear direction of 70 degrees, and minor 
turbulence.  

 
 
 

 
 
Fig.  7.30. The angle between the aircraft (flown by the IAS) and the centreline of the runway (0 degrees) during 

ten different landing attempts. The angle must be between 0.05 and -0.05 degrees during touchdown to ensure 
landing within the safe touchdown zone of the landing runway as the two dashed black lines show (right part of 

the chart), and during the attempt to decrease the aircraft’s speed on the runway to taxi speed. The weather 
conditions include 360 degrees wind at a speed of 50 knots with gust up to 70 knots, wind shear direction of 70 

degrees, and minor turbulence.  
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Fig.  7.31. The angle between the aircraft (flown by the standard autopilot) and the centreline of the runway (0 
degrees) during ten different landing attempts. The angle must be between 0.05 and -0.05 degrees during 

touchdown to ensure landing within the safe touchdown zone of the landing runway as the two dashed black 
lines show (right part of the chart), and during the attempt to decrease the aircraft’s speed to taxi speed. The 

weather conditions include 360 degrees wind at a speed of 50 knots with gust up to 70 knots, wind shear 
direction of 70 degrees, and minor turbulence.  

 

 

TABLE 7.5 
RESULTS OF COMPARING THE IAS WITH THE STANDARD AUTOPILOT WHEN ATTEMPTING TO MAINTAIN THE 

CENTRELINE OF THE RUNWAY DURING THE FINAL MOMENTS OF FINAL APPROACH (AIRBORNE) AND AFTER 

TOUCHDOWN WHILE DECREASING THE SPEED OF THE AIRCRAFT TO TAXI SPEED ON THE LANDING RUNWAY IN 

EXTREME WEATHER CONDITIONS. SUCCESSFUL ATTEMPTS ARE WITHIN THE ANGLE THRESHOLD BETWEEN 0.05 

AND -0.05 AND VICE VERSA.    

 

 Runway centreline maintenance 

(airborne) 

 

Runway centreline maintenance 

(ground) 

 

Pilot Successful Successful 

The IAS 20 out of 20 10 out of 10 
Standard 
Autopilot 

5 out of 20 2 out of 10 

 
 

 

7.3 Analysis 

As can be seen in Fig. 7.5 (A. Takeoff Pitch Maintenance), the IAS was able to maintain the 

standard pitch angle of 15 degrees during the takeoff phase. Table A.1 (Appendix A) shows 

that the IAS was able to maintain a pitch angle mean of 15.24 degrees which is equivalent to 

the 15.17 degrees mean maintained by the human pilot as the equivalence test shows.   
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Fig. 7.7, 7.8, and 7.9 (B. Altitude Maintenance) show that the IAS was able to maintain 

three different altitudes at three different speeds as did the standard autopilot. Tables B.2, B.3, 

and A.4 (Appendix A) show that the performance of the IAS when maintaining a given altitude 

at a given speed is equivalent to the performance of the standard autopilot. Fig. 7.10 shows the 

improvement in the ability of maintaining a given altitude by comparing prototype 2 of the IAS 

which was not able to accurately maintain altitudes with prototype 5 which now have the ability 

to handle this task precisely. However, Fig. 7.7, 7.8 and 7.9 show that the performance of the 

IAS showed oscillations. 

Fig. 7.11, 7.12, 7.13, 7.14, 7.15, and 7.16 (C. Climb Rate Maintenance) show that although 

the performance of the IAS showed oscillations when maintaining climb rates, it performed 

better than the standard autopilot when maintaining six different climb/sink rates at six different 

speeds. The TOST results confirm this, which shows the closer means to the desired climb/sink 

rate values compared with the standard autopilot as Tables A.5, A.6, A.7, A.8, A.9, and A.10 

(Appendix A) show. Although the performance of the standard autopilot is steadier (no 

oscillations), for an unknown reason, when the standard autopilot attempts to reach the selected 

climb/sink rate, it will continue to drift away from it slowly in most cases as Figs. 7.12, 7.13, 

7.14, and 7.15 show.  

It is clear that the oscillations are recurrent in both experiments (B. Altitude Maintenance 

and C. Climb Rate Maintenance), and they can only be seen when controlling the elevators 

trim control surfaces using the Elevators Trim ANN. This ANN was trained to handle two 

different tasks which are maintaining climb/sink rates and maintaining altitudes. The reason 

for having just one ANN for both tasks is because these tasks are handled using the same 

control surfaces of the aircraft (the elevators trim). However, it is clear that following the 

general approach in this work of designing and training dedicated ANNs that handle specific 

tasks showed excellent results in all the previous chapters and most of the work in this chapter, 

therefore, based on the results of using dedicated ANNs for specific tasks, it is likely that 

segregating the tasks could improve or eliminate the oscillations, which can be explored in 

future work.  

Fig. 7.17, 7.18, and 7.19 (D. Speed Maintenance) illustrate the equivalent performances of 

the IAS and the standard autopilot when maintaining three different speeds at three different 

altitudes. Tables A.11, A.12, and A.13 (Appendix A) confirm the equivalence between the 

performances of the IAS and the standard autopilot when handling this task. Fig. 7.20 shows 
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that the IAS was able to manage and maintain the different speeds in the different flight phases 

from takeoff to landing in a manner that is identical to the human pilot throughout the same 

flight.   

Fig. 7.21 and 7.22 (E. Flaps Setting) illustrate the consistent behaviour of the IAS when 

extending and retracting the flaps given the flight phase and altitude, which is similar to the 

behaviour of the human pilot when handling this task. The minor differences shown in table 

7.3 are due to the terrain variation below the aircraft since the applied altitude here is feet above 

ground level instead of sea level.  

Fig. 7.23 (F. Final Approach Glideslope Maintenance) shows the similar performance of the 

IAS, the standard autopilot, and the human pilot when maintaining the standard 3 degrees 

glideslope angle during final approach and landing in calm weather. Table A.14 (Appendix A) 

confirms the equivalence between the performance of the IAS, the standard autopilot, and the 

human pilot when handling this task. Fig. 7.24 and 7.25 show the similar performance of the 

IAS and the standard autopilot (Autoland) while maintaining the standard 3 degrees glideslope 

angle in extreme weather conditions including 360 degrees wind at a speed of 50 knots with 

gust up to 70 knots, wind shear direction of 70 degrees, and minor turbulence. Table A.15 

(Appendix A) shows that the means of the glideslope angle maintained by the IAS and the 

standard autopilot are equivalent, however, the IAS performed better since the glideslope mean 

is 3.01 which is closer to the desired 3 degrees glideslope compared with the 2.93 mean 

achieved by the standard autopilot. The oscillations are not present in this experiment although 

the same control surfaces which generated them in the previous experiments (B. Altitude 

Maintenance and C. Climb Rate Maintenance) are used here as well, however, a dedicated 

ANN (Glideslope Elevators Trim ANN) is used here to control the elevators trim to maintain 

the desired glideslope degree. This is an indicator that supports the suggestion above which 

shows the better approach of designing and training dedicated ANNs for each specific task.     

As can be seen in Fig. 7.26 (G. Runway Centreline Maintenance), the IAS was able to 

maintain the centreline of the landing runway as did the human pilot and the standard autopilot 

in calm weather. Table A.16 (Appendix A) confirms the equivalence between the performance 

of the IAS, the human pilot, and the standard autopilot when handling this task. Although the 

angle went briefly beyond the safe touchdown zone (between 0.05 and -0.05 degrees from the 

centreline of the runway) as Fig. 7.27 and 7.28 show, this happened due to a sudden strong gust 

while airborne which is normal in such conditions. It is obviously important however to 
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touchdown and land within the safe touchdown zone, which was achieved every time as Fig. 

7.27 and 7.28 show, while the standard autopilot kept disengaging every time in the latter 

weather conditions. The extreme weather conditions included 90 degrees crosswind at a speed 

of 50 knots with gust up to 70 knots, wind shear direction of 70 degrees, and strong turbulence. 

Compared with prototype 4 of the IAS which achieved a success rate of 40% (4 successful 

attempts out of 10 trials), prototype 5 achieved a success rate of 100% (10 successful attempts 

out of 10 trials) as table 7.4 and Fig. 7.27 show when intercepting the centreline of the landing 

runway in such extreme weather conditions, which proves the effectiveness of the method 

introduced in this chapter, which focuses on altering the roll degree instead of the bearing 

degree. This method performed well because as the external force represented by the extreme 

wind increases, the IAS will keep increasing the roll degree to counter the effect. After altering 

the weather conditions by replacing the 90 degrees crosswind with 360 degrees wind and 

lowering the intensity of turbulence, the standard autopilot was able to land, however, as Fig. 

7.29 shows, the standard autopilot struggled to keep the aircraft within the safe zone (between 

0.05 and -0.05 degrees from the centreline of the runway). Table 7.5 shows that the IAS was 

able to achieve a success rate of 100% (20 successful attempts out of 20 trials), while the 

standard autopilot achieved a success rate of 25% (5 successful attempts out of 20 trials) which 

confirms that the IAS can perform beyond the capabilities of modern standard autopilots in 

extreme weather conditions. In addition, Fig. 7.30 illustrates the performance of the IAS while 

trying to keep the aircraft within the safe zone of the landing runway (between 0.05 and -0.05 

degrees from the centreline of the runway) after touchdown while decreasing the speed of the 

aircraft on the runway to taxi speed, while Fig. 7.31 illustrates the poor performance of the 

standard autopilot when attempting to handle the same task in the same extreme weather 

conditions, which is an additional proof of the superiority of Artificial Neural Networks when 

handling difficult control problems in extreme conditions compared with the PID controllers 

used in modern autopilots. In addition, table 7.5 shows that the IAS was able to achieve a 

success rate of 100% (10 successful attempts out of 10 trials), while the standard autopilot 

achieved a success rate of 20% (2 successful attempts out of 10 trials) while maintaining the 

centreline of the landing runway after landing, which further confirms the superior performance 

of the IAS which is beyond the capabilities of standard autopilots. 

Overall, the distinct performance of the IAS presented natural and dynamic behaviour when 

handling the different tasks by manipulating the different control surfaces especially in extreme 

weather conditions. This proves its superiority compared with the mechanical-precision-like 
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performance of the standard autopilot, which according to the literature, suffers from 

robustness issues when facing uncertainty. The latter hinders the reaction time of modern 

autopilots, and the ability to cope with such extreme and sometimes sudden conditions. 

7.4 Evaluating the IAS by Oman Air  

To involve the aviation industry in evaluating the performance of the IAS, and in addition 

to providing training data for the IAS, Captain Khalid Al Hashmi, Oman Air, provided his 

feedback after being presented with complete (airport to airport) flight demonstrations of the 

IAS, and landings in calm and extreme weather conditions as the experiments above show. We 

asked him the following questions, and he answered as follows:  

1. Compared with the standard modern autopilot, what is your impression 

on the performance of the IAS when executing complete flights in calm and severe 

weather conditions?  “Good. I Wish we can try the IAS in a 6-axis full motion flight 

simulator to evaluate it further.” 

2. Although flying in such conditions is probably against regulations, but for testing 

purposes, is the IAS capable of preforming crosswind landings beyond the current 

limits and capabilities of modern autopilots? What about experienced human 

pilots?  “Yes. It is always a challenge, human pilots are allowed to land in crosswind 

conditions up to the demonstrated limit such as 38 knots, whereas the autopilots limit 

is less. I Hope that the IAS can help in increasing the crosswind limit which is 

sometimes limited due to flight controllability rather than pure capability.”  

3. Is the current performance of the IAS in general comparable with human pilots? If yes, 

as an experienced captain and instructor, how would you rate its performance if it were 

human? novice, intermediate, or experienced? “Yes, I would say intermediate although 

I suggest comparing it more with other autopilot.” 

4. Do you agree that the IAS has the potential to introduce new advantages to the aviation 

industry such as enhancing safety as a dependable autopilot compared with the modern 

ones? “Yes, it does. It just needs to be trained more on scenarios and various conditions 

and malfunctions.” 

7.5 Summary 

To summarize, the objective of teaching Artificial Neural Networks how to pilot an aircraft 

like experienced human pilots of airliners was achieved by learning from a demonstration 

provided by an experienced human pilot. The latter learning enabled the Intelligent Autopilot 
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System (IAS) to accurately mimic the behaviour of experienced human pilots by manipulating 

the appropriate control surfaces and other control interfaces to perform the different piloting 

tasks including maintaining the desired pitch during takeoff, the desired climb or sink rates, the 

desired speeds, and the desired glideslope during final approach.  

In addition, introducing the new Roll ANN which replaced the Bearing Adjustment ANN 

(from prototype 4), altering the Ailerons ANN (from prototype 3), introducing the new Heading 

ANN, and altering the Rudder ANN equipped the IAS with the ability to handle landings in 

extreme weather conditions beyond the current limits and capabilities of modern autopilots and 

experienced human pilots as well.  

This provides additional evidence to support the hypothesis of this work aimed towards 

proving the possibility to teach a flight control system piloting skills. 
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8. CONCLUSION 

In this work, a novel and robust approach is proposed to “teach” autopilots how to perform 

complete flights starting with takeoff, navigating, and ending with safe landing while being 

able to handle uncertainties and emergencies such as extreme weather conditions, engine(s) 

failure and fire, rejected takeoff, emergency landing, and go-around, with minimum effort by 

exploiting Learning from Demonstration, and depending on Artificial Neural Networks as the 

sole controllers for this difficult control approximation problem. 

The results show that the hypothesis of the possibility to use Learning from Demonstration 

with Artificial Neural Networks to transfer the skills and abilities of experienced human pilots 

to a flight control system, to give it the capability to perform autonomous and complete flights 

in normal and uncertain conditions as well, has been proved.  

The successful achievement of the five prototypes and their objectives (chapters 3, 4, 5, 6, 

and 7) provide evidence to support the hypothesis. The successfully achieved objectives are: 

1. Proving the ability of Artificial Neural Networks and the Learning from Demonstration 

concept to learn piloting tasks by generating learning models from training datasets 

containing demonstrations performed by a human teacher in a flight simulator. The 

learning models capture low-level and high-level skills and abilities that enabled the 

IAS to perform basic flights under calm and severe weather conditions. 

2. Teaching ANNs complex tasks representing the ability to handle multiple emergency 

situations including Rejected Takeoff (RTO), engine failure and fire, and emergency 

landing, in addition to maintaining a desired altitude. 

3. Teaching ANNs complex flying including the ability to takeoff from airport A, navigate 

to airport B, and land safely. 

4. Handling severe weather landing, and go-around (aborting landing, then, reattempting). 

5. Proving the ability of Artificial Neural Networks and the Learning from Demonstration 

concept to not only learn how to fly an aircraft, but to learn how to fly and execute the 

necessary piloting tasks like experienced human pilots of airliners, and to handle 

landings in extreme weather conditions that are beyond the current limits and abilities.   

The results confirm that Supervised Learning is a straightforward and robust approach in 

the context of Learning from Demonstration since performing offline training on labelled 

datasets has been efficient in this work. Relying completely on Artificial Neural Networks to 
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capture low-level and highly dynamic piloting tasks such as the rapid corrections of heading 

and roll deviations in stormy weather conditions, confirms that ANNs are suitable for handling 

such highly dynamic data. In addition, the ANNs in this work achieved the ability to capture 

high-level tasks that are represented by sequences of actions aimed towards achieving a 

strategic goal such as managing the different flight phases. This confirms the suitability of 

ANNs for learning various piloting tasks from demonstrations, as well as from synthetic 

training data.  

Enhancing the performance of the ANNs through pre-training techniques such as scaling 

the values to achieve a closer magnitude of the inputs and outputs resulted in better models. In 

addition, the technique of altering how the ANNs are stimulated proved to be an efficient and 

robust technique which can be applied to change the behaviour of the ANNs without having to 

generate additional models that can achieve the desired behaviour.   

Breaking down the piloting tasks, and adding more Artificial Neural Networks allowed 

overcoming the black-box problem by having multiple small ANNs with single-hidden-layers 

that learn from small labelled datasets which have clear patterns. Using Supervised Learning 

on these small and multiple ANNs provides the possibility to trace the complete learning and 

operation processes. The black-box problem associated with some Artificial Intelligence 

methods such as Deep Learning, has been the main obstacle of introducing AI to the cockpit. 

In addition, this approach enhanced performance and accuracy, and allowed the coverage of a 

wider spectrum of tasks. 

The novelties presented in this work which are dedicated to introducing intelligent 

autonomy to large jets such as airliners, are robust solutions that could enhance flight safety in 

the civil aviation domain by enabling autonomous behaviour that was not possible before. 

However, to achieve comprehensive cockpit autonomy capabilities that can be fully relied 

on, the IAS must be trained to handle any scenario that human pilots are trained to handle, in 

other words, the IAS must undergo the same complete and comprehensive training that human 

pilots undergo. 

The aviation industry is currently working on solutions which should lead to decreasing the 

dependence on crew members. The reason behind this is to increase safety by lowering 

workload, human error, and stress faced by crew members, and to lower costs associated with 

having more than one pilot in the cockpit, by developing autopilots capable of handling 
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multiple scenarios without human intervention. It is anticipated that future Autopilot systems 

which make of methods proposed here could improve safety, save lives, and lower costs. 
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9. FUTURE WORK 

This work has already caught the attention of the aerospace industry in Europe and North 

America. Preliminary discussions are already being held to identify the roadmap of adopting 

the Intelligent Autopilot System (IAS), and Non-Disclosure Agreements have been signed with 

three industry leaders in the aerospace domain. The first expected step is to expose the IAS to 

a thorough V&V (Verification and Validation) process that is aimed towards confirming the 

absence of a black-box, and confirming the clarity and traceability of the different components 

including the generated models (being based on clear patterns that can even be visualised) since 

the proposed methods in this work allow the possibility to trace, investigate, and analyse the 

complete architecture of the IAS. After that, it is expected to integrate the IAS with a 6-axis 

certified flight simulator, and teach the IAS by allowing it to observe comprehensive 

demonstrations by experienced pilots representing the different scenarios that all human pilots 

go through during their training. Furthermore, additional comparisons with different autopilot 

should be conducted as suggested by Captain Al Hashmi.   

In addition, future work should include enhancing the current capabilities of the IAS where 

needed especially the oscillations issue seen when maintaining climb/sink rates and altitudes. 

As explained in the analysis section of chapter 7, these two tasks should be segregated, and two 

dedicated ANNs should be designed and trained to handle each tasks separately to enhance 

accuracy and achieve smooth control command outputs.    

There are other challenges that must be investigated and tackled before the IAS or any other 

comprehensive cockpit autonomy solution can be fully trusted to replace human pilots. As 

mentioned above, the IAS must first be trained on all the scenarios, and acquire all the skills 

and abilities that human pilots acquire during their training. Then, the system must be able to 

detect and handle faulty sensors that either provide false data or no data at all, which is a vast 

field of research that investigates this problem to identify potential solutions. Relying on other 

functional sensors to substitute is a plausible solution such as using GPS to calculate the speed 

of the aircraft if the speed sensors are faulty. The latter example is quite straightforward, 

however, it becomes much more challenging when other sensors that cannot be easily 

substituted become faulty. For instance, what if the roll, pitch, or Angle of Attack (AoA) 

sensors become faulty such as the case of the Boeing 737 MAX? In this case, a plausible 

solution could again be relying on other functional sensors but not as straightforward as using 

GPS to calculate speed. If we take the Boeing’s AoA issue as an example, additional Artificial 
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Neural Networks (ANN) could be added to the IAS for the purpose of continuously monitoring 

the overall condition of the aircraft including the relationship between the sensor reading and 

the current setting. For example, an ANN could be designed and trained to detect that although 

the throttle setting is at 60% (engines power at 60%) during a flight phase that has a relatively 

low pitch (cruise for example), it is not proportional to the rate of change of speed, meaning, 

since the engines power is at such high setting, however, the speed is not increasing as it should 

be or even decreasing, then, this could mean that the aircraft’s AoA is too high which makes it 

difficult for the engines to compensate and provide the necessary increase of speed, and vice 

versa. In this case, the IAS should gradually push the yoke (or stick) or lower the elevators trim 

to push the aircraft’s nose down until the ANN detects the expected proportion between throttle 

setting, flight phase, and the rate of change of speed. 

Furthermore, the problem of control surfaces faults is another field of research that has been 

focusing on tackling this issue for future autonomous flying by developing intelligent fault-

tolerant control systems as mentioned in the literature review above. For this, the IAS can 

instead be trained on how to handle faults of control surfaces just like how human pilots are 

trained to do so. For example, human pilots are trained to handle a faulty aileron that hinders 

or eliminates the ability of turning or banking right or left by applying more thrust to one of 

the engines compared with the other to help turning. The IAS can be trained to execute the 

latter technique by following the same method presented in this work of providing minimal 

demonstrations of how to perform this particular task or any other by an experienced pilot. 

In addition, to handle navigation issues that arise due to GPS denial for example since the 

IAS fully relies on GPS for navigation and landing as well, additional methods should be 

incorporated such as Inertial Guidance Systems and even computer-vision especially during 

the final approach flight phase where the safety risk is higher due to the attempt of landing the 

aircraft. Computer-vision is also necessary in the case of choosing a suitable flat surface such 

as a field to crash-land on. The latter addition would enhance the emergency or crash-landing 

ability of the IAS (chapter 4 - prototype 2) by not only being able to perform a smooth crash-

landing that keeps the fuselage of the aircraft intact, and hopefully lower the chances of death 

or serious injuries significantly, but also by choosing a suitable flat surface on the ground.                   

In the short run however, and before delving into the effort and challenges mentioned above, 

the IAS will be tested in real-life scenarios outside the simulation environments by integrating 

it with a fixed-wing Unmanned Aircraft System (UAS). It would be a great moment to witness 
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the work and effort presented and discussed in this thesis takeoff into the freedom of the blue 

sky.     
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APPENDIX A 

TABLE A.1 
RESULTS OF APPLYING THE EQUIVALENCE TEST TO EXAMINE THE PERFORMANCE OF THE IAS WHEN MAINTAINING 

A FIFTEEN DEGREES PITCH DURING TAKEOFF COMPARED WITH THE HUMAN PILOT.  

Equivalence Test for Means 
  

Unequal Sample Sizes 

α = 0.05     

  IAS Human 

Mean 15.24 15.17 

Variance 0.36 0.005 

Observations 315 21 

Pooled Variance 0.34  
Hypothesized Mean Difference 0.8  
df 334  
t Stat 5.63 -6.55 

P(T<=t) one-tail 0.000 0.000 

T Critical one-tail 1.65  
P(T<=t) two-tail 0.000  
T Critical Two-tail 1.98  
Means are Equivalent because p1 & p2 < 0.05 

  

  

 

 

TABLE A.2 
RESULTS OF APPLYING THE EQUIVALENCE TEST TO EXAMINE THE PERFORMANCE OF THE IAS COMPARED WITH 

THE STANDARD AUTOPILOT WHEN MAINTAINING AN ALTITUDE OF 14000 FT. 

Equivalence Test for Means 
  

Equal Sample Sizes 

α = 0.05     

  IAS AP 

Mean 14000.49 14000.92 

Variance 0.13 0.00 

Observations 420 420 

Pooled Variance 0.06  
Hypothesized Mean Difference 0.80  
df 838.00  
t Stat 70.87 -20.68 

P(T<=t) one-tail 0.00 0.00 

T Critical one-tail 1.65  
P(T<=t) two-tail 0.00  
T Critical Two-tail 1.96   

Means are Equivalent because p1 & p2 < 0.05   
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TABLE A.3 
RESULTS OF APPLYING THE EQUIVALENCE TEST TO EXAMINE THE PERFORMANCE OF THE IAS COMPARED WITH 

THE STANDARD AUTOPILOT WHEN MAINTAINING AN ALTITUDE OF 32000 FT. 

Equivalence Test for Means 
  

Equal Sample Sizes 

α = 0.05     

  IAS AP 

Mean 32000.72 32000.03 

Variance 0.24 0.00 

Observations 420 420 

Pooled Variance 0.12  
Hypothesized Mean Difference 0.80  
df 838.00  
t Stat 4.36 -61.79 

P(T<=t) one-tail 0.00 0.00 

T Critical one-tail 1.65  
P(T<=t) two-tail 0.00  
T Critical Two-tail 1.96   
Means are Equivalent because p1 & p2 < 0.05   

 

 

 

TABLE A.4 
RESULTS OF APPLYING THE EQUIVALENCE TEST TO EXAMINE THE PERFORMANCE OF THE IAS COMPARED WITH 

THE STANDARD AUTOPILOT WHEN MAINTAINING AN ALTITUDE OF 4000 FT. 

Equivalence Test for Means 
  

Equal Sample Sizes 

α = 0.05     

  IAS AP 

Mean 4000.38 4000.28 

Variance 0.23 0.01 

Observations 420 420 

Pooled Variance 0.12  
Hypothesized Mean Difference 0.80  
df 838.00  
t Stat 29.38 -37.06 

P(T<=t) one-tail 0.00 0.00 

T Critical one-tail 1.65  
P(T<=t) two-tail 0.00  
T Critical Two-tail 1.96   

Means are Equivalent because p1 & p2 < 0.05   
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TABLE A.5 
RESULTS OF APPLYING THE EQUIVALENCE TEST TO EXAMINE THE PERFORMANCE OF THE IAS COMPARED WITH 

THE STANDARD AUTOPILOT WHEN MAINTAINING A CLIMB RATE OF 500 FT/MIN. 

Equivalence Test for Means 
  

Equal Sample Sizes 

α = 0.05     

  IAS AP 

Mean 498.89 413.88 

Variance 4056.47 36247.80 

Observations 147 147 

Pooled Variance 20152.14  
Hypothesized Mean Difference 0.80  
df 292.00  
t Stat -5.09 -5.18 

P(T<=t) one-tail 1.00 0.00 

T Critical one-tail 1.65  
P(T<=t) two-tail 0.00  
T Critical Two-tail 1.97   

Cannot conclude means are equivalent   
 

 

 

TABLE A.6 
RESULTS OF APPLYING THE EQUIVALENCE TEST TO EXAMINE THE PERFORMANCE OF THE IAS COMPARED WITH 

THE STANDARD AUTOPILOT WHEN MAINTAINING A CLIMB RATE OF 1500 FT/MIN. 

Equivalence Test for Means 
  

Equal Sample Sizes 

α = 0.05     

  IAS AP 

Mean 1503.47 1327.31 

Variance 5403.78 3514.27 

Observations 147 147 

Pooled Variance 4459.03  
Hypothesized Mean Difference 0.80  
df 292.00  
t Stat -22.51 -22.72 

P(T<=t) one-tail 1.00 0.00 

T Critical one-tail 1.65  
P(T<=t) two-tail 0.00  
T Critical Two-tail 1.97   

Cannot conclude means are equivalent   
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TABLE A.7 
RESULTS OF APPLYING THE EQUIVALENCE TEST TO EXAMINE THE PERFORMANCE OF THE IAS COMPARED WITH 

THE STANDARD AUTOPILOT WHEN MAINTAINING A CLIMB RATE OF 2500 FT/MIN. 

Equivalence Test for Means 
  

Equal Sample Sizes 

α = 0.05     

  IAS AP 

Mean 2519.27 2347.46 

Variance 12673.10 4014.60 

Observations 147 147 

Pooled Variance 8343.85  
Hypothesized Mean Difference 0.80  
df 292.00  
t Stat -16.05 -16.20 

P(T<=t) one-tail 1.00 0.00 

T Critical one-tail 1.65  
P(T<=t) two-tail 0.00  
T Critical Two-tail 1.97   

Cannot conclude means are equivalent   
 

 

 

TABLE A.8 
RESULTS OF APPLYING THE EQUIVALENCE TEST TO EXAMINE THE PERFORMANCE OF THE IAS COMPARED WITH 

THE STANDARD AUTOPILOT WHEN MAINTAINING A CLIMB (SINK) RATE OF -500 FT/MIN. 

Equivalence Test for Means 
  

Equal Sample Sizes 

α = 0.05     

  IAS AP 

Mean -491.51 -486.45 

Variance 3297.94 640.19 

Observations 147 147 

Pooled Variance 1969.07  
Hypothesized Mean Difference 0.80  
df 292.00  
t Stat 1.13 0.82 

P(T<=t) one-tail 0.13 0.21 

T Critical one-tail 1.65  
P(T<=t) two-tail 0.26  
T Critical Two-tail 1.97   

Cannot conclude means are equivalent   
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TABLE A.9 
RESULTS OF APPLYING THE EQUIVALENCE TEST TO EXAMINE THE PERFORMANCE OF THE IAS COMPARED WITH 

THE STANDARD AUTOPILOT WHEN MAINTAINING A CLIMB (SINK) RATE OF -1000 FT/MIN. 

Equivalence Test for Means 
  

Equal Sample Sizes 

α = 0.05     

  IAS AP 

Mean -988.85 -1187.84 

Variance 4295.21 647.30 

Observations 147 147 

Pooled Variance 2471.25  
Hypothesized Mean Difference 0.80  
df 292.00  
t Stat -34.18 -34.46 

P(T<=t) one-tail 1.00 0.00 

T Critical one-tail 1.65  
P(T<=t) two-tail 0.00  
T Critical Two-tail 1.97   

Cannot conclude means are equivalent   
 

 

 

TABLE A.10 
RESULTS OF APPLYING THE EQUIVALENCE TEST TO EXAMINE THE PERFORMANCE OF THE IAS COMPARED WITH 

THE STANDARD AUTOPILOT WHEN MAINTAINING A CLIMB (SINK) RATE OF -2000 FT/MIN. 

Equivalence Test for Means 
  

Equal Sample Sizes 

α = 0.05     

  IAS AP 

Mean -1996.08 -1886.80 

Variance 6133.68 1901.15 

Observations 147 147 

Pooled Variance 4017.41  
Hypothesized Mean Difference 0.80  
df 292.00  
t Stat 14.89 14.67 

P(T<=t) one-tail 0.00 0.00 

T Critical one-tail 1.65  
P(T<=t) two-tail 0.00  
T Critical Two-tail 1.97   

Means are Equivalent because p1 & p2 < 0.05   
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TABLE A.11 
RESULTS OF APPLYING THE EQUIVALENCE TEST TO EXAMINE THE PERFORMANCE OF THE IAS COMPARED WITH 

THE STANDARD AUTOPILOT WHEN MAINTAINING A SPEED OF 320 KNOTS. 

Equivalence Test for Means 
  

Equal Sample Sizes 

α = 0.05     

  IAS AP 

Mean 319.98 320.00 

Variance 0.00 0.00 

Observations 180 180 

Pooled Variance 0.00  
Hypothesized Mean Difference 0.80  
df 358.00  
t Stat 337.34 -321.25 

P(T<=t) one-tail 0.00 0.00 

T Critical one-tail 1.65  
P(T<=t) two-tail 0.00  
T Critical Two-tail 1.97   

Means are Equivalent because p1 & p2 < 0.05  
 

 

 

TABLE A.12 
RESULTS OF APPLYING THE EQUIVALENCE TEST TO EXAMINE THE PERFORMANCE OF THE IAS COMPARED WITH 

THE STANDARD AUTOPILOT WHEN MAINTAINING A SPEED OF 350 KNOTS. 

Equivalence Test for Means 
  

Equal Sample Sizes 

α = 0.05     

  IAS AP 

Mean 349.98 350.00 

Variance 0.00 0.00 

Observations 180 180 

Pooled Variance 0.00  
Hypothesized Mean Difference 0.80  
df 358.00  
t Stat 167.35 -159.95 

P(T<=t) one-tail 0.00 0.00 

T Critical one-tail 1.65  
P(T<=t) two-tail 0.00  
T Critical Two-tail 1.97   

Means are Equivalent because p1 & p2 < 0.05  
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TABLE A.13 
RESULTS OF APPLYING THE EQUIVALENCE TEST TO EXAMINE THE PERFORMANCE OF THE IAS COMPARED WITH 

THE STANDARD AUTOPILOT WHEN MAINTAINING A SPEED OF 230 KNOTS. 

Equivalence Test for Means 
  

Equal Sample Sizes 

α = 0.05      

  IAS AP 

Mean 229.95 230.00 

Variance 0.00 0.00 

Observations 180 180 

Pooled Variance 0.00  
Hypothesized Mean Difference 0.80  
df 358.00  
t Stat 305.61 -268.03 

P(T<=t) one-tail 0.00 0.00 

T Critical one-tail 1.65  
P(T<=t) two-tail 0.00  
T Critical Two-tail 1.97   

Means are Equivalent because p1 & p2 < 0.05  
 

 

 

TABLE A.14 
RESULTS OF APPLYING THE EQUIVALENCE TEST TO EXAMINE THE PERFORMANCE OF THE IAS COMPARED WITH 

THE STANDARD AUTOPILOT AND THE HUMAN PILOT WHEN MAINTAINING A 3 DEGREES GLIDESLOPE DURING FINAL 

APPROACH IN CALM WEATHER. 

Equivalence Test for Means   
Unequal Sample Sizes   
α = 0.05 

  
  IAS AP/Human 

Mean 3.02 2.99 
Variance 0.0009 0.0002 
Observations 1059 106 
Pooled Variance 0.0009  
Hypothesized Mean Difference 0.8  
df 1163  
t Stat 248.07 -268.5 
P(T<=t) one-tail 0 0 
T Critical one-tail 1.64  
P(T<=t) two-tail 0  
T Critical Two-tail 1.96  
Means are Equivalent because p1 & p2 < 0.05     
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TABLE A.15 
RESULTS OF APPLYING THE EQUIVALENCE TEST TO EXAMINE THE PERFORMANCE OF THE IAS COMPARED WITH 
THE STANDARD AUTOPILOT WHEN MAINTAINING A THREE DEGREES GLIDESLOPE DURING FINAL APPROACH IN 

EXTREME WEATHER CONDITIONS. 

Equivalence Test for Means 
  

Equal Sample Sizes 

α = 0.05     

  IAS AP 

Mean 3.03 2.93 

Variance 0.07 0.02 

Observations 1429 1429 

Pooled Variance 0.05  
Hypothesized Mean Difference 0.80  
df 2856.00  
t Stat 89.52 -110.65 

P(T<=t) one-tail 0.00 0.00 

T Critical one-tail 1.65  
P(T<=t) two-tail 0.00  
T Critical Two-tail 1.96   

Means are Equivalent because p1 & p2 < 0.05   
 
 

 

 

TABLE A.16 
RESULTS OF APPLYING THE EQUIVALENCE TEST TO EXAMINE THE PERFORMANCE OF THE IAS COMPARED WITH 

THE STANDARD AUTOPILOT AND THE HUMAN PILOT WHEN MAINTAINING THE CENTRELINE OF THE LANDING 

RUNWAY (0 DEGREES ANGLE) DURING FINAL APPROACH AND LANDING IN CALM WEATHER. 

Equivalence Test for Means   
Unequal Sample Sizes   
α = 0.05 

  
  IAS AP/Human 

Mean 0.00004 -0.00002 
Variance 0.000 0.000 
Observations 1246 135 
Pooled Variance 0.000  
Hypothesized Mean Difference 0.8  
df 1379  
t Stat 4926.46 -4944.38 
P(T<=t) one-tail 0.000 0.000 
T Critical one-tail 1.64  
P(T<=t) two-tail 0.000  
T Critical Two-tail 1.96   

Means are Equivalent because p1 & p2 < 0.05   
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Abstract— An Intelligent Autopilot System (IAS) that can 

learn piloting skills by observing and imitating expert human 

pilots is proposed. IAS is a potential solution to the current 

problem of Automatic Flight Control Systems of being unable to 

handle flight uncertainties, and the need to construct control 

models manually. A robust Learning by Imitation approach is 

proposed which uses human pilots to demonstrate the task to be 

learned in a flight simulator while training datasets are captured 

from these demonstrations. The datasets are then used by 

Artificial Neural Networks to generate control models 

automatically. The control models imitate the skills of the 

human pilot when performing piloting tasks including handling 

flight uncertainties such as severe weather conditions. 

Experiments show that IAS performs learned take-off, climb, 

and slow ascent tasks with high accuracy even after being 

presented with limited examples, as measured by Mean Absolute 

Error and Mean Absolute Deviation. The results demonstrate 

that the IAS is capable of imitating low-level sub-cognitive skills 

such as rapid and continuous stabilization attempts in stormy 

weather conditions, and high-level strategic skills such as the 

sequence of sub-tasks necessary to pilot an aircraft starting from 

the stationary position on the runway, and ending with a steady 

cruise.  

I. INTRODUCTION 

Human pilots are trained to handle flight uncertainties or 

emergency situations such as severe weather conditions or 

system failure. In contrast, Automatic Flight Control Systems 

(AFCS/Autopilot) are highly limited, capable of performing 

minimal piloting tasks in non-emergency conditions. Strong 

turbulence, for example, can cause the autopilot to disengage 

or even attempt an undesired action which could jeopardise 

flight safety. The limitations of autopilots require constant 

monitoring of the system and the flight status by the flight 

crew to react quickly to any undesired situation or 

emergencies. On the other hand, trying to anticipate 

everything that could go wrong with a flight, and 

incorporating that into the set of rules or control models 

“hardcoded” in an AFCS is infeasible. There have been 

reports either discussing the limitations of current autopilots 

[1] [2] such as the inability to handle severe weather 

conditions, or blaming autopilots for a number of aviation 

catastrophes. One such example was Air France flight AF447 

on June 1st 2009 where the aircraft entered a severe turbulence 

 
 

zone forcing it to climb steeply and stall. Shortly after that, 

the autopilot disengaged causing the aircraft to lose altitude 

dramatically. Unfortunately, it was too late for the flight crew 

to rectify the situation [3] [4]. 

This work aims to address this problem by creating an 

Intelligent Autopilot System (IAS) that can learn from human 

pilots by applying the Learning by Imitation concept with 

Artificial Neural Networks. By using this approach we aim to 

extend the capabilities of modern autopilots and enable them 

to autonomously adapt their piloting to suit multiple scenarios 

ranging from normal to emergency situations. 

This paper is structured as follows: part (II) covers the 

autopilot problem in more details, and related work on 

utilizing Learning by Imitation in autonomous aviation. Part 

(III) explains the proposed Intelligent Autopilot System (IAS) 

prototype. Part (IV) describes the experiments, Part (V) 

describes the results by comparing the behaviour of the 

human pilot with the behaviour of the Intelligent Autopilot, 

and part (VI) provides an analysis of the results. Finally, we 

provide conclusions and future work. 

II. BACKGROUND 

A.  Automatic Flight Control Systems 

Current operational autopilots fall under the domain of 

Control Theory. Classic and modern autopilots rely on 

controllers such as Proportional Integral Derivative controller 

(PID controller), and Finite-State automation [5]. Many 

recent research efforts focus on enhancing flight controllers, 

through the introduction of various methods such as a non-

adaptive Backstepping approach [6], Dynamical Inversion 

flight control approach based on Artificial Neural Network 

Disturbance Observer to handle the dynamical inversion error 

factor [7], an L1 adaptive controller which is based on 

piecewise constant adaptive laws [8], a multi-layered hybrid 

linear/non-linear controller for biologically inspired 

Unmanned Aerial Vehicles [9], and a fault-tolerant control 

based on Gain-Scheduled PID [10]. However, manually 

designing and developing all the necessary controllers to 

handle the complete spectrum of flight scenarios and 

uncertainties ranging from normal to emergency situations 

might not be the ideal method due to feasibility limitations 

such as the difficulty in covering all possible eventualities.   
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A. Artificial Neural Networks 

Artificial Neural Networks (ANNs) are popular learning 

methods due to their ability to handle highly dynamic real-

time large volumes of data. They are a highly interconnected 

system capable of processing data through their dynamic state 

response to external inputs. [11] Although Artificial Neural 

Networks are sometimes referred to as slow learners, as soon 

as the learning model is generated, ANNs are very fast 

classification and regression techniques that are suitable for 

applications running in dynamic and high-speed 

environments [12] such as high frequency trading [13], and 

electrical circuits management and analysis [14]. ANNs are 

also used in robotics applications due to their capability of 

handling large amounts of real-time noisy sensor data [15]. 

The latter resemble the Intelligent Autopilot System (IAS) 

which should be able to receive real-time flight status data 

from multiple sensors, process the data, and apply the 

appropriate command control actions given the current flight 

state. 

 

B. Learning by Imitation for Autonomous Flight Control 

Learning by Imitation can be applied to machines just as 

it can be applied to humans. Michie et al [16] demonstrated 

this concept with the attempt to balance a pole by a simulated 

system. Learning by Imitation is split into two main parts each 

with its own objectives: 1. learning a policy or a low-level 

task which could represent a direct mapping between states 

and relative actions, and 2. learning a reward function or a 

high-level task which could represent a specific goal to be 

achieved.  

While Behavioural Cloning [17] has been applied to 

capture the high-level decision making process of a human 

pilot, Apprenticeship Leaning [18] has been applied to 

capture low-level highly dynamic tasks. Sammut [17] 

presented an early attempt to develop an autopilot that can 

learn by imitation. In [17], the Decision Tree induction 

program C4.5 was used to capture the set of rules or high-

level tasks required to fly an aircraft in a flight simulator. The 

rules were transformed into a collection of If-Statements that 

govern the control commands sent by the autopilot. In [17], 

the main challenge was the need to capture low-level sub-

cognitive actions that a human pilot performs rapidly.  

Apprenticeship Learning using Inverse Reinforcement 

Learning, either by considering a Markov decision process 

[19], or by considering Gradient methods [20] focus on 

capturing low-level highly dynamic and rapid actions of a 

human demonstrator. These methods in general do not depend 

on receiving a Reward Function in advance, which is how 

classic Reinforcement Learning works, instead, the proposed 

approach attempts to find a reward function by observing how 

an expert human demonstrates the task to be learned by the 

system. Abbeel et al [21] applied Apprenticeship Learning to 

a dynamic control system performing acrobatic manoeuvres 

using a helicopter. Applying Apprenticeship Learning proved 

to be an efficient learning technique to capture the expert 

demonstrator’s skills. In [21], multiple demonstrations by an 

expert were gathered. The goal was to consider observations 

as noisy attempts from the expert while performing the 

desired manoeuvre successfully. The main reported challenge 

was the difficulty to capture high-level dynamic models 

present in complex manoeuvres where successful 

performance of manoeuvres require a careful transition 

among multiple sub-actions.  

Recently, and in the same context, Matsumoto et al [22] 

proposed a similar learning approach that depends on 

Learning from Demonstration (LFD) to capture the human 

pilot’s skills and apply them in an autonomous Unmanned 

Aerial System (UAS) to achieve the same level of safety 

observed in civil aviation.   

III. THE INTELLIGENT AUTOPILOT SYSTEM 

The proposed Intelligent Autopilot System (IAS) in this 

paper can be viewed as an apprentice that observes the 

demonstration of a new task by the experienced teacher, and 

then performs the same task autonomously. In the IAS we 

bridge the gap between Behavioural Cloning and 

Apprenticeship Learning. A successful generalization of 

Learning by Imitation should take into consideration the 

capturing of low-level models and high-level models, which 

can be viewed as rapid and dynamic sub-actions that occur in 

fractions of a second, and actions governing the whole process 

and how it should be performed strategically. It is important 

to capture and imitate both levels in order to handle flight 

uncertainties successfully. 

The IAS is made of the following components: a flight 

simulator, an interface, a database, and Artificial Neural 

Networks. The IAS implementation method has three steps: 

A. pilot data collection, B. training, and C. autonomous 

control. In each step, different IAS components are used. The 

following sections describe each step and the components 

used in turn. 

A. Pilot Data Collection 

Fig. 1 illustrates the IAS components used during the pilot 

data collection step. 

 

1) Flight Simulator 

Before the IAS can be trained or can take control, we must 

collect data from a pilot. This is performed using X-Plane 

which is an advanced flight simulator that has been used as 

the simulator of choice in many research papers such as [23] 

[24] [25]. 

 
 

Fig.  1. Block diagram illustrating IAS components used during the pilot 

data collection step. 
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X-Plane is used by multiple organizations and industries 

such as NASA, Boeing, Cirrus, Cessna, Piper, Precession 

Flight Controls Incorporated, Japan Airlines, and the 

American Federal Aviation Administration.1 X-Plane can 

communicate with external applications by sending and 

receiving flight status and control commands data over a 

network through User Datagram Protocol (UDP) packets. For 

this work, the simulator is set up to send and receive packets 

comprising desired data every 0.1 second.   

 

2) IAS Interface   

The IAS Interface is responsible for data flow between the 

flight simulator and the system in both directions. The 

Interface contains control command buttons that provide a 

simplified yet sufficient aircraft control interface including 

throttle, brakes, gear, elevator, aileron, and rudder, which can 

be used to perform basic tasks of piloting an aircraft such as 

take-off and landing in the simulator. It also displays flight 

data received from the simulator.  

Data collection is started immediately before 

demonstration, then; the pilot uses the Interface to perform the 

piloting task to be learned. The Interface collects flight data 

from X-Plane over the network using UDP packets, and 

collects the pilot’s actions while performing the task, which 

are also sent back to the simulator as manual control 

commands. The Interface organizes the collected flight data 

received from the simulator (inputs), and the pilot’s actions 

(outputs) into vectors of inputs and outputs, which are sent to 

the database every 1 second. 

 

3) Database   

An SQL Server database stores all data captured from the 

pilot demonstrator and X-Plane, which are received from the 

Interface. The database contains tables designed to store: 1. 

continuous flight data as inputs, and 2. pilot’s actions as 

outputs. These tables are then used as training datasets to train 

the Artificial Neural Networks of IAS.    

 

A. Training 

1) Artificial Neural Networks 

After the human pilot data collection step is completed, 

Artificial Neural Networks are used to generate learning 

models from the captured datasets through offline training. 

Fig. 2 illustrates the training step.  

 

 

 
 

 

Fig.  2. Block diagram illustrating IAS components used during training. 
 

 
1 "X-Plane 10 Global  

http://www.x-plane.com 

Four feedforward Artificial Neural Networks represent the 

core of IAS. Each ANN is designed and trained to handle 

specific controls. The inputs of ANN 1 are: speed and altitude 

values, and the outputs are: throttle, gear, and brakes values. 

The inputs of ANN 2 are: speed, altitude, and pitch values, 

and the output is: elevator value. The input of ANN 3 is: roll 

value, and the output is: aileron value. The input of ANN 4 is: 

heading value, and the output is: rudder value. 

The topologies of the four ANNs are illustrated in Fig. 3.  

The method for choosing ANN topologies in this work is 

based on a rule-of-thumb [26] which indicates that problems 

requiring more than one hidden layer are rarely encountered.   

This rule follows an approach that tries to avoid under-fitting 

caused by too few neurons in the hidden layer, or over-fitting 

caused by too many neurons, by having the number of hidden 

neurons less than or equal to twice the size of the input layer. 

During training, the datasets are normalized, and retrieved 

from the database. Then, the datasets are fed to the ANNs. 

Next, Sigmoid (1) [26] and Hyperbolic Tangent (Tanh) (2) 

[26] functions are applied for the neuron activation step, 

where 𝑓(𝑥) is the activation value for each neuron, and 𝑥 is 

the relevant target value: 

                                                                                                    

         𝑓(𝑥) =  
1

1+ 𝑒−𝑥                                         (1) 

 

                     𝑓(𝑥) =  
𝑒2𝑥 − 1

𝑒2𝑥 + 1
                                 (2) 

    
The Sigmoid activation function (1) is used by ANN 1 

since all input and output values are positive, while Tanh is 

used by ANN 2, 3, and 4 since the datasets contain few 

negative values: pitch (ANN 2), rudder (ANN 3), roll, and 

aileron (ANN 4). 

 

 
 
Fig.  3. Topology of ANN 1 trained to handle throttle, gear and brakes (top 

left), topology of ANN 2 trained to handle elevator control (top right), 

topology of ANN 3 trained to handle aileron control (bottom left), and 

topology of ANN 4 trained to handle rudder control (bottom right). 

 

ANN 1 ANN 2 

ANN 3 ANN 4 
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Next, Backpropagation is applied. Based on the activation 

function, (3) [27], or (4) [27] are applied to calculate the error 

signal (𝛿) for each neuron where 𝑡𝑛 is the desired target value 

and 𝑎𝑛 is the actual activation value:    

 

δ𝑛 = (𝑡𝑛 −  𝑎𝑛)𝑎𝑛(1 − 𝑎𝑛)                             (3) 

                                                                                                                       

δ𝑛 = (𝑡𝑛 − 𝑎𝑛)(1 − 𝑎𝑛)(1 +  𝑎𝑛)                        (4) 

 

Finally, coefficients of models (weights and biases) are 

updated using (5) [28] where δ𝑤𝑖,𝑗 is the change in the weight 

between nodes j and k.  

 

              𝑤𝑖,𝑗 =  𝑤𝑖,𝑗 +  δ𝑤𝑖,𝑗                                   (5) 

 

When training is completed, the learning models are 

generated, and the free parameters or coefficients represented 

by weights and biases of the models are stored in the database.  

B. Autonomous Control  

Once trained, the IAS can now be used for autonomous 

control. Fig. 4 illustrates the components used during the 

autonomous control step.  

 

1) IAS Interface 

Here, the Interface retrieves the coefficients of the models 

from the database for each trained ANN, and receives flight 

data from the flight simulator every 0.1 second. The Interface 

organizes the coefficients into sets of weights and biases, and 

organizes data received from the simulator into sets of inputs 

for each ANN. The relevant coefficients, and flight data input 

sets are then fed to the ANNs of the IAS to produce outputs. 

The outputs of the ANNs are sent to the Interface which sends 

them to the flight simulator as autonomous control commands 

using UDP packets every 0.1 second. 

 

2) Artificial Neural Networks 

The relevant set of flight data inputs received through the 

Interface is used by each ANN input neurons along with the 

relevant coefficients to predict and output the appropriate 

control commands given the flight status by applying (1) and 

(2). The values of the output layer are continuously sent to the 

Interface which sends them to the flight simulator as 

autonomous control commands. 

IV. EXPERIMENTS 

In order to assess the effectiveness of the proposed 

approach, the Intelligent Autopilot System was tested in two 

experiments: A. autonomous flying under calm weather, and 

B. autonomous flying under stormy weather. Each experiment 

is composed of 10 attempts by the IAS to fly autonomously 

under the given weather conditions.  

At this point of our work, the scope only covers the ability 

of the proposed system to imitate the behaviour of the human 

pilot while performing basic piloting tasks. We do not focus 

on maintaining a strict velocity and attitude during the flight, 

which is among the tasks to be taught to the IAS in our next 

work.      

 
 
Fig.  4. Block diagram illustrating IAS components used during autonomous 

control. 

 

Fig. 5 illustrates a break-down of the piloting task to be 

learned, to four sub-tasks based on time. Each attempt lasted 

for 182 seconds. The human pilot who provided the 

demonstrations is the first Author. The simulated aircraft used 

for the experiments is Cirrus Vision SF50. Since it is a light 

single- engine jet aircraft, it is relatively simpler to control, 

and responds quickly to pilot input. The experiments are as 

follows:  

A. Autonomous Flying under Calm Weather  

The purpose of this experiment is to assess the behaviour 

of the IAS compared to the behaviour of the human pilot 

under calm weather conditions.  

 

 

1) Data Collection  

In this experiment, the human pilot used the IAS Interface 

to perform the following in the flight simulator: take off, 

gaining altitude, and maintaining a slower climb rate with a 

fixed vector, under calm weather with null readings of wind 

gusts and turbulence. The performed tasks lasted for 182 

seconds as Fig. 5 shows. While the pilot performed the 

demonstration, the Interface collected speed and altitude as 

simulator inputs, throttle, gear, and brakes as pilot outputs, 

and elevator control data (speed, altitude, pitch as simulator 

inputs, and elevator as pilot output). The Interface stored 

collected data as two training datasets in the database. Only 

one demonstration was presented to the system under calm 

weather.  

 
Fig.  5. Piloting tasks over time. 
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An additional data collection process was initiated to 

capture and compare the aircraft’s Automatic Flight Control 

(AFC)/Autopilot performance with the IAS under calm 

weather conditions. Due to the AFC’s inability to take-off, it 

was engaged at an altitude of 1600 ftmsl. The AFC was set to 

climb to an altitude of 6000 ftmsl at a rate of 1500 ftmsl per 

minute. 

 

2) Training 

For this experiment, ANN 1 (throttle, gear, and brakes 

control), and ANN 2 (elevator control) were trained until low 

Mean Squared Error (MSE) values were achieved (below 

0.1).  

 

3) Control 

After training the ANNs on the relevant training datasets, 

the aircraft was reset to the runway in the flight simulator, 

calm weather conditions were chosen, and the IAS was 

engaged. ANN 1 (throttle, gear, and brakes control), and ANN 

2 (elevator control) operate simultaneously to control the 

aircraft autonomously. Through the Interface, they receive: 1. 

continuous flight data from the flight simulator as inputs, and 

2. coefficients of models from the database (calm weather 

throttle, gear, brakes, and elevator control models) to predict 

and output command controls that are sent to the flight 

simulator. This process allows the IAS to perform learned 

tasks: take off, gaining altitude, and maintaining a slow climb 

rate with a fixed vector autonomously. This was repeated 10 

times to assess performance consistency.    

B. Autonomous Flying under Stormy Weather  

The purpose of this experiment is to assess the behaviour 

of the Intelligent Autopilot compared to the behaviour of the 

human pilot under stormy weather conditions. 

 

1) Data Collection  

 In this experiment, the human pilot used the IAS Interface 

to perform the following in the flight simulator: take off, 

gaining altitude, and maintaining a slower climb rate with a 

fixed vector, under stormy weather. The weather conditions 

included: wind gusts reaching up to 33 knots, wind directions 

flowing from all directions (0 to 360 degrees clockwise 

deviation from north), local turbulence up to 0.19, and rain 

and hail perception up to 68 mm. 

While the pilot performed the demonstration, the Interface 

collected rudder control and aileron control data only, and 

stored them as two training datasets in the database.  

Two demonstrations were required to capture the skill 

needed to keep the light aircraft on the runway during strong 

crosswinds using rudders, and only one demonstration of roll 

stabilization using ailerons was presented to the system. To 

test the system’s ability to generalize well in unseen 

conditions, no new throttle, gear, brakes, and elevator control 

data was collected under stormy weather conditions; instead, 

the data collected for these controls in Experiment 1 were 

reused. This aims to test the ability of the models generated 

under calm weather conditions to generalize in the unseen 

stormy weather conditions.    

During taxi speed gain on the runway, the human pilot 

attempted multiple heading corrections using the rudder to 

stay on the runway while strong crosswinds pushed the 

aircraft right and left. After take-off, the human pilot 

constantly corrected the roll deviation by controlling the 

ailerons. The collected data was cleaned by removal of 

outliers. These were caused by noise represented by values 

that fall within transition phases (e.g. aggressive correction of 

heading), human error, or signal error.  

An additional data collection process was initiated to 

capture and compare the aircraft’s AFC performance with the 

IAS under stormy weather conditions with the same settings 

used in experiment 1. It should be mentioned that the AFC 

disengaged itself multiple times while flying through the 

storm which made it difficult to capture a complete 

demonstration, especially when the strong winds affected the 

aircraft’s stability and caused it to stall. 

 

2) Training 

For this experiment, ANN 3 (rudder control), and ANN 4 

(aileron control) were trained until low Mean Squared Error 

(MSE) values were achieved (below 0.1).  

 

3) Control 

After training the ANNs on the relevant training datasets, 

the aircraft was reset to the runway in the flight simulator, 

stormy weather conditions were chosen, and the IAS was 

engaged. ANN 1 (throttle, gear, and brakes control), ANN 2 

(elevator control), ANN 3 (aileron control), and ANN 4 

(rudder control) operate simultaneously to control the aircraft 

autonomously. Through the Interface, they receive: 1. 

continuous flight data from the flight simulator as inputs, and 

2. coefficients of models from the database (calm weather 

throttle, gear, brakes, and elevator control models, and stormy 

weather rudder and aileron control models) to predict and 

output command controls that are sent to the flight simulator. 

This process allows the IAS to perform learned tasks: take off, 

gaining altitude, and maintaining a slow climb rate with a 

fixed vector autonomously, while continuously correcting the 

aircraft’s heading and roll. This was repeated 10 times to 

assess performance consistency.    

V. RESULTS 

The following section describes the results of the 

conducted tests. The 10 attempts by IAS to fly autonomously 

in each experiment (calm and stormy weather) were averaged 

and compared with the performance of the human pilot, and 

the aircraft’s AFC using Mean Absolute Error (MAE), Mean 

Absolute Deviation (MAD), and illustrated by Behaviour 

Charts.  

A. Experiment 1 (Calm Weather Condition) 

Two models were generated with the following MSE 

values as table I shows. 

Table II lists the accuracy assessment results by 

comparing the behaviour of IAS with the behaviour of the 

human pilot in the calm weather experiment.  
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Table III lists the accuracy assessment results by 

comparing the behaviour of IAS with the behaviour of the 

aircraft’s AFC in the calm weather experiment.  

Fig. 6, 7, and 8 illustrate the Intelligent Autopilot’s control 

commands compared to the human pilot. Fig. 9 and 10 

illustrate altitude and speed over time comparisons between 

the human pilot, the Intelligent Autopilot System, and the 

aircraft’s AFC. 

B. Experiment 2 (Stormy Weather Condition) 

Two models were generated with MSE values as table IV 

shows. 

Table V lists the accuracy assessment results by 

comparing the behaviour of IAS with the behaviour of the 

human pilot in the stormy weather experiment. 

Table VI lists the accuracy assessment results by 

comparing the behaviour of IAS with the behaviour of the 

aircraft’s AFC in the stormy weather experiment.  

 
TABLE I 

MSE VALUES OF THE MODELS GENERATED UNDER CALM 

WEATHER 

 
 

TABLE II 

IAS ACCURACY ASSESSMENT RESULTS COMPARED WITH THE 

HUMAN PILOT. ACCURACY IS MEASURED USING MEAN 
ABSOLUTE ERROR (MAE) AND MEAN ABSOLUTE DEVIATION 

(MAD) – CALM WEATHER. 

 
 

TABLE III 
IAS COMPARED WITH THE AIRCRAFT’S AFC. ACCURACY IS 

MEASURED USING MAE AND MAD – CALM WEATHER. 

 
 

 

 

 
 

Fig.  6. (Exp. 1) A comparison between the human pilot and the 

Intelligent Autopilot’s average, maximum, and minimum throttle 

commands over time during the four phases –separated by dotted 
lines- as illustrated in Fig. 4. 

 

Fig. 11, 12, and 13 illustrate the IAS control commands 

compared to the human pilot in the stormy weather 

experiment. Fig. 14 and 15 illustrate altitude and speed over 

time comparisons between the human pilot, the IAS, and the 

aircraft’s AFC in the stormy weather experiment. 

Fig. 16 generated from sample heading/rudder data, 

illustrates a comparison between the human pilot and IAS 

heading correction attempts using the rudder. Fig. 17 

generated from sample roll/aileron data illustrates the 

comparison between the human pilot and the IAS roll 

correction attempts using the ailerons. 

 
TABLE IV 

MSE VALUES OF THE MODELS GENERATED UNDER STORMY 

WEATHER 

 
 

TABLE V 

IAS ACCURACY ASSESSMENT RESULTS COMPARED WITH THE 
HUMAN PILOT. ACCURACY IS MEASURED USING MEAN 

ABSOLUTE ERROR (MAE) AND MEAN ABSOLUTE DEVIATION 

(MAD) – STORMY WEATHER. 

 
 
 

TABLE VI 

IAS COMPARED WITH THE AIRCRAFT’S AFC. ACCURACY IS 
MEASURED USING MEAN ABSOLUTE ERROR (MAE) AND MEAN 

ABSOLUTE DEVIATION (MAD) – STORMY WEATHER. 

 
 

 

 

 

 

 
 

Fig.  7. (Exp. 1) A comparison between the human pilot and the 
Intelligent Autopilot’s average, maximum, and minimum gear 

commands over time. 
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Fig.  8. (Exp. 1) A comparison between the human pilot and the 

Intelligent Autopilot’s average, maximum, and minimum elevator 

commands over time. 
 

 

 
Fig.  10. (Exp. 1) A comparison between the human pilot, the 

aircraft’s    AFC/Autopilot, and the Intelligent Autopilot’s average, 
maximum, and minimum speed over time. 

 

 
Fig.  12. (Exp. 2) A comparison between the human pilot and the 

Intelligent Autopilot’s average, maximum, and minimum gear 

commands over time. 

 

 

 
 

Fig.  14. (Exp. 2) A comparison between the human pilot, the aircraft’s 

AFC/Autopilot, and the Intelligent Autopilot’s average, maximum, and 

minimum altitude over time. 

 
Fig.  9. (Exp. 1) A comparison between the human pilot, the 

aircraft’s AFC/Autopilot, and the Intelligent Autopilot’s average, 

maximum, and minimum altitude over time. 

 
 

 
Fig.  11. (Exp. 2) A comparison between the human pilot and the 
Intelligent Autopilot’s average, maximum, and minimum throttle 

commands over time during the four phases –separated by dotted lines- 

as illustrated in Fig. 4. 
 

 
Fig.  13. (Exp. 2) A comparison between the human pilot and the 

Intelligent Autopilot’s average, maximum, and minimum elevator 

commands over time. 
 

 

 
 

Fig.  15. (Exp. 2) A comparison between the human pilot, the 

aircraft’s AFC/Autopilot, and the Intelligent Autopilot’s average, 

maximum, and minimum speed over time. 
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Fig.  16. (Exp. 2) A comparison between the human pilot and the 

Intelligent Autopilot’s average, maximum, and minimum heading 
correction attempts. The middle part between the two dotted lines is 

the area where no corrections are required (based on a heading of 187 

degrees). The right part illustrates a deviation in heading towards the 

right, while the left part illustrates a deviation in heading towards the 

left. 

VI. ANALYSIS 

As can be seen in Figs 6 to 10, experiment 1 (calm weather 

condition) presented very desirable results. The IAS was 

capable of imitating the human pilot’s actions and behaviour 

with remarkable accuracy, and strong consistency.  

As can be seen in Figs 11 to 17, experiment 2 (stormy 

weather condition) showed the ability of IAS to imitate rapid 

stabilization actions, and generalize well in unseen 

conditions. The system used the calm weather models to fly 

in stormy conditions gracefully.  

The system was able to imitate multiple human pilot’s 

skills and behaviour after being presented with very limited 

examples (1 example for throttle, gear, and brakes, 1 example 

for elevator control, 1 example for aileron control, and 2 

examples for rudder control). The results show that the 

Intelligent Autopilot continued to stabilize the aircraft in 

difficult weather condition, while the AFC of the simulated 

aircraft disengaged itself multiple times.  

It should be mentioned that the human pilot found it 

difficult to regulate the speed of the aircraft as shown by the 

oscillations, but despite receiving this data as training, the 

IAS learned to fly smoothly - indeed smoother than the human 

pilot as can be seen in Figs 10 and 15. 

The complete learning process starting from the 

demonstration of the specific task by the human pilot, and 

ending with the automatic generation of the learning model 

takes less than 20 minutes. 

Informal trials were also performed with the IAS in which 

the aircraft was put into a variety of situations that it had not 

been trained to handle (e.g., a stall, inversion, etc.). In all cases 

the IAS was able to stabilize the aircraft safely on its own.  

  
 

 
 

 

Fig.  17. (Exp. 2) A comparison between the human pilot and the 

Intelligent Autopilot’s average, maximum, and minimum roll 
correction attempts. The middle part between the two dotted lines is 

the area where no corrections are required. The right part illustrates a 

deviation in roll towards the right, while the left part illustrates a 

deviation in roll towards the left. 

VII. CONCLUSION & FUTURE WORK 

The aviation industry is currently working on solutions 

which should lead to decreasing the dependence on crew 

members. The reason behind this is to lower workload, human 

error, and stress faced by crew members, by developing 

autopilots capable of handling multiple scenarios without 

human intervention. In this work, a robust approach is 

proposed to “teach” autopilots how to handle uncertainties 

and emergencies with minimum effort by exploiting Learning 

by Imitation.  

The experiments were strong indicators towards the 

ability of Supervised Learning with Artificial Neural 

Networks to capture low-level piloting tasks such as the rapid 

corrections of heading and roll deviations in stormy weather 

conditions. The experiments showed the ability of the IAS to 

capture high-level tasks and rules such as applying elevator 

only after a certain speed is achieved, retracting gear at a 

certain altitude, and also levelling the aircraft and shifting 

from the climb to the smooth ascent and cruise phase at a 

certain altitude. 

Future effort will focus on a further and extended break-

down of the piloting tasks. More Artificial Neural Networks 

should be added to the Intelligent Autopilot System to 

enhance performance and accuracy, and to cover a wider 

spectrum of sub-tasks. The learning by Imitation approach in 

this context should be extended to cover new tasks and 

scenarios that have not been presented yet to the system. The 

new tasks and scenarios could cover emergency situations 

such as handling urgent take-off abortion, engine fire, etc. We 

anticipate that future Autopilot systems which make of 

methods proposed here could improve safety and save lives. 
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Abstract— We propose an extension to the capabilities of the 

Intelligent Autopilot System (IAS) from our previous work, to be 

able to learn handling emergencies by observing and imitating 

human pilots. The IAS is a potential solution to the current 

problem of Automatic Flight Control Systems of being unable to 

handle flight uncertainties, and the need to construct control 

models manually. A robust Learning by Imitation approach is 

proposed which uses human pilots to demonstrate the task to be 

learned in a flight simulator while training datasets are captured 

from these demonstrations. The datasets are then used by Artificial 

Neural Networks to generate control models automatically. The 

control models imitate the skills of the human pilot when handling 

flight emergencies including engine(s) failure or fire, Rejected 

Take Off (RTO), and emergency landing, while a flight manager 

program decides which ANNs to be fired given the current 

condition. Experiments show that, even after being presented with 

limited examples, the IAS is able to handle such flight emergencies 

with high accuracy.  

I. INTRODUCTION 

Human pilots are trained to handle flight uncertainties or 

emergency situations such as severe weather conditions or 

system failure. For example, pilots are exposed to scenarios of 

forced or emergency landing which is performed by executing 

standard emergency procedures. Usually, the main phase of an 

emergency landing is known as gliding which is the reliance on 

the aerodynamics of the aircraft to glide for a given distance 

while altitude is lost gradually. This happens when the aircraft 

has lost thrust due to full engine failure in relatively high 

altitudes.  

In contrast, Automatic Flight Control Systems 

(AFCS/Autopilot) are highly limited, capable of performing 

minimal piloting tasks in non-emergency conditions. Autopilots 

are not capable of handling flight emergencies such as engine 

failure, fire, performing a Rejected Take Off, or a forced 

(emergency) landing. The limitations of autopilots require 

constant monitoring of the system and the flight status by the 

flight crew to react quickly to any undesired situation or 

emergencies. The reason for such limitations of conventional 

AFCS is that it is not feasible to anticipate everything that could 

go wrong with a flight, and incorporate all of that into the set of 

rules or control models “hardcoded” in an AFCS.  

This work aims to address this problem by expanding the 

capabilities of the Intelligent Autopilot System (IAS) [1] to be 

 
 

able to learn flight emergency procedures from human pilots by 

applying the Learning by Imitation concept with Artificial 

Neural Networks. By using this approach, we aim to extend the 

capabilities of modern autopilots and enable them to 

autonomously adapt their piloting to suit multiple scenarios 

ranging from normal to emergency situations. 

This paper is structured as follows: part (II) reviews related 

literature on fault/failure tolerant systems, and the application of 

multiple ANNs or Artificial Neural Circuits. Part (III) explains 

the Intelligent Autopilot System (IAS). Part (IV) describes the 

experiments, Part (V) describes the results by comparing the 

behaviour of the human pilot with the behaviour of the 

Intelligent Autopilot System, and part (VI) provides an analysis 

of the results. Finally, we provide conclusions and future work. 

II. BACKGROUND 

A review of the Autopilot problem, Artificial Neural 

Networks, and Learning by Imitation for Autonomous Flight 

Control is presented in our previous work [1]. 

A.  Fault/Failure Tolerant Systems for Flight Control 

Current operational autopilots fall under the domain of 

Control Theory. Classic and modern autopilots rely on 

controllers such as the Proportional Integral Derivative (PID) 

controller, and Finite-State automation [2]. Many recent 

research efforts focus on enhancing flight controllers by adding 

fault/failure tolerant capabilities. With respect to flight control 

systems, a fault is “an unpermitted deviation of at least one 

characteristic property of the system from the acceptable, usual, 

standard condition.” [3], while failure is “a permanent 

interruption of a system’s ability to perform a required function 

under specified operating conditions.” [3].  

To handle faults and failures, recent research efforts have been 

focusing on designing Fault Detection and Diagnosis (FDD) 

systems that can either stream information to ground crew 

members especially in the case of UAVs, or feed fault tolerant 

systems that are capable of handling system faults. The first type 

of such systems are known as the Passive Fault Tolerant 

Controllers which can handle moderate faults such as 

parameters deviations by using a robust feedback controller. 

However, if the faults are beyond the capabilities of such 

controllers, another type of fault tolerant systems becomes a 

necessity. This type is known as an Active Fault Tolerant control 
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system which includes a separate FDD system that adds an 

extended and enhanced level of fault tolerance capabilities [4].  

In case of emergency situations, mainly engine failure, engine 

fire, flight instruments failure, or control surface damage or 

failure, continuing to fly becomes either impossible or can poses 

a serious threat to the safety of the flight. In such circumstances, 

a forced or emergency landing on a suitable surface such as a 

flat field becomes a must especially if it is not possible to return 

safely to the runway [5]. In [6], an emergency landing controller 

is proposed for an Unmanned Aerial Vehicle by segmenting the 

emergency landing period into four sub-levels known as 

slipping guiding, straight line down, exponential pulling up, and 

shallow sliding. Each level uses different control strategies 

aimed at insuring the safe execution of the complete emergency 

landing. For example, during the exponential pulling up level, 

the system maintains a certain pitch without causing the UAV 

to stall. Using a simulator, the proposed approach showed its 

ability to handle emergency landing [6].   

B. Multiple ANNs or Artificial Neural Circuits  

The problem of coordinating multiple sensor-motor 

architectures found in complex robotic systems is challenging. 

This is due to the simultaneous and dynamic operation of these 

motors while insuring rapid and adaptive behaviour, and due to 

the need to properly handle the fusion of data from disparate 

sources. In nature, animals manage this problem by the large 

number of neural circuits in the animals’ brains. For example, 

neural circuits which are responsible for motion are connected 

to the muscles (motor systems), and operate simultaneously and 

dynamically while handling changes in the environment [7]. 

This has inspired the field of complex robotics to develop 

multiple neural-based controllers and integrate them together to 

tackle larger problems such as long-endurance locomotion 

under uncertainties. For example, the problem of coordinating 

multiple sensor-motor architectures is addressed in the context 

of walking by developing a neural circuit which generates 

multiple gaits adaptively, and coordinates the process of 

walking with different behavioural-based processes in a 

hexapod robot. The results showed the ability of the biology-

inspired system to detect and stabilize multiple instability 

scenarios, and to determine what needs to be controlled at each 

moment which allows the system to handle changes in the 

environment [7].  

Multiple Artificial Neural Networks were applied to the 

problem of detecting roads visually. In [8], different inputs are 

fed into multiple ANNs to handle multiple segments of the 

image. The proposed approach allows the system to detect and 

classify multiple factors of the environment ahead which leads 

to an enhanced performance compared to other computer-vision 

solutions [8]. In [9], Multiple ANNs were applied to tackle the 

limitations problem of traffic light control systems that are based 

on conventional mathematical methods. In simulation, the 

results showed that the approach of using multiple ANNs to 

address this problem presented an improvement in performance 

compared to other methods [9]. Another proposed system 

inspired by biology; is presented in [10] which is designed to 

handle the challenging problem of gesture recognition. The 

system shares similarities with the human visual system by 

developing multiple spiking ANNs. The outputs of the spiking 

ANNs are used to generate a fusion of multiple data from 

different segments of the gesture. The results proved the 

system’s ability to handle dynamic visual recognition with the 

presence of complex backgrounds [10].  

The approach of segmenting or breaking down the problem, 

and using multiple ANNs to handle multiple segment shows the 

potential to enhance the properties of ANNs as explained in 

[11]. A large ANN is split into parallel circuits that resemble the 

circuits of the human retina. During training, the 

Backpropagation algorithm runs in each circuit separately. This 

approach does not only decrease training time, but it also 

enhances generalization [11].  

III. THE INTELLIGENT AUTOPILOT SYSTEM 

The proposed Intelligent Autopilot System (IAS) in this 

paper can be viewed as an apprentice that observes the 

demonstration of a new task by the experienced teacher, and 

then performs the same task autonomously. A successful 

generalization of Learning by Imitation should take into 

consideration the capturing of low-level models and high-level 

models, which can be viewed as rapid and dynamic sub-actions 

that occur in fractions of a second, and actions governing the 

whole process and how it should be performed strategically. It 

is important to capture and imitate both levels in order to handle 

flight uncertainties successfully. 

The IAS is made of the following components: a flight 

simulator, an interface, a database, a flight manager program, 

and Artificial Neural Networks. The IAS implementation 

method has three steps: A. Pilot Data Collection, B. Training, 

and C. Autonomous Control. In each step, different IAS 

components are used. The following sections describe each step 

and the components used in turn. 

A. Pilot Data Collection 

Fig. 1 illustrates the IAS components used during the pilot 

data collection step. 

1) Flight Simulator 

Before the IAS can be trained or can take control, we must 

collect data from a pilot. This is performed using X-Plane which 

is an advanced flight simulator that has been used as the 

simulator of choice in many research papers such as [12] [13] 

[14]. 

 
 

Fig.  1. Block diagram illustrating the IAS components used during the pilot 

data collection step. 



  

X-Plane is used by multiple organizations and industries 

such as NASA, Boeing, Cirrus, Cessna, Piper, Precession Flight 

Controls Incorporated, Japan Airlines, and the American 

Federal Aviation Administration.1 X-Plane can communicate 

with external applications by sending and receiving flight status 

and control commands data over a network through User 

Datagram Protocol (UDP) packets. For this work, the simulator 

is set up to send and receive packets comprising desired data 

every 0.1 second. In X-Plane, it is possible to simulate a number 

of flight emergencies for the purpose of training pilots. 

Emergencies range from severe weather conditions to system 

failure such as engine failure or fire.   

2) The IAS Interface   

The IAS Interface is responsible for data flow between the 

flight simulator and the system in both directions. The Interface 

contains control command buttons that provide a simplified yet 

sufficient aircraft control interface which can be used to perform 

basic tasks of piloting an aircraft such as take-off and landing in 

the simulator while being able to control other systems such as 

fuel and fire systems. It also displays flight data received from 

the simulator.  

Data collection is started immediately before demonstration, 

then; the pilot uses the Interface to perform the piloting task to 

be learned. The Interface collects flight data from X-Plane over 

the network using UDP packets, and collects the pilot’s actions 

while performing the task, which are also sent back to the 

simulator as manual control commands. The Interface organizes 

the collected flight data received from the simulator (inputs), 

and the pilot’s actions (outputs) into vectors of inputs and 

outputs, which are sent to the database every 1 second. 

3) Database   

An SQL Server database stores all data captured from the 

pilot demonstrator and X-Plane, which are received from the 

Interface. The database contains tables designed to store: 1. 

Flight data as inputs, and 2. Pilot’s actions as outputs. These 

tables are then used as training datasets to train the Artificial 

Neural Networks of the IAS.    

B. Training 

1) Artificial Neural Networks 

After the human pilot data collection step is completed, 

Artificial Neural Networks are used to generate learning models 

from the captured datasets through offline training. Fig. 2 

illustrates the training step.  

 

 
 

Fig.  2. Block diagram illustrating the IAS components used during training. 
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Ten feedforward Artificial Neural Networks comprise the 

core of the IAS. Each ANN is designed and trained to handle 

specific controls and tasks. The ANNs are: Taxi Speed Gain 

ANN, Take Off ANN, Rejected Take Off ANN, Aileron ANN, 

Rudder ANN, Cruise Altitude ANN, Cruise Pitch ANN, Fire 

Situation ANN, Emergency Landing Pitch ANN, and 

Emergency Landing Altitude ANN. The inputs and outputs 

which represent the gathered data and relevant actions, and the 

topologies of the ten ANNs are illustrated in Fig. 3.  

The method for choosing ANN topologies in this work is 

based on a rule-of-thumb [15] which indicates that problems 

requiring more than one hidden layer are rarely encountered.   

This rule follows an approach that tries to avoid under-fitting 

caused by too few neurons in the hidden layer, or over-fitting 

caused by too many neurons, by having the number of hidden 

neurons less than or equal to twice the size of the input layer. 

Before training, the datasets are normalized, and retrieved 

from the database. Then, the datasets are fed to the ANNs. Next, 

Sigmoid (1) [15] and Hyperbolic Tangent (Tanh) (2) [15] 

functions are applied for the neuron activation step, where ���� 

is the activation function for each neuron, and � is the relevant 

input value:        
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Fig.  3. Inputs, outputs, and the topologies of the ten ANNs representing the 

core of the Intelligent Autopilot System. Each ANN is designed and trained to 

handle a specific task. 

 



  

The Sigmoid activation function (1) is used by the Taxi 

Speed Gain ANN, Take Off ANN, Emergency Landing Altitude 

ANN, Rejected Take Off ANN, and the Fire Situation ANN, 

while (2) is used by the rest since their datasets contain negative 

values. 

Next, Backpropagation is applied. Based on the activation 

function, (3) [16], or (4) [16] are applied to calculate the error 

signal (�) where �� is the desired target value and �� is the actual 

activation value:    

 

             δ� � ��� �	������1 �	���                             (3) 
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Finally, coefficients of models (weights and biases) are 

updated using (5) [17] where δ��,� is the change in the weight 

between nodes j and k.  
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When training is completed, the learning models are 

generated, and the free parameters or coefficients represented by 

weights and biases of the models are stored in the database.  

C. Autonomous Control  

Once trained, the IAS can now be used for autonomous 

control. Fig. 4 illustrates the components used during the 

autonomous control step.  

1) The IAS Interface 

Here, the Interface retrieves the coefficients of the models 

from the database for each trained ANN, and receives flight data 

from the flight simulator every 0.1 second. The Interface 

organizes the coefficients into sets of weights and biases, and 

organizes data received from the simulator into sets of inputs for 

each ANN. The relevant coefficients, and flight data input sets 

are then fed to the Flight Manager and the ANNs of the IAS to 

produce outputs. The outputs of the ANNs are sent to the 

Interface which sends them to the flight simulator as 

autonomous control commands using UDP packets every 0.1 

second. 

2) The Flight Manager Program 

The Flight Manager is a program which resembles a 

Behaviour Tree [18]. The purpose of the Flight Manager is to 

manage the ten ANNs of the IAS by deciding which ANNs are 

to be used simultaneously at each moment. The Flight Manager 

starts by receiving flight data from the flight simulator through 

the interface of the IAS, then it detects the flight condition and 

phase by examining the received flight data, and decides which 

ANNs are required to be used given the flight condition 

(normal/emergency/fire situation) and phase (taxi speed 

gain/take off/cruise/emergency landing). Fig.  5 illustrates the 

process which the Flight Manager follows.   

3) Artificial Neural Networks 

The relevant set of flight data inputs received through the 

Interface is used by the ANNs’ input neurons along with the 

relevant coefficients to predict control commands given the 

flight status by applying (1) and (2). The values of the output 

layers are sent to the Interface which sends them to the flight 

simulator as autonomous control commands. Taxi Speed Gain 

ANN is used while on the runway just before take off to predict 

the suitable brakes and throttle command values. Take Off ANN 

is used after a certain take off speed is achieved to predict gear, 

elevator, and throttle command values. Rejected Take Off ANN 

is used to abort take off if necessary by predicting brakes, 

throttle, and reverse throttle command values. Aileron ANN is 

used to control the aircraft’s roll immediately after take off. 

Rudder ANN is used to control the aircraft’s heading before take 

off, and yaw when airborne in case one engine fails and creates 

drag. Cruise Altitude ANN is used to control the aircraft’s 

desired cruising altitude by predicting the throttle command 

value. Cruise Pitch ANN controls the pitch while cruising by 

predicting the elevator command value. Fire Situation ANN is 

used in case of fire by predicting fuel valve and fire 

extinguishing control commands. Emergency Landing Pitch 

ANN maintains a certain pitch during emergency landing to lose 

speed without stalling and to prevent a nose first crash. 

Emergency Landing Altitude ANN controls the throttle in case 

of a single engine failure.     

 
 

Fig.  4. Block diagram illustrating the IAS components used during 

autonomous control. 

 

 
 

Fig.  5. A Flowchart illustrating the process which the Flight Manager 

program follows to decided which ANNs are to be used. 



  

IV. EXPERIMENTS 

Our previous work [1] provides detailed explanations of the 

experiments of autonomous taxi speed gain, take off, climb, and 

applying rudder and aileron to correct heading and roll 

deviations under normal and severe weather conditions. The 

new approach in this paper is to segment the training dataset of 

taxi speed gain, take off, and climb into three different sets that 

are handled separately by three ANNs (Taxi Speed Gain ANN, 

Take Off ANN, and Cruise ANN) instead of just one ANN. This 

work also introduces four new ANNs in order to learn flight 

emergency procedures for the first time. 

In order to assess the effectiveness of the proposed approach 

in this paper, the Intelligent Autopilot System was tested in four 

experiments: A. Rejecting take off, B. Emergency landing, C. 

Maintaining a cruising altitude, and D.  Handling single engine 

failure/fire while airborne. Each experiment is composed of 20 

attempts by the IAS to perform autonomously under the given 

conditions. 

The human pilot who provided the demonstrations is the 

first author. The simulated aircraft used for the experiments is a 

Boeing 777 as we want to experiment using a more complex 

model with more than one engine rather than a light single-

engine model. The experiments are as follows:  

A. Rejecting Take Off  

The purpose of this experiment is to assess the behaviour of 

the IAS compared to the behaviour of the human pilot when a 

Rejected Take Off (RTO) is required. 

1) Data Collection  

In this experiment, the human pilot used the IAS Interface to 

perform the following in the flight simulator: reject take off 

when one engine fails or catches fire, and when two engines fail 

or catch fire (one demonstration for each scenario). The flight 

simulator was set to simulate the failure or fire conditions for 

one or two engines immediately after the user presses a hot key 

on the keyboard. Rejecting take off is performed by going to full 

reverse thrust and engaging brakes. In case of fire, the human 

pilot turned off the fuel valve, turned on the fire extinguishing 

system, and went to full throttle to burn the fuel left in the 

engine(s). While the pilot performed the demonstration, the 

Interface collected speed and engine status as inputs, and brakes, 

throttle, and reverse thrust control data as outputs. The Interface 

stored the collected data in the database as the training dataset 

for the Rejected Take Off ANN. The Interface also collected fire 

sensor readings as input, and fire extinguisher, throttle, and fuel 

valve control data as outputs. The Interface stored the collected 

data in the database as the training dataset for the Fire Situation 

ANN. 

2) Training 

For this experiment, the Rejected Takeoff ANN, and the Fire 

Situation ANN were trained until low Mean Squared Error 

(MSE) values were achieved (below 0.001).  

3) Autonomous Control 

After training the ANNs on the relevant training datasets, the 

aircraft was reset to the runway in the flight simulator to test 

autonomous RTO multiple times under different scenarios (one 

and two engine(s) failure and fire), the simulator was set to 

simulate the desired emergency scenario, and the IAS was 

engaged. When the flight manager detects the emergency, it 

stops the Taxi Speed Gain ANN, and runs the Rejected Takeoff 

ANN and the Fire Situation ANN simultaneously to reject take 

off and handle fire autonomously. Through the Interface, ANNs 

receive: 1. Relevant flight data from the flight simulator as 

inputs, and 2. Coefficients of the relevant models from the 

database to predict and output command controls that are sent to 

the flight simulator. This process allows the IAS to 

autonomously perform the learned task: rejecting take off if 

necessary. This was repeated 20 times for each scenario to 

assess performance consistency.    

B. Emergency Landing  

The purpose of this experiment is to assess the behaviour of 

the IAS compared to the behaviour of the human pilot when a 

forced or emergency landing is required. 

1) Data Collection  

 In this experiment, the human pilot used the IAS Interface 

to perform the following in the flight simulator: emergency 

landing when two engines fail or catch fire (one demonstration 

for each scenario). The flight simulator was set to simulate the 

failure or fire conditions for two engines immediately after the 

user presses a hot key on the keyboard. Emergency landing is 

performed by maintaining a controlled glide using the elevators 

to insure a gradual loss of speed and altitude without stalling the 

aircraft, by maintaining a slight positive pitch. If there is any 

power left in the engines, the throttle is used to aid the gliding 

phase. In case of fire, the human pilot turned off the fuel valve, 

and turned on the fire extinguishing system. In this scenario 

going to full throttle to burn the fuel left in the engines is not 

possible since both engines do not have sufficient power. While 

the pilot performed the demonstration, the Interface collected 

pitch as input, and elevator control data as output. The Interface 

stored the collected data in the database as the training dataset 

for the Emergency Landing Pitch ANN. The Interface also 

collected altitude as input, and throttle control data as output. 

The Interface stored the collected data in the database as the 

training dataset for the Emergency Landing Altitude ANN. 

2) Training 

For this experiment, the Emergency Landing Pitch ANN, 

and the Emergency Landing Altitude ANN were trained until 

low Mean Squared Error (MSE) values were achieved (below 

0.001 for the Emergency Landing Pitch ANN and below 0.2 for 

the Emergency Landing Altitude ANN).  

3) Control 

After training the ANNs on the relevant training datasets, the 

aircraft was reset to the runway in the flight simulator to test 

autonomous emergency landing multiple times under different 

scenarios (both engines failure or fire), the simulator was set to 

simulate the desired emergency scenario, and the IAS was 

engaged. After the IAS took the aircraft airborne, and when the 

flight manager detects the emergency, it stops the Take Off 

ANN (during climb), or the cruise ANNs, and runs the 

Emergency Landing Pitch ANN, and the Emergency Landing 

Altitude ANN simultaneously to maintain a controlled glide 

while descending to the ground. Through the Interface, the 



  

ANNs receive: 1. Relevant flight data from the flight simulator 

as inputs, and 2. Coefficients of the relevant models from the 

database to predict and output command controls that are sent to 

the flight simulator. This process allows the IAS to 

autonomously perform learned task: emergency landing by 

maintaining a controlled glide. This was repeated 20 times for 

each scenario to assess performance consistency. 

C. Maintaining a Cruising Altitude  

The purpose of this experiment is to assess the behaviour of 

the IAS compared to the behaviour of the human pilot while 

maintaining a desired cruising altitude. 

1) Data Collection  

In this experiment, the human pilot used the IAS Interface to 

maintain a cruising altitude in the flight simulator by increasing 

and decreasing the throttle, and by using the elevator to maintain 

a fairly leveled pitch (one demonstration). While the pilot 

performed the demonstration, the Interface collected altitude as 

input, and throttle control data as output. The Interface stored 

the collected data in the database as the training dataset for the 

Cruise Altitude ANN. The Interface also collected pitch as 

input, and elevator control data as output. The Interface stored 

the collected data in the database as the training dataset for the 

Cruise Pitch ANN. 

2) Training 

For this experiment, the Cruise Altitude ANN, and the 

Cruise Pitch ANN were trained until low Mean Squared Error 

(MSE) values were achieved (below 0.02 and 0.001 

respectively).  

3) Autonomous Control 

After training the ANNs on the relevant training datasets, the 

aircraft was reset to the runway in the flight simulator to test the 

ability of maintaining a desired cruise altitude autonomously, 

and the IAS was engaged. After the IAS took the aircraft 

airborne, continued to climb, and reached the proximity of the 

desired altitude, the system’s ability to maintain the given 

altitude was observed. Through the Interface, the ANNs receive: 

1. Relevant flight data from the flight simulator as inputs, and 2. 

Coefficients of the relevant models from the database to predict 

and output command controls that are sent to the flight 

simulator. This process allows the IAS to autonomously perform 

learned task: maintain a desired cruising altitude. This was 

repeated 20 times for each scenario to assess performance 

consistency. 

D. Handling Single Engine Failure/Fire while Airborne   

The purpose of this experiment is to assess the behaviour of 

the IAS in case of an engine failure or fire while airborne. 

1) Data Collection  

In this experiment, the human pilot did not provide an 

explicit demonstration for the single engine failure. Instead, it 

was intended to test the already trained ANNs, and determine 

whether their models are able to generalize well in this new 

scenario where the failed engine creates a drag, and forces the 

aircraft to descend, and creates a yaw deviation towards the 

failed engine’s side. 

2) Training 

For this experiment, the previously trained models of the 

Cruise Altitude ANN, the Cruise Pitch ANN, and the rudder 

ANN from our previous work [1] were used. 

3) Autonomous Control 

After setting the simulator to simulate the desired emergency 

scenario (single engine failure or fire), and after the IAS took 

the aircraft airborne, when the flight manager detects the 

emergency, it continues to use the same ANNs (Take Off ANN, 

or cruise ANNs), and runs the Fire Situation ANN if fire is 

detected, to fly autonomously using the power left from the 

engine that operates normally. Through the Interface, the ANNs 

receive: 1. Relevant flight data from the flight simulator as 

inputs, and 2. Coefficients of the relevant models from the 

database to predict and output command controls that are sent to 

the flight simulator. This was repeated 20 times for each 

scenario to assess performance consistency. 

Throughout all the experiments, the Rudder and Aileron 

ANNs from our previous work [1] are used normally during the 

different phases. 

V. RESULTS 

The following section describes the results of the conducted 

tests. The 20 attempts by the IAS to handle each scenario 

autonomously were averaged and compared with the 

performance of the human pilot when applicable. 

A. Rejecting Take Off 

Two models were generated with the MSE values as table I 

shows. Fig.  6 illustrates the behaviour of the IAS when 

controlling the transition of flight modes under normal 

conditions, while Fig.  7 illustrates the behaviour of the IAS 

when engine(s) failure or fire is detected and a Rejected Take 

Off (RTO) is performed. The results of the 20 experiments 

showed strong consistency by following the correct procedure 

in each experiment with a 100% accuracy rate. 

B. Emergency Landing 

Two models were generated with the MSE values as table I 

shows. Fig. 8 and 9 illustrate a comparison between the human 

pilot and the IAS while maintaining a positive pitch during 

emergency landing, and their altitude (sink rate). The pitch 

Mean Absolute Deviation (MAD) results (0.024 for the IAS and 

0.196 for the human pilot) show less deviation and a steady 

behaviour of the IAS due to the good model fit as can be seen in 

Fig.  8. Fig.  10 illustrates the behaviour of the IAS when both 

engines failure or fire is detected and a forced or emergency 

landing is performed. The results of the 20 experiments showed 

strong consistency by following the correct procedure in each 

experiment with a 100% accuracy rate. 

 
TABLE I 

MSE VALUES OF THE MODELS GENERATED FOR THE REJECTED 

TAKE OFF AND THR EMERGENCY LANDING EXPERIMENTS. 

ANN MSE 

Rejected Takeoff ANN 0.000999 

Fire Situation ANN 0.000999 

Emergency Landing Pitch ANN 0.000997 

Emergency Landing Altitude ANN 0.196117 



  

 
Fig.  6. The behaviour of the IAS when controlling the transition of flight 

modes under normal conditions. Different ANNs are used in each flight mode. 

 

 

 

Fig.  8. (Emergency landing experiment) A comparison between the human 

pilot and the Intelligent Autopilot System’s pitch during emergency landing. In 

this case the human pilot struggled to generate perfect training data so our 

training approach was designed to prevent overfitting, instead creating a 

general model (good fit) which provided the desired performance. 

 

 

Fig.  10. (Emergency landing experiment) The behaviour of the IAS when both 

engines failure or fire is detected during either take off or cruise, and an 

emergency landing is performed. The Fire Situation ANN is used only when 

fire is detected. 

 

Fig.  7. (Rejected Take Off experiment) The behaviour of the IAS when 

engine(s) failure or fire is detected and a Rejected Take Off (RTO) is 

performed. The Fire Situation ANN is used only when fire is detected.  

 

 

Fig.  9. (Emergency landing experiment) A comparison between the human 

pilot and the Intelligent Autopilot System’s altitude during emergency landing. 

The results show a significantly close sink rate of about 1500 ftagl per minute. 

 

 

C. Maintaining a Cruise Altitude  

Two models were generated with the MSE values as table II 

shows. Fig.  11 and 12 illustrate a comparison between the 

human pilot and the IAS while maintaining a desired cruising 

altitude. The altitude Mean Absolute Deviation (MAD) results 

(85.8 for the IAS and 204.58 for the human pilot) shows less 

deviation of altitude and a steady behaviour of the IAS due to 

the good model fit as can be seen in Fig.  11. 

 

 
TABLE II 

MSE VALUES OF THE MODELS GENERATED FOR THE CRUISE 

EXPERIMENT. 

ANN MSE 

Cruise Altitude ANN 0.017574 

Cruise Pitch ANN 0.000835 



  

 
Fig.  11. (Maintaining a cruise altitude experiment) A comparison between the 

human pilot and the Intelligent Autopilot System’s altitude during cruising. 

While the human pilot demonstrator struggled to maintain a desired cruise 

altitude of 20,000 ftagl, the IAS performed better due to the good fit of the 

generated learning model. 

 

D. Handling Single Engine Failure/Fire while Airborne 

As mentioned in part (IV) the human pilot did not provide an 

explicit demonstration for the single engine failure scenario. 

Instead, it was intended to test the already trained ANNs, and 

determine whether their models are able to generalize well in 

this new scenario’s experiment. Fig.  13 illustrates the behaviour 

of the IAS when a single engine fails or catches fire during take 

off or cruise. The system was intended to carry on flying, apply 

the rudder ANN from our previous work [1], and run the Fire 

Situation ANN in case of fire. The results of the 20 experiments 

showed strong consistency by following the correct procedure 

in each experiment accurately. Fig. 14 illustrates how the IAS 

continues to fly while losing altitude gradually compared to the 

aircraft’s autopilot under the same situation. 

 

 

 

 
 

 

Fig.  13. (Handling single engine failure/fire experiment) The behaviour of the 

IAS when a single engine failure or fire is detected during either take off or 

cruise. The Fire Situation ANN is used only when fire is detected. The ANNs 

used during Take Off or Cruise perform the same tasks as Fig.  6 shows, while 

the Aileron ANN continues to correct roll. 

 

Fig.  12. (Maintaining a cruise altitude experiment) The IAS manipulation of 

throttle to maintain a desired cruise altitude of 20,000 ftagl compared with the 

human pilot. The IAS manipulated the throttle smoothly compared to the 

human pilot due to the good fit of the generated learning model. 

VI. ANALYSIS 

As can be seen in Fig.  7, the rejected take off experiment 

presented excellent results. The IAS was capable of imitating 

the human pilot’s actions and behaviour with excellent 

accuracy, and strong consistency by following the correct 

procedure in each experiment accurately.  

Fig.  8 to 10 (the emergency landing experiment) show very 

desirable results of the ability of the IAS to imitate the human 

pilot’s demonstration of controlling an emergency landing. 

They show the ability of the IAS to perform the learned sink rate 

which enabled the aircraft to hit the ground smoothly without 

being severely wrecked. The flight simulator measures the G 

force effect on the aircraft’s frame, and informs the user in case 

of an unsurvivable crash. It should be mentioned that selecting 

a suitable landing surface is not within the scope of this work.  

 

 

 
 

 

Fig.  14. (Handling single engine failure/fire experiment) Comparing the 

altitude loss rate of the IAS and the aircraft’s AFCS. Since the AFCS is not 

aware of the single engine failure situation, it compensates by increasing the 

throttle aggressively, which results in a smaller altitude loss rate, but puts 

excessive stress on the single operating engine. 



  

Fig.  11 and 12 (maintaining a cruise altitude experiment) 

show very desirable results of the ability of the IAS to learn how 

to use throttle and elevator to maintain a given altitude. They 

illustrate the ability of the IAS to perform better than the human 

pilot teacher due to the achieved good fit of the learning models. 

This can also be seen in Fig.  8 (the emergency landing 

experiment). 

As can be seen in Fig.  13 and 14, the single engine failure/fire 

experiment presented excellent results. The IAS was capable of 

using the already learned models to continue flying while 

gradually losing altitude. Although the aircraft’s standard 

autopilot maintained a better altitude in the short term, by 

aggressively increasing engine thrust it increases the likelihood 

of engine failure in the remaining engine, with potentially 

catastrophic results. 

The system was able to imitate multiple human pilot’s skills 

and behaviour after being presented with very limited examples. 

This is due to the approach of segmenting the problem of 

autonomous piloting while handling uncertainties into small 

blocks of tasks, and assigning multiple ANNs specially designed 

and trained for each task, which resulted in the generation of 

highly accurate models as tables I, and II show. 

VII. CONCLUSION & FUTURE WORK 

In this work, a robust approach is proposed to “teach” 

autopilots how to handle uncertainties and emergencies with 

minimum effort by exploiting Learning by Imitation also known 

as Learning from Demonstration.  

The experiments were strong indicators towards the ability 

of Supervised Learning with Artificial Neural Networks to 

capture low-level piloting tasks such as the rapid manipulation 

of the elevator and throttle to maintain a certain pitch or a given 

altitude. The experiments showed the ability of the IAS to 

capture high-level tasks such as coordinating the necessary 

actions to reject take off and extinguish fire. 

Breaking down the piloting tasks, and adding more Artificial 

Neural Networks enhanced performance and accuracy, and 

allowed the coverage of a wider spectrum of tasks. 

The aviation industry is currently working on solutions 

which should lead to decreasing the dependence on crew 

members. The reason behind this is to lower workload, human 

error, stress, and emergency situations where the captain or the 

first officer becomes incapable, by developing autopilots 

capable of handling multiple scenarios without human 

intervention. We anticipate that future Autopilot systems which 

make of methods proposed here could improve safety and save 

lives. 

Future effort will focus on giving the IAS the ability to learn 

how to fly a pre-selected course, and land safely in an airport. 

The IAS should be capable of avoiding no-fly zones that are 

either pre-identified, or detected during the flight such as severe 

weather systems detected by the aircraft’s radar. 

The Flight Manager program should be redesigned to utilize 

Artificial Neural Networks to classify the situation (normal or 

emergency), and predict the suitable flight control law or mode 

given the situation.  

The problem of sensor fault and denial should be 

investigated to test the feasibility of teaching the IAS how to 

handle such scenarios.    
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Abstract— We introduce the Intelligent Autopilot System (IAS) 

which is capable of autonomous navigation and landing of large 

jets such as airliners by observing and imitating human pilots using 

Artificial Neural Networks and Learning by Imitation. The IAS is 

a potential solution to the current problem of Automatic Flight 

Control Systems of being unable to perform full flights that start 

with takeoff from a given airport, and end with landing in another. 

A navigation technique, and a robust Learning by Imitation 

approach are proposed. Learning by Imitation uses human pilots 

to demonstrate the task to be learned in a flight simulator while 

training datasets are captured from these demonstrations. The 

datasets are then used by Artificial Neural Networks to generate 

control models automatically. The control models imitate the skills 

of the human pilot when banking to navigate between waypoints, 

and when performing final approach and landing, while a flight 

manager program generates the flight course, and decides which 

ANNs to be fired given the current flight phase. Experiments show 

that, even after being presented with limited examples, the IAS can 

handle such flight tasks with high accuracy. The proposed IAS is a 

novel approach towards achieving full control autonomy of large 

jets using ANN models that match the skills and abilities of 

experienced human pilots.     

I. INTRODUCTION 

Human pilots are trained to perform piloting tasks that are 
required during the different phases of the flight. Performing a 
complete flight cycle starts with a ground-run on the runway to 
gain speed, rotate after a certain airspeed is achieved, climb, 
cruise while navigating between waypoints, descend, prepare 
for final approach while intercepting the landing runway path 
line, touchdown, flare, and lower airspeed before coming to a 
full stop [1].     

In contrast, Automatic Flight Control Systems 
(AFCS/Autopilot) are highly limited, capable of performing 
minimal piloting tasks. Although modern autopilots can 
maintain or hold a desired heading, speed, altitude, and even 
perform auto-land, they cannot handle complete flight cycles 
automatically, and they must be engaged and operated manually 
by the human pilots to constantly change and update the desired 
parameters. In addition, modern autopilots cannot handle flight 
uncertainties such as severe weather conditions, or emergency 
situations such as system failures. The limitations of autopilots 
require constant monitoring of the system and the flight status 
by the flight crew to react quickly to any undesired situation or 
emergencies. The reason for such limitations of conventional 
 

 

AFCS is that it is not feasible to anticipate everything that could 
go wrong with a flight, and incorporate all of that into the set of 
rules or control models “hardcoded” in an AFCS.  

This work aims to address this problem by creating an 
Intelligent Autopilot System (IAS) with the capability to 
perform autonomous navigation, and to learn how to land from 
human pilots by applying the Learning by Imitation concept 
with Artificial Neural Networks. The IAS is a novel approach 
which introduces the possibility to transfer human intelligence 
and intuitions required to pilot an aircraft to an autonomous 
system. By using this approach, we aim to extend the 
capabilities of modern autopilots and enable them to 
autonomously adapt their piloting to suit multiple scenarios 
ranging from normal to emergency situations. This work builds 
on previous work by the authors [2][3] by adding navigation and 
landing capabilities to the IAS. 

This paper is structured as follows: part (II) reviews related 
literature on autonomous navigation and landing. Part (III) 
explains the Intelligent Autopilot System (IAS). Part (IV) 
describes the experiments, Part (V) describes the results by 
comparing the behaviour of the human pilot with the behaviour 
of the Intelligent Autopilot System, and part (VI) provides an 
analysis of the results. Finally, we provide conclusions and 
future work. 

II. BACKGROUND 

A.  Autonomous Navigation  

Autonomous navigation is the ability of the travelling vehicle 
to estimate the state of its trajectory automatically [4]. In 
autonomous aerial systems, such as UAVs or cruise missiles, it 
is common to estimate the state of trajectory by fusing data from 
multiple navigation systems such as the Inertial Navigation 
System (INS) and the Global Navigation Satellite System 
(GNSS) such as the Global Positioning System (GPS). It is also 
possible to fuse additional data from different types of systems 
such as vision-based navigation systems [4].  

In [4], an image matching system which uses aerial images 
acquired during flights in addition to aerial georeferenced 
images, is proposed to estimate the position of a UAV. The 
proposed image matching system applies image-edge detection 
algorithms to the acquired images, and the posterior automatic 
image registration to estimate the location of the UAV [4]. An 

Autonomous Navigation and Landing of Airliners Using Artificial 

Neural Networks and Learning by Imitation  

Haitham Baomar, Peter J. Bentley 
 

Dept. of Computer Science, University College London, Gower Street, London, WClE 6BT, U.K. 
Email: {h.baomar, p.bentley} @ cs.ucl.ac.uk 



  

Artificial Neural Network (ANN) with an optimal architecture 
set by the Multiple Particle Collision Algorithm (MPCA) is used 
to detect the edges, while the automatic image registration is 
acquired through a cross-correlation process [4]. 

Different navigation and path planning approaches are being 
investigated as well. In [5], an algorithm based on inspection 
path planning is proposed, which is tailored inherently for 
structural inspection. The proposed algorithm is designed to 
compute full coverage and collision–free paths depending on a 
model of the UAV’s nonholonomic constraints [5]. A 
resampling of the viewpoint technique applies randomized 
sampling which allows the designed algorithm to achieve 
continuous enhancements of the path cost without affecting the 
desired area to be covered [5]. In addition, navigation with a 
collision avoidance capability is achieved by applying 
Boundary Value Solver and a motion planner [7] for the used 
UAV model [5]. 

Relying on GPS alone for autonomous navigation is proposed 
in [8], where a cost-efficient cruise control system is designed 
for a GT-500 recreational aircraft using affordable and off-the-
shelve components such as an Arduino system [8]. 

In [9], a GPS based generic trajectory prediction and 
smoothing algorithm is proposed. The algorithm is designed to 
be able to handle both accurate frequency legs, and inaccurate 
legs that are present in old flight procedures, that have not been 
updated using advanced Flight Management Systems (FMS) 
[9]. The estimation of the desired trajectory is calculated using 
numerical integration of the different states of the aircraft given 
the flight path [9]. 

B. Autonomous Landing  

Pilots operating Remotely Piloted Aircraft Systems (RPAS) or 
UAVs do not get to feel the aircraft they are flying as onboard 
pilots do [10]. Feeling the forces of the surrounding 
environment such as the wind, and the aircraft itself, such as 
getting a feel of how the engines are behaving, the vibrations, 
motions, and so on, is not possible for ground pilots [10]. The 
lack of this onboard sensing affects the situational awareness 
which is a crucial factor that pilots depend on especially during 
the most difficult flight phases such as landing, therefore, most 
UAV accidents happen during landing [10]. In addition, 
performing an optimum landing all the time is important for 
maintenance cost reduction, and durability preservation [10]. 
So, investigating the possibilities of developing autonomous 
landing systems (Auto Land) for UAVs has been a significant 
challenge, and is being covered in recent research efforts [10].  

In [10], a landing sequence algorithms is proposed, which can 
either be initiated by the ground pilot, or automatically during 
emergency situations such as the loss of connection between the 
UAV and the ground command and control station. The 
proposed landing system utilizes the Global Positioning System 
(GPS) along with geometry to orient the UAV to a desirable 
point in space from which it can initiate the descend process 
[10]. The algorithm works by plotting multiple slopes via 
MATLAB, and are considered as potential descend paths that 
the UAV can follow, in a fashion like creating a virtual inverted 
cone, where the circular base of the cone can act as a potential 

point of descend, and the taper surface can be considered as the 
glide path [10]. 

To achieve higher levels of accuracy required for landing on 
significantly small, or moving landing runways such as aircraft 
carriers, some recent research efforts are focusing on fusing 
multiple guidance systems, such as the work presented in [11]. 
The proposed system works by fusing readings from multiple 
systems or sensors including GPS, the aircraft’s INS, the aircraft 
carrier’s INS, and a vision-based navigation system mounted on 
the aircraft [11]. The system computes the aircraft-ship relative 
position, while the acceleration and velocity of the ship are sent 
to the aircraft via a dedicated data-link [11]. The aircraft-ship 
relative position, and the relative velocity are added to the state 
vector, and the relative position information retrieved from 
GPS, along with the airborne INS, the carrier’s INS, and the 
vision-based navigation system are utilized to build the vector 
via a Kalman filter [11]. Finally, the relative position 
information having the same period as the one generated from 
the INS is calculated [11]. 

Introducing intelligent autonomy to the aviation industry 
through developing intelligent control techniques that fit into an 
overall flight management system capable of making the highest 
level of decisions, is expected to significantly enhance safety, 
and lower costs [12].  

In addition of having limited capabilities, modern autopilots 
can contribute to catastrophes since they can only operate under 
certain conditions that fit their design and programming, 
otherwise, they cede control to the pilots, and with the lack of 
proper situational awareness and reaction, the result could be 
fatal [13]. Although the civil aviation sector that uses medium 
to large jets equipped with such autopilots, is the largest with 
the highest risk and costs, the current focus of the relevant and 
recent research efforts is on investigating and developing 
autonomous autopilots for Unmanned Aircraft Systems 
especially small and micro drones by introducing solutions that 
may not be suitable for Large jets such as airliners. Therefore, 
we propose a solution that can be applied to multiple aircraft 
categories including airliners and cargo airplanes. We believe 
that manned aircraft especially airliners require significant 
attention to enhance safety by addressing the limitations of 
modern autopilots and flight management systems, and the 
human error factor as well.          

A review of the Autopilot problem, Artificial Neural 
Networks, and Learning by Imitation for Autonomous Flight 
Control is presented in our previous work [2]. 

III. THE INTELLIGENT AUTOPILOT SYSTEM 

The proposed Intelligent Autopilot System (IAS) in this paper 
can be viewed as an apprentice that observes the demonstration 
of a new task by the experienced teacher, and then performs the 
same task autonomously. A successful generalization of 
Learning by Imitation should take into consideration the 
capturing of low-level models and high-level models, which can 
be viewed as rapid and dynamic sub-actions that occur in 
fractions of a second, and actions governing the whole process 
and how it should be performed strategically. It is important to 



  

capture and imitate both levels to handle different piloting tasks 
successfully. 

The IAS is made of the following components: a flight 
simulator,  an  interface,  a database,  a flight manager  program, 
and Artificial Neural Networks. The IAS implementation 
method has three steps: A. Pilot Data Collection, B. Training, 
and C. Autonomous Control. In each step, different IAS 
components are used. The following sections describe each step 
and the components used in turn. 

A. Pilot Data Collection 

Fig. 1 illustrates the IAS components used during the pilot data 
collection step. 

1) Flight Simulator 

Before the IAS can be trained or can take control, we must 
collect data from a pilot. This is performed using X-Plane which 
is an advanced flight simulator that has been used as the 
simulator of choice in many research papers such as [14] [15] 
[16]. 

X-Plane is used by multiple organizations and industries such 
as NASA, Boeing, Cirrus, Cessna, Piper, Precession Flight 
Controls Incorporated, Japan Airlines, and the American 
Federal Aviation Administration.1 X-Plane can communicate 
with external applications by sending and receiving flight status 
and control commands data over a network through User 
Datagram Protocol (UDP) packets. For this work, the simulator 
is set up to send and receive packets comprising desired data 
every 0.1 second. 

2) The IAS Interface   

The IAS Interface is responsible for data flow between the 
flight simulator and the system in both directions. The Interface 
contains control command buttons that provide a simplified yet 
sufficient aircraft control interface which can be used to perform 
basic tasks of piloting an aircraft such as take-off and landing in 
the simulator while being able to control other systems such as 
fuel and fire systems. It also displays flight data received from 
the simulator.  

Data collection is started immediately before demonstration, 
then, the pilot uses the Interface to perform the piloting task to 
be learned. The Interface collects flight data from X-Plane over 
the network using UDP packets, and collects the pilot’s actions 
while performing the task, which are also sent back to the 
simulator as manual control commands.  

 

 
 

Fig.  1. Block diagram illustrating the IAS components used during the 
pilot data collection step. 

 
1 X-Plane 10 Global. http://www.x-plane.com 

The Interface organizes the collected flight data received 
from the simulator (inputs), and the pilot’s actions (outputs) into 
vectors of inputs and outputs, which are sent to the database 
every 1 second. 

3) Database   

An SQL Server database stores all data captured from the pilot 
demonstrator and X-Plane, which are received from the 
Interface. The database contains tables designed to store: 1. 
Flight data as inputs, and 2. Pilot’s actions as outputs. These 
tables are then used as training datasets to train the Artificial 
Neural Networks of the IAS.    

B. Training 

1) Artificial Neural Networks 

After the human pilot data collection step is completed, 
Artificial Neural Networks are used to generate learning models 
from the captured datasets through offline training. Fig. 2 
illustrates the training step.  

Fourteen feedforward Artificial Neural Networks comprise 
the core of the IAS. Each ANN is designed and trained to handle 
specific controls and tasks. The ANNs that are relevant to this 
work are: Ground-run ANN, Rudder ANN, Takeoff ANN, 
Aileron ANN, Cruise Altitude ANN, Cruise Pitch ANN, Final 
Approach ANN, Final Approach Pitch ANN, Gear ANN, and 
Landing ANN. The other ANNs that handle emergency 
situations are discussed in our previous work [3]. The inputs and 
outputs which represent the gathered data and relevant actions, 
and the topologies of the ANNs are illustrated in Fig. 3. 

The method for choosing ANN topologies in this work is 
based on an implication [17] which indicates that direct mapping 
problems requiring more than one hidden layer are rarely 
encountered, and compared to Deep Learning, this approach 
means that the system is more understandable and easier to test 
and verify compared to single deep solutions which are black-
boxes unsuited for safety critical applications. 

Before training, the datasets are retrieved from the database. 
Then, the datasets are fed to the ANNs. Next, Sigmoid (1) [18] 
and Hyperbolic Tangent (Tanh) (2) [18] functions are applied 
for the neuron activation step.                 
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where	� is the exponential function, and x is the neuron output. 

  

 
 

Fig.  2. Block diagram illustrating the IAS components used during training. 



  

 
 
Fig.  3. Inputs, outputs, and the topologies of the ANNs relevant to this work. 

Each ANN is designed and trained to handle a specific task. 
 

The Sigmoid activation function (1) is used by the Ground-
run ANN, Takeoff ANN, Landing Gear ANN, and the Landing 
ANN, while (2) is used by the rest since their datasets contain 
negative values. 

Next, Backpropagation is applied. Based on the activation 
function, (3) [18], or (4) [18] are applied to calculate the 
derivatives of the relevant activation function:    

 
            �′��� � �����1 � 	�����                               (3) 
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where phi (�) of x is the result of the activation function. 
 

Finally, coefficients of models (weights and biases) are 
updated using (5) [17].  
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where � is the learning rate, 
"#
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 is the gradient,   is the 

momentum, and ����!�� is the change in the previous weight. 
 

 
Fig.  4. Block diagram illustrating the IAS components used during 

autonomous control. 
 

When training is completed, the learning models are 
generated, and the free parameters or coefficients represented by 
weights and biases of the models are stored in the database.  

C. Autonomous Control  

Once trained, the IAS can now be used for autonomous 
control. Fig. 4 illustrates the components used during the 
autonomous control step.  

1) The IAS Interface 

Here, the Interface retrieves the coefficients of the models 
from the database for each trained ANN, and receives flight data 
from the flight simulator every 0.1 second. The Interface 
organizes the coefficients into sets of weights and biases, and 
organizes data received from the simulator into sets of inputs for 
each ANN. The relevant coefficients, and flight data input sets 
are then fed to the Flight Manager and the ANNs of the IAS to 
produce outputs. The outputs of the ANNs are sent to the 
Interface which sends them to the flight simulator as 
autonomous control commands using UDP packets every 0.1 
second. 

2) The Flight Manager Program 

The Flight Manager is a program which resembles a 
Behaviour Tree [19]. The purpose of the Flight Manager is to 
manage the fourteen ANNs of the IAS by deciding which ANNs 
are to be used simultaneously at each moment. In addition, it 
generates a flight course to the destination airport of choice 
based on stored GPS waypoints as Fig.  5 illustrates, by applying 
(6) [20] to calculate the bearing (heading) between the GPS 
coordinates (latitude and longitude) of the waypoints.  

 
�	�	atan2�sin�Δλ�cos�Φ2�,	cos�Φ1�sin�Φ2�cos�Δλ��			(6)	

 
where Φ1 is the start point, Φ2 is the end point, and Δλ is the 
difference in longitude.  
 

The program constantly measures the deviation between the 
aircraft’s position and the current path line of the flight course 
represented by the angle between the line that starts at the 
location point of the aircraft and ends at the location point of the 
next waypoint, and the line that starts at the location point of the 
previous waypoint and ends at the location point of the next 
waypoint as Fig.  6 illustrates. 

 



  

 
 
Fig.  5. A flight course from a departure airport to a landing airport consisting 
of three path lines and their bearings/headings, which connect the three pre-

stored GPS coordinates waypoint. 
 

The Flight Manager calculates the difference between the 
bearing of the path line to be intercepted, and the aircraft’s 
current bearing, then, it adds the angle to the difference. As the 
aircraft’s current bearing becomes closer to the desired bearing, 
and as the angle becomes smaller, the difference becomes 
smaller as well, which leads to a gradual interception of the path 
line, and avoids undesired undershooting or overshooting as Fig.  
7 illustrates. 

The Top of Descent (TOD) is the point at which descending 
towards the destination airport is initiated. In this work, the 
Flight Manager calculates the TOD by multiplying the altitude 
by 0.003 2. If the result is less than the distance (in kilometers) 
to the landing runway, then the TOD is reached, and the 
descending process starts.  

The Glideslope is an altitude slope of a given degree, which 
leads to a touchdown on the landing runway. The Flight 
Manager generates a virtual altitude slope by dividing the 
distance to the runway by 10. The latter method is used based 
on preliminary empirical testing. Fig. 8 illustrates how the Flight 
Manager generates the glideslope.  

 
 

 
 

Fig.  7. An example illustrating how the Flight Manager updates the bearing to 
be followed based on the difference between the bearing of the path line to be 
intercepted, and the aircraft’s bearing. The angle between the aircraft and the 

path line is added to the difference to ensure a gradual interception.    

 
2 How to compute the TOD (Top of Descent) - Thumb rule. https://community.infinite-flight.com/ 

 
 
Fig.  6. The angle between the line from the aircraft’s location X and the next 
waypoint Y, and the line from the previous waypoint Z and the next waypoint 

Y. 
 

The Flight Manager starts by receiving flight data from the 
flight simulator through the interface of the IAS, then it detects 
the flight condition and phase by examining the received flight 
data, and decides which ANNs are required to be used given the 
flight condition and phase. 

The procedure used by the Flight Manager to handle 
emergency situations such as an engine fire/failure is discussed 
in our previous work [3]. Fig.  9 illustrates the process which the 
Flight Manager follows to handle the execution of complete 
flights. 

3) Artificial Neural Networks 

The relevant set of flight data inputs received through the 
Interface is used by the ANNs’ input neurons along with the 
relevant coefficients to predict control commands given the 
flight status by applying (1) and (2). The values of the output 
layers are sent to the Interface which sends them to the flight 
simulator as autonomous control commands. The design 
approach of the ANNs intends to breakdown the different tasks 
required for flying, that take place during the multiple flight 
phases. For example, the ground-run phase requires the task of 
gaining takeoff speed by releasing brakes and going to full 
throttle, and the task of keeping the aircraft on the centerline of 
the runway using the ruder. For the latter tasks, two ANNs were 
designed, which control the brakes and throttle (task 1), and the 
rudder (task 2).  To predict  the appropriate  control commands,  

 
 
 

 
Fig.  8. The Glideslope generated by continuously calculating the altitude 

during the final approach descent which leads to a touchdown on the landing 
runway. The desired altitude is the distance to the runway divided by 10. 
 



  

 
 

Fig.  9. A Flowchart illustrating the process which the Flight Manager program 
follows to decided which ANNs are to be used, and how to handle flight 

phases and navigation points transitions. 
 
the ANNs rely on the relevant flight data inputs as Fig.  3 
illustrates. Following the problem breakdown approach, it is 
possible to achieve a composition of small multiple control units 
represented by the task-dedicated ANNs that can be designed, 
integrated, and traced effortlessly compared to systems that rely 
on a single or few large ANNs designed to handle multiple task. 
In addition, when following the breakdown approach, it is 
possible to achieve higher levels of accuracy since each ANN is 
dedicated towards a single task of controls mapping as follows. 
Fig.  10 illustrates the ANNs used during the different flight 
phases.        

IV. EXPERIMENTS 

This work discusses the experiments conducted on the 
modified Aileron  ANN  which  can now bank,  and intercept a 
path line, in addition to controlling the roll degree. This section 
also discusses the experiments conducted on the new ANNs that 
are used during the final approach, and landing phases. 

The experiments were conducted under calm weather 
conditions with nil wind speed.  

Our previous work [2], [3] provide detailed explanations of 
the experiments of autonomous ground-run, takeoff, climb, 
cruise, rudder control, maintaining a desired altitude and pitch, 
and handling emergency situations.  

  

 
Fig.  10. The ANNs used during the different phases of the flight. 

 
To assess the effectiveness of the proposed approach in this 

paper, the Intelligent Autopilot System was tested in three 
experiments: A. Banking turn and path line interception, B. 
Final approach, and C.  Landing. Each experiment is composed 
of 50 attempts by the IAS to perform autonomously under the 
given conditions. 

The human pilot who provided the demonstrations is the 
first author. The simulated aircraft used for the experiments is a 
Boeing 777 as we want to experiment using a complex and large 
model with more than one engine rather than a light single-
engine model. The experiments are as follows:  

A. Banking turn and path line interception  

The purpose of this experiment is to assess the behaviour of 
the IAS compared to the behaviour of the human pilot when 
performing a banked turn, and to assess the path line 
interception technique. 

1) Data Collection  

In this experiment, the human pilot used the IAS Interface to 
change the aircraft’s heading by performing a banked turn 
through maintaining a roll of 25 to 35 degrees. While the pilot 
performed the demonstration, the Interface collected roll and 
difference values as inputs, and aileron control value as output. 
The Interface stored the collected data in the database as the 
training dataset for the Aileron ANN.  

2) Training 

For this experiment, the Aileron ANN was trained until a low 
Mean Squared Error (MSE) value was achieved (below 0. 1).  

When the aircraft is close to the path line to be intercepted, a 
large banking turn of 25 to 35 degrees of roll can cause the 
aircraft to constantly overshoot the path line instead of 
intercepting it smoothly. So, instead of training an additional 
Aileron ANN that performs banking turns through smaller 
degrees of roll, the same generated ANN model can be 
stimulated differently to alter its behaviour, by feeding its 
difference input neuron with difference values that are much 
smaller than the difference values present in the training dataset. 
The latter exploits the generalization effect which causes the 
model to behave differently based on the unseen inputs. To 
achieve this in this experiment, before feeding the difference 
input neuron of the Aileron ANN with the difference value, the 
difference is reduced to just 30% of its actual value, which was 
found through extensive preliminary experiments. This 
approach was tested between two waypoints represented by a 
straight path line.   

3) Autonomous Control 

After training the ANN on the relevant training dataset, the 
aircraft was reset to the runway in the flight simulator to test 



  

autonomous banking turn and path line interception. After 
takeoff, when the Flight Manager updates the path sequence of 
the flight course, calculates the new heading, the angle, and the 
difference, the Aileron ANN performs a banked turn to 
minimize the difference, and eventually, intercept the path line 
gradually. Through the Interface, the ANN receives: 1. relevant 
flight data from the flight simulator as inputs, and 2. coefficients 
of the relevant models from the database to predict and output 
command controls that are sent to the flight simulator. This 
process allows the IAS to autonomously perform the learned 
task: autonomous banking turn and path line interception. This 
was repeated 50 times to assess performance consistency.    

B. Final Approach 

The purpose of this experiment is to assess the behaviour of 
the IAS compared to the behaviour of the human pilot during 
the final approach phase. 

1) Data Collection  

In this experiment, the human pilot used the IAS Interface to 
perform the following in the flight simulator: maintain a positive 
pitch of about 3 to 4 degrees during the final approach phase to 
decrease airspeed without causing a stall, and to ensure a flare 
immediately after touchdown, engage full flaps when the 
airspeed is less than 260 knots, and engage the landing gear 
when the altitude decreases to 1500 ftagl. The desired descent 
altitude is continuously updated by the Flight Manager as 
explained above in section C of part III, and the experiments 
conducted on the techniques followed by the ANNs to maintain 
a desired altitude, and a desired pitch are explained in our 
previous work [3]. For this work, while the pilot performed the 
demonstration, the Interface collected airspeed and altitude as 
inputs, and flaps as output. The Interface stored the collected 
data in the database as the training dataset for the Final 
Approach Altitude ANN. The Interface also collected altitude as 
input, and landing gear control data as output. The Interface 
stored the collected data in the database as the training dataset 
for the Landing Gear ANN. 

2) Training 

For this experiment, the Final Approach Altitude ANN, and 
the Landing Gear ANN were trained until low Mean Squared 
Error (MSE) values were achieved (below 0.01).  

3) Autonomous Control 

After training the ANNs on the relevant training datasets, the 
aircraft was reset to the runway in the flight simulator to test the 
autonomous final approach procedures. After entering the final 
approach flight phase, and when the desired airspeed is reached, 
the Final Approach Altitude ANN engages flaps, and when the 
desired altitude is reached, the Landing Gear ANN engages the 
landing gear. Through the Interface, the ANNs receives: 1. 
relevant flight data from the flight simulator as inputs, and 2. 
coefficients of the relevant models from the database to predict 
and output command controls that are sent to the flight 
simulator. This process allows the IAS to autonomously perform 
the learned final approach procedures. This was repeated 50 
times to assess performance consistency. 

C. Landing  

The purpose of this experiment is to assess the behaviour of 
the IAS compared to the behaviour of the human pilot when 
performing landing procedures. 

1) Data Collection  

In this experiment, the human pilot used the IAS Interface to 
perform the landing procedures immediately after touchdown, 
by engaging reverse thrust, brakes, and speed brakes. While the 
pilot performed the demonstration, the Interface collected 
airspeed as input, and reverse thrust, brakes, and speed brakes 
control data as outputs. The Interface stored the collected data 
in the database as the training dataset for the Landing ANN. 

2) Training 

For this experiment, the Landing ANN was trained until low 
Mean Squared Error (MSE) values were achieved (below 0.01).  

3) Autonomous Control 

After training the ANN on the relevant training dataset, the 
aircraft was reset to the runway in the flight simulator to test the 
ability of performing the landing procedures autonomously, and 
the IAS was engaged. After the IAS took the aircraft airborne, 
navigated to the destination airport, and touched down, the 
system’s ability to perform the landing procedures of engaging 
reverse thrust, brakes, and speed brakes was observed. Through 
the Interface, the ANN receives: 1. relevant flight data from the 
flight simulator as inputs, and 2. coefficients of the relevant 
models from the database to predict and output command 
controls that are sent to the flight simulator. This process allows 
the IAS to autonomously perform learned landing procedures. 
This was repeated 50 times to assess performance consistency. 

V. RESULTS 

The following section describes the results of the conducted 
tests. 

A. Banking turn and path line interception 

One model was generated for the Aileron ANN with an MSE 
value of 0.0954. Fig.  11 illustrate a comparison between the 
human pilot and the IAS when performing a banked turn to 
change the aircraft’s bearing by 145 degrees over a period of 40 
seconds.  Due to high consistency and the lack of wind, the lines 
representing the 50 attempts by the IAS overlap. The Mean 
Absolute Deviation (MAD) results of the roll degrees over time 
(5.02 for the IAS (average) and 4.34 for the human pilot) show 
a close behaviour between the system and its teacher. Fig.  12 
illustrates the smaller roll degrees when intercepting a path line, 
after altering how the difference input neuron is stimulated, by 
reducing the input’s value to just 30% of its actual value. Since 
the experiments were conducted on 6 different segments of the 
same path line while being intercepted under the same weather 
conditions (nil wind speed), and due to the high consistency of 
the IAS, 6 different sets of overlapping lines are visible as Fig.  
12 illustrates.  



  

 
 
Fig.  11. (Banking turn and path line interception experiment). A comparison 

between the human pilot (orange line) and the 50 attempts by the IAS 
(overlapping lines) to perform a banked turn to change the aircraft’s bearing by 
145 degrees over a period of 40 seconds. The good fit of the generated model 
allowed the IAS to maintain a steadier and consistent change of roll degrees 

compared to the human pilot.  
 

 
 

Fig.  13. (Banking turn and path line interception experiment). 50 attempts 
with strong consistency to gradually intercept and follow a path line (black 

arrow). The interception attempt is represented by the gradual decrease of the 
angle between the aircraft and the path line. 

 
Fig.  13 illustrates how applying the reduced degrees of roll 

when constantly banking (correcting bearing) to intercept a path 
line, ensure a steady and gradual interception. Fig.  14 illustrates 
the flight course that the IAS generated and followed 
autonomously. Due to high consistency and the lack of wind, the 
lines representing the 50 attempts by the IAS in Fig.  13 and 14 
overlap  

B. Final Approach 

Two models were generated for this experiment, the Final 
Approach Altitude ANN model with an MSE value of 0.0034, 
and the Landing Gear ANN model with an MSE value of 
0.0046. Fig.  15 illustrate a comparison between the human pilot 
and the IAS when extending the flaps after the appropriate 
airspeed is reached. Fig.  16 illustrates a comparison between 
the human pilot and the IAS when engaging the landing gear 
after the appropriate altitude is achieved. Due to high 
consistency, the lines representing the human behaviour, and the 
50 attempts by the IAS in Fig.  15 and 16 overlap. Fig.  17 
illustrates the glideslope followed during the final approach 
phase in 50 experiments resulting in lines that overlap due to 
high consistency and the lack of wind.  

 
Fig.  12. (Banking turn and path line interception experiment). Smaller degrees 
of roll when banking continuously to intercept a path line. For the 50 attempts, 

the roll is below 9 degrees (suitable for small turns while intercepting) 
compared to a maximum of 31 (suitable for major bearing change) as Fig.  10 

illustrates. Due to the consistency, and similarity of the testing scenarios 
(location and weather), most of the lines are overlapped. 

  

Fig.  14. (Banking turn and path line interception experiment). The 50 flight 
courses (overlapped lines) with strong consistency flown autonomously by the 

IAS, starting with takeoff from London Heathrow airport, and landing at 
Gatwick airport. Since the distance between the two airports is short for an 

airliner, the generated flight course accounts for the distance required to 
perform the final approach phase, and therefore, follows an initial path away 

from Gatwick. 

C. Landing 

One model was generated for the Landing ANN with an MSE 
value of 0.003. Fig.  18 illustrates a comparison between the 
human pilot and the IAS when engaging the reverse thrust, 
brakes, and speed brakes immediately after touchdown. Due to 
high consistency, the lines representing the human behaviour, 
and the 50 attempts by the IAS in Fig.  18 overlap.  

VI. ANALYSIS 

As can be seen in Fig.  11 (banking turn and path line 
interception experiment), the IAS was not only able to imitate 
the behaviour of its human teacher when performing a banked 
turn by maintaining a certain degree of roll, it was also able to 
perform better by being able to maintain a steadier change of 
roll degrees, which is due to the good fit of the generated 
learning model. The new method of changing the stimuli of the 
ANN to cause it to alter its behaviour instead of having to retrain 
it or generate a different learning model, provided excellent 
results. Fig.  12 (banking turn and path line interception 
experiment) shows how changing the stimuli represented by the 

Heathrow 

Gatwick 



  

 
 
Fig.  15. (Final approach experiment). A comparison between the human pilot 

and 50 attempts by the IAS (overlapped lines) when extending flaps 
immediately after an airspeed of 260 (ktas) is reached. The behaviour of the 

human pilot and the IAS in the 50 attempts are similar with strong consistency. 
 

Fig.  17. (Final approach experiment). 50 attempts (overlapped lines) with 
strong consistency by the IAS to follow the final approach glideslope. The 

glideslope is adjusted by the IAS after descending to an altitude below 1000 
(ftagl) to compensate for the additional drag generated by the landing gear. 
  

difference value which passes through the input neuron of the 
Aileron ANN, through reducing it by a given percentage, caused 
the ANN to behave differently. The latter can be seen as the 
much smaller degrees of roll maintained by the Aileron ANN 
although its generated learning model was trained to maintain 
larger degrees of roll. The smaller degrees of roll maintained 
when banking or correcting the aircraft’s bearing to intercept a 
path line, allowed the IAS to gradually intercept and follow the 
path line while avoiding undershooting and overshooting as Fig.  
13 (banking turn and path line interception experiment) shows, 
and therefore, the IAS was able to strictly follow the generated 
flight course with excellent accuracy and consistency as Fig.  14 
(banking turn and path line interception experiment) shows, 
throughout all the experiments.  

The IAS was capable of identically imitating the human 
pilot’s actions and behaviour when performing the procedures 
of the final approach phase, by extending the flaps only when a 
certain airspeed is reached, and engaging the landing gear only 
when a certain altitude is reached as Fig.  15 and 16 (final 
approach experiment) show. The method covered in our 
previous work [3], which is followed by the ANNs that are 
responsible   for   maintaining a given altitude, proved to be 
adequate for handling a rapidly changing desired altitude which    

 

 
Fig.  16. (Final approach experiment). A comparison between the human pilot 
and 50 attempts by the IAS (overlapped lines) when engaging the landing gear 
immediately after an altitude of 1500 (ftagl) is reached. The behaviour of the 

human pilot and the IAS in the 50 attempts are similar with strong consistency. 
 

Fig.  18. (Landing experiment). A comparison between the human pilot and 50 
attempts by the IAS (overlapped lines) when engaging reverse thrust, brakes, 
and speed brakes immediately after touchdown. The behaviour of the human 

pilot and the IAS in the 50 attempts are similar with strong consistency. 
 
is continuously updated by the Flight Manager during the final 
approach phase. The latter generated a glideslope that led to a 
touchdown on the landing runway, and was maintained by the 
IAS. However, as soon as the extra drag caused by the extracted 
landing gear generated a larger sink rate which could cause a 
premature touchdown (touching down before reaching the 
landing runway), the IAS was able to autonomously alter the 
glideslope by following a less steep degree towards the runway 
as Fig.  17 (final approach experiment) shows. 
 As can be seen in Fig.  18 (landing experiment), the IAS was 
capable of identically imitating the human pilot’s actions and 
behaviour when performing the procedures of the landing phase, 
by engaging the reverse thrust, brakes, and speed brakes 
immediately after touchdown to bring the aircraft to a rapid full 
stop. 

VII. CONCLUSION 

In this work, a novel and robust approach is proposed to 
“teach” autopilots how to perform complete flights from takeoff 
to landing with minimum effort by exploiting Learning by 
Imitation also known as Learning from Demonstration. This 
approach introduces the possibility to have an autopilot that 



  

behaves like a skilled human pilot rather than a machine with 
limited capabilities. 

The experiments were strong indicators towards the ability of 
Supervised Learning with Artificial Neural Networks to capture 
low-level piloting tasks such as the rapid manipulation of the 
ailerons to maintain a banked turn, and high-level tasks such as 
coordinating the necessary actions during the final approach and 
the landing phases. 

Breaking down the piloting tasks, and adding more Artificial 
Neural Networks allows the system to overcome the black-box 
problem by having multiple small ANNs with single hidden 
layers that learn from small labelled datasets which have clear 
patterns. In addition, this approach enhanced performance and 
accuracy, and allowed the coverage of a wider spectrum of 
tasks. 

The aviation industry is currently working on solutions which 
should lead to decreasing the dependence on crew members. 
The reason behind this is to lower workload, human error, stress, 
and emergency situations where the captain or the first officer 
becomes incapable, by developing autopilots capable of 
handling multiple scenarios without human intervention. We 
anticipate that future Autopilot systems which make of methods 
proposed here could improve safety and save lives. 

VIII. FUTURE WORK 

Our work [21] covers navigation, landing, and go-around 
under severe weather conditions with the presence of high 
crosswind component, wind shear, gust, and turbulence.  

Since this work and our other work [1] [2] [21] proved the 
possibility of teaching an artificially intelligent autopilot how to 
perform complete flights while being able to handle multiple 
uncertainties, and since the performance of the Intelligent 
Autopilot System (IAS) is based on what it learned from its 
teacher (the first author) who has no real flying experience and 
know-how, we believe it is time to take this work to the next 
level which we anticipate would cover teaching the IAS by 
allowing it to observe new demonstrations from experienced 
pilots using professional equipment such as CAA-certified 
flight simulators. Next, we anticipate testing the IAS thoroughly 
in real-life scenarios by integrating it with a fixed-wing 
Unmanned Aircraft System (UAS) before collaborating with the 
civil aviation industry.  
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Abstract— We introduce the Intelligent Autopilot System (IAS) 

which is capable of autonomous landing, and go-around of large 

jets such as airliners under severe weather conditions. The IAS 

is a potential solution to the current problem of Automatic Flight 

Control Systems of being unable to autonomously handle flight 

uncertainties such as severe weather conditions, autonomous 

complete flights, and go-around. A robust approach to control 

the aircraft’s bearing using Artificial Neural Networks is 

proposed. An Artificial Neural Network predicts the 

appropriate bearing to be followed given the drift from the path 

line to be intercepted. In addition, the capabilities of the Flight 

Manager of the IAS are extended to detect unsafe landing 

attempts, and generate a go-around flight course. Experiments 

show that the IAS can handle such flight skills and tasks 

effectively, and can even land aircraft under severe weather 

conditions that are beyond the maximum demonstrated landing 

of the aircraft model used in this work as reported by the 

manufacturer’s operations limitations. The proposed IAS is a 

novel approach towards achieving full control autonomy of large 

jets using ANN models that match the skills and abilities of 

experienced human pilots.  

I. INTRODUCTION 

Human pilots are trained to perform piloting tasks that are 

required during the different phases of the flight. They are 

trained to perform landing under difficult weather conditions 

such as strong crosswind, and abort landing by executing a 

go-around if needed. 

In contrast, Automatic Flight Control Systems 
(AFCS/Autopilot) are highly limited, capable of performing 

minimal piloting tasks. Although modern autopilots can 

perform auto-land, they cannot handle complete flight cycles 

automatically, they must be engaged and operated manually 

by the human pilots to constantly change and update the 

desired parameters, and they cannot handle severe weather 

conditions, such as strong crosswind components combined 

with wind shear, gust, and turbulence. The reason for such 

limitations of conventional AFCS is that it is not feasible to 

anticipate everything that could go wrong with a flight, and 

incorporate all of that into the set of rules or control models 

“hardcoded” in an AFCS.  
This work aims to address this problem by creating an 

Intelligent Autopilot System (IAS) with the capability to 

 

 
 

handle landing, and go-around under severe weather 
conditions using Artificial Neural Networks. The IAS is a 

novel approach which introduces the possibility to transfer 

human intelligence and intuitions required to pilot an aircraft 

under such conditions, to an autonomous system. By using 

this approach, we aim to extend the capabilities of modern 

autopilots and enable them to autonomously adapt their 

piloting to suit multiple scenarios ranging from normal to 

emergency situations. This work builds on previous work by 

the authors [1][2][3] which introduced the ability to follow a 

flight course and land autonomously under calm conditions, 

however, this approach was not able to handle landing under 
severe weather conditions. Therefore, this paper provides a 

new approach to enable the system to cope under such 

difficult conditions, or to safely abort when impossible to 

land. 

This paper is structured as follows: part (II) reviews related 

literature on wind effects during the cruise, and landing flight 

phases. Part (III) explains the Intelligent Autopilot System 

(IAS). Part (IV) describes the experiments, Part (V) describes 

the results by observing the behaviour of the Intelligent 

Autopilot System in a flight simulator, and part (VI) provides 

an analysis of the results. Finally, we provide conclusions. 

II. BACKGROUND 

A.  Wind Effects on Autonomous Flying  

Wind disturbance causes the UAV to drift from the desired 

course, and when added to the accumulated errors of the 

navigation systems, maintaining a desired flight path or 

course becomes a significant challenge [4][5]. 
In [6], the physical properties of the Vehicle Dynamic 

Model (VDM) are used to study the effects of wind on 

navigation systems in addition to the control inputs within the 

algorithm of the navigation filter. In [7], an approach to tackle 

strong wind effects during flights is proposed by estimating 

wind effects that are steady and strong in nature, and delivers 

a maneuvering strategy to tackle such conditions [7].  

B. Crosswind Landing  

To tackle crosswind during an approach, two methods are 

used, the first method is known as Crabbing where a certain 
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degree of drift or crab is induced to change the orientation of 

the aircraft’s nose heading towards the direction of the wind 

[8]. The second method is known as Wing-down, in which a 

steady sideslip is induced to tackle the drift caused by the 

crosswind [8]. In practice, it is common to combine both 
methods, following degrees which could vary during the 

approach phase [9]. For the Boeing 777 of which a simulated 

model is used in this work, the maximum crosswind 

components are 45 knots for a dry runway, and 40 knots for a 

wet runway [8]. 

Artificial Neural Networks (ANNs) were used to estimate a 

mapping relationship between the given situation, and the 

human pilot inputs while performing the crabbing maneuver 

[10] [11]. In addition, the possibility of using conventional 

Control Theory fault tolerance techniques, that are used for 

Proportional Integral Derivative (PID) controllers to tackle 

the crosswind landing challenge, is being investigated such as 
applying the Integral Windup handling methods [12]. 

Introducing intelligent autonomy to the aviation industry 

through developing intelligent control techniques that fit into 

an overall flight management system capable of making the 

highest level of decisions, is expected to significantly enhance 

safety, and lower costs [13].  

In addition of having limited capabilities, modern autopilots 

can contribute to catastrophes since they can only operate 

under certain conditions that fit their design and 

programming, otherwise, they cede control to the pilots, and 

with the lack of proper situational awareness and reaction, the 
result could be fatal [14]. Although the civil aviation sector 

that uses medium to large jets equipped with such autopilots, 

is the largest with the highest risk and costs, the current focus 

of the relevant and recent research efforts is on investigating 

and developing autonomous autopilots for Unmanned 

Aircraft Systems especially small and micro drones by 

introducing solutions that may not be suitable for Large jets 

such as airliners. Therefore, we propose a solution that can be 

applied to multiple aircraft categories including airliners and 

cargo airplanes. We believe that manned aircraft especially 

airliners require significant attention to enhance safety by 

addressing the limitations of modern autopilots and flight 
management systems, and the human error factor as well. A 

review of the Autopilot problem, Artificial Neural Networks, 

autonomous navigation and landing are presented in our 

previous work [1][3].  

 

 

 

 
 

Fig.  1. Block diagram illustrating the IAS components used during training. 

III. THE INTELLIGENT AUTOPILOT SYSTEM 

The IAS is made of the following components: a flight 

simulator, an interface, a database, a flight manager program, 

and Artificial Neural Networks. The IAS implementation 

method has three steps that start with pilot data collection 

which is a process [1][2][3] that records human pilot 

demonstrations in a flight simulator of the piloting tasks to be 

learned by the IAS. The recorded demonstrations are 

transformed into training datasets for the ANNs. 

In this paper, we discuss: A. Training, and B. Autonomous 

Control. In each step, different IAS components are used. The 

following sections describe each step and the components 

used in turn. The approach applied to allow the IAS to learn 

from human teachers is covered in our previous work 

[1][2][3]. 

A. Training 

1) Artificial Neural Networks 

Artificial Neural Networks are used to generate learning 

models from the captured datasets through offline training. 

Fig. 1 illustrates the training step.  

Fourteen feedforward Artificial Neural Networks comprise 

the core of the IAS. Each ANN is designed and trained to 

handle specific controls and tasks by taking flight data as 
inputs, and producing control commands as outputs. Fig.  2 

illustrates the main ANNs used during the different phases of 

the flight. The fourteen ANNs including the emergency 

situations ANNs are discussed in [1][2][3]. In this work, we 

introduce the Bearing Adjustment ANN as Fig.  3 illustrates.  

The method for choosing ANN topologies in this work is 

based on an implication [15] which indicates that direct 

mapping problems requiring more than one hidden layer are 

rarely encountered, and compared to Deep Learning, this 

approach means that the system is more understandable and 

easier to test and verify compared to single deep solutions 
which are black-boxes unsuited for safety critical 

applications. 

Before training, the dataset is retrieved from the database. 

Then, the dataset is fed to the ANN. Next, supervised 

feedforward training using the Hyperbolic Tangent (Tanh) 

function [16] which is selected given its ability to handle 

negative values, and the Backpropagation algorithm [16] are 

applied to train the ANNs. 

When training is completed, the learning model is 

generated, and the free parameters or coefficients represented 

by weights and biases of the model are stored in the database. 

   
Fig.  2. The ANNs used during the different phases of the flight. 

 

 



  

 

 
 

Fig.  3. Input, output, and the topology of the Bearing Adjustment ANN. 

 

2) Database   

An SQL Server database stores the free parameters or 

coefficients represented by weights and biases of the 

generated learning models. 

B. Autonomous Control  

Once trained, the IAS can now be used for autonomous 

control. Fig. 4 illustrates the components used during the 

autonomous control step.  

1) The Flight Simulator  

The simulator of choice in this work is X-Plane 10 which 

is an advanced flight simulator that has been used in many 

research papers such as [17] [18] [19]. 

2) The IAS Interface 

The IAS Interface is responsible for data flow between the 

flight simulator and the system in both directions over the 
network using UDP packets. Here, the Interface retrieves the 

coefficients of the models from the database for each trained 

ANN, and receives flight data from the flight simulator every 

0.1 second. The Interface organizes the coefficients into sets 

of weights and biases, and organizes data received from the 

simulator into sets of inputs for each ANN. The relevant 

coefficients, and flight data input sets are then fed to the Flight 

Manager and the ANNs of the IAS to produce outputs. The 

outputs of the ANNs are sent to the Interface which sends 

them to the flight simulator as autonomous control commands 

using UDP packets every 0.1 second. 

3) The Flight Manager Program 

The Flight Manager is a program which resembles a 

Behaviour Tree [20].  The purpose of the Flight Manager is to 

manage the ANNs of the IAS by deciding which ANNs are to 

be used simultaneously at each moment. In addition, it 

generates a flight course to the destination airport of choice 

based on stored GPS waypoints. 

The go-around maneuver is performed to abort landing, by 

going to takeoff thrust levels, pulling up to climb, and 

retracting the landing gear.  This is performed when the pilot 

decides that proceeding with landing might be unsafe, and 

therefore, it is favorable to climb, go around through a given 

flight course which brings the aircraft back to the point that 

precedes the final approach phase, and reattempt landing. 

Landing safety check techniques are used to ensure that 

the aircraft is within safe landing conditions, otherwise, go-
around is initiated. These techniques, such as the Runway 

Overrun Prevention System (ROPS)1 from Airbus, analyze 

 
1 Airbus ROPS. http://www.aircraft.airbus.com/support-services/services/flight-operations/fuel-

efficiency-and-runway-overrun-protection-systems/ 

Fig.  4. Block diagram illustrating the IAS components used during 

autonomous control. 

 

multiple parameters continuously including the available 

landing runway data and condition to ensure safe landing. 

During final approach and just before touchdown, and at a 

specific altitude that ensures the possibility for the aircraft to 
climb safely before touchdown, the Flight Manager of the IAS 

initiates the continuous landing safety check. The selected 

altitude at which this process starts is equal to or slightly 

greater than 60 (ftagl) based on preliminary empirical testing. 

First, the Flight Manager checks if the angle between the 

aircraft and the centerline of the landing runway is less than a 

specific degree based on the runway’s width. Then, it checks 

if the beginning of the landing runway has been reached. 

Finally, it checks if the remaining distance to the end of the 

runway is safe for landing. The parameters used during this 

checking process can be modified based on the available 
information about the landing runway such as its width and 

length. If the Flight Manager detects an unsafe landing, it 

generates a go-around flight course based on the available 

GPS coordinates as Fig.  5 illustrates, changes the flight status 

from final approach to takeoff, and activates the takeoff ANN.  

Fig.  6 illustrates the process which the Flight Manager 

follows to handle the go-around process. The methods used 

by the Flight Manager to handle the different tasks including 

generating flight courses, managing flights, and handling 

emergency situations is discussed in [2][3]. 

4) Artificial Neural Networks 

The flight data input received through the Interface is used 
by the ANNs’ input neuron along with the relevant 

coefficients to predict the appropriate output. The Interface 

sends the relevant output layer value to the flight simulator as 

autonomous control command.  

Since this work aims to expand the capabilities of the IAS 

to  handle  landing  under severe weather condition including  

 

 
 

Fig.  5. The generated go-around flight course represented by the blue lines. 

The aircraft navigates to waypoint 1, then to waypoint 2, and finally, back 

to the landing runway. 



  

 
Fig.  6. A Flowchart illustrating the process which the Flight Manager 

program follows to check the landing conditions, and initiate a go-around if 

necessary. 

 

strong crosswind components, wind shear, gust, and 

turbulence, the Bearing Adjustment ANN is introduced to 

predict the necessary adjustment of the aircraft’s bearing 

based on the drift rate either towards or away from the path 
line to be intercepted. Based on preliminary empirical testing, 

the desired drift rate towards the path line is 0.0025 degrees 

every decisecond. First, the average rate of change of the 

angle -between the aircraft and the path line to be intercepted- 

is calculated using (1) [21]. 

 

                      A(x) =   
𝑓(𝑥) −  𝑓(𝑎)

𝑥 −  𝑎 
                (1)  

 

where 𝑥 −   𝑎 is the change in the input of the function f, and 

𝑓(𝑥)  −   𝑓(𝑎) is the change in the function 𝑓 as the input 

changes from 𝑎 to 𝑥. Then, the result is added to the difference 

between the bearing of the path line to be intercepted, and the 

aircraft’s current bearing to generate the required bearing to 

be followed. The difference between the latter and the current 

bearing of the aircraft is fed to the Aileron ANN [1][3] which 

takes the difference as input, and predicts through its output 

neuron, the appropriate control command to the ailerons, to 
bank, and intercept the path line.    

IV. EXPERIMENTS 

This work discusses the experiments conducted on the 

Bearing Adjustment ANN which aids the Aileron ANN to 

intercept a path line under severe weather conditions. This 

section also discusses the experiments conducted on 

performing go-around. 
The experiments were conducted under severe weather 

conditions with the presence of high crosswind component, 

wind shear, gust, and turbulence.  

Our previous work [1][2][3] provide detailed explanations 

of the experiments of autonomous ground-run, takeoff, climb, 

cruise, rudder control, maintaining a desired altitude and 

pitch, navigating from departure to arrival airports, landing, 

and handling emergency situations. 

To assess the effectiveness of the proposed approach in this 

paper, the Intelligent Autopilot System was tested in two 

experiments: A. Path line interception during final approach, 

and B. Go-around. 
The simulated aircraft used for the experiments is a Boeing 

777 as we want to experiment using a complex and large 

model with more than one engine rather than a light single-

engine model. The experiments are as follows:  

A. Path line interception during final approach  

The purpose of this experiment is to assess the behaviour of 

the IAS when intercepting a path line that represents the 

centerline of the landing runway during final approach under 

severe weather conditions.  

1) Training 

For this experiment, the Bearing Adjustment ANN was 

trained until a low Mean Squared Error (MSE) value was 

achieved (below 0. 01).  
2) Autonomous Control 

After training the ANN on the relevant training dataset, the 

aircraft was reset to the runway in the flight simulator, and the 

IAS was engaged to test the ability of intercepting a final 

approach and landing path line under severe weather 

conditions autonomously. After the IAS took the aircraft 

airborne, and navigated to the destination airport, the output 

of the Bearing Adjustment ANN was used to assist the 

Aileron ANN to intercept the final approach path line. This 

was repeated 50 times under different and random weather 

conditions as table I shows, to assess consistency. The 
weather conditions included a 0.015 turbulence value, and 

rain precipitation around 0.3 mm during all attempts.    

B. Go-around 

The purpose of this experiment is to assess the behaviour of 

the IAS when performing go-around autonomously. 

1) Training 
For this experiment, the same approach [3] used to navigate 

autonomously from a given point A to a given point B is 

applied. Therefore, no additional training was required. 

2) Autonomous Control 

The aircraft was reset to the runway in the flight simulator 

to test the autonomous go-around task. Just before 

touchdown, deviation from the path line is induced manually 

by stopping the IAS, and manually engaging the ailerons by 

the human pilot to deviate from the path line. Then, the IAS 

is started immediately. This approach was applied since the 

IAS excelled at landing within the safe zone of the landing 

runway regardless of how severe the weather conditions as 
long as these conditions are not exaggerated to a no-fly 

condition. To assess consistency, this was repeated 10 times 

under different and random weather conditions with 

minimum wind speed of 20 knots up to 35 knots, and random 

directions between 0 and  360 degrees including shear  of  20  

 
TABLE I 

THE DIFFERENT WEATHER CONDITIONS USED FOR THE FINAL 

APPROACH PATH LINE INTERCEPTION EXPERIMENT. 

Attempts 

Count 

Wind 

Speed 

(knots) 

Wind 

Gust 

(knots) 

Wind 

Direction 

(degrees) 

Wind Shear 

(degrees) 

10 20 12 0 20 

10 23 14 180 20 

10 27 15 90 22 

10 27 15 270 22 

10 50 0 90 0 



  

degrees. The weather conditions included a 0.015 turbulence 

value, and rain precipitation around 0.3 mm during all 

attempts.  

V. RESULTS 

The following section describes the results of the conducted 

tests. 

A. Path line interception during final approach 

One model was generated for the Bearing Adjustment ANN 

with an MSE value of 0.0089. Utilizing the output value of 

the Bearing Adjustment ANN to enhance the path line 

interception performance, resulted in the system flying the 

aircraft using a technique known as crabbing, where although 

the aircraft flies in a straight line, the nose of the aircraft is 

pointed towards a bearing different from the bearing of the 

landing runway’s centerline due to wind conditions. Unlike 

other systems where this technique must be explicitly hard-

coded, here, the IAS naturally discovered the technique itself. 

Fig.  7 illustrates the different bearings the IAS followed 

under random severe weather conditions as table I shows, 
compared to the bearing of the landing runway (326 degrees), 

where the lines in the upper area represent bearings followed 

when the aircraft was pushed to the left side of the landing 

runway’s  centerline,  which  happens in the  presence of east  

 

 
Fig.  7. 50 attempts showing Aircraft bearings (crabbing) during final 

approach under random severe weather conditions at table I shows, 

compared to the bearing of the landing runway (326 degrees). Lines in the 

upper area are bearings followed when the aircraft was pushed to the left 

side of the landing runway’s centerline, and vice versa. 

 

 
Fig.  9. 50 lines showing angle values between the aircraft’s position, and 

the centerline of the landing runway (0 degrees) of all the attempts 

illustrated in Fig.  6. Based on the width of the landing runway used in the 

experiments, a safe touchdown angle is between 0.045 and -0.045, which is 

the area between the dotted lines (landing runway’s safe touchdown zone). 

crosswind for example, and vice versa. The lines on top are 

the bearings the IAS followed under a sustained weather 

condition with a constant crosswind of 50 knots at 90 degrees. 

Fig.  8 illustrates the average rate of change of the angle when 

drifting towards the path line. Fig.  9 illustrates the angle 
representing the difference between the aircraft’s position, 

and the centerline of the landing runway.  Based on the width 

of the landing runway used in the experiments, a safe 

touchdown angle is between 0.045 and -0.045 which was 

found based on preliminary empirical testing. 

B. Go-around 

No new models were generated for this experiment. Fig.  10 

illustrates the flight paths that the IAS followed autonomously 

back to the landing runway. Since no strict go-around path 

was applied, the IAS followed two different paths based on 

the aircraft’s location with respect to the landing runway’s 

centerline,  where  a position on  the right of  the  runway due 

to wind blowing from the left would cause the IAS to bank 

right towards the next waypoint, and vice versa. 

VI. Analysis 

As can be seen in Fig.  7 (Path line interception during final 

approach experiment), the IAS was able to produce a natural 

crabbing  behaviour  in a direction that is perpendicular to the 

 

 
Fig.  8. The average rate of change of the angle when drifting towards the 

path line in the presence of random and severe weather conditions at table I 

shows, compared to a desired rate of change of 0.0025 degrees every 

decisecond. 
 

Fig.  10. The 10 go-around flight paths followed autonomously by the IAS 

back to the landing runway. The aircraft navigates to waypoint 1, then to 

waypoint 2, and finally, back to the landing runway. the IAS followed two 

different paths based on the aircraft’s location with respect to the landing 

runway’s centerline. Birmingham airport (BHX) was used. 



  

constantly changing speed and direction of wind without 

being explicitly trained to do so. In addition, the IAS was able 

to handle persistent strong crosswind of 50 knots at 90 

degrees which is beyond the demonstrated crosswind landing 

of a Boeing 777 as the top lines in Fig.  7 show. Keeping the 
angle  rate  of  change  close  to  0.0025  degrees  despite  the 

random severe weather conditions proved the effectiveness of 

the Bearing Adjustment ANN as Fig.  8 (Path line interception 

during final approach experiment) illustrates. In all the 

attempts, the IAS was able to touchdown within the safe 

landing zone with respect to the centerline of the runway as 

Fig.  9 (Path line interception during final approach 

experiment) illustrates. This compares extremely well with 

the previous version of the IAS without the Bearing 

Adjustment ANN, which was unable to land under the same 

conditions. Under most weather conditions the IAS piloted so 

well that go-arounds were not needed, therefore, manual 
intervention was required to induce a go-around maneuver by 

stopping the IAS just before touchdown, manually banking 

the aircraft away from the centerline, then restarting the IAS. 

The system was able to detect unsafe landings through the 

Flight Manager, and followed go-around paths back to the 

landing runway under random severe weather conditions 

successfully as Fig.  10 (go-around experiment) illustrates. 

VII. CONCLUSION 

In this work, a novel and robust approach is proposed to 

perform autonomous final approach path line interception, 

and go-around under severe weather conditions.  

The experiments were strong indicators towards the ability 

of Supervised Learning with Artificial Neural Networks to 

capture low-level piloting tasks such as the rapid 

manipulation of the ailerons to intercept a path line under 

severe weather conditions.  

The novelties presented in our work, and dedicated to 

introducing intelligent autonomy to large jets such as airliners 

are robust solutions that could enhance flight safety in the 

civil aviation domain. They provide solutions to the difficult 

problem of autonomous navigation and landing under severe 

wind disturbance by enabling autonomous behaviour that was 

not possible before.  
The aviation industry is currently working on solutions 

which should lead to decreasing the dependence on crew 

members. The reason behind this is to lower workload, human 

error, stress, and emergency situations where the captain or 

the first officer becomes incapable, by developing autopilots 

capable of handling multiple scenarios without human 

intervention. We anticipate that future Autopilot systems 

which make of methods proposed here could improve safety 

and save lives. 
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Abstract— We describe the Intelligent Autopilot System (IAS), a fully autonomous autopilot capable of piloting large jets such as 

airliners by learning from experienced human pilots using Artificial Neural Networks. The IAS is capable of autonomously executing 

the required piloting tasks and handling the different flight phases to fly an aircraft from one airport to another including takeoff, 

climb, cruise, navigate, descent, approach, and land in simulation. In addition, the IAS is capable of autonomously landing large jets 

in the presence of extreme weather conditions including severe crosswind, gust, wind shear, and turbulence. The IAS is a potential 

solution to the limitations and robustness problems of modern autopilots such as the inability to execute complete flights, the inability 

to handle extreme weather conditions especially during approach and landing where the aircraft’s speed is relatively low, and the 

uncertainty factor is high, and the pilots shortage problem compared to the increasing aircraft demand. In this paper we present the 

work done by collaborating with Oman Air to provide training data for the IAS to learn from. The training data are used by 

Artificial Neural Networks to generate control models automatically. The control models imitate the skills of the human pilot when 

executing all the piloting tasks required to pilot an aircraft between two airports. In addition, we introduce new ANNs trained to 

control the aircraft’s elevators, elevators’ trim, throttle, flaps, and new ailerons and rudder ANNs to counter the effects of extreme 

weather conditions and land safely. Experiments show that small datasets containing single demonstrations are sufficient to train the 

IAS and achieve excellent performance by using clearly separable and traceable neural network modules which eliminate the black-

box problem of large Artificial Intelligence methods such as Deep Learning. In addition, experiments show that the IAS can handle 

landing in extreme weather conditions beyond the capabilities of modern autopilots and even experienced human pilots. The proposed 

IAS is a novel approach towards achieving full control autonomy of large jets using ANN models that match the skills and abilities of 

experienced human pilots and beyond. 

 

I. INTRODUCTION 

Human pilots are trained to perform piloting tasks that are required during the different phases of the flight. Performing a 

complete flight cycle starts with a ground-run on the runway to gain speed, rotate after a certain airspeed is achieved, climb, 

cruise while navigating between waypoints, descend, prepare for final approach while intercepting the landing runway path line, 

touchdown, flare, and slowdown to taxi speed [1].  

In contrast, Automatic Flight Control Systems (AFCS) or autopilots are highly limited, capable of performing minimal 

piloting tasks. Although modern autopilots can maintain or hold a desired heading, speed, altitude, and even perform auto-land, 

they cannot handle complete flight cycles automatically, and they must be engaged and operated manually by the human pilots 

to constantly change and update the desired parameters. In addition, modern autopilots cannot handle severe weather conditions, 

such as strong crosswind components combined with wind shear, gust, and turbulence especially during final approach and 

landing. The reason for such limitations of conventional AFCS is that it is not feasible to anticipate all the potential 

uncertainties such as weather conditions and incorporate all of that into the set of rules or control models “hardcoded” in an 

AFCS, and the robustness issues of PID controllers which modern autopilots rely on.  

This work aims to address this problem by creating an Intelligent Autopilot System (IAS) with the capability to perform 

complete flights autonomously using Artificial Neural Networks. The IAS is a novel approach which introduces the possibility 

to transfer human intelligence and intuitions required to pilot an aircraft to an autonomous system. By using this approach, we 

aim to extend the capabilities of modern autopilots and enable them to autonomously perform all the necessary piloting tasks to 

complete full flight cycles.  

The work in this paper builds on previous work by the authors [2][3][4][5] which describe previous versions of the IAS that 

learned from training data provided by the first author who does not have piloting experience. Although the latter work 

presented cockpit autonomy capabilities, the IAS did not fully behave like an experienced human pilot of an airliner especially 

when manipulating the different control surfaces to maintain desired parameters such as altitude and the final approach 



 

 

glideslope. In addition, the previous versions did not have the ability to maintain desired speeds, climb/sink rates, and correctly 

control the flaps settings. Therefore, the work in this paper describe the effort conducted to alter and enhance the behaviour of 

the IAS to mimic the behaviour of experienced human pilots of airliners by redesigning the system’s Artificial Neural Networks 

to learn from new training data collected from demonstrations performed by an experienced Oman Air captain through a joint 

training project. Furthermore, this work aims to equip the IAS with the ability to surpass the current limits and abilities of 

landing in extreme weather conditions. 

This paper is structured as follows: part (II) reviews related literature on autonomous flight control systems. Part (III) 

explains the Intelligent Autopilot System (IAS). Part (IV) describes the experiments, Part (V) describes the results by 

comparing the behaviour of IAS with the behaviour of the human pilot and the behaviour of the standard PID-based autopilot as 

well, and part (VI) provides an analysis of the results. Finally, we provide conclusions and future work. 

II. BACKGROUND 

The concept of introducing intelligent autonomy to the cockpit is gaining significant interest due to multiple factors such as 

the robustness issues of current automation technology, human error, and the shortage of pilots compared to the increasing 

aircraft demand. Selecting the suitable intelligent autonomy technology for such safety-critical domain is a subject of interest 

and debate. In [6], an active disturbance rejection control (ADRC) strategy based on fuzzy control is proposed, which is 

designed to improve the ability of anti-interference, meanwhile, fuzzy control is adopted to adjust the ADRC parameters online, 

which makes control performance better. Simulation results show that compared with conventional PID the Fuzzy-ADRC 

strategy can suppress the disturbances quickly and efficiently, with higher control accuracy, stronger robustness and so on [6]. 

In [7], a fuzzy self-tuning PID (FSPID) controller to tackle the disadvantages of conventional PID controllers in aircraft 

autopilots is proposed where fuzzy self-tuning PID tunes the PID parameters to achieve the optimal performance, which based 

on the results in simulation, the proposed controller can adaptively improve the system response by on-line setting of PID 

parameters. Other methods were used to enhance the pitch control performance such as Linear Quadratic Regulator (LQR) [8], 

and Fuzzy Logic Controllers (FLC) [9].  

For altitude control, a non-minimum phase (NMP) dynamic control systems is proposed in [10] where an invert closed loop 

system performed better than conventional Linear Quadratic Gaussian (LQG) when holding a given altitude. In [11], Artificial 

Neural Network’s direct inverse control (DIC-ANN) with the PID control system is proposed where the linearization simplified 

the solving process for such mathematical based model, omitting the nonlinear and the coupling terms is unsuitable for the 

dynamics of the multirotor vehicle.  

Applying intelligent control methods to aircraft speed control is investigated in [12] where a speed command controller is 

enhanced by applying a command filter as well as an additional feed forward command.  

For flaps control, [13] proposes a dynamic flaps controller that continuously adjusts the flaps settings based on speed to 

achieve optimal flight dynamics throughout the flight. In addition, [14], The controllability of a flap-controlled system is 

analysed based on nonlinear controllability theory.    

Autonomous landing is a subject that is being covered extensively in research due to the need to introduce intelligent control 

systems that can handle the difficult problem of landing safely especially in severe weather conditions such as crosswind and 

low visibility. In [15], a vision-based method for determination of the position of a fixed-wing aircraft approaching a runway is 

proposed where the method determines the location of an aircraft based on positions of precision approach path indicator lights 

and approach light system with sequenced flashing lights in the image captured by an on-board camera. In [16], A 

comprehensive Autoland design for a representative model of a twin-engine commercial aircraft is proposed where a cascaded 

control structure is selected which resembles integrator chains. The classical loop shaping is used to design the individual 

control loops where the emphasis is on providing a complete and comprehensive qualitative design strategy [16]. In [17], a 

control system architecture with strong disturbance rejection characteristics for Unmanned Aircraft is presented where the 

primary objective is to accurately land a fixed-wing aircraft under adverse weather conditions. A synergistic controller 

architecture is presented, where the aim is to design a structure capable of executing one of three landing techniques, or 

combination thereof, by simply activating various controllers at different stages of the landing phase [17]. An acceleration-

based controller architecture is used for the inner-loop controllers to reject disturbances at the acceleration level before they 

manifest as deviations in inertial position and velocity [17]. [18] proposes an autonomous approach and landing navigation 

method whose accuracy is comparable to Inertial/Differential GPS (DGPS) integration. The method integrates inertial data, 

forward-looking infrared (FLIR) images, and runway geographic information to estimate kinetics states of aircraft during 

approach and landing [18]. An existing method is enhanced to robustly detect runway, accurately extract three vertexes of 

runway contour from FLIR images and synthesize the virtual runway features by runway geo-information and aircraft’s pose 

parameters [18]. Then, real and synthetic runway features are used to create vision cues and integrate them with inertial data in 

square-root unscented Kalman filter to estimate the motion errors [18]. [19] proposes an improved multi-group swarm-based 

optimization method that can not only optimize the parameters of the lateral flight control system, but also find diversity 

solutions of the underlying optimization problem. During the optimizing process, several swarm groups are generated to search 



 

 

potential areas for the optimal solution [19]. These groups exchange information with each other during the searching process 

and focus on their different but continuous spaces [19].  

Controlling the aircraft’s roll by using the ailerons is in the heart of navigation and path interception. In [20], an autopilot 

system that uses sliding mode control (SMC) method is proposed. The results show enhanced performance using 

MATLAB/Simulink environment [20]. A variant of the sliding technique used in [20] is used in [21] as well. The proposed 

SMC algorithm-based on nonlinear sliding surface is derived using the kinematic equations for bank-to-turn vehicles [21].  

In addition, utilizing the rudder ensures the interception of the runway’s centreline during takeoff and landing in the presence 

of crosswind. In [22], a grid method for computing the value function and optimal feedback strategies for the control and 

disturbance is used to optimize the control of the rudder by handling nonlinear and linearized model of the aircraft on the 

ground.  

During final approach, maintaining a desired glideslope ensures safe and soft landings. In [23], controllers that modify the 

reference model associated with aircraft pitch angle are proposed. The control of the pitch angle and longitudinal velocity is 

performed by a neural network adaptive control system, based on the dynamic inversion concept [23]. In [24], a network model 

optimization algorithm based on onboard flight recorder data is suggested. 

In a report [25] prepared for NASA by Honeywell Aerospace and Defence, the Intelligent Autopilot System (IAS) described 

in this paper is briefly evaluated with the emphasis on the problem-breakdown approach of the IAS where multiple and 

independent small components designed to handle specific tasks are managed by a high-level component, which is in line with 

the recommendations of the report. However, [25] mistakenly claims that the IAS uses Inverse Reinforcement Learning where 

capturing a sequence of sub-tasks or reward functions that makeup a high-level task becomes quite challenging [26]; in fact, our 

system uses Supervised Learning by applying fully connected single-layer Artificial Neural Networks (ANNs), which is a 

method that can undergo Verification and Validation (V&V) given the absence of a black-box. [25] emphasizes the need for 

assuring that the intelligent control system must not behave unexpectedly and must have a certain level of situational awareness 

where the behaviour is altered to handle an emergency for example. Although the IAS is a proof-of-concept designed to prove 

the possibility of introducing intelligent autonomy to the cockpit, not a fully developed mature autopilot, we have already paid 

attention to the assurance points by making sure the training datasets contain specific patterns that guarantee the elimination of 

unexpected behaviour. In addition, the IAS is capable of detecting several unusual conditions such as emergency situations 

where the behaviour is altered to cope with the situation. 

It is clear that intelligent autonomy is covered in the literature in many recent research papers, however, the work is dedicated 

to tackling specific flight automation problems such as maintaining speed or altitude rather than proposing comprehensive 

cockpit autonomy solutions such as the IAS. In most papers, the authors tackle the robustness issues of PID controllers that 

modern autopilots rely on by applying a layer of intelligent control to those conventional controllers such as adding Artificial 

Neural Networks or Fuzzy Logic to the PID controllers closed loop to enhance performance and accuracy [7][11] instead of 

fully replacing them with intelligent control solutions, which increases the complexity of the proposed solution rather than 

attempting to simplify it. In addition, most of the work effort is focused on solutions for small to medium Unmanned Aerial 

System with few attention to large airplanes such as airliners.     

 

III. THE INTELLIGENT AUTOPILOT SYSTEM 

The proposed Intelligent Autopilot System (IAS) in this paper can be viewed as an apprentice that observes the 

demonstration of a new task by the experienced human teacher, and then performs the same task autonomously. A successful 

generalization of learning should take into consideration the capturing of low-level models and high-level models which can be 

viewed as rapid and dynamic sub-actions that occur in fractions of a second, and actions governing the whole process and how 

it should be performed strategically. It is important to capture and imitate both levels to handle different piloting tasks 

successfully. The IAS is made of the following components: a flight simulator, an interface, flight control hardware, a database, 

a flight manager program, and Artificial Neural Networks. The IAS implementation method has three steps: A. Data Collection, 

B. Training, and C. Autonomous Control. In each step, different IAS components are used. The following sections describe 

each step and the components used in turn.  
 

A. Data Collection 

Fig. 1 illustrates the IAS components used during the data collection step. 
 

1) Flight Simulator 

Before the IAS can be trained or can take control, in most cases, we must collect data from a human pilot. This is performed 

using X-Plane which is an advanced flight simulator that has been used as the simulator of choice in many research papers such 

as [27] [28] [29]. X-Plane is used by multiple organizations and industries such as NASA, Boeing, Cirrus, Cessna, Piper, 

Precession Flight Controls Incorporated, Japan Airlines, and the American Federal Aviation Administration. X-Plane can 

communicate with external applications by sending and receiving flight data and control commands data over a network  



 

 

 
 

 

Fig.  1. Block diagram illustrating the IAS components used during the pilot data collection step. 
 

 

through User Datagram Protocol (UDP) packets. For this work, the simulator is set up to send and receive packets comprising 

desired data every 0.1 second. 
 

2) The IAS Interface 

The IAS interface is responsible for data flow between the flight simulator and the system in both directions. It provides a 

Graphical User Interface (GUI) for the user to select pre-flight options such as the destination airport, altitude, speed, and 

climb-rate. The interface displays flight data received from the simulator, and control command data sent back to the simulator. 

In addition, the interface provides data collection options through the GUI, which sends the collected data to the database. After 

selecting the desired data collection options, the human teacher uses the flight control hardware to perform the piloting task to 

be learned. The interface collects data from X-Plane over the network using UDP packets including current flight data and the 

pilot’s actions while piloting the aircraft which are organized into vectors of inputs and mapped outputs, and sent to the 

database to be stored as training data. 
 

3) Flight Control Hardware 

In this work, we use a HOTAS (Hands On Throttle-And-Stick) system by Logitech called G Saitek X52 Pro Flight Control 

System which provides a comprehensive set of hardware interface for the human pilot to use including a stick to control the 

aircraft’s roll, yaw, and pitch, in addition to a throttle handle to control the engines’ thrust, and a group of buttons and switches 

to control brakes, gear, speed-brakes, flaps, etc.   
 

4) Database 

An SQL Server database stores the data captured from X-Plane and the pilot’s demonstrations which are received from the 

interface. The database contains tables designed to store: 1. Flight data as inputs, and 2. Pilot’s actions as outputs. These tables 

are then used as training datasets to train the Artificial Neural Networks of the IAS. 
 

B. Training 

1) Artificial Neural Networks 

After the human pilot data collection step is completed, Artificial Neural Networks are used to generate learning models from 

the captured datasets through offline training. Fig. 2 illustrates the training step. Twenty-two feedforward Artificial Neural 

Networks comprise the core of the IAS. Each ANN is designed and trained to handle specific control or task. The ANNs that 

are relevant to this work are: the Pitch Rate of Change ANN, the Elevators ANN, the Altitude Rate of Change ANN, the 

Elevators Trim ANN, the Speed Rate of Change ANN, the Throttle ANN, the Flaps ANN, the Roll ANN, the Ailerons ANN, 

the Heading ANN, the Rudder ANN, the Glideslope Rate of Change ANN, and the Glideslope Elevators Trim ANN. The 

remaining ANNs that handle other tasks such as brakes control, gear control, and emergency situations are discussed in our 

previous work [2][3][4][5]. Table I describes the inputs and outputs of the ANNs which represent the gathered data and relevant 

actions, and the flight phase in which each ANN is used. The topologies of the ANNs are illustrated in Fig. 3. The method for 

choosing ANN topologies in this work is based on an implication [30] which indicates that direct mapping problems requiring 

more than one hidden layer are rarely encountered, and compared to Deep Learning, this approach means that the system is 

more understandable and easier to test and verify compared to single deep solutions which are black-boxes unsuited for safety 



 

 

critical applications. Before training, the datasets are retrieved from the database. Then, the datasets are fed to the ANNs. Next, 

Hyperbolic Tangent (Tanh) (1) [31] function is used for the neuron activation step where x is the neuron output. 

 

 

 

 

TABLE I 

THE ARTIFICIAL NEURAL NETWORKS DEVELOPED FOR THIS WORK, THE FLIGHT PHASE IN WHICH THEY ARE USED, AND THEIR DESCRIPTION.  

 
Artificial Neural Network 

(ANN) 

Flight Phase Description 

 

Pitch Rate of Change ANN 
 

Takeoff 

Takes the difference between the 

aircraft’s pitch and the desired pitch as 

input, and predicts the appropriate rate of 

change of pitch degrees that is required 

to reach the desired pitch. 
 

Elevators ANN 
 

Takeoff 

Takes the difference between the current 

rate of change of pitch degrees and the 

desired rate of change (predicted by the 

Pitch Rate of Change ANN) as input, and 

predicts the appropriate command to be 

sent to the elevators. 
 

Altitude Rate of Change ANN 
 

Cruise 

Takes the difference between the 

aircraft’s altitude and the desired altitude 

as input, and predicts the desired rate of 

change (climb/sink rate). 
 

Elevators Trim ANN 
 

Cruise 

Takes the difference between the current 

rate of change and the desired rate of 

change (predicted by the Altitude Rate of 

Change ANN) as input, and predicts the 

appropriate command to be sent to the 

elevators’ trim. 
 

Speed Rate of Change ANN 
 

All 

Takes the difference between the 

aircraft’s speed and the desired speed as 

input, and predicts the desired rate of 

change of speed. 
 

Throttle ANN 
 

All 

Takes the difference between the current 

rate of change of speed and the desired 

rate of change (predicted by the Speed 

Rate of Change ANN) as input, and 

predicts the appropriate command to be 

sent to the throttle. 
 

Flaps ANN 
 

Takeoff, Approach, and Final 

Approach 

 

Takes the aircraft’s altitude and the flight 

phase as inputs, and predicts the 

appropriate command to be sent to the 

flaps. 
 

Roll ANN 

 

All 

Takes the difference between the 

aircraft’s current angle and the desired 

angle (0 degrees/centreline) as input, and 

predicts the desired roll degree to bank 

the aircraft towards the path-line. 

 

Ailerons ANN 

 

All 

Takes the difference between the current 

roll and the desired roll (predicted by the 

Roll ANN) as input, and predicts the 

appropriate command to be sent to the 

ailerons to bank. 



 

 

 

Heading ANN 

 

Landing 

Used on the runway to align the aircraft 

with the centreline of the runway. It 

takes the difference between the 

aircraft’s current angle and the desired 

angle (0 degrees/centreline) as input, and 

predicts the desired heading degree that 

the aircraft should follow on tarmac to be 

aligned with the centreline of the 

runway. 

 

Rudder ANN 

 

Final Approach, and Landing 

Takes the difference between the current 

heading and the desired heading 

(predicted by the Heading ANN), and 

predicts the appropriate command to be 

sent to the rudder. 

 

Glideslope Rate of Change 

ANN 

 

Approach, and Final 

Approach 

Takes the difference between the 

aircraft’s glideslope degree and the 

desired glideslope degree as input, and 

predicts the desired rate of change of the 

glideslope angle that is necessary to align 

the aircraft with the desired glideslope 

angle. 

 

Glideslope Elevators Trim 

ANN 

 

Approach, and Final 

Approach 

Takes the difference between the current 

rate of change of the glideslope angle 

and the desired rate of change (predicted 

by the Glideslope Rate of Change ANN) 

as input, and predicts the appropriate 

command to be sent to the elevators’ 

trim. 

 

 

 

 

 

 
Fig.  2. Block diagram illustrating the IAS components used during training. 

 

 



 

 

 
 

Fig.  3. Inputs, outputs, and the topologies of the ANNs relevant to this work. Each ANN is designed and trained to handle a specific task. 

 

 

 

                                      (1) 

 
Next, Backpropagation is applied as follows:    

 

                                 (2) 

 



 

 

where phi ( ) of x is the result of the activation function. Then, coefficients of models (weights and biases) are updated 

using (3) [31].  

                                                                                     (3) 

where  is the learning rate,  is the gradient,  is the momentum, and  is the change in the previous weight. 

After training is completed, the learning models are generated, and the free parameters or coefficients represented by weights 

and biases of the models are stored in the database. 
 

C. Autonomous Control 

Once trained, the IAS can now be used for autonomous control. Fig. 4 illustrates the components used during the autonomous 

control step. 
 

1) The IAS Interface 

Here, the interface retrieves the coefficients of the models from the database for each trained ANN, and receives flight data 

from the flight simulator every 0.1 second. The interface organizes the coefficients into sets of weights and biases, and 

organizes data received from the simulator into sets of inputs for each ANN. The relevant coefficients, and flight data input sets 

are then fed to the Flight Manager and the ANNs of the IAS to produce outputs. The outputs of the ANNs are sent to the 

interface which sends them to the flight simulator as autonomous control commands using UDP packets every 0.1 second. 
 

2) The Flight Manager Program 

The Flight Manager is a program which resembles a Behaviour Tree [32]. The purpose of the Flight Manager is to manage 

the transition between the different flight phases and their desired speed and altitude if not already selected by the user, generate 

and set the navigation course, and manage all the ANNs of the IAS by deciding which ANNs are to be used simultaneously at 

each moment. Fig. 5 illustrates how the Flight Manager manages the flight phases shown in Fig. 6 by continuously examining 

the speed and altitude of the aircraft, and the distance to the next waypoint to detect the transition points between the different 

flight phases. In addition, the Flight Manager detects the Top of Descent (TOD) point where the IAS starts the descent towards 

the destination airport by applying (4) [33]. The Flight Manager receives the required data from the interface of the IAS as Fig. 

4 shows. The methods used by the Flight Manager to manage the ANNs and the navigation course are explained in our previous 

work [3][4][5]. 

 

    

                                   (4) 

 

 

 

 
Fig.  4. Block diagram illustrating the IAS components used during autonomous control. 



 

 

 

 
 

Fig.  5. A Flowchart illustrating the process which the Flight Manager program follows to handle the transmission between the different flight phases. 

 

 

 

 

 
 

Fig.  6. The different flight phases followed and managed by the Flight Manager. 

 

 

3) Artificial Neural Networks 

The relevant set of flight data inputs received through the interface is used by the ANNs’ input neurons along with the 

relevant coefficients to predict control commands or other data given the flight status by applying (1). The values of the output 

layers are sent to the interface which sends them to the flight simulator as autonomous control commands. The design approach 



 

 

of the ANNs intends to breakdown the different tasks required to pilot an aircraft during the multiple flight phases to small 

components. Following the problem breakdown approach, it is possible to achieve a composition of small multiple control units 

represented by the task-dedicated ANNs that can be designed, integrated, and traced effortlessly compared to systems that rely 

on a single or few large ANNs designed to handle multiple tasks. In addition, when following the breakdown approach, it is 

possible to achieve higher levels of accuracy since each ANN is dedicated towards a single task such as specific control 

mapping. 
 

IV. EXPERIMENTS 

Although the previous versions of the Intelligent Autopilot System (IAS) that learned from training data provided by the first 

author who does not have piloting experience presented cockpit autonomy capabilities [2][3][4][5], the IAS did not fully behave 

like an experienced human pilot of an airliner, therefore, the latest version of the Intelligent Autopilot System (IAS) was 

redesigned and trained with Oman Air to achieve the desired autonomous behaviour that can be compared to the behaviour of 

experienced human pilots of airliners. This section discusses the experiments conducted on the latest version of the IAS. 

The human teacher who provided the demonstrations is Captain Khalid Al Hashmi, Senior Manager Crew Training at Oman 

Air. The simulated aircraft used for the experiments is a certified Boeing B787 Dreamliner model as we want to experiment 

using a complex and large model with more than one engine rather than a light single-engine model. Since the design approach 

of the IAS which utilizes Supervised Learning and many small single-hidden-layer ANNs requires single demonstrations of the 

tasks to be learned, Captain Al Hashmi provided one demonstration of a short flight from one airport to another in X-Plane. 

Captain Al Hashmi took off from London Heathrow (EGLL), cruised at 10,000 ft, then landed in Birmingham (EGBB). Captain 

Al Hashmi followed the standard piloting procedures where he started the ground-run phase on the takeoff runway, rotated, and 

maintained a 15 degrees pitch angle during takeoff. Then, he engaged the aircraft’s autopilot to climb to the cruise altitude of 

10,000 ft, to maintain a cruise speed of 240 knots, and to follow the preloaded flight path using GPS waypoints. Immediately 

after reaching the Top of Descent (TOD) point, Captain Al Hashmi initiated the approach flight phase by updating the speed 

parameter in the aircraft’s autopilot to 205 knots and starting the decent to follow the standard 3 degrees glide slope. Then, he 

updated the speed parameter to reach the landing speed of 150 knots before reaching the final approach flight phase. During the 

latter flight phases, he engaged the flaps at different altitudes to extend them to certain degrees accordingly. Finally, after the 

speed reached 150 knots, and at around 1,500 ft, he disengaged the autopilot, and took full control of the aircraft to continue 

maintaining the landing speed and the 3 degrees glideslope until touchdown.  

The data of interest that was collected and used to train the IAS are the inputs and outputs of the different ANNs discussed in 

this work and illustrated in Fig. 3. The experiments were conducted on the Elevators ANN to test the ability of maintaining the 

desired takeoff pitch angle, the new Elevators Trim ANNs to test the ability of maintaining different altitudes, climb rates, and 

the glideslope during approach and final approach, the new Throttle ANN to test the ability of maintaining different desired 

speeds, and the modified Flaps ANN to test the ability of extending the flaps correctly. The latter capabilities were not available 

in the previous versions of the IAS. Furthermore, additional experiments were conducted on the enhanced Ailerons, Rudder, 

and Roll ANN which replaced the Bearing Adjustment ANN from our previous work [4] to handle runway centreline 

maintenance during the final approach and landing flight phases in extreme weather conditions beyond the capability of the 

previous version of the IAS [4] and the capabilities of modern autopilots and even human pilots, as well as the Glideslope 

Elevators Trim ANN to test its ability to maintain the desired 3 degrees glideslope in the same extreme weather conditions. Our 

previous work [2][3][4][5] provide detailed explanations of the experiments of autonomous ground-run, navigation, landing 

procedures after touchdown, and handling emergency situations.  

To assess the effectiveness of the proposed approach in this paper, the Intelligent Autopilot System (IAS) was tested in eight 

experiments: A. Takeoff Pitch Maintenance, B. Altitude Maintenance, C. Climb Rate Maintenance, D. Speed Maintenance, E. 

Flaps Setting, F. Final Approach Glideslope Maintenance, and G. Runway Centreline Maintenance. The experiments are as 

follows: 

 

 
A. Takeoff Pitch Maintenance 

The purpose of this experiment is to assess the behaviour of the IAS when maintaining the 15 degrees pitch angle during the 

takeoff phase, and compare it to the demonstration provided by the human pilot. Since no standard modern autopilot is capable 

of performing autonomous takeoff, no comparison with the standard autopilot is provided.  

 
1) Training  

For this experiment, the Elevators ANN and the Pitch Rate of Change ANN were trained until a low Mean Squared Error 

(MSE) value was achieved (below 0. 01). 

 



 

 

2) Autonomous Control  

For this experiment, the aircraft was reset to the runway in the flight simulator, and the IAS was engaged to test the ability of 

maintaining the standard takeoff pitch angle of 15 degrees. After the IAS completed the ground-run flight phase on the runway, 

the output of the Elevators ANN and the Pitch Rate of Change ANN were used to hold and maintain the desired pitch angle. 

 

B. Altitude Maintenance 

The purpose of this experiment is to assess the behaviour of the IAS compared to the standard autopilot of the model aircraft 

when maintaining a given altitude since the human pilot used the standard autopilot to handle this task. 

 
1) Training  

For this experiment, the Elevators Trim ANN and the Climb Rate ANN were trained until a low Mean Squared Error (MSE) 

value was achieved (below 0. 01).   

 
2) Autonomous Control  

After training the ANNs, the aircraft was reset to the runway in the flight simulator, and the IAS was engaged to test the 

ability of maintaining different altitudes selected manually by the user. After the IAS took the aircraft airborne and reached the 

cruise flight phase, the output of the Altitude Rate of Change ANN and the Elevators Trim ANN were used to hold and 

maintain three different altitudes at three different speeds, and maintain three different altitudes while speed is increasing from 

one speed to another and decreasing from one speed to another. 

 
C. Climb Rate Maintenance 

The purpose of this experiment is to assess the behaviour of the IAS compared to the standard autopilot of the model aircraft 

when maintaining a given climb or sink rate while changing altitude since the human pilot used the standard autopilot to handle 

this task.  

 
1) Training  

For this experiment, the same models generated after training the Elevators Trim ANN and the Climb Rate ANN in the 

previous experiments (A. Altitude Maintenance) were used without having to provide additional training.   

 
2) Autonomous Control  

For this experiment, the aircraft was reset to the runway in the flight simulator, and the IAS was engaged to test the ability of 

maintaining different climb rates selected manually by the user. After the IAS took the aircraft airborne and reached the cruise 

flight phase, the output of the Altitude Rate of Change ANN and the Elevators Trim ANN were used to hold and maintain six 

different climb or sink rates.  

 

D. Speed Maintenance 

The purpose of this experiment is to assess the behaviour of the IAS compared to the standard autopilot of the model aircraft 

when maintaining a given speed since the human pilot used the standard autopilot to handle this task.  

 
1) Training  

For this experiment, the Throttle ANN and the Speed Rate of Change ANN were trained until a low Mean Squared Error 

(MSE) value was achieved (below 0. 01).   

 
2) Autonomous Control  

After training the ANNs, the aircraft was reset to the runway in the flight simulator, and the IAS was engaged to test the 

ability of maintaining different speeds selected manually by the user. After the IAS took the aircraft airborne and reached the 

cruise flight phase, the output of the Throttle ANN and the Speed Rate of Change ANN were used to hold and maintain three 

different speeds at three different altitudes. 

 
E. Flaps Setting 

The purpose of this experiment is to assess the behaviour of the IAS compared to the human pilot when extending and 

retracting the flaps given the altitude during the different flight phases.  

 
1) Training  

For this experiment, the Flaps ANN was trained until a low Mean Squared Error (MSE) value was achieved (below 0. 01).   



 

 

2) Autonomous Control  

After training the ANN, the aircraft was reset to the runway in the flight simulator, and the IAS was engaged to test the 

ability of correctly deploying and retracting the flaps using different settings during the ground-run phase, takeoff, approach, 

and final approach. The output of the Flaps ANN was used to select the different flaps settings. 

 

F. Final Approach Glideslope Maintenance 

The purpose of this experiment is to assess the behaviour of the IAS compared to the standard autopilot of the model aircraft 

and the human pilot as well (during the last moments of final approach after disengaging the standard autopilot and taking full 

control) when maintaining the standard 3 degrees glideslope during the approach and the final approach flight phases in calm 

weather. In addition, this experiment assesses the behaviour of the IAS compared to the standard autopilot (Autoland) when 

maintaining the standard 3 degrees glideslope during the approach and the final approach flight phases in extreme weather 

conditions.  

 

1) Training  

For this experiment, the Glideslope Rate of Change ANN and the Glideslope Elevators Trim ANN were trained until a low 

Mean Squared Error (MSE) value was achieved (below 0. 01).   

 
2) Autonomous Control  

After training the ANNs, the aircraft was reset to the runway in the flight simulator, and the IAS was engaged to test the 

ability of maintaining the standard 3 degrees glideslope during approach and final approach in calm and extreme weather 

conditions. After the IAS took the aircraft airborne reached the approach flight phase, the output of the Glideslope Rate of 

Change ANN and the Glideslope Elevators Trim ANN were used to maintain the desired glideslope. The extreme weather 

conditions provided strong crosswind, gust, shear, and turbulence. 

 

G. Runway Centreline Maintenance  

The purpose of this experiment is to assess the behaviour of the IAS compared to the standard autopilot of the model aircraft 

and the human pilot as well (during the last moments of final approach after disengaging the standard autopilot and taking full 

control) when maintaining the centreline of the runway during the approach, final approach, and landing flight phases in calm 

weather. In addition, this experiment assesses the behaviour of the IAS compared to the standard autopilot (Autoland) when 

maintaining the centreline of the runway during the approach, final approach, and landing flight phases in extreme weather 

conditions.  

 
1) Training  

For this experiment, the Roll ANN and the Ailerons ANN were trained until a low Mean Squared Error (MSE) value was 

achieved (below 0. 01).   

 
2) Autonomous Control  

After training the ANNs, the aircraft was reset to the runway in the flight simulator, and the IAS was engaged to test the 

ability of maintaining the centreline of the landing runway in calm and extreme weather conditions. After the IAS took the 

aircraft airborne and reached the approach flight phase, the output of the Roll ANN, the Ailerons ANN, and the Rudder ANNs 

were used to maintain the centreline of the landing runway. The extreme weather conditions provided strong wind including 

crosswind, gust, shear, and turbulence. 

V. RESULTS 

 

The following section describes the results of the conducted tests. 

 
A. Takeoff Pitch Maintenance 

Two models were generated for the Elevators ANN and the Pitch Rate of Change ANN with Mean Squared Error (MSE) 

values of 0.004 and 0.001 consecutively. Fig. 7 shows the pitch degree over time during ten different takeoffs where the IAS is 

controlling the elevators to maintain the standard fifteen degrees pitch angle (the lines in different shades of blue) compared to 

the demonstration of the human pilot (the green line). Since the standard autopilot is not capable of performing takeoff 

autonomously, no comparison is provided. Table II shows the result of applying the Two One-Sided Test (TOST) [34] to 

examine the equivalence of the pitch degrees held by the IAS to the desired fifteen degrees takeoff pitch.    
B. Altitude Maintenance  



 

 

Two models were generated for the Elevators Trim ANN and the Climb Rate ANN with MSE values of 0.01 and 0.0003 

consecutively. Fig. 8, 9, and 10 illustrate a comparison between the IAS and the standard autopilot when maintaining three 

different altitudes over time. Since the human pilot used the standard autopilot to maintain the altitude, the comparison is done 

between the IAS and the standard autopilot. Fig. 11 illustrates a comparison between the latest version of the IAS and the 

previous version when holding an altitude. The previous version used the throttle to maintain a given altitude, while the latest 

version uses the correct flight control surface (elevators trim) to maintain a given altitude. Tables III, IV, and V show the results 

of applying TOST to examine the equivalence between the altitude hold performance of the IAS and the standard autopilot.   

Fig.  7. The pitch degrees held by the IAS over time during 

fifteen different takeoffs (the lines in different shades of 

blue) compared to the demonstration of the human pilot 

(the green line) when maintaining a 15 degrees pitch.  

 

Fig.  8. A comparison between the IAS and the standard 

autopilot when maintaining an altitude of 14000 ft (speed 

is 250 knots). 

Fig.  9. A comparison between the IAS and the standard 

autopilot when maintaining an altitude of 32000 ft (speed 

is 340 knots). 

Fig.  10. A comparison between the IAS and the standard 

autopilot when maintaining an altitude of 4000 ft (speed is 

220 knots). 

Fig.  11. A comparison between the latest version and the previous version of the IAS when maintaining an altitude of 14,000 

ft. The previous version used the throttle, while the latest version uses the elevators trim to maintain a given altitude. 
 



 

 

 

Equivalence Test for Means  Equivalence Test for Means 

Unequal Sample Sizes  Equal Sample Sizes 

αααα    ====    0.05  αααα    ====    0.05 

 IAS Human   IAS AP 

Mean 15.24 15.17  Mean 14000.49 14000.92 

Variance 0.36 0.005  Variance 0.13 0.00 

Observations 315 21  Observations 420 420 

Pooled Variance 0.34   Pooled Variance 0.06  

Hypothesized Mean Difference 0.8   Hypothesized Mean Difference 0.80  

df 334   df 838.00  

t Stat 5.63 -6.55  t Stat 70.87 -20.68 

P(T<=t) one-tail 0.000 0.000  P(T<=t) one-tail 0.00 0.00 

T Critical one-tail 1.65   T Critical one-tail 1.65  

P(T<=t) two-tail 0.000   P(T<=t) two-tail 0.00  

T Critical Two-tail 1.98   T Critical Two-tail 1.96   

Means are Equivalent because p1 & p2 < 0.05  Means are Equivalent because p1 & p2 < 0.05 

 

 

 

 

Equivalence Test for Means  Equivalence Test for Means 

Equal Sample Sizes  Equal Sample Sizes 

αααα    ====    0.05  αααα    ====    0.05 

 IAS AP   IAS AP 

Mean 32000.72 32000.03  Mean 4000.38 4000.28 

Variance 0.24 0.00  Variance 0.23 0.01 

Observations 420 420  Observations 420 420 

Pooled Variance 0.12   Pooled Variance 0.12  

Hypothesized Mean Difference 0.80   Hypothesized Mean Difference 0.80  

df 838.00   df 838.00  

t Stat 4.36 -61.79  t Stat 29.38 -37.06 

P(T<=t) one-tail 0.00 0.00  P(T<=t) one-tail 0.00 0.00 

T Critical one-tail 1.65   T Critical one-tail 1.65  

P(T<=t) two-tail 0.00   P(T<=t) two-tail 0.00  

T Critical Two-tail 1.96    T Critical Two-tail 1.96   

Means are Equivalent because p1 & p2 < 0.05  Means are Equivalent because p1 & p2 < 0.05 

TABLE III 

RESULTS OF APPLYING THE EQUIVALENCE TEST TO EXAMINE 

THE PERFORMANCE OF THE IAS WHEN MAINTAINING A 

FIFTEEN DEGREES PITCH DURING TAKEOFF COMPARED TO THE 

HUMAN PILOT.  

TABLE II 

RESULTS OF APPLYING THE EQUIVALENCE TEST TO EXAMINE 

THE PERFORMANCE OF THE IAS COMPARED TO THE STANDARD 

AUTOPILOT WHEN MAINTAINING AN ALTITUDE OF 14000 FT. 

TABLE IV 

RESULTS OF APPLYING THE EQUIVALENCE TEST TO EXAMINE 

THE PERFORMANCE OF THE IAS COMPARED TO THE STANDARD 

AUTOPILOT WHEN MAINTAINING AN ALTITUDE OF 32000 FT. 

 

TABLE V 

RESULTS OF APPLYING THE EQUIVALENCE TEST TO EXAMINE 

THE PERFORMANCE OF THE IAS COMPARED TO THE STANDARD 

AUTOPILOT WHEN MAINTAINING AN ALTITUDE OF 4000 FT. 

 



 

 

C. Climb Rate Maintenance  

The same models generated for altitude maintenance (B. Altitude Maintenance) were used to maintain a given climb rate 

without having to retrain the models. Fig. 12, 13, 14, 15, 16, and 17 illustrate a comparison between the IAS and the standard 

autopilot when maintaining six different climb rates over time. Since the human pilot used the standard autopilot to maintain the 

climb rates, the comparison is done between the IAS and the standard autopilot. No comparison with the previous version of the 

IAS is presented since the previous version did not have the ability to maintain climb rates. Tables VI, VII, VIII, IX, X, and XI 

show the results of applying TOST to examine the equivalence between the climb rate hold performance of the IAS and the 

standard autopilot.   

 

Fig.  12. A comparison between the IAS and the standard 

autopilot when maintaining a climb rate of 500 ft/min 

(speed is 250 knots). 

 

Fig.  13. A comparison between the IAS and the standard 

autopilot when maintaining a climb rate of 1500 ft/min 

(speed is 280 knots). 

 

Fig.  14. A comparison between the IAS and the standard 

autopilot when maintaining a climb rate of 2500 ft/min 

(speed is 310 knots). 

Fig.  15. A comparison between the IAS and the standard 

autopilot when maintaining a climb (sink) rate of -500 

ft/min (speed is 230 knots). 

 

Fig.  16. A comparison between the IAS and the standard 

autopilot when maintaining a climb (sink) rate of -1000 

ft/min (speed is 240 knots). 

 

Fig.  17. A comparison between the IAS and the standard 

autopilot when maintaining a climb (sink) rate of -2000 

ft/min (speed is 270 knots). 
 



 

 

 

Equivalence Test for Means  Equivalence Test for Means 

Unequal Sample Sizes  Equal Sample Sizes 

αααα    ====    0.05  αααα    ====    0.05 

 IAS AP   IAS AP 

Mean 498.89 413.88  Mean 1503.47 1327.31 

Variance 4056.47 36247.80  Variance 5403.78 3514.27 

Observations 147 147  Observations 147 147 

Pooled Variance 20152.14   Pooled Variance 4459.03  

Hypothesized Mean Difference 0.80   Hypothesized Mean Difference 0.80  

df 292.00   df 292.00  

t Stat -5.09 -5.18  t Stat -22.51 -22.72 

P(T<=t) one-tail 1.00 0.00  P(T<=t) one-tail 1.00 0.00 

T Critical one-tail 1.65   T Critical one-tail 1.65  

P(T<=t) two-tail 0.00   P(T<=t) two-tail 0.00  

T Critical Two-tail 1.97    T Critical Two-tail 1.97   

Cannot conclude means are equivalent  Cannot conclude means are equivalent 

 

 

 

Equivalence Test for Means  Equivalence Test for Means 

Unequal Sample Sizes  Equal Sample Sizes 

αααα    ====    0.05  αααα    ====    0.05 

 IAS AP   IAS AP 

Mean 2519.27 2347.46  Mean -491.51 -486.45 

Variance 12673.10 4014.60  Variance 3297.94 640.19 

Observations 147 147  Observations 147 147 

Pooled Variance 8343.85   Pooled Variance 1969.07  

Hypothesized Mean Difference 0.80   Hypothesized Mean Difference 0.80  

df 292.00   df 292.00  

t Stat -16.05 -16.20  t Stat 1.13 0.82 

P(T<=t) one-tail 1.00 0.00  P(T<=t) one-tail 0.13 0.21 

T Critical one-tail 1.65   T Critical one-tail 1.65  

P(T<=t) two-tail 0.00   P(T<=t) two-tail 0.26  

T Critical Two-tail 1.97    T Critical Two-tail 1.97   

Cannot conclude means are equivalent  Cannot conclude means are equivalent 

TABLE VI 

RESULTS OF APPLYING THE EQUIVALENCE TEST TO EXAMINE 

THE PERFORMANCE OF THE IAS COMPARED TO THE STANDARD 

AUTOPILOT WHEN MAINTAINING A CLIMB RATE OF 500 FT/MIN. 

TABLE VII 

RESULTS OF APPLYING THE EQUIVALENCE TEST TO EXAMINE 

THE PERFORMANCE OF THE IAS COMPARED TO THE STANDARD 

AUTOPILOT WHEN MAINTAINING A CLIMB RATE OF 1500 

FT/MIN. 

TABLE VIII 

RESULTS OF APPLYING THE EQUIVALENCE TEST TO EXAMINE 

THE PERFORMANCE OF THE IAS COMPARED TO THE STANDARD 

AUTOPILOT WHEN MAINTAINING A CLIMB RATE OF 2500 

FT/MIN. 

TABLE IX 

RESULTS OF APPLYING THE EQUIVALENCE TEST TO EXAMINE 

THE PERFORMANCE OF THE IAS COMPARED TO THE STANDARD 

AUTOPILOT WHEN MAINTAINING A CLIMB (SINK) RATE OF -500 

FT/MIN. 



 

 

 

Equivalence Test for Means  Equivalence Test for Means 

Unequal Sample Sizes  Equal Sample Sizes 

αααα    ====    0.05  αααα    ====    0.05 

 IAS AP   IAS AP 

Mean -988.85 -1187.84  Mean -1996.08 -1886.80 

Variance 4295.21 647.30  Variance 6133.68 1901.15 

Observations 147 147  Observations 147 147 

Pooled Variance 2471.25   Pooled Variance 4017.41  

Hypothesized Mean Difference 0.80   Hypothesized Mean Difference 0.80  

df 292.00   df 292.00  

t Stat -34.18 -34.46  t Stat 14.89 14.67 

P(T<=t) one-tail 1.00 0.00  P(T<=t) one-tail 0.00 0.00 

T Critical one-tail 1.65   T Critical one-tail 1.65  

P(T<=t) two-tail 0.00   P(T<=t) two-tail 0.00  

T Critical Two-tail 1.97    T Critical Two-tail 1.97   

Cannot conclude means are equivalent  Means are Equivalent because p1 & p2 < 0.05 

 
D. Speed Maintenance 

Two models were generated for the Throttle ANN and the Speed Rate of Change ANN with MSE values of 0.0009 and 

0.0006 consecutively. Fig. 18, 19, and 20 illustrate a comparison between the IAS and the standard autopilot when maintaining 

three different speeds over time. Since the human pilot used the standard autopilot to maintain speed, the comparison is done 

between the IAS and the standard autopilot, however, Fig. 21 illustrates a comparison between the IAS and the human pilot 

when managing the different speeds throughout the complete flight from takeoff to landing. No comparison with the previous 

version of the IAS is presented since the previous version did not have the ability to maintain a given speed. Tables XII, XIII, 

and XIV show the results of applying TOST to examine the equivalence between the speed hold performance of the IAS and the 

standard autopilot. 

 

 

 

TABLE X 

RESULTS OF APPLYING THE EQUIVALENCE TEST TO EXAMINE 

THE PERFORMANCE OF THE IAS COMPARED TO THE STANDARD 

AUTOPILOT WHEN MAINTAINING A CLIMB (SINK) RATE OF -

1000 FT/MIN. 

TABLE XI 

RESULTS OF APPLYING THE EQUIVALENCE TEST TO EXAMINE 

THE PERFORMANCE OF THE IAS COMPARED TO THE STANDARD 

AUTOPILOT WHEN MAINTAINING A CLIMB (SINK) RATE OF -

2000 FT/MIN. 

Fig.  18. A comparison between the IAS and the standard 

autopilot when maintaining a speed of 320 knots (altitude 

is 22000 ft.). 

Fig.  19. A comparison between the IAS and the standard 

autopilot when maintaining a speed of 350 knots (altitude 

is 30000 ft.). 

 



 

 

 

 

 

 

Equivalence Test for Means  Equivalence Test for Means 

Unequal Sample Sizes  Equal Sample Sizes 

αααα    ====    0.05  αααα    ====    0.05 

 IAS AP   IAS AP 

Mean 319.98 320.00  Mean 349.98 350.00 

Variance 0.00 0.00  Variance 0.00 0.00 

Observations 180 180  Observations 180 180 

Pooled Variance 0.00   Pooled Variance 0.00  

Hypothesized Mean Difference 0.80   Hypothesized Mean Difference 0.80  

df 358.00   df 358.00  

t Stat 337.34 -321.25  t Stat 167.35 -159.95 

P(T<=t) one-tail 0.00 0.00  P(T<=t) one-tail 0.00 0.00 

T Critical one-tail 1.65   T Critical one-tail 1.65  

P(T<=t) two-tail 0.00   P(T<=t) two-tail 0.00  

T Critical Two-tail 1.97    T Critical Two-tail 1.97   

Means are Equivalent because p1 & p2 < 0.05  Means are Equivalent because p1 & p2 < 0.05 

 

 

 

 

Fig.  20. A comparison between the IAS and the standard 

autopilot when maintaining a speed of 230 knots (altitude 

is 10000 ft.). 

 

Fig.  21. A comparison between the IAS (10 flights represented 

by the overlapping lines in different blue shades) and the human 

pilot (1 demonstration represented by the green line) when 

managing the different speeds over time throughout the complete 

flight from takeoff to landing (London Heathrow to Birmingham). 

As can be seen, both the IAS and the human pilot accelerated 

sharply until the cruise speed of 240 knots was achieved, then, 

decelerated gradually until the landing speed of 150 knots was 

achieved before coming to a full stop on the landing runway. 

TABLE XII 

RESULTS OF APPLYING THE EQUIVALENCE TEST TO EXAMINE 

THE PERFORMANCE OF THE IAS COMPARED TO THE STANDARD 

AUTOPILOT WHEN MAINTAINING A SPEED OF 320 KNOTS. 

TABLE XIII 

RESULTS OF APPLYING THE EQUIVALENCE TEST TO EXAMINE 

THE PERFORMANCE OF THE IAS COMPARED TO THE STANDARD 

AUTOPILOT WHEN MAINTAINING A SPEED OF 350 KNOTS. 



 

 

 

 

Equivalence Test for Means      

Equal Sample Sizes 

αααα    ====    0.05      

  IAS AP 

Mean 229.95 230.00 

Variance 0.00 0.00 

Observations 180 180 

Pooled Variance 0.00  

Hypothesized Mean Difference 0.80  

df 358.00  

t Stat 305.61 -268.03 

P(T<=t) one-tail 0.00 0.00 

T Critical one-tail 1.65  

P(T<=t) two-tail 0.00  

T Critical Two-tail 1.97   

Means are Equivalent because p1 & p2 < 0.05  
 

 
E. Flaps Setting 

One model was generated for the Flaps ANN with an MSE value of 0.006. Fig. 22 and 23 show the flaps setting over altitude 

where Fig. 22 shows the flaps setting during the ground-run, takeoff, level-up, climb, and cruise flight phases, while Fig. 23 

shows the flaps setting during the cruise, approach, final approach and landing flight phases. Since the standard autopilot is not 

capable of controlling the flaps autonomously, the provided comparison is between the IAS and the human pilot. Table XV 

shows the corresponding flaps settings given the deflection value. Table XVI shows the mean, minimum, and maximum 

altitudes that correlate to each flaps setting in addition to the standard deviation.  

 

 

 

 

TABLE XV 

THE APPLIED FLAPS DEFLECTION VALUES AND THEIR CORRESPONDING FLAPS SETTINGS. 

 
Flaps Deflection Value Flaps Setting 

0 Flaps Zero 

0.166 Flaps One 

0.332 Flaps Five 

0.664 Flaps Twenty 

1 Flaps Full 

 

 

 

 

 

TABLE XIV 

RESULTS OF APPLYING THE EQUIVALENCE TEST TO EXAMINE THE PERFORMANCE OF THE IAS 

COMPARED TO THE STANDARD AUTOPILOT WHEN MAINTAINING A SPEED OF 230 KNOTS 



 

 

 

 

 

 

 

 

TABLE XVI 

A COMPARISON BETWEEN THE HUMAN PILOT AND THE IAS WHEN MANAGING THE CORRELATION BETWEEN THE ALTITUDE (FT) AND FLAPS SETTING INCLUDING 

MEAN, MINIMUM, AND MAXIMUM ALTITUDES BY THE IAS THAT CORRELATE TO EACH FLAPS SETTING DURING THE DIFFERENT FLIGHT PHASES IN ADDITION TO 

THE STANDARD DEVIATION. 

 

 

 

Takeoff to Cruise Cruise to Landing 

Flaps 1 Flaps 0 Flaps 1 Flaps 5 Flaps 20 Flaps Full 

Altitude (Human Pilot) 1800 3800 4150 3450 2330 1890 

MIN Altitude (IAS) 1754 3753 4186 3440 2324 1871 

MAX Altitude (IAS) 1821 3801 4198 3463 2334 1894 

MEAN Altitude (IAS) 1792 3775 4192 3452 2329 1886 

STD (IAS) 20 18 4 7 3 7 

 

 

 

 

 

F. Final Approach Glideslope Maintenance 

Two models were generated for the Glideslope Rate of Change ANN and the Glideslope Elevators Trim ANN with MSE 

values of 0.0006 and 0.0008 consecutively. Fig. 24 illustrates a comparison between the IAS, the standard autopilot, and the 

human pilot (the final moments of final approach after the human pilot disengaged the autopilot and took full control of the 

aircraft) when attempting to maintain the standard 3 degrees glideslope during final approach in calm weather. Fig. 25 and 26 

illustrate a comparison between the IAS and the standard autopilot (Autoland) when attempting to maintain the standard 3 

degrees glideslope during final approach in extreme weather conditions with the presence of strong wind at a speed of 50 knots 

with gust up to 70 knots, wind shear direction of 70 degrees (around 360 degrees), and turbulence. Table XVII shows the result 

of applying the Two One-Sided Test (TOST) to examine the equivalence of the glideslope degrees held by the IAS, the standard 

autopilot, and the human pilot in calm weather. Table XVIII shows the result of applying the Two One-Sided Test (TOST) to 

examine the equivalence of the glideslope degrees held by the IAS and the standard autopilot (Autoland) in extreme weather.  
 

 

 

 

 

Fig.  22. A comparison between the IAS (10 flights 

represented by the overlapping lines in different blue 

shades) and the human pilot (1 demonstration represented 

by the green line) when managing the different flaps 

settings over altitude from takeoff to cruise. 

 

Fig.  23. A comparison between the IAS (10 flights represented 

by the overlapping lines in different blue shades) and the human 

pilot (1 demonstration represented by the green line) when 

managing the different flaps settings over altitude from cruise to 

landing. 

 



 

 

 

 

 

Equivalence Test for Means  Equivalence Test for Means 

Unequal Sample Sizes  Equal Sample Sizes 

αααα    ====    0.05  αααα    ====    0.05 

 IAS AP/Human   IAS AP 

Mean 3.02 2.99  Mean 3.03 2.93 

Variance 0.0009 0.0002  Variance 0.07 0.02 

Observations 1059 106  Observations 1429 1429 

Pooled Variance 0.0009   Pooled Variance 0.05  

Hypothesized Mean Difference 0.8   Hypothesized Mean Difference 0.80  

df 1163   df 2856.00  

t Stat 248.07 -268.5  t Stat 89.52 -110.65 

P(T<=t) one-tail 0 0  P(T<=t) one-tail 0.00 0.00 

T Critical one-tail 1.64   T Critical one-tail 1.65  

P(T<=t) two-tail 0   P(T<=t) two-tail 0.00  

T Critical Two-tail 1.96   T Critical Two-tail 1.96   

Means are Equivalent because p1 & p2 < 0.05  Means are Equivalent because p1 & p2 < 0.05 
 

 

 

Fig.  24. A comparison between the IAS (10 flights represented 

by the overlapping lines in different blue shades), the standard 

autopilot, and the human pilot after he took full control of the 

aircraft during the last moments of final approach (1 

demonstration represented by the green line) when maintaining 

the three degrees glideslope angle from final approach to landing 

in calm weather.  

Fig.  25. The glideslope angle of the aircraft (flown by the IAS) from 

final approach to landing. The goal is to try to maintain the standard 3 

degrees glideslope. The weather conditions include 360 degrees wind 

at a speed of 50 knots with gust up to 70 knots, wind shear direction 

of 70 degrees, and minor turbulence.    

 

TABLE XVII 

RESULTS OF APPLYING THE EQUIVALENCE TEST TO EXAMINE 

THE PERFORMANCE OF THE IAS COMPARED TO THE STANDARD 

AUTOPILOT AND THE HUMAN PILOT WHEN MAINTAINING A 

THREE DEGREES GLIDESLOPE DURING FINAL APPROACH IN 

CALM WEATHER. 

TABLE XVIII 

RESULTS OF APPLYING THE EQUIVALENCE TEST TO EXAMINE 

THE PERFORMANCE OF THE IAS COMPARED TO THE STANDARD 

AUTOPILOT WHEN MAINTAINING A THREE DEGREES 

GLIDESLOPE DURING FINAL APPROACH IN EXTREME WEATHER 

CONDITIONS. 



 

 

 

 

G. Runway Centreline Maintenance 

Four models were generated for the Roll ANN, the Ailerons ANN, the Heading ANN, and the Rudder ANN with MSE 

values of 0.0002, 0.001, 0.003, and 0.002 consecutively. Fig. 27 illustrates a comparison between the IAS, the standard 

autopilot of the aircraft model, and the human pilot (the final moments of final approach after the human pilot disengaged the 

autopilot and took full control of the aircraft) when attempting to maintain the centreline of the landing runway in calm weather. 

Table XIX shows the result of applying the Two One-Sided Test (TOST) to examine the equivalence of the angle between the 

aircraft and the landing runway held by the IAS, the standard autopilot, and the human pilot in calm weather. Fig. 28 shows the 

angle between the aircraft’s location and the centreline of the landing runway before landing in extreme weather conditions with 

the presence of 90 degrees crosswind at a speed of 50 knots with gust up to 70 knots, wind shear direction of 70 degrees, and 

strong turbulence. In the latter weather conditions, the standard autopilot kept disengaging every time, therefore, the comparison 

is given between the current and the old versions of the IAS. The previous version of the IAS was able to handle severe weather 

conditions with wind speed up to 50 knots, and a maximum wind shear of around 22 degrees [4].  

   

 

Fig.  26. The glideslope angle of the aircraft (flown by the standard autopilot) from final approach to landing. The goal is to try to 

maintain the standard 3 degrees glideslope. The weather conditions include 360 degrees wind at a speed of 50 knots with gust up to 70 

knots, wind shear direction of 70 degrees, and minor turbulence.    

 

Fig.  27. A comparison between the IAS (10 flights represented by the 

overlapping lines in different blue shades), the standard autopilot, and 

the human pilot after he took full control of the aircraft during the last 

moments of final approach (1 demonstration represented by the green 

line) when maintaining the centreline of the landing runway (0 degrees) 

during final approach (airborne) and landing (on the ground after 

touchdown) in calm weather. The angle must be between 0.05 and -

0.05 degrees especially during the last moments of the final approach 

to ensure landing within the safe touchdown zone of the landing 

runway as the two dashed black lines show (right part of the chart). 

 

Fig.  28. A comparison between the current version of the IAS 

(represented by the overlapping lines in different blue shades) and the 

previous version of the IAS (represented by the lines in different green 

shades) during 10 flights each when maintaining the centreline of the 

landing runway (0 degrees) during final approach (airborne). The angle 

must be between 0.05 and -0.05 degrees especially during the last 

moments of the final approach to ensure landing within the safe 

touchdown zone of the landing runway as the two dashed black lines 

show (right part of the chart). The extreme weather conditions include 

90 degrees crosswind at a speed of 50 knots with gust up to 70 knots, 

wind shear direction of 70 degrees, and strong turbulence. 
 



 

 

However, to perform a comparison between the IAS and the Autoland feature of the standard autopilot without facing the 

disengagement issue, the weather conditions were slightly modified by replacing the 90 degrees crosswind direction with 360 

degrees, and lowering the intensity of turbulence. Fig. 29 and 30 illustrate a comparison between the IAS and the standard 

autopilot when attempting to intercept the centreline of the landing runway (airborne) in the slightly modified weather 

conditions. Table XX shows the number of successful and unsuccessful attempts to keep the aircraft within the safe zone (angle 

between 0.05 and -0.05 degrees) during final approach while airborne. Fig. 31 and 32 illustrate a comparison between the IAS 

and the standard autopilot when attempting to intercept the centreline of the landing runway after touchdown in extreme 

weather conditions with the presence of strong wind at a speed of 50 knots with gust up to 70 knots, wind shear direction of 70 

degrees (around 0 degrees), turbulence, and high precipitation (wet runway). Table XX shows the number of successful and 

unsuccessful attempts to keep the aircraft within the safe zone of the runway (angle between 0.05 and -0.05 degrees) after 

touchdown while attempting to decrease the speed to taxi speed. 

 

 

 

 

Fig.  29. The angle between the aircraft (flown by the IAS) and 

the centreline of the runway (0) during ten different final 

approach attempts (airborne). The angle must be between 0.05 

and -0.05 degrees especially during the last moments of the final 

approach to ensure landing within the safe touchdown zone of the 

landing runway as the two dashed black lines show (right part of 

the chart). The weather conditions include 360 degrees wind at a 

speed of 50 knots with gust up to 70 knots, wind shear direction 

of 70 degrees, and minor turbulence.  

Fig.  30. The angle between the aircraft (flown by the standard 

autopilot) and the centreline of the runway (0) during ten different final 

approach attempts (airborne). The angle must be between 0.05 and -

0.05 degrees especially during the last moments of the final approach to 

ensure landing within the safe touchdown zone of the landing runway 

as the two dashed black lines show (right part of the chart). The 

weather conditions include 360 degrees wind at a speed of 50 knots 

with gust up to 70 knots, wind shear direction of 70 degrees, and minor 

turbulence. 

Fig.  31. The angle between the aircraft (flown by the IAS) and 

the centreline of the runway (0 degrees) during ten different 

landing attempts. The angle must be between 0.05 and -0.05 

degrees during touchdown to ensure landing within the safe 

touchdown zone of the landing runway as the two dashed black 

lines show (right part of the chart), and during the attempt to 

decrease the aircraft’s speed on the runway to taxi speed. The 

weather conditions include 360 degrees wind at a speed of 50 

knots with gust up to 70 knots, wind shear direction of 70 

degrees, and minor turbulence.  

 

Fig.  32. The angle between the aircraft (flown by the standard 

autopilot) and the centreline of the runway (0 degrees) during ten 

different landing attempts. The angle must be between 0.05 and -0.05 

degrees during touchdown to ensure landing within the safe touchdown 

zone of the landing runway as the two dashed black lines show (right 

part of the chart), and during the attempt to decrease the aircraft’s speed 

to taxi speed. The weather conditions include 360 degrees wind at a 

speed of 50 knots with gust up to 70 knots, wind shear direction of 70 

degrees, and minor turbulence.  



 

 

TABLE XIX 

RESULTS OF APPLYING THE EQUIVALENCE TEST TO EXAMINE THE PERFORMANCE OF THE IAS COMPARED TO THE STANDARD AUTOPILOT AND THE HUMAN PILOT 

WHEN MAINTAINING THE CENTRELINE OF THE LANDING RUNWAY (0 DEGREES ANGLE) DURING FINAL APPROACH AND LANDING IN CALM WEATHER. 

Equivalence Test for Means   

Unequal Sample Sizes   

αααα    ====    0.05         

  IAS AP/Human 

Mean 0.00004 -0.00002 

Variance 0.000 0.000 

Observations 1246 135 

Pooled Variance 0.000  

Hypothesized Mean Difference 0.8  

df 1379  

t Stat 4926.46 -4944.38 

P(T<=t) one-tail 0.000 0.000 

T Critical one-tail 1.64  

P(T<=t) two-tail 0.000  

T Critical Two-tail 1.96   

Means are Equivalent because p1 & p2 < 0.05   
 

 

 

TABLE XX 

RESULTS OF COMPARING THE CURRENT AND THE OLD VERSION OF THE IAS WHEN ATTEMPTING TO MAINTAIN THE CENTRELINE OF THE RUNWAY DURING THE 

FINAL MOMENTS OF FINAL APPROACH (AIRBORNE) IN EXTREME WEATHER CONDITIONS INCLUDING 90 DEGREES CROSSWIND AT A SPEED OF 50 KNOTS WITH GUST 

UP TO 70 KNOTS, WIND SHEAR DIRECTION OF 70 DEGREES, AND STRONG TURBULENCE. SUCCESSFUL ATTEMPTS ARE WITHIN THE ANGLE THRESHOLD BETWEEN 

0.05 AND -0.05 AND VICE VERSA.    

 
 Runway centreline maintenance 

(airborne) 

 

Pilot Successful Unsuccessful 

The IAS (current version) 10 out of 10 0 out 10 

The IAS (old version) 4 out of 10 6 out of 10 

 

 
 

 

TABLE XXI 

RESULTS OF COMPARING THE IAS WITH THE STANDARD AUTOPILOT WHEN ATTEMPTING TO MAINTAIN THE CENTRELINE OF THE RUNWAY DURING THE FINAL 

MOMENTS OF FINAL APPROACH (AIRBORNE) AND AFTER TOUCHDOWN WHILE DECREASING THE SPEED OF THE AIRCRAFT TO TAXI SPEED ON THE LANDING 

RUNWAY IN EXTREME WEATHER CONDITIONS. SUCCESSFUL ATTEMPTS ARE WITHIN THE ANGLE THRESHOLD BETWEEN 0.05 AND -0.05 AND VICE VERSA. 

 
 Runway centreline maintenance 

(airborne) 

 

Runway centreline maintenance 

(ground) 

 

Pilot Successful Unsuccessful Successful Unsuccessful 

The IAS 20 out of 20 0 out 20 10 out of 10 0 out of 10 

Standard 

Autopilot 

5 out of 20 15 out of 20 2 out of 10 8 out of 10 

 

 



 

 

VI. ANALYSIS 

As can be seen in Fig. 7 (A. Takeoff Pitch Maintenance), the IAS was able to maintain the standard pitch angle of 15 degrees 

during the takeoff phase. Table II shows that the IAS was able to maintain a pitch angle mean of 15.24 degrees which is 

equivalent to the 15.17 degrees mean maintained by the human pilot as the equivalence test shows. 

Fig. 8, 9, and 10 (B. Altitude Maintenance) show that the IAS was able to maintain three different altitudes at three different 

speeds as did the standard autopilot. Tables III, IV, and V show that the performance of the IAS when maintaining a given 

altitude at a given speed is equivalent to the performance of the standard autopilot. Fig. 11 shows the significant improvement 

in the ability of maintaining a given altitude by comparing the previous version of the IAS which was not able to accurately 

maintain altitudes with the current version which now have the ability to handle this task precisely.    

Fig. 12, 13, 14, 15, 16, and 17 (C. Climb Rate Maintenance), and tables VI, VII, VIII, IX, X, and XI show that the IAS 

performed better than the standard autopilot when maintaining six different climb/sink rates at six different speeds. 

Fig. 18, 19, and 20 illustrate the equivalent performances of the IAS and the standard autopilot when maintaining three 

different speeds at three different altitudes. Tables XII, XIII, and XIV confirm the equivalence between the performances of the 

IAS and the standard autopilot when handling this task. Fig. 21 shows that the IAS was able to manage and maintain the 

different speeds in the different flight phases from takeoff to landing in a manner that is identical to the human pilot throughout 

the same flight.   

Fig. 22 and 23 (E. Flaps Setting) illustrate the consistent behaviour of the IAS when extending and retracting the flaps given 

the flight phase and altitude, which is identical to the behaviour of the human pilot when handling this task. The minor 

differences shown in table XVI are due to the terrain variation below the aircraft since the applied altitude here is feet above 

ground level instead of sea level.  

Fig. 24 (F. Final Approach Glideslope Maintenance) shows the identical performance of the IAS, the standard autopilot, and 

the human pilot when maintaining the standard 3 degrees glideslope angle during final approach and landing in calm weather. 

Table XVII confirms the equivalence between the performance of the IAS, the standard autopilot, and the human pilot when 

handling this task. Fig. 25 and 26 show the similar performance of the IAS and the standard autopilot (Autoland) while 

maintaining the standard 3 degrees glideslope angle in extreme weather conditions including 360 degrees wind at a speed of 50 

knots with gust up to 70 knots, wind shear direction of 70 degrees, and minor turbulence. Table XVIII shows that the means of 

the glideslope angle maintained by the IAS and the standard autopilot are equivalent, however, the IAS performed better since 

the glideslope mean is 3.01 which is significantly closer to the desired 3 degrees glideslope compared to the 2.93 mean achieved 

by the standard autopilot. 

As can be seen in Fig. 27 (G. Runway Centreline Maintenance), the IAS was able to maintain the centreline of the landing 

runway as did the human pilot and the standard autopilot in calm weather. Table XIX confirms the equivalence between the 

performance of the IAS, the human pilot, and the standard autopilot when handling this task. Fig. 28 and 29 show that the IAS 

was able to keep the aircraft within the safe zone (between 0.05 and -0.05 degrees from the centreline of the runway) in extreme 

weather conditions including 90 degrees crosswind at a speed of 50 knots with gust up to 70 knots, wind shear direction of 70 

degrees, and strong turbulence, while the standard autopilot kept disengaging every time in the latter weather conditions. 

Compared to the previous version of the IAS which achieved a success rate of 40% (4 successful attempts out of 10 trials), the 

current version achieved a success rate of 100% (10 successful attempts out of 10 trials) as table XX and Fig. 28 show when 

intercepting the centreline of the landing runway in such extreme weather conditions. After altering the weather conditions by 

replacing the 90 degrees crosswind with 360 degrees wind and lowering the intensity of turbulence, the standard autopilot was 

able to land, however, as Fig. 30 shows, the standard autopilot struggled to keep the aircraft within the safe zone (between 0.05 

and -0.05 degrees from the centreline of the runway). Table XXI shows that the IAS was able to achieve a success rate of 100% 

(20 successful attempts out of 20 trials), while the standard autopilot achieved a success rate of 25% (5 successful attempts out 

of 20 trials) which confirms that the IAS can perform significantly beyond the capabilities of modern standard autopilots in 

extreme weather conditions. In addition, Fig. 31 illustrates the excellent performance of the IAS while trying to keep the aircraft 

within the safe zone of the landing runway (between 0.05 and -0.05 degrees from the centreline of the runway) after touchdown 

while decreasing the speed of the aircraft on the runway to taxi speed, while Fig. 32 illustrates the poor performance of the 

standard autopilot when attempting to handle the same task in the same extreme weather conditions. In addition, table XXI 

shows that the IAS was able to achieve a success rate of 100% (10 successful attempts out of 10 trials), while the standard 

autopilot achieved a success rate of 20% (2 successful attempts out of 10 trials) while maintaining the centreline of the landing 

runway after landing, which further confirms the superior performance of the IAS which is beyond the capabilities of standard 

autopilots. 

Overall, the distinct performance of the IAS, which shows a natural and dynamic behaviour when handling the different tasks 

by manipulating the different control surfaces especially in extreme weather conditions proved its superiority compared to the 

mechanical-precision-like performance of the standard autopilot, which according to the literature, suffers from robustness 

issues when facing uncertainty, which hinders the reaction time, and the ability to cope with such extreme and sometimes 

sudden conditions. 

 



 

 

VII. EVALUATING THE IAS BY OMAN AIR 

To involve the aviation industry in evaluating the performance of the IAS, and in addition to providing training data for the 

IAS, Captain Khalid Al Hashmi, Oman Air, provided his feedback after being presented with complete (airport to airport) flight 

demonstrations of the IAS, and landings in calm and extreme weather conditions as the experiments above show. We asked him 

the following questions, and he answered as follows:  

1. Compared to the standard modern autopilot, what is your impression of the performance of the IAS when executing 

complete flights in calm and severe weather conditions?  “Good. I Wish we can try the IAS in a 6-axis full motion flight 

simulator to evaluate it further.” 

2. Although flying in such conditions is probably against regulations, but for testing purposes, is the IAS capable of 

preforming crosswind landings beyond the current limits and capabilities of modern autopilots? What about experienced 

human pilots?  “Yes. It is always a challenge, human pilots are allowed to land in crosswind conditions up 

to the demonstrated limit such as 38 knots, whereas the autopilots limit is less. I Hope that the IAS can help in 

increasing the crosswind limit which is sometimes limited due to flight controllability rather than pure capability.”  

3. Is the current performance of the IAS in general comparable with human pilots? If yes, as an experienced captain and 

instructor, how would you rate its performance if it were human? novice, intermediate, or experienced? “Yes, I would 

say intermediate although I suggest comparing it more with other autopilot.” 

4. Do you agree that the IAS has the potential to introduce new advantages to the aviation industry such as enhancing 

safety as a dependable autopilot compared to the modern ones? “Yes, it does. It just needs to be trained more on 

scenarios and various conditions and malfunctions.” 

 

 

VIII. CONCLUSION 

In this work, a novel and robust approach is proposed to “teach” the Intelligent Autopilot System (IAS) how to perform the 

necessary set of piloting tasks while flying from one airport to another in a manner that is comparable to experienced human 

pilots of airliners. Compared to the previous versions of the IAS, the newly designed and trained ANNs can now handle tasks 

including maintaining the desired pitch angle during takeoff, maintaining different altitudes, climb/sink rates, speeds, and 

controlling the flaps by manipulating the appropriate control surfaces. This approach introduces the possibility to have an 

autopilot that behaves like a skilled human pilot rather than a machine with limited capabilities. In addition, the newly acquired 

abilities include performing landings in extreme weather conditions with extreme crosswind, gust, shear, and turbulence beyond 

the current limits and abilities, which increases safety significantly. Exploiting Supervised Learning, and applying Artificial 

Neural Networks proved to be an effective approach to train the IAS how to handle such conditions as parts of the overall 

ability of the IAS to perform complete flights from takeoff to landing autonomously with minimum effort. The experiments 

were strong indicators towards the ability of Supervised Learning with Artificial Neural Networks to capture low-level piloting 

tasks such as the rapid manipulation of the elevators and the elevators trim to maintain the required takeoff pitch angle, different 

altitudes, different climb/sink rates, and the rapid manipulation of the ailerons, rudder, and the elevators trim to intercept the 

centreline of the landing runway, and to maintain the required three degrees glideslope during final approach. Furthermore, the 

experiments were strong indicators towards the ability of the proposed approach to capture high-level tasks as well such as 

extracting and retracting the flaps according to the flight phase and altitude.  

Breaking down the piloting tasks and adding more Artificial Neural Networks allows the system to overcome the black-box 

problem by having multiple small ANNs with single-hidden-layers that learn from small labelled datasets which have clear 

patterns. In addition, this approach enhanced performance and accuracy, and allowed the coverage of a wider spectrum of tasks.  

The aviation industry is currently working on solutions which would lead to decreasing the dependence on human pilots. The 

reason behind this is to lower the workload, human error, stress, and handle the pilots shortage problem compared to the high 

demand for new airplanes, by developing autopilots capable of performing complete flights without human intervention. We 

anticipate that future autopilot systems which make of methods proposed here could improve safety and handle the challenges 

faced by the industry.  
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