
04 August 2020

POLITECNICO DI TORINO
Repository ISTITUZIONALE

Advances in Human Robot Interaction for Cloud Robotics applications / Ermacora, Gabriele. - (2016).
Original

Advances in Human Robot Interaction for Cloud Robotics applications

Publisher:

Published
DOI:10.6092/polito/porto/2643059

Terms of use:
openAccess

Publisher copyright

(Article begins on next page)

This article is made available under terms and conditions as specified in the  corresponding bibliographic description in
the repository

Availability:
This version is available at: 11583/2643059 since: 2016-05-26T12:50:14Z

Politecnico di Torino



 

POLITECNICO DI TORINO 

Dipartimento di Ingegneria Meccanica e Aerospaziale 

Corso di Dottorato in Meccatronica 

SDSS: ING-INF/01-Elettronica 

PhD Thesis 

Advances in Human Robot Interaction 

for Cloud Robotics applications 

 

 

 

 

Advisor 

Basilio Bona 

 

Candidato 

Gabriele Ermacora 

 

Maggio 2016 

XXVIII ciclo 



 

 



 

Contents 

1. Introduction ................................................................................................................................ 4 

1.1. What is an Unmanned Aerial Vehicle? ................................................................................... 5 

1.2. Classification ........................................................................................................................... 5 

1.3. UAS ......................................................................................................................................... 9 

1.4. Approach .............................................................................................................................. 10 

1.5. Direct Interaction ................................................................................................................. 11 

1.6. Indirect Interaction ............................................................................................................... 16 

2. The Cloud Robotics Platform .................................................................................................... 19 

2.1. Platform manager ................................................................................................................ 20 

2.2. Managements commands .................................................................................................... 22 

2.3. Service and command events .............................................................................................. 23 

2.4. Event engine ......................................................................................................................... 24 

2.5. API managers ........................................................................................................................ 25 

3. Fly for Smart City ...................................................................................................................... 26 

3.1. User interface ....................................................................................................................... 29 

3.2. The Cloud Robotics Platform supporting the service Fly For Smart City .............................. 32 

3.3. Open Data Mission planner .................................................................................................. 34 

3.4. Open Data Driver module .................................................................................................... 36 

3.5. ODOMI Coordinator ............................................................................................................. 37 

3.6. Path Planning module .......................................................................................................... 37 

3.7. The agents ............................................................................................................................ 40 

3.8. Experiments.......................................................................................................................... 43 

3.9. Experiment 1 ........................................................................................................................ 43 

3.10. Experiment 2 .................................................................................................................... 43 

3.11. Experiment 3 .................................................................................................................... 44 

3.12. Experiment 4 .................................................................................................................... 44 

3.13. Conclusions ...................................................................................................................... 49 

4. Sliding Autonomy in Cloud Robotics Services for Smart City Applications ............................... 50 



 

4.1. Sliding Autonomy ................................................................................................................. 50 

4.1.1. Emergency Management Service .................................................................................... 51 

4.1.2. Monitoring Service ........................................................................................................... 52 

4.1.3. Mixed-Reality Teleoperation and Mixed-Initiative Service .............................................. 52 

4.1.4. Crowdsourcing Service ..................................................................................................... 53 

5. The User’s Flying Organizer (UFO) project ................................................................................ 54 

5.1. Motivations .......................................................................................................................... 54 

5.2. Introduction.......................................................................................................................... 55 

5.3. Related work ........................................................................................................................ 56 

5.4. System Description ............................................................................................................... 57 

5.4.1. Micro Aerial Vehicle ......................................................................................................... 58 

5.4.2. Laser projection system ................................................................................................... 59 

5.4.3. Flight control of the MAV ................................................................................................. 59 

5.4.4. Pose Estimation For Stabilization Of Projection .............................................................. 60 

5.5. Projection stabilization ......................................................................................................... 60 

5.5.1. Coordinates frames and transformation ......................................................................... 60 

5.5.2. Camera-Projector Calibration .......................................................................................... 61 

5.6. Compensation via feed-forward........................................................................................... 62 

5.7. Experiments.......................................................................................................................... 62 

5.8. Discussion and conclusions .................................................................................................. 65 

6. Projector calibration ................................................................................................................. 66 

6.1. Extrinsic calibration .............................................................................................................. 68 

6.2. First experiment – camera to projector calibration ............................................................. 71 

6.3. Second experiment – drone to projector calibration (Optitrack) ........................................ 73 

6.4. Conclusion and discussion .................................................................................................... 76 

Conclusion and discussion ................................................................................................................. 78 

APPENDIX .......................................................................................................................................... 79 

Fly 4Smartcity platform messages ..................................................................................................... 80 

mission planner messages set ........................................................................................................ 80 



 

open data messages set ................................................................................................................... 84 

UFO – Basic System Overview ........................................................................................................... 87 

MAV Setup ......................................................................................................................................... 88 

ARDrone 2.0 Frame ........................................................................................................................... 88 

PX4IOAR ...................................................................................................................................... 88 

PX4FMU ............................................................................................................................................. 89 

1.4 GPS Module and Compass .................................................................................................... 91 

1.5 PX4FLOW ............................................................................................................................... 91 

1.6 XBee Communication ............................................................................................................ 92 

1.7 Companion Computer ........................................................................................................... 92 

2. Remote Control/Receiver Setup ................................................................................................. 95 

2.1 Linking the R6007SP to the T7C Transmitter ..................................................................... 95 

2.2 Radio Calibration .................................................................................................................. 95 

3. ART Tracking System & Flying Arena......................................................................................... 96 

3.1 Current Setup ........................................................................................................................ 97 

3.2 DTrack 1 Software & VRPN Server Setup ............................................................................ 97 

3.3 Network Setup....................................................................................................................... 98 

4. Groundstation Setup .................................................................................................................... 99 

4.1 ROS Setup ............................................................................................................................ 101 

4.4 Coordinate Frames .............................................................................................................. 103 

4.5 Control Modes ..................................................................................................................... 106 

5. Ordering List .............................................................................................................................. 107 

6. Weight Table .............................................................................................................................. 107 

Arduino implementation of the laser driver ................................................................................... 108 

References ....................................................................................................................................... 118 

 

  



 

List of Figures 

Figure 1On the left the Aereo sonde and on the right the Boomerang UAV ...................................... 5 

Figure 2On the left the rotary-wing built by CSIR and on the right the Aery on Scout by Arery on 

Labs ...................................................................................................................................................... 6 

Figure 3Blimps ..................................................................................................................................... 6 

Figure 4 On the left the Nano Hummingbird. On the right the MAV (Micro Aerial Vehicle) developed 

by the Harvard University .................................................................................................................... 6 

Figure 5  Unmanned Aerial System ................................................................................................... 10 

Figure 6 Desert Hawk III Ground Station ........................................................................................... 11 

Figure 7 3D Gesture metaphors ........................................................................................................ 14 

Figure 8 HRI in the sky ....................................................................................................................... 15 

Figure 9 Blimps payload and size ....................................................................................................... 16 

Figure 10 A cloud robotics architecture from  (Ermacora, 2013) ...................................................... 17 

Figure 11 From  (Kanda, 2009) on the left laser scanner in the environment. On the right robots 

approaching customers ..................................................................................................................... 18 

Figure 12 Cloud robotics platform: the platform objects and their relationships. ........................... 19 

Figure 13 Platform Manager logic architecture. ............................................................................... 20 

Figure 14 Platform Management Commands. .................................................................................. 22 

Figure 15 Communication paradigm ................................................................................................. 23 

Figure 16 The cloud robotics  platform supporting drone services ................................................... 28 

Figure 17 Smartphone application .................................................................................................... 29 

Figure 18 GUI for drones management ............................................................................................. 30 

Figure 19 The logical architecture of API managers. ......................................................................... 32 

Figure 20 The ODOMI implementation. ............................................................................................ 33 

Figure 21 ODOMI architecture .......................................................................................................... 34 

Figure 22 Global cost-map. ................................................................................................................ 39 

Figure 23 Global and local cost-map. ................................................................................................ 39 

Figure 24 Global and local cost-map. ................................................................................................ 40 

Figure 25 Experiment 1, Simulated experiment. ............................................................................... 45 

Figure 26 Comparison between three planning strategies. .............................................................. 46 



 

Figure 27 Real test over a short trajectory.. ...................................................................................... 47 

Figure 28 Real test over a short trajectory. Photo of the experiment .............................................. 47 

Figure 29 Video streaming and telemetry during the live test (first test-case)................................. 48 

Figure 30 Video streaming and telemetry during the live test (second test-case). .......................... 48 

Figure 31 In this figure the main services described in this dissertation: Emergency Management 

Service, Monitoring Service (top left),  Mixed-Reality Teleoperation and Mixed-Initiative Service 

(top right/bottom right) and Crowdsourcing Service (bottom left). In the middle the ODOMI 

module, explained in the previous chapter, representing the shared knowledge essential for 

supporting any of those cloud services. ............................................................................................ 51 

Figure 32 Flying Laser Projector in-flight. .......................................................................................... 55 

Figure 33 Diagram of the experimental setup. It includes the motion tracking system which is based 

on 8 tracking cameras and further connected to the ground station via Ethernet. Additionally the 

ground station is connected to our MAV through WiFi link. The laser projection system itself is 

mounted on the MAV and interfaced to the onboard computer via serial link. ............................... 57 

Figure 34 Drone platform of our experimental setup including the main components. The battery is 

mounted on top for balanced weight distribution. Below the battery, the PX4 low-level flight 

management controller and the PX4IOAR board are located. Below the frame, the on-board 

computer and the laser projection system are positioned. The projection system and the vision 

camera are facing forward. ............................................................................................................... 58 

Figure 35 Detailed overview of the laser projection system. The emitted light of the laser module is 

reflected by a forward facing MEMS mirror. The mirror itself is interfaced to an amplification stage, 

which converts commands from the embedded system into appropriate voltages, steering the 

mirror in two directions .................................................................................................................... 59 

Figure 36 Fig. (a) illustrates detected laser dot (green cross) and detected calibration pattern in of 

the camera captured image used to for cameraprojector calibration. Fig. (b) shows pixel locations 

of projecting points in projector pixel coordinates. Fig. (c) shows detected laser dots in camera ... 61 

Figure 37 These are some of captured images used for camera-projector calibration expriments. 

The top row contains input images with projected laser dots in the camera field-of-view. The 

bottom row shows validation results where estimated camera-projector intrinsics and extrinsics 

are used to transform and re-project laser dots to camera image. The re-projected laser dots are 

highlighted with green crosses. ......................................................................................................... 62 

Figure 38 (a-b) Both Figures show the trajectory of the MAV measured with Optitrack. Fig. (a) 

shows MAV trajectory of first experiment (NFT). Fig. (b) shows same data but for the second 

experiment (compensation based on Optitrack poses). Flight time of NFT is increased because of 

delayed tracking of marker. .............................................................................................................. 63 

Figure 39 Trajectories of actual and compensated projection, based on NFT poses. The black cross 

represents the desired arbitrary point in marker space. .................................................................. 64 

Figure 40 MEMS mirror ..................................................................................................................... 66 

Figure 41 Control board for the mirror MEMS .................................................................................. 66 



 

Figure 42 Projector set up and devices ............................................................................................. 67 

Figure 43 Camera projector calibration ............................................................................................ 68 

Figure 44 Transformation chain ........................................................................................................ 74 

Figure 45 Calibration result ............................................................................................................... 75 

Figure 46 Flying teaching assistant .................................................................................................... 78 

 

 

 



 

Abstract 

 

In this thesis are analyzed different and innovative techniques for Human Robot Interaction. The 

focus of this thesis is on the interaction with flying robots. The first part  is a preliminary 

description of the state of the art interactions techniques. Then the first project is Fly4SmartCity, 

where it is analyzed the interaction between humans (the citizen and the operator) and drones 

mediated by a cloud robotics platform. Then there is an application of the sliding autonomy 

paradigm and the analysis of different degrees of autonomy supported by a cloud robotics 

platform. The last part is dedicated to the most innovative technique for human-drone interaction 

in the User’s Flying Organizer project (UFO project). This project wants to develop a flying robot 

able to project information into the environment exploiting concepts of Spatial Augmented Reality.  
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1. INTRODUCTION 
In this current period the emerging trend of the Internet of Things, that sees smart objects connected 

and managed by cloud computing platforms connected over the Internet,  plays a key role. Cloud 

Robotics is an emerging field in robotics that exploits cloud computing, cloud storage and internet 

technologies for creating robotic services. Cloud Robotics enables robots to benefit from the  powerful 

computational, storage, and communications resources. Moreover it removes overheads for 

maintenance and updates, and reduces dependence on custom middleware. In this dissertation are 

presented different technique of Human Robot Interaction with Cloud Robotics applications and 

services in particular takin into account the emerging technological trends of Unmanned Aerial 

Vehicles UAV. In this thesis are analyzed the most innovative technique of interactions, starting from 

the definition of flying robot ( UAV) and continuing with the cloud robotics platform that creates new 

scenarios of service and consequently new ways of interaction.  

In the first chapter: there is the introduction part, the definition of UAV and the current ways for 

interacting with UAVs.  

In the second chapter: there is a brief explanation of the architecture of the cloud robotics platform. 

In the third chapter: there is the description of the project Fly For Smart City and the related services 

and interaction techniques. 

In the fourth chapter: there is the description of the User’s Flying Organizer (UFO) project 

In the fifth chapter: there is the camera to projector calibration problem and solution. 

  



 

1.1. WHAT IS AN UNMANNED AERIAL VEHICLE? 
An Unmanned Aerial Vehicle UAV is defined as an automatic flying device (Nonami, 2010), called  

colloquially drone. 

In general: 

 as the name suggests the pilot is not present on board 

 flight management is controlled by an automatic system or a remote pilot or from another 

vehicle 

In technical jargon the acronym UA identify an Unmanned Aircraft, indicating a vehicle without on-

board pilot. An unmanned vehicle  remote controlled is called Remotely Piloted Vehicle RPV, while if it 

is an aircraft its name changes in remotely piloted aircraft  RPA or remotely operated aircraft ROA. 

1.2. CLASSIFICATION 
During many years of research and development UAV evolved improving their capabilities, endurance, 

operating altitude and aerodynamics. This brought to a huge amount of category, shapes and sizes. 

Therefore there are many ways to classify UAVs. In general a wide adopted taxonomy is done 

according to shape and size configuration  (Nonami, 2010). This taxonomy has 4 category: 

 Fixed-wing. These Aerial Vehicles AV are the most similar to traditional airplanes. They require a 

runaway to take-off and land or a catapult launching. They have generally quite long endurance and 

can fly at high speed (Fig. 1). 

 Rotary-wing. Also called rotorcraft UAVs or vertical take-off and landing VTOL, they are similar to 

helicopters. They have generally high maneuverability and hovering capabilities. Very popular in this 

category are rotorcraft UAV with 4 propellers called quadrotor. There are platforms with 6, 8 or more 

propellers and in this case they are called respectively hexacopter, octocopter and so further. 

 Blimps such as balloons or airships. They are lighter than air and have long endurance, fly at low 

speeds, and generally have large size. 

 Flapping- wing. They are inspired by birds and flying insects. They have flexible small wings to 

perform the flight. 

 

  

FIGURE 1ON THE LEFT THE AEREO SONDE AND ON THE RIGHT THE BOOMERANG UAV 

 



 

  

FIGURE 2ON THE LEFT THE ROTARY-WING BUILT BY CSIR AND ON THE RIGHT THE AERY ON SCOUT BY ARERY ON LABS 

 

  

FIGURE 3BLIMPS 

  

FIGURE 4 ON THE LEFT THE NANO HUMMINGBIRD. ON THE RIGHT THE MAV (MICRO AERIAL VEHICLE) DEVELOPED BY THE 

HARVARD UNIVERSITY 

 

Another categorization can be done according to the mission they will have to carry out  (Austin, 

2011): 

 HALE high altitude long endurance. Over 15 000 m altitude and 24+ hours endurance. They can 

carry out extremely long-range (trans-global) reconnaissance and surveillance missions. Generally 

operated from fixed bases. 



 

 MALE medium altitude long endurance. 5000–15 000 m altitude and 24 hours endurance. Their 

roles are similar to the HALE systems but generally operate at somewhat shorter ranges, but still in 

excess of 500 km. and from fixed bases. 

 TUAV Medium Range or Tactical UAV with range of order between 100 and 300 km. These air 

vehicles are smaller and operated within simpler systems than are HALE or MALE 

 Close Range-UAV. They usually operate at ranges of up to about 100 km and have probably the 

most prolific of uses in both fields, including roles as diverse as reconnaissance, target designation, 

monitoring, airfield security, ship-to-shore surveillance, power-line inspection, crop-spraying and 

traffic monitoring, etc . 

 Mini UAV. They are UAV of below a certain mass (yet to be defined) probably below 20 kg, but 

not as small as the MAV, capable of being hand-launched and operating at ranges of up to about 30 

km. 

 MAV as originally defined as a UAV having a wing-span no greater than 150 mm. This has now 

been somewhat relaxed but the MAV is principally required for operations in urban environments, 

particularly within buildings. It is required to fly slowly, and preferably to hover and to ‘perch’ – i.e. to 

be able to stop and to sit on a wall or post. To meet this challenge, research is being conducted into 

some less conventional configurations such as flapping wing aircraft. Since they present technical 

problems they didn't find yet applications outside the research labs. 

 

NAV These are proposed to be of the size of sycamore seeds and used in swarms for purposes such as 

radar confusion or conceivably, if camera, propulsion and control sub-systems can be made small 

enough, for ultra-short range surveillance. 

Important factors for designing a service/applications are: 

 payload 

 endurance (battery, energy consumption) 

 operation area, maximum distance 

 maximum velocity 

 take-off and landing equipment 

 operating altitude 

 operating environment 

Below there is a comparative table from (Brecher, December 2003.). It is 

important to notice that in this analysis there are only small and fixed-

wing UAV. 



 

 

Below a more general analysis from (Peschel). 

 

In the chart below on the x-axis there is the velocity and on the y-axis the 

efficiency of any topology of UAV (Austin, 2011). 



 

 

1.3. UAS 
 

So far it has been explained different categories of UAVs. Actually the UAV is part of a much more 

complex system that has to be correctly designed when developing a service (e.g. search and rescue, 

reconnaissance, surveillance). This system is called Unmanned Aerial System UAS. 

 

The UAS is composed of  (Austin, 2011) : 

 Control Station (CS), Usually based on the ground (GCS), or aboard ship (SCS), though possibly 

airborne in a ‘parent’ aircraft (ACS), the control station is the control center of the operation and the 

man–machine interface. It can be the control interface where the mission is preloaded or uploaded in 

real-time or the UAV teleoperation (Human Machine Interface) 

 Payload, is the load that can carry the UAV. It can vary from 200g to 1 Tons. 

 Navigation system. Nowadays the navigation system is based on GPS technology. If GPS wasn't 

applicable there are other technique: 

o radar, UAV position is calculated through a radar in the Control Station 

o radio, the localization is calculated knowing the speed and time that the signal takes to go from 

the UAV and the CS 

o direct recognition, with the computer-integration of velocity vectors and time elapsed, the 

aircraft position may be calculated 



 

o Launch and recovery equipment, small UAV can be hand-launched by or with an ad-hoc 

equipment similar to ramps or rubber bungees 

o Communication link, usually the operator manage the flight and/or the mission through an up-

link communication. While it is called communication down-link the communication link used to 

convey information to the CS retrieved by the UAV (e.g. images, video, telemetry). 

o Support and transport equipment, the equipment that enable the UAS management and 

transport 

 

 

FIGURE 5  UNMANNED AERIAL SYSTEM 

1.4. APPROACH 
Regarding the interaction between humans and UAVs, we define three different approaches for 

exploring the state of the art of such HMI: 

 Direct interaction with interface: generally this interface can be located in the GS and it 

represents the mean of communication between user and UAV. The operator through such interface 

manages the flight, navigation, the payload and information from and to the UAV. 

 Direct interaction (without interface): this is the direct interaction with no interface. This is 

possible for example with gesture, gaze or voice recognition. 

 Indirect interaction: in this Cloud Robotics context strictly connected with the Internet of Things 

usually there is an high level management platform. This platform has to operate, manage UAVs and 

any devices that is in the environment e.g. sensor networks. If we imagine for example a traffic 

monitoring system, the platform has to manage UAVs and sensors in the city environment organizing 

the information and making it accessible to users via e.g. smartphone applications 

 

 



 

1.5. DIRECT INTERACTION 
In this paragraph there is an overview of the state of the art interfaces for interacting with UAVs. It is 

important to notice that this kind of interaction is the oldest and the widest adopted in UAV services. 

In fact, as it is explained in the previous chapter, the man-machine interaction is in the Control Station, 

often in our applications called Ground Station because it is located on the ground. It may be simply 

the control center of a local UAV system, within which the mission is pre-planned and executed, but 

may also be part of a still larger system, sharing information with and receiving information from other 

elements of the system  (Austin, 2011). 

The operator sends the flight profile or updates the mission flight via the communication system up-

link from the Control Station .  The aircraft will return information and images to the operators via the 

communications down-link. The information will usually include data from the payloads, status 

information on the aircraft, altitude and airspeed and terrestrial position information. 

 

In addition the CS can communicate with other systems for: 

 acquiring weather data, 

 transferring information from and to other systems in the network, 

 asking services or information from higher authority, and 

 reporting information back to that or other authorities. 

To give an example, below there is a popular CS for controlling the Desert Hawk III, mini-UAV. 

 

FIGURE 6 DESERT HAWK III GROUND STATION 

 



 

This was a back-packed control station with communication system and antenna. The GCS 

incorporates the graphical user interface (GUI) and features a touch-screen laptop, allowing operators 

easily to input way-points onto a map base. This UAV uses also digital terrain elevation data (DTED) 

with terrain contours for additional mission assurance . 

Control Stations can vary according to UAV types, application and size. Referring to (Peschel) the team 

that is in charge of operating and managing UAV mission is composed by: 

 Flight Director 

 Pilot 

 Mission Specialist 

 

Flight Director: The role can be held from one or more people. This role is responsible for overall 

safety of the team members and is in charge of mission situational awareness. The Flight Director has 

the authority to terminate the mission at any point. As it is from  (Peschel) there are similar roles 

according to other authors such as: 

• Incident Commander, who is responsible of the search effort in the micro UAV category 

• Team Commander, in the small UAV category is the head of the Human Robot team, he/she can 

communicate with other small UAV and monitor the condition of the vehicle 

• Mission Commander, is an additional individual who has to deal solely with strategy and 

coordination 

Pilot: one or more people responsible for flight control activities. For the micro UAV category the pilot 

role involves also aviation, navigation and maintenance of the vehicle. In general when the UAV is 

autonomous the pilot role is moved in an offsite control center. In this condition this role decides 

where the vehicle should fly or monitors flight and data collection. 

Mission specialist: is the team member responsible for visual investigation and recording or in more 

advanced vehicle system, delivery of an on-board payload. 

Regarding the interfaces, they can change from application to application depending on the degree of 

autonomy of the UAV. In fact in literature there is a distinction between Exocentric and Egocentric 

Viewpoint .The control station can either be designed to make the pilot feel as though the operational 

perspective is within the aircraft looking outside (egocentric) or outside the aircraft watching it from 

afar (exocentric) (Williams, 2007). 

There is a typical Human Computer Interaction open-issue that is the balance between an 

autonomous, semi-autonomous or manual operation of UAV or in more general a robot. For the focus 

of this report more related to UAV interaction a value work is  (Murphy, 2008). 

There are also guidelines for designing effective Human-Machine Interfaces such as ARINC  (Radio.), 

STANG 4586 (Cummings et al., 2006), (NATO: The North Atlantic Treaty Organization, 2007), DO-178B 

(RTCA: Radio Technical Commission for Aeronautics, 1992), JAUS (Society of Automotive Engineers 

SAE, 2010), ISO 9241-11  (Standardization, 2000) and GEDIS (Ponsa, 2007). 

 



 

According to R. Murphy (Peschel) the pilot role is a well-known problem in HCI that is also analyzed in 

other field e.g. automotive industry, remote vehicles. An interesting class of interfaces from (Peschel) 

is Human-Machine Systems of the Mission Specialist. Below there is the reference table of summary of 

hardware-based HMI used by a mission specialist. 

 

The table below is the reference summary of software-based HMI for the mission specialist team 

member. 

 



 

Regarding the direct interaction between human and drone there are many research projects that are 

analyzing this interaction in particular with gestures. A value work was carried out in  (Guo, 2008.) 

comparing different gestures metaphors. In this work has been developed 3D interaction techniques 

using the Microsoft Kinect SDK to control the AR Drone 2.0 . 

 

FIGURE 7 3D GESTURE METAPHORS 

 

Five 3D gestural interfaces, were selected and compared to each other and to a smartphone interface. 

Techniques include a first-person interaction metaphor where a user takes a pose like a winged 

aircraft, a game controller metaphor, where a user’s hands mimic the control movements of console 

joysticks, “proxy” manipulation, where the user imagines manipulating the UAV as if it were in their 

grasp, and a pointing metaphor in which the user assumes the identity of a monarch and commands 

the UAV as such.  

As final result  two of these gestures were considered the best due to varying results in the factors of 

comfort, likeability, naturalness and overall perception: 

 Proxy. This technique requires both arms in tandem to perform any command (second gesture 

from the top in the picture). It is considered as the best suitable technique for non-recreational use.  

 First person, This technique is based on the metaphor of the user assuming the pretense role of 

an aircraft. This is probably more suitable for entertainment purposes (first from the top). 



 

While regarding the interaction with a team of UAV a value work is (Monajjemi, 2013). In this work the 

user selects an individual as the current focus of attention by simply looking at it. The focused robot 

can be added/removed from the team by waving the right/left hand. The whole team is dispatched to 

a mission by waving both hands.  

FIGURE 8 HRI IN THE SKY 

 

Although the works so far analyze the direct interaction with quadrotors many problems can come out 

applying this technology especially in indoor environment: 

 noise deriving from the propellers, 

 unreliable/unstable control, 

 constrains on battery duration, 

 unsafely human-machine interaction. 

Obviously blimps compared to quadrotors present a payload restricted according to their volume, the 

available battery power, the computational resources, the sensing capabilities of the employed 

sensors, and also the rotor power are limited. But according to  (Liew, 2013) blimps seem more 

suitable for a direct human-machine interaction in indoor environment. Interesting experiments were 

carried out in  (Burri) and in  (Müller, 2013). 

 

 

 

Regarding the ratio payload and size we have (http://www.southernballoonworks.com/rc-

blimps/remote-control-blimps.html): 

http://www.southernballoonworks.com/rc-blimps/remote-control-blimps.html
http://www.southernballoonworks.com/rc-blimps/remote-control-blimps.html


 

 

FIGURE 9 BLIMPS PAYLOAD AND SIZE 

 

1.6. INDIRECT INTERACTION 
 

As explained previously this kind of interaction is the most related to cloud robotics, since it requires 

an high level platform that manages UAVs and devices in the environment providing services to users. 

Since the field is relative young (one of the first work was in 2010  (Chen, 2010.)) there is not so much 

work related, especially from the HRI perspective. The typical architecture is composed of: 

 The management platform. It has to manage robots and devices in the environment and 

provide services accessible to users. 

 Services. In this layer HMI services can be located They interact with users and can send or get 

information to or from the cloud platform. 

 Robots. They can operate in the environment and collect data. 

 



 

The Cloud Robotics is strictly connected to other emerging research themes such as Internet of Things, 

Cloud Computing, Cyber Physical Systems and Big Data as Ken Glodberg points out in (Goldberg, 2013). 

 

 

FIGURE 10 A CLOUD ROBOTICS ARCHITECTURE FROM  (ERMACORA, 2013) 

Obviously the Cloud Robotics has a value potential: 

 for increasing the computational capabilities of robots by relying on remote servers for most of 

their computational load 

 for sharing knowledge with other robots 

 for abstracting the hardware platforms 

But in terms of services/applications robots can play a role of data-collectors, data-sharers and agents 

in the environment interacting with devices e.g. with sensors, other robots, NFC/RFID. 

 As Michahelles Florian states  in  (F. Michahelles, August, 2012) robots are part of the IoT network. 

Regarding the integration of robots and big data, some researchers are also thinking to apply 

underwater gliders to predict dangerous storms 

(http://www.popsci.com/article/technology/underwater-gliders-gather-data-help-

predict-next-big-storm) . A much more visionary perspective is in 

(http://smartdatacollective.com/bernardmarr/109391/big-data-robots-are-they-after-

your-job) . Sharing and collecting information can also have legal and privacy issue that is analyzed in  

(Pagallo, 2013). 

http://www.popsci.com/article/technology/underwater-gliders-gather-data-help-predict-next-big-storm
http://www.popsci.com/article/technology/underwater-gliders-gather-data-help-predict-next-big-storm
http://smartdatacollective.com/bernardmarr/109391/big-data-robots-are-they-after-your-job
http://smartdatacollective.com/bernardmarr/109391/big-data-robots-are-they-after-your-job


 

 

Therefore regarding HMI aspects the interfaces will probably change. The evolution of the direct 

interaction with interface could continue to exist as a cloud services, e.g. the teleoperation interface 

accessible through a website or a smartphone app. But in the perspective that sees robots as data-

collectors or data-sharers, users that access to the cloud robotics service could ignore the existence of 

robots that provide such data. In this case the HMI is  related to the service, and become a typical HCI 

issue such as interacting with a common web page or a smartphone app. 

Obviously the interaction can be also direct even in cloud robotics as it is in  (Kanda, 2009). In this work 

there are a series of abstraction techniques for people’s trajectories and a service framework for using 

these techniques in a social robot, which enables a designer to make the robot proactively approach 

customers by only providing information about target local behavior. They placed a ubiquitous sensor 

network consisting of six laser range finders in a shopping arcade. The system tracks people’s positions 

as well as their local behaviors, such as fast walking, idle walking, wandering, or stopping. 

 

 

 

 

FIGURE 11 FROM  (KANDA, 2009) ON THE LEFT LASER SCANNER IN THE ENVIRONMENT. ON THE RIGHT ROBOTS 

APPROACHING CUSTOMERS 

 



 

2. THE CLOUD ROBOTICS PLATFORM 
 

The cloud robotics platform used in this thesis has been designed by Telecom Italia in order to be 

resilient. Moreover the platform has been designed to: 

1) abstract the hardware and software layer to final developer 

2) offload demanding data processing and computing 

3) expose Application Programming Interfaces (APIs)  to ease the development of services and 

share resources amongst different services 

 

 

FIGURE 12 CLOUD ROBOTICS PLATFORM: THE PLATFORM OBJECTS AND THEIR RELATIONSHIPS. 

 

In this section we present the basic elements composing the cloud robotics platform (Figure 12): 

 

1) Node (N): is the basic “building block” of a service. It is installed if it is within an instance. It is 

started if it is within a service container.  

2) Endpoint: could be: 

a. Internal (IE): belongs to a node. The IE connects it to another node, in the current service 

container, or to an external endpoint (EE).  

b. External (EE): belongs to a service container. The EE connects the service container to a node 

that resides in a different service container. The EE makes it possible to connect nodes 

belonging to different service containers. 



 

3) Service Container (SC): organizes groups of connected (started) nodes. Groups of connected 

nodes are called services.  

4) Instance: this object contains the platform manager (PM), service containers, nodes and 

endpoints. It can be:  

a. Normal (NI): if it contains Service Containers and (installed) nodes. 

b. Simple (SI): if it only contains (installed) nodes and not service containers. 

 

The objects that we described above represent the basis on which robotics applications are built. 

Applications are based on nodes (N), which are installed in instances (SI, NI), or deployed in service 

containers (SC). Service APIs expose platform services while Management APIs are used to build a new 

service. 

As a metaphor of the brain, we can say that  the network of service containers represents the “remote 

intelligence”; nodes are the “neurons” ; endpoints are the “synapsis” and the APIs represent the 

“senses” that  enable the interaction with the external world. 

 

2.1. PLATFORM MANAGER 
 

The Platform Manager is the object in charge of: 

1) sending and receiving commands through the Command Manager object; 

2) listening and creating events through the Event Manager.  

Events and commands are accessed by the management API, through Platform API Manager element. 

 

FIGURE 13 PLATFORM MANAGER LOGIC ARCHITECTURE. 



 

 

The Event Engine has been designed to make a platform service more robust and resilient using 

counteractions. Counteractions are controlled sequence of commands triggered by the matching of pre-

configured class of events. The counteractions can be deleted, created and read from applications and 

users throughout Rule API Manager. Commands can be both platform commands (e.g., create a service 

container) or service commands (e.g., publish a message). Platform commands are accessible by Service 

API Manager and  service commands by Service API Manager.  

 



 

2.2. MANAGEMENTS COMMANDS 
 

The management commands and their structure are listed in Figure x:  

 

FIGURE 14 PLATFORM MANAGEMENT COMMANDS. 

 

Columns contain the platform objects, while rows contain the possible commands: 

1) Create: creates an object in the specified instance, if omitted the current instance is the default. 

2) Read: reads an object and all contained object, i.e. RN command reads the node and all “contained” 

internal endpoints.    

3) Delete: deletes an object and all contained objects, i.e. DC command deletes the container, stops all 

started nodes in it and deletes all “contained” external endpoints. 

4) Install: installs a node (or more) in current or remote instance.  

5) Kill: stops a single node (KN) or a group of nodes contained in a service container (KC). 

6) Start: as for Kill command, it starts both single node (SN) and a group of nodes (SC). 

For instance, this is the command for creating a service container named “foo” in an instance name 

“vm1”: 

 

CC I=vm1 foo 

 

As described previously, commands are managed by the Command Manager. 

Platform events 



 

Events are classified as follows: 

1) Object (EO): object events are raised when an object is created or deleted. 

2) Node (EN): node events are raised when a node is started, stopped or an error occurs due to 

unexpected events  

3) Instance (EI): instance events are raised when an instance is connected or disconnected to the 

network. 

So for example, if an external endpoint named “/bar” is created in a service container named “foo”  

belonging to a normal instance named “vm1”, an EO type event is raised and the related listener can 

notify the user or the robotics application with the following info: 

 

EO EE vm1.foo./bar created 

 

In this example we can recognize an event type (EO), an object type (EE) and an object name  

“vm1.foo./bar”. The object name has a path reporting the container objects (vm1.foo) and the current 

status  “created”. 

This event can be received by the event engine and, as a consequence, triggering a sequence of 

commands, which in turns can raise other events.   

 

2.3. SERVICE AND COMMAND EVENTS 
 

Service commands and events are messages transmitted through connection between two endpoints. 

The communication paradigm is depicted in figure 4. 

 

FIGURE 15 COMMUNICATION PARADIGM 

 

Three paradigm of communication are used and reflect the paradigms provided by ROS:  

1) publisher-subscriber: a node publishes a message with a publisher endpoint named “/foo”. Any 

node can subscribe the endpoint “/foo” and get the message.  



 

2) client-server: a node sends a request message to a server endpoint “/foo-server” through a client 

endpoint named “/foo-client”. Another node through the server endpoint “/foo-client” will reply 

with the response message.  

3) action: a node sends a goal message to an action-server endpoint “/foo-action-server” through an 

action server-client endpoint “/foo-action-client”. Another node will reply with a continuous 

feedback message on the goal status through “/foo-action-server”. In the end it will send the final 

message reporting success or error upon reaching the goal.  

Each communication process refers to endpoints and not to nodes. In order to let robotic applications 

and users to communicate through endpoints, the service container exposes endpoints through the 

Service API Manager, a bridge node to the external world. Let’s suppose that a node resides inside a 

service container named “roomba”. This node commands the robot wheels, and has a subscriber 

endpoint named “/vel”. The message type is a structure containing two arrays, the first for linear 

velocity and the second for the angular one. If an external element needs to stop the robot, the bridge 

node of the service container named “roomba” has to be connected. The synopsis could be this: 

     

bridge = SAPI.connect(“roomba”)   

bridge.publish(“/vel”,[{0 0 0},{0 0 0}]) 

 

where bridge is the handler of the Service API (SAPI), to address the publisher endpoint that sends 

message to the service container “roomba”.  

2.4. EVENT ENGINE 
 

As outlined before, in the event engine it is possible to create counteractions according to raised events. 

Counteractions can be composed both by service and platform commands. For example, let’s imagine a 

WIFI-connected simple instance on a mobile robot that experiences disconnection from platform for 

WIFI issues. It’s possible to stop the robot by publishing the right service command. Here is the possible 

synopsis to describe the procedure:    

 

Event e; 

e.match(EI robot disconnected): 

bridge.publish(/vel,[0 0 0 0 0 0]) 

 

where e is the internal event engine handler. In the match function of e, when the event of the 

described type occurs the single service command publish is executed. In this case the robot is stopped. 

When describing event matching and consequent procedures it’s necessary to take into account the 

following issues: 

 As commands indirectly generate events, we need to pay attention to possible undesired loop. 



 

 Matched events can occur with a high frequency. So, it is also important to define time 

constraints, i.e. matching only once, matching again after a defined number of seconds and so 

on. 

2.5. API MANAGERS 
 

APIs provide access to the platform to external elements (e.g. users, robotics applications). They are 

divided in (Figure 3): 

 Service API Manager, this is a node that must be started in the service container. Exposing APIs 

to the external world it makes possible to manage service commands and events. 

 Platform API Manager. Exposing APIs to the external world it makes possible to manage 

platform commands and events 

 Rule API Manager. Exposing APIs to the external world it makes possible to manage the 

counteractions for the event engine.  

 



 

3. FLY FOR SMART CITY  
Cloud computing (Mell, 2011) is revolutionizing the robotics industry, opening new scenarios that 

embrace the paradigm of the Internet of Things (Atzori, 2010) . This is leading to a paradigm shift where 

robots now become simple agents that belong to a cloud computing platform (Waibel). The platform 

manages the robots and provides them with the possibility of sharing knowledge and performing 

demanding real-time data processing  (Chen, 2010.), (Waibel). 

In (Sanfeliu) the authors introduced a definition of Network Robot Systems (NRS) as is understood in 

Europe, USA and Japan. 

NRS are defined as any robotic device connected to a communications network which involves hardware, 

autonomous capabilities, network-based cooperation, and human-robot interaction capabilities. Robot-

as-a-Service (RaaS)  extends the concept of Service-Oriented Architecture (SOA) to robots, enforcing the 

design of robotics applications as an all-in-one unit, including services and applications  (Chen, 2010.). 

In  (Quintas, 2011) the authors proposed an approach for an automated system based on a service 

oriented architecture. 

In  (Kamei) the requirements in typical daily supporting services have been examined through example 

scenarios that target senior citizens and the disabled; discussing the key research challenges offered by 

the  cloud network-robotics approach.  Similarly, in  (Chibani, 2013) the use of cloud robotics has been 

investigated for physical and virtual companions assisting people in their daily living, ubiquitous robots 

that are able to co-work alongside people. 

In  (Waibel) is presented the design and implementation of Rapyuta, an open source Platform-as-a-Service 

(PaaS) framework for robotics applications. 

 

In this chapter the details about Fly4SmartCity project and vision. 

Fly4SmartCity is a large-scale cloud-robotics service that aims to prove that a real world application of 

cutting-edge technologies in robot-networking and unmanned vehicles is actually possible.  

 

The goal of Fly4SmartCity is to provide a service for emergency management in smart city environment; 

this is achieved by the strict integration of: 

 A capable, reliable and stable cloud platform; 

 Sufficient agile autonomous agents; 

 A high-bandwidth, low-latency mobile network; 

 A rich set of data, drawn from various providers; 

 A well-documented and supported robotics middleware. 

 

For validating the service we imagined a test case as follows: 



 

 a citizen is in a dangerous situation and requests the emergency service; using a smartphone 

application he/she sends back to the cloud platform his/her GPS coordinates and an unique 

identification number. 

 the cloud platform is able to find the most suitable UAV for the mission and sends it to the citizen 

in order to provide monitoring and support. 

 A police officer can access the service in real-time to monitor the actual position of the UAV, its 

telemetry, and to visualize on the web interface the video stream coming from the UAV’s 

camera. 



 

 

FIGURE 16 THE CLOUD ROBOTICS  PLATFORM SUPPORTING DRONE SERVICES 

 

In the Fly4SmartCity service there are different applications as urban monitoring, 

emergency-management, goods delivery and user-defined flight plan. This project started in 2013 ( 

Ermacora et al., 2013), in which just a specific emergency-management service was presented. Central 

core of the service is the special module called Open Data MIssion Planner (ODOMI). This module, 

exploiting different source of information from open data providers and information thought the Internet 

(e.g. position and height of obstacles, quality of the internet connection etc.), is able to plan a flight path 

according to the needs of the required application. When the application is set this module can create a 

path in order to: 

 Avoid connectivity losses and that provides enough signal coverage for the video streaming.  

 Finding the best path that avoids obstacles in the environment with enough connectivity 

coverage 

 Finding the safest path e.g. fly only above building, rivers and trees so in case of failure the 

probability of hurting a citizen in the surrounding environment is relatively low 

 

Robotic Operating System (ROS) (Quigley et al., 2009) is at the base of the cloud platform. ROS is an open-

source, meta-operating system for robot software development that is nowadays becoming the de facto 

standard for robotic software development.  



 

The platform is also designed to be resilient: in case of emergency there is a basic flight stored in the 

internal memory of the UAV plan with the basic instructions e.g. “land on a certain predefined GPS 

position” or “return to the home GPS position”. In addition the cloud platform is capable of reconfiguring 

at any time the plan of any single managed UAV. 

 

3.1. USER INTERFACE 
Two ways for interacting with the monitoring and emergency service has been implemented. The first is 

via a smartphone application imagined for the citizen. The citizen in case of emergency can use this 

application to call the service. The second is a Graphical User Interface (GUI) imagined for managing the 

drones into the smart city environment from authorized operators (e.g. police officer).  

In our experiments the mobile application is an Android application with a simple button for recalling the 

service. The application calls the service exploiting RESTFUL API over the HTTP protocol. In particular a 

GET request is sent to the server in the cloud platform.  

In the request are present the GPS coordinates of the position of emergency and an unique identification 

number (ID) for having a history of the requests and improving the managements of the requests. In the 

figure 20 the mobile application is depicted. 

 

 

FIGURE 17 SMARTPHONE APPLICATION 

 

The second interface, the GUI, was written in HTML5 supported by ROSlibjs, an efficient library merging 

the low level functionalities of  ROS with the high level functionalities and powerful tools of JavaScript. 



 

With this management GUI the operator e.g. the police officer in our example application can manage all 

the drones in the environment: 

 monitor the telemetry of any UAV 

 monitor the position of any UAV displayed in the map 

 accessing at the video streaming of any UAV 

 create a mission according to the requested requirements 

 offer assistance thought the interface to the citizen  

Figure 21 shows the management GUI. 

On the left there is a panel showing the video streaming coming from the interested UAV (on top) and 

flight information e.g. speed, altitude, battery level. 

The right panel gives information about the on-going mission. It shows the starting point of the UAV, the 

goal position and the path chosen according to the selected requirements (e.g. avoiding obstacles in the 

environment at the altitude of 10 meters) overlapping the city map. 

 

FIGURE 18 GUI FOR DRONES MANAGEMENT 

 

In the top left there are buttons for the management of the mission. In particular is possible: 

 to enable the mission. When a request is received the operator can decide to take the mission 

enabling the drone. 

 Circle. When the operator wants to have a more detailed understanding on the surrounding 

environment of the goal position he can decide to make a circle around that position. 

 Home. The operator can decide at any time to terminate the mission and force the UAV to go 

back to its initial GPS position define as home. 



 

 Create path. The operator wants to monitor a certain zone in the urban environment and creates 

a set of waypoints (this is a different application of the emergency service). 

 Delete path. The operator can delete the path during the phase of choosing the set of waypoints 

 Send path. The operator now chooses to send the set of waypoints to the platform. From this 

moment on the mission starts and the drone will start to fly. 



 

3.2. THE CLOUD ROBOTICS PLATFORM SUPPORTING THE SERVICE FLY 

FOR SMART CITY 
 

The concepts outlined in previous chapters have practically been implemented as follows:  

 Normal Instance (NI): a real or virtual machine with high performance. 

 Simple Instance (SI): a real or virtual machine with low performance. 

 Service Container (SC): a ROS container (Waibel) identified by its ROS master. The multi-master 

robot concert technology ( http://www.robotconcert.org/wiki/Main_Page ) enables ROS 

container multiplicity.  

 Node (N): a ROS node.  

 Internal Endpoint (IE): ROS topic, ROS service or ROS action. 

 External Endpoint (EE): ROS topic, ROS service or ROS action of a node in another Service 

Container. 

 

 

FIGURE 19 THE LOGICAL ARCHITECTURE OF API MANAGERS. 

 

http://www.robotconcert.org/wiki/Main_Page


 

Figure 19 depicts our implementation of the cloud robotics platform. In the picture sharp-edged 

rectangles stand for NIs, rounded rectangles stand for SCs, dotted-edged rectangles stand for SIs. Any 

small circle represents a ROS node and its endpoints are symbolized as small squares.  

The figure also highlights the difference occurring between Normal and Simple Instances. In the case of 

Drone 1, the Normal Instance contains a Service Container running the driver node while the Drone 2 

constitutes a Simple Instance, since its service container is shared with the normal instance named 

“Virtual Machine”.  

The Drone n is in this case the Service Container (named Adn) runs in a Gateway (ground station). Here 

both adapter and driver node are placed on the same physical machine. The fourth Normal Instance 

presented in the figure, named “Virtual Machine”, contains both the ODOMI (Open Data Oriented 

MIssion planner) and the Adapter (Ad1 and Ad2) Service Containers. Adapter SCs translate ROS 

messages coming from UAVs in standard platform messages (i.e. from /sensor_packet_i endpoints to 

/sensor_packet endpoint) and viceversa (i.e. from /drone EE to /flight_plan_i endpoints). 

ODOMI is the core Service Container of the whole platform, and it runs four nodes: the rosbridge node 

(the Service API manager described in previous section), the Mission Planner, the Path Planner and the 

Open Data Driver (described in the next section).  

 

 

FIGURE 20 THE ODOMI IMPLEMENTATION. 

 

Figure 20, 21 and 23 offers a more functional overview of the communication between each module 

installed on the platform for the single-UAV case.  

 



 

Ensuring a secure access to the platform is fundamental. API access is strictly regulated by means of 

specific security keys provided to the developer after a mandatory registration phase. Moreover 

instances are connected to the platform via VPN (Virtual Private Network) in order not to be easily 

accessed by hackers. Another main requirement the platform has to guarantee is concurrency. This is 

done exploiting the queue mechanisms provided by ROS for multiple-access management. ROS node 

can either consume a message queue (subscriber), according to computational complexity of consumer 

algorithm, or produce messages to be queued before sending (publisher), according to available 

bandwidth.  

 

FIGURE 21 ODOMI ARCHITECTURE 

 

3.3. OPEN DATA MISSION PLANNER 
 

ODOMI is the Service Container in charge of managing the mission and calculating the path for the UAV. It 

is the only Service Container who has the rights to START, STOP or ABORT the mission. 

It is organized in four nodes: 

 Open Data Driver (ODD): this module retrieves available information by calling the appropriate 

source of information. It packs the retrieved data into a ROS message and sends it to the 

coordinator module. 

 Path Planner (PP): it receives the cost map created by the coordinator and plans the path (set of 

waypoints) for the UAV. Further details are in the dedicated paragraph. 



 

 RosBridge (RB): it provides JSON API to ROS interface (Crick et al., 2011). This node serves as the 

interface between the smartphone application and the robotics platform, namely the Service API 

Manager that exposes the APIs for sending the target coordinates that the drone has to reach to 

the Mission Planner. 

 ODOMI Coordinator (OC): this module coordinates all messages in the service container ODOMI. 

It is coordinates the whole architecture and it creates the mission for the UAV according to the 

suitable policy. 

 Mission Planner (MP): This module takes as input the position of the UAV (home) and the 

coordinates of the target. It builds then a bounding box message and collects every available 

information about that area by querying the ODD module. Once it gets these data, it builds a 

map.  

  



 

Provider Data Response License 

OpenStreetMap

s 

2D Map  Open Data Commons 

Open Database License 

(ODbL). 

Open 

Weather 

Map 

Temperature 

Wind  

Humidity 

XML/JSON Creative Commons (cc-

by-sa) 

Geoportale 

Torino 

2D Map GML(XML) Creative Commons 

public licence" 

Attribuzione - 2.5 

(ITALIA). 

Height GML(XML) 

Pedestrian areas GML(XML) 

Rivers and waterways GML(XML)  

Treed areas GML(XML)  

Green areas GML(XML)  

5T Torino Traffic XML Creative Commons - CC0 

1.0 Universal 

 Tram and train lines CSV Creative Commons - 

CC0 1.0 Universal 

TABLE 1 OPEN DATA PROVIDERS 

 

3.4. OPEN DATA DRIVER MODULE 
 

The module that is in charge of retrieving all the information available on the Internet from different 

sources is the Open Data Driver module (see previous table 1). Geo referenced data (Table 2) are used to 

give more information to the Mission Planner. Part of these data are actually private and they could not 

being considered “open” in a strict sense  (Foundation).  But usually under some constraints they are 

public (e.g. maximum number of daily/monthly API calls). Therefore this modules taking the current 

position of the drone and the goal it creates a bounding box. The bounding box is created with those two 

points plus an arbitrary padding to enlarge the diagonal of the bounding box. This is important for having 

enough data to download for creating a useful map where the drone can navigate in and it is also 

important to avoid the download of too many information that could overload the computation phase. 

Data are shown in Table 1 and 2. It is important to note that custom drivers has to be created for 

accessing those different data source, since they don’t  usually have a standard data format. In our case in 

fact we developed drivers in particular for Geoportale Torino, OpenStreetMaps, 5T Torino, Google Maps 

and OpenSignal. Once that all the data are successfully retrieved they are sent to the ODOMI Coordinator 

(OC) that is in charge of creating the cost maps to send consequently to the Path Planner module. 

  

http://opendatacommons.org/licenses/odbl/
http://opendatacommons.org/licenses/odbl/
http://creativecommons.org/publicdomain/zero/1.0/#_blank
http://creativecommons.org/publicdomain/zero/1.0/#_blank
http://creativecommons.org/publicdomain/zero/1.0/#_blank
http://creativecommons.org/publicdomain/zero/1.0/#_blank


 

Provider Data Type Response License 

Google Maps Digital  

Elevation Map 

XML/JSON Google Maps API 

licensing* 

 

OpenSignal Average RSSI XML/JSON OpenSignal API 

licensing*** 

 

 Tower Info XML/JSON  

* https://developers.google.com/maps/terms 

** http://developer.opensignal.com/terms/ 

 

 

Table 2. Geo-referenced data sources. 

 

3.5. ODOMI COORDINATOR 
 

This module is in charge of sending the request, with the current position of the drone and the goal, to 

the ODD module. The ODD module then answers with raw information taken from open data sources. 

Depending on the chosen policy the ODOMI coordinator module creates a cost map using the data 

gathered from those open data sources. The cost of any cell of the cost map depends on the policy 

chosen. Policies are many and can be very different. In general, policies that maximize flight over buildings 

and trees are thought for real applications in urban environments, in order to minimize the risk of hurting 

humans or things in case of failures. Then the Path Planner module will use this cost map for creating the 

optimal path. 

 

3.6. PATH PLANNING MODULE 
 

Path planning or trajectory planning is a well-known problem in mobile robotics, and it has been recently 

applied to UAVs. Path planning is one crucial task for UAVs that have semi-autonomous or autonomous 

flight capabilities. As technology and legislation move forward, the need arises for an increase in their 

level of autonomy. Therefore, the focus is moving from system modeling and low-level control to higher-

level mission planning, supervision and collision avoidance, going from vehicle constraints to mission 

constraints  (Gutierrez, 2006.).  

UAVs present some peculiar characteristics, like their flight dynamics, 6DOF movement, and high levels of 

uncertainty in their own state knowledge, as well as limited sensing capabilities (Goerzen, 2009). 

However, other problems have already been addressed by the robotics community, like partial knowledge 

of the environment. The autopilot is in charge of low-level vehicle control. Some work has been carried 

out in  (Jun, 2003) for path planning in presence of uncertainties and with signal constraints in  (Grotli, 

2012), (Grancharova, 2012), (Chi, 2012). Most of path planning approaches rely on a two-stage procedure: 

https://developers.google.com/maps/terms
http://developer.opensignal.com/terms/


 

they first solve what is called the global path planning problem, by finding a feasible trajectory given the 

current pose of the agent, the destination and a map of the environment. Then they implement a control 

strategy called local path planning to follow the found trajectory (Goerzen, 2009). In our work we focus on 

global path planning, since our objective is the generation of a trajectory, which will be decomposed into 

a series of intermediate waypoints, which in turn will be fed to the UAV’s autopilot.  

In our application, we also assume that the UAV can only fly at a fixed altitude. The trivial flight strategy 

for an UAV in order to reach a certain goal would be to fly to a certain altitude above buildings and follow 

a straight line. Since in our application we exploit crowd-sourced information about LTE connectivity and 

this information is mostly gathered by users on the streets, the UAV has to fly at a lower altitude, in order 

for the connectivity data to be meaningful.  

Based on the assumption of having a fixed altitude, we simplify the problem to the 2D case and we use 

the implementation of the D*-Lite algorithm described in  (S Koenig). D*-Lite is a fast implementation of 

the D* algorithm, and is based on Lifelong Planning A* (LPA*)  (S. Koenig and M. Likhachev T. Dietterich).  

D* is an incremental heuristic graph search algorithm which is able to deal with incomplete information 

and observations. D* algorithm ensures completeness and optimality properties.  

The Path Planner (PP) module is implemented as a two-level planning approach. Given a bounding box 

area of operation, we first build a static cost-map where the traversal cost for each cell depends on fixed 

or low-changing open data, like the presence of tall buildings or structures. Any structure with an average 

height which is higher than the flying altitude makes the cells belonging to that area untraversable. This 

information is given by the ODD module.  

Given the current position of the UAV and the desired goal, we calculate a feasible path using D*. We then 

extract a series of waypoints from the path using a simple procedure. First we calculate the distance 

transform of the map. For each cell 𝑝 we calculate the distance of the nearest obstacle as  

 𝐷𝑃(𝑝) = 𝑚𝑖𝑛
𝑞∈𝑃

(𝑑(𝑝, 𝑞)), 

where 𝑃 is a grid of points representing the map and 𝑑(⋅) is the distance between two points. Then, for 

each waypoint we expand a circle around it with a radius of value 𝐷𝑃(𝑝), where p is the cell 

corresponding to the waypoint. The next point of the trajectory that lies on the circumference is taken as 

the next waypoint. The process is then repeated until the last point of the trajectory. With this procedure 

we extract a list of waypoints that are given to the UAV’s autopilot.  

While the UAV is flying, we also create a dynamic cost-map. The dynamic cost-map is built based on fast-

changing or dynamic open data. The rate at which this dynamic cost-map is updated varies depending on 

the estimated changing rate of the particular open data. Each time new open data is available, a new 

dynamic cost-map is created. In our application we use LTE received signal strength (RSSI) heat-maps. This 

information is again given by the ODD Module. The cost of each cell is based on the RSSI for that 

particular cell; if the RSSI is below a critical threshold, the cell is marked as obstacle, since in our 

application we cannot afford to lose connectivity. Each time a local cost-map is available, the path is 

calculated again starting from the next waypoint to be reached until the goal with the addition of the 

dynamic cost-map data.  

 

In Figure 22 it is showed the generation of the static path in  a simulated case. The minimum path is found 

from the starting point to the goal while avoiding obstacles. In Figure 23 it is showed how the trajectory 

changes with the addition of a dynamic cost-map.  



 

 

FIGURE 22 GLOBAL COST-MAP. THE STARTING POSITION IS SHOWN IN YELLOW; THE GOAL IS SHOWN IN BLUE; OBSTACLES ARE 

SHOWN IN RED; THE FOUND TRAJECTORY IS SHOWN AS A PURPLE LINE AND THE WAYPOINTS WITH ASSOCIATED RADIUSES ARE 

SHOWN AS CIRCLES. 

 

 

FIGURE 23 GLOBAL AND LOCAL COST-MAP. THE LTE AREAS WITH LOW RSSI ARE SHOWN IN BLUE 

 

We also show how the Path Planner can force the UAV to fly on areas which are considered “safer” from 

the citizen’s point of view, like water surfaces. In Figure 24 the UAV has to fly over a park, which is crossed 

by a river. Since we assume that areas over water surfaces are safer and free from obstacles, we assign a 

lower cost to the relative cells. In our example, the UAV favors flying over the river, when possible. 



 

 

FIGURE 24 GLOBAL AND LOCAL COST-MAP. THE LTE AREAS WITH LOW RSSI ARE SHOWN IN BLUE. 

 

3.7. THE AGENTS 
 

A quadrotor has been chosen as the sole agent for validating the overall system in its first stage. It offers a 

series of advantages with respect to other possible architectures (e.g. unmanned ground vehicles, fixed 

wing autonomous aircrafts etc). Its VTOL (Vertical Take Off and Landing) capabilities allow for quick take-

off and landing operations in busy or space-constrained places. The possibility to hover above the target 

makes it well-suited for surveillance and monitoring tasks. Moreover it offers a simpler mechanics and 

requires less maintenance with respect to a standard helicopter offering similar autonomy and payload. 

However a quadrotor is an inherently unstable system  (Hoffmann, 2007), and for this reason it requires 

fast on-board controller to guarantee its stability in standard flights (Bouabdallah, 2005). This controller 

typically runs on a dedicated electronic board, equipped with a number of inertial sensor (accelerometers 

and gyroscopes) to detect the attitude angles of the quadrotor frame and its rotational velocities; 

barometers and sonar sensors (for altitude measurements), GPS receivers (for autonomous waypoint 

navigation) and magnetometers (providing an estimate of the heading of the aircraft) are other common 

devices, often mounted on the same board. 

In this project the validation of the proposed cloud robotics service has been conducted using a Parrot AR 

Drone and Mikrokopter  (http://mikrokopter.de/en/home - system, developed by HiSystems GmbH in 

Germany. 

Born as an open-source project Mikrokopter evolved in a complete amateur-class platform for control and 

operation of multirotors. The term Mikrokopter refers both to the ready-to-fly multirotor solution and to 

a set of electronic boards that can purchased individually and mounted on a custom frame; hereafter the 

word Mikrokopter (or MK) will only indicate the latter meaning. 

The core of the system is composed by two boards. The FlightControl board guarantees vehicle inherent 

stabilization and altitude-hold function. It relies on Atmel ATMEGA644 board running at 20MHz and 

http://mikrokopter.de/en/home


 

interfaces with the main inertial sensor. The NaviControl board adds a set of GPS/Compass based 

autonomous navigation functions (waypoint navigation, come-home function, position hold mode).  

MK allows the user to take external control of the UAV (i.e., bypassing the radio controller) by means of a 

dedicated serial protocol but, in spite of its open-source origins, interfacing with MK is not a trivial task, 

mainly because of a substantial lack of documentation and because of the barely readable source code for 

non-German speaking people  (Sa, 2012); presents a complete reverse-engineered description and model 

of the system. 

In consequence of the poor support offered to the developers, ROS support for Mikrokopter appears to 

be limited to an outdated ROS stack (https://wiki.qut.edu.au/display/cyphy/MikroKopter+ROS+nodes ) 

that is no longer maintained. Therefore a ROS interface implementing the fundamental input/output 

methods useful to communicate with the autopilot on its serial protocol have been written from scratch. 

An overview of the messages is reported in Table 3. 

Type Topic name Message Type Message Struct 

pub/sub /parameter open_data_msgs/Parameter string key 

string value 

pub/sub /polygon open_data_msgs/Polygon Coordinate[] vertex 

pub/sub /data open_data_msgs/Open_data int type (static, dynamic) 

string label (nome open data) 

Parameter[] attributes 

Polygon area 

service /bounding_box open_data_msgs/BoundingBox Polygon bounding_box 

string label (vuoto = tutti) 

int type 

-- 

bool resp 

pub/sub /open_data open_data_msgs/Data Open_data[] data 

pub/sub /mission_map 

/dymanic_map 

mission_planner_msgs/MissionMap Header header 

Coordinate home (gps) 

Coordinate target (gps) 

Coordinate origin (gps) 

Float resolution (m/pix) 

int8[] data 

https://wiki.qut.edu.au/display/cyphy/MikroKopter+ROS+nodes


 

pub/sub /drone mission_planner_msgs/Drone Header header 

string name 

string type_name 

Coordinate home 

Move[] movements 

pub/sub /sensor_packet mission_planner_msgs/SensorPacket Header header 

Coordinate current_position 

int16 power_data 

… 

service /target path_planner_msgs/Position Coordinate position 

--- 

bool resp 

pub/sub /waypoints mission_planner_msgs/Waypoints Coordinate[] waypoints 

TABLE 3 A COMPLETE OVERVIEW OF THE ROS-MESSAGES EXCHANGED AT PLATFORM LEVEL. 

  



 

3.8. EXPERIMENTS 
 

We made our experiments in different simulated and real scenarios. In this chapter we report some of the 

most interesting results. First two tests are in a simulated scenario where show the integration of 

different source of open data in ODOMI. The third is a real  experiment with ODOMI, the PP module and 

the A.R. drone commercial quadcopter. The last test shows an event, organized in collaboration with 

Telecom Italia that was demonstrating the system composed by GUI and cloud platform using a 

commercial quadcopter in a private area (aereoport). 

In the simulated tests we took real data from open data from open data (buildings perimeter and height, 

trees and waterways) and crowd-sourcing using a mobile Android app (3rd Generation (3G) and 4th 

Generation (4G) coverage). In the simulated experiment all the stack from the open data driver to sending 

the path to the drone is real. The only difference was that we were not flying for real the drone but only 

generating the path. It has to be noticed that was not easy to perform a real experiment because of the 

current legal restrictions and security reasons. The system is implemented in C++ and Python on 

GNU/Linux. Tests have been carried out on a common laptop. Source code is available at 

(https://github.com/fly4smartcity/odomi ) and the GUI (https://github.com/fly4smartcity/rendezvous ). 

 

3.9. EXPERIMENT 1 
In this first experiment we simulated a simple planning strategy for flying an UAV in an urban area. The 

Path Planner is in charge of minimizing the path length, while avoiding obstacles. The simulated A.R. 

Drone can flying at the maximum altitude of 6 meters with its GPS receiver. Therefore in this simulation 

building and trees higher of this altitude are considered as an obstacle. Results are shown  in Figure 25. In 

this picture are shown also the initial position of the drone, the final and the extracted waypoints with 

their markers. 

 

3.10. EXPERIMENT 2 
In this second experiment there is the comparison between three different planning strategies. Those 

three strategy, as in the previous case, try to minimize the path length. In the first test the strategy is to 

avoid obstacles, in particular buildings and trees higher than the maximum altitude at the drone can fly. In 

the second test the strategy is affected to the risk factor: the system tries to find a tradeoff between 

minimizing the path length and risky areas. The third test has the same strategy but in addition the system 

tries also to minimize zones where the 4G RSSI is low considering those zones as well as “risky”.  Figure 26 

shows the result. 

 

  

https://github.com/fly4smartcity/odomi
https://github.com/fly4smartcity/rendezvous


 

3.11. EXPERIMENT 3 
 

In this experiment the system is running in a real use case with a low-cost platform. 

The drone is an A.R. Drone Parrot  2.0 equipped by Flight Recorder, the GPS module. The GUI is accessible 

by a laptop connected thought a 4G network to the cloud robotics platform. The laptop and the Parrot 

communicate via Wi-Fi connection.  On the GUI it is displayed the initial position of the drone. So the user 

select the goal position and consequently the waypoints are sent to the guidance system. In Figure 27 are 

shown the results. Since the GPS module on the Parrot has an error of 5-10 meters we inflated the 

obstacles by 5 meters. It is interesting to notice that since the GPS is not enough accurate and the harsh 

wind dynamic against the drone, the Parrot is not able to follow exactly the path but still it is able to avoid 

obstacles. In Figure 28 is shown the experiment in progress . As a result we can see that the Parrot 

reached the goal with a large tolerance of 10 meters due to the bad accuracy of the GPS and localization 

in narrow areas.  

 

3.12. EXPERIMENT 4 
Here a real live demonstration in which the entire system is tested. In this case a commercial drone was 

used, with a MicroPilot’s MP2128g autopilot for the in-flight stabilization of the drone. The experiment 

was carried out in Aereo Club Torino’s airport in Turin, Italy. The UAV was communicating both to a 

ground station via Radio Frequency 5.8 Ghz radio link and to the cloud robotics platform via 4G LTE 

connectivity. For security reasons and as required by the Italians legislations a pilot was supervising the 

flight of the drone. So in this experiment the drone was always flying at line-of-sight. In addition the flight 

zone was closed and public was kept at a distance of 150 meters. The live experiment was divided in two 

test-cae. 

The first one was the emergency service. A person was playing the part of the citizen in emergency calling 

the service with the smartphone application. Then an authorized user authorized the flight thought the 

GUI. When the drone reached the desired position the user performed a circle around the goal position 

and looking at the real time video streaming he could have a better understanding of the surrounding 

environment (Figure 29).  

In the second test the authorized user selected a set of waypoints on the GUI, clicking on the map. Then 

the user started the mission and the drone started to fly and sending the real time video streaming and 

telemetry to the GUI. In Figure 30 is shown the second experiment. Both experiments has been 

authorized by ENAC (Ente Nazionale Aviazione Civile), the Italian civil flight authority. Videos of those live 

tests are avavilable at (http://tinyurl.com/l5lbry4, http://tinyurl.com/qd2whr5 ). 

 

 

http://tinyurl.com/l5lbry4
http://tinyurl.com/qd2whr5


 

 

FIGURE 25 EXPERIMENT 1, SIMULATED EXPERIMENT. OBSTACLES FROM OPEN DATA ARE SHOWN AS BLACK CELLS; COMPUTED 

WAYPOINTS ARE SHOWN IN BLUE. THE STARTING POINT IS IN THE TOP-LEFT AND THE GOAL IN THE BOTTOM-RIGHT. 

 



 

 

FIGURE 26 COMPARISON BETWEEN THREE PLANNING STRATEGIES. BLACK CELLS REPRESENT OBSTACLES, GREY CELLS REPRESENT 

AREAS WITH NO 4G CONNECTIVITY. GREEN LINE: OPTIMIZE FOR SHORTEST PATH, AVOID OBSTACLES, IGNORE CONNECTIVITY; 

BLUE LINE: OPTIMIZE FOR SHORTEST PATH AND MAXIMIZE TRAVEL OVER ROOFS AND TREES FOR 

SAFETY, IGNORE SIGNAL; RED LINE: SAME AS BLUE LINE, BUT PREFER AREAS WITH 4G CONNECTIVITY. THE STARTING POINT IS IN 

THE TOP-LEFT AND THE GOAL IN THE BOTTOM-RIGHT. 

 



 

 

FIGURE 27 REAL TEST OVER A SHORT TRAJECTORY. OBSTACLES FROM OPEN DATA ARE SHOWN IN RED; STARTING POINT AND 

FINAL GOAL ARE SHOWN AS MARKERS; COMPUTED WAYPOINTS ARE SHOWN AS RED MARKERS. REAL TRAJECTORY FOLLOWED 

BY THE UAV IS SHOWN IN GREEN. 

 

FIGURE 28 REAL TEST OVER A SHORT TRAJECTORY. PHOTO OF THE EXPERIMENT 

 

 



 

 

 

 

FIGURE 29 VIDEO STREAMING AND TELEMETRY DURING THE LIVE TEST (FIRST TEST-CASE). 

 

 

 

 

 

FIGURE 30 VIDEO STREAMING AND TELEMETRY DURING THE LIVE TEST (SECOND TEST-CASE). 



 

3.13. CONCLUSIONS 
 

Fly4SmartCity is a large-scale cloud-robotics service that aims to prove that a real world application of 

cutting-edge technologies in robot-networking and unmanned vehicles is actually possible. The goal of 

F4SC is to provide a service for emergency management in smart city environment; this is achieved by the 

strict integration of: 

 A capable, reliable and stable cloud platform; 

 Sufficient agile autonomous agents; 

 A high-bandwidth, low-latency mobile network; 

 A rich set of data, drawn from various providers; 

 A well-documented and supported robotics middleware. 

 

A ROS-based cloud-robotics platform has been expressly developed to support the service and the main 

concepts of its implementation have been discussed. Then the service itself has been presented and the 

software modules described from a functional point of view, together with the messages they exchange.  

Several major technical issues (e.g. autonomy of the UAV) and legal restrictions imposed by the civil flight 

authorities  (Regolamento Mezzi Aerei a Pilotaggio remoto) still prevent a common and practical use of 

the infrastructure presented, however we have proved here how the data about the urban fabric, that are 

in large part public in a smart city, offer a valuable source that it is possible to exploit in order to 

guarantee safer flights and operations. We showed how these information can be integrated into a simple 

2D  planning module that is able to generate feasible flight trajectories that are also complaint with safety 

and signal quality constraints (e.g., fly over rivers when possible, avoid crowded areas, avoid areas with 

low mobile signal strength, etc.). 

Finally, the cloud platform has been designed not to be tied with the described service. On the contrary it 

offers support to third-party developers by providing management and platform APIs and, although it is 

not publicly available at the moment, the possibility of releasing it as an open-source project is under 

investigation. 



 

4. SLIDING AUTONOMY IN CLOUD ROBOTICS SERVICES FOR SMART CITY 

APPLICATIONS 
 

In the previous chapter there is a deep explanation of Fly4SmartCity. Fly4SmartCity is a project that wants 

to apply the use of small Unmanned Aerial Vehicles for providing different services in a smart city 

environment. In fact this is possible with the strict integration of  a cloud robotics platform with UAVs 

supported by 4G LTE connectivity. Internet and connectivity play a key role in the robotic platform for 

managing UAVs. The cloud robotics platform manages UAVs using “shared knowledge” of the smart city 

environment. Data source of geo-localized information present in the Internet is what we call Shared 

knowledge. In particular there are two main types of data source: the first is an external source e.g. Open 

Data expressing the position of buildings, trees and rivers or LTE signal strength. The second is an internal, 

sometimes private, source coming from data gathered by other UAVs that wants to improve and maintain 

updated the external source. For example when the service is required the cloud platform generates a 

cost map based on the information coming from the shared knowledge e.g. physical obstacle geo-

localized, LTE signal strength, experiences of previous path, preferred path. The cloud robotics platform 

then manages and controls the flight of UAVs according to the Level Of Autonomy (LOA) of the service 

(central topic of this chapter). In particular, in this chapter there is perspective towards different scenarios 

of services better explained in the next paragraphs: Emergency Management Service, Monitoring Service, 

Mixed Reality Teleoperation and Mixed Initiative Service, and finally Crowdsourcing Service. 

 

4.1. SLIDING AUTONOMY 
 

The concept of Sliding Autonomy is popular and proposed in literature  (Scerri, July 2002) , (Heger, 2006),  

(Sellner, July 2006.). The basic idea is to combine the advatntages of different Levels of Autonomy sliding 

from a level to another or as in this chapter applying different services with different Level Of Autonomy. 

Here mainly three Levels of Autonomy are considered:  

 full autonomy,  

 mixed-initiative 

 manual teleoperation 

 This idea was mainly inspired by (Carlone L. et al., 2010) and (Sauer., 2010 ) where a sliding autonomy 

framework was described especially for improving situational awareness, decreasing the workload of the 

human operator and meanwhile guaranteeing safe operations. Therefore we describe in the next 

paragraphs all the possible cloud robotics services for smart city application exploiting the sliding 

autonomy approach. The key agent, so the entity, that interacts with users and manages different levels 

of autonomy and the passage from one to another is called Sliding Autonomy Module (SAM). SAM is 

conceived as a software module in the cloud platform that supports all the cloud services and has an 

internal representation of the Levels Of Autonomy as a finite state machine. 



 

 

FIGURE 31 IN THIS FIGURE THE MAIN SERVICES DESCRIBED IN THIS DISSERTATION: EMERGENCY MANAGEMENT SERVICE, 

MONITORING SERVICE (TOP LEFT),  MIXED-REALITY TELEOPERATION AND MIXED-INITIATIVE SERVICE (TOP RIGHT/BOTTOM 

RIGHT) AND CROWDSOURCING SERVICE (BOTTOM LEFT). IN THE MIDDLE THE ODOMI MODULE, EXPLAINED IN THE PREVIOUS 

CHAPTER, REPRESENTING THE SHARED KNOWLEDGE ESSENTIAL FOR SUPPORTING ANY OF THOSE CLOUD SERVICES. 

4.1.1. EMERGENCY MANAGEMENT SERVICE 
 

As described in the previous chapter, a citizen through the use of a smartphone application ask for the 

service of emergency management by sending a request to the cloud platform. Then, on the cloud 

platform side, the human operator authorizes the request. Then the cloud platform selects the best 

suitable UAV and calculates the Path Planning (PP). In the end the UAV reaches the position where the 

emergency occurred. As outlined before the shared knowledge source it is used by the Path Planning (PP) 

module for building a reliable cost map and consequently the UAV path. The way to attribute costs in the 

cost map depends on the policy required by the user. For example a policy could be that the UAV must to 

fly at low altitude avoiding obstacles, or the flight path has to prefer at higher altitude over buildings and 

trees in order to minimize the risk of hurting humans or damaging properties in case of failure. When the 

drone is in the requested position the human operator can perform a circle around the goal position or 

switching to a completely manual mode (teleoperation). Once that the operation is finished the operator 

can decide to return to home position automatically.  

  



 

4.1.2. MONITORING SERVICE 

 

 

The monitoring service is mainly imagined for environmental monitoring (e.g. rivers inspections for 

flooding preventions). In this case the human operator selects some way points on the map and can or 

not exploit the shared knowledge for having more information regarding the surrounding environment. 

Then the cloud platform chooses the best suitable UAV, creates the flight plan and send it to the chosen 

UAV. The flight is completely autonomous but the user at any time can switch to teleoperation mode or 

activate the Mixed reality Teleoperation and Mixed Initiative Service. 

4.1.3.  MIXED-REALITY TELEOPERATION AND MIXED-INITIATIVE 

SERVICE 
As in the previous services, the Mixed-reality and Mixed-initiative Teleoperation Service is supported by 

shared knowledge present in the cloud robotics platform. So a teleoperation service is possible with visual 

information regarding obstacles, low LTE signal strength and suggested path to follow, with the current 

position in the path and future intended positions. All of these visual information are displayed using a 

mixed-reality approach on the teleoperation GUI. Although this service is meant to support the 

teleoperation during the monitoring phase the user can switch to a semi-automatic mode called Mixed 

Initiative mode. This mode becomes important when it is useful to decrease the workload of the user 

during monitoring operations. A similar approach is explained in  (Sauer., 2010 ). This mode sees the UAV 

following a pre-determined path but the user can still modify the position of the robot with a restricted 

teleoperation. As in  (Cacace, 2014) the degree of autonomy changes between the human operator and 

the robot managed by the SAM entity. For increasing the safety there is a low level reactive Obstacle 

Avoidance module in order to avoid any possible collision. Although the user would send a dangerous 

command for the UAV or the environment this module tries to apply a strategy for avoid any possible 

collision. 

 



 

4.1.4. CROWDSOURCING SERVICE 
 

As explained in the introduction the Crowdsourcing Service has to improve and maintain the shared 

knowledge source updated and consistent. The main idea is that Crowdsourcing Service gathers pictures 

and LTE signal strength from users around the city, drones and over the internet. There is a Task 

Allocation module that organizes UAV missions in the smart city, choosing the best suitable UAV and 

planning the mission to the desired goal. For example the platform can decide to send a UAV in a certain 

particular zone because the information in that zone is not present or not updated. This module as the 

other modules exploits the Path Planning module. Consequently these new data are geo-localized, 

matched and attached to the current pre-existing source of shared knowledge using also 3D mapping 

algorithms and reconstruction. On the citizen’s side we imagine they having a smartphone application 

(similar to e.g. OpenSignal https://opensignal.com/android/ ) and continuously logging the LTE signal 

strength geo-localized. Then we imagine a huge amount of pictures gathered from users and over the 

Internet (e.g Flickr, Instagram, Wikipedia)  for reconstructing the urban environment. A similar and 

inspiring approach is described in (Snavely, 2006). In this approach the services manages UAVs 

automatically while the human operator has only a supervisory control. In case of failure the human 

operator is notified by the SAM agent. In order to solve the necessity of operating manually the human 

operator can take the control switching to teleoperation mode or Mixed-Reality Teleoperation and Mixed-

Initiative Service. Once the necessity is solved the human operator can return to supervisory mode. In 

addition the human operator can plan manually a mission in a particular zone if in need, again changing 

the status from Supervisory Control to another service.  

https://opensignal.com/android/


 

5. THE USER’S FLYING ORGANIZER (UFO) PROJECT 
As explained previously this dissertation has the purpose of analyzing all the possible ways to interact with 

drones. A good approach is explained in the previous chapter where a Sliding Autonomy paradigm is 

outlined. Then in the next developments of our idea we extend our research in the direct interaction 

between human and drones. Starting from the problem of augmenting the teleoperation service with 

information coming from the cloud platform, we extend this idea towards a scenario where the drone has 

the possibility of augmenting with information the physical space. In particular adding to the drone the 

possibility of projecting or displaying those information in the human environment, so bypassing the 

teleoperation interface, and enable a direct interaction between human and drones. 

5.1. MOTIVATIONS 
 

Nowadays we are witnessing a revolution in the ways of human interact with machine and digital 

information. The physical interfaces such as keyboard, mouse, tablets, smartphone and displays will be in 

the future not anymore the primary mean of interaction.  Especially looking at the trends of the interfaces 

evolution, is clear that we are moving towards alternatives way of interact such as gestures and direct-

touch interfaces (A. Erol, Oct. 2007) (A. D. Wilson, 2008). Very popular interfaces such as smartphone are 

currently very widespread but they need physical and visual attention, that is a big problem when the user 

is in a harsh mobile situation. Other emerging technologies such as Head Mounted Displays (HMD) are 

very promising but at the same time they could give an additional constraint and difficulties in the 

interaction to the user. 

Augmented reality is a way to represent information in addition to the 3D environment but projected on a 

physical interface such as a HMD or hand-held device (Raskar, 2005). Spatial augmented (Raskar, 2005) 

reality is an extension of AR which exploit projectors to augment surfaces directly in the environment. The 

problem is that the environment needs to be instrumented with projectors that cover large areas with 

augmentations. So the idea is to extend spatial augmented reality with mobile robots. 

Therefore we want to create an innovative Human Computer Interaction (HCI) combining robotics and 

spatial augmented reality for creating a novel way of interaction. In this scenario we envision small 

personal drones with on board pico- projectors and cameras for creating movable personal projections in 

the environment. So we call this new way of interaction “User’s Flying Organizer” (UFO). 

Therefore this device could be useful for supporting for example a technician during building 

maintenance. We imagine that a remote operator can support the technician projecting information 

directly in the environment, since the remote operator can supervise the technician or in addition also 

accessing information useful to display in the environment (such as building maps, hidden wires, plumbs, 

structural elements ecc..) 

This scenario makes understand the advantages of having this device: 

 The user doesn’t need to wear any display such an HMD or a hand held display 

 The field of view is potentially unlimited because the device is accompany the technician in the 

environment 

 The input camera could be used for adding visual interaction such as gestures recognition   



 

5.2. INTRODUCTION  
Drones are rapidly becoming a commodity technology, even used for personal activities, e.g., aerial 

photography. We can easily imagine using inexpensive drones as part of our everyday tool set. Equipped 

with suitable sensors, such as cameras, these drones serve primarily as remote input devices. However, 

drones are rarely used for output. A display on a drone would have to be very small; mobile users prefer 

handheld or body-worn displays. Spatial augmented reality (Peters, 2005) overcomes display size 

constraints and avoids encumbering the user with mobile devices by projecting relevant information 

directly onto surfaces in the environment. However, existing spatial augmented reality systems are either 

stationary, or mobility is achieved by letting the user carry the projector. Obviously, the latter case fails in 

resolving the encumbering situation for the user. We propose a flying projector (Figure 32) as a new 

approach for encumbrance-free human-computer interaction. Our flying projector design can be used as a 

robotic companion, which follows the user and projects helpful information on relevant surfaces near the 

user. For instance, it can highlight the next machine part to attend to during a maintenance procedure. 

Building a flying projector requires mastering several challenges. 

 

FIGURE 32 FLYING LASER PROJECTOR IN-FLIGHT. 

 

 First, safety considerations require that a drone operated as a companion near a person must be small 

and lightweight. This imposes significant restrictions concerning payload and power consumption, making 

it difficult to equip the drone with all required necessary input, output and compute units. To facilitate a 

flying projector, we introduce a novel lightweight laser projection system built from scratch. The 

projection system is integrated into a small scale microaerial vehicle (MAV). It is equipped with an auto-

pilot to perform way-point following, and the projection system can project a set of basic symbols. 

Second, the quality of airborne projection is influenced by the stability of the MAV. Changes to position 

and orientation of the drone, while in hovering mode, as well as vibrations emerging from the rotors 

during flight must be considered. Thus, a stabilization method is necessary to compensate at least for 

significant movements of the drone. To this aim, we describe how a projector-camera feed-forward loop 

can compensate for pose fluctuations by deflecting the projector’s laser beam. The feed-forward 

correction algorithm is based on pose estimates of a real-time natural feature tracker (NFT). We evaluate 

results of the projection stabilized by the poses of the feature tracker and compare it with the correction 

based on poses estimated by an Optitrack motion tracking system. As part of the proposed scenario, this 



 

chapter represents a first step towards combining the fields of robotics and spatial augmented reality. It 

focuses on the flying projection platform and presents the following contributions:  

 a new lightweight laser projector, 

 an implementation of a drone-based flying projector by integration of the laser projector onto a 

MAV  

 an experimental evaluation of two methods for projection stabilization.  

In this project, we share our experiences of building a new kind of human-robot interaction system. We 

provide details about what works and what does not work, which we believe to be interesting for 

researchers and engineers interested in a similar development.  

 

5.3. RELATED WORK 
A flying projector is a conceptual extension of a mobile projector. Since the early 2000s, spatial 

augmented reality has been a popular topic for mobile interaction. However, most approaches for room-

sized environments either cover all relevant surfaces with arrays of projectors or rely on steerable 

projection. This idea was pioneered with the everywhere display projector  (Pinhanez., 2001) and later 

extended with real time reconstruction from commodity depth sensors in the Beamatron  (A. Wilson, 

2012.). Other work considers mobile projectors, which are handheld or worn on the head or on the body. 

They can be combined with depth sensors (C. Harrison) or inertial sensors (K. Tajimi, 2010) to react to the 

user’s movement and, potentially, a changing environment. However, visual light projectors with 

sufficient brightness for spatial interaction usually require a stationary power source. Truly mobile, 

battery-powered projectors can only operate at very short distances. Laser pointers concentrate the 

emitted energy in a single spot and, consequently, can achieve a significantly better contrast than 

conventional projectors with the same power budget. A steerable laser pointer can be used to point to a 

particular task location. A shoulder-mounted implementation of a steerable laser pointer has been used in 

a tele-assistance scenario  (Ando., 2004). However, the same group of authors later proofs that a single 

point is not sufficient for conveying complex instructions  (Sakata, 2006). Instead of a steerable single 

laser point, a scanning laser can be used.  (Ando., 2004) describe a head-mounted projective display with 

a scanning laser mounted co-axial to the observer’s eye. (B. Schwerdtfeger, 2008)  explore head mounted 

and stationary scanning lasers for spatial augmentation. In both cases, the workspace is a major 

limitation. Because of the obvious technical difficulties, there has been little work on flying projectors. (J. 

Scheible, 2013) demonstrate outdoor flying projection with a commercial visual light projector weighting 

200g, mounted on a large octocopter platform. These authors suggest a human-computer interaction 

scenario, but do not consider the problem of projection stabilization at all. The closest work to ours in 

terms of combining projection and drone flight was presented by  (Y. Hosomizo, Oct 2014 ). They suggest 

a flying projection platform and approach the problem of image stabilization by combing dead reckoning 

and computer vision. However, they aim at a simpler solution than ours, using a commercial projection 

system and off board computation of the image stabilization. Specifically, they do not gather exact 

measurements of the drone’s trajectory and the actual position of the projection. They also do not 

consider the distance to the projection surface during stabilization. Consequently, results for image 

stabilization are not evaluated in flight and only shown while the MAV is suspended from cables to meet 

weight constraints.  

  



 

5.4. SYSTEM DESCRIPTION  
 

In this paragraph, we describe our prototype and discuss its characteristics and limitations. The main 

components of our experimental system are the MAV itself, the on-board computer and the custom laser 

projector. In addition we use a motion tracking system combined with a ground station to control the 

MAV. An overview of the system is shown in Figure 33. 

 

FIGURE 33 DIAGRAM OF THE EXPERIMENTAL SETUP. IT INCLUDES THE MOTION TRACKING SYSTEM WHICH IS BASED ON 8 

TRACKING CAMERAS AND FURTHER CONNECTED TO THE GROUND STATION VIA ETHERNET. ADDITIONALLY THE GROUND 

STATION IS CONNECTED TO OUR MAV THROUGH WIFI LINK. THE LASER PROJECTION SYSTEM ITSELF IS MOUNTED ON THE MAV 

AND INTERFACED TO THE ONBOARD COMPUTER VIA SERIAL LINK. 

 

In Figure 34, we show the flying MAV. The on-board computer and the components of the projection 

system are mounted below the flight management unit. The laser projector unit is mounted together with 

the camera in the front. The battery is mounted on top to achieve acceptable weight distribution. 



 

 

FIGURE 34 DRONE PLATFORM OF OUR EXPERIMENTAL SETUP INCLUDING THE MAIN COMPONENTS. THE BATTERY IS MOUNTED 

ON TOP FOR BALANCED WEIGHT DISTRIBUTION. BELOW THE BATTERY, THE PX4 LOW-LEVEL FLIGHT MANAGEMENT CONTROLLER 

AND THE PX4IOAR BOARD ARE LOCATED. BELOW THE FRAME, THE ON-BOARD COMPUTER AND THE LASER PROJECTION SYSTEM 

ARE POSITIONED. THE PROJECTION SYSTEM AND THE VISION CAMERA ARE FACING FORWARD.  

5.4.1. MICRO AERIAL VEHICLE 
The MAV (55cm largest diameter, 600g weight) uses a semi-customized design with engines, rotors and 

frame taken from the ARDrone 2.0 platform. It is powered by a single 2000mAh battery with 11.1V. The 

flight time is limited to about 5 minutes, while running all relevant components and tasks for stabilization 

of the projection in flight. As a central processing unit, we use an ODROID U3+ single board computer with 

a Samsung Exynos4412 Prime Cortex-A9 quad-core CPU. We added a Pixhawk PX4 flight management 

controller  (L. Meier, 2011) as a low-level flight control unit including attitude and pose estimation. The 

ODROID is connected to the PX4 via serial link and communicates with a ground-station via Wifi. It 

captures image data at 20Hz with 1280x960 resolution from a forward-looking MatrixVision Bluefox2 

camera connected via USB 2.0. All high-level tasks like processing of the image data, pose estimation by 

visual feature tracker and sending feed-forward correction data to the laser projection system run on-

board and are implemented in the ROS framework  (M. Quigley, 2009). 

 



 

5.4.2. LASER PROJECTION SYSTEM 
We custom-built a laser projector ( 70g) from the following components: A 5mW laser module emits light 

at a wavelength of 650nm. The laser beam is deflected by a two-axis (tip/tilt) MEMS mirror  (V. Milanovic, 

May 2004). Its reflective surface has 2DOF and can be steered in a range of ±6 ◦ by applying a bias 

differential driving scheme. To generate the required DC bias voltage, we use an amplifier interfaced to a 

microcontroller via SPI. The microcontroller is connected to the ODROID via a serial link, relying on the 

ROS-serial package. To preserve weight, no gimbal mounting was used. An overview of the laser 

projection platform is shown in Figure 35. 

 

 

FIGURE 35 DETAILED OVERVIEW OF THE LASER PROJECTION SYSTEM. THE EMITTED LIGHT OF THE LASER MODULE IS REFLECTED 

BY A FORWARD FACING MEMS MIRROR. THE MIRROR ITSELF IS INTERFACED TO AN AMPLIFICATION STAGE, WHICH CONVERTS 

COMMANDS FROM THE EMBEDDED SYSTEM INTO APPROPRIATE VOLTAGES, STEERING THE MIRROR IN TWO DIRECTIONS 

 

 

5.4.3. FLIGHT CONTROL OF THE MAV 
For flight control of the MAV we use an Optitrack motion tracking system providing the PX4 flight 

management controller with low latency pose estimations at high rates. We use eight stationary cameras, 

covering an area of roughly 5 × 4 × 3m. Poses are delivered to the ODROID via Wifi at 120Hz, with 8ms 

latency. Time between the Optitrack ground-station and the PX4 is synchronized via NTP/Chrony 

(http://chrony.tuxfamily.org/).  

  

http://chrony.tuxfamily.org/


 

5.4.4. POSE ESTIMATION FOR STABILIZATION OF PROJECTION 
In addition we run a custom natural feature tracker onboard estimating poses based on the vision camera 

data. The natural feature tracker is similar to the work of (D. Wagner, May 2010). It detects visual features 

to compute the pose of the camera. In our setup, we use a known planar target with rich texture. This 

allows us to achieve a reasonably high frame rate and robust tracking of camera poses. Typically, the 

tracking takes about 30ms on the ODROID. It is remarkable that our experiments for projection 

stabilization rely on both systems the motion tracker and the feature tracker. Although for flight control of 

our MAV we use the motion tracking system only.  

 

5.5. PROJECTION STABILIZATION 
In this paragraph we want to concentrate on the problem of stabilizing projected information suffering 

from movements of the MAV. We propose a method for stabilization and describe our implementation 

deployed on the ODROID onboard computer. 

5.5.1. COORDINATES FRAMES AND TRANSFORMATION  
 

Fig. 36 shows the reference frames of our experimental setup: the world, the marker on the wall, the 

camera and the projector. Note that the camera is rotated by 90◦ around the z-axis. We stabilize the 

projected image using the 4 × 4 homogeneous transformation Tpm from projector to marker, consisting of 

the rigid transformations Tpc from projector to camera and the transformation Tcm from camera to 

marker, which is tracked by the natural feature tracker: 

 𝑇𝑝𝑚 =  𝑇𝑝𝑐𝑇𝑐𝑚  

A point Pm in marker space can be transformed into projector space as 𝑃𝑝 =  𝑇𝑝𝑚𝑃𝑚 and further on 

into projected space of the laser.  

( 
𝑥
𝑦) = 𝐾𝑝𝑃𝑝 = (

𝑓𝑥 0 𝑐𝑥

0 𝑓𝑦 𝑐𝑦

0 0 1

)𝑃𝑝 

The projection matrix Kp of the laser is defined by the intrinsic parameters fx, fy, cx and cy; (x,y) are the 

pixel coordinates in projector space. Since we control the projector giving as input the two angles α β of 

the MEMS mirror, we need to create a function to transform from angles to pixels coordinates and vice 

versa. This transformation is done as follows: 

 𝑢 =  𝑆𝑥 ·  (𝛼 −  𝑐𝑥) 𝑣 =  𝑆𝑦 ·  (𝛽 −  𝑐𝑦) 

 where cx, cy are the coordinates of the principal point of the projector. Sx and Sy are two scale 

parameters depending on the maximum angle possible for the projector  (in our case αmax = 6◦ ). The 

resolution of the projection is defined by 𝑟𝑒𝑠 =  (𝑟𝑒𝑠𝑥, 𝑟𝑒𝑠𝑦). It is then valid that  

𝑆𝑥 = 𝛼 max (
𝑟𝑒𝑠𝑥

2
) 

 



 

𝑆𝑦 =  −𝛼 max (
𝑟𝑒𝑠𝑦

2
) 

 

 By inverting the same function we get the transformation from projector pixel space into degree inputs of 

the laser projection interface.  

 

5.5.2. CAMERA-PROJECTOR CALIBRATION  
In our preliminary experiments, we had to manually calibrate camera-projector intrinsic and extrinsic 

parameters. This is because we found the laser-projector distortion behaves different from a pinhole 

camera model (see Fig. 36). We experimented with camera-projector calibration using a combined 

pinhole and radial distortion model for the laser projector. However, the calibration did not converge to 

reasonable results. Forcing the projector to follow a linear pinhole model results in more reasonable 

results with a re-projection error around 21 pixels. We believe the non-linear distortion effect of the laser 

projector is a limitation of the current hardware setup. Therefore, we manually calibrate parameters to fit 

linear pinhole camera model for the laser projector. This results in acceptable calibration for our 

experiments. Fig. 37 shows some of the captured images used for intrinsics and extrinsics camera-

projector calibration. Note the back-projected laser dot (green cross) after calibration. As shown, the re-

projection errors of laser dots are quite high. As discussed previously, such high errors likely come from 

low accuracy of the MEMS mirror used for laser projection. In the calibration setup, we used a 7x6 dots 

calibration pattern and 25 laser dots projection where laser dots locations are uniformly distributed 

throughout the laser projector pixel coordinates. We assume that the camera intrisics are precalibrated. 

This allows us to estimate 6DOF relative transformation between camera and laser projector, and 

intrinsics of the projector. The estimation is done similar to (Falcao).  

 

FIGURE 36 FIG. (A) ILLUSTRATES DETECTED LASER DOT (GREEN CROSS) AND DETECTED CALIBRATION PATTERN IN OF THE CAMERA 

CAPTURED IMAGE USED TO FOR CAMERAPROJECTOR CALIBRATION. FIG. (B) SHOWS PIXEL LOCATIONS OF PROJECTING POINTS IN 

PROJECTOR PIXEL COORDINATES. FIG. (C) SHOWS DETECTED LASER DOTS IN CAMERA 

IMAGE WHEN THE LASER DOTS ARE PROJECTED ON A PLANAR WALL. THE STRANGE DISTORTION IN (C) SUGGESTS THAT OUR 

LASER-PROJECTOR DOES NOT FOLLOW A PINHOLE CAMERA MODEL WITH RADIAL DISTORTION, AS COMMONLY USED FOR 

CAMERA MODEL. 

  



 

 

FIGURE 37 THESE ARE SOME OF CAPTURED IMAGES USED FOR CAMERA-PROJECTOR CALIBRATION EXPRIMENTS. THE TOP ROW 

CONTAINS INPUT IMAGES WITH PROJECTED LASER DOTS IN THE CAMERA FIELD-OF-VIEW. THE BOTTOM ROW SHOWS 

VALIDATION RESULTS WHERE ESTIMATED CAMERA-PROJECTOR INTRINSICS AND EXTRINSICS ARE USED TO TRANSFORM AND RE-

PROJECT LASER DOTS TO CAMERA IMAGE. THE RE-PROJECTED LASER DOTS ARE HIGHLIGHTED WITH GREEN CROSSES. 

5.6. COMPENSATION VIA FEED-FORWARD 
 

For stabilization of the projected information, we want to use a simple, but robust feed forward 

correction algorithm. We choose an arbitrary 3D point Pm in the marker frame Fmarker and transform it 

into camera coordinate frame Fcam using the pose of the NFT. We then use camera to projector 

transformation to derive coordinates of the defined point in the laser projector frame Fproj . Finally we 

steer the mirror to the updated position of the defined 3D arbitrary point. The tracked marker is mounted 

on a wall and trackable from a distance of up to 3m. The images with a resolution of 1280x960 are 

delivered to the on-board computer with a latency of 200ms. An additional 30ms have to be taken into 

consideration for the natural feature tracker. The estimated pose is used to transform the output 

coordinates into the projected frame of the laser. For correction, the updated coordinates in laser space 

are finally forwarded to the laser projection interface. The latency of the final step is approximately 20ms 

 

5.7. EXPERIMENTS 
In this section, we analyze the performance of the stabilized projection during flight. We report on two 

experiments: First, we elaborate on the accuracy of feed-forward stabilization based on poses derived 

from the natural feature tracker. Second, we compare the results with compensation computed from 

Optitrack data. In a first step we position the MAV in a static pose. In the next step we project the point 

(0,0) in projector coordinates onto the marker. We then measure this 3D point in marker coordinates and 

define it as our desired arbitrary point. We also capture this pose of the drone and define it as our desired 

waypoint for hover flight in our experiment. In the experiment we place the MAV randomly in a flying 

space covered by the motion tracking system and lift off. We then command the MAV to approach the 

predefined waypoint and keep it in hovering position. During hover flight the pose of the wall mounted 

marker is localized. We then use our onboard feedforward correction algorithm to project the desired 

point on the marker. At the same time we project the uncompensated point (0,0) in projector coordinates 

which represents the disturbance due to the movements of the MAV. To quantify the accuracy of the 

compensation, we record position and altitude of the MAV (Figure 38 a and Figure 38 b) and capture 

image data over 20s to measure the projected points. Figure 39 compares the measured trajectory of the 

first experiment whereby the compensated point with the uncompensated center of projection is shown. 

Figure 40 shows the results using Optitrack for stabilizing the image.  

 



 

 

A) 

 

B) 

FIGURE 38 (A-B) BOTH FIGURES SHOW THE TRAJECTORY OF THE MAV MEASURED WITH OPTITRACK. FIG. (A) SHOWS MAV 

TRAJECTORY OF FIRST EXPERIMENT (NFT). FIG. (B) SHOWS SAME DATA BUT FOR THE SECOND EXPERIMENT (COMPENSATION 

BASED ON OPTITRACK POSES). FLIGHT TIME OF NFT IS INCREASED BECAUSE OF DELAYED TRACKING OF MARKER. 

 

 

 



 

 

 

 

FIGURE 39 TRAJECTORIES OF ACTUAL AND COMPENSATED PROJECTION, BASED ON NFT POSES. THE BLACK CROSS REPRESENTS 

THE DESIRED ARBITRARY POINT IN MARKER SPACE.  

 

 

TABLE 4 ERROR CHARACTERISTIC AND ERROR COMPENSATION 

 

  



 

It can be clearly seen that the dynamic error is considerably reduced by the feed-forward correction. Due 

to the much lower latency, the RMS error is significantly improved with the Optitrack. We additionally 

take a set of measurements positioning the MAV statically in front of the marker to inspect on the static 

error. At different poses close to the defined waypoint, which we also use for inflight projection, we then 

measure the same RMS error characteristics as noted in terms of dynamic error. The dynamic error 

characteristics are thereby shown in Table I. The RMS values of the dynamic error without compensation 

are denoted as RMSd,act (distance from desired to actual point in marker space). The dynamic error 

values measured from the compensated points are denoted as RMSd,cmp (distance from desired to 

compensated point in marker space). RMSs,act and RMSs,cmp represent characteristics of the static error 

accordingly. We further define an error reduction ratio Rd for the dynamic error, which is the relation 

between the error of the compensated points and the error of the uncompensated points. 

 

 𝑅𝑑 =  
𝑅𝑀𝑆𝑑,𝑐𝑚𝑝

𝑅𝑀𝑆𝑑,𝑎𝑐𝑡

  

 

 

5.8. DISCUSSION AND CONCLUSIONS 
 

Evaluation of our system reflects current limitations related to hardware constraints. In particular limits of 

the power-supply and payload for drones of this size are the main reason for reduced flight time while 

computational power is still hardly sufficient. However, facing those limitations, we have presented a 

novel platform which is capable of dynamic flight and projection at the same time. This is made possible 

by a custom design utilizing a small sized MAV. We achieve a lightweight and low-power flying projection 

system stabilizing projected images in 3D environment and safe to operate near human. In a future 

version we want to improve overall performance of the flying projector. This would include to even more 

decrease weight of the projection system and payload in general. Additionally, we would like to further 

investigate the distortion effect of the laser projector as we suppose that such distortion is mainly owed 

to an inaccurate surface of the MEMS mirror. Finally we want to use more powerful methods in terms of 

pose estimation and error correction to make the platform even more flexible inside of future human 

machine interaction scenarios.  



 

6. PROJECTOR CALIBRATION 
In previous chapter there was an explanation of the idea of having a flying projector and an outline of 

what are the main problems of applying this technology in reality. In particular we can say that although 

there are still many technology constraints the overall result is satisfactory.  One of the most important 

requirements that we needed to fulfill is to apply a more reliable calibration regarding the camera to 

projector calibration. In the previous chapter we only performed a manual calibration because we 

couldn’t get a satisfactory result. That is mainly due to the fact that the laser projector we used in this 

project is very particular, since we were looking for the best hardware according to the lowest weight 

solution. We used a MEMS mirror (Figure 40) to reflect the laser beam and for steering the mirror we 

used a driver (Figure 41) from Mirrocle. 

 

 

FIGURE 40 MEMS MIRROR 

 

 

FIGURE 41 CONTROL BOARD FOR THE MIRROR MEMS 

 

 



 

 

 

As we described in paragraph 5.4.2. we have custom built laser projector: 

 70 grams of weight 

 5mW laser module to emit the laser beam at a wavelength of 650nm 

 MEMS angle range is ±6◦ 

 The control board for steering the laser beam has a SPI interface 

 The control board communicates with Arduino Uno with a custom driver written by us 

(https://www.arduino.cc/en/Main/ArduinoBoardUno)  

 Arduino communicates then with Odroid U3 exploiting the ROS Serial package 

(http://wiki.ros.org/rosserial )  

  

 

FIGURE 42 PROJECTOR SET UP AND DEVICES 

So with this set up we performed a camera to projector calibration composed by two parts: 

 Extrinsic calibration: estimate the pose (rotation and translation) from the camera to the 

projector 

 Intrinsic calibration: the deformation of the laser mirror 

In this work we start with the extrinsic calibration since we believe it is more important for improving the 

result in the final application. 

https://www.arduino.cc/en/Main/ArduinoBoardUno
http://wiki.ros.org/rosserial


 

6.1. EXTRINSIC CALIBRATION 
 

As already described in this chapter we are focusing more the extrinsic calibration. The novelty of this 

calibration is mainly due to the fact that the projector we are using is very new and there was no previous 

knowledge about that. In addition we needed to find a way to calibrate the projector bypassing 

completely the intrinsic model of the laser mirror since that was completely unknown. So in this chapter 

there is an explanation of the theoretical problem and how we solved it. 

Let’s start to define the problem. We put a reference (right-handed) for the camera system, the projector 

and the marker where we will project the central point, with coordinates (0,0), of the laser projector. We 

call respectively 𝑇𝐶𝑎𝑚𝑒𝑟𝑎𝑀𝑎𝑟𝑘𝑒𝑟  the transformation (rotations and translations) that brings the reference 

frame from the Marker to the Camera. 𝑇𝑃𝑟𝑜𝑗𝑒𝑐𝑡𝑜𝑟𝑀𝑎𝑟𝑘𝑒𝑟  the transformation from marker space to 

projector space. And 𝑇𝑃𝑟𝑜𝑗𝑒𝑐𝑡𝑜𝑟𝐶𝑎𝑚𝑒𝑟𝑎   the transformation from camera to projector that is the unknown 

that has to be calculated by the calibration. We calibrate the projector only projecting the central point in 

order to bypass the intrinsic parameter of the laser projector and then optimizing for every pose.  

 

 

FIGURE 43 CAMERA PROJECTOR CALIBRATION 

 

  



 

We took 40 poses 𝑇𝐶𝑎𝑚𝑒𝑟𝑎𝑀𝑎𝑟𝑘𝑒𝑟  with the Natural Feature Detection (Look3D) developed in the Institute 

of Computer Graphics and Vision of the Technical University of Graz.  

 

We wrote the transformation matrix as follows: 

 

𝑇𝐶𝑎𝑚𝑒𝑟𝑎𝑀𝑎𝑟𝑘𝑒𝑟 = (𝑅𝐶𝑎𝑚𝑒𝑟𝑎𝑀𝑎𝑟𝑘𝑒𝑟|𝑇𝐶𝑎𝑚𝑒𝑟𝑎𝑀𝑎𝑟𝑘𝑒𝑟) 

 

= (

𝑟𝑐𝑚11 𝑟𝑐𝑚12 𝑟𝑐𝑚13
𝑟𝑐𝑚21 𝑟𝑐𝑚22 𝑟𝑐𝑚23
𝑟𝑐𝑚31 𝑟𝑐𝑚32 𝑟𝑐𝑚33

0 0 0

|

𝑡𝑐𝑚1
𝑡𝑐𝑚2
𝑡𝑐𝑚3

1

) 

 

𝑇𝑃𝑟𝑜𝑗𝑒𝑐𝑡𝑜𝑟𝑀𝑎𝑟𝑘𝑒𝑟 = (𝑅𝑃𝑟𝑜𝑗𝑒𝑐𝑡𝑜𝑟𝑀𝑎𝑟𝑘𝑒𝑟|𝑇𝑃𝑟𝑜𝑗𝑒𝑐𝑡𝑜𝑟𝑀𝑎𝑟𝑘𝑒𝑟) 

 

= (

𝑟𝑝𝑚11 𝑟𝑝𝑚12 𝑟𝑝𝑚13
𝑟𝑝𝑚21 𝑟𝑝𝑚22 𝑟𝑝𝑚23
𝑟𝑝𝑚31 𝑟𝑝𝑚32 𝑟𝑝𝑚33

0 0 0

|

𝑡𝑝𝑚1
𝑡𝑝𝑚2
𝑡𝑝𝑚3

1

) 

 

𝑇𝑃𝑟𝑜𝑗𝑒𝑐𝑡𝑜𝑟𝐶𝑎𝑚𝑒𝑟𝑎 = (𝑅𝑃𝑟𝑜𝑗𝑒𝑐𝑡𝑜𝑟𝐶𝑎𝑚𝑒𝑟𝑎|𝑇𝑃𝑟𝑜𝑗𝑒𝑐𝑡𝑜𝑟𝐶𝑎𝑚𝑒𝑟𝑎) 

 

= (

𝑟𝑝𝑐11 𝑟𝑝𝑐12 𝑟𝑝𝑐13
𝑟𝑝𝑐21 𝑟𝑝𝑐22 𝑟𝑝𝑐23
𝑟𝑝𝑐31 𝑟𝑝𝑐32 𝑟𝑝𝑐33

0 0 0

|

𝑡𝑝𝑐1
𝑡𝑝𝑐2
𝑡𝑝𝑐3

1

) 

 

 

 

So projecting always the central point from the projector we have the equations: 

 

𝑃𝑝𝑟𝑜𝑗𝑒𝑐𝑡𝑜𝑟 = 𝑇𝑃𝑟𝑜𝑗𝑒𝑐𝑡𝑜𝑟𝑀𝑎𝑟𝑘𝑒𝑟 ∗  𝑃𝑀𝑎𝑟𝑘𝑒𝑟  

 

𝑃𝑝𝑟𝑜𝑗𝑒𝑐𝑡𝑜𝑟 =  𝑇𝑃𝑟𝑜𝑗𝑒𝑐𝑡𝑜𝑟𝐶𝑎𝑚𝑒𝑟𝑎𝑇𝐶𝑎𝑚𝑒𝑟𝑎𝑀𝑎𝑟𝑘𝑒𝑟 ∗  𝑃𝑀𝑎𝑟𝑘𝑒𝑟  

 



 

𝑃𝑝𝑟𝑜𝑗𝑒𝑐𝑡𝑜𝑟 = (

𝑋𝑝𝑟𝑜𝑗𝑒𝑐𝑡𝑜𝑟

𝑌𝑝𝑟𝑜𝑗𝑒𝑐𝑡𝑜𝑟

𝑍𝑝𝑟𝑜𝑗𝑒𝑐𝑡𝑜𝑟

1

) =  (

0
0

𝑍𝑝𝑟𝑜𝑗𝑒𝑐𝑡𝑜𝑟

1

)  

 

𝑃𝑚𝑎𝑟𝑘𝑒𝑟 = (

𝑋𝑚𝑎𝑟𝑘𝑒𝑟

𝑌𝑚𝑎𝑟𝑘𝑒𝑟

𝑍𝑚𝑎𝑟𝑘𝑒𝑟

1

) 

 

 

 

Where the pose 𝑇𝑃𝑟𝑜𝑗𝑒𝑐𝑡𝑜𝑟𝐶𝑎𝑚𝑒𝑟𝑎  is unknown, the 𝑃𝑀𝑎𝑟𝑘𝑒𝑟   are the 3D laser points visible on the 

marker attached to the wall, the  𝑃𝑝𝑟𝑜𝑗𝑒𝑐𝑡𝑜𝑟  are the points back projected from the 3D points in the 

environment in the projector space. 

 

So the general equation for every of the 40 poses appear: 

 

(

0
0

𝑍𝑝𝑟𝑜𝑗𝑒𝑐𝑡𝑜𝑟

1

) = (

𝑟𝑝𝑐11 𝑟𝑝𝑐12 𝑟𝑝𝑐13
𝑟𝑝𝑐21 𝑟𝑝𝑐22 𝑟𝑝𝑐23
𝑟𝑝𝑐31 𝑟𝑝𝑐32 𝑟𝑝𝑐33

0 0 0

|

𝑡𝑝𝑐1
𝑡𝑝𝑐2
𝑡𝑝𝑐3

1

)(

𝑟𝑐𝑚11 𝑟𝑐𝑚12 𝑟𝑐𝑚13
𝑟𝑐𝑚21 𝑟𝑐𝑚22 𝑟𝑐𝑚23
𝑟𝑐𝑚31 𝑟𝑐𝑚32 𝑟𝑐𝑚33

0 0 0

|

𝑡𝑐𝑚1
𝑡𝑐𝑚2
𝑡𝑐𝑚3

1

)(

𝑋𝑚𝑎𝑟𝑘𝑒𝑟

𝑌𝑚𝑎𝑟𝑘𝑒𝑟

𝑍𝑚𝑎𝑟𝑘𝑒𝑟

1

) 

  

where  𝑃𝑚𝑎𝑟𝑘𝑒𝑟  is taken according to its pose 𝑇𝐶𝑎𝑚𝑒𝑟𝑎𝑀𝑎𝑟𝑘𝑒𝑟  and the 𝑇𝑃𝑟𝑜𝑗𝑒𝑐𝑡𝑜𝑟𝐶𝑎𝑚𝑒𝑟𝑎 remains the same 

and has to be computed.  

 

So writing this equation for every of the 40 poses we can compute the Jacobian and optimize with the 

gradient descendent method for getting the solution.  



 

6.2. FIRST EXPERIMENT – CAMERA TO PROJECTOR CALIBRATION 
As a first experiment we took 50 poses 𝑇𝐶𝑎𝑚𝑒𝑟𝑎𝑀𝑎𝑟𝑘𝑒𝑟  estimated with the Natural Features Tracking 

(Look3D - https://github.com/sgabello1/Look3DROS ) while projecting the central point, (0,0) point in 

projector space, from the projector on a chess board attached on the lab wall. 

For every 𝑇𝐶𝑎𝑚𝑒𝑟𝑎𝑀𝑎𝑟𝑘𝑒𝑟  pose we tried to hit with the projected point one corner of the chess board for 

achieving a precise measure of the 3D point projected, since we know the exact dimension of the chess 

board. 

 Then we optimized with gradient descendent. We initialize the first guess of the optimization with the 

manual calibration result. 

We organize the vector of unknowns as: 

 

𝑥 =  

[
 
 
 
 
 

𝑌𝑎𝑤
𝑃𝑖𝑡𝑐ℎ
𝑅𝑜𝑙𝑙

𝑇𝑟𝑎𝑛𝑠𝑙𝑎𝑡𝑖𝑜𝑛𝑜𝑣𝑒𝑟𝑋

𝑇𝑟𝑎𝑛𝑠𝑙𝑎𝑡𝑖𝑜𝑛𝑜𝑣𝑒𝑟𝑌

𝑇𝑟𝑎𝑛𝑠𝑙𝑎𝑡𝑖𝑜𝑛𝑜𝑣𝑒𝑟𝑍]
 
 
 
 
 

 

 

and the initial guess taken from the manual calibration was: 

 

𝑥0  =  [−90.0;  2.5; −9.8;  0.04;  0.02;  0]; 

 

Angles roll, pitch and yaw are in degrees and translations in meters. 

 

So apply the optimization with 20 iterations, computing the Jacobian with a step of 10^-17 stopping the 

optimization with an error smaller than 10^-4 we got: 

 

𝑥 =  [ −90,   2.8722,    − 9.8748 ,      0.0127,     0.0127,   − 0.0175]; 

 

At the end of the optimization we can say that, although it was quite difficult to take those 50 poses and 

measuring correctly the projected 3D points, the result was quite satisfactory. The main problem we 

encountered was that the magnitude of our measurement was really close to the magnitude of the noise 

so it was quite hard to optimize. Then looking at the angles values after the optimization result we can say 

that they are not changed too much from the initial guess  so that probably means that somehow the 

initial guess was quite precise. A completely different behavior we can notice in the translation 

https://github.com/sgabello1/Look3DROS


 

parameters that, although they should be easier to measure, they wasn’t  and  especially the Z coordinate 

was not very precise probably because it was quite hard to understand where the exact plan of reflection 

of the laser mirror was. That is again due to the fact that our laser projector is a very particular  one.  



 

6.3. SECOND EXPERIMENT – DRONE TO PROJECTOR CALIBRATION 

(OPTITRACK) 
In this second experiment we wanted to calibrate not anymore the projector according to the camera but 

to the drone frame. That because in the previous experiments (Chapter 5) we had many delays with the 

camera tracking and we wanted to test the flying projector at the best of its performances. Therefore we 

do the same transformation chain, but this time is from the drone frame instead of the camera frame. So 

our equations substantially remain the same but we only change the name of the transformations, in 

particular we have: 

𝑇𝑐𝑎𝑚𝑒𝑟𝑎 = 𝑇𝑑𝑟𝑜𝑛𝑒  

 

𝑇𝑚𝑎𝑟𝑘𝑒𝑟 =  𝑇𝑤𝑜𝑟𝑙𝑑  

 

𝑇𝑝𝑟𝑜𝑗𝑒𝑐𝑡𝑜𝑟 =  𝑇𝑝𝑟𝑜𝑗𝑒𝑐𝑡𝑜𝑟  

 

Then we have another important improvement that we measure these poses and the 3D points with 

Optitrack just putting some AR markers where we want to get the measure, getting a very precise 

measure. 

The transformation chain so will be: 

 

𝑃𝑑𝑟𝑜𝑛𝑒 = 𝑇𝐷𝑟𝑜𝑛𝑒𝑃𝑟𝑜𝑗𝑒𝑐𝑡𝑜𝑟 ∗ 𝑃𝑝𝑟𝑜𝑗𝑒𝑐𝑡𝑜𝑟  

 



 

 

 

FIGURE 44 TRANSFORMATION CHAIN 

 

Where  𝑃𝑑𝑟𝑜𝑛𝑒  and 𝑃𝑝𝑟𝑜𝑗𝑒𝑐𝑡𝑜𝑟  are the points respectively in drone space and projector space. Then the 

transformation remain the same as depicted in the previous picture. 

Then as in the previous experiment we optimized starting with the first initial guess with the manual 

calibration. 

 

𝑥0  =  [−1.776;  −16.226;  0.0; −0.003164 ;  0.0368970;   0.02080] 

 

Then optimizing with 13 steps we stop with an error of 10^-7 and a step of 2*10^-8 for computing the 

Jacobian we got the result: 

 

𝑥 =  [ −1.8039, −16.2260, 0.0105, −0.0032, 0.0369, 0.0208 ] 

 

We report in the following the decreasing error during the optimization. 

 



 

 

  

FIGURE 45 CALIBRATION RESULT 

  



 

6.4. CONCLUSION AND DISCUSSION 
In this chapter there is a proposed way to calibrate the laser projector according to the camera and the 

drone frame exploiting in this case Optitrack tracking system. As the experiments demonstrates we can 

assume the result from this calibration could be satisfactory. 

It has to be noticed that we wrote the problem with non-linear equations that  is actually harder than 

writing the problem with linear equations since an optimization is necessary and the final result is only 

estimated while is not computed exactly like in the linear case. That is due to the fact that our first 

attempt was to write the problem with linear equations, so having as unknowns 9 rotations parameters 

and 3 translations: 

 

𝑥𝑝𝑎𝑟𝑎𝑚 = [𝑟𝑝𝑐11, 𝑟𝑝𝑐12, 𝑟𝑝𝑐13, 𝑟𝑝𝑐21, 𝑟𝑝𝑐22, 𝑟𝑝𝑐23, 𝑟𝑝𝑐31, 𝑟𝑝𝑐32, 𝑟𝑝𝑐33, 𝑡𝑝𝑐1, 𝑡𝑝𝑐2, 𝑡𝑝𝑐3 ]𝑇 

 

Then writing the problem as before: 

 

 

(

𝑋𝑝𝑟𝑜𝑗𝑒𝑐𝑡𝑜𝑟

𝑌𝑝𝑟𝑜𝑗𝑒𝑐𝑡𝑜𝑟

𝑍𝑝𝑟𝑜𝑗𝑒𝑐𝑡𝑜𝑟

1

) =  (

𝑟𝑝𝑐11 𝑟𝑝𝑐12 𝑟𝑝𝑐13
𝑟𝑝𝑐21 𝑟𝑝𝑐22 𝑟𝑝𝑐23
𝑟𝑝𝑐31 𝑟𝑝𝑐32 𝑟𝑝𝑐33

0 0 0

|

𝑡𝑝𝑐1
𝑡𝑝𝑐2
𝑡𝑝𝑐3

1

)(

𝑟𝑐𝑚11 𝑟𝑐𝑚12 𝑟𝑐𝑚13
𝑟𝑐𝑚21 𝑟𝑐𝑚22 𝑟𝑐𝑚23
𝑟𝑐𝑚31 𝑟𝑐𝑚32 𝑟𝑐𝑚33

0 0 0

|

𝑡𝑐𝑚1
𝑡𝑐𝑚2
𝑡𝑐𝑚3

1

)(

𝑋𝑚𝑎𝑟𝑘𝑒𝑟

𝑌𝑚𝑎𝑟𝑘𝑒𝑟

𝑍𝑚𝑎𝑟𝑘𝑒𝑟

1

) 

 

But this time re-writing the equations in order to extract the 12 unknowns, taking into account that we 

are again back projecting the (0,0) central point of the laser projector so 𝑋𝑝𝑟𝑜𝑗𝑒𝑐𝑡𝑜𝑟 = 𝑌𝑝𝑟𝑜𝑗𝑒𝑐𝑡𝑜𝑟 = 0 : 

 

 

0 =  𝐴 ∗  [𝑟𝑝𝑐11, 𝑟𝑝𝑐12, 𝑟𝑝𝑐13, 𝑟𝑝𝑐21, 𝑟𝑝𝑐22, 𝑟𝑝𝑐23, 𝑟𝑝𝑐31, 𝑟𝑝𝑐32, 𝑟𝑝𝑐33, 𝑡𝑝𝑐1, 𝑡𝑝𝑐2, 𝑡𝑝𝑐3 ]𝑇 

 

Where matrix A is computed re-arranging the previous equations. Writing in this way the equations we 

have that for every point we have 2 equations. Therefore for solving the system we need at least 6 points. 

 

  



 

Then to better understand why this approach doesn’t work in our case we need to write the equations for 

one point. We would get something similar to: 

 

 

[
 
 
 
 
 
 
 
 
 
 
 

−𝑋𝑚𝑎𝑟𝑘𝑒𝑟

−𝑌𝑚𝑎𝑟𝑘𝑒𝑟

−𝑍𝑚𝑎𝑟𝑘𝑒𝑟

−1
0
0
0
0

 𝑋𝑝𝑟𝑜𝑗𝑒𝑐𝑡𝑜𝑟 ∗ 𝑋𝑚𝑎𝑟𝑘𝑒𝑟

𝑋𝑝𝑟𝑜𝑗𝑒𝑐𝑡𝑜𝑟 ∗ 𝑌𝑚𝑎𝑟𝑘𝑒𝑟

𝑋𝑝𝑟𝑜𝑗𝑒𝑐𝑡𝑜𝑟 ∗ 𝑍𝑚𝑎𝑟𝑘𝑒𝑟

𝑋𝑝𝑟𝑜𝑗𝑒𝑐𝑡𝑜𝑟

0
0
0
0

−𝑋𝑚𝑎𝑟𝑘𝑒𝑟

−𝑌𝑚𝑎𝑟𝑘𝑒𝑟

−𝑍𝑚𝑎𝑟𝑘𝑒𝑟

−1
𝑌𝑝𝑟𝑜𝑗𝑒𝑐𝑡𝑜𝑟 ∗ 𝑋𝑚𝑎𝑟𝑘𝑒𝑟

𝑌𝑝𝑟𝑜𝑗𝑒𝑐𝑡𝑜𝑟 ∗ 𝑌𝑚𝑎𝑟𝑘𝑒𝑟

𝑌𝑝𝑟𝑜𝑗𝑒𝑐𝑡𝑜𝑟 ∗ 𝑍𝑚𝑎𝑟𝑘𝑒𝑟

𝑌𝑝𝑟𝑜𝑗𝑒𝑐𝑡𝑜𝑟 ]
 
 
 
 
 
 
 
 
 
 
 
𝑇

∗ 𝑥𝑝𝑎𝑟𝑎𝑚 = 0 

 

So written in this form is clear that if we are projecting the (0,0) point from the projector it means that 

𝑋𝑝𝑟𝑜𝑗𝑒𝑐𝑡𝑜𝑟 = 𝑌𝑝𝑟𝑜𝑗𝑒𝑐𝑡𝑜𝑟 = 0 that makes the previous equation appear like:  

 

[
 
 
 
 
 
 
 
 
 
 
 
−𝑋𝑚𝑎𝑟𝑘𝑒𝑟

−𝑌𝑚𝑎𝑟𝑘𝑒𝑟

−𝑍𝑚𝑎𝑟𝑘𝑒𝑟

−1
0
0
0
0
0
0
0
0

0
0
0
0

−𝑋𝑚𝑎𝑟𝑘𝑒𝑟

−𝑌𝑚𝑎𝑟𝑘𝑒𝑟

−𝑍𝑚𝑎𝑟𝑘𝑒𝑟

−1
0
0
0
0 ]

 
 
 
 
 
 
 
 
 
 
 
𝑇

∗ 𝑥𝑝𝑎𝑟𝑎𝑚 = 0 

 

Therefore the system becomes non solvable since we lose the information of 4 parameters for every 

equation.  



 

CONCLUSION AND DISCUSSION 
In this thesis are presented different ways of interaction thought the explanation of practical projects. The 

order of the chapters represents the historical order of the projects in which I was involved during my 

PhD. In the first chapter there is the state of the art of Human to Drone interaction. Starting from the 

definition of UAV, then the current HMI interfaces and most recent advancements in interaction 

techniques with drones. 

 In the second a brief explanation of the cloud robotics architecture and the main functionalities. In the 

third chapter the project Fly For Smart City, where is the vision of a smart city surveilled by drones and 

internet services in the cloud robotics platform. In this project there is also the innovation of exploiting 

Open Data accessible from the Internet for managing the mission of a drone. In the fourth chapter the 

extension of Fly For Smart Coty project with a sliding autonomy approach and the definition of different 

degrees of autonomy. In the fifth chapter the UFO project, where state of the art Spatial Augmented 

Reality technologies are applied to UAVs for augmenting the surrounding environment with information. 

The last chapter is the technical solution to a problem that came out in the previous chapter about 

camera to projector calibration. This last project was in collaboration with the Institute of Computer 

Graphics of the Technical University of Graz and is currently an on-going project (in the picture below the 

next improvement as a flying teaching assistant that projects information to a student). 

 

 

FIGURE 46 FLYING TEACHING ASSISTANT 

 

 

 



 

 

APPENDIX  

  



 

FLY 4SMARTCITY PLATFORM MESSAGES 

MISSION PLANNER MESSAGES SET 
 

LISTING 1: ACTION.MSG 

 

string name 

int8 DEVICE = 0 

int8 FEEDBACK = 1 

int8 CHECK = 2 

int8 UNICAST_NOTIFY = 3 

int8 MULTICAST_NOTIFY = 4 

int8 BROADCAST_NOTIFY = 5 

# enumerate above 

int8 type 

# filled only in case of DeviceAction and Feedback 

string action_name 

# filled only in case of DeviceAction and Feedback 

Parameter[] parameters 

# filled only in case of Notify (any kind) or CheckNotification 

string slot_name 

# filled only in case of MulticastNotify or UnicastNotify 

string[] receivers_name 

 

LISTING 2: BOOL.MSG 

 

Bool data 

 

LISTING 3: COORDINATE.MSG 



 

 

float64 latitude 

float64 longitude 

float64 altitude 

float64 heading 

 

LISTING 4: COORDINATEARRAY.MSG 

 

Coordinate[] waypoint 

 

  



 

 

 

LISTING 5: DRONE.MSG 

 

Header header 

string name 

string type_name 

Coordinate home 

Move[] movements 

string[] slot_names 

uint8 SAFE=0 

uint8 NORMAL=1 

uint8 AGGRESSIVE=2 

uint8 travel_mode 

 

Listing 6: ListString.msg 

 

std_msgs/String[] list 

 

Listing 7: Move.msg 

 

string name 

uint8 START=0 

uint8 STOP=1 

uint8 TAKE_OFF=2 

uint8 LAND=3 

uint8 GO_TO=4 

uint8 HOVER=5 



 

uint8 CIRCLE=6 

uint8 HEAD_TO=7 

#enumerated above 

uint8 type 

Action[] pre_actions 

Action[] post_actions 

#filled only in case of TakeOff and Circle moves 

float64 altitude 

#filled only in case of Goto or Circle move 

Coordinate target_position 

uint8 DIRECT=0 

uint8 HORIZONTAL_FIRST=1 

uint8 VERTICAL_FIRST=2 

#enumerated above, filled only in case of GoTo move 

uint8 strategy 

#filled only in case of Hover or Circle moves 

duration duration 

#following parameters are filled only in case Circle move 

float64 radius 

bool clockwise 

#filled only in case of HeadTo move 

float64 direction 

 

Listing 8: Parameter.msg 

 

string key 

string value 

 

Listing 9: SensorPacket.msg 



 

 

# GPS_current_position 

float64 c_longit 

float64 c_latit 

int32 c_altit 

# GPS_home_position 

float64 h_longit 

float64 h_latit 

int32 h_altit 

# GPS_target_position 

float64 t_longit 

float64 t_latit 

int32 t_altit 

# Flight_status 

uint8 current_wayp 

uint8 tot_wayp 

int16 altimeter 

 

OPEN DATA MESSAGES SET 
 

Listing 10: Coordinates.msg 

 

float64 x 

float64 y 

float64 z 

 

 

Listing 11: Data.msg 

 



 

Status status 

Open_data[] data 

 

  



 

 

Listing 12: OpenData.msg 

 

int8 TYPE_STATIC=0 

uint8 TYPE_DYNAMIC=1 

uint8 type 

string label 

Parameter[] attributes 

geometry_msgs/Polygon area 

 

Listing 13: Parameters.msg 

 

string key 

string value 

 

Listing 14: Polygon.msg 

 

Coordinate[] vertex 

 

Listing 15: Status.msg 

 

int8 status_code 

string reason 

 

 

 

 

  



 

UFO – BASIC SYSTEM OVERVIEW 

 

 

 

 

 

  



 

 

 

MAV SETUP 
 

 

ARDRONE 2.0 FRAME 
 

The ARDrone 2.0 Frame is used as a weight optimized frame in combination with the 

PX4 platform. For full PX4 platform setup the PX4FMU and the PX4IOAR (don’t 

interchange with PX4IO) board are required. 

Assembly instructions about the PX4IOAR in combination with the ARDrone 2.0 frame 

can be found at: https://pixhawk.org/platforms/multicopters/ar_drone 

The parts list isn’t up to date any more so take a look at Chapter 5 “Ordering List”. 

 

PX4IOAR 

 

The PX4IOAR board (https://pixhawk.org/modules/px4ioar) is the IO board for making the PX4FMU work 

on the AR Drone 2.0 frame. Don’t mix it up with the common PX4IO board which is a general IO board for 

small sized aerial vehicles. The AR Drone frame isn’t compatible with the PX4IO because internal logics of 

the IO board can not be adapted easily. 

 

Connection Mapping 

In the following an overview of the PX4IOAR’s most important connections is shown: 

UART 5 (front connector - 4 pins): PX4FLOW 

UART 1 (2 front rows connectors - 4 pins needed): Xbee or Lairdtech module (pin slots for easy 

insertion/removal of the Xbee are not included in the PX4IOAR kit!) 

MOTOR TX (side connector - 12pins): motor TX plug from AR Drone 2.0 frame 

 

The following figure shows the current drone configuration with PX4IOAR and PX4FMU attached to the AR 

Drone 2.0 frame. 

 

https://pixhawk.org/platforms/multicopters/ar_drone
https://pixhawk.org/platforms/multicopters/ar_drone
https://pixhawk.org/modules/px4ioar


 

 

PX4FMU 
 

The PX4FMU is attached to the PX4IOAR, includes the Flight Controller and communicates with the 

remote control. Controlling the PX4 Flight platform without appropriate Transmitter is possible but 

strongly not recommended for safety reasons! 

 

 

 

Setup Steps: 

- Remove SD Card 

- Attach the PX4FMU to the fully assambled AR Drone 2.0 frame + PX4IOAR combination 

- Download and setup QGroundcontrol - Setup, Firmware Flash, etc. is recommeded to be done in 

Windows 7/10 because UART communication seemed to work more flawlessly! Although setting 

parameters and configuration of the PX4FMU afterwards was also successfully tested in Ubuntu 

14.04.02LTS without serious problems: 

- Download QGroundcontrol stable version from: 

http://qgroundcontrol.org/downloads 

- Download and install the PX4 Driver also listed on this page. 

- Use the USB Cable to connect the PX4 based AR Drone 2.0 (you don’t need power 

supply for the PX4IOAR and it has not to be switched on!) 

- After drivers are installed successfully install QGRoundcontrol 

- Start QGroundcontrol, check for valid COM port and connect to the PX4FMU 

- First important thing to do is CHOOSE the CORRECT FRAME (AR Drone frame in 

Menue “Config” → “Airframe Config” → “Quadrotor X” → AR Drone 2.0 Frame 

http://qgroundcontrol.org/downloads
http://qgroundcontrol.org/downloads


 

 

- Then navigate to Firmware upgrade, disconnect Connection from the PX4FMU and 

remove the USB cable. 

- Select stable firmware branch and follow the recommended steps to do firmware 

upgrade. 

- After successfull firmware upgrade restart the FMU by disconnecting from QGroundcontrol and 

removing/plugging in the USB cable. During this step, before again connecting the USB cable, also 

the SD and battery pack or power supply can be attached. Connect a battery or power supply 

with the proper voltage and power specifications (11.1V). 

- For detailled purpose of the SD card like placing configuration files and evaluating logs please 

also refer to: https://pixhawk.org/dev/system_startup 

- The PX4IOAR board can now be switched on with the ON/OFF switch. 

- After the FMU fired up successfully (you should hear a melodic sound followed by by test shaking 

of all 4 propellers) you want to continue with Sensor Calibration.  

- Navigate to “Config” → “Sensor Calibration” 

- Execute step by step calibration of the single sensor groups in the following order: 

- Gyroscope Calibration 

- Accalerometer Calibration 

- Compass Calibration 

- DURING ACCALEROMETER CALIBRATION WATCH OUT FOR PLANE SURFACES. The 3D 

view of the aerial vehicle might not change and tell you the individual steps necessary 

but all 6 planes have to be covered to achieve successfull calibration. Rest positions are 

autodetected and every successfull calib. step is confirmed with a short beep sound. 

After fully completed a short melody is played. You could also check calibration by 

inspecting the HUD in QGroundcontrol when connected to the PX4FMU. 

- If all sensor calibration steps were completed successfully, you may want to continue with TX/RX 

setup which is given in Chapter 2. 

 

Parameters Tuned via QGroundcontrol: 

https://pixhawk.org/dev/system_startup
https://pixhawk.org/dev/system_startup


 

- INAV: 

- INAV_W_Z_BARO = 0 

 

1.4 GPS Module and Compass 

 

The PX4 platform is capable of fusing GPS data for outdoor navigation. Details on the 

3DR uBlox LEA-6H module can be found at: https://pixhawk.org/peripherals/sensors/gps 

 

The GPS module should be connected directly to the PX4FMU controller rather than to 

the PX4IOAR. The proposed interface is UART 6 (ttyS5). 

 

Configuration of the GPS module is done by the following steps: 

 

- Rotate the GPS module so that the arrow “FRONT” points to the front 

- Mount the module on top of the Pixhawk FMU 

- Put some spacing between FMU and GPS module (ideally, 

a GPS mast) 

- I just glued a wooden block on top of the FMU and put the 

module on top of the block 

- Connect the GPS connector of the GPS module with the FMU ( use the 

plug at the left-back of the FMU, the only one that fits) 

- Remove the magnetometer cable, you won’t need this 

- Now the MAV is ready to fly! 

- To enable GPS control during flight (for my RC configuration):  

- Start in maunal mode (switch on the left-top (channel 7) of 

the RC pushed away) 

- Change switch on left-top to middle position 

(altitude/position control mode) 

- Pull switch on right top (channel 5) to switch from altitude 

control to position control 

 

 

1.5 PX4FLOW 

 

The PX4FLOW Sensor is capable of estimating altitude by ultra sonic sensor and 

velocity over ground in x -and y direction. The PX4FLOW’s camera should be properly 

focused before use. Experiments showed that velocity estimations strongly depend on 

lightning conditions. In outdoor environments on properly textured surfaces the estimates 

https://pixhawk.org/peripherals/sensors/gps
https://pixhawk.org/peripherals/sensors/gps


 

are quite acceptable. Indoors without proper light sources the estimates are 

unacceptable even if enhanced “low lighting conditions” mode is enabled. 

 

1.6 XBee Communication 

 

The Xbee Module (recommended one is the S2B Pro with 63mW power and wired 

antenna) is used for sending/receiving low bandwidth data with very low latency. The 

communication interface basically consists out of one groundstation-attached module 

(which is attached via USB Explorer Board to the groundstation PC) and one or multiple 

MAV attached modules. For detailed setup of the modules please refer to: 

https://pixhawk.org/peripherals/radio-modems/xbee 

 

It is important to mention that in terms of 2 way communication (sending and receiving) 

the bandwidth should be set to 57600Byte/s max. Otherwise communication may get 

unreliable. A good alternative with larger bandwidth may be the Lairdtech Mdoules but 

haven’t been tested yet (also refer to http://www.mouser.at/new/lairdtechnologies/laird-

RM024/). 

 

1.7 Companion Computer 

 

The companion computer currently in use is the ODROID XU3 from Hardkernel 

(http://www.hardkernel.com/main/products/prdt_info.php?g_code=G140448267127) 

which can be used to communicate to the PX4FMU via its serial port. It is also 

connected to the Groundstation via WiFi Stick. 

 

  

https://pixhawk.org/peripherals/radio-modems/xbee
https://pixhawk.org/peripherals/radio-modems/xbee
http://www.mouser.at/new/lairdtechnologies/laird-RM024/
http://www.mouser.at/new/lairdtechnologies/laird-RM024/
http://www.hardkernel.com/main/products/prdt_info.php?g_code=G140448267127


 

The current setup of the Companion computer includes: 

- WiFi Nano Stick Netgear WN1000 (working out of the box) 

- Optional: DLink DWA171 Wifi Nano Stick (not compatibel with 14.04LTS Kernel 

yet) 

- Up to two BlueFox Cameras rgb/grey-scle MLC202b from MatrixVision 

- SanDisk SD-Card  

- DC Regulator for DC conversion including Cooling: either the … or the SMO DC-

DC Converter http://www.amazon.de/SMO-Konverter-Step-Regulator-

Netzteil/dp/B00RWZ2XTW/ref=sr_1_4?ie=UTF8&qid=1426502009&sr=8-

4&keywords=smo+dc-dc+konverter 

-  

 

Basic setup steps: 

- The ODROID XU3 needs 5V power supply with up to 4A current so battery 

supply voltage of the PX4IOAR has to be stepped down by DC/DC conversion. 

Because of the quite high power dissipation of the DC/DC converter the cooling 

policy should be changed after  (INSERT LINK TO SCRIPT HERE) startup. The 

DCDC converter should be placed near the active cooler of the XU3. 

- For OS installation, there are preconfigured LUbuntu 14.04LTS images which 

can be found at: http://www.odroid.in/ubuntu_14.04lts/ 

- The image has to be written to the SD-card and has to be inserted in the proper 

slot before startup. Recommended minimum size is 32GByte and transfer rates 

should be as high as possible. Currently the use of EMMC Modules is evaluated. 

- After installing the LUbuntu Image ROS Indigo Full Desktop can be installed on 

the Odroid XU3. 

- Install additional packages as necessary 

 

Setting up camera interface, e.g. for PTAM: 

- Install Kumar Bluefox package (driver + important packages already included!) 

- Look for camera hardware ID and try interfacing it via image_viewer package, ID 

has to be given in the launch file 

- Use wxPropTool to setup and basically calibrate camera 

- Use boost command (boost:=true) to achieve higher framerates 

- Calibrate the camera using the PTAM calibration tool 

- Start PTAM 

 

Imprtant notes on the USB Ports: 

- The Odroid has 2 USB 2.0 Controllers per definition, but 1 is already 

used for the Ethernet Interface! So all the 4 USB Connectors on the side where 

also the Ethernet plug is located share one USB 2.0 Controller! 

- The Odroid XU3 has 1 USB 3.0 Root Hub (according to the “lsusb --

tree” command) however the overall bandwidth for the common USB 3.0 port and 

the OTG port is limited to 100MByte/s. 

http://www.amazon.de/SMO-Konverter-Step-Regulator-Netzteil/dp/B00RWZ2XTW/ref=sr_1_4?ie=UTF8&qid=1426502009&sr=8-4&keywords=smo+dc-dc+konverter
http://www.amazon.de/SMO-Konverter-Step-Regulator-Netzteil/dp/B00RWZ2XTW/ref=sr_1_4?ie=UTF8&qid=1426502009&sr=8-4&keywords=smo+dc-dc+konverter
http://www.amazon.de/SMO-Konverter-Step-Regulator-Netzteil/dp/B00RWZ2XTW/ref=sr_1_4?ie=UTF8&qid=1426502009&sr=8-4&keywords=smo+dc-dc+konverter
http://www.amazon.de/SMO-Konverter-Step-Regulator-Netzteil/dp/B00RWZ2XTW/ref=sr_1_4?ie=UTF8&qid=1426502009&sr=8-4&keywords=smo+dc-dc+konverter
http://www.amazon.de/SMO-Konverter-Step-Regulator-Netzteil/dp/B00RWZ2XTW/ref=sr_1_4?ie=UTF8&qid=1426502009&sr=8-4&keywords=smo+dc-dc+konverter
http://www.odroid.in/ubuntu_14.04lts/
http://www.odroid.in/ubuntu_14.04lts/


 

- Plug on/off devices to get an idea how they are attached/configured by 

checking all devices listed in the system: “dmesg” 

  



 

2. Remote Control/Receiver Setup 

 

The Remote Control and Receiver setup recommended is the Robbe Futaba T7C Tx 

and the R6007SP Rx. The R6007SP directly outputs a PPM sum signal and linking to 

the RC, connection to the FMU and calibration/control work flawlessly. Besides the 

R6007SP weighs 3g only. 

 

2.1 Linking the R6007SP to the T7C Transmitter 

- Attach the R6007SP to the PX4IOAR (standard Robbe Futabe connectors can be 

use, watch out for proper pin connection) 

- Turn on T7C Transmitter 

- Place it near the R6007SP 

- Hold the easy link button BEFORE switching on power supply at the PX4IOAR 

- Switch on power 

- Wait 2-3 sec until the R6007SP’s LED stops flashing red but turns green 

- If the LED turns green the R6007SP Receiver is properly linked to the T7C 

Transmitter 

 

2.2 Radio Calibration 

- Switch on the PX4IOAR and wait until FMU is ready 

- Switch on remote control and wait until the receiver’s LED turns green 

- Connect the USB calbe to the PC with QGroundcontrol 

- Start QGroundcontrol and go To “Config” → “Radio Calibration” 

- Follow the steps and use recommended mapping of switches: 

- MODE SWITCH → CH7 

- POSITION CONTROL SWITCH → CH6 

- OFFBOARD SWITCH → CH5 

 



 

 

 

It is mentionable that also if velocity control mode is used in OFFBOARD mode, then the 

POS CONTROL SWITCH should be left in ENABLED position. To enable offboard mode 

in general no other control mode has to be necessarily enabled! Streaming valid 

waypoints has to be done at a recommended rate of at least 2Hz (4Hz preferable). 

 

3. ART Tracking System & Flying Arena 

 

The ART Tracking system is capable of tracking one or multiple objects in 3D space 

using reflective markers. Per object orientation and position (6DOF) can be measured 

with sub-mm accuracy depending on the Cameras Lenses and calibration. The 

maximum tracking rate is up to 60Hz. 



 

3.1 Current Setup 

The Dronespace provides a theoretical flying space of about 4x5x3m with an effective tracking 

space of about 3x4x2.25m. Currently we use 4 ARTrack 2 Cameras which are mounted in each 

Corner of the Dronespace (hanging position). With 37.5° angle looking down from above and 45° 

turned into the Dronespaces plane area. The ARTrack 2 cameras are equipped with wide FOV 

lenses which means (88°x58° HxV FOV and 4.5m distance → also refer to http://www.ar-

tracking.com/products/discontinued/arttrack2/). The remaining ARTrack 3 Cameras 

which are not used at the moment have a small FOV with 52°x35° FOV and 7m 

distance. 

 

 

 

 

3.2 DTrack 1 Software & VRPN Server Setup 

 

The DTrack 1 application (DTrack.exe can be found at the Desktop) is necessary to 

communicate with the ART Tracking cameras in realtime over Ethernet. Therefore a PCI 

synch card is necessary which must be connected in line with the cameras via BNC 

http://www.ar-tracking.com/products/discontinued/arttrack2/
http://www.ar-tracking.com/products/discontinued/arttrack2/


 

cables, including a termination resistor at the end. So each camera has a power 

connector (watch out for correct power supplies and don’t mix with ARTrack 3 supplies!), 

a synch cable connector (BNC) and a ethernet patch cable connector for data transfer. 

The DTRack 1 is used for the following setup steps which also should be executed in the 

following order: 

- Setting up the camera parameters properly (amount, orientation, Tracking rate, 

Intensity, ...) 

- Aiming the cameras: Use Monitor tool to center the view of cameras as 

necessary (green, yellow and red markers show quality of tracking!) 

- Calibration of the Room (Raindance): Two markers are needed, the coordinate 

system and the 420mm T marker 

- Calibration of object(s): Place the object at zero position and do raindance with 

the object (no coordinate system maker is needed) 

- It is mentionable that at least 2 cameras have to “see” the object to not loose 

tracking. If tracking is lost once, it can take quite a long time to recover!). This is 

also valid for calibration. Always put the coordinate marker so that at least 2 

cameras can see it. 

 

The VRPN Server is a middleware which communicates with the DTrack software on 

one hand (the DTrack software just broadcasts tracking data in string format into the 

172.28.x.x network!) and any VRPN client based application on the other hand. Mutliple 

trackers/tracking data can be extracted via VRPN. For detailed information about VRPN 

refer to: 

http://www.cs.unc.edu/Research/vrpn/ 

or geeks refer to: 

http://www.vrgeeks.org/vrpn 

Current version which is used and already properly setup and working is the 7.30 

version. It is also strongly recommended on client side so that no compatibility issues 

occur. 

 

 

3.3 Network Setup 

 

Basically the setup can be divided into two main networks: 

- The ART Tracking network plus the Groundstation/MAV network which is located 

in the 172.28.x.x network (subnet address is 255.255.0.0). 

- The network to provide internal access to the groundstation or guests in the 

Dronespace. It is located in the 192.168.0.x network (subnet address is 

http://www.cs.unc.edu/Research/vrpn/
http://www.cs.unc.edu/Research/vrpn/
http://www.vrgeeks.org/vrpn
http://www.vrgeeks.org/vrpn


 

255.255.255.0). To access via WiFi connect to the DLINK DIR655 network, setup 

IP config properly. Password is thereby _SHADOWAR12! 

 

ARTTracking network: 

- DTRack 1/VRPN Server: 172.28.0.1 - 255.255.0.0 

- Groundsation Server: 172.28.0.2 - 255.255.0.0 

- ASUS AC68RT Wireless Router: 172.28.0.3 - 255.255.0.0 

- Handheld client for VRVU: 172.28.0.10 - 255.255.0.0 

 

Network for internet access: 

- Router is the DLink DIR655: 192.168.0.1 - 255.255.255.0 

- Groundsation: 192.168.0.2 - 255.255.255.0 

- UFO Project Laptop: 192.168.0.3 - 255.255.255.0 

 

 

 

4. Groundstation Setup 

 

Basically the Groundstation is setup with Ubuntu 14.04LTS (64Bit) whereby the following 

components were installed: 

- ROS Indigo Full Desktop 

- QT Creator 

- OpenCV 2.4.10 

- VRPN 7.30 

- NTPD Service 

 



 

Based on the ROS the following architecture is used to control the PX4 based drone 

offboards: 

  



 

4.1 ROS Setup 

 

The nodes of the pixhawk control setup are configured as shown in the following figure: 

 

 

Considering the rates of the topics, the following image gives an overview: 

 

Basically the ART Tracking Software and the VRPN Server run on a Windows XP SP3 

machine which is attached to the 172.28.x.x network. The tracking info is also 

broadcasted into the 172.28.x.x network so any client which has to access tracking data 

via VRPN can connect either via Wireless network of the AC68RT or directly connect to 

the Router via network cable. 

 



 

 

  



 

4.4 Coordinate Frames 

 

Orientation overview of droneSpace: 

 

4.4.1 Groundframes 

 

 

  



 

4.4.2 Bodyframes 

  



 

4.4.3 Dronespace ROS Messages 

 

Message containing IMU data which is received from the PX4FMU: 

/mavros/imu/data  → orientation of F_B_ENU with respect to F_GF_ENU 

 

 

Message which is containing actual orientation/position of the MAV measured by the 

PX4FMU: 

/mavros/position/local → orientation of F_B_ENU with respect to F_GF_ENU 

     translation of F_B_ENU with respect to F_GF_TETNU 

 

 

Message to forward the feedback data (ART Tracking, Vision SLAM etc.): 

/mavros/position/vision → orientation of F_B_ENU with respect to F_GF_ENU 

     translation of F_B_ENU with respect to F_GF_TETNU 

 

 

 

 

Message to send position target commands: 

/mavros/setpoint/local_position → orientation of F_B_NED with respect to 

F_GF_NED 

     translation of F_B_ENU with respect to F_B_TETNU 

 

 

Message to send position target commands but already “corrected” to the ART 

frame: 

/dronespace/setpoint/local_position → orientation of F_B_ENU with respect to F_ART 

     translation of F_B_ENU with respect to F_ART 



 

 

 

Messages to receive actual position of MAV but already “corrected” to the ART 

frame: 

/dronespace/position/local → orientation of F_B_ENU with respect to F_ART 

     translation of F_B_ENU with respect to F_ART 

/dronespace/position/art_corrected → orientation of F_B_ENU with respect to F_ART 

     translation of F_B_ENU with respect to F_ART 

 

 

 

4.5 Control Modes 

 

 

4.5.1 Manual mode (Arming) 

In manual mode the PX4FMU takes raw commands from the Tx (T7C) only. 

Although basic stabilization of Roll and pitch are achieved, to hold the MAV parallel 

to the ground. 

 

 

 

 

4.5.2 Altitude control 

In altitude control mode the PX4FMU either considers the estimates of the 

barometric pressure sensor, or if available estimates from the vision system to 

stabilize vertical position. Via Throttle commands of the TX it is possible to control 

the altitude and the MAV should stabilize itself in the targeted height. It is noticeable 

that in indoor environments the barometric pressure sensor is not suitable for altitude 

control because of serious drift over time. When testing Altitude control, by sending 

position tracking estimates to the FMU, the performance was quite fine. 

 



 

 

 

 

 

5. Ordering List 

 

For a detailed ordering list please refer to: 

https://docs.google.com/spreadsheets/d/1JgFE7KcxnEcFsMJFW3amYkZtSzkSPRpP5rB

3HOCRrks/edit?pli=1 

 

6. Weight Table 

 

For a weight overview of the components used please refer to: 

https://docs.google.com/spreadsheets/d/1OHTCkvnHNJgLWdz4S9PWDYAkK6c-

yXpbCcRbS0R5lhk/edit?usp=sharing 
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ARDUINO IMPLEMENTATION OF THE LASER DRIVER 
#include <Tone.h> 

 

//Laser through serial 

 

#include <ros.h> 

#include <stdio.h> 

#include <std_msgs/Int16.h> 

#include <std_msgs/Float32MultiArray.h> 

#include <std_msgs/String.h> 

#include <std_msgs/Float32.h> 

#include <SPI.h> 

 

// ROS stuff 

ros::NodeHandle nh; 

std_msgs::String str_msg; 

std_msgs::Float32 ack_msg; 

ros::Publisher chatter("acknowledgment", &ack_msg); 

//ros::Publisher chatter_verbose("acknowledgment_verbose", &str_msg); 

 

//Tone STUFF 

Tone tone1; 

 

//LASER stuff 

// set pin 10 as the slave select for the digital pot: 

const int slaveSelectPin = 10; 

const int sixtykHzPin = 4; 

const int HVenablePin = 2; 

unsigned int DAC_ZERO_LEVEL=32767; 



 

float MIRROR_INC_MAX_DEG=4.5; 

int datasize = 0;  

 

void messageCb( const std_msgs::Float32MultiArray& msg){ 

   

  datasize = msg.data[0]; 

  ack_msg.data = datasize; 

  chatter.publish( &ack_msg ); 

 

  

  if(msg.data[1] == 10 && msg.data[2] == 10){ //since 0 position is the size 

 

    WritePicoAmpXY(0,0); // put HVpin down 

    delay(10); 

     

     

    digitalWrite(HVenablePin,LOW); 

 

 

  } else 

    { 

   

   

  // LASER stuff 

   

 

  // ENABLE HIGH VOLTAGE! 

 

  digitalWrite(HVenablePin,HIGH); 



 

 

  delay(1); 

  // DRAW VECTOR STUFF 

 

  for(int i=1;i<datasize;i = i + 2) 

 

  { 

   // str_msg.data = "Start drawing"; 

   // chatter_verbose.publish( &str_msg ); 

 

 

    /*WritePicoAmpXY(msg.data[0],msg.data[1]); 

    delay(4); 

    WritePicoAmpXY(msg.data[2],msg.data[3]); 

    delay(4); 

    WritePicoAmpXY(msg.data[4],msg.data[5]); 

    delay(4); 

    WritePicoAmpXY(msg.data[6],msg.data[7]); 

    delay(4);*/ 

 

    //str_msg.data = "Finish draw"; 

    //chatter_verbose.publish( &str_msg ); 

 

    WritePicoAmpXY(msg.data[i],msg.data[i+1]); 

    ack_msg.data = msg.data[i]*100 + msg.data[i+1];//i; 

    chatter.publish( &ack_msg ); 

 

    delay(4); 

 



 

  } 

 

    } 

   

} 

 

ros::Subscriber<std_msgs::Float32MultiArray> sub("coordinates", &messageCb ); 

 

 

void setup() 

{ 

  //pinMode(9, OUTPUT); 

   

  nh.initNode(); 

  nh.subscribe(sub); 

  nh.advertise(chatter); 

  //nh.advertise(chatter_verbose); 

 

  digitalWrite(HVenablePin,LOW); 

  pinMode (HVenablePin, OUTPUT); 

  digitalWrite(HVenablePin,LOW); 

   

  // INITIALIZE SPI: 

  //pinMode (slaveSelectPin, OUTPUT); // set the slaveSelectPin as an output: 

  SPI.setBitOrder(MSBFIRST); // or MSBFIRST according to the AD5664R 

  SPI.setDataMode(SPI_MODE1); // SPI_MODE0 up to SPI_MODE3 see also 

http://en.wikipedia.org/wiki/Serial_Peripheral_Interface_Bus clocl polarity and phase 

  //SPI.setClockDivider(SPI_CLOCK_DIV64); // Uno runs at 16MHz which gives a SPI  clock of 1MHz 

  SPI.setClockDivider(SPI_CLOCK_DIV16); // Uno runs at 16MHz which gives a SPI  clock of 1MHz 



 

  SPI.begin(); 

  delay(100); 

   

//  Recommended register downloads for Pico Amp: 

//  2621441 Dec = 280001 Hex FULL RESET 

//  3670017 Dec = 380001 Hex ENABLE INTERNAL REFERENCE 

//  2097167 Dec = 20000F Hex ENABLE ALL DAC CHANNELS 

//  3145728 Dec = 300000 Hex ENABLE SOFTWARE LDAC 

  digitalAmpWrite(0x28,0x00,0x01); 

  delay(100); 

   

  digitalAmpWrite(0x38,0x00,0x01); 

  delay(100); 

   

//  digitalAmpWrite(0x20,0x00,0x08); //enable all dac channels 

//  delay(100); 

//  digitalAmpWrite(0x20,0x00,0x07); 

//  delay(100); 

  digitalAmpWrite(0x20,0x00,0x0F); //enable all dac channels 

  delay(100); 

 

 

  // Set all channels to 1.25V bias (direct write to DAC channel register) 

  digitalAmpWrite(0x1F,0x7F,0xFF);    

  delay(10000); 

   

  //digitalAmpWrite(0x30,0x00,0x0F); // Set LDAC mode 1111 

  // After DAC is enabled, send 32768 digital input to all four channels: 

  // 32768 DEZ = 0x8000 



 

  //Serial.begin(9600); 

 

  tone1.begin(8); 

  tone1.play(60000); 

} 

 

void loop() 

{ 

  //ROS stuff 

  nh.spinOnce(); 

  delay(1); 

   

} 

 

void WritePicoAmpXY(float x_deg, float y_deg) 

 

{ 

 

  unsigned int DAC_OUT_VALUE_X_PLUS=  DAC_ZERO_LEVEL; 

 

  unsigned int DAC_OUT_VALUE_X_MINUS= DAC_ZERO_LEVEL; 

 

  unsigned int DAC_OUT_VALUE_Y_PLUS=  DAC_ZERO_LEVEL; 

 

  unsigned int DAC_OUT_VALUE_Y_MINUS= DAC_ZERO_LEVEL; 

 

   

 

  if(fabs(x_deg)/MIRROR_INC_MAX_DEG <= 1.0) 



 

 

  { 

 

    DAC_OUT_VALUE_X_PLUS  =  DAC_ZERO_LEVEL + int(x_deg/MIRROR_INC_MAX_DEG*32767.0); 

 

    DAC_OUT_VALUE_X_MINUS =  DAC_ZERO_LEVEL - int(x_deg/MIRROR_INC_MAX_DEG*32767.0); 

 

   

 

    if(DAC_OUT_VALUE_X_PLUS < 65535 && DAC_OUT_VALUE_X_PLUS > 0 && 

DAC_OUT_VALUE_X_MINUS < 65535 && DAC_OUT_VALUE_X_MINUS > 0) 

 

    { 

 

      

digitalAmpWrite(0x18,Int16ToHighByte(DAC_OUT_VALUE_X_PLUS),Int16ToLowByte(DAC_OUT_VALUE_X

_PLUS)); 

 

      

digitalAmpWrite(0x19,Int16ToHighByte(DAC_OUT_VALUE_X_MINUS),Int16ToLowByte(DAC_OUT_VALUE_

X_MINUS)); 

 

    } 

 

  } 

 

   

 

  if(fabs(y_deg)/MIRROR_INC_MAX_DEG <= 1.0) 

 

  { 



 

 

    DAC_OUT_VALUE_Y_PLUS  =  DAC_ZERO_LEVEL + int(y_deg/MIRROR_INC_MAX_DEG*32767.0); 

 

    DAC_OUT_VALUE_Y_MINUS =  DAC_ZERO_LEVEL - int(y_deg/MIRROR_INC_MAX_DEG*32767.0); 

 

   

 

    if(DAC_OUT_VALUE_Y_PLUS < 65535 && DAC_OUT_VALUE_Y_PLUS > 0 && 

DAC_OUT_VALUE_Y_MINUS < 65535 && DAC_OUT_VALUE_Y_MINUS > 0) 

 

    { 

 

      

digitalAmpWrite(0x1A,Int16ToHighByte(DAC_OUT_VALUE_Y_PLUS),Int16ToLowByte(DAC_OUT_VALUE_Y

_PLUS)); 

 

      

digitalAmpWrite(0x1B,Int16ToHighByte(DAC_OUT_VALUE_Y_MINUS),Int16ToLowByte(DAC_OUT_VALUE_

Y_MINUS)); 

 

    } 

 

  } 

 

   

 

} 

 

byte Int16ToHighByte(unsigned int Integer16high) 

 

{ 



 

 

  unsigned int tmp_int=Integer16high >> 8; 

 

  byte tmp_highbyte=(byte)tmp_int; 

 

  return tmp_highbyte; 

 

} 

 

byte Int16ToLowByte(unsigned int Integer16low) 

 

{ 

 

  byte tmp_lowbyte=byte(Integer16low); 

 

  return tmp_lowbyte; 

 

} 

 

 

 

// SPI Write 24-Bit Command interface 

 

//==================================== 

 

void digitalAmpWrite(char byte2, char byte1, char byte0) 

 

{ 

 



 

  // take the SS pin low to select the chip: 

 

  digitalWrite(slaveSelectPin,LOW); 

 

  //  send in the address and value via SPI: 

 

  SPI.transfer(byte2); 

 

  SPI.transfer(byte1); 

 

  SPI.transfer(byte0); // Change order to fulfill MSB first convention 

 

  // take the SS pin high to de-select the chip: 

 

  digitalWrite(slaveSelectPin,HIGH);  

 

} 
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