560 research outputs found

    Firefly algorithm approach for rational bézier border reconstruction of skin lesions from macroscopic medical images

    Get PDF
    Image segmentation is a fundamental step for image processing of medical images. One of the most important tasks in this step is border reconstruction, which consists of constructing a border curve separating the organ or tissue of interest from the image background. This problem can be formulated as an optimization problem, where the border curve is computed through data fitting procedures from a collection of data points assumed to lie on the boundary of the object under analysis. However, standard mathematical optimization techniques do not provide satisfactory solutions to this problem. Some recent papers have applied evolutionary computation techniques to tackle this issue. Such works are only focused on the polynomial case, ignoring the more powerful (but also more difficult) case of rational curves. In this paper, we address this problem with rational BĂ©zier curves by applying the firefly algorithm, a popular bio-inspired swarm intelligence technique for optimization. Experimental results on medical images of melanomas show that this method performs well and can be successfully applied to this problem

    Texture and Colour in Image Analysis

    Get PDF
    Research in colour and texture has experienced major changes in the last few years. This book presents some recent advances in the field, specifically in the theory and applications of colour texture analysis. This volume also features benchmarks, comparative evaluations and reviews

    Intelligent optic disc segmentation using improved particle swarm optimization and evolving ensemble models

    Get PDF
    In this research, we propose Particle Swarm Optimization (PSO)-enhanced ensemble deep neural networks for optic disc (OD) segmentation using retinal images. An improved PSO algorithm with six search mechanisms to diversify the search process is introduced. It consists of an accelerated super-ellipse action, a refined super-ellipse operation, a modified PSO operation, a random leader-based search operation, an average leader-based search operation and a spherical random walk mechanism for swarm leader enhancement. Owing to the superior segmentation capabilities of Mask R-CNN, transfer learning with a PSO-based hyper-parameter identification method is employed to generate the fine-tuned segmenters for OD segmentation. Specifically, we optimize the learning parameters, which include the learning rate and momentum of the transfer learning process, using the proposed PSO algorithm. To overcome the bias of single networks, an ensemble segmentation model is constructed. It incorporates the results of distinctive base segmenters using a pixel-level majority voting mechanism to generate the final segmentation outcome. The proposed ensemble network is evaluated using the Messidor and Drions data sets and is found to significantly outperform other deep ensemble networks and hybrid ensemble clustering models that are incorporated with both the original and state-of-the-art PSO variants. Additionally, the proposed method statistically outperforms existing studies on OD segmentation and other search methods for solving diverse unimodal and multimodal benchmark optimization functions and the detection of Diabetic Macular Edema

    Robust computational intelligence techniques for visual information processing

    Get PDF
    The third part is exclusively dedicated to the super-resolution of Magnetic Resonance Images. In one of these works, an algorithm based on the random shifting technique is developed. Besides, we studied noise removal and resolution enhancement simultaneously. To end, the cost function of deep networks has been modified by different combinations of norms in order to improve their training. Finally, the general conclusions of the research are presented and discussed, as well as the possible future research lines that are able to make use of the results obtained in this Ph.D. thesis.This Ph.D. thesis is about image processing by computational intelligence techniques. Firstly, a general overview of this book is carried out, where the motivation, the hypothesis, the objectives, and the methodology employed are described. The use and analysis of different mathematical norms will be our goal. After that, state of the art focused on the applications of the image processing proposals is presented. In addition, the fundamentals of the image modalities, with particular attention to magnetic resonance, and the learning techniques used in this research, mainly based on neural networks, are summarized. To end up, the mathematical framework on which this work is based on, â‚š-norms, is defined. Three different parts associated with image processing techniques follow. The first non-introductory part of this book collects the developments which are about image segmentation. Two of them are applications for video surveillance tasks and try to model the background of a scenario using a specific camera. The other work is centered on the medical field, where the goal of segmenting diabetic wounds of a very heterogeneous dataset is addressed. The second part is focused on the optimization and implementation of new models for curve and surface fitting in two and three dimensions, respectively. The first work presents a parabola fitting algorithm based on the measurement of the distances of the interior and exterior points to the focus and the directrix. The second work changes to an ellipse shape, and it ensembles the information of multiple fitting methods. Last, the ellipsoid problem is addressed in a similar way to the parabola

    Soft computing applied to optimization, computer vision and medicine

    Get PDF
    Artificial intelligence has permeated almost every area of life in modern society, and its significance continues to grow. As a result, in recent years, Soft Computing has emerged as a powerful set of methodologies that propose innovative and robust solutions to a variety of complex problems. Soft Computing methods, because of their broad range of application, have the potential to significantly improve human living conditions. The motivation for the present research emerged from this background and possibility. This research aims to accomplish two main objectives: On the one hand, it endeavors to bridge the gap between Soft Computing techniques and their application to intricate problems. On the other hand, it explores the hypothetical benefits of Soft Computing methodologies as novel effective tools for such problems. This thesis synthesizes the results of extensive research on Soft Computing methods and their applications to optimization, Computer Vision, and medicine. This work is composed of several individual projects, which employ classical and new optimization algorithms. The manuscript presented here intends to provide an overview of the different aspects of Soft Computing methods in order to enable the reader to reach a global understanding of the field. Therefore, this document is assembled as a monograph that summarizes the outcomes of these projects across 12 chapters. The chapters are structured so that they can be read independently. The key focus of this work is the application and design of Soft Computing approaches for solving problems in the following: Block Matching, Pattern Detection, Thresholding, Corner Detection, Template Matching, Circle Detection, Color Segmentation, Leukocyte Detection, and Breast Thermogram Analysis. One of the outcomes presented in this thesis involves the development of two evolutionary approaches for global optimization. These were tested over complex benchmark datasets and showed promising results, thus opening the debate for future applications. Moreover, the applications for Computer Vision and medicine presented in this work have highlighted the utility of different Soft Computing methodologies in the solution of problems in such subjects. A milestone in this area is the translation of the Computer Vision and medical issues into optimization problems. Additionally, this work also strives to provide tools for combating public health issues by expanding the concepts to automated detection and diagnosis aid for pathologies such as Leukemia and breast cancer. The application of Soft Computing techniques in this field has attracted great interest worldwide due to the exponential growth of these diseases. Lastly, the use of Fuzzy Logic, Artificial Neural Networks, and Expert Systems in many everyday domestic appliances, such as washing machines, cookers, and refrigerators is now a reality. Many other industrial and commercial applications of Soft Computing have also been integrated into everyday use, and this is expected to increase within the next decade. Therefore, the research conducted here contributes an important piece for expanding these developments. The applications presented in this work are intended to serve as technological tools that can then be used in the development of new devices

    Advanced Sensing and Image Processing Techniques for Healthcare Applications

    Get PDF
    This Special Issue aims to attract the latest research and findings in the design, development and experimentation of healthcare-related technologies. This includes, but is not limited to, using novel sensing, imaging, data processing, machine learning, and artificially intelligent devices and algorithms to assist/monitor the elderly, patients, and the disabled population
    • …
    corecore