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Resumo

O cancro de mama continua a ser uma das doenças malignas mais mediatizadas, não só devido
à sua alta incidência e prevalência, mas também devido à implicação de que a mama tem na im-
agem maternal e sexual da mulher. A introdução do tratamento conservador do cancro da mama
(BCCT), em que o tumor é extraído juntamente com uma margem de tecido mamário macroscopi-
camente livres de doença, tem permitido um controle local da doença, com um nível de sobrevida
semelhante à obtida com uma mastectomia, mas com um melhor resultado estético. O resultado
estético e a qualidade de vida dos pacientes têm sido um objetivo fundamental do tratamento.
No entanto, ao contrário dos resultados oncológicos, o resultado estético depende de vários fa-
tores, muitos deles difíceis de avaliar o que contribui para uma significativa heterogeneidade do
resultado.

De modo a superar as limitações de reprodutibilidade e objetividade dos métodos de avaliação
do resultado estético do BCCT, um software (BCCT.core) foi recentemente desenvolvido. Este
software é baseado na comparação entre a mama tratada e não tratada em fotografias digitais.
O sistema permite a medição semiautomática de vários índices relacionados com o resultado es-
tético após cirurgia, tornando a avaliação rápida, fácil e reprodutível. O conjunto de medidas é
automaticamente convertido numa avaliação global e objetiva do resultado estético, baseado num
algoritmo usando técnicas de aprendizagem automática, especialmente adaptado para classes or-
dinais. Este algoritmo foi treinado e aperfeiçoado para prever o resultado estético, numa escala de
quatro categorias (excelente, bom, razoável e mau). A avaliação objetiva fornecida pelo software é
representativa do resultado estético global, permitindo a medição de vários fatores que influenciam
significativamente o resultado estético, contribuindo para o melhoramento das técnicas atuais de
tratamento e para a comparação efetiva entre diferentes equipas de trabalho.

Embora o BCCT.core apresente resultados satisfatórios, apresenta uma limitação importante.
A mama é um objeto tridimensional (3D) complexo e os seus limites não são claramente definidos
sendo desta forma difícil identificar os seus pontos anatómicos. Continuamente têm sido de-
senvolvidas novas técnicas cirúrgicas e equipamentos de modo a otimizar o desempenho dos
cirurgiões em procedimentos relacionados com as intervenções mamárias, aumentando a relevân-
cia das aplicações utilizadas para avaliar automaticamente o resultado estético através de infor-
mação 3D. Vantagens inerentes a este processo incluem a capacidade de visualizar a mama de um
diferente número de ângulos, de modo a estimar diferenças de volume e para planear procedimen-
tos cirúrgicos. Vários investigadores têm utilizado tecnologia 3D, contudo estas metodologias são
bastante dispendiosas, não são adequados para avaliar automaticamente o resultados estético, e
não são uma opção viável para a prática clínica diária.

Este trabalho tem como objetivo desenvolver uma ferramenta bastante prática e fácil de usar,
baseada num algoritmo computacional de reconstruções 3D a partir dispositivos de baixo custo,
tais como: reconstrução a partir de imagens simples, num ambiente não calibrado, usando ge-
ometria epipolar e dispositivos RGB-D. O objetivo é permitir a deteção automática de pontos
característicos nas imagens e extrair informação volumétrica, auxiliando na avaliação global do
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resultado estético. Os resultados experimentais mostram a adequação da nossa abordagem baseada
em mapas de profundidade. O algoritmo proposto provou ser preciso e robusto para um elevado
número de pacientes. Além disso, em comparação com os estudos anteriores, o processo para a
deteção de pontos característicos foi completamente automatizada.



Abstract

Breast cancer remains one of the most mediated malignant diseases, not only due to its high
incidence and prevalence, but also because of the implication that the breast has on women’s
maternal and sexual images. The introduction of Breast Cancer Conservative Treatment (BCCT),
in which the tumour is excised together with a margin of breast tissue macroscopically free of
disease, has allowed a local control of the disease, with a survival similar to that obtained with a
mastectomy, but with a better aesthetic result. The cosmetic outcome and Quality of Life (QOL) of
patients have been a fundamental objective of such treatment. However, contrarily to oncological
results, the cosmetic result depends on several factors, many of them difficult to assess which
contributes to a significant heterogeneity in result.

To overcome the limitations of reproducibility and objectivity of the methods in order to eval-
uate the aesthetic result of BCCT, a recent computer system named Breast Cancer Conservative
Treatment.cosmetic result (BCCT.core) was developed. This software used digital images, and
is based on the comparison of the treated and non-treated breast. The system introduces the
semi-automatic measurement of various indices related to the surgical aesthetic result, making
the evaluation fast, easy and reproducible. The set of measures is automatically converted into
a comprehensive and objective evaluation of cosmetic results, based on a machine learning al-
gorithm, especially adapted to predict ordinal classes. This algorithm was trained and optimised
to predict the overall aesthetic result on a scale of four classes (excellent, good, fair and poor).
The objective assessment provided by the system is a summary of the overall aesthetic result,
allowing an assessment of several factors that significantly influence the aesthetic result and this
contributes to the improvement of current treatment techniques and to the effective comparison
between different work teams.

Although the BCCT.core system presents satisfactory results, there is an important limitation
on this software. The female breast is a complex three-dimensional (3D) object and its bound-
aries are rather fuzzily defined, and thus it is difficult to identify anatomical landmarks. New
surgical techniques and devices are continuously developed to optimize surgeons’ performances
in procedures related to breast interventions, which increases the relevance of applications used
to automatically evaluate the aesthetic result using 3D information. Potential advantages include
the ability to view the breast from a different number of angles, to estimate volume/volume deficit
and to plan future surgeries. Several research groups have made attempts with 3D technology,
however these methodologies are very expensive, they are not suitable to automatically evaluate
aesthetic results and they are not a feasible option for daily clinical practice.

This work aims at producing a practical tool that is easy to use, based on a computational
algorithm that performs 3D reconstructions from low-cost systems, namely: reconstruction algo-
rithm from uncalibrated views, using an epipolar geometry approach and RGB-D sensors. The
aim is to enable a complete automatic detection of prominent points in BCCT images and extract
volumetric information, helping to the overall aesthetic assessment. Experimental results show the
suitability of our depth-map based approach. The proposed algorithm has proved to be accurate
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and robust for a wide number of patients. Additionally, in comparison with previous research, the
procedure for detecting prominent points was completely automated.
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Chapter 1

Introduction

Breast cancer is considered a public health problem, and it is the most frequently diagnosed cancer

and the leading cause of death in women worldwide. One in ten women will develop breast cancer

at some point in their lifetime. According to recent worldwide data, this disease accounted for

23% (1.38 million) of the total new cancer cases and for 14% (458 400) of the total cancer deaths

in 2008 [115]. The incidence of breast cancer has increased in most countries worldwide over

the last decades due to reproductive behaviour and the use of exogenous hormones, as well as

differences in weight, exercise, diet and alcohol consumption [25].

Approximately 90% of breast cancers are curable if detected in their initial stage and treated

properly. It is a very frequent disease and remains one of the most publicised malignancies not

only because of its high incidence and prevalence, but also because of the impact that the breast

has on women’s bodies, sexual and maternal images. Routine screening has been taken in order to

promote early diagnosis with regular medical prevention consultations depending on the presence

or absence of risk factors [173].

As far as treatment is concerned, it has progressed to the establishment of the BCCT as an

alternative to the classic mutilating mastectomy. Contrary to the mastectomy where the entire

breast is removed, in the conservative treatment the tumour is excised macroscopically together

with a margin of cancer free breast tissue. Subsequently the patient undergoes radiotherapy to the

remaining breast tissue. This conservative approach, in its various forms, has made local control

of the disease possible, with survival rates similar to those obtained with mastectomy, but with

better cosmetic results [78, 245].

The aesthetic result and patients’ Quality of Life (QOL) have become fundamental objectives

in this type of treatment. However, results depend on several factors (patient, tumour, surgical

technique and factors related to treatment, and of course radiotherapy) which contribute to very

different outcomes [49, 50].

The assessment of the cosmetic result, as a means to evaluate one of the aspects of treatment

quality, has become essential to any institution that performs breast cancer treatment [38]. This

evaluation makes it possible to refine the current techniques and to identify the variables with a

significant impact on the final aesthetic result and with the potential for improvement [50]. With

1



2 Introduction

the development of new oncoplastic techniques in breast conservation, it is even more important

to have means to compare cosmetic results. With the quantification of aesthetic results, it is pos-

sible to tailor the spectrum of techniques available to individual cases without compromising the

oncologic and cosmetic results [10]. However, while the oncological outcome of breast conser-

vation procedures can easily be assessed objectively, the cosmetic outcome does not yet have an

evaluation standard [38].

1.1 Motivation

Until recently, the most common technique used to assess the aesthetic results was the subjective

assessment by one or more observers, who focus directly on the patients or on photographic repre-

sentations of them. The opinion on the final aesthetic result is graded using one of several existing

scales that rank the results, usually by comparing the operated breast with the untreated breast.

The most frequently used evaluation scale was introduced by Harris in 1979 [96]. However, there

are some problems regarding the interpretation of the results of the studies which use this type of

assessment: for example, exemption is not always guaranteed since it is often performed by pro-

fessionals who are involved in the treatment. Therefore, its reproducibility is not usually high [36]

and when measured, the level of agreement between observers is low or moderate [40].

Objective methods were introduced in an attempt to overcome the lack of objectivity and

reproducibility. These methods consisted of comparing the two breasts with simple measurements

marked directly on patients or on photographs of them [50, 149]. Almost all of the measurements

suggested in the literature capture the breast’s asymmetry and were subjected to significant intra-

observer and inter-observer variability.

The current methodologies in studies that evaluate the cosmetic outcome of BCCT continue

to show a significant lack of standardisation, not only in the type of assessment used, but also

in the factors included in this evaluation and the instruments used for this analysis. There was a

need to replace or enhance the expert human evaluation of the aesthetic results of BCCT with a

validated objective tool. This tool should be easy to use and highly reproducible and acceptable

to those who would be evaluated. One of those cases is the Breast Analysing Tool (BAT) that

was introduced by Fitzal et al. [80]. However, the most prominent tool to objectively perform the

aesthetic evaluation of BCCT was introduced by Cardoso and Cardoso [28]. This computer-aided

medical system, called BCCT.core, aims to overcome the acute shortage of such software systems

and exploit the unique ability of computational methods to provide an effective and easy to use

tool to improve the outcome of breast cancer patient care. The BCCT.core is a semi-automatic

system capable of objectively evaluating the overall aesthetic results of the BCCT. The develop-

ment of the BCCT.core consisted of automatically extracting several features from frontal patient’s

photographs, capturing some of the factors that are considered to have an impact on the overall

cosmetic results: breast asymmetry, skin colour changes due to the radiotherapy treatment and

the appearance of the surgical scar. In a second phase, a Machine Learning algorithm is applied
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to predict the overall cosmetic result using the recorded features [31]. The objective classifica-

tion outputted by this module constitutes a valuable summary of the aesthetical result, enabling

an effective comparison between different medical teams and centres all over the world. While

innovative and reproducible, the approach of this tool has several points that need to be addressed

as is often suggested by the users. The first case is the interpretability of the model that relates the

aesthetical result with the input measures; the second is the fact that only face-view photographs

of the patients are used not including the information from side or oblique views; and finally the

lack of the third dimension.

Now, more than ever, it is important not only to compare results after treatment, but also to

predict cosmetic results before the procedure has taken place. Therefore, there is a need for a

tool capable of simulating surgical options and outcomes in terms of volume, gain or loss, and of

better educating patients on a more informed choice of breast surgery procedures. A more accurate

and objective tool to predict surgical outcomes to guide the patient and surgeon in the decision-

making or planning process is feasible using 3D imaging and surgical simulation. A simulation

model also allows patients to visualise the possible outcomes of different surgical options. It is

generally accepted that 3D imaging has great potential in a clinical environment, although there

are factors that may influence its use in the near future. Several research groups have made efforts

with 3D technology [67, 106]. However, current 3D technologies are very costly and difficult to

operate, thus requiring specialised staff, and are not a feasible choice for daily clinical practice.

Therefore, their widespread use in the near future is not predictable. Consequently, the search for

low cost and easy to operate equipment is highly desirable.

1.2 Objectives

The impact of the research to be conducted in this work is reflected in its ability to improve the

quality of the health care in the area of Breast Cancer Treatment.

In this work, the aim is to produce an affordable and practical tool for the aesthetic evaluation

after breast cancer surgeries, developing a computational algorithm that reconstructs 3D objects

using low-cost methodologies. Preliminary studies will be based on the analysis of the current

limitations and on higher expectations related to the diversity of new breast interventions. Firstly,

a single photograph of the patient is insufficient for an accurate pre-operation decision. As an

extension to the method currently used, features extracted from side-views photographs will be

used, combined with frontal features, aiming to improve the global assessment result. The work

will focus on the application of 3D methods for the aesthetical evaluation of the surgical interven-

tion result, based on 3D data reconstruction from one or more uncalibrated views of the patient

and using RGB-D sensors. Secondly, the aim is to investigate the complete automatic detection of

prominent points in BCCT images, making it easier to extraction of volumetric information, pro-

viding a better quantitative and reliable assessment of the aesthetic outcomes of breast surgeries,

which is fundamental for the reproducibility of the method.
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All the research conducted depends on the availability of training and testing examples that

can be used to develop the models. Therefore, this research will be preceded by the collection of

training data manually annotated with the help of an expert, creating a multi-modal database.

1.3 Contributions

We summarise below the contributions of the thesis for the aesthetic evaluation after breast cancer

surgeries. In this thesis we have

1. created a multi-modal database, which could be used in the future by breast cancer re-

searchers in order to compare different methodologies. The database created is a unique

tool and can lead to new developments in the area;

2. proposed a new closed contour computation in the original coordinates, in contrast to the

typically approach which transforms the image into polar coordinates and the closed contour

is transformed into an open contour between two opposite margins;

3. investigated the application of interpretable models to BCCT.core software, in contrast with

the non-linear models currently deployed in the software;

4. proposed new features extracted from side-views photographs to perform the aesthetic eval-

uation of the cosmetic result;

5. introduced the use of low-cost systems to acquire 3D information to the breast cancer area;

and proposed new algorithms to detect fiducial points and breast contour without user in-

tervention and new models for the aesthetic evaluation of the cosmetic result incorporating

volumetric information.

List of Publications Related to the thesis

The work related with this thesis resulted in the publication of the followings journal papers:

• H. P. Oliveira, J. S. Cardoso, A. Magalhães, and M. J. Cardoso. A 3D Low-cost Solution

for the Aesthetic Evaluation of Breast Cancer Conservative Treatment, 2013 (Submitted)

• J. S. Cardoso, H. P. Oliveira, and Inês Domingues. Closed shortest path in images: Avoiding

unnecessary transformation, 2013 (Submitted)

• H. P. Oliveira, J. S. Cardoso, A. Magalhães, and M. J. Cardoso. Methods for the aesthetic

evaluation of breast cancer conservation treatment: A technological review. Current Medical

Imaging Reviews, 9(1):32–46, 2013
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From this thesis resulted the following international conference papers:

• H. P. Oliveira, M. D. Silva, A. Magalhães, M. J. Cardoso, and J. S. Cardoso. Is kinect depth

data accurate for the aesthetic evaluation after breast cancer surgeries? In Proceedings of

Iberian Conference on Pattern Recognition and Image Analysis, pages 261 – 268, 2013

• H. P. Oliveira, J. S. Cardoso, A. Magalhães, and M. J. Cardoso. Simultaneous detection of

prominent points on breast cancer conservative treatment images. In Proceedings of The

IEEE International Conference on Image Processing, pages 2841 – 2844, 2012

• H. P. Oliveira, P. Patete, G. Baroni, and J. S. Cardoso. Development of a bcct quantitative

3d evaluation system through low-cost solutions. In Proceedings of the 2nd International

Conference on 3D Body Scanning Technologies, pages 16 – 27, 2011

• R. Sousa, H. P. Oliveira, and J. S. Cardoso. Feature selection with complexity measure in a

quadratic programming setting. In Proceedings of Iberian Conference on Pattern Recogni-

tion and Image Analysis, pages 524 – 531, 2011

• H. P. Oliveira, A. Magalhaes, M. J. Cardoso, and J. S. Cardoso. Improving the bcct.core

model with lateral information. In Proceedings of the 10th IEEE International Conference

on Information Technology and Applications in Biomedicine, pages 1 – 4, 2010

• H. P. Oliveira, A. Magalhaes, M. J. Cardoso, and J. S. Cardoso. An accurate and inter-

pretable model for bcct.core. In Proceedings of the 32nd Annual International Conference

of the IEEE Engineering in Medicine and Biology Society, pages 6158 – 6161, 2010

The work was also validated by the medical community, with the publication of the following

international medical conferences papers:

• A. T. Magalhães, H. P. Oliveira, J. Soares, A. J. Moura, J. S. Cardoso, and M. J. Cardoso.

3D Model for Aesthetic Objective Evaluation after Breast Cancer Surgery using Infrared

Laser Projector. In Proceedings of the 3rd International Meeting of Oncoplastic and Recon-

structive Breast Surgery, 2011

• A. T. Magalhães, H. P. Oliveira, A. J. Moura, J. S. Cardoso, and M. J. Cardoso. Aesthetic

Evaluation after Mastectomy and Immediate Breast Reconstruction using the BCCT.core

Software. In Proceedings of the 3rd International Meeting of Oncoplastic and Reconstruc-

tive Breast Surgery, 2011
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• A. T. Magalhães, H. P. Oliveira, S. Costa, J. S. Cardoso, and M. J. Cardoso. Value of

Photographic Side-views in the Objective Evaluation of the Aesthetic Results of Breast

Cancer Conservative Treatment. In Proceedings of the 33rd Annual San Antonio Breast

Cancer Symposium, 2010

I also participated in national conferences with the following papers:

• H. P. Oliveira, and J. S. Cardoso. Gradient Flow Based Detection of Prominent Points on

BCCT Depth-Map Images. In Proceedings of the 18th Portuguese Conference on Pattern

Recognition, pages 1 – 2, 2012

• H. P. Oliveira, J. S. Cardoso, A. T. Magalhães, and M. J. Cardoso. Depth-Map Images

for the Aesthetic Evaluation of Breast Cancer Treatment. In Proceedings of the 1st PhD.

Students Conference in Electrical and Computer Engineering, pages 1 – 2, 2012

• M. D. Silva, H. P. Oliveira, and J. S. Cardoso. Super-Resolution on Depth-Map Images. In

Proceedings of the 1st PhD. Students Conference in Electrical and Computer Engineering,

pages 1 – 2, 2012

• H. P. Oliveira, A. T. Magalhães, and J. S. Cardoso. Kinect Based Method for the BCCT

Quantitative 3D Evaluation. In Proceedings of the 17th Portuguese Conference on Pattern

Recognition, pages 1 – 2, 2011

• H. P. Oliveira, and J. S. Cardoso. BCCT.core Model Enhancement With Interpretability and

Lateral Information. In Proceedings of the 16th Portuguese Conference on Pattern Recogni-

tion, pages 1 – 2, 2010

1.4 Document Structure

This thesis is organised into ten Chapters, each one describing the work conducted during the

last four years. The remainder of this Section presents the main motivations, objective and thesis

contributions.

Afterwards, in Chapter 2 a literature review is provided on all the topics related with aesthetic

evaluation of breast cancer surgeries, with an emphasis on the objective methods and correspond-

ing technologies used. The Chapter starts by presenting subjective methods and their disadvan-

tages comparatively to objective methodologies. Then, focusing on objective methods, both the

traditional methods based on patient photographs and the approaches based on 3D data are dis-

cussed, providing a critical analysis and put in a chronological perspective. Finally, trends related

with aesthetic evaluation are discussed, with a focus on the automation of the evaluation process.

Chapter 3 presents the main characteristics of the BCCT.core software, demonstrating the

importance of the software for the breast cancer related research. The information reported in this
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Chapter provides a general idea of the tool, helping understand the capabilities and drawbacks

which motivated this thesis.

During this thesis a multi-modal database was created and its characteristics are presented in

Chapter 4. The database is based on depth and colour information, with ground truth annotation

both for fiducial point position and subjective aesthetic evaluation.

A new closed contour computation is presented in Chapter 5. Here, is introduced a formulation

in the original coordinates, in contrast to the typical approach using polar coordinates.

In Chapter 6 improvements on the BCCT.core are investigated, comparing the performance of

different interpretable methods with the current BCCT.core model, and with the introduction of

knowledge extracted from patient side-views, complementing the currently used frontal informa-

tion.

A study of 3D reconstruction based on uncalibrated view is presented in Chapter 7, including

the state-of-the-art algorithms for feature detection, matching, rectification and stereo matching,

applied to our data.

Chapter 8 introduces the main characteristics of the RGB-D devices, demonstrating their great

potential. Due to the limitation related with the Kinect resolution, methods to improve it are

presented here. Afterwards, calibration methodologies to align information from depth and colour

images are also discussed.

The combination of RGB and depth data acquired with the Kinect device is studied in Chap-

ter 9. Here, is demonstrated how the automation of fiducial points can be assisted with the fusion

of RGB and depth data, helping define 3D features and the overall aesthetic evaluation.

Finally, conclusions and lines for future research on this topic are provided in Chapter 10.
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Chapter 2

Literature Review∗

In this chapter we try to discuss all the questions related with aesthetic evaluation of breast cancer

surgeries, with an emphasis in the objective methods and corresponding technologies used. We

start by presenting subjective methods and their disadvantages compared to objective methods.

As part of the objective methods, we discuss both the traditional methods based on patients’ pho-

tographs and the more recent approaches based on 3D data, with a critically analysis and put in

chronological perspective. Trends related with evaluation of the BCCT aesthetic result are dis-

cussed, namely objective methods using two-dimensional (2D) photographs and 3D data, with a

focus also on the automation of the evaluation process.

2.1 Breast Cancer

In the past, breast cancer surgical treatment consisted essentially of only one of two procedures:

mastectomy or lumpectomy (see Figure 2.1).

The mastectomy is the procedure where the entire breast is removed. There are five differ-

ent types of mastectomy: "simple" or "total" mastectomy, modified radical mastectomy, radical

mastectomy, partial mastectomy, and subcutaneous (nipple-sparing) mastectomy. Simple or to-

tal mastectomy concentrates on the breast tissue itself. Beyond the removal of the entire breast,

occasionally lymph nodes are also removed because they happen to be located within the breast

tissue taken during surgery. In this surgical procedure no muscles are removed from beneath the

breast. In the modified radical mastectomy both breast tissue and axillary lymph node dissection

are performed, during which levels I and II of underarm lymph nodes are removed (B and C in

Figure 2.1(a)). The radical mastectomy is the most extensive type of mastectomy, where levels I,

II, and III of the underarm lymph nodes are removed (B, C, and D in Figure 2.1(a)). The surgeon

also removes the chest wall muscles under the breast. This type of intervention is recommended

only when the breast cancer has spread to the chest muscles under the breast. Although common

in the past, radical mastectomy is now rarely performed because in most cases modified radical

mastectomy has proved to be just as effective and less disfiguring. In the partial mastectomy, the

∗Some portions of this Chapter appeared in [179]

9
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(a) (b)

Figure 2.1: Illustration of breast surgical procedure 1. a) Mastectomy; b) Lumpectomy.

cancerous part of the breast tissue and some normal tissue around it are removed. In the subcu-

taneous ("nipple-sparing") mastectomy, all of the breast tissue is removed; however, the nipple

remains intact. Subcutaneous mastectomy is performed less frequently than simple or total mas-

tectomy because more breast tissue is left behind, and afterwards that could develop cancer. Some

physicians have also reported that breast reconstruction after subcutaneous mastectomy can result

in distortion and possibly numbness of the nipple. Because subcutaneous mastectomy is still an

area of controversy among some physicians, doctors may recommend simple or total mastectomy

instead 1.

Lumpectomy is a form of "breast-conserving" or "breast preservation" surgery. Technically,

a lumpectomy is a partial mastectomy because part of the breast tissue is removed, as well as the

breast tumour (the "lump") and some of the normal tissue that surrounds it (see Figure 2.1(b)).

However, more tissue is removed in partial mastectomy than in lumpectomy. The amount of tissue

removed can vary greatly, which is related to several factors, such as: patient characteristics,

tumour characteristics and stage of the tumour. The patient then undergoes radiotherapy on the

remainder of the breast 1.

Therefore, a good aesthetic outcome is an important endpoint of breast cancer treatment, being

closely related to psychosocial recovery and QOL. The importance of a good aesthetic outcome

is well recognised by experts in this field although it is known that this is often not achieved.

The conservative approach has made it possible to locally control the disease and it has a similar

survival rate to that obtained with the mastectomy, but with better cosmetic results [78, 245]. A

basic concept of the conservative treatment is that there must be an amount of healthy breast

tissue removed, enough to obtain a surgical margin free of neoplasia. The greater the amount

of healthy tissue excised, the lower the probability of incomplete removal of the neoplasia. At

1http://www.breastcancer.org

http://www.breastcancer.org
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the same time, the probability of local recurrence due to the growth of the remaining neoplasia

is also lower. However, the larger the amount of breast tissue removed, the lower the chances

of obtaining satisfactory cosmetic result. This comparison can be clearly demonstrated in the

diagram in Figure 2.2.

Figure 2.2: Surgical procedure comparison.

Surgical outcome depends on several factors, many of them difficult to assess, thus leading to a

significantly heterogeneous results. For this reason, it is fundamental to evaluate specific surgical

procedures on the basis of their aesthetic outcome through specific quantitative tools.

Although breast conservation techniques have been widely studied, different forms of evalu-

ation and heterogeneous working practices have contributed to different aesthetic results. As this

scenario suggests, the evaluation of aesthetic results should be mandatory in any institution per-

forming breast cancer treatment, contributing to the improvement of current strategies by enabling

the identification of variables which have a significant impact on the final aesthetic result.

In the process of assessing cosmetic outcomes there are several important issues that should

be considered: which factors have a crucial impact on the cosmetic outcome of BCCT; which

parameters or features should be evaluated in the cosmetic assessment of BCCT; how patients are

evaluated; which scales are used in this evaluation; which methods and technological solutions are

available for the evaluation of cosmetic results of BCCT.

2.2 Breast Conservative Treatment

The breast conservative treatment was introduced by Umberto Veronesi during the 1970s [244],

and is well accepted by the international medical professionals. In this technique, the neoplatic

tissue is ablated with a portion of healthy surrounding parenchyma. During the last 40 years this

technique suffered profound alterations and evolutions [158]. While the oncologic outcomes of

breast conservation procedures are easily estimated objectively by disease-free and overall survival
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rates, cosmetic outcomes had no universally accepted auditing method [38]. For that reason, very

few surgeons audit their results. Existing methods were time-consuming, there was no defined

time after surgery to perform this assessment and even if surgeons wanted to evaluate cosmetic

results there were no standards for comparison. Many works have been carried out in order to

overcome all previously stated obstacles.

The BCCT has led patients to prevention regarding the very important factor related to the

early diagnosis since this is directly related to the preservation (or not) of the breast. The aesthetic

problem related to the absence of one breast or to the ablation of only a portion in conservative

treatment, was considered a minor issue and aesthetic interventions to correct defects were delayed

and performed voluntarily when women, only a minority, felt the need to do so. During the last

ten years the concept of QOL raised the interest on oncoplastic breast surgery, the best of both

sides, the ideal oncologic treatment with a good aesthetic outcome. As a result, a myriad of

new techniques appeared either in immediate breast reconstruction in mastectomy patients and

in oncoplastic procedures in breast conservation. However, the growing interest in this new field

of oncoplastic surgery brought all sorts of aesthetic results of breast procedures, and the lack of

adequate training of surgeons in this area brought additional concern regarding the need for a

reproducible method to evaluate results.

Although considerable research has been put on breast-conservation techniques, different forms

of performing them, as well as incorrect working practices, contribute to different aesthetic re-

sults [49]. As this scenario suggests, the evaluation of aesthetic results should be mandatory in

any institution performing breast cancer treatment. This can improve current strategies by enabling

the identification of variables, with a significant effect on the final aesthetic result and amenable

to improvement [50].

2.3 Determinant Factors to Cosmetic Outcome

Breast conservation surgery, radiotherapy included, has not a definite standard for every patient.

There are technical variations related both to surgery and radiotherapy and even though BCCT

has an identical meaning worldwide, it is not a uniform procedure [49]. To obtain a good aes-

thetic outcome, it is essential to have a clear notion of the factors that can influence results [10].

Historically, factors with an impact on aesthetic outcomes are divided into patient, tumour and

treatment-related factors [37] (see Table 2.1).

Factors most frequently reported as being important to the final aesthetic result are patient

weight [51], breast size [51, 149, 200, 249], tumour location [148, 213, 225], tumour size [51, 61,

200, 206, 229], specimen weight or volume [50, 51, 148, 184, 193, 200, 229, 249], placement of

incisions [50, 51, 229, 249], chemotherapy [18, 118, 201, 206] and radiotherapy to the breast [96,

148, 184].

Today with upcoming oncoplastic techniques, new factors related essentially to surgery will

arise. If the specimen size and weight are seen as the most consensual of the factors, and if this

concept is applied to the therapeutic reduction mammaplasty technique, where large volumes are
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Patient-related Tumour and treatment-related
Age Incision size (cm), tumour size (mm)
Height (cm) Incision type (radial, sulcus, periareolar, curved)
Weight (kg) Specimen weight (g)
Thorax perimeter (cm) Side (left, right)
Body mass index (BMI) Tumour location (UOQ, UIQ, LOQ, LIQ, OQT,

SQT, IQT, LQT)
Breast size (radius cm) Type of intervention (tumorectomy or tum, with

sentinel node biopsy or with axillary dissection)
Bra cup size (A, B, C, D) Scar visibility (not, slightly, very visible)
Age of menarche Surgeon (general, breast→ 150 cases / year)
No. pregancies Chemotherapy (yes, no)
Age of first pregnancie Hormone therapy (yes, no)
Oral contraceptives (yes, no) Follow-up (months)
Menopause (yes, no)
UOQ, upper outer quadrant; UIQ, upper inner quadrant; LOQ, lower outer quadrant;
LIQ, lower inner quadrant; OQT, outer quadrant transition; SQT, superior quadrant transition;
IQT, inner quadrant transition; LQT lower quadrant transition.

Table 2.1: Patient, tumour and treatment-related factors (From [37]).

removed along with the tumour, there will be a paradoxical effect of a better aesthetic outcome

because both breasts are interventioned simultaneously [121]. Nevertheless, having a clear idea of

which factors influence the cosmetic result is essential to achieve a reproducible way of measuring

these outcomes, regardless of the technique used. Only then can we correlate results with practice

and subsequently improve results.

2.4 Cosmetic Assessment Parameters

To evaluate the aesthetic result of BCCT, an observer usually identifies and evaluates colour, shape,

geometry, irregularity and roughness of the treated breast, compared to the untreated breast. Ide-

ally, the comparison of the aesthetic result of BCCT would be performed using pre-treatment

images of the patient. Unfortunately, the habit of capturing images before initiating treatment is

not a rule in the majority of centres treating breast cancer. As a consequence, published works

about the aesthetic results of BCCT use the comparison between both breasts, assuming that bet-

ter results correspond to more similar breasts. This is indeed a much more practical approach and,

in the era of new emerging oncoplastic techniques where both breasts are frequently submitted to

surgical procedures, comparison is even more demanding [10]. The ultimate objective is to obtain

identical breasts taking into account not only the surgical aspect, but also the adjuvant radiotherapy

treatment applied in the majority of patients.

There are several factors contributing to global aesthetic result. Asymmetry in size is probably

the most important factor which impacts the global cosmetic result and primarily depends on the
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amount of excised tissues, when surgery is unilateral [4,50,52,137,149,193,210,236,249]. Surgery

and radiotherapy derived fibrosis, with upward retraction of the inferior mammary sulcus and the

nipple-areola complex (NAC) can also have a consequence in the evaluated symmetry without

impairing the size of the breast [149, 193]. There are other factors with great impact on aesthetic

result. Scar visibility and length can also influence the aesthetic result [4, 50, 236, 248]. Finally,

other aspects that need to be considered, generally attributed to radiotherapy, are differences in

colour, both the hyperpigmentation of the treated breast or the hypopigmentation of the NAC

complex, and to a lesser extent telangiactesias [50, 138, 218, 248].

2.5 Patient’s Evaluation

Patients are usually evaluated either by direct observation [1, 2, 8, 44, 59, 61, 73, 196, 213], using

conventional photographs or slides [4, 19, 50, 96, 149, 190, 192, 248], special cameras - telecam-

eras [175, 210] or more recently using digital images [28, 66, 80].

Direct observation of patients is promoted by the vast majority of personnel involved in BCCT

as the most complete form of cosmetic evaluation, allowing physicians not only to get a better

global appreciation of the results but also of other factors, which are not visualised in a photograph,

such as skin atrophy and oedema of the breast and arm [50, 192]. However, photographs are more

practical. Images can be saved permanently and visualised when necessary, and can be easily

observed by different physicians [66,248]. More recently, digital photographs have replaced paper

prints and slides, making the entire process even easier and less expensive, while maintaining

picture quality [28, 66, 80].

Eadie et al. [66] compared the aesthetic evaluation of breast conserving treatment in 10 patients

by direct observation, printed analogical photographs, printed digital photographs and digital im-

ages on screen. Although printed analogical photographs presented better results, the correlation

of results between direct observation and images did not depend on the type of images used [66].

2.6 Scale of Assessment

The most widespread scale used since the beginning of conservation breast procedures, until today,

is the Harvard scale introduced by Jay Harris in 1979 [96]. It classifies the overall cosmetic result

in four classes: Excellent (treated breast nearly identical to the untreated breast), Good (treated

breast slightly different from the untreated one, Fair (treated breast clearly different from the un-

treated breast but not seriously distorted, and Poor (treated breast seriously distorted). Harris also

introduced a scoring system to classify both the results of the surgical procedure (0-scar unap-

parent, 1-scar apparent, 2-major tissue loss) and of radiotherapy (0-none, 1-slight, 2-moderate,

3-severe).

Several other authors have tried to obtain a more complete and discriminative classification

which included other factors such as skin oedema and thickening, mammary fibrosis, retraction

and telangiectasias [11,91,137]. They used scores for each of the considered parameters and added
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the values to obtain a final score that would allocate the patients in the four classes described by

Harris [50, 91, 150] or into other similar scales, some using more than four categories [149] and

others using less [12].

More sophisticated scores have been described with the objective of measuring BCCT aes-

thetic result [12, 137]. However, none of these have been established as a preferred alternative

to the Harvard scale. In the absence of more valuable alternatives, these scales, while sub-

jective and without discrimination power, provide useful information on the cosmetic result of

BCCT [2, 59, 147].

2.7 Methods of Assessment

Generally there are two groups of methods used on the cosmetic evaluation of BCCT: subjective

and objective methods. Subjective methods include patients’ self-evaluation, evaluation by a single

observer or by a panel of observers. Objective evaluation depends essentially on the type of

quantitative measurements used. For both groups evaluation can be made directly on the patient

or using photographs (prints, slides or digital images).

2.7.1 Subjective Methods

2.7.1.1 Self-Evaluation

Patient self-evaluation is probably the easiest way to analyse the cosmetic outcome of BCCT.

It is surely the one that best translates the psychosocial adaptation of patients to the result [3].

However, its reproducibility is low because it depends on several factors not amenable to quan-

tification, such as age and socioeconomic status [137, 210], each one of them having a direct

impact on how women see themselves after treatment. For those who support this method, the

self-evaluation process and satisfaction with the result are the most important factors [5]. In works

where self-evaluations are compared with external observer evaluations, patients invariably eval-

uate themselves more favourably [18, 23, 50, 51, 96, 120, 147, 210]. One plausible reason for this

better evaluation is related to the fear that patients have to express criticism towards treatment or

responsible caregivers [147]. This feeling is even stronger when a self-evaluation questionnaire

is answered during a follow-up visit [190]. However, this fear can exist even with questionnaires

sent by e-mail [5]. Another important point is the fact that BCCT patients tend to consider this as

an alternative to mastectomy and even when results are worse, they are still seen as a better option

than having the entire breast removed [147, 190].

It is undoubtedly important to have feedback from patients on aesthetic results; however, the

low reproducibility of this method makes it impossible to use it for comparison purposes [23, 50,

120, 147, 210, 248].
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2.7.1.2 Observer Evaluation

Currently, the most used evaluation of aesthetic results is the subjective assessment made by one

or more observers, who focus directly on patients or on photographic representations of them [18,

196]. The final aesthetic result is assessed using, usually, the Harvard scale [96], where results

are ranked according to comparisons between the operated breast and the untreated breast. This

evaluation is undertaken by one [2,8,11,18,56,58–61,91,120,150] or several observers [4,44,50,

51, 57, 66, 73, 92, 147, 205, 206, 210, 218, 235, 248].

Even though this subjective evaluation has been criticised, it is still the most frequently used

method [2, 59, 147, 150, 235, 253]. However, there are some problems regarding the interpretation

of results from studies which use this type of assessment [40]: for example, impartiality is not

always guaranteed since it is often performed by professionals involved in the treatment [11, 18,

56,58,59,61,81,110,184]. Moreover, its reproducibility is usually not high and agreement, when

measured between observers, is only low or moderate [50, 192, 248]. The impracticality and the

invasion of patients’ privacy inherent to this type of evaluation is not negligible: if the evaluation is

carried out by one or more observers involved in the treatment process and at different monitoring

stages, the discomfort caused to patients is high, especially when the evaluation is performed

directly and not through the use of photographs.

Another negative aspect related to this type of evaluation is the impractical side of the method,

especially if we think that patients should be evaluated by multiple observers in different phases

of treatment and follow-up. Even using digital images and electronic mail evaluation, this pro-

cess can take months or even years, when performed in a large number of patients with multiple

observers [36].

2.7.2 Objective Methods

Pezner et al. [192] published an evaluation of a series of frontal views from 14 patients performed

by 44 observers that challenged the value of subjective evaluations in terms of reproducibility.

They also proposed the first measure to objectively assess the cosmetic outcome of BCCT: the

Breast Retraction Assessment (BRA) [193], which determines the treated breast retraction com-

paratively to the untreated breast. Using a marked acrylic sheet over the thorax of the patients, they

calculated upward and inward retraction of the treated versus the non-treated breast. Higher BRA

values corresponded to worse cosmetic results. BRA was subsequently correlated with tumour

size, chemotherapy and radiation fields [193].

BRA and the measures suggested afterwards in the literature (solely capturing the breast asym-

metry) were often complemented by a subjective assessment made by observers [4, 23, 50, 137,

149, 175, 210, 218, 238, 248]. Even with these additions, all available methods were subject to

significant intra-observer and inter-observer variability. More than trying to evaluate the aesthetic

result from the measurements, these methods correlate them with subjective evaluation. Current

methodologies in use continue to show a significant lack of standardisation, not only in the type of
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assessment used, but also in terms of the factors that should be considered in this evaluation and

even in the instruments used for this analysis.

Next, we elaborate on the objective assessment of BCCT, detailing most important methods

based on singular photographs and 3D information.

2.8 Objective Assessment of Breast Aesthetic Outcome

Objective methods were introduced in an attempt to overcome the lack of objectivity and repro-

ducibility. There are two different methodologies to objectively evaluate the aesthetic result: pa-

tients’ 2D photographs and 3D information. Figure 2.3 shows some of the most significant works

related to the objective assessment of breast aesthetic outcome in breast cancer treatment.

Figure 2.3: Timeline of some of the most important methodologies for the objective evaluation of
the aesthetic outcome.

2.8.1 Two-dimensional Patient Data

These methods consist of comparing the two breasts with simple measurements marked on pa-

tients’ photographs [50, 149, 193]. These methods are essentially based on asymmetries between

treated and nontreated breasts that improved the assessment reproducibility (see Table 2.2). How-

ever, it has been argued that they do not take into account the global appearance of the aesthetic

results, due to the lack of the third dimension [50, 137, 210, 248].

2.8.1.1 First-generation Methods

As stated before, the first measure proposed for the objective assessment of the cosmetic outcome

of BCCT was the BRA [193] to determine retraction in the treated breast compared to the untreated

breast. Using identical reasoning applied to patient photographs, Van Limbergen et al. [149]

came up with two new asymmetry measurements, besides the BRA: the Lower Breast Contour

(LBC) and the Upward Nipple Retraction (UNR). They also found a strong correlation between

the obtained values and a subjective classification performed by observers.

Tsouskas and Fentiman [238] described the Breast Compliance Evaluation (BCE) as a mea-

surement of objective cosmetic outcome. Compliance is the difference between the distance from



18 Literature Review

Authors Papers year Description

Turesson and Notter [239, 240] 1984

Turesson Skin damage classifica-
tion graded as the area of telangiec-
tasias and skin necrosis, due to ra-
diotherapy

Pezner et al. [193] 1985

Breast Retraction Assessment
(BRA), which determines the
treated breast retraction compara-
tively to the untreated breast

Limbergen et al. [149] 1989

Lower Breast Contour (LBC) and
the Upward Nipple Retraction,
which determines the nipple dis-
placement and breast contour re-
traction of the treated breast re-
spectively, comparatively to the un-
treated breast

Tsouskar and Fentiman [238] 1990

Breast Compliance Evaluation
(BCE), which determines the dif-
ference between the distance from
the nipple to the Infra-Mammary
Fold (IMF) of the treated breast,
comparatively to the untreated
breast

Noguchi et al. [175] 1991
Moiré topographic camera to com-
pute the differences between the
displayed curves in both breasts

Cardoso and Cardoso [28] 2007

BCCT.core software for the aes-
thetic outcome assessment entailed
a semi-automatic extraction of fea-
tures considered to have an im-
pact on the overall cosmetic result
(asymmetry, colour differences and
scar visibility features)

Fitzal et al. [80] 2007
BAT software and Breast Symme-
try Index (BSI) definition to evalu-
ate the cosmetic outcome of BCCT

Kim et al. [126] 2007

Breast ptosis measurement based
on ratios of distances between fidu-
cial points manually identified in
oblique and lateral patient pho-
tographs

Oliveira et al. [181] 2010
Features extracted from lateral pa-
tients photographs for the aesthetic
outcome assessment

Lee et al. [139] 2012 Quantitative measure of breast cur-
vature based on catenary

Table 2.2: Comparison of the most significant 2d technologies involved on breast cancer cosmetic
evaluation.

the nipple to the Infra-Mammary Fold (IMF) with the patient in the erect and supine positions.

The same line of thought was followed by several other authors in more recent work [23, 50, 210,

218, 248].

Noguchi et al. [175] introduced an innovative sum of objective and subjective evaluations.

The objective part was undertaken with a Moiré topographic camera, which solved the differences

between the displayed curves in both breasts. Other parameters were evaluated subjectively by

observers (skin changes and scar) and the final result was the sum of both evaluations.

The same path was followed by others who used both types of method and the final result was

always the sum of the two obtained scores [4,137]. The idea of adding the results of both subjective
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and objective evaluations resides in the fact that, for the majority of authors, neither method is

successful in translating the complete evaluation of aesthetic results. When a bad aesthetic result

is obtained, for example, due to a very visible and badly placed scar, the correlation between

asymmetry measurements and subjective classification is obviously lost [149].

A study to examine the convergence between objective and subjective indices of cosmetic and

functional status after patients undergo BCCT was developed by Krishnan et al. [137], where the

relations between the objective indicators and QOL were tested. They found that these scores were

well correlated with the patients’ self-reported cosmesis questionnaires. The findings revealed

positive cosmetic and functional treatment outcomes, showing good or excellent cosmetic results.

The fifth edition of the EORTC manual for clinical research in breast cancer published in

2005 [72] also stressed the idea of adding qualitative and quantitative evaluations. The subjective

evaluation should be made by a panel of at least five observers classifying results according to

the Harris Scale [96] and an objective evaluation using the measurements of asymmetry described

by Pezner [193], and finally adding Turesson Skin damage classification [239, 240], graded as the

area of telangiectasias and skin necrosis, due to radiotherapy.

The first-generation of models introduced objective quantification of individual aspects of the

overall cosmetic outcome. These developments represent significant advances from a complete

reliance on expert judgement; however, we have yet to see these capabilities substantially differ-

entiate operational evaluation methodology. The simple sum of individual indices, objective and

subjective, fails to acknowledge that different aspects have different contributions to the overall

result; the reliance on the subjective assessment of individual aspects makes the final decision sub-

jective and irreproducible; even for the objective measures, the manual measurement makes them

partially subjective; as a consequence the process is still time consuming and hard to implement

under routine clinic conditions. In many ways, the development of these models has been a step

in the right direction, but we are still far from an acceptable system.

2.8.1.2 Second-generation Methods

Two approaches emerged in 2007 in an attempt to bring something new to the evaluation of aes-

thetic results in breast conservation [28, 80]. These methods were introduced to make it possible

to predict the global aesthetical result. These software tools are based on different individual char-

acteristics automatically and objectively extracted from patient photographs. These approaches

aimed to overcome the acute shortage of such tools and to exploit the unique ability that computa-

tional methods have to provide an effective, easy, fast, reliable and reproducible tool to evaluate the

outcomes of breast cancer patient care. In both works, the team started by creating a database of

patient images evaluated subjectively by a panel of experts, obtaining classifications which served

as a ground truth the developing new methods and comparing results.

Fitzal et al. [80] described a Breast Symmetry Index (BSI) to evaluate the cosmetic outcome

of BCCT. They created software (Breast Analysing Tool - BAT) to measure differences between

left and right breast sizes from a patient’s digital picture (see Figure 2.4).
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Figure 2.4: BAT software interface (From [80]).

The sum of all differences results in the breast symmetry index (BSI) score, which is capable

of measuring differences in size between breasts. They were able to demonstrate BAT c© accuracy

and additionally showed that BSI is reproducible and may be used by experts and non-experts with

the same results. The BSI index measured from frontal pictures correlates highly with subjec-

tive votes from experts and significantly differentiates between good and fair cosmetic outcomes.

However, there was no correlation between the BSI index and the patients’ self-evaluation. More-

over, the BSI did not further differentiate between excellent and good or fair and poor cosmetic

outcomes. These data show that the BSI measured with the BAT c© may be used to some extent to

evaluate cosmetic results of BCCT.

Cardoso and Cardoso [28] introduced a computer-aided medical system named BCCT.core

(see Figure 2.5). The development of BCCT.core entailed the semi-automatic extraction of several

features from patient photographs, capturing some of the factors which are considered to have an

impact on the overall cosmetic result. To accomplish cosmetic categorisation, a concise represen-

tation of a BCCT image is first obtained based on asymmetry, colour differences and scar visibility

features.

The asymmetry between both breasts was conveyed under a large set of indices. To extract

the colour features, the colour content of each breast is first characterised by a colour histogram;

the dissimilarity between both histograms serves as the colour features. The scar visibility was

translated into local colour dissimilarity, by comparing corresponding sectors of the breasts. The

measurements are preceded by the automatic localisation of fiducial points (nipple complex, breast

contour and jugular notch of the sternum) [34] on the photographs. Measurements for asymmetry,

skin colour change and surgical scar appearance are then supported on these fiducial points. The

representation is then further analysed by a pattern classifier performing the categorisation [31].

The pattern classifier finds the combination of individual features that approximate best the overall

classification as given by the panel of experts. A correct classification rate of about 70% was
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Figure 2.5: BCCT.core software interface (From [28]).

obtained, when comparing with the subjective consensual classification from the panel [36].

2.8.1.3 Summary

The BAT and the BCCT.core have been recently compared [260] regarding the same set of cases.

The conclusion of this study, was that the BAT software maintains a moderate performance regard-

less of picture quality using only asymmetry measurements. On the other hand, the BCCT.core,

using other parameters such as colour differences and scar appearance, obtains different results

with good performance with better photographs but only moderate performance in lower quality

pictures [39]. Moreover, the BCCT.core has been used in many works related with BCCT cosmetic

evaluation [101, 103, 104].

These tools, while innovative and reproducible, have several drawbacks that need to be ad-

dressed. Both use only frontal photographs of the patients, which do not include lateral or oblique

views. This approach is rare in the history of the aesthetic outcome of BCCT [181] and only

a small number of researchers have used lateral features in their work. The exceptions include

Kim et al. [126], who compare objective measurements based on breast ptosis with ratings on a

subjective scale made by experienced clinical observers and more recently, Lee et al. [139] who

introduces a novel quantitative measure of breast curvature based on catenary. They compared

the length, the area enclosed by the curve, and the curvature measure from the catenary curve to

those from manual tracings of the breast contour. Likewise, the same procedure was applied to

frontal photographs. This can be related with the difficulty of extracting robust features from lat-

eral views. The question is: “is it important to include this information?” Fitzal et al. [80] stated

that lateral and oblique views are difficult to standardise and the solution will be to move into a

3D version of the software.
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2.8.2 Three-dimensional Methods

Potential advantages of 3D imaging as a tool for objective cosmetic evaluation include the abil-

ity to view the breast from a significant different number of angles, to estimate volume/volume

deficit and to plan future surgeries. There are several variations of this tool, from relatively sim-

ple volumetric analyses to more sophisticated programmes, which make it possible to perform

quantitative measurements and software that makes it possible to simulate the post-operative out-

come. Although these benefits are known, some authors still doubt the ability of current 3D image

analysis methods [35].

2.8.2.1 Existing Systems

Several research groups have recently made attempts with 3D approaches (see Table 2.3).

3D imaging in breast surgery can be used for several clinical purposes. The most practical

applications are evaluating breast asymmetries, both congenital and acquired, and factors affect-

ing breast shape in augmentation mammaplasty. Other uses of 3D imaging for clinical purposes

include the evaluation of patients who wished to have a reduction mammaplasty and the evaluation

of patients undergoing unilateral breast reconstruction to determine the expander and permanent

implant size that gives the best symmetry with the contralateral breast.

Galdino et al. [86] investigated the use of clinical 3D imaging to determine quantitative in-

formation about the breast, such as volume or projection. They applied this approach to real

cases, providing objective data on the breast and surgical mammaplasty (especially augmentation

mammaplasty). This helped surgeons better understand the factors that contribute to breast shape

and influence surgical outcomes. A couple of limitations were found, highlighted by patients with

significant ptosis or suffering from obesity, which may introduce errors into the 3D data, making

them unreliable.

Losken and colleagues [153,154,174] developed an objective technique based on a 3D camera

and software to quantify the cosmetic results of BCCT. This software package enables the compar-

ison between the treated and untreated breast by analysing the surface area and volume differences.

The camera includes 12 individual digital lenses arranged in 3 planes with a single focal point at

the manubrium. Images are captured with the patients’ arms in two different positions: at their

sides and on their hips. The software is then used to determine the level of asymmetry between

the breasts by overlapping the 3D meshes from the two breasts (see Figure 2.6).

Bert et al. [20] described a 3D stereo-photogrammetry system which captured 3D surface

anatomy data, making it possible to perform a volumetric assessment of the breasts. In order to

reproduce the position of the patient in fractionated radiotherapy, the patient surface model is reg-

istered to a previously recorded reference surface. This is performed using surface registration,

where the system determines the rigid-body transformation that minimises the distance between

the treated and the reference surface models in a region-of-interest (ROI). The implemented sys-

tem is accurate and sufficiently stable to be used in clinics. Errors were computed by comparing
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Type Authors Papers year Technology Type of vision Compl.

Multi - camera Losken et al. [153,154,174] 2005 - 2008

Camera with 12 individual
digital lenses arranged in 3
planes with a single focal
point

Passive High

Stereo - pho-
togrammetry Bert et al. [20] 2005 3D stereo - photogramme-

try and surface registration Passive Average

3D Laser Scanner Isogai et al. [113] 2006

3D laser scanning and
quantitative compari-
son with Moiré patterns
projection

Active Average

3D Laser Scanner Farinella et al. [74, 75] 2006
3D laser scanning com-
bined with anatomical
landmarks

Active High

3D Laser Scanner Tepper et al. [230, 231] 2006 - 2008 3D laser scanning and sur-
face registration Active High

3D Laser Scanner Balaniuk et al. [13] 2006

3D laser scanning in com-
bination with a generic 3D
model of the internal struc-
ture of the breast using
virtual reality approaches
combined with soft tissue
modeling

Active High

3D Laser Scanner Kovacs et al. [134–136] 2006 - 2007

3D laser scanning and
comparison with ref-
erence measurements
obtained nuclear magnetic
resonance imaging

Active High

3D Laser Scanner Catanuto et al. [41, 42, 189] 2008 - 2009

3D laser scanning and
stereo opto-electronic
tracking system with
breathing artifact correc-
tion

Active High

Multi - camera Henseler et al. [106] 2011

3D model generated with
a 4 pods and 8 cameras, 2
cameras on each pod and
comparison with volume
measured with BAT c©
software [80]

Passive Average

3D Low Cost RGB-
D camera Oliveira et al. [177, 182] 2011 - 2012

Disparity map generation
with Kinect device. Au-
tomation of prominent
points and breast contour,
and comparison with
results obtained with
BCCT.core [28]. Volumet-
ric detection using a low
cost solution.

Active (Infra-
red) Low

3D Laser Scanner Eder et al. [67] 2012

3D laser scanning by
overlapping the mirrored
left breast with the right
breast. 3D contour defini-
tion and comparison with
contour obtained with
BCCT.core software [28]

Active Average

Table 2.3: Comparison of the most significant 3D technologies involved on Breast Cancer cos-
metic evaluation.

the surface model with the computed tomography (CT) geometry, and were in the order of sub-

millimeters. Alignment deviation and gating-signal tests were of the same magnitude.

A quantitative analysis using 3D imaging was proposed by Isogai et al. [113], who used laser



24 Literature Review

Figure 2.6: Application example from Moyer et al. [174]. (A) represents the lateral image of the
treated breast overlapped on the healthy breast; (B) presents the comparison between the healthy
breast (natural colour) with the treated breast (meshed). The software analyses the surface through
the (B) mesh interpolation and the (C) division into random individual points. The distance be-
tween the two surfaces meshes (D) is computed by the software and given as the RMS, represent-
ing the asymmetry score. All individual distances between corresponding points are summed to
give a total volume difference, designated as the square root of each squared difference.

light scanning to generate 3D images, which were then subjected to Moiré patterns for a quanti-

tative comparison of the reconstructed breast with the normal breast. The evaluation is based on

breast symmetry, volume and shape after breast reconstruction using the 3D laser light scanner

system. Captured images of the normal breast were mirror-reversed and overlapped on images of

the reconstructed breast.

Farinella et al. [74,75] used 3D laser scanning combined with anatomical landmarks identified

by surgeons and developed the Breast Shape Analyzer 0.1 (BSA 0.1) software, which provided

useful objective quantitative measurements to surgeons. This technique uses only well-defined

anatomical points (Figure 2.7(a)), which have been identified and selected by surgeons. A simple

sequence of geometric operations is performed to divide the breast surface into four anatomic

subunits, according to the clinically derived breast meridian and equator lines. Using this breast

shape partition, useful measurements can be extrapolated on a 3D model data set. The models

used in this work were collected following the most common criteria for cosmetic evaluation and

reconstruction (such as age, menopausal status, ptosis classification). The acquisition was made

using a commercial laser scanner, applied on volunteers sitting on a chair with their back at 45

degrees (Figure 2.7(b)). Each volunteer was scanned three times: facing the camera and rotating

the chair at 45 degrees to the left and to the right. This system has an important limitation related

to some of the patients’ uncontrollable physiological movements. During the acquisition, the

breathing and imperceptible body torsions influenced the data, and thus the authors decided not to

merge the different scans. The authors suggest that this can be overcome by adopting a faster but

less accurate shape-from-video technique.

Tepper et al. [230,231] used 3D imaging to enable an objective volumetric analysis of breasts

prior to breast reconstruction. Surgeons are then capable of visualising the size, shape, contour
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(a) (b)

Figure 2.7: Application example from Farinella et al. [75]. a) Anatomical landmarks; b) Volun-
teers sitting positions (Patients’ posture and rotation of the chair with respect to the camera).

and symmetry of the breast with 3D breast models, as well as obtaining quantitative breast mea-

surements and volumetric calculations. This application represents a significant advance from

traditional approaches to aesthetic and reconstructive breast surgery.

A 3D imaging tool was developed by Balaniuk et al. [13], using virtual reality approaches

combined with soft tissue modelling methods which allow surgical simulations to predict cos-

metic outcomes and options for breast augmentation and reconstructive procedures. They discuss

the adequacy of the different medical procedures to the patient’s choice, and state that it is very

important, for patients and for surgeons, to have a tool to visualise the potential outcomes of the

surgery and make decisions on their surgical options. In Figure 2.8, we can see an example of the

model created with this application for a breast with and without an implant.

Figure 2.8: Application example from Balaniuk et al. [13]. The breast with and without an implant.

In the work carried out by Kovacs et al. [134–136], it is stated that the 3D scanner represents a

simple and promising method to measure the breast volume. In their work, they present a research
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study on the optimisation of the imaging technology for the mammary region with a 3D laser

scanner, which is used to evaluate the method’s precision and accuracy, and to allow optimum

data reproducibility. The standardisation of the imaging and scanning system is decisive in order

to guarantee that the method is reproducible. They have tested the most favourable imaging tech-

nology on dummy models for scanner-related factors, such as the scanner position in comparison

with the torso and the number of scanners and single shots. This application showed the correct

settings for 3D imaging of the breast region with a laser scanner with an acceptable degree of

accuracy and reproducibility.

Catanuto et al. [41,42] present a set of parameters to unambiguously estimate the shape of the

natural and of the reconstructed breast, using an optoelectronic tracking system in seven female

volunteers. This study allows a real-time breathing artifact correction [189] and a surface patch

fusion with no intervention from the operator. With these parameters, it is possible to describe

several anatomical geometrical properties, such as: distances (linear measurements between rele-

vant anatomical landmarks); surface measurements (total surface area, anatomical subunits area);

angles (divergence between the nipples from the patient’s point of view, inclination of the breast

mound on the chest wall); curvature (curved surface properties); symmetry (symmetry between

the two sides of the chest wall); and IMF shape (natural characterisation and reconstructed breast

shape). With this technique, the most interesting result obtained was a graphic depiction of the

curvature of the thoracic surface. While the first, the "divergence angle", gives a perspective on the

point of view of the patients’ own breasts (Figure 2.9(a)), the latter introduces a representation of

the breast based on a colour map which expresses flat regions and curvature (Figure 2.9(b)). The

authors conclude that the colour based curvature representation can replace volume terminology,

as curvature can be expressed either with colours or its degree by coefficients. The breast surface

was segmented into four quadrants using reproducible landmarks. The proposed methodology

relies on geometric planes (bilateral symmetry plane, meridian plane and equatorial plane) that

make it possible to calculate significant clinical angles.

A 3D multiple stereo camera system was introduced by Henseler et al. [106] to objectively

assess breast shape. The system is composed of 4 pods and 8 cameras, 2 cameras on each pod.

Several dummy patient breast models and breast surfaces were captured. Then a 3D model was

constructed and the volume was measured with BAT software [80]. The researchers stated that the

obtained results were very satisfactory, on 3D data obtained from the dummy models. In the real

breast model, all measurements of total breast volume were consistently higher compared to the

results obtained with stereophotogrammetry (see Figure 2.10). Moreover, the arbitrary identifica-

tion of the chest wall during the immersion of the breast was the cause of the poor reproducibility

of this method. This highlights the technical difficulties of the method. The measurements of

volume were more reproducible with the 3D imaging method. Nevertheless, the true volumes of

the breasts remained uncertain due to undefined breast boundaries.

Eder et al. [67] conducted a study based on a 3D evaluation protocol to analyse breast symme-

try according to 3D breast contour differences between the left and the right breasts using surface

imaging. In this study, researchers objectively compared breast symmetry using a 3D scanner by
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(a)

(b)

Figure 2.9: Application example from Catanuto et al. [42]. a) Example of divergence angles on a
3D model; b) Example of colour based map. Colour scale associates values to a curvature colour
scale.

Figure 2.10: Application example from Henseler et al. [106]. Segmented breast on 3D model,
breast segment with chest wall.

overlaying the mirrored left breast with the right breast and determining the mean 3D contour

difference between the two breast surfaces. Three observers analysed the evaluation protocol pre-

cision using two dummy models. They also evaluated the potential of this approach in clinical

applications comparing it with BCCT.core [28], on 23 breast reconstruction patients. The authors

concluded that this approach could assist surgeons in the pre-operative planning and optimisation
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of breast corrections after reconstruction and breast conservative approaches.

In 2010 Tepper et al. [232] provided an overview of 3D breast photography, with an empha-

sis on its potential role to establish a standardised system for breast analysis, by introducing a

new concept entitled "mammometrics". In this concept, 3D-based breast measurements can be

used to help guide operative planning and objectively analyse surgical results. In their work, the

researchers validated the use of 3D breast photography in various clinical arenas, including au-

tologous breast reconstruction, prosthetic breast reconstruction, reduction mammaplasty, and aug-

mentation mammaplasty. They state that 3D imaging technology has the ability not only to obtain

well-established breast measurements accurately, but also to find new measurements that were not

previously possible with conventional tools, such as total breast volume, volumetric distribution

and breast projection.

Recently the Kinect (Microsoft Corp. Redmond, WA) [177,182] was introduced as promising

low cost and easy to use equipment for BCCT cosmetic evaluation. This tool can not only facilitate

automation, but also provide volumetric information (see Figure 2.11).

(a) (b)

Figure 2.11: Patient photograph and generated disparity map (From [182]).

With this solution authors improved automation of prominent points and the breast contour [177],

comparatively to those obtained with the original BCCT.core [28]. Furthermore, other promising

results were achieved, including the detection of volumetric differences of the breasts using the

disparity map generated from the Kinect [182]. It was shown that depth-map images facilitate the

automation of BCCT.core and thus this software remains low cost and an easy to use solution. Ob-

tained results also showed an excellent performance and robustness for a wide variety of patients.

Authors believe that this kind of systems could be a feasible solution to use in the future for 3D

assessments of BCCT results.

2.8.2.2 Summary

All research work presented was particularly related to BCCT and more recently other types of

breast cancer locorregional treatment, and also with plastic surgery. Some of the approaches can
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only be applied to a specific procedure because the characteristics to consider in each situation

may be different and the precision level can also differ according to each situation.

Currently, the approaches are mainly based on 3D laser scanners using active and passive

lighting. However, these methods do not fill completely physicians’ expectations. The most re-

cent works [67, 106], are based on methodologies introduced previously, and compared the per-

formance with results obtained with 2D tools [28, 80], which continue to be used as a reference.

Over the last few years unfortunately there was not a technological evolution of these method-

ologies, foreseeing a radical change, which may well pass through the use of simpler approaches

based on low-cost systems. The main drawback of 3D techniques is the demand for specialised

hardware, software and personnel. The high cost and the difficulty of using these methods on

a daily basis prevent their widespread use in the near future. Additionally, almost all currently

used techniques based on 3D models do not try to predict the aesthetic result for a more informed

choice of treatment, nor are they suitable for the automatic evaluation of the aesthetic result after

the surgery [42, 136, 153]. Other issue is related with the long acquisition time needed to obtain

the 3D model, which can result in discomfort for the patient. During the period of acquisition any

movement made by the patient can result in unreliable 3D models. Apart from the 3D scanners

based systems, researchers are still using methodologies based on stereo vision [140] or multi-

camera systems [122]. However, 3D reconstruction of breasts is a very difficult task since it is

featureless.

Another important issue is related with automation of the software. All solutions need total

or partial input from the user to obtain features that are used to achieve the expected result. The

automatic identification of fiducial points can be difficult to localise, like the manubrium and ster-

nal notch, especially with poor lighting and among overweight and obese patients. This makes a

fair comparison between different researchers and institutions difficult. Moreover, reproducibility

of the results is very difficult to obtain. The comparison between different methodologies is also

very hard to achieve, since databases used in the different studies are not shared.

It would be desirable to have completely automated software, low cost and easy to operate

hardware and the ability to compare results with public databases

2.9 Public Databases

The demand for more capable and accessible databases is welcome and necessary. Public datasets

provide common standards to measure and compare accuracies of proposed approaches. Databases

should be available, preferentially over the Internet, and continuous user support is also indispens-

able. The importance of having public datasets is recognized, both to evaluate the performance of

existing systems and to encourage the development of new algorithms. One of the trends is related

to the database size. In this context, a larger data set will give more reliable results. Another

trend is that databases have to become more diversified, with respect to patient characteristics, or

surgical interventions. Annotation of the data, ground truth, is also mandatory in order to give

an independent comparison of the results obtained from different methodologies. In particular,
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BCCT authors are not accustomed to provide access to the data used in their works, in contrast to

radiology researchers [102, 172, 226]. This fact makes it difficult to compare results, metrics and

the different methodologies employed.

The only exception is the database provide by the Breast Research Group 1. This dataset is

composed of data acquired from three different institutions in Portugal, comprising photographs

from 120 patients. Data acquired was collected from patients treated with conservative breast

surgery, with or without auxiliary surgery and radiotherapy, with treatment completed at least one

year before acquisition. All patients signed an informed consent to participate. Breast images

were acquired employing a 4 Megapixel digital camera. Photographs were taken in four different

positions with the patient standing on floor marks: facing, arms down; facing, arms up; operated

side, arms up; contralateral side, arms up. Figure 2.12 presents a typical set of images for a

patient. A mark was made on the skin at the suprasternal notch and at the midline 25 cm below

the first mark. These two marks create a correspondence between pixels measured on the digital

photograph and the length in centimetres on the patient.

(a) (b) (c) (d)

Figure 2.12: Breast Research Group Database - Patient acquisition - Different positions
(From [28]).

This database has two different kinds of annotation: subjective evaluation of the aesthetic re-

sult and the definition of breast contour and fiducial points (nipple position, suprasternal notch

position and the 25cm mark). The subjective evaluation used the opinion of several experts with

experience in BCCT [40]. A set of 24 clinicians working in 13 different countries were selected,

based on their experience in BCCT (number of cases seen per year and/or participation in pub-

lished work on evaluation of aesthetic results). They individually evaluated a series of 120×4

photographs taken from 120 patients. They were asked to evaluate overall aesthetic results, clas-

sifying each case using the Harris scale [96]: excellent, good, fair and poor. In order to obtain a

consensus among observers, the Delphi process was used [99, 119]. In the end, the consensus on

aesthetic results was obtained in 113 of the 120 evaluated patients, equivalent to 94% of the cases.

The distribution of cases is presented in Table 2.4.

With respect to breast contour and fiducial points annotation, 8 independent users manually

marked these features, in frontal patient views, using the BCCT.core software tool [28] (see Fig-

ure 2.13).

1http://medicalresearch.inescporto.pt/breastresearch/

http://medicalresearch.inescporto.pt/breastresearch/
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Class #cases
Excellent 14

Good 64
Fair 24
Poor 11

Table 2.4: Breast Research Group Database - Distribution of the patients over the four classes
(From [28]).

Figure 2.13: Breast Research Group Database - Manually annotation using BCCT.core software
(From [28]).

Both patient data and ground truth annotation files can be accessed at the website of the Breast

Research Group 1.

2.10 Conclusion

The widespread method to evaluate aesthetic results in breast cancer treatment consisted of ob-

server evaluations, known as subjective assessments. Harris et al. [96] introduced an overall

cosmetic score: excellent, good, fair and poor. In this method, the aesthetic of the breast pa-

tient is evaluated directly or using a photograph. However, the global aesthetical results are the

combination of several features, estimated and subjectively combined by the observers by visual

inspection. Subjective evaluation is poorly reproducible, even when performed by specialists,

which significantly limits comparison between centres dedicated to breast cancer.

Initial objective methods, which appear to overcome the setbacks of subjective methodologies,

consisted of comparing the two breasts with simple measurements marked directly on the patients

or in photographs. Trying to overcome the sense that objective asymmetry measurements were

insufficient, other groups proposed the sum of the individual scores of subjective and objective

indices. However, adding subjective evaluation may result in important setbacks related to the

complete automation of the approaches, fundamental for high reproducibility. There remains a

1http://medicalresearch.inescporto.pt/breastresearch/

http://medicalresearch.inescporto.pt/breastresearch/


32 Literature Review

need to extract volumetric information in order to improve the overall cosmetic evaluation. Fur-

thermore, the solutions should remain low cost.

Potentially, a more accurate and objective tool to predict surgical outcomes to guide the pa-

tient and surgeon in the decision-making or planning process is using 3D imaging and surgical

simulations. A simulation model also allows patients to visualise the possible outcomes of dif-

ferent treatment options. It is generally accepted that 3D imaging has great potential in a clinical

environment, although there are factors that may influence its use in the near future. The high cost

of the equipment and the need for specialised people to operate are undesirable circumstances.

Consequently, the search for low cost and easy to use equipment is highly desirable.

Two important conclusions are drawn from the concepts addressed previously. The first one

is that cosmesis is an important objective of breast conserving treatment and it should be assessed

along with oncological outcome. The second one is that it is essential to have easy and repro-

ducible methods of assessment that are consistent worldwide. The immediate consequence of

these two assumptions is that subjective methods must be replaced by objective ones to obtain the

desired reproducibility and easy manipulation.

A good method of evaluation should be consistent and simple to use with all kinds of images.

For example, standards for photograph quality (definition, backlight, background) are required if

one is to expect discriminative power in evaluation of aesthetic results. Are we there yet? We do

not think so but the way is now open to the development these new techniques. With the upcoming

new breast oncoplastic surgeries there will be an even greater demand for evaluation of cosmetic

results. Radiotherapy also with the use of the partial breast irradiation techniques must now pave

the way for a comparison between the new cosmetic results and the ones obtained with an entire

irradiation of the breast.

In breast-conserving surgery, there is evidence that approximately 30% of women receive

a suboptimal or poor aesthetic outcome; however there is currently no standardised method of

identifying these women. We agree that a new generation of tools will see considerable growth

in the near future; these tools, tailored to the individual patient, should also target the prediction

(rather than just the evaluation of the treatment) of the aesthetic outcome of breast conserving

surgery. The combination of 3D photography and routinely acquired radiological images (i.e.

mammography, ultrasound and MRI, when available), together with information about the tumour

(size, location, shape etc.) will enable evaluation of alternative therapeutic strategies and the

consequences of the available options. This will aid communication with patients and empower

patients to take an active role in a shared decision making process.



Chapter 3

BCCT.core Software

The BCCT.core is a semi-automatic system capable of objectively evaluating the overall aesthetic

result of BCCT. A brief introduction was already made in Section 2.8.1.2.

This chapter presents the main characteristics of the BCCT.core software. Here, the features

extracted from the input data are presented, as well the quantification of the aesthetic results based

on an optimised objective score obtained from the extracted features. The methodology relies in

the cross-section of medical expert systems, soft computing and machine learning.

3.1 BCCT.core Design

BCCT.core [28] introduces the semi-automatic measurement of various indices related to aesthetic

results of surgical procedure, making a quick assessment that is easy and reproducible, categoriz-

ing the aesthetic result of BCCT on the Harris scale [96]. To accomplish the categorization, first,

a concise representation of a BCCT image is obtained based on asymmetry, skin colour changes

and surgical scar appearance. These measurements are preceded by the semi-automatic localiza-

tion of fiducial points (nipple complex, breast contour and jugular notch of sternum) on the digital

photographs [33,34]; measurements are then based on these fiducial points. All measurements are

immediately visible to the user (Figure 3.1) and recorded on a database. Simultaneously, the set

of measures is automatically converted into an objective assessment of the aesthetic result, based

on a machine learning algorithm.

3.2 Software Automation

Many works tried to automate the detection above mentioned fiducial points. In [221] authors

introduced a semi-automatic method to detect the breast contour in frontal colour images. The

contour is found based on previously known start and end points. Subsequently, the algorithm

automatically finds the contour in-between using graph theory. As a result, the algorithm finds the

minimum cost path between previously known end points provided manually by the user. This

line of work was improved in [34], where both the start and end points are found automatically.

33
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Figure 3.1: BCCT.core software interface.

External points of the contour are detected, considered the area of the body where the arm contour

intersects the trunk contour. However, and depending on the patient’s arm position, the contour of

the arm and trunk can be overlapped, and thus it can be impossible to distinguish when patients put

their upper limbs down. This problem is overcome by searching for the strongest vertical gradient

lines. However, this does not work if patients assume different arm positions.

3.3 Feature Definition

When an observer evaluates the cosmetic result of BCCT, he identifies and assesses aspects, such

as shape, colour, geometry, roughness and irregularity of the visual appearance of the treated

breast, compared with the untreated breast. All these factors are subjectively combined into an

overall assessment.

In the process of designing a software that mimics the human evaluation, one of the first steps

is the generation of features. These features must capture all factors with impact on the overall

aesthetic result and should be measurable in digital patient photographs after treatment.

As possible sets of discriminative features, were used those already identified by experts as

relevant to the human evaluation of surgery procedures. It is universally accepted that the aesthetic

outcome is essentially determined by visible skin changes, radiotherapy consequences such as

hyperpigmentation or telangiectasia, the scar caused by the surgery and by changes in breast size

or shape [149].

3.3.1 Asymmetry Features

The most disclosed measures used on the objective evaluation of aesthetic results are based on the

asymmetry between the treated and non-treated breast. Having different levels of asymmetry, it
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was chosen to measure all indices presented in the literature, without limiting the performance of

subsequent tasks. Some asymmetry measurements were also introduced, which seemed to com-

plement the existing ones [28]. The inserted measurements capture aspects, such as asymmetry

on the nipple position, differences on the lowest vertical position of the breast contour, breast

area differences, breast contour length differences, and others. All these measurements require a

conversion to the metric scale, using marks made on the patient’s skin at a known distance.

The indices, recorded to assess breast asymmetry were the following (see Figure 3.2):

• Breast retraction assessment (BRA) =
√
(X1−X2)

2 +(Y1−Y2)
2: quantifies the difference

in nipple position in both breasts and reflects the degree of breast retraction;

• Lower breast contour (LBC): difference between levels of inferior breast contour;

• Upward nipple retraction (UNR): = |Y1−Y2|: difference between nipple levels;

• Breast compliance evaluation (BCE): |Nl1−Nl2|: difference between left and right nipple

to IMF distance;

• Breast contour difference (BCD): the difference between lengths of left and right breast

contours;

• Breast area difference (BAD): the difference between areas of left and right breasts;

• Breast overlap difference (BOD): the non-overlapping area of the two breast after flipping

one of them along a vertical line and coinciding both points of junction with the thorax.

Figure 3.2: Illustration of measurements for asymmetry features.

The need to use additional marks conditions the automation of the process and, for this reason,

the adequacy of relative measures was studied. These measurements are the result of a difference

ratio between values taken from the treated and non-treated breast:

|V1−V2|
0.5× (V1 +V2)

(3.1)
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where V1 and V2 are values measured on the treated and non-treated breast. Using relative

measurements, it becomes unnecessary to use the scale mark on the patient.

The dimensionless asymmetry measurements, with respect to dimension ones, are:

• pBRA = BRA(√
X2

1 +Y 2
1 +
√

X2
2 +Y 2

2

)
/2

: quantifies the dimensionless difference in nipple position in

both breasts and reflects the degree of breast retraction;

• pLBC = LBC
(Y1+Nl1+Y2+Nl2)/2 : dimensionless difference between levels of inferior breast con-

tour;

• pUNR = UNR
(Y1+Y2)/2 : dimensionless difference between nipple levels;

• pBCE = BCE
(Nl1+Nl2)/2 : dimensionless difference between left and right nipple to IMF distance;

• pBCD = BCD
(L1+L2)/2 : the dimensionless difference between lengths of left and right breast

contours;

• pBAD = BAD
(right area+le f t area)/2 : the dimensionless difference between areas of left and right

breasts;

• pBOD = BOD
(right area+le f t area)/2 : the dimensionless non-overlapping area of the two breast

after flipping one of them along a vertical line and coinciding both points of junction with

the thorax.

3.3.2 Colour Difference Features

Others measures were also considered. The skin colour changes were introduced for the first

time by Cardoso and Cardoso [28], measuring the difference of colour between the treated and

non-treated breast, an aspect that is highly valued in the subjective evaluation because hyperpig-

mentation is a typical consequence of radiotherapy, and it depends largely on the dose of radiation

that is used.

The task of measuring the colour difference between images or between parts of the same

image takes a central role in many areas of engineering and is performed as follows: first, compute

the colour distribution in the important regions to compare (in this case histograms are used as an

estimate of the distribution); second, choose a comparative measurement for the histograms, which

adequately reflects the difference between the distributions.

The selection of the two regions to compare only involves the selection of two breast contours

(Figure 3.3).

Several measurements were made, without limiting the subsequent operations: the colour dif-

ference on each channel and on the three channels were computed simultaneously. Each of these

comparisons were made using two different metrics: the χ2 rate and the Earth Mover’s Distance

(EMD). The several experiments made with various colour spaces did not show important differ-

ences, so only the CIE L∗a∗b colour space was kept to be more perceptually uniform. A total of

eight colour changes measures are collected [28]. The list of features is:
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Figure 3.3: Breast mask for the extraction of colour features.

• cχ2
L : distance between the histograms of the left and right breasts measured in the L channel

of the CIE L*a*b* colour space, using the χ2 measure;

• cχ2
a : distance between the histograms of the left and right breasts measured in the a channel

of the CIE L*a*b* colour space, using the χ2 measure;

• cχ2
b : distance between the histograms of the left and right breasts measured in the b channel

of the CIE L*a*b* colour space, using the χ2 measure;

• cχ2
Lab3D: distance between the histograms of the left and right breasts measured in the 3

channels of the CIE L*a*b* colour space, using the χ2 measure;

• cEMDL: distance between the histograms of the left and right breasts measured in the L

channel of the CIE L*a*b* colour space, using the EMD;

• cEMDa: distance between the histograms of the left and right breasts measured in the a

channel of the CIE L*a*b* colour space, using the EMD;

• cEMDb: distance between the histograms of the left and right breasts measured in the b

channel of the CIE L*a*b* colour space, using the EMD;

• cEMDLab: distance between the histograms of the left and right breasts measured in the 3

channels of the CIE L*a*b* colour space, using the EMD.

3.3.3 Scar Visibility Features

The contribution of surgical scars is the most difficult to quantify due to their enormous variability.

Aspects such as size, position and contrast with the surroundings contribute to that perception. In

the BCCT.core software, the visibility of the scar was translated as local difference of colour. To

calculate this difference, the breast was divided into 12 angular sectors (30◦) with the vertex at
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the nipple (Figure 3.4) and the subsequent calculation of colour difference between correspond-

ing sectors, following the same procedure as that described for skin colour changes features; the

visibility of the scar is translated as the maximum of these differences.

Figure 3.4: Breast sectors for the extraction of local colour changes induced by the surgical scar.

The list of features related with surgical scar is:

• sχ2
L : visibility of the surgical scar captured in the L channel of the CIE L*a*b* colour space,

using the χ2 measure;

• sχ2
a : visibility of the surgical scar captured in the a channel of the CIE L*a*b* colour space,

using the χ2 measure;

• sχ2
b : visibility of the surgical scar captured in the b channel of the CIE L*a*b* colour space,

using the χ2 measure;

• sχ2
Lab3D: visibility of the surgical scar captured in the 3 channels of the CIE L*a*b* colour

space, using the χ2 measure;

• sEMDL: visibility of the surgical scar captured in the L channel of the CIE L*a*b* colour

space, using the EMD;

• sEMDa: visibility of the surgical scar captured in the a channel of the CIE L*a*b* colour

space, using the EMD;

• sEMDb: visibility of the surgical scar captured in the b channel of the CIE L*a*b* colour

space, using the EMD;

• sEMDLab: visibility of the surgical scar captured in the 3 channels of the CIE L*a*b* colour

space, using the EMD.
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3.4 The Aesthetic Classifier

Development an objective method for evaluating the aesthetic result of BCCT using digital im-

ages calls for a standard for result comparison (gold standard). As a solution to this problem, a

consensus evaluation was used performed by a panel of observers, experts in the field of Breast

Cancer Treatment [28, 40]. The model was built over a database of digital images of patients sub-

mitted to the BCCT (see Section 2.9) and an evaluation of the aesthetic result is provided for each

image resulting from the consensus of the panel. The method attempts to mimic the ground truth

evaluation.

The set of measures is automatically converted into an overall objective classification of the

aesthetical result, using a Support Vector Machine (SVM) classifier trained to predict the overall

aesthetical classification on the aforementioned scale of four classes.

SVMs have proved to be capable of representing complex classification or mapping functions.

They discover the representations using powerful learning algorithms. In the problem addressed

here, there is an inherent ordering between the classes, which motivated the use of models spe-

cially targeted for this kind of ordinal data. Using a mapping of the data replication method for

ordinal data in SVMs [29], and performing a simplified feature selection, was reached an SVM

classifier through a Radial Basis Function (RBF) kernel and requiring 4 features only: two to

capture asymmetry, one for skin colour changes and one for scar visibility [28].

3.5 Conclusion

BCCT.core is currently being used by many international groups in prospective studies, including:

Nottingham Breast Institute, UK; Leiden University Medical Centre, The Netherlands; Cancer

Care Center, Sydney, Australia; University of Heidelberg, Breast Center, Heidelberg, Germany;

Medical University, Vienna, Austria. Moreover, comprehensive reports can be generated and the

results can be stored in a database to facilitate trend and statistical analyses. The hassle-free in-

stallation and the intuitive windows-based interface of the BCCT.core allow users to start working

on cosmetic quantification immediately.

Although it is innovative and reproducible, this software has some issues that require im-

provements, as is often suggested by the users. Suggested improvements include the model’s

interpretability relating the aesthetic result with input measurements and the fact that only frontal

view photographs are used, disregarding information from side or oblique views. However, there

are important setbacks related to the complete automation of the software – which is fundamen-

tal for high reproducibility – and the capability to extract volumetric information to improve the

overall cosmetic evaluation.
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Chapter 4

Database

As stated in Section 2.9, the BCCT researchers usually to not provide access to the data used

in their work. That fact creates additional difficulties when researchers need to compare their

results. Some parts of the work conducted in this thesis used the Breast Research Group Database

(see Section 2.9). However, this database is only composed of frontal and lateral photographs

of patients, which is not enough to perform volumetric measurements. In order to perform the

proposal work, it was necessary to create a database meeting the requirements of this project.

4.1 Database Requirements

The process of creating a database for aesthetic evaluation in BCCT should meet specific require-

ments:

1. The collection of data should be performed by a Breast Cancer specialist;

2. Patients who participate in the study have to be subjected to a surgical intervention and, as

far as possible, include a significant number of cases of each type of intervention;

3. Ground truth annotation should also be available concerning fiducial points position (nipples

position, suprasternal notch position) and breast contour definition;

4. Subjective aesthetic evaluation is fundamental for researchers to develop their algorithms.

This subjective evaluation must preferably be performed by a panel of specialists;

5. All confidential medical information should not be included in the data;

6. When possible, the database should be available together with ground truth annotation on

the Internet so that other researchers can use it. The continuous user support is also indis-

pensable.

41
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4.2 Database Construction

The acquisition of pictures in medical environment is not always easy to perform. Patients must

agree with the process, and sometimes doing that on a voluntary basis makes it difficult to increase

the number of cases in the database. Currently, the database includes data from 135 patients

acquired during several sessions throughout more than one year, performed by a breast cancer

expert physician. The complete information of each acquired patient can be found in Table 4.1.

For each patient the acquired data include colour images (from different angles) acquired with

a standard 5MP portable camera (See Figure 4.1), as well as several (up to six) depth-map and

colour frontal images acquired with the Kinect 1 (640×480 px) (See Figure 4.2). However, some

patients do not include all modalities data. This was caused mainly by three issues: technical

problems with one of the acquisition devices; logistical problems related to the patient; and the

adaptation of thesis requirements, throughout the 4 years.

(a) (b) (c) (d)

(e) (f) (g)

Figure 4.1: Data acquired with a portable camera (Patient #15).

Subjective evaluations of the aesthetic results are also provided based on the Harris scale [96].

Ideally the overall aesthetic assessment should correlate coherently with a significant number of

expert assessments, from different areas of the world, which probably provide the desired reference

classification [40]. This evaluation panel has been planned; however, final assessment decision was

not achieved until this work was concluded. In order to provide the subjective evaluation on the

images acquired from patients, two experts in the field of breast cancer have voluntarily provided

their evaluation. In Table 4.2, it is possible to visualise the distribution of patients over the four

classes for the two evaluators.

In Table 4.2 it is possible to confirm that there are some discrepancies when comparing the

evaluations of the two evaluators. For example, evaluator #2 gives a better aesthetic assessment

1http://www.xbox.com/en-US/KINECT

http://www.xbox.com/en-US/KINECT
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Pat. # Acqui. date Nipple Height HD cam. Kinect (# photos) Sub. Eval.
Left Right # views Depth Colour Phy. #1 Phy. #2

1 22-03-2011 n/a n/a 7 3 n/a n/a n/a
2 22-03-2011 n/a n/a 7 4 n/a n/a n/a
3 22-03-2011 n/a n/a 7 3 n/a n/a n/a
4 22-03-2011 n/a n/a 7 3 n/a n/a n/a
5 22-03-2011 n/a n/a 7 6 n/a n/a n/a
6 29-03-2011 5 6.5 7 3 n/a 2 1
7 29-03-2011 2 2.8 7 4 n/a 3 2
8 29-03-2011 3.2 4.5 7 4 n/a 2 2
9 29-03-2011 4 6.5 7 3 n/a 2 1
10 29-03-2011 3.5 4 7 3 n/a 1 2
11 29-03-2011 3.5 5.5 7 4 n/a 3 2
12 31-03-2011 4.5 4.5 7 6 n/a 1 3
13 31-03-2011 3 3 1 3 n/a 1 2
14 31-03-2011 6 4.5 7 3 n/a 4 2
15 05-04-2011 6 5 7 4 n/a 4 4
16 05-04-2011 2.5 3 7 5 n/a 4 1
17 05-04-2011 2.5 4 7 2 n/a 1 1
18 15-04-2011 5.8 2.3 7 2 n/a 4 3
19 15-04-2011 3.6 4.2 7 3 n/a 1 2
20 15-04-2011 3.8 2.7 7 3 n/a 4 2
21 15-04-2011 2.4 4 7 3 n/a 4 2
22 15-04-2011 3.4 3.5 7 3 n/a 3 1
23 15-04-2011 1.3 1.3 7 3 n/a 2 1
24 15-04-2011 2.9 3.2 7 3 n/a 1 1
25 15-04-2011 3.4 2.4 7 3 n/a 3 3
26 17-05-2011 5 5.9 7 3 n/a 2 2
27 17-05-2011 5.6 7 7 3 n/a 3 3
28 17-05-2011 2.9 3.4 7 4 n/a 2 1
29 17-05-2011 3.1 2.5 7 3 n/a 1 1
30 17-05-2011 2.6 2.5 7 3 n/a 2 2
31 17-05-2011 4.5 4.1 7 3 n/a 2 1
32 17-05-2011 5 4.5 7 3 n/a 1 2
33 24-05-2011 5.1 4 7 3 n/a 3 2
34 24-05-2011 5 5.8 7 3 n/a 4 2
35 24-05-2011 5 3.4 7 3 n/a 4 4
36 24-05-2011 2.5 1.3 7 3 n/a 2 1
37 24-05-2011 2.7 3.5 7 3 n/a 1 2
38 24-05-2011 3.6 3.3 7 1 n/a 1 2
39 24-05-2011 4.2 4.6 7 3 n/a 4 4
40 24-05-2011 3.3 3.7 7 3 n/a 1 3
41 24-05-2011 2.8 2.4 7 3 n/a 4 3
42 24-05-2011 3.4 3.9 7 3 n/a 1 2
43 24-05-2011 2.1 1.3 7 3 n/a 3 3
44 24-05-2011 2.4 2.5 7 3 n/a 4 4
45 24-05-2011 2.5 1.4 7 3 n/a 2 2
46 24-05-2011 4.7 3 7 3 n/a 1 1
47 24-05-2011 2.9 3.1 7 2 n/a 4 3
48 05-04-2011 5 6 7 n/a n/a 2 1
49 15-04-2011 0.9 1.4 7 n/a n/a 2 1
50 24-05-2011 5.9 4.5 7 n/a n/a 1 1
51 22-11-2011 4.4 4.8 3 3 3 4 4
52 22-11-2011 4.2 3.9 3 3 3 3 2
53 22-11-2011 2.5 2.1 3 2 2 3 2
54 22-11-2011 2.3 1.7 3 3 3 2 1
55 22-11-2011 3.7 1.9 3 2 2 2 2
56 16-03-2012 n/a n/a 3 2 n/a 1 1
57 16-03-2012 n/a n/a 3 2 n/a 4 3
58 16-03-2012 n/a n/a 3 3 n/a 3 2
59 16-03-2012 n/a n/a 3 3 n/a 2 1
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Pat. # Acqui. date Nipple Height HD cam. Kinect (# photos) Sub. Eval.
Left Right # views Depth Colour Phy. #1 Phy. #2

60 16-03-2012 n/a n/a 3 3 n/a 2 1
61 21-03-2012 n/a n/a 3 2 2 1 1
62 21-03-2012 n/a n/a 3 4 4 2 1
63 21-03-2012 n/a n/a 3 2 2 4 3
64 21-03-2012 n/a n/a 3 1 1 2 1
65 21-03-2012 n/a n/a 3 n/a n/a 1 1
66 23-03-2012 2.2 3 3 5 5 1 2
67 23-03-2012 5.4 5.4 3 5 5 1 2
68 23-03-2012 6 8.5 3 5 5 4 2
69 23-03-2012 n/a n/a 3 5 5 2 1
70 28-03-2012 3.6 4 3 3 3 4 2
71 28-03-2012 1.3 0.8 3 3 3 1 1
72 28-03-2012 1.8 2.6 3 4 4 2 2
73 28-03-2012 4.8 4.4 3 5 5 1 1
74 28-03-2012 6.1 4.9 3 3 3 2 1
75 28-03-2012 3.3 3.8 3 4 4 1 1
76 28-03-2012 8 8 3 3 3 2 1
77 30-03-2012 4.7 5.8 3 2 2 2 1
78 30-03-2012 2.3 3.4 3 3 3 2 2
79 30-03-2012 3.8 3.6 3 4 4 1 1
80 04-04-2012 4.6 4.3 3 3 3 2 1
81 04-04-2012 3.9 3.7 3 3 3 3 1
82 04-04-2012 4.1 3.8 3 4 4 3 3
83 04-04-2012 2.5 2.4 3 4 4 1 1
84 04-04-2012 4.1 4.7 3 4 4 2 1
85 04-04-2012 3.2 3.8 3 5 5 2 2
86 04-04-2012 2.7 3.7 3 4 4 1 1
87 04-04-2012 3.2 4.2 3 5 5 2 1
88 11-04-2012 3.7 4.7 3 4 4 2 1
89 11-04-2012 3 4 3 4 4 2 1
90 11-04-2012 1.5 0.9 3 2 2 3 2
91 11-04-2012 2.9 4.4 3 4 4 2 1
92 11-04-2012 6 5.3 3 5 5 4 2
93 11-04-2012 1.5 2.5 3 4 4 4 4
94 23-05-2012 3.6 3.6 3 5 5 1 1
95 18-04-2012 2.3 2.3 3 4 4 1 1
96 18-04-2012 5.7 5.3 3 4 4 3 2
97 18-04-2012 2.3 2.8 3 5 5 1 1
98 18-04-2012 4 4 3 5 5 1 1
99 18-04-2012 4.5 3.5 3 4 4 3 1
100 18-04-2012 4.4 4.1 3 5 5 2 1
101 20-04-2012 4.3 4.6 3 5 5 2 1
102 20-04-2012 3 3.3 3 2 2 4 2
103 27-04-2012 4 3.6 3 5 5 3 1
104 27-04-2012 3.1 3.5 3 5 5 2 1
105 27-04-2012 4.2 4.2 3 5 5 2 2
106 27-04-2012 2.2 3.1 3 5 5 1 1
107 27-04-2012 3.6 3.8 3 4 4 1 1
108 27-04-2012 3 3.5 3 5 5 1 2
109 27-04-2012 3.8 3.8 3 5 5 1 1
110 02-05-2012 3.5 3.5 3 5 5 3 3
111 11-05-2012 2 3.4 3 5 5 3 2
112 11-05-2012 1.9 4.2 3 4 4 3 3
113 16-05-2012 1.8 2.3 3 5 5 1 1
114 16-05-2012 2.6 2.6 3 5 5 1 1
115 16-05-2012 2.5 3.7 3 4 4 1 1
116 16-05-2012 3 4 3 5 5 2 1
117 18-05-2012 4.2 3.7 3 5 5 1 1
118 18-05-2012 3.9 3.3 3 5 5 3 2
119 23-05-2012 2.1 1.9 3 5 5 2 1



4.2 Database Construction 45

Pat. # Acqui. date Nipple Height HD cam. Kinect (# photos) Sub. Eval.
Left Right # views Depth Colour Phy. #1 Phy. #2

120 23-05-2012 3.1 4.7 3 5 5 3 3
121 23-05-2012 3 3 3 5 5 1 1
122 25-05-2012 4.3 4 3 5 5 4 3
123 25-05-2012 4 2.6 3 4 4 2 2
124 25-05-2012 2.8 3.6 3 4 4 3 2
125 25-05-2012 2.8 2.2 3 4 4 1 1
126 25-05-2012 3.3 4.3 3 4 4 1 1
127 25-05-2012 3 2.6 3 5 5 2 1
128 06-06-2012 3.3 3.4 3 5 5 3 2
129 06-06-2012 4.2 4.2 3 4 4 2 1
130 06-06-2012 3.8 3.3 3 4 4 2 1
131 13-06-2012 5 4.1 3 3 3 1 1
132 13-06-2012 4.9 4.4 3 5 5 3 1
133 13-06-2012 3 2.5 3 5 5 3 2
134 13-06-2012 2.5 3.2 3 5 5 2 2
135 13-06-2012 4.1 4.6 3 5 5 3 1

Table 4.1: Patients information provided in the database.

(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 4.2: Data acquired using the Kinect device (Patient #93). Colour and corresponding depth-
map image.

Class Excellent Good Fair Poor Total

# cases Phy. #1 41 42 26 21
130

Phy. #2 67 42 15 6

Table 4.2: Distribution of the 130 patients over the four classes.

comparatively to evaluator #1. To better understand the disagreement between evaluators, the

correlation coefficient and Cohen’s kappa coefficient are shown in Table 4.3.

By looking at Table 4.3, it is easy to observe that agreement is not very significant, corrob-

orating the need for an evaluation performed by a panel of experts. Particularly, the Weighted
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Disagreement Correlation Coefficient Kappa Weighted Kappa
0.59 0.60 0.16 0.34

Table 4.3: Disagreement between evaluators.

Kappa (wk) coefficient presents a very low value, considered "fair", which is normally assessed

as: 0-0.25 - poor; 0.26-0.50 - fair; 0.51-0.75 - moderate; 0.76-1 - good.

The Kappa statistics was designed to evaluate the real agreement between two different criteria

to measure the same characteristic. This coefficient measures inter-rater agreement for qualitative

characteristics. It is generally more robust than simple percent agreement calculation since Kappa

statistics looks to the agreement occurring by chance. As a result, this measurement is now more

and more used in medical environments [48]. Since aesthetic classification has a particularly

order, Weighted Kappa can be used as it was especially designed for this kind of data, counting

disagreements differently. In this case, the weighted matrix was as follows:

wk =


1 2/3 1/3 0

2/3 1 2/3 1/3

1/3 2/3 1 2/3

0 1/3 2/3 1



Manual ground truth annotation was performed both in Kinect data and for the data acquired

with a portable camera (frontal data only). With Kinect data the positioning of the breast peaks,

defining breast contour and locating endpoints were annotated in depth-map images, as well as

nipple position and suprasternal notch position in the Kinect colour image (see Figure 4.3).

Kinect data (depth and colour) are not aligned due to construction characteristics. This partic-

ularity will be further addressed in Section 8.5. In Figure 4.3, it is possible to visualise the ground

truth annotation on some patient data. Breast contour and breast peak point can be visualised in

the depth-map images, represented as cyan lines and yellow crosses respectively. While breast

contour was manually annotated, the breast peak points (the area in the breast closer to the cam-

era or further away from the chest wall, not necessarily the nipple) were semi-automatic defined,

based on depth-intensity information in an area delimited manually. The nipple and suprasternal

notch positions were annotated in the Kinect colour image.

Ground truth annotation for the data acquired with a portable camera was performed using the

BCCT.core software for frontal patient data only, defining the breast contour and fiducial points

(nipple position and suprasternal notch position) (see Figure 4.4).

Additionally, the height of both nipples (distance between the medial projection of the nipple

and the sternum measured with 2 rulers) were manually obtained by the physician during the

acquisition period (see Figure 4.5).
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(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 4.3: Kinect data ground truth annotation (breast contour definition, breast peak point posi-
tion, nipple position and suprasternal notch position) (for Patient #55, #85, #92 and #122).

(a) (b)

(c) (d)

Figure 4.4: Portable camera data ground truth annotation (breast contour definition, nipple position
and suprasternal notch position) (for Patient #55, #85, #92 and #122).

4.3 Conclusion

It is well recognised that breast cancer databases are not publicly available, particularly in the

area of aesthetic result assessment, which difficult the comparison between researchers. In this

thesis, we addressed this gap by proposing a multi-modal database based on colour and depth-
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Figure 4.5: Nipple height measurement.

map images. We do acknowledge that not all images in the database respect all quality assessment

criteria. Nevertheless, the database reflects a wide variability of cases and conveys the reality on

patients which performed a breast surgical procedure.

Despite the fact that our database has a limited number of images, we strongly believe that

it is enough to conduct the proposal objectives on this thesis. In any case, the number of cases

can be increased in the future. Annotation is a subjective, tedious, and extremely time-consuming

task, which should be preferentially performed by specialists, which can turn into an extremely

difficult and costly task. In this work, there was a big concern in making precise annotations.

However, while fiducial points annotation presents satisfactory results, the subjective evaluation

for the aesthetic result was only performed by two specialists. For that reason, in future, will

be integrated in the database a subjective evaluation performed by a panel of specialist with the

indispensable agreement.

We consider that this database has the potential to be a greet value in the breast cancer field.

With this database, we aim at increasing available resources in the breast imaging, facilitating the

comparison algorithms of different investigators. This can motivate computer vision researchers

to develop methodologies that take advantage of a multi-modality database. The high image di-

versity of this database will provide new challenges, but extremely useful to design more robust

algorithms to evaluate the aesthetic result. For these reasons, we believe that this database can be

a reference for future works in the breast cancer imaging area. Both patient data and ground truth

annotation will be available at the website of the Breast Research Group 1.

1http://medicalresearch.inescporto.pt/breastresearch/

http://medicalresearch.inescporto.pt/breastresearch/


Chapter 5

Closed Shortest Path in Images∗

Shortest path algorithms are extensively used in image processing applications, ranging from staff

line detection in music scores to detection and tracking of vibrating structures, such as lines and

cables in civil engineering, encompassing fiducial point detection. There are applications where

the starting and ending positions of the shortest path need to be constrained, defining a closed con-

tour enclosing a previously detected seed. The detection of the external contour of the iris can be

addressed as such for biometric applications. Usually the closed contour computation is addressed

by transforming the image into polar coordinates, where the closed contour is transformed in an

open contour between two opposite margins.

In this Chapter, after calling the attention to some limitations of this process, we show how

to compute the closed contour in the original coordinates. After defining a directed acyclic graph

appropriate for this problem, we address the main difficulty in operating in the original coordinates.

Since small paths collapsing in the seed point are naturally favored, we modulate the cost of the

edges to counterbalance that bias. The method is illustrated with examples from The Berkeley

Segmentation Dataset and a thorough evaluation is conducted with datasets from the breast cancer

field. During this thesis, this algorithm will be applied to compute the areola contour in RGB

images (see Chapter 9).

5.1 Regional Detectors

The image interpretation has and still is being hampered by the lack of an efficient representa-

tion (or abstraction) for the visual data. One standard approach is to represent the image on the

basis of the low-level features of images, such as colour, texture, and shape. Almost all these

systems are founded on the premise that images can be characterised by global descriptors. The

global descriptor consists of features computed on the whole image. For example in Rubner et

al. [209], the authors proposed a Histogram based algorithm to characterise an image by its color

distribution or histogram, using the EMD for matching histograms. Another option is based on

local descriptors [241], building on the idea that some points in the image are more relevant than

∗Some portions of this Chapter appeared in [32]
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others for operations such as alignment or establishment of a dense set of correspondences so

that a 3D model can be constructed or an in-between view can be generated. During the feature

detection (extraction) stage, each image is searched for locations that are likely to match well in

other images. At the feature description stage, each region around detected keypoint locations is

converted into a more compact and stable (invariant) descriptor that can be matched against other

descriptors [228].

Regional descriptors are usually not considered since it is assumed that they require a seg-

mentation step, typically named as a medium level operation, in opposition to the local and global

descriptors, which are obtained by low level operations. These type of descriptors are typically

divided into three groups: intensity-based regions, maximally stable extremal regions, and su-

perpixels. These regions are provided by different methodologies but focus on similar image

structures and share similar properties. Segmentation-based methods present limited robustness

to changes in viewing conditions but are currently more and more used in the context of image

recognition.

We argue that regional properties, by themselves or in conjugation with local and global de-

scriptors, around key or candidate points can be relevant for the high level interpretation of the

visual content. These type of detectors are typically used in a larger scale region to compute the

descriptor, such that it also contains part of the surrounding image structures and captures the shape

of the region boundary. This is usually enough to increase the discriminative power and match re-

gions between images. Our work is oriented to relatively large image segments, which are too

large for local features methodologies. For this reason, our approach focus on segmentation-based

methods.

Here, the computation of a closed contour enclosing a seed point. Usually that is addressed

by transforming the image to polar coordinates, where the closed contour is transformed in an

open contour between two opposite margins. After calling the attention to some of limitations

of this process, we show how to compute the closed contour in the original coordinates. Closed

contours (segmented regions) will enclose a seed previously detected. This seed can be manually

or automatically defined depending of the application.

5.2 Closed Contour Related Works

The detection of closed contours in an image is a common task in different problems. There are

some methods which make assumptions about the characteristics of the content present in the

scene, which can incorporate low-, mid-, and high-level shape priors [203]. Other methods are

based on contour completion [204], which are a powerful tool to detect closed regions.

Other approaches based on Gestalt cues of parallelism, collinearity, proximity and symmetry

to group contours have been also addressed [223, 259]. These methodologies faced an important

challenge related with the complexity of pairwise contour grouping to detect symmetry-related

contour pairs. Levinshtein et al. [142, 143] attempt to overcome this computational complexity

limitation by constraining the symmetric parts to be collections of superpixels.
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Other methods uses simple methodologies based on continuity and proximity, such as the

notion of boundary gap, used to measure the absence of edges along the closed contour. The prob-

ability of the connection between two adjacent contours was modeled by Elder and Zucker [70],

in order to find contours using a shortest path algorithm. Wang et al. [251] created a measure

to evaluate the gap of a contour using the ratio cut approach, only based on the total boundary

gap. The problem of perceptual completion of occluded surfaces was addressed by Williams and

Hanson [255], defined by set of occluded surfaces from image contours computed with a labeled

knot-diagram.

The stated methodologies find the appropriate closed contour with high complexity approaches,

mostly, using heuristics to prune the range of search. In Zhu et al. [267] this problem is solved by

transforming the edge into polar coordinates. The method of Jermyn and Ishikawa [116] computed

the closed contour using ratio cuts working directly with pixels using a 4-connected image grid

and by minimizing many different closure costs in a simply connected planar graph. However, this

is not an optimal solution, since individual pixels representation difficult the gap computation.

The idea of transforming the problem of detecting edge segments in a problem of finding the

minimum-cost path in a weighted and directed graph was initially proposed by Martelli [163,164].

When comparing to other traditional methods, minimum cost segmentation has several advan-

tages. Watershed techniques produce closed contours, but are known to oversegment the images.

Active contours (or snakes) also produce a closed contour. But initialization needs to be close to

the real contour. Live-wire methods use the minimum cost idea, but needs seed points (usually

given by the user) that must belong to the final contour. Riverbed contributes to reduce the number

of these seed points along complex shapes, but live wire is still better in dealing with badly defined

borders [169]. Graph cuts have the disadvantage of being biased toward producing small contours.

For a survey on graph-related methods, we refer to [258]. If your interest is on medical-

imaging applications, we point to [68, 194].

Despite the several advantages of the shortest path calculation, its traditional use to com-

pute a closed contour needs a transformation to the polar domain (and back to the Cartesian do-

main) [227]. In this transformation resolution may be lost, discontinuities may be introduced and

extra computational power and time are required.

5.3 Conventional Closed Shortest Path Algorithms

In order to understand the method here proposed, several background notions are necessary. In

this Section graph terminology is introduced in Subsection 5.3.1, followed by the the description

of some traditional neighbourhoods and the design of the weight function in subsection 5.3.2.

Subsection 5.3.3 shows how the computation of the shortest path is made and in subsection 5.3.4

methodologies to use the shortest path algorithm in the extraction of closed contours are detailed.
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5.3.1 Graph Concepts∗

A graph G = (V,A) is composed of two sets V and A. V is the set of nodes, and A the set of arcs

(p,q), p,q ∈V . The graph is directed (digraph) if the edges have a direction associated with them

(the set A is a set of ordered pairs of nodes). An arc a = (p,q) is considered to be directed from p

to q; q is called the head and p is called the tail of the arc; q is said to be a direct successor of p,

and p is said to be a direct predecessor of q.

The graph is weighted if a weight w(p,q) is associated to each arc. On images, the weight

of each arc, w(p,q), is usually a function of pixels values and pixels relative positions. A path

from vertex (pixel) v1 to vertex (pixel) vn is a list of unique vertices v1,v2, . . . ,vn, with vi and vi+1

corresponding to neighbour pixels. The total cost of a path is the sum of each arc weight in the

path ∑
n
i=2 w(vi−1,vi).

A path from a source vertex v to a target vertex u is said to be the shortest path if its total cost

is minimum among all v-to-u paths. The distance between a source vertex v and a target vertex u

on a graph, d(v,u), is the total cost of the shortest path between v and u.

A path from a source vertex v to a sub-graph Ω is said to be the shortest path between v and Ω

if its total cost is minimum among all v-to-u ∈Ω paths. The distance from a node v to a sub-graph

Ω , d(v,Ω), is the total cost of the shortest path between v and Ω :

d(v,Ω) = min
u∈Ω

d(v,u). (5.1)

A path from a sub-graph Ω1 to a sub-graph Ω2 is said to be the shortest path between Ω1 and

Ω2 if its total cost is minimum among all v ∈Ω1-to-u ∈Ω2 paths. The distance from a sub-graph

Ω1 to a sub-graph Ω2, d(Ω1,Ω2), is the total cost of the shortest path between Ω1 and Ω2:

d(Ω1,Ω2) = min
v∈Ω1,u∈Ω2

d(v,u). (5.2)

A directed acyclic graph (DAG) is a directed graph with no directed cycles. That is, it is

formed by a collection of vertices and directed edges, each edge connecting one vertex to another,

such that there is no way to start at some vertex v and follow a sequence of edges that eventually

loops back to v again.

A topological sort or topological ordering of a DAG is a linear ordering of its vertices such

that, for every edge (u,v), u comes before v in the ordering. Equivalently, each DAG gives rise

to, at least, a partial order ≤ on its vertices, where u≤ v exactly when there exists a directed path

from u to v in the DAG. The DAG shown in Figure 5.1 has many valid topological sorts, including

{7,5,3,11,8,2,9,10}, {3,5,7,8,11,2,9,10} and {3,7,8,5,11,10,2,9}.
Some algorithms become simpler when used on DAGs instead of general graphs, based on

the principle of topological ordering. For example, it is possible to find shortest paths and longest

paths from a given starting vertex in DAGs in linear time by processing the vertices in a topological

∗Some parts of this Section will appear again in Chapter 9. Since this Chapter is mostly based on a journal paper,
we decided to replicate the information to maintain the coherence of the text
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(a) The DAG.

(b) A possible linearization.

Figure 5.1: Example of a DAG with several topological orderings.

order, and calculating the path length for each vertex to be the minimum or maximum length

obtained via any of its incoming edges. In contrast, for arbitrary graphs the shortest path may

require slower algorithms such as Dijkstra’s algorithm or the Bellman-Ford algorithm, and longest

paths in arbitrary graphs are NP-hard to find.

5.3.2 Design of the Weight Function

The d-neighbourhood of a node (pixel) p is the set of the d closest nodes of p, for some adopted

distance (usually the Euclidean distance). We defined the causal neighbourhood of a node p as the

subset of neighbours vi such that vi≤ p, that is, vi precedes p in the topological ordering. Figure 5.2

illustrates some typical neighbourhoods in images and the corresponding causal neighbourhoods,

assuming the linear ordering of the vertices is given by column number.

The weight of an edge in the graph is usually set as a function of the values of the incident

nodes (pixels). One starts by computing some feature(s) (e.g., gradient or directional derivatives,

texture, etc.) and the distance between the node and each of its causal neighbours. Finally the cost

is set as a monotonic function of these. Then the shortest path should minimize the sum of the

costs over the path. Like [227], we will assume that the cost is a function of the features computed

at the head of the arc and the distance to the causal neighbours.
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(a) 4-neighbourhood. (b) 8-neighbourhood. (c) 20-neighbourhood.

(d) Causal neighbours for the 4-
neighbourhood.

(e) Causal neighbours for the 8-
neighbourhood.

(f) Causal neighbours for the 20-
neighbourhood.

Figure 5.2: Examples of neighbourhoods and corresponding causal neighbours.

5.3.3 (Open) Shortest Path Extraction Algorithm in a DAG

Figure 5.3 represents a DAG appropriate to find a path from the left side to the right side of an

image or grid such that the cost of the path is minimum. Note that: a) we have assumed the 8-

neighbourhood; b) this DAG does not allow paths that zigzag back and forth, since at least one arc

would be traversed in the wrong direction, an example of which is presented in Figure 5.4; c) the

DAG to compute the shortest path from right to left is obtained by inverting the direction of the

arcs.

Figure 5.3: The nodes represent pixels and arcs represent connections between pixels.
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Figure 5.4: A forbidden path in the digraph of Figure 5.3.

In the case of a DAG, the shortest path is easily solved by examining the nodes according to

the natural order and for each of them applying the following typical iteration (see Algorithm 1):

Algorithm 1: Shortest path in a DAG.

1 for node j = 2,3, · · ·N do
2 d j←min(di + ci j) : (i, j) enters j,
3 end

where di is the accumulated cost of the path until i. Although it is also possible to follow a for-

ward form, we have adopted backwards computation, leading to the classic dynamic programming

algorithm [227].

For the grid shown in Figure 5.3, the ordering is given by the column position. The linearisa-

tion step can be removed since it amounts to scan the image column by column, from top to bottom

(although inside a column the scanning could be different). The computation of the shortest path

can be rephrased as follows, directly in the image grid. Let I be an N1×N2 window (after polar

coordinate transform) with N1 columns and N2 rows; define an admissible path to be

s = {(x,y(x))}N1
x=1 , s.t. ∀x y(x−1) ∈ Neighbourhood(x,y),

where y is a mapping y : [1, · · · ,N1]→ [1, · · · ,N2]. That is, an admissible path is a path of

pixels in the image from left to right, containing at most one pixel in each column of the image

and consecutive pixels in the path are neighbours.

The first step is to traverse the image from the second column to the last column and compute

the cumulative minimum cost d for each entry (i, j):

d(i, j) = min(d(`,k)+ c(p`,k; pi, j)) : (`,k) enters pixel (i, j)

where c(p`,k; pi, j) represents the weight of the edge incident with pixels at positions (i, j) and
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(`,k). At the end of this process,

min
j∈{1,··· ,N2}

d(N1, j)

indicates the end of the minimal connected path. (Note that here we used a double index notation

to represent pixels (nodes).) Hence, in the second step, one backtrack from this minimum entry

on d to find the optimal path.

5.3.4 Closed Shortest Path Extraction Algorithm in Polar Coordinates

The method discussed in the previous subsection can be applied to the computation of closed

shortest paths in images. Given a point that should be enclosed by the path, one starts by perform-

ing a transformation to polar coordinates using the given point as origin. With this transformation

the closed shortest path results in the shortest path between opposite margins, with the constraint

that it should start and end in the “same” line. (Note that the line does not need to be exactly the

same; the start and end points only need to be neighbours, assuming that the image wraps around,

e.g. the leftmost and the rightmost columns are actually neighbouring columns.)

In spite of the efficiency of the computation of the shortest path between the whole left and

right margins, or between two pre-defined points in the margins, or between one of the margins and

a pre-defined point in the other margin, the search for the shortest path between the left and right

margins with the constraint that the path should start and end in the same row seems to increase

the complexity of the procedure. As typical, optimisation with constraints is more difficult than

without.

Had one been interested in the simple shortest path between the left and right margin and the

computation would be very efficiently performed using dynamic programming, as seen above.

Note that the above procedure gives not only the shortest path between the left and right margins

but also yields the shortest path between any point in the right margin and the whole left margin:

for any point j in the right margin, C(N1, j) indicates the cost of the shortest path between j and the

whole left margin, see Figure 5.5. Finally, it should be clear how to change the initial conditions

of the above procedure to yield the shortest path between two pre-defined points in the opposite

margins.

Unfortunately, the computation of the shortest path constrained to start and end in the same

row (corresponding to closed contours in the original window) does not seem amenable to such an

efficient procedure. The brute force solution of computing the shortest path between the i-point in

the left margin and the i-point in the right margin, for i = 1 · · ·N2, and taking the minimum, is not

compatible with requirements of near real-time in many applications.

Noting that if j and ` are two distinct points in the right margin, then the shortest paths between

each of these points and the whole left margin do not intersect, it is trivial to conclude that there

is a point m in the right margin for which the shortest path between m and the whole left margin

starts also at row m. Note that this path P1 corresponds to a closed path in the original coordinates

(not necessarily the shortest one). Similarly, interchanging the role of the left and right margin, it

is possible to obtain a point n in the left margin for which the shortest path P2 to the whole right
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margin is closed. Therefore, we chose to approximate the (optimal) shortest path between the left

and right margins starting and ending on the same row by min(P1,P2).

Note that this algorithm corresponds to the multiple back-tracking algorithm (MBTA) of [227]

but we execute it both from left to right and from right to left. In Figure 5.5(b) the shortest

paths between each point on the left margin and the whole right margin are traced. Likewise,

Figure 5.5(c) shows the shortest paths between each point on the right margin and the whole left

margin.

(a) Original image. (b) Shortest paths from each
pixel in the left column and the
whole right column.

(c) Shortest paths from each
pixel in the right column and
the whole left column.

Figure 5.5: Exemplification of shortest paths.

The authors in [227] failed to realize that there is always at least one closed path among the

paths obtained with MBTA (“We have found that on an image or regular grid one can almost

always find a circular path although this circular path may not be the circular shortest path.”).

Here we prove that it is indeed possible to always find at least one.

Proof. A key argument in the demonstration is that the shortest path between a whole margin and

a point p in the opposite margin does not intersect the shortest path between the whole margin

and a different point q. Let’s prove by contradiction: if the two paths do intersect in a point a

(see Figure 5.6) then one of the paths can be improved by taking the other sub-path between a and

the whole margin. In the special case that both sub-paths between a and the whole margin have

the same cost then we will always make the same decision (e.g., always choosing the option with

the starting point in the highest row). Let’s now consider the path ending in the first line. If the

starting point of the path is also on the first line we are done; otherwise the starting line is higher

than 1 (≥ 2). Let’s now consider the path ending in the second line. If the starting point of the path

is also on second line (note that it cannot be on the first line by the argument before) we are done;

otherwise the starting line is higher than 2 (≥ 3). Proceeding until the path ending in last line, the

path cannot start in the line before that (nor after!), and therefore the path is closed.
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Figure 5.6: Two paths intersecting in a. One path is the shortest path between p and the whole left
margin; the other path is the shortest path between q and the whole left margin.

Although this method is quite interesting in practice, it also has its weaknesses. A first concern

is the transformation of the input image (or input ROI) to polar coordinates. The transformation

itself requires the definition of a resolution for theta and the radius, which is not obvious. A high

resolution will result in a bigger polar image and more computational effort; a low resolution may

result in a coarse estimation of the path. Moreover, there is the danger that closed contours in polar

coordinates become open when performing the inverse transformation for the original coordinates.

In fact, when transforming back to original coordinates, the interpolation step will originate grey-

level values (which result in a path fuzzily defined except in the case of the nearest-neighbour

interpolation, which can produce disconnected paths if the theta resolution is not over-dimensioned

for the maximum possible radius.

5.4 Closed Shortest Path Algorithm in the Original Coordinates

The computation of the closed shortest path in the original coordinates has some initial difficulties.

A first task involves creating a DAG from the grid and an appropriate linearisation of the DAG.

Secondly, since paths closer to the centre have less pixels, they will be naturally selected even if

the cost of the weight of the edges is slightly higher than in paths further away from the centre.

Thirdly, one must consider if the Euclidean distance between nodes (pixels) is appropriate or if

another notion of distance is more effective to capture the distance in the context of closed paths

enclosing a given node.

5.4.1 Linearization of the DAG

While working in polar coordinates, the linear ordering of the vertices is given by column number,

since one wants to go from left to right. The causal neighbours of a given node are the neighbours

with lower column number and edges are oriented from the causal neighbours to the given point.
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Now, working in the original coordinates, one wants to go around a given seed point O , from

0 to 360 degrees. It is therefore natural to order the nodes by the angle θ of the node relative to O

– see Figure 5.7.
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0 0 0 0 0 65 0 0 0 0 0


Figure 5.7: For a ROI with a radius of 5, this image illustrates the order of the pixels in the
linearization starting at θ = 0. The zero entries are points that do not belong to the ROI.

The causal neighbours of a given node are the neighbours with lower θ and edges are oriented

from the causal neighbours to the seed point. Note that now the number of causal neighbours

varies from node to node, depending on θ and the position of the node in the ROI. Edges are

oriented from the causal neighbours to the given point – see Figure 5.8.

Figure 5.8: For a ROI with a radius of 5 (red) and an 8-neighbourhood, this figure illustrates the
causal neighbours for a few nodes. The number of causal neighbours varies from 1 to 4.

It is important to stress that the linearization step does not depend on the content of the image

and for a fixed size of the ROI, it can be pre-computed or computed only once or even hardcoded

in the software (or hardware).
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5.4.2 Edge Cost Modulation

A difficulty with searching for the closed shortest path enclosing a given point C (shortest in

the sense of minimizing the cost of the path) is that small paths, collapsing in the point C, are

naturally favoured. We overcome that difficulty by manipulating the cost of an edge appropriately.

In Figure 5.9 we depict two closed paths enclosing a point C. The pixels assume the same value

in both contours. If the cost of an edge is solely based on features extracted from the edge or a

neighbourhood of the pixel, the cost of the edge takes the same value in both contours and the

smallest contour is preferred since it has less edges and therefore smaller overall cost. Assuming

that, in general, one does not want to give preference to any of them, costs should be adapted to

correct the increase of the number of edges in a path with the distance. As such we weight the

cost of an edge by 1/r, where r is the distance of the head node of the edge. Roughly speaking,

the perimeter (and therefore, the number of edges in the contour) grows proportionally to r; the

normalization makes the overall cost approximately independent of r.

Figure 5.9: Two closed paths enclosing the centre of the ROI. Without a proper modulation, the
inner path presents a smaller overall cost.

Note that this same behaviour is true with the conventional polar coordinates transformation:

after transformation, all circular paths centred in the seed point have the same cost; in here this

is achieved implicitly with resampling, transforming every circular path to a line with the same

number of points.

5.4.3 Distance Between Nodes

As previously mentioned, the cost of an edge will include a factor related with the feature(s)

computed at the head of the edge and a factor related with the distance between the head and the

tail of the edge. Let us concentrate in the second factor.

The Euclidean distance between the two nodes seems at first a reasonable solution. Note

however that in this case the (position of the) seed point does not impact the distance. Attend to

Figure 5.10. In one case the contour is moving directly to the centre, while in the other case the
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contour is almost orthogonal to the radius of the current node. Note that with the conventional

polar coordinates transformation not only all circular paths centred in the centre of the ROI have

the same cost but they are also the shortest paths when all the pixels have the same information.

In fact, they are transformed into straight lines between opposite margins.

Figure 5.10: Two movements with different characteristics.

Trying to mimic this behaviour, we also experimented with two other measures. The first one

is exactly what would be obtained in the polar domain, using a resolution of one degree per pixel

and radius unit per pixel:

dpolar =
√
(∆r)2 +(∆θ)2

The second measure is the Euclidean distance modulated by a function of α , the angle between

the direction orthogonal to the radius at the current node and the vector from the causal neighbour

to the current point:

dcos =
dEuclidean

cos(α)

Note that in this way we penalize steps that depart from the expected circular path.

5.5 Experimental Results

In this Section we evaluate the behaviour of the proposed algorithm in multiple scenarios. We start

by illustrating the behaviour in some toy examples. Next, we apply the method to real images;

finally, we evaluate the performance in two computer vision challenges: mass segmentation in

mammograms and nipple detection for aesthetic evaluation of breast cancer treatments.

5.5.1 Illustrative Examples

We start by explaining the behaviour of the method in synthetic images. The results in Figure 5.11

were obtained using the 8-neighbourhood and the polar distance. In Figure 5.11(a) -5.11(c) the

weight of the edge is directly the magnitude of the derivative in the radial direction (centred in
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the seed point). In Figure 5.11(d) the weight was set as a nonlinear function of the derivative

(motivated by previous work on similar settings [177]):

w = fl +( fh− fl)
exp(β (255−d))−1

exp(β255)−1
(5.3)

with fl = 2, fh = 128, β = 0.0208, and d equal to the magnitude of the derivative.

Note that in this case the detected contour follows the expected path, while previously it had

a tendency to smooth the contour. Nonetheless, in general, the method is quite robust to different

cost functions.

(a) (b)

(c) (d)

Figure 5.11: Illustration of some toy examples. In a), b) and c) the weight of the edge is directly
the magnitude of the derivative in the radial direction. In d) the weight was set as a nonlinear
function of the derivative.

Next, we illustrate the influence of the seed position in the final result. In Figure 5.12 we

can visualise that impact in one of the previous toy examples. It is important to highlight that

for any angle centred in the seed, the output contour will intersect the radial direction only once.

Therefore, for the seed position in Figure 5.12(b), it will be impossible to perfectly delineate the

true boundary.

In Figure 5.13 we show the application of the proposed algorithm in some images randomly

selected from The Berkeley Segmentation Dataset [165]. The seed was manually placed; the polar
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(a) (b)

Figure 5.12: Impact of the seed position in final result. In the highlighted circle sector, for the
selected seed, it is impossible to perfectly follow the boundary.

distance and the nonlinear weighting were again selected. The results are quite intuitive and within

the expected behaviour.

Finally, in Figure 5.14, we show the results obtained with the conventional transform to polar

coordinates on the same subset of images from the Berkeley Segmentation Dataset. As expected,

for some images the differences are indiscernible. When differences exist, they are small, and

without a clear advantage of one method over the other.

In the next subsection we depart from the subjective analysis in a small number of images to

an objective evaluation in mass segmentation approach on mammography images 1.

5.5.2 Mass Segmentation

The most common breast cancer screening test is mammography. When radiologists examine

mammograms, they look for specific abnormalities. A breast can have: only mass(es), only calci-

fications or both. The first stage in computer-aided detection (CAD) in screening mammography

usually involves candidate generation which identifies suspicious unhealthy candidate regions of

interest (candidate ROIs, or simply candidates) from a medical image. These ROIs are then anal-

ysed to differentiate malignant cancers from other candidates. In here, we focus on finding the

mass inside the ROI.

Ninety nine images from the INBreast database [172] were selected. The selection criterion

was that the image contained one and only one mass. The ROI was generated from the ground

truth contour of each mass, centred in the centre of the mass and enclosing all the mass. The costs

were based on the nonlinear function of the derivative introduced in 5.3.

Evaluation was made both with Region and Contour-based metrics. The firsts include the area

overlap measure (AOM), and a combined measure (CM) of under-segmentation, over-segmentation

1The validation of the algorithm with the data from this thesis will be presented in Chapter 9
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(a) (b)

(c) (d)

(e) (f)

Figure 5.13: Illustration of the application of the proposed algorithm in randomly selected real
images.

and AOM [71]. Contour-based metrics include average distance (AD), average minimum Eu-

clidean distance (AMED) and Hausdorff distance (HD) [220]. These last measures were normal-

ized by the ROI diagonal. Note that the selected region based measures are measures of accuracy

(the higher the better), while contour based measures are measures of error (the lower the better).
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(a) (b)

(c) (d)

(e) (f)

Figure 5.14: Illustration of the conventional transform to polar coordinates in randomly selected
real images.

Results for different values of the neighbourhood and distance can be seen in Table 5.1.

The polar distance consistently outperformed the other alternatives, for all neighbourhoods

and according to all metrics. The best size for the neighbourhood is 4 for region based metrics and

8 for most of the contour equivalents. Some selected results are shown in Figure 5.15.
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neighbourhood distance AOM CM AD AMED HD

Euclidean 0.702 (0.159) 0.794 (0.108) 0.024 (0.017) 0.027 (0.019) 0.088 (0.036)
4 Polar 0.707 (0.160) 0.797 (0.111) 0.024 (0.017) 0.027 (0.019) 0.087 (0.037)

Cos 0.702 (0.159) 0.794 (0.108) 0.024 (0.017) 0.027 (0.019) 0.088 (0.036)
Euclidean 0.700 (0.161) 0.791 (0.113) 0.024 (0.018) 0.027 (0.020) 0.084 (0.034)

8 Polar 0.707 (0.150) 0.795 (0.107) 0.024 (0.016) 0.026 (0.017) 0.085 (0.034)
Cos 0.700 (0.161) 0.791 (0.113) 0.024 (0.018) 0.027 (0.020) 0.084 (0.034)

Euclidean 0.688 (0.165) 0.784 (0.114) 0.025 (0.019) 0.028 (0.020) 0.087 (0.035)
12 Polar 0.692 (0.166) 0.786 (0.116) 0.025 (0.019) 0.028 (0.020) 0.086 (0.036)

Cos 0.688 (0.164) 0.784 (0.114) 0.025 (0.019) 0.028 (0.020) 0.087 (0.035)
Euclidean 0.663 (0.188) 0.766 (0.128) 0.029 (0.025) 0.032 (0.026) 0.092 (0.039)

20 Polar 0.668 (0.180) 0.769 (0.124) 0.028 (0.024) 0.030 (0.025) 0.090 (0.036)
Cos 0.663 (0.188) 0.766 (0.128) 0.029 (0.025) 0.032 (0.026) 0.092 (0.039)

Table 5.1: Mass segmentation on Mammograms: results for different neighbourhoods and dis-
tances. Results are presented in the format “average (standard deviation)”.

(a) Good result:
neighbourhood 4,
polar distance.

(b) Bad result: neighbourhood 4, polar
distance.

(c) Good result:
neighbourhood 8,
polar distance.

(d) Bad result: neighbourhood 8, polar
distance.

Figure 5.15: Illustration of some good and bad mass segmentation on Mammograms.

Some other works have computed mass contours based on the shortest path algorithm in polar

coordinates.

Timp and Karsseemeijer [233] had an AOM of 0.69, while Dominguez and Nandi [62] reached

an AOM of 0.72. More recently, Song et al. [220] obtained an AOM of 0.73.

In [71], the CM metric was used, having the dynamic programming method reached an CM of

less than 0.70.
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Since the used databases are not the same, a fair comparison cannot be made. Moreover, all

the papers found use region-based evaluation metrics and no contour-based metrics are available.

However, our segmentation method seems to have an competitive accuracy when comparing to

previous implementations.

The next experiment was to study the degradation of the contour quality in relation the seed

position. The seed was randomly selected inside a window centred in the ground truth seed and

with size α times the size of the ROI. The only restriction was that the seed was kept inside the

mass. α was varied from 0.02 to 0.14. For each α we repeated the experiment 10 times to average

results. Results using the 4-neighbourhood and the polar distance are presented in Table 5.2. As

expected, the performance decreases monotonously; nevertheless the decrease is smooth without

abrupt changes.

noise percentage AOM CM AD AMED HD
2% 0.657 (0.188) 0.762 (0.128) 0.030 (0.027) 0.032 (0.027) 0.093 (0.040)
4% 0.656 (0.186) 0.761 (0.127) 0.029 (0.025) 0.032 (0.026) 0.093 (0.040)
6% 0.648 (0.194) 0.756 (0.131) 0.030 (0.027) 0.033 (0.028) 0.095 (0.042)
8% 0.648 (0.194) 0.756 (0.132) 0.031 (0.027) 0.033 (0.028) 0.095 (0.042)

10% 0.639 (0.196) 0.749 (0.134) 0.032 (0.028) 0.035 (0.029) 0.098 (0.044)
12% 0.636 (0.195) 0.747 (0.133) 0.032 (0.027) 0.035 (0.029) 0.099 (0.045)
14% 0.631 (0.197) 0.743 (0.135) 0.032 (0.028) 0.036 (0.029) 0.100 (0.045)

Table 5.2: Mass segmentation on Mammograms: results for different perturbations on the seed
localization. Results are presented in the format “mean (standard deviation)”.

5.6 Conclusions

We have proposed a novel method to find a closed shortest path in an image. The closed shortest

path obtained in the image ensures that the starting and ending positions are connected. This

algorithm has applications in object boundary detection, borehole image analysis, fiducial point

detection, among others.

Contrarily to conventional methods, the proposed method works on the original space, instead

of requiring a mapping into polar transformation. Besides efficiency advantages (avoiding unnec-

essary steps), there is no loss in resolution and the path is always connected. The algorithm was

shown to be fast and reliable in tests on several different types of real images.

We have explored the application of this method in the description of a region enclosing a

given point. Instead of just capturing local information in the seed point, for instance, in the

nipple detection problem, we describe the region around a candidate since it should correspond

to the areola complex (see Chapter 9). The overall quality of the candidate integrates information

both from the point and the region around. We believe that this reasoning will find applications in

several other domains.
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Chapter 6

Interpretability Models and
Lateral-views for the Aesthetic Result
Assessment∗

As stated in Chapter 3, the development of the BCCT.core involved the semi-automatic extraction

of several features from frontal patient’ photographs. Some of the factors that are considered to

have greater impact on the overall cosmetic result are captured: breast asymmetry, skin colour

changes due to radiotherapy treatment and surgical scar appearance. After that, an SVM classifier

was trained in order to predict the overall cosmetic result from the recorded features. However,

improvements on the interpretability of the model used to assess the overall aesthetic result and

the inclusion of different views from the patient (side, oblique) were often suggested.

In this chapter we investigate the improvement of BCCT.core, by comparing the performance

of different interpretable methods with the currently deployed in BCCT.core, without sacrificing

the estimated performance and the introduction of knowledge extracted from patients side-views.

This information will be used as a complement for the currently used frontal data trying to improve

the accuracy of the software.

6.1 Interpretable Models

Although SVMs have proven to be very useful in machine learning, there is a significant drop of

understandability of the learned hypothesis, especially when using nonlinear kernels, as is the case

of the RBF kernel in BCCT.core. The RBF kernel is a non-linear kernel, with an implicit mapping

to a higher dimensional feature space. The relationships uncovered by the SVM in this implicit

feature space are not easily portrayed in the initial space. This nonlinear model is often used as

a black box, to which data are presented and the predicted class is outputted. This represents a

strong limitation for the caregivers, aiming to understand how the overall classification is being

attained.
∗Some portions of this Chapter appeared in [180, 181]

69
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In this study we consider decision trees and a linear SVM to replace the current RBF SVM.

Tree-based models are simple, but widely used, models that work by partitioning the input space

into cuboid regions, whose edges are aligned with the axes, and then assigning a simple model (for

example, a constant) to each region [22]. A key property of tree based models, which makes them

popular in fields such as medical diagnosis, is that they are readily interpretable by humans because

they correspond to a sequence of binary decisions applied to the individual input variables. For

instance, to predict a patient’s disease, we might first ask "is their temperature greater than some

threshold?". If the answer is yes, then we might ask next "is their blood pressure lower than some

threshold?". Each leaf of the tree is then associated with a specific diagnosis [22].

Linear models for classification create decision surfaces that are linear functions of the input

feature vector and hence are defined by hyperplanes within the input space. The decision surface

is therefore a simple weighted sum of the input features, with higher weights being assigned to

features that are more important for the decision process.

6.1.1 Study Population and a Gold Standard

We use a set of 143 frontal photographs 1 taken at different breast centers. To train a classifier

to perform an automated analysis, a gold standard or ground truth is needed. We use the gold

standard taken from the evaluation of patients by an international panel of experts, following a

Delphi methodology [99, 119]. A first set of 113 photographs was already available from the

initial study [28] (see Section 2.9); an additional set of 30 photographs was taken since then. The

first set of cases was used on the training phase, while the second was used on the testing phase.

The distribution of the patients over the four different classes is summarised in Table 6.1.

Class Excellent Good Fair Poor Total
# cases 20 74 34 15 143

Table 6.1: Distribution of the 143 patients over the four classes.

Since the extraction of the features from the image is still not completely automated, we asked

8 users to manually place the necessary fiducial points; all 143×8 cases were later used to develop

the classification models.

6.1.2 Feature Selection

In supervised learning, variable selection is used to find a subset of the available inputs that ac-

curately predict the output. The objectives of variable selection are to improve prediction per-

formance of the model, provide faster and more cost-effective predictors, and provide a better

understanding of the underlying process that generated the data [93].

1In this study, we used the Breast Research Group Database (see Section 2.9), instead of the database created
during this thesis.
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Feature selection algorithms can be divided into ’filter’ and ’wrapper’ [222], according to the

nature of the methods used to evaluate features. Wrapper algorithms evaluate features with the

classification accuracy provided by a target classification algorithm. A target classifier is included

in the feature selection process of the wrapper approach. This leads to the improvement of clas-

sification accuracy of the wrapper classifier, but it also contributes to the increase in computation

times. Furthermore, because the derived feature subset is biased to the wrapped classification al-

gorithm, good performance may not occur when the feature subset is used to build models with

other classification algorithms.

Filter algorithms are independent of any learning algorithms; feature evaluation is carried out

according to a measurement that evaluates the goodness of individual features, such as correlation.

Features are ranked according to their values on the selected measure. The first ranked features

are chosen from the entire set of available characteristics, according to prior domain knowledge or

a user-specified threshold value.

Evaluating all possible subsets is unfeasible; remember that we recorded 30 features, leading

to 230 different subsets of features (see Chapter 3). Therefore, we performed a simplified selection,

also benefiting from our previous work [28]. We had already concluded that the 7 dimensionless

asymmetry features perform as good as or even better than the dimensional asymmetry features,

with the additional advantage of not requiring the scale mark in the patient photograph [28]. There-

fore, 7 asymmetry features were immediately discarded.

For the remaining 23 (7+8+8) features, the Squared Correlation Coefficient (R2) was com-

puted. The R2, also referred to as coefficient of determination, is the proportion of target variation

explained by a single input variable. The coefficient ranges from 0, when there is no linear rela-

tionship between an input and the target, to 1, for an input that explains all of the target variability.

Simultaneously, we also analysed the behaviour of each feature when going from the excellent to

the poor class. It is expected that the average value of any asymmetry, colour or scar visibility

measurements increase monotonically from the excellent to the poor class (see Table 6.2).

From the features that exhibited a monotonous behavior, we kept the 5 dimensionless asym-

metry features, the 2 colour change features and the 2 scar visibility features with highest R2

coefficient: pLBC, pUNR, pBCD, pBAD, pBOD, cχ2
a , cEMDa, sχ2

a , sEMDa.

Finally, with the 7 remaining features, we considered all possible subsets. The performance of

each subset of features was estimated using a four-fold cross-validation scheme.

Other feature selection approaches were also tried [222]. In this work is presents an adaptation

of a quadratic programming feature selection technique that identifies in one-fold the redundancy

and relevance on data. This approach introduces a non-probabilistic measure to capture the rel-

evance based on Minimum Spanning Trees. However, this approach obtained worse results, and

for that reason were not included in this Chapter.

6.1.3 Dealing with Decision Costs

In this application, the default assumption of equal misclassification costs underlying machine

learning techniques is violated. Caregivers consider an error in a true excellent or true poor patient
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Features R2 class avg (std. dev.)
1 2 3 4

pBRA 0.19 0.09 (0.04) 0.11 (0.06) 0.17 (0.07) 0.17 (0.05)
pLBC 0.52 0.04 (0.02) 0.05 (0.03) 0.11 (0.03) 0.15(0.05)
pUNR 0.23 0.06 (0.05) 0.09 (0.06) 0.17 (0.09) 0.17 (0.07)
pBCE 0.03 0.11 (0.08) 0.25 (0.25) 0.34 (0.22) 0.25 (0.25)
pBCD 0.40 0.04 (0.03) 0.06 (0.04) 0.11 (0.06) 0.19 (0.07)
pBAD 0.23 0.10 (0.06) 0.12 (0.10) 0.18 (0.12) 0.32 (0.013)
pBOD 0.24 0.18 (0.05) 0.21 (0.09) 0.28 (0.09) 0.37 (0.14)
cχ2

L 0.04 0.05 (0.03) 0.09 (0.06) 0.11 (0.06) 0.10 (0.04)
cχ2

a 0.07 0.03 (0.03) 0.05 (0.06) 0.08 (0.08) 0.10 (0.12)
cχ2

b 0.01 0.07 (0.06) 0.14 (0.14) 0.16 (0.16) 0.13 (0.11)
cχ2

Lab3D 0.01 0.04 (0.03) 0.07 (0.07) 0.09 (0.07) 0.06 (0.03)
cEMDL 0.03 0.65 (0.34) 0.95 (0.53) 1.07 (0.57) 1.03 (0.45)
cEMDa 0.06 0.09 (0.07) 0.14 (0.10) 0.17 (0.11) 0.19 (0.13)
cEMDb 0.03 0.19 (0.11) 0.30 (0.21) 0.34 (0.23) 0.31 (0.19)

cEMDLab 0.02 0.10 (0.06) 0.14 (0.09) 0.17 (0.09) 0.15 (0.06)
sχ2

L 0.00 0.47 (0.32) 0.70 (0.44) 0.63 (0.40) 0.57 (0.34)
sχ2

a 0.12 0.10 (0.10) 0.18 (0.15) 0.23 (0.15) 0.35 (0.25)
sχ2

b 0.01 0.25 (0.17) 0.47 (0.33) 0.47 (0.29) 0.43 (0.29)
sχ2

Lab3D 0.01 0.27 (0.20) 0.43 (0.36) 0.50 (0.38) 0.34 (0.25)
sEMDL 0.01 1.84 (0.89) 2.53 (1.37) 2.42 (1.17) 2.65 (1.49)
sEMDa 0.11 0.18 (0.12) 0.28 (0.16) 0.32 (0.12) 0.42 (0.22)
sEMDb 0.03 0.39 (0.18) 0.55 (0.27) 0.60 (0.30) 0.56 (0.26)

sEMDLab 0.01 0.33 (0.15) 0.42 (0.22) 0.47 (0.22) 0.41 (0.22)

Table 6.2: Correlation coefficient and average value of each class on feature selection procedure.

to be more penalising than an error in the middle classes (fair or good). Moreover, failure to a con-

tiguous class is not as serious as failure to a non-contiguous class. From these considerations, we

defined a cost matrix (C) reflecting the penalty of classifying samples from one class as another:

C =


0 2 4 6

1 0 1 2

2 1 0 1

6 4 2 0


where C(i, j) is the cost of classifying a point into class j if its true class is i. The cost matrix

was taken into consideration during the model building process.

6.1.4 Results

The problem addressed here involves classifying examples into classes which have a natural order-

ing. Therefore we adopted classification methods specific for this kind of data. The SVM classifier

was based on the data replication method for ordinal data [29], both with linear and RBF kernels.
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We performed a "grid-search" on the parameters of the models using cross-validation in the train-

ing set (h and s parameters were left constant at 1 and 2, respectively). The test results concerning

the misclassification error are summarised in Table 6.3, for the first ranked feature subsets:

Feature Set 1: {pLBC, pBAD, cχ2a, sχ2a}

Feature Set 2: {pLBC, pBCD, cχ2a, sχ2a}

Feature Set 3: {pLBC, pBCD, pBAD, cχ2a, sχ2a}

Feature Set kernel C gamma Error Weighted Error
1

RBF
16 0.5 0.42 0.63

2 1 0.5 0.30 0.52
3 1 0.75 0.33 0.56
1

Linear
16

-
0.37 0.52

2 64 0.37 0.58
3 4 0.38 0.60

Table 6.3: Misclassification error using the SVM classifier.

For the decision tree algorithm, the cross-validation scheme was carried out over the pruning

level of the tree. The misclassification error for the test phase is summarised in Table 6.4.

feature set # levels Error Weighted Error
1 7 0.47 0.63
2 7 0.43 0.61
3 7 0.46 0.64

Table 6.4: Misclassification error using the Decision Tree classifier.

In both tables, the weighted error was obtained by weighting each prediction error result with

the cost of the misclassification.

A first observation is that the current RBF SVM model performs better than both the linear

model and the decision tree. Nevertheless the LINEAR SVM follows closely the accuracy of the

nonlinear model, particularly if we focus on the weighted error. The decision trees did not achieve

the same level of performance. This is likely related with the small size of the available dataset,

insufficient for reliable learning with decision trees. It is also instructive to analyse the confusion

matrices of the models in Table 6.5 (note that we use data taken from 8 different users).

Table 6.6 presents confusion matrices using the equal misclassification costs for the classifier.

Comparing these results with the ones presented on Table 6.5, proves that the cost matrix (see Sec-

tion 6.1.3), defined taken into account caregivers consideration, helps on the correct classification

and distribution of the cases.
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(a) RBF SVM
PPPPPPPPPPredict

True Excellent Good Fair Poor

Excellent 30 18 0 0
Good 10 68 2 0
Fair 6 33 39 2
Poor 0 0 0 32

(b) LINEAR SVM
PPPPPPPPPPredict

True Excellent Good Fair Poor

Excellent 36 12 0 0
Good 15 59 6 0
Fair 8 48 24 0
Poor 0 0 0 32

(c) DECISION TREE
PPPPPPPPPPredict

True Excellent Good Fair Poor

Excellent 19 26 3 0
Good 6 71 3 0
Fair 1 56 23 0
Poor 0 0 8 24

Table 6.5: Confusion matrices for best classifiers, in the test set, using the cost matrix defined on
Section 6.1.3.

As observed, there is no confusion between the end classes. Moreover, most of the errors

are to a contiguous class and concentrated in the ’good’ class, with a true ’good’ being predicted

either as ’excellent’ or ’fair’. The elimination of these errors will likely require the integration of

new features, capturing more information to distinguish these cases. We should also not forget the

possible existence of inconsistencies in the reference information, due to the subjectivity inherent

to the process of obtaining them.

The SVM classifier used has been generalized for multiclass problems [7,29], in this work, and

because the categories are ordered, was performed three binary classifications, (Excellent/Good,

Good/Fair and Fair/Poor). This can be interpreted as a simplification of the approach suggested by

Hastie and Tibshirani [100]. To design a linear discriminator between two classes we must choose

a weighted sum of the individual features and the bias to differentiate classes:

y(x) = xT w+b (6.1)

After training and testing phase Feature Set 1 presents better results with LINEAR kernel pa-

rameters presented on Table 6.3. The decision rule to classify unseen patients, using the boundary

planes outputted by the ordinal classifier, can be cleanly stated as:



6.2 Improving the Model with Lateral Information 75

(a) RBF SVM
PPPPPPPPPPredict

True Excellent Good Fair Poor

Excellent 0 48 0 0
Good 0 80 0 0
Fair 0 54 26 0
Poor 0 1 4 27

(b) LINEAR SVM
PPPPPPPPPPredict

True Excellent Good Fair Poor

Excellent 0 48 0 0
Good 0 80 0 0
Fair 0 64 16 0
Poor 0 0 8 24

(c) DECISION TREE
PPPPPPPPPPredict

True Excellent Good Fair Poor

Excellent 14 34 0 0
Good 1 62 11 6
Fair 0 57 12 11
Poor 0 0 8 24

Table 6.6: Confusion matrices for best classifiers, in the test set, using the equal misclassification
costs.

if (12.66 · pLBC+1.82 · pBAD−0.93 · cχ2a+0.77 · sχ2a)


< 0.72 ⇒ Excellent
≥ 0.72 ∧< 1.63 ⇒ Good
≥ 1.63 ∧< 2.12 ⇒ Fair
≥ 2.12 ⇒ Poor

The replacement of the current model in BCCT.core by the LINEAR SVM model will increase the

interpretability and acceptance of BCCT.core, enabling caregivers to validate their experimental

results, and improving trust on this kind of software for aesthetic evaluation of BCCT.

6.2 Improving the Model with Lateral Information

Almost all methodologies that use single photographs, namely the one used on BCCT.core, only

use patient frontal images. The exclusive use of face-views may discard some important informa-

tion, such as volume perception and inexistence of lateral measurements. This can be enhanced

with the introduction of lateral information extracted from patient side-views photographs, pro-

viding the model with more information on the breast shape. This approach was never addressed

on the aesthetic outcome of BCCT and only a small number of researchers used lateral features in
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their work, such as Kim et al. [126], who compare objective measurements based on breast ptosis

with ratings on a subjective scale made by experienced clinical observers. This can be related with

the difficulty of extracting robust features from the side-views.

Although the current model (see Section 6.1) presents satisfactory results, it is possible that

with frontal views only we do not have sufficient information on the breast aesthetic, such as, breast

volume perception. By using lateral photographs (see Figure 6.1), we increase the quantity of the

data related with the breast, improving its quality. This information will be used as a complement

for the currently used frontal data trying to improve the accuracy of the software.

(a) (b)

Figure 6.1: Typical lateral photographs.

Lateral features were defined from the comparison between the treated and the non-treated

breast. This represents an additional problem, because we have different images for each breast,

as opposed to the frontal analysis. In order to overcome this problem, we needed to find a normal-

isation factor between the images, making all measurements in the same scale.

6.2.1 Study Population and a Gold Standard

This study uses a portion of the dataset of 143 photographs with the ground truth used in Sec-

tion 6.1. Only 63 photographs from the initial data were used due to the following reasons: defini-

tion of the normalization factor between images; fiducial points annotation; poor quality of some

of the lateral photographs. Any little movement of the patient can lead to a not truly lateral pos-

ture, which may influence the measurements taken from the photographs. The distribution of the

patients over the four different classes is summarised in Table 6.7.

Class Excellent Good Fair Poor Total
# cases 10 35 11 7 63

Table 6.7: Distribution of the 63 patients over the four classes.
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6.2.2 Feature Definition

Contrarily to frontal features, there are not many studies reporting the definition of features in

lateral images. For that reason we had to introduce, for the first time, features that may be used

to assess the aesthetic result of BCCT. As an exception, Kim et al. [126] refer the ptosis factor to

evaluate the aesthetic results, that is, the extent to which the nipple is below the IMF, the crease

beneath the breast. Unacceptable ptosis occurs when nipple and lower pole of the breast descend

below the level of IMF, and is defined by four grades. A patient has no ptosis when the nipple

and most of the breast gland is located above the level of submammary fold (Grade 0). In first

degree or minor ptosis, the nipple is at the level of submammary fold and above the lower contour

of the breast (Grade 1). Second degree or moderate ptosis is when the nipple lies below the fold

but above the lower contour (Grade 2). Third degree or major ptosis is when the nipple lies at the

lower breast contour and most of the breast is below the fold (Grade 3).

In this phase all fiducial points were manually marked directly on the photographs. In the

future, this process could be made automatically. Figure 6.2 shows all fiducial points and mea-

surements used for feature definition.

Figure 6.2: Illustration showing fiducial points and measurements.

The fiducial points marked on patient photographs were:

• N: Nipple;

• IF: Lateral terminus of IMF;
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• lvp: Lowest visible point of the breast contour;

• tw: Thoracic wall;

• U: Projection of the IF point on the upper breast contour along the tw.

The IMF is a curvilinear structure that is generally hidden behind breast tissue since most

women have some degree of ptosis. The Lateral Terminus of the Infra-Mammary Fold (IF) is the

endpoint of the IMF, where it intersects the thoracic wall (tw). The lowest visible point (lvp) is

located at the lower point of the breast. The centroid of nipple (N) is considered rather than the

NAC since many women have an irregular shaped areola.

From the fiducial points, the following measurements were defined (see Figure 6.2):

• Breast contour (bc): Breast exterior curve between IF and U point;

• a: min(dist(N,bc)) - Distance between N and bc;

• b: min(dist(N, tw)) - Distance between N and tw;

• c: min(dist(N, lvp)) - Nipple height (distance between N and lvp);

• Breast size (bs): a+b - Sum of a and b distances;

• Ptosis (p): N−lvp
IF−lvp [126].

As mentioned before, a normalization factor (nf) is required in order to have measurements

from each patient, from two photographs, on the same scale, and was manually defined on the

patient’s body in each picture. Features were assigned using previous measurements related with

the asymmetry between treated and non-treated breast. The indices recorded to assess breast

asymmetry were the following (note that all measurements are normalized by nf):

• bs difference
LBSD = |bs1−bs2|

(bs1+bs2)/2

• Nipple distance to bc
LNDbc = |a1−a2|

(a1+a2)/2

• Nipple distance to tw
LNDtw = |b1−b2|

(b1+b2)/2

• Nipple distances evaluation
LNDE = |a1/b1−a2/b2|

• Breast compliance evaluation
LBCE = |c1−c2|

(c1+c2)/2
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• Breast ptosis difference
LBPD = |p1−p2|

(p1+p2)/2

In order to minimize the influence of different scales between the images from the same pa-

tient, other features based on ratios of the aforementioned measurements were also introduced.

The ratio indices recorded to assess breast asymmetry were the following:

• bs difference Ratio
rLBSD = min(BS1/BS2,BS2/BS1)

• Nipple distance to bc Ratio
rLNDbc = min(a1/a2,a2/a1)

• Nipple distance to tw Ratio
rLNDtw = min(b1/b2,b2/b1)

• Nipple distances evaluation Ratio
rLNDE = min(a1∗b2/b1∗a2,b1∗a2/a1∗b2)

• Breast compliance evaluation Ratio
rLBCE = min(c1/c2,c2/c1)

• Breast ptosis difference Ratio
rLBPD = min(p1/p2, p2/p1)

6.2.3 Classifier

In this study, we applied a cascade generalization based classifier [87]. Cascade generalization

uses a set of classifiers sequentially performing, at each step, an extension of the original data

by the insertion of new attributes. In this particular application, the frontal features were initially

applied to the model described in Section 6.1, resulting in a CF classification. Afterwards, lateral

features were introduced in the system, one by one, together with the result of the first model,

resulting in a CG classification. The scheme of the classifier is shown in Figure 6.3.

This new model is also a classifier based on machine learning techniques, namely SVMs.

SVMs have proved to be being capable of representing complex classification or mapping func-

tions. They discover the representations using powerful learning algorithms. We make use of the

replication method as a tool to map this kind of data [29], because there is an inherent ordering

between the classes. As already performed for the definition of the frontal model (see Section 6.1),

we did not use the same misclassification costs for all classes (see Section 6.1.3).
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Figure 6.3: Classifier flowchart.

6.2.4 Results

We performed a "grid-search" optimizing each parameter using a cross-validation approach in the

training set.

For all the 63 photographs the preliminary misclassification error was computed only with the

frontal features using the model described in Section 6.1. The testing phase was made with the

same data used in the training phase by means of a Leave One Out (LOO) scheme [65]. The test

results concerning the misclassification error are summarised in Table 6.8. For the first ranked of

each lateral feature:

Lateral Feature kernel C gamma Error Weighted Error
LBSD Linear 16 - 0.37 0.61
rLBSD Linear 1 - 0.37 0.61
LNDbc RBF 1 0.125 0.39 0.58
rLNDbc RBF 1 0.125 0.39 0.60
LNDtw Linear 64 - 0.43 0.65
rLNDtw RBF 1 0.5 0.43 0.70
LNDE Linear 4 - 0.39 0.65
rLNDE Linear 1 - 0.38 0.61
LBCE RBF 16 0.25 0.32 0.53
rLBCE RBF 16 0.25 0.32 0.53
LBPD Linear 64 - 0.38 0.59
rLBPD Linear 1 - 0.40 0.60

Table 6.8: Misclassification error using the lateral features (the preliminary misclassification error
for the frontal features was 0.35 and 0.57 for the weighted error).

A first observation from Table 6.8 is that with the integration of these new lateral features

the classification error decreases. The accuracy of the model researched herein, compared with

the model developed for the classic BCCT.core software, showed a better performance. It is also
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instructive to analyse the confusion matrices of the models in Table 6.9 (note that we use data

taken from 8 different users).

(a) Frontal model
PPPPPPPPPPredict

True Excellent Good Fair Poor

Excellent 62 18 0 0
Good 74 183 17 6
Fair 1 30 44 13
Poor 0 6 13 37

(b) Frontal plus lateral model
PPPPPPPPPPredict

True
Excellent Good Fair Poor

Excellent 62 18 0 0
Good 25 232 6 17
Fair 1 30 11 46
Poor 0 6 12 38

Table 6.9: Confusion matrices for best classifiers, in the test set, for the different models. (frontal
information only and frontal plus lateral information)

Obtained results might have been influenced by the choice of cases. Additional tests will be

required to understand the relevance of the defined asymmetric lateral features on BCCT cosmetic

result evaluation.

6.3 Conclusions

We have developed different accurate and interpretable models for the assessment of aesthetic

result of BCCT. With the current nonlinear RBF SVM model deployed with BCCT.core as the

foundation for our work, we compared the accuracy of a decision tree and a LINEAR SVM,

which are models that facilitate the comprehension of factors with an impact on the decision. We

have shown that the linear model achieves a performance very similar to the RBF SVM, with the

obvious advantages of simplicity and interpretability.

After the model for the frontal-views is stabilised, we studied a new model for the assessment

of the aesthetic outcomes of BCCT, incorporating lateral information. A better performance was

obtained, although the improvement is not significant. The number of photographs used, 63,

significantly lower than the initial dataset of 143, was due to quality and possible definition of

fiducial points and features on the lateral photographs. Obtained results may have been influenced

by the choice of cases. Additional tests will be needed to understand the relevance of the defined

asymmetric lateral features on BCCT cosmetic results evaluation. To increase the robustness of

the models presented here, we could definite new lateral features, namely, related with skin colour

changes caused by radiotherapy treatment, and surgical scar appearance.
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Applications using 3D imaging appear to be more efficient than methods that use single pic-

tures, and can serve as a valuable tool for various types of breast surgery, including breast recon-

struction with implant/tissue expanders, local flap reconstruction, free-flap reconstruction, breast

augmentation, and breast reduction surgery. In each of these clinical scenarios, 3D analysis pro-

vides volumetric data that are of unique value for surgical planning and postoperative analysis.



Chapter 7

Uncalibrated-based 3D Reconstruction∗

It is recognisable that the BCCT.core can be improved by adding more measurements. Particularly,

the aim is to add dimensionality to the measurements in order to reduce the limitation of only

performing measurements based on what can be seen in a frontal photograph. In Chapter 6 the

inclusion of side-view photographs was study; however, the improvements achieved were not

meaningful, suggesting the application of 3D imaging. The ability to manipulate and measure

over 3D readings from the breasts can improve the accuracy and objectivity of the tool.

3D capabilities are recognised as having high clinical potential. However, currently used tech-

niques face two major problems: the high cost of equipment required and the need for specialised

operators to work with them. Current techniques are based on especially designed cameras and

hardware, mainly resorting to different lenses on the same camera or to laser scanners. Due to

these special needs, 3D applications are considered costly and are not commonly implemented;

thus, the benefit of 3D modelling is not availed. Therefore, it is necessary to search for new

methodologies that should be affordable and easy to use. The practitioners themselves must be

able to use the tool without any difficulties.

If this 3D modelling proves to be robust enough, the software can be further extended to

surgical simulations. Those types of simulations are notably desired features that would provide

the means for anticipating possible surgical options and outcomes, allowing a better education of

patients towards a more informed choice and the improvement of surgical techniques and skills.

This chapter starts with a brief description of the basic math involved in recovering depth

information from images. The reader is conveniently directed to appropriate sources for thorough

information and formal proof, mostly based on [26, 228, 241]. Then, the application of the state-

of-the-art algorithms is studied for feature detection, matching, rectification, stereo matching and

reconstruction based on uncalibrated views from free-moving cameras when applied to female

breasts. Because of the large amount of algorithms and applications available, it is necessary

to select, a priori, the candidate applications that might prove to be successful in this particular

problem. The final goal is to discover if the existing, most common and recent algorithms have

∗Some portions of this Chapter appeared in [182, 219]
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some applicability to the type of scenes that the BCCT.core deals with, and to understand if 3D

reconstruction can be performed directly using this method.

7.1 General Uncalibrated Reconstruction Workflow

The 3D reconstruction is one of the most important problems in computer vision. Many ap-

plications have been developed to be applied to different fields, such as: reconstructing objects

from image or video sequences, image-based modelling from large photo collections, recognising

3D shapes and detecting 3D obstacles in mobile robotics. Currently there are three major ap-

proaches to multi-view stereo imaging: depth-map merging, volumetric-based, and feature point

detection. The depth-map merging methods are based on the correspondences between an inde-

pendent pair of depth-map images [131, 145]. In volumetric based approaches [247], the scene

is firstly represented as a set of 3D voxels, which precede an energy minimisation approach to

determine whether or not those voxels should be filled. Feature-point based algorithms start

by extracting and matching feature points, before the surface reconstruction based on geomet-

ric, photometric or visualisation constraints [83, 144]. The approach presented here focuses on

this last methodology. This kind of 3D reconstruction problem has been studied for several

decades [94, 98, 117, 125, 141, 198, 202, 268]. There is a vast amount of research in the litera-

ture on this problem, with wide applications, ranging from world comprehension for robotics,

aerial building reconstruction, to virtual tours for on-line tourism.

The basic workflow of an uncalibrated reconstruction from two or more photographs from

a scene, using a feature-point based approach, can be descried as the following sequence of

steps [125]:

1. Searching for feature points;

2. Matching the highest number of those feature points in a robust way;

3. Using the matched features to find the fundamental matrix F with the lowest error possible

(with the lowest inconsistency within the largest possible set of inliers);

4. Using that matrix and the inlier matches to compute rectification homographies, and then to

rectify both views;

5. Performing the largest stereo matching possible, with the highest confidence available for

each match;

6. If camera parameters were found somewhere in the fundamental matrix estimation or rec-

tification algorithm, use them to return a quasi-Euclidean reconstruction; otherwise, return

the projective reconstruction.

Failures in any of the previous steps (either due to lack of features, or to failure in matching

enough features) will invalidate the remainder of the reconstruction. Therefore, each step is critical

to the process. This workflow is depicted in Figure 7.1.
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Figure 7.1: Stereo reconstruction generic workflow.

7.2 Camera Model

It is common in the literature to use the pinhole camera model, as it simplifies the math involved

and provides an intuitive view of how the image plane is formed [26,228]. Imagine, for this model,

that the projection is based on light being projected on a plane, entering from a small hole, so small

only a ray can enter in each point of the scene (see Figure 7.2).

Figure 7.2: Pinhole camera model, the Z axis will be considered the optical axis, f stands for the
focal length, X is a point in space and x is the projection of that point on the image plane. Please
note the change in coordinates from X to x (From [26]).
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This model can be rearranged so that the math comes out easily and so that the image plane is

not inverted in relation to the scene (see Figure 7.3).

Figure 7.3: Simplified pinhole camera model (From [26]).

The projection that occurs on a camera when transforming 3D coordinates to 2D plane coordi-

nates is a true 3D perspective, as confirmed by [228]. Therefore, any point Q will be transformed

into an image point q (in inhomogeneous coordinates) as follows:

q = P(Q) =

X/Z

Y/Z

Z/Z

 (7.1)

However, this transformation is based on an ideal pinhole camera, which is extremely difficult,

if not impossible, to create. Once the 3D points are transformed through the pinhole, it is still

necessary to transform those coordinates into sensor space coordinates (camera coordinates). A

camera can be simplified as a sensor and lens, where the lens gathers the maximum amount of

light it can and redirects that light into the sensor. An example of that process can be found in

Figure 7.4.

Figure 7.4: Simplified camera and lens example; note the possible similarities between this exam-
ple and the pinhole model in Figure 7.2 (From [228]).
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Therefore, a point qs = [xs,ys]
T is formed from a scene point Q = [X ,Y,Z]T by some simple

relations:

xs = f · X
Z
+ cx ys = f · Y

Z
+ cy (7.2)

Here, xs and ys are image coordinates, f is the focal length and cx and cy are the coordinates for

the centre of the image plane. These two additional parameters result from the possible displace-

ment that may exist between the sensor and the optical axis. Perfectly aligning the sensor and the

optical centre of the lens would require a level of precision that is difficult to achieve, especially

in low-end cameras. There is also the possibility that the sensor is not perpendicular enough to the

optical axis to create a skew, s, between the sensor axis. Therefore, as for now, it is possible to

build the camera calibration matrix as follows:

K =

 f s cx

0 a f cy

0 0 1

 (7.3)

where a is the aspect ratio of the image.

In practice, for many applications, it can be assumed that a = 1 and s = 0, resulting in the final

calibration matrix:

K =

 f 0 cx

0 f cy

0 0 1

 (7.4)

This equation makes it possible to correct the ray coordinates for each point in space on the

image plane, using the following relation:

x̂ = K−1 · x (7.5)

Now that the form of the calibration matrix is agreed upon, it can be put together with the

camera extrinsics, the camera orientation in space (the camera position regarding the space coor-

dinates). That position can be parameterised by a rotation matrix and a translation vector, respec-

tively, R and t. As such, it is possible to define the camera matrix:

P = K ·
[
R|t
]

(7.6)

It is preferable to use an invertible 4×4 matrix, defined as follows:

P̃ =

[
K 0
0T 1

]
·

[
R t
0T 1

]
(7.7)
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With this matrix, a point in space can directly be transformed into screen coordinates using the

equation:

q̄∼ P̃ · Q̄ (7.8)

where Q̄ = (x,y,z,1) and q̄ = (xs,ys,1,d), d is the point’s disparity and ∼ denotes equality up

to a scale.

7.3 Binocular Disparity and Stereo Vision

Part of the problem that is addressed in this Section is that of binocular disparity, namely the differ-

ent displacement objects undergo when seen through different viewpoints. The human brain uses

this process to identify distances to objects. The same process is used in computer vision, where

similar features are matched and their disparity is calculated. Then, with some computation and

provided that there is some knowledge between the cameras (or that knowledge is inferred, as it

will be seen in Section 7.6.2), it is possible to reconstruct the scene up to a metric reconstruction,

where the lengths and distances of that reconstruction have a direct relation to real world mea-

surements. If such knowledge is unknown, every reconstruction is relative to a trivial projective

transformation, and thus the measurements of that projection might have no direct relation to real

world measurements.

Based on [98, 197, 228], it is possible to build a mathematical model in order to relate two

views (see Figure 7.5).

Figure 7.5: Geometric model for two-view geometry based on the pinhole camera model. The
projection of point p is, respectively, x and x1 on the left and right view, c0 and c1 are the camera
centres, and e0 and e1 the epipoles. Finally, l0 and l1 are the epipolar lines that pass through x and
x1, respectively, and are contained in the epipolar plane for point p. Note that all epipolar lines
and planes go through the epipoles. Also note that, between the two cameras, it is assumed that
there is a rotation and translation associated (R, t) (From [228]).
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Although the exact position of point p is not known, it must be located somewhere in the ray

cast between the camera centres and that point, which pass through the image plane in each one of

the points x and x1. After some geometrical relations, and based on the camera matrix discussed

in the previous section, it is possible to state that there is a matrix E, called essential matrix [151],

3×3 of rank-2, that relates every corresponding point as follows:

x̂T
1 ·E · x̂ = 0 (7.9)

where E is defined as:

E = [t]× ·R (7.10)

where [t]× is the skew-symmetric matrix [228].

This is, of course, if both R and t are known. In this project’s case study, those matrices

are not known, as it deals with free-moving hand-held cameras. Also, as it is an uncalibrated

environment, there is no easy access to camera parameters and to the cameras’ calibration matrix.

In such situations, it is possible to define a new matrix F, the fundamental matrix, which still

respects the epipolar constraint, as follows:

x̂T
1 ·E · x̂ = xT

1 ·K−T
r ·E ·K−1

l · x = xT
1 ·F · x = 0 (7.11)

The matrix defined in (7.11) [77,98,197] has many applications, and it is of the utmost impor-

tance, as will be confirmed in this chapter. F is normally found using at least 8 matches in both

images, solving a system of equations using Singular Value Decomposition (SVD) [90] 1. It can,

anyway, be estimated using only 7 correspondences by solving a system of non-linear equations,

as this matrix only has seven degrees of freedom. If more than eight points are available, then it

is possible to minimise the effect the noise can introduce while estimating F. If using automati-

cally established correspondences, then there may be some outliers (wrongly-matched points) that

should be addressed.

The process of stereo matching consists of finding correspondences for the maximum number

of pixels in each image. Assuming a low baseline (the displacement or disparity between the

two views is significantly smaller than the distance to the objects on the scene), it is possible to

assume that most of the pixels from either images will match; in other words, almost all scene

points are visible in both views. It is possible to facilitate the correspondence problem and the

computation of correspondent distances by pre-aligning the views, a process called rectification, so

that corresponding epipolar lines are horizontally aligned. That way, the stereo matching problem

is reduced to a one-dimension search and the math is reduced to what is summarised in Figure 7.6.

From there it is possible to note that the problem, as it is posed here, assumes that the focal

length f is the same for both views. That is common as even with autofocus, in low baseline

problems whose value tends to be the same [26], even though the state-of-the-art methods do try

1Simple and intuitive explanation in http://www.cs.unc.edu/~marc/tutorial/node54.html

http://www.cs.unc.edu/~marc/tutorial/node54.html
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Figure 7.6: Disparity search summary assuming a low baseline (T << Z). The search space for
correspondences is limited to the x-dimension and the disparity value is very simple to compute
(From [26]).

to transform that (and other) intrinsic parameter, assuming it is not shared by both the views, so

that the model proposed holds. By simple triangle similarity, it is possible to verify that:

T − (xl− xr)

Z− f
=

T
Z
⇒ Z =

f ·T
xl− xr

⇒ Z =
f ·T
d

(7.12)

Since depth is inversely proportional to disparity, there is obviously a nonlinear relationship

between these two terms. When disparity is near 0, small disparity differences make for large

depth differences. When disparity is large, small disparity differences do not change the depth

significantly. The consequence is that stereo vision systems have high depth resolution only for

objects relatively near the camera (see Figure 7.7).

Figure 7.7: Disparity and distance relation (From [26]).
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7.4 Feature Detection

One of the best contributions which can be found in the literature, as far as explanation and com-

parison of feature detection and matching algorithms, are concerned is that provided by Tuyte-

laars and Mikolajczyk [241]. Detailed explanations are also provided in the previously referred

books [26, 228].

A feature can be defined as an image point or pattern that is relevant, different from its neigh-

bour, and for the purpose of this project, especially interesting if visible in both views and mathe-

matically matchable. Those features can be isolated points (pixels), but can also be edges or even

other portions (such as blobs). Matching normally occurs either by performing measurements

around a window or by computing especially designed descriptors. Window matching is normally

not invariant to transformations, and therefore descriptors are developed in order to create that

invariance.

Notice that in this part of the work we are dealing with free-moving cameras. As such, it is

not known, a priori, what type of transformations the scene may suffer from one view to another.

Thus, the ideal type of features must be invariant to the highest number of transformations possible.

Good features have associated a set of commonly desired properties [241]. For this project, all

properties are required, except on, which is Efficiency. This happens because the aim is not to

create a time-critical application, and so there is more time to perform the detection. Therefore,

the features to be found should have these properties:

• Repeatability since most of the features detected in one view should be visible and detected

in the other;

• Distinctiveness, as features should be informative enough to allow an accurate and robust

matching between all features present in an image;

• Locality and Accuracy. In Section 7.2 it was demonstrated that the geometrical model would

require local points to be matched, and so the detected features should have an accurate

location on the image plane;

• Quantity, even though a small minimum number of correspondences are necessary, a larger

number of features would reduce noise-induced errors.

7.4.1 Corner Detectors

Corners, in a planar imaging sense, are points of high curvature and may not correspond to actual

corners in 3D objects. The most classical algorithm for corner detection is that of Harris and

Stephens [95], commonly called Harris corner detector. It is based on finding large changes in

the derivatives signal of the image plane. A large change in both directions is a strong indication

there might be a corner in that location. This algorithm was then updated to a scale-invariant

version and then to an affine-invariant version [241].
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The SUSAN [217] (Smallest Univalue Segment Assimilating Nucleus) is another commonly

used algorithm. The principle is simple: defining a circular patch around each pixel of the image,

with the centre being called the nucleus; each pixel in that radius is assigned with similar or

different intensity values to that of the nucleus. Therefore, a corner is defined as a nucleus where

the circular neighbour has less than a defined threshold of similar pixels.

Observing the images presented in the database (see Chapter 4), a good performance from the

corner detectors is not expected. Visually there are not many high curvature salient points in the

scenes that this project deals with.

7.4.2 Region Detectors

A "region" might be imagined as a region of pixels that are "darker" or "brighter" than the sur-

rounding neighbours. Local features detected with region methods typically represent homoge-

neous regions. While this is acceptable for the detection step, there may be some problems for

the description and matching which occur afterwards. Indeed, homogeneous regions lack distinc-

tiveness. Fortunately, this can easily be overcome by increasing the measurement region. In other

words, a larger scale region is used to compute the descriptor, such that it also contains part of

the surrounding image structures, and captures the shape of the region’s boundary. This usually

suffices to increase the discriminative power and to match regions between images.

One possible algorithm to find "regions" that are invariant to some transformations (namely,

affine) is the Hessian-Laplace detector [167]. This algorithm is based on a matrix of second order

derivatives of the image intensities, created around points detected by the determinant of Hessian.

Features are detected when the trace of such matrix attains a local maximum.

Regions may also be found using Maximum Stable Extremal Regions (MSER) [166]. The

objective is to search for regions with distinguishable, stable and invariant shapes. To detect

those regions, a threshold at all possible gray levels is applied to the image. While that threshold

is changing, the area of connected components (pixels) is monitored. Regions where that area

changes below a defined threshold are defined as maximally stable.

Another possibility is using the Difference of Gaussian (DoG) detector type [53]. This algo-

rithm requires only a convolution on the images in a constant matter, depending on a Gaussian

smoothing parameter. The image scale-space is developed with Gaussian filters at different scales.

The features are detected searching for extremal values by comparison with the neighbours of the

pixels at the various scales and octaves [156] (see Figure 7.8).

7.4.3 Edge Detectors

Edges are expected to vary greatly from one view to another, as a rotation and translation almost

certainly would hide and/or transform the detected edges, invalidating the matching tasks. For that

reason, the edge detectors were disregarded due to the time span of this project.
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Figure 7.8: Difference of Gaussian space-scale pyramid visual description (left) with extremal
pixel finding by comparison to the neighbours at each level (right) (From [156]).

7.4.4 Efficient Feature Detectors

The Scale-Invariant Feature Transform (SIFT) [155] is a methodology which transforms an image

into a large collection of local feature vectors, each of which is invariant to image translation,

scaling, and rotation, partially invariant to illumination changes, noise, minor changes in viewpoint

and robust to local geometric distortion (scale and rotation). These features are defined as maxima

and minima of the result of the aforementioned DoG applied in scale space to a series of smoothed

and resampled images. With Lowe’s method, it is possible to extract features which are highly

distinctive and relatively easy to extract, and to identify objects correctly with low probability of

mismatch. They are relatively easy to match against a database of local features - however, the

high dimensionality can be an issue, and generally probabilistic algorithms are used.

Bay et al. [16,17] introduced the Speeded Up Robust Feature (SURF) which is partly inspired

by the SIFT descriptor. The standard version of SURF is several times faster than SIFT and its

authors claim that it is more robust to different image transformations comparatively to the SIFT.

It is a scale-invariant feature detector based on the Hessian-matrix, as is, for instance, the Hessian-

Laplace detector presented previously. However, rather than using a different measurement for

selecting the location and the scale, the determinant of the Hessian is used for both. The Hessian

matrix is roughly approximated, using a set of boxtype filters, and no smoothing is applied when

moving from one scale to the next.

The Features from Accelerated Segment Test (FAST) [207,208] is based on the SUSAN detec-

tor previously discussed in Section 7.4.1. The most promising advantage of the FAST detector is

its computational efficiency. The SUSAN computes the fraction of pixels within a neighbourhood

that have similar intensity to the center pixel, while the FAST compares pixels only on a circle of

fixed radius around the centre. The test criterion operates by considering a circle of 16 pixels and

radium of 3 around the corner candidate p, improved with machine learning techniques [199].

Özuysal et al. [185] introduced the Ferns method which addresses problems of illumination

and affine invariant recognition. Given a query and a target image, the camera affine invariance of
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the method is given by the construction of an orbit of affine and blurs deformations of the target

image. Then a set of key points (using a cornerness measurement) are computed on this orbit.

Only those key points that are stable under the deformations are used as effective key points. Each

of them determines a class which is characterised by the comparisons (encoded in a binary vector)

of the gray levels of a selected random set of pairs of surrounding points. These comparisons

determine the posterior probability of a given point belongings to a class and can be used for

classification using a naive Bayes approach. Thus, assuming that the priors of each class are

uniform, the next step is computing of the the likelihood of each class. Since one cannot assume

that each question is independent of the others, the proposal in [185] is to assume that the set of

questions is organised in subsets, called Ferns, which are independent. A Fern is determined by a

random selection of a subset of pairs of pixels where the values of the grey levels are compared.

Several Ferns are used to characterise a key point. Each comparison produces a binary answer.

This guarantees the morphological invariance of the method, which amounts to its invariance with

regard to illumination changes.

7.5 Feature Descriptors

After finding all features, the next task is to try and match them with features in the other view.

The most robust way to do that is to define and compute a descriptor for each feature found, and

then search for correspondences on those descriptors. It is common for the features and the image

to, at least, suffer some translation and rotation. It is also possible that there is some type of affine

transformation involved. As such, it is of great importance to use robust feature descriptors in this

part of the work.

Brown et al. [27] defined the Multi-Scale Oriented Patches, a descriptor based on normalised

intensity patches. It defines a 5×5 patch around the feature location, and the normalisation process

transforms the intensities so that their average is zero and the variance is one. It performs well

even though small image transforms occur.

Lowe [156] developed a robust descriptor using the SIFT algorithm. Consider a window of

16×16 around the feature location, using the level of the Gaussian filter in which the feature was

detected. The descriptor is then based on computing the gradient in each of the pixels contained

in that window, downgraded by a Gaussian fall-off function (to reduce the effect of those pixels

far from the feature centre). Then, in each quadrant of that window, it develops an orientation

histogram by adding the value of each pixel to one of the eight orientation beans using trilinear

interpolation in a 2× 2× 2 histogram (4 eight-bean histogram for each quadrant). That forms a

128-Dimension vector that is then normalised to unit-size, clipped to 0.2 and then re-normalised.

Inspired by the SIFT descriptors, Ke and Sukthankar [123] proposed a simpler approach.

Around each feature, compute the x and y derivatives around a patch of 39× 39 pixels. That

amounts to a 3042-dimensional vector that is then downsampled to a 36-dimensional vector using

the Principal Component Analysis (PCA) [228].



7.6 Rectification 95

Lastly, Mikolajczyk and Schmid [168], again considering the SIFT descriptors, proposed a

small change to these descriptors. Therefore, instead of using the usual square-defined descriptor,

their algorithm uses log-polar coordinates (still, centred in the feature point) to define the his-

togram structure. As such, the bin space are of radius 6, 11 and 15, with eight bins per coordinate,

except for the centre coordinate, for a grand total of 17 bin-coordinates, each with 16 orientation

bins. The 272-dimension resulting vector is then mapped to a 128-dimension vector using the

PCA trained on a large database.

After detecting the features and obtaining the descriptors, it is still necessary to define a match-

ing strategy. Normally, it is divided into two different stages: selecting a matching strategy, de-

termining the correspondences which go to the next step taking into account their "quality"; and

determining the devise efficient data structures and algorithms to perform this matching as quickly

as possible. Determining the feature matches which are reasonable to process further depends on

the context. The most commonly used is the simple Euclidean distance between all "target" de-

scriptors, provided that a certain distance threshold is attained [228]. However, nearest-neighbour

methods, for example, are suitable if efficiency is crucial.

7.6 Rectification

Section 7.3 confirms that rectification is a very important and necessary step in the reconstruction

process. This step is highly based on the epipolar geometry already discussed, where the main

goal is to find a way to horizontally align corresponding epipolar lines.

7.6.1 Based on Known Objects

If a known object is placed on the scene, visible to both views and with identifiable and matchable

features, then it is possible to recover the pose of the two cameras from those measurements. In

this special case, it is possible to find both the translation vector and the rotation matrix for the

cameras concerning that object, and (7.10) is applicable. Basically, there are two principal ways to

compute rectification terms: Hartley’s algorithm [97], which can yield uncalibrated stereo using

just the fundamental matrix; and Bouguet’s algorithm [237,263,264], which uses the rotation and

translation parameters from two calibrated cameras to align the epipolar lines. In practice, Hart-

ley’s algorithm produces more distorted images than Bouguet’s calibrated algorithm. In situations

where calibration patterns can be applied, Bouguet’s algorithm is more stable [26].

7.6.2 Uncalibrated Rectification

There is extensive work in the literature on uncalibrated rectification. The possibility of recon-

structing scenes from sets of frames or pictures is much appreciated and is extensively studied.

Here only recent and recognised algorithms will be presented, among many others that can be

found in the literature.
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The state-of-the-art papers in uncalibrated rectification [112, 152] date back to 1999. In [152]

the authors decompose each collineation into similarity, shearing and projective factors and at-

tempt to make the projective component "as affine as possible", while in [112] the authors build

upon [97] and propose a method that avoids computation of the fundamental matrix, using the

same distortion criterion as in [97].

The process of planar rectification is to find a pair of homografies that will align the epipolar

lines. Therefor, it is possible to formulate these assumptions:

1. All epipolar lines are parallel to the x axis;

2. All image features and points have the same corresponding y coordinate.

The algorithm from Loop and Zhang [152] is based on finding a pair of homographies that

will maintain the epipolar constraint. The goal is to find those homographies by establishing a

set of simpler transforms, computing each component to achieve a desired effect and satisfy some

conditions. So, the homography H is decomposed in two homographies, so that:

H =Ha ·Hp (7.13)

where Ha is an affine transformation and Hp is a projective transformation. Then, Ha is

decomposed as:

Ha =Hs ·Hr (7.14)

where Hs is a shearing transformation and Hr a similarity transformation (for more detail

see the work by Loop and Zhang [152]).

All these transformations are computed using minimisation with specific criteria for each ob-

jective. This algorithm’s result can be found in Figure 7.9.

(a) Original unrectified pair with epipolar lines (b) Result of the rectification process, with aligned epipo-
lar lines

Figure 7.9: Results from the rectification algorithm developed by Loop and Zhang [152].

Hartley and Zisserman [98] created a method that is based on the process of relocating the

epipoles in both images. The algorithm attempts to transform the epipoles so that their location

is set at infinity (with the last coordinate as 0, in homogeneous coordinates). Start with a set of

matches xi↔ x′i, which can never be less than seven (though more than that is preferred). Compute
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the fundamental matrix F from those matches and find the epipoles e and e′ so that e′ ·F = 0 and

F · e = 0. Then, compute the projective transformation H’ that maps the epipole e′ to infinity,

(1,0,0)T . Using that, find the matching projective transformation H that minimises the least-

squares distance:

∑
i

d(H · xi,H’ · x′i). (7.15)

An example of the result from this algorithm can be found in Figure 7.10.

Figure 7.10: Uncalibrated rectification result from Hartley and Zisserman [98] for a generic real
image (From [265]).

Fusiello and Irsara [85] recently developed a new rectification algorithm that tries to get close

to that of the Euclidean rectification. This method uses some autocalibration notions to estimate

the camera parameters (that are assumed to be equal for both views, as it is the case for the images

used). From a set of correspondences m j
l ↔ m j

r a Sampson error function is defined for each

correspondence:

E2
j =

(m j
r

T
·F ·m j

l )
2

(F ·m j
l )

2
1 +(F ·m j

l )
2
2 +(m j

r
T
·F )2
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r

T
·F )2

2

(7.16)

where (•)i is the ith component of the normalised vector.

The homographies are then obtained by creating a system of non-linear equations to every

j correspondence (E j = 0). The solution is obtained through least-squares using the Levenberg-

Marquardt algorithm, and through parameterisation so that:

Hi =Kni ·Ri ·K−1
oi (7.17)

where i is l or r, for each one of the views.

It is shown that the rotation of one of the views around the x-axis is irrelevant, and therefore,

it is discarded. Some rectification examples can be found in Figure 7.11.

This algorithm was then improved by Monasse [171] showing better results. The biggest

changes are:

• Improved Jacobian matrix calculations;



98 Uncalibrated-based 3D Reconstruction

Figure 7.11: Rectification examples by Fusiello and Irsara [85]. The original views are on the left,
while the rectified ones are on the right.

• Some changes on the terms and geometric interpretations;

• Actual use of the Levenberg-Marquardt minimisation;

• Use of the Optimised Random Sampling Algorithm (ORSA) algorithm [170] instead of the

common Random Sample Consensus (RANSAC) to find and eliminate outliers from the

matched points.

Then, the relation between the fundamental matrix F and the rectification process is that of

finding the pair of homografies that will transform the images so that they become rectified [26,

152, 197, 228]. In the rectified case, the F has the form [85, 152]:

F = [u1]× =

0 0 0

0 0 −1

0 1 0

 (7.18)

where [u1]× is the skew-symmetric matrix [228].

To perform the rectification step, it is necessary to search for the aforementioned homographies

(Hr and Hl), meeting the epipolar geometry constraint (7.10) and (7.11) [85, 152]:

(Hr · xr)
T · [u1]× · (Hl · xl) = 0 (7.19)

where:

F =HT
r · [u1]× ·Hl (7.20)
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7.7 Stereo Matching

The stereo matching process is almost always difficult and prone to errors, mainly because it is

ill-posed [211]: due to the possible colour repeatability, its solution might not be unique. There

will be multiple situations where it will not be possible to define, with confidence, the correct

correspondence between pixels. The colour values in some regions might be equal or very similar

in some areas, thus preventing a confident matching. The classical algorithm for finding pixel

correspondences is based on simple correlation, also called the "brute force" algorithm. It can

be simply described as such: for each pixel in a "base" image, calculate a weight function in a

window around that pixel; then, for each pixel in the same row of the "target" view, calculate the

weight of the window around it. The "target" pixel that has a value closer to that of the "base"

pixel is, potentially, the best match. It is not difficult to see that this algorithm can greatly suffer

from problems in low or repeated textured scenes, where there would be similar valued pixels

and where a unique match is not possible [228]. Common window evaluation functions are, for

example:

Normalised correlation: ∑x ∑y L(x,y)·R(x,y)√
(∑x ∑y L(x,y))

2
(∑x ∑y R(x,y))

2

Sum of squared differences: ∑x ∑y (L(x,y)−R(x,y))2

Sum of absolute differences: ∑x ∑y |L(x,y)−R(x,y)|

(7.21)

where L and R are, respectively, the images on the left and on the right (see Figure 7.12).

(a) Original image. (b) Estimated depth map (blue is
closer).

(c) Estimated confidence (red is
higher).

Figure 7.12: Uncertainty in stereo matching, as confirmed in the last image (From [228]).

When faced with a pair of stereo images, it could be difficult to establish a dense correspon-

dence for each pixel in both images. This section aims to present some interesting algorithms that

are considered top-notch to solve that problem in a correct and efficient way. Nevertheless, the

reader should note that efficiency is not a concern at this stage, and so there will be no performance

analysis in spatio-temporal or complexity terms.

Kolmogorov and Zabih [132, 133] present a well-known and recognised algorithm for stereo

matching. Their approach is based on energy minimisation via graph cuts, and it is presented as
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a fast and accurate matching method. They give some degree of interest to the problem of oc-

clusion detection. Their work treats both images symmetrically, handles visibility properly, and

imposes spatial smoothness while preserving discontinuities. The problem of energy minimisation

is proved to be NP-hard, and therefore graph cuts are necessary so that it is possible to compute

a local minimum of the energy function. Their experimental results are very promising and con-

firmed the performance of the algorithm. The results are presented in Figure 7.13.

(a) Result for the Tsukuba dataset (b) Results on the Dayton sequence

Figure 7.13: Stereo matching results from Kolmogorov and Zabih algorithm. A lighter colour
means that the points are closer to the camera (From [133]).

Radim Šára contributed with various algorithms for efficient stereo matching. His work was

based on trying to solve the problems of ambiguity and occlusion. Believing that studying the

ambiguity related to the reconstruction would extensively help the reconstruction problem, he

presented a methodology [211] describing an algorithm that is intended to find the largest unam-

biguous portion of matched points, identifying variables that can be manipulated to identify what

is or is not ambiguous. As a result, he defined a new stability property that is a condition a set of

matches must satisfy to be considered unambiguous at a given confidence level. The experimental

results can be seen in Figure 7.14.

Figure 7.14: Results from the algorithms presented by Šára [211].

Later this author presented, in [212], a new set of algorithms based on his previous work.

The aim was to build a robust framework for correspondence matching in computer vision. This

framework is capable of adding well-structured prior knowledge. This work presents considera-

tions and definitions on visibility, occlusions and ambiguity, and outlines the most common tasks

to solve stereo problems. The paper also shows a large degree of interest in detailing that the prior

knowledge or model severely affects the solution found, thus explaining that a contradicting prior

model will result in artifacts and wrong disparity calculations. The framework is based on the

notion of digraph kernels, which are considered excellent classification tools and have widespread

applications and uses [24].
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Čech and Šára [43] present a two-step stereo matching method. This algorithm visits only

a small fraction of the disparity space, finding a semi-dense disparity map. From a set of seeds

selected previously (using helper algorithms like [95]), the matching is performed increasing the

correspondence from those seeds under a theoretically well-grounded rule, the uniqueness con-

straint until the result can no longer be improved. Then, a robust global optimality task is per-

formed, selecting from the competing patters those that are unambiguous. It is demonstrated that

the algorithm is very resistant to repetitive patterns and other ambiguities. The most interesting

result is that, contrarily to initial belief, there is no need for high quality seeds, as the algorithm

seems to be able to perform matching in very complex scenes from a set of pseudo-random initial

points. Their experimental results are very promising and can be viewed in Figure 7.15.

Figure 7.15: Experimental results from the algorithm presented by Čech and Šára [43] for some
combinations of parameters and different images. Note that "proposed" is the proposed algorithm,
"Harris" is the feature detector presented in [95] and "exhaustive" is the application of a classical
exhaustive search algorithm.

Hirschmüller presented some work [109] on a stereo matching algorithm with a semi-global

approach. By using an especially designed cost function, the colour variations that pixels from

the same 3D point may exhibit in the two images are compensated. The matching is performed

using a global cost function that propagates the matching for a determined pixel in all directions

trying to reach a global optimisation value. Some post-processing steps are also considered that try

to improve the solution found. Tests and comparisons confirm that this algorithm is well ranked
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among the commonly existing algorithms, and the author claims that it can perform better if some

subpixel accuracy is computed in the resulting disparity map. This algorithm is implemented with

optimisation in the OpenCV1 computer graphics library.

Alagoz [6] created two stereo matching algorithms based on classical global energy minimisa-

tion functions. The approach was, however, to try and add a smoothing function so as to eliminate

unreliable disparity estimations. In the first algorithm, there is an attempt to smooth the energy

function by applying an averaging filter a large number of times, assigning a new minimum dis-

parity value to each pixel if this value is found in each iteration. In the second algorithm, the

approach is based on region growing along image rows, defining root points where regions begin.

A root point is defined as a point that does not belong to any other region, and its disparity is

computed using the energy function previously defined by the author. The region is then increased

from that point on while the energy function stays equal or lower than the value for the root point.

Otherwise, a new root point is selected and the region starts growing from there.

Bhatti and Nahavandi [21] published another approach to the stereo matching problem. Their

claim is that few attempts have been made in the area using wavelets/multiwavelets multiresolu-

tion analysis. As such, their work tries to develop a stable algorithm that uses translation invariant

multiwavelet transforms to establish correspondences on the stereo pair. In the paper, they also

studied some base changes and the effects they could have on the performance of the correspon-

dence estimation. Their experimental results on some of the classical datasets are presented in

Figure 7.16.

Wang and Road [252] built a stereo matching algorithm based on competitive and cooperative

region optimisation. It is an energy minimisation approach. Starting by using segmentation, it

defines a set of image regions, establishing initial correspondences with simple window-based

methods. Those disparities are then refined through a plane fitting process that uses voting for

the assignments. Finally, the disparities of all planes are refined by an inter-regional cooperative

optimisation procedure based on global energy minimisation. Until this moment, according to

the Middlebury Stereo Evaluation ranking this is the third best performing algorithm (see next

paragraph). Their experimental results can be seen in the Figure 7.17.

In [129] Klaus et al.present another matching algorithm. Their approach is based on colour

segmentation on the reference image followed by an adapting matching score, developed for max-

imising an unambiguous solution. After identifying areas of similar colour, the matching is per-

formed on a local window of every point. The idea is that disparity is smooth in areas with the

same colour, while large disparity variations should occur in discontinuities. After that, the dispar-

ity attribution is based on deriving a set of planes that should be adequate to represent the scene

structure. Finally, each segment found in the first phase is assigned to a specific plane, using an

optimisation algorithm based on energy minimisation. It is one of the top ranked algorithms found

in the Middlebury Stereo Evaluation ranking 2, right after the best algorithm, submitted anony-

mously, and for that reason it has been excluded from this work. The experimental results can be

1The OpenCV library can be found in http://opencv.willowgarage.com/
2The ranking can be found in http://vision.middlebury.edu/stereo/eval/

http://opencv.willowgarage.com/
http://vision.middlebury.edu/stereo/eval/
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Figure 7.16: Results of the stereo matching algorithm by Bhatti and Nahavandi [21] for the clas-
sical Sawfoot and Venus stereo datasets.

found in Figure 7.18.

Geiger et al. [89] have very recently introduced the algorithm which they entitled Efficient

Large-scale Stereo (ELAS) focusing on the problem of creating one algorithm that would be com-

putationally less expensive, while achieving comparable results. Their approach is based on the

Bayesian probability computation. Having in mind that most pixels in a pair of images may be

ambiguous and repetitive, their method relies on a set of "support points", defined as points of

strong, unambiguously matched features. Then, the assumption is that, along those ambiguous

portions, the disparities should vary smoothly. After computing the disparity of those ’support

points’, they create a 2D mesh via Delaunay triangulation. Then, they tried to find a piecewise

linear function that is able to approximate that mesh to the real disparities. Results for the classical

evaluation datasets are shown in Figure 7.19.

7.8 Experimental Work

This section shows the results for each step of the uncalibrated 3D reconstruction based on the

state-of-the-art works presented previously.
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Figure 7.17: Experimental results from the stereo matching algorithm by Wang and Road [252]
for the Tsukuba, Venus, Teddy and Cones databases.

Figure 7.18: Experimental results from the stereo matching algorithm provided by Klaus et
al. [129] for the Tsukuba, Venus, Teddy and Cones databases.

7.8.1 Test images

After some analyses on the state-of-the-art stereo matching descriptions, it is clear that well known

and somewhat featured images have been developed and tested. The testing datasets also evolved 1

1Some datasets can be found in http://vision.middlebury.edu/stereo/data/ and the more recent
have been used in the best "scoring" algorithm.

http://vision.middlebury.edu/stereo/data/
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Figure 7.19: Classical result set for the stereo matching algorithm by Geiger et al. [89].

and it was decided that, before trying to develop any algorithm, they should be tested against a

"standard" image that had some similarity with this project’s images: presence of areas of high

ambiguity due to low texture or repeatability. That would allow for some overview of how the

algorithms would behave on those smaller and almost perfectly rectified images, before introduc-

ing the bigger, not so properly rectified views. As such, the Aloe and Flowerpot images from the

2006 Middlebury datasets were chosen to verify if the algorithms performed well against texture

repeatability and large portions of ambiguity. The selected pairs are presented in Figure 7.20.

(a) Aloe, left (b) Aloe, right

(c) Flowerpot, left (d) Flowerpot, right

Figure 7.20: Initial test images, from the Middlebury dataset.
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Later on, there was a brief test on two very ambiguous and virtual images. The nature of those

images would pose a very hard to solve test on all known algorithms and would allow a strong

starting point for this study. Those images can be seen in Figure 7.21.

(a) Virtual color model, left (b) Virtual color model, right

(c) Virtual blank model, left (d) Virtual blank model, right

Figure 7.21: Virtual models for large ambiguity tests.

The next set of images is based on a dummy (original: 7.22(a)) that was modified to incorporate

some volume change between the two breasts. Although poorly executed, the idea was to mimic

the natural skin ambiguity by using almost always the same colour, although with some points of

colour change that would copy the effect of skin lesions, moles, freckles or blemishes. That model

and the selected views are presented in Figure 7.22.

7.8.2 Feature Point Detection

It is easy to understand that there are not many distinctive features in the images of this project.

The most common and known algorithms were tested for the number and quality of features. The

objective is to find the detector that is able to find the biggest number of quality features that can

then be matched. The tested algorithms were:

• Harris corner detector [95]

• SIFT [156]

• SURF [17]

• MSER [166]
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(a) Original dummy

(b) Modified dummy, left view (c) Modified dummy, right view

Figure 7.22: Dummy model for more real tests, with induced volume difference in the breasts.

7.8.3 Image Rectification

The method provided by Hartley and Zisserman [98] was computed and tested using the tools

present in Matlab R© 1. The Fusiello and Irsara [85] method is tested with its own Matlab R© toolbox

and, as a result, that method was improved by Monasse [171].

7.8.4 Disparity Map Generation

The disparity tests are performed using the author’s code, either through executables or through

their Matlab R© wrappers. Not many implementations were found, while the most common code

available is that of very simple matching presented in Section 7.7. Apart from those, the tested

algorithms were:

• Hirschmüller [109]

• Čech and Šára [43]

• Alagoz [6]

• Klaus et al. [129]

1http://www.mathworks.com/products/computer-vision/demos.html?file=/products/
demos/shipping/vision/videorectification.html

http://www.mathworks.com/products/computer-vision/demos.html?file=/products/demos/shipping/vision/videorectification.html
http://www.mathworks.com/products/computer-vision/demos.html?file=/products/demos/shipping/vision/videorectification.html
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• Geiger et al. [89]

7.9 Results

Here, is presented the results to the tests outlined in the previous Section. A figurative testbed was

developed and there are now conditions to conduct all tests for any image that is required. The

parameters used are those that were shown (by the authors) to have the best results. Note that those

parameters might not be the better for these images, but parameterisation was not to be addressed

here.

7.9.1 Feature Point Detection and Matching

The testbed was run on all images and the results are present in Table 7.1. Note that the extra

column on the SIFT algorithm is based on matching against SIFT descriptors using the squared

Euclidean distance. This is present because, according to Lowe [156], certain matches should be

rejected when considered too ambiguous.

Harris SIFT SURF MSER TotalCorners Features Matched Features Regions

Aloe l 26 10383
5727

8606 11306

72649

r 27 10447 8510 11024

Flowerpot l 8 4605
2127

1055 591
r 10 4611 1093 597

Color model l 75 3751
1748

202 9
r 92 3726 191 10

Artificial model l 500 8810
4219

9803 2364
r 500 8759 9409 2352

Dummy l 7 9832
1072

960 197
r 9 9663 971 205

Total (avg. unmatched) 627 37294 — 20400 14328
% of total 0.8 51.3 28.1 19.7

Table 7.1: Feature detection results for the testbed and evaluation. Note that, because there are
no defined matching refusal criteria for the remainder algorithms, decided decision was made to
compare the global number of features detected, as a larger number raises the probability of correct
matches.

The SIFT algorithm appears to be largely superior to the remainder, and therefore it was se-

lected for the rest of the tests. The feature representation (as close as possible to that returned by

the algorithm) is shown in Figure 7.23 and Figure 7.24. It is possible that a combination of all

four algorithms would increase the accuracy; however, that depends on defining an algorithm that

would:

1. Eliminate duplicate or close features;
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2. Scale those features according to a certain quality level, where only the high quality features

would be used.

Figure 7.23: Feature detection performed in the Aloe and Flowerpot; algorithms in this order:
Harris, MSER, SIFT and SURF.

7.9.2 Rectification

The rectification was performed on the coloured artificial 3D model and on the marked dummy

as those are closer to human body representations. The other test images were discarded for
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Figure 7.24: Feature detection performed in the three artificial models used; algorithms in this
order: Harris, MSER, SIFT and SURF.
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these tests. The pairs used for rectification were obtained using the SIFT both for detection and

matching, in this configuration:

• Dummy: 1072 matched pairs;

• Artificial coloured model: 1748 matched pairs.

The rectification algorithm provided by Hartley and Zisserman [98] was parameterised to

use different fundamental matrix generation methods. The methods that were tested were the

RANSAC, the Least Trimmed Squares and the Least Median of Squares. All methods considered

the entire set of 1072 pairs as inliers for every pair of images. The selected parameters were:

• Confidence: 99.99%

• Distance: 0.01 Sampson

• Number of trials: 10000

This method achieved positive results; however, more recent algorithms have performed better.

Fusiello and Irsara [85] achieved the best results of the test, with the lowest possible error.

However, it is also the slowest to run and sometimes the result may not have been the best due

to the random characteristics of the Non-linear Least Squares method. The initial algorithm does

not search or eliminate outlier matches; therefore, this was done by fitting an initial fundamental

matrix using the RANSAC at a required minimum distance to the unrectified epipolar lines for each

pair set to a very restrictive 0.00001 pixel.

In this scenario, the method presented by Monasse [171] achieved the highest number of rec-

tification errors though the author claims that the algorithm performs best. This may be due to a

very restrictive set of inliers computed for the previous algorithm or it could be related to the scene

or the quality of features found.

The results are summarised in Table 7.2. The rectified pairs are visually very similar, and

therefore only the result with the minimum error is presented in Figure 7.25. The presented error

was obtained by applying the Sampson error suggested by [84] and defined as:

erec =
1
N

√
∑

j
E j

S (7.22)

where:

E j
s =

(m j
r ·F ·m j

l )
2

||[u3]× ·F ·m j
l ||2 + ||m

j
r

T
·F · [u3]×||2

(7.23)

and can be seen as the root mean squared distance of each feature point to its horizontal

epipolar line.
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Color Model Dummy
# Features 1748 1072

Hartley

RANSAC Error 0.15 1.76
Inliers 1748 1072

LMedS Error 0.18 0.689
Inliers 1748 1072

LTS Error 0.17 0.78
Inliers 1755 1069

Fusiello
Error 0.019 0.024
Inliers 595 586

Focal length 1006.5 2872.5

Monasse
Error 0.58 0.044
Inliers 595 751

Focal length 2824.61 2691.91
Table 7.2: Rectification results and comparison. Error values are in pixels and were established
through (7.22) equation.

Figure 7.25: Best results from the rectification algorithms, both by Fusiello and Irsara [85].

7.9.3 Stereo matching

The same images used for studying the rectification algorithms will now be used to try and gen-

erate the most dense disparity maps possible. The rectification algorithm used was that with the

lowest error, according to Table 7.2. There is no ground truth available and there is no clue about

minimum or maximum disparity; therefore, so it is always assumed to range between 0 and a large
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number, chosen to be 255.

The results for all the algorithms running over the coloured 3D model with the default param-

eters can be viewed in Figure 7.26. It is evident that the large ambiguity the image presents is

handled poorly by all algorithms, and the resulting disparity maps are visually wrong, sparse and

unintelligible.

(a) Hirschmüller [109] (b) Čech and Šára [43]

(c) Alagoz [6], energy minimisation version (d) Alagoz [6], region grow version

(e) Klaus et al. [129] (f) Geiger et al. [89]

Figure 7.26: Results for stereo matching algorithms running over the 3D coloured model.

Unfortunately, for the Dummy images the maps did not improve as much. The large texture

and colour ambiguity on the surface of the Dummy can be attributed to these poor results. In any

case there is a disparity map that is suitable for 3D reconstruction and in most of them there are

no distinguishable differences between parts of the left and right breasts, although originally they
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were at different depth levels. The disparity maps can be viewed in Figure 7.27. Note that result

in Figure 7.27(f) was rotated for unknown reasons by the code provided by Geiger et al. [89].

(a) Hirschmüller [109] (b) Čech and Šára [43]

(c) Alagoz [6], energy minimisation version (d) Alagoz [6], region grow version

(e) Klaus et al. [129] (f) Geiger et al. [89]

Figure 7.27: Results for stereo matching algorithms running over the Dummy model.

7.9.4 Real Scenario

A small set of images was used from the database constructed as part of this project (see Chap-

ter 4). One of the first immediate difficulties was for the physician to retain the "low baseline"

constraint, which did not occur in most of the shots. Taking into account that it was specifically

requested and reasoned, it is denoted that enforcing this constraint within medical staff might be a

concern.
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This section presents two cases, namely the best and the worst images chosen from the set of

images. The images were captioned Patient A and Patient B (see Figure 7.28).

(a) Patient A - left (b) Patient A - right

(c) Patient B - left (d) Patient B - right

Figure 7.28: Original patient pairs, prior to processing.

The rectification results are summarised in Table 7.3 and can be seen in Figure 7.29. Both

patients were tested for all the disparity algorithms that were tested in the previous section.

Patient A Patient B
Features 1377 329
Inliers 755 168

Focal length 4505.1 5185.1
Error 0.026 0.33

Table 7.3: Rectification values for the Patient photographs using the SIFT for features and Fusiello
and Irsara [85] for rectification.

For Patient A (see Figure 7.30), in some cases the results appear to be better than the testing

ones. On the other hand, for the remainder, the results are very poor. There is still no disparity map

dense and correct enough for a decent reconstruction and some algorithms tend to continuously

give close disparity values to both breasts and, in some cases, even to the chest.

The images from Patient B (see Figure 7.31) are more difficult to process than the rest due to

the lack of features and because the images are a somewhat blurred. The results are very poor, and

there are no distinguishable depth differences between the chest and the breasts. No disparity map

is usable for an attempted reconstruction.

It is possible to conclude that, for this kind of images, it is not possible to use the most com-

mon state-of-the-art algorithms. It is necessary to search for a more suitable algorithm, one that

does a wider, more globally oriented search that would better fit the ambiguity of these images.
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(a) Patient A

(b) Patient B

Figure 7.29: Rectification results for the patient pairs.

Nonetheless, a global algorithm would increase complexity significantly, and therefore it might

not be suitable for the purpose of this project.

Parameter variation was attempted for some algorithms in order to verify what changes would

occur on the generated map. Those variations were done on the two most common parameters:

window size and maximum disparity value. Other parameters were available the solutions pro-

vided by Klaus et al. [129] and Alagoz [6], but those proved to have little if no effect on the final

result. With the variation of parameters, a large number of results were obtained; however, the

quality of the results are similar to those previously presented, and for that reason, they were not

included in this chapter. For details on the most relevant and consistent results in various runs, go

to [219]

As previously suggested and somewhat predicted, the state-of-the-art algorithms could not

successfully reason the correct correspondences for a too large portion of pairs, both virtual and

real. According to the literature, that can be attributed to the fact that it is very difficult achieve a

confident matching in many of the areas of the images used in this project. That difficulty can be

verified with a simple zoom on similar areas in both images. The difficulty of reasoning is clear

and even a human, with visual capabilities that overcome the actual computer possibilities in many

areas, is incapable of reasoning about the correct correspondences.
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(a) Hirschmüller [109] (b) Čech and Šára [43]

(c) Alagoz [6], energy minimisation version (d) Alagoz [6], region grow version

(e) Klaus et al. [129] (f) Geiger et al. [89]

Figure 7.30: Results for stereo matching algorithms running over photographs of Patient A.

7.9.5 A Simplified Scenario

A simpler approach was used after the poor results obtained with the state-of-the-art stereo match-

ing algorithms. Here, the set of test images are from a female phantom torso. In this particular

test set, ground truth measurements were performed both manually and with equipment based on

active stereoscopy techniques (see Figure 7.32).

This reference model was acquired by the Computer Aided Radiation Therapy group of the

Laboratory of Biomedical Technologies at the Politecnico di Milano 1, which developed, spe-

1http://www.tbmlab.polimi.it/index.html

http://www.tbmlab.polimi.it/index.html
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(a) Hirschmüller [109] (b) Čech and Šára [43]

(c) Alagoz [6], energy minimisation version (d) Alagoz [6], region grow version

(e) Klaus et al. [129] (f) Geiger et al. [89]

Figure 7.31: Results for stereo matching algorithms running over photographs of Patient B.

cific instrumentations and algorithms over the last years to create a tool to acquire and analyse

patients’ surface in order to quantitatively assess surgical outcome in breast plastic and recon-

structive surgery [14]. The acquisition system is based in a programmable laser pattern static

projector and an optical tracking system [188] (see Figure 7.33). The surface is obtained using a

"row-wise" scanning projected onto the object that we want to acquire, and the scanning can be

repeated as many times as desired to obtain a denser point cloud. The tracking system used to

locate the laser spot projected on the surface is based on a stereo vision system.

In this methodology a simplified approach was implemented. Basically, in each point the depth

is computed using only the difference in the x-axis, assuming a correct image rectification. Using
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(a) Real photo. (b) 3D surface model

Figure 7.32: Female phantom torso.

(a) Laser scanner and the female
phantom torso.

(b) One of the cameras from the tracking system.

Figure 7.33: Acquisition system from Patete et al. [188]

a laser scanner, several light spots were projected onto the female phantom to make it easier to

detect and match pixels. Several pairs of photographs were acquired, from two different points

of view, using a single camera without any calibration procedure. The two views present some

rotation and/or translation between them, assuming a low baseline between acquisitions.

7.9.5.1 Identification and Matching of Points

Initially, the points are identified and correctly matched, using a semi-automatic approach, from

the light spots projected onto the female phantom. The light spots are detected automatically, and

then the users match the corresponding points manually (see Figure 7.34).
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(a) (b)

Figure 7.34: Identification of corresponding points from the female phantom torso. The nipples
are also identified by the user (white circles).

7.9.5.2 Rectification of the Two Views

In this step, the points that have been correctly identified previously are used to rectify the images

using epipolar geometry with the algorithm by Fusiello and Irsara [85] (see Figure 7.35).

(a) (b)

Figure 7.35: Rectified images from the female phantom torso.

The rectification algorithm used was the introduced by Fusiello and Irsara [85] because it

achieved the best results, with the lowest error, as demonstrated in the previous Sections. How-

ever, it is also the slowest to run and sometimes the results may not be the best due to the random

characteristics of the Non-linear Least Squares method, which initialises the focal length with a

random value and then iteratively tries to improve that value. As stated before, various pairs of

photographs were acquired and subject to the steps presented previously. The quality of rectifica-

tion is measure by evaluating the difference, in pixels, between each pair of matched pixels and the

corresponding epipolar line using (7.23). In this part, an average error of 0.24 pixels was obtained

with a Standard Deviation of 0.017.
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7.9.5.3 Depth Information

After the rectification step, all the corresponding points in the images present the same y coordi-

nate, and now it is possible to compute the disparity between each point. From (7.12) it is possible

to see that the depth information for each point is found using the focal distance, the baseline of

the cameras and the disparity information. As we are working in an uncalibrated environment,

the focal distance and the baseline information are unknown. For that reason, it is not possible to

work with real metric values. On the other hand, it is possible to work with relative distances and

with ratio values in both scenarios: real phantom and the computation uncalibrated approach. In

this scenario, (7.12) is simplified to:

Z =
1
d

(7.24)

7.9.5.4 Torso Surface Fitting

In this part, the matched points in the chest and abdomen zone are used to fit to a 3D surface.

The generated models can be used to take measurements and to compare them with the reference

model. Several models were tested from a simple plane to a surface with a higher level. The tested

models are presented in Table 7.4, which shows the Mean Square Error (MSE) of the points used

on the surface created:

Model No. Model Equation MSE
Model 1 Z = a0 · x+a1 · y+a2 5.96E-10
Model 2 Z = a0 · x2 +a1 · y2 +a2 · x+a3 · y+a4 2.27E-10
Model 3 Z = a0 · x2 +a1 · y2 +a2 · x+a3 · y+a4 · x · y+a5 1.72E-10
Model 4 Z = a0 · x3 +a1 · y3 +a2 6.53E-10
Model 5 Z = a0 · x3−a1 · y+a2 6.37E-10
Model 6 Z =−a0 · x+a1 · y+a2 6.37E-10

Table 7.4: Mean square error of 3D fitting models.

These results were obtained considering all the image pairs. The MSE values obtained is

an average of all the tests. As it is possible to observe from Table 7.4 Model 3 obtained better

results. The obtained surface is presented in Figure 7.36. The nipples were also modelled and are

identified with red circles.

7.9.5.5 Results

A surface fitting model was generated for all image pairs. The nipples were also modelled using

(7.24). From this information, relative distances of the nipples to the surface can be computed.

The same procedure was conducted for the 3D reference model (see Figure 7.32(b)). The distances

between each nipple and the chest are presented in Table 7.5.

As this work involves relative measurements, it is necessary to use ratio values to compare

the model achieved in our approach with the 3D reference model. The ratio shown in Table 7.5
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Figure 7.36: Surface fitting model.

Real Measurements
Right Nipple 4.3cm
Left Nipple 3.7cm

Ratio 1.16
Table 7.5: Nipples measurements taken from the 3D reference model.

represents one of the features that can be extracted from the patient and used to improve the

BCCT.core model. For the models generated with this approach, and making an average of the

ratios obtained for image pairs, it is possible to obtain an average ratio of 1.12 and a standard

deviation of 0.10.

The value obtained is not far from the real one, but there is some variation in the results, which

means that this methodology is not stable. It was not possible to use this methodology with real

patient; however, similar and difficult results are expected.

7.10 Conclusion

In this chapter, there was an attempted to create a conclusive set of tests for the 3D reconstruction

based on stereo disparity search. After having defined the common mathematics associated, it was

possible to establish some basis for the validity of reconstruction and the general problems that

were posed.

It is therefore fair to conclude that the current state-of-the-art algorithms for stereo match-

ing are not capable of reliably attributing a dense estimation of the disparity map from the type

of images used. The estimated maps returned from these algorithms are generally very sparse.

Therefore, visual inspection is enough to tell that the maps are generally wrong also, where areas

of the chest sometimes have close disparity to those from the breast. This can be attributed mainly

to the difficulties of reasoning to what pixel on the "target" image does one pixel on the "base"

pixel belong or is correlated. Where repetitive texture is present, the difficulty is very high, and

too many options are available for a correct match.
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As such, it is required to search for more suitable algorithms that would make more globally

oriented decisions. Those algorithms could be improved by a parametric model that would in-

corporate some constrains to the possible shape of the breast, reducing the complexity associated

to the stereo matching process. Multi-view and/or video incorporation could allow for ambigu-

ity reduction, using methods such as optical flow. The biggest adversary to a global solution is

the increased complexity associated, and it can be a difficult matter accounting for the possible

deployment on standard PCs.

For the evaluation alone it is not necessary to have a very high quality disparity map. Some

measurements can be introduced into the classifier and it might be sufficient for achieving better

results. Therefore, a sparse disparity map with just the right features would suffice. The right

features would be those enough to add volume loss perception in some mathematical model. A

semi-automated solution could improve the rectification process. By asking the user to enter some

close-matched points, and then attempting to use the feature selection algorithms to search for

features around those points, it could be possible to obtain better quality features in a reasonable

number.

Further work is required and some upgrades are necessary, such as multi-view adaptations or

plane fitting algorithms that would make it possible to adapt a sparser disparity map. The problem

of maintaining the low baseline restriction should also be taken into consideration. There is a large

set of methods on these subjects that were not addressed in this work due to time restrictions.

Since the goal of this thesis is to update the BCCT.core system, maintaining its simplicity of

acquisition and affordable price, one solution could be using low-cost equipment which provide

the required volumetric information based on active stereo vision.
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Chapter 8

Depth-map Based Methodologies∗

As concluded in Chapter 7, the 3D model reconstruction from two uncalibrated views using the

state-of-the-art algorithms failed to provide a proper reconstruction. The unsuccessful results were

attributed to the high ambiguity that is found on the patient images, and to the lack of poor match-

ing in image areas. These results require other solutions, always trying to maintain the system

practical to use with a low cost.

Recently introduced at large scale in the market, essentially driven by computer gaming and

home entertainment applications, RGB-D cameras are sensing systems that capture RGB images

along with per-pixel depth information. RGB-D cameras are an emerging trend of technologies

that provide high quality synchronised depth and colour data.

RGB-D cameras rely on either active stereo 1 2 or time-of-flight sensing 3 to generate depth

information in a large number of pixels. While sensor systems with these capabilities have been

custom-built for years, only now are they being packaged in form factors that make them attractive

for research outside specialised computer vision groups. RGB-D cameras make it possible to

capture reasonably accurate mid-resolution depth and appearance information at high (30 fps)

data rates.

This Chapter starts by presenting the main characteristics of the RGB-D device used in this

work (Kinect device). Very recent applications using Kinect are present, most of them on body

scanning or health related research projects. An initial validation of Kinect depth data for the aes-

thetic outcome will be presented here. The great potential of this kind of devices is confronted with

the relatively Low-Resolution (LR) of the generated disparity maps. For that reason, enhancing

the resolution of the images could be an interesting way to improve the disparity information. This

Chapter also shows a comparative study of state-of-the-art Super-Resolution (SR) algorithms ap-

plied to the Kinect depth and colour data. Since Kinect information from the two cameras (depth

and colour) are not aligned, a joint calibration stage must be conducted prior to processing the

information. This issue will be also discussed in this chapter.

∗Some portions of this Chapter appeared in [182, 183, 215]
1http://www.xbox.com/en-US/kinect
2http://www.asus.com/Multimedia/Motion_Sensor/Xtion_PRO/
3http://www.softkinetic.com/Solutions/DepthSensecameras.aspx

125
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8.1 Depth-map Sensor

Microsoft’s Kinect was adopted in this solution. It was originally designed to control games on the

Xbox 360 without having to hold a device such as a controller. Released in early November 2010,

the Kinect has demonstrated to effectively and accurately track human motion. Its characteristics

led to its widespread popularity and adoption in areas such as robotics [105] or health-care [46].

In comparison to other devices, the Kinect has higher quality drivers, it is more stable with

USB controllers and has a motor controlled remotely, which allows a more convenient positioning

of the device. The main disadvantages of the Kinect are its size (30cm×7.6cm×6.4cm) and the

need for ACDC power supply.

8.1.1 Hardware

The Kinect is based on a sensor design developed by PrimeSense 1. The Kinect consists of three

optical components: a laser based near Infra-Red (IR) projector, an IR camera (PS1080 CMOS

image sensor) and a colour camera. For the audio part there is a multiarray microphone, which

consists of four sensors and is able to separate sound from different directions (see Figure 8.1).

PrimeSense sensor is able to take some technical specifications of the Light Coding, which is the

technology that allows the Kinect to construct 3D depth maps of a scene in real-time. Structured

near-IR light is projected on a region of space and a standard CMOS image sensor is used to

receive the reflected light.

Figure 8.1: Prime sense design (From 1).

1http://www.primesense.com/

http://www.primesense.com/
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The projected speckle pattern repeats itself after 211 horizontal spots and 165 vertical spots

and in every of these blocks there is a bright center point. The total pattern is composed of a

3× 3 repetition of the before mentioned spots, which results in 633× 495 spots. This pattern

provides a rich source of easily extracted features. The variation of these features compared to

the known pattern for a fixed distance provides a method for depth reconstruction. This represents

a computationally less demanding solution compared to the more usual use of two cameras for

stereo vision.

The depth image size from the IR camera has a maximum resolution of 640× 480. At 2m

from the sensor it is able to resolve down to 3mm for height and width and 1cm for depth. It

operates at a range between 0.8m and 3.5m. The resolution at 0.8m is just over 1.3mm/pixel 1.

Experimentation has shown that Kinect is only able to process depth data at a frame rate of 30 f ps.

The sensor also has an integrated RGB camera with a maximum resolution of 1600× 1200 to

match the depth data [246].

8.1.2 Software

The Kinect itself actually does not calculate the depth, but returns a more abstract value for the

host system to handle. There are several projects with freely available libraries and drivers that

can be used to collect and process data from a Kinect sensor.

Even before the official release of Microsoft Kinect on November 4th, 2010, the Adafruit In-

dustries 2 announced a contest to produce open-source drivers for the Kinect. In response to that

call, Hector Martin released his code on November 10th, which marks the beginning of the OpenK-

inect community 3 that continued to evolve ever since. The OpenKinect community released the

Kinect driver called libfreenect (released under Apache 2.0 or GPLv2 license) to connect and use

the Kinect with a computer instead of its designated use with the Xbox.

In addition, a group of companies which included PrimeSense, responsible for developing the

reference design on which the Kinect is based, launched OpenNI 4 as a not-for-profit organisa-

tion that aims to set an industry standard framework for the interoperability of natural interaction

devices. With this framework they began to supply the OpenNI driver and the NITE (Natural In-

teraction Technology for End-user) Middleware software for scene perception from a compliant

device to application-ready data. These libraries are available for applications written in C, C++,

and C#. Because the Kinect is an OpenNI-compliant device, this software can be used to build

applications for it. However, it has to be noted that the Kinect sensor is not the only device that

uses the PrimeSense reference design.

Due to the success of the Kinect, Microsoft released a software development kit (SDK) beta

for non-commercial purposes only to access Kinect’s capabilities on a PC in June 2011. Recently,

1http://en.wikipedia.org/wiki/Kinect
2http://adafruit.com/
3http://openkinect.org/wiki/Main_Page
4http://openni.org/

http://en.wikipedia.org/wiki/Kinect
http://adafruit.com/
http://openkinect.org/wiki/Main_Page
http://openni.org/
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as Craig Eisler announced 1, Microsoft has launched not only a new Kinect hardware especially

for Windows but also the Kinect for Windows commercial program 2. While presenting some new

improved features, such as the Kinect developer suite and near mode, the difference of this new

Kinect device with the existing equipment can generally be considered negligible or nonexistent.

Both libfreenect and OpenNI projects work on Windows, Linux (Ubuntu) and Mac OS X,

while Microsoft SDK is for windows only. All allow access to colour information (8− bitRGB)

and depth images (11bit) in 640×480 with resolution at 30 f ps. The projects are not compatible

and they cannot be used simultaneously. Differences between the libraries are motor control,

access/use of the Kinect’s image and depth registration, integration with middleware for higher

level, and calibration requirements.

It is important to highlight that although a 640×480 resolution gives a theoretical upper limit

of 640× 480 = 307200 points (11− bit values) in a point cloud, in practice, a scene with good

capturing conditions will result in a cloud of a maximum of 265000 points. The main reason for

that discrepancy should be due to how the depth image will map onto the colour image, which is

captured with a wider field of view. The quality of colour images captured by the Kinect is about

as good as a decent webcam, and Bayer noise is noticeable.

For the purposes of this thesis, the libfreenect was selected because it can be used in multiple

operating systems and is simpler than OpenNI

8.2 The Kinect Sensor as a Tool

Novel approaches to human or scene scanning have been addressed using the Kinect sensor de-

vice. Using the colour images combined with the depth maps rendered by the device, Zollhofer et

al. [269] create a high-quality personalised avatar that is designed for home use. The proposed

algorithm combines robust non-rigid registration and fitting of a morphable face model to generate

a high-quality reconstruction of the facial geometry and texture within seconds (see Figure 8.2).

Figure 8.2: Avatar reconstruction using the algorithm by Zollhofer et al. [269].

1http://blogs.msdn.com/b/kinectforwindows/archive/2012/01/09/
kinect-for-windows-commercial-program-announced.aspx

2http://www.microsoft.com/en-us/kinectforwindows/

http://blogs.msdn.com/b/kinectforwindows/archive/2012/01/09/kinect-for-windows-commercial-program-announced.aspx
http://blogs.msdn.com/b/kinectforwindows/archive/2012/01/09/kinect-for-windows-commercial-program-announced.aspx
http://www.microsoft.com/en-us/kinectforwindows/
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In [55], the authors describe a method to scan a human body using a single Kinect by aligning

depth and colour scans provided by the device. They achieve a full 360 scan by moving the

device freely around the object doing a full rotation in about 30 seconds. To process the data, they

apply a 3D SR algorithm followed by a loop-closing method specifically tailored for the Kinect.

Finally, they execute non-rigid registration to correct residual errors of movements. The result is a

complete model with smooth surfaces and very good detailed structures (see Figure 8.3). By using

the chosen motion device, the authors add that the main difficulties encountered are the LR and

low accuracy of the depth sensor, plus its random noise.

Figure 8.3: Results example of mannequin using the algorithm by Cui and Stricker [55].

Another interesting application was conducted by Microsoft’s research group Kinect Fusion [114].

By using one Kinect and with hand-held movement, it is possible to reconstruct a high-quality 3D

model of the scene. The system captures the scene and for every viewpoint available it renders

enhancements onto the model.

Weiss et al. [254] present a method for human shape reconstruction combining LR image

silhouettes with coarse range data to estimate a parametric model of a human body. 3D shape

estimation is obtained by combining multiple views of a person moving in front of the sensor. To

deal with varying body pose, authors use a SCAPE body model [9] which factors 3D body shape

and pose variations, enabling the estimation of a single consistent shape while allowing pose to

vary (see Figure 8.4).

In the health-care area, Chang et al. [46] developed a rehabilitation system to assist therapists.

The proposed system for physical rehabilitation, called the Kinerehab (a portmanteau of the words

“Kinetic” and “rehabilitation”), enabling users to control and interact with a specific application.

This application automatically recognises human gestures to determine whether a user performed

the exercises correctly in physical rehabilitation. Using Kinect means that the users do not need

be bothered with body sensors and the system can save the users from wearing sensors that can be

intrusive.

In scene scanning and modelling, Henry et al. [105] built 3D dense maps of indoor environ-

ments to be used in robotics (see Figure 8.5). They use PrimeSense’s camera that is much equiva-
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(a) (b)

Figure 8.4: Widely varying poses from Weiss et al. [254] work. a) Initialisation; b) Final resulting
model.

lent to the one installed in Microsoft Kinect, and employ a novel joint optimisation algorithm and

combine visual features plus shape-based alignment.

(a) (b)

Figure 8.5: Surfel update demonstration by Henry et al. [105]. (a) Initial frame; b) Complete
updated surfel with 95 RGB-D images.

Tong et al. [234] present a system to scan 3D full human body shapes using multiple Kinects.

Each Kinect scans a different part of the body and therefore they can be put close to the body to

obtain higher quality data. The authors faced two main problems with this application: the quality

of the data overlapped between two regions and body movements during the capturing process,

which required non-rigid registration of the captured data (see Figure 8.6).

Wang et al. [250] propose a body modelling system with a single fixed Kinect. An initial

model is obtained with a registration process from four key poses out of the entire depth video

sequence, which are front (reference pose), back, and two profiles. After registering four key

frames, an articulated part-based cylindrical body model is used to process the rough and noisy

registered points in the body to obtain the final 3D model (see Figure 8.7).
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Figure 8.6: Overview of the reconstruction algorithm using the application by Tong et al. [234].

Figure 8.7: General pipeline using the system by Wang et al. [250].

8.3 Validation of the Kinect as a Tool to Assess Aesthetic Outcomes

By defining the use of the Kinect device for 3D data acquisition, the knowledge of its operations

conditions and technical restrictions is peremptory. The device is capable of operating under any

interior lighting conditions, and is a compact and light equipment. The device renders depth maps

with 640×480 pixels, but it is also necessary to know its range accuracy and depth precision.

8.3.1 Transformation of Raw to Metric Data

The information of each pixel from the depth image, obtained with the Kinect, represents specific

disparity information, but the conversion to metric distances is not proportional. Transformation

equations must be used to linearise the raw data generated by the Kinect, which is represented on

211 levels. For this, there are few different equations to transform Kinect data. From the literature
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three different equations were found to transform the Kinect disparity information:

dm =

(
dr

2048

)3

×9216 1 (8.1)

dm = Ka + tan
(

dr

K2
+K1

)
2 (8.2)

with K1 = 1.1863, K2 = 2842.5 and Ka = 0.1236

dm =
1

dr×K1 +K2

3 (8.3)

with K1 =−0.0030711016 and K2 = 3.3309495161

where dr is the raw data from the Kinect and dm represents the transformed data.

To compare the equations, four objects were placed at a different distance from the Kinect

device, as shown in Figure 8.8.

Figure 8.8: Kinect disparity map from the test scene. The object on the right (object#4) is the
closest to the camera, and the object on the left (object#1) the farthest.

The results achieved in this study are shown in Table 8.1.

Then, ratios taking the first object as a reference were computed to validate the results (see

Table 8.1). The MSE between the obtained ratios and the real ratio were computed to compare the

transformation functions.

From Table 8.2 it can be seen that all of the different transformation functions present good

results, in contrast to the values obtained using raw data. However, when considering the computed

MSE, the values obtained with the first transformation function (8.1) present better results.

1http://groups.google.com/group/openkinect/browse_thread/thread/31351846fd33c78/
e98a94ac605b9f21?lnk=gst&q=stephane&pli=1

2http://groups.google.com/group/openkinect/browse_thread/thread/31351846fd33c78/
e98a94ac605b9f21?lnk=gst&q=stephane&pli=1

3http://nicolas.burrus.name/index.php/Research/KinectCalibration

http://groups.google.com/group/openkinect/browse_thread/thread/31351846fd33c78/e98a94ac605b9f21?lnk=gst&q=stephane&pli=1
http://groups.google.com/group/openkinect/browse_thread/thread/31351846fd33c78/e98a94ac605b9f21?lnk=gst&q=stephane&pli=1
http://groups.google.com/group/openkinect/browse_thread/thread/31351846fd33c78/e98a94ac605b9f21?lnk=gst&q=stephane&pli=1
http://groups.google.com/group/openkinect/browse_thread/thread/31351846fd33c78/e98a94ac605b9f21?lnk=gst&q=stephane&pli=1
http://nicolas.burrus.name/index.php/Research/KinectCalibration
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Object# Distance (cm) Pixels values
Raw data Function#1 Function#2 Function#3

1 0 714 390.52 0.92 0.88
2 5 694 358.62 0.88 0.83
3 10 673 327.04 0.83 0.79
4 15 650 294.64 0.79 0.75

Table 8.1: Comparison of different disparity transformation functions. The object on the left was
used as reference.

Objects Ratio# Distance Ratio Raw Function ratios
Data Function#1 Function#2 Function#3

#4/ #3 1.5 1.56 1.51 1.48 1.48
#4/ #2 3 3.20 3.01 2.88 2.88
#3/ #2 2 2.05 1.99 1.95 1.95

MSE 0.054 0.004 0.033 0.033
Table 8.2: Validation of transformation functions.

8.3.2 Kinect Sensitivity Assessment

An experimental procedure was conducted in order to retrieve the closest capture point and the

depth curve according to the distance to the device. Lego blocks were used and set at known

positions as object surfaces. Through various measurements, it was verified that the closest point

of capture was around 50cm from the sensor. Blocks were put 5cm apart, and from the 50cm to

the 145cm mark (see Figure 8.9(a)).

(a) (b)

Figure 8.9: Kinect capture setup. (a) RGB image; b) Depth image.

The depth of each block was calculated as the mean value gathered from a window, defined

by user input, for every surface block. The depth values are obtained using the transformation

function (8.1) presented in Section 8.3.1. From this point it was possible to construct an estimative

depth curve for the distances tested, as well as to calculate the mean resolution sensitivity step of

distance per depth value. Figure 8.10 provides the depth information between 50cm and 145cm,
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for raw data and the depth information after applied the transformation function.

Figure 8.10: Kinect depth curve vs distance. (Raw data - solid red curve; Transformed data -
dashed blue curve.)

With the extreme values registered, it is possible to achieve a mean step of 1.60mm per depth

value.

sensitivityt =
1450−500

665.89−73.94
≈ 1.60mm (8.4)

As verified in Figure 8.10, the Kinect renders higher depth resolution the closer the object is

to the device, and also after the transformation function is applied. In this scenario the curve is

almost linear; however, for higher distance values the sensitivity is lower. Therefore, the ideal

set presented in ( 8.4) is not constant, where in a close region a given depth range corresponds

to a small range of distances, while the same range at a farther distance corresponds to a smaller

range of distance values. Likewise, the closer the object is the better will be for the 3D model

reconstruction. Anticipating the scenario for our problem, where acquisitions are made at ≈ 80cm

to the patient, the sensitivity is:

sensitivity80cm =
850−750

344.85−268.27
≈ 1.31mm (8.5)

The value obtained with (8.5) is extremely useful because it allows us to understand the mini-

mum differences detected by the Kinect device.

In order to study this phenomenon and to understand the possible implications, a few more

experimental setups were explored. In the first, 10 blocks were positioned in the front (starting at

50cm) and back (starting at 150.9cm) 0.3cm apart. As observed in Figure 8.11, the closer blocks

follow a linear tendency with short deviation (see Figure 8.11(a)) comparatively to the more distant
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blocks (see Figure 8.11(b)). This confirms that in the back region the linear ideal step is not the

actual distance per depth, and the same depth value can correspond to slightly different distance

values. Even more, the accuracy for acquisitions at higher distances is very low as shown in

Figure 8.11(b). Therefore, as previously stated, the device did not render each depth value per

1.60mm step, while this value may be slightly lower at short distances, but equal or higher at

higher distances. In this particular case, a 1.18mm slope was obtained in the first experiment and

1.47mm in the second.

(a) (b)

Figure 8.11: Kinect sensitivity analysis at extreme distances. a) Frontal blocks; b) Rear blocks.

Another experiment was conducted, but with the blocks closer to each other (no parallel dis-

tance) as depicted in Figure 8.12(a).

The experiment was re-conducted with the blocks 0.2cm and 0.6cm apart from each other

to verify variations to these data. The corresponding depth curves obtained are represented in

Figure 8.13.

From these results, it is possible to conclude that the device is more capable of detecting depths

with adjacent objects or within a larger one, than with isolated object. This is a highly significant

aspect to this work since the breast shape and the women themselves are one large continuous

surface. Also, it is possible to confirm that the device fails to provide the same depth at the same

distance in different captures. This may be due to imprecisions of the sensors, and to the high

ability to detect small variations in close distances, or on the contrary, due to the low performance

with higher distances. The presence of a pair of objects of the same value at a higher distance is

confirmed in Figure 8.13(e), with only a 0.2cm distance separating the blocks. However, there is

a high (+3) depth value in the next step distance. Whether this happens due to sensor limitations

or acquisition conditions is not clear.

In conclusion, using a non-linear model to estimate distance should improve the consistency,

but that would be too complex. Besides, the use of such model could prove inaccurate due to slight

differences in devices.
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(a) (b)

(c) (d)

Figure 8.12: Detailed Kinect sensitivity analysis. a) RGB Image; b) Frontal blocks; c) Middle
blocks; d) Rear blocks.

8.3.3 Kinect Measurements on a Female Phantom Torso

As in Section 7.9.5, the Kinect was applied to the female phantom torso. The transformation

equation gives us metric depth values, as previously presented; however, x and y information

cannot be used because it does not correspond to real values. For that reason, it is not possible

to compare the results of the Kinect with other reference models, such as, the ones obtained with

the laser scanner. However, some results were obtained from the data acquired. The phantom was

acquired using the Kinect device in three different occasions. In these three acquisitions, there are

some differences, such as: some rotation of the phantom, translation of the Kinect device and also

different distance between Kinect and the object (see Figure 8.14).

To evaluate the quality of the depth map, this depth information was compared to measure-

ments taken from 3D model generated with the laser scanner, as presented in Section 7.9.5.5

(see Table 7.5). Those measurements represent the height of each breast by measuring the dis-

tance between the nipple and the chest. In the depth map, the position of the nipples was defined

semi-automatically based on depth-intensity information in an area delimited manually. As in

Section 7.9.5.5, a ratio of measurements was used to be compared with the reference. The ratio

values obtained from the depth map are presented in Table 8.3 – without compensation of rotation
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(a) (b)

(c) (d)

(e) (f)

Figure 8.13: Detailed Kinect sensitivity analysis of blocks spaced 0.2cm and 0.6cm. a) Frontal
blocks (0.2cm); b) Frontal blocks (0.6cm); c) Middle blocks (0.2cm); d) Middle blocks (0.6cm);
e) Rear blocks (0.2cm); f) Real blocks (0.6cm).
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(a) (b) (c)

Figure 8.14: Different acquisition of phantom with Kinect.

(there are several acquisitions for each period):

Acquisition No Compensation Rotation Compensation Rotation
Period µ σ µ σ

1 1.07 0.01 1.15 0.06
2 2.04 0.06 1.11 0.05
3 1.64 0.02 1.15 0.10

Table 8.3: Ratio values obtained with Kinect using the female phantom torso.

By comparing the ratio values obtained with Kinect device and the value obtained with the

reference model (see Table 7.5), it is possible to see that there are great discrepancies between

values. In the first acquisition, the phantom does not present too much rotation and, therefore, the

ratio is similar to the measurement performed using the reference model. The other results are far

from the reference because there is some rotation and this fact has to be compensated. For that

reason, rotation compensation was implemented based on value points extracted from the stomach,

assuming that that region presents a similar shape on both sides separated by a vertical line that

crosses the middle of the breasts. By looking again at Table 8.3, it is possible to compare the

results with and without compensation and comparing with the values obtained with the reference

3D model. As it is easy to observe, the approach using compensation of rotation presents very

satisfactory results.

8.4 Super-Resolution Application

As shown in Section 8.2 and Section 8.3, the use of disparity maps rendered by the Kinect may be

very promising for the BCCT.core model, with the inclusion of 3D information. Furthermore, the

possibility of using such apparatus is well received by clinicians in favour of too expensive solu-

tions for 3D imaging. Still, this acquisition system may pose difficulties due to its own limitations.

Since the system would operate on disparity map images the measurements, and consequently

the obtained ratios, are directly related to the pixels on which they were performed. The dispar-

ity maps obtained have relatively LR, which may obstruct the construction of reliable models.
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Therefore the autonomous retrieval of independent breast features suffers from that lack of HR

images. For that reason, the enhancement of the captured images may be essential before their use

in subsequent steps in the processing chain.

SR is the process which employs techniques to enhance the resolution of a single or a set of

images [64, 76, 111, 186, 187, 191]. The goal of SR is to apply signal processing techniques to

increase the spatial resolution and to recover details that are present in LR images in an aliased

form (see Figure 8.15). Due to physical constrains, imaging systems hardware have limitations

resulting in a spatial resolution that would not be ideal. Moreover, the costs of HR imaging system

are too high, which makes it impractical for common use. SR is often seen an alternative to the

usage of such systems, representing a processing stage after image [111].

Figure 8.15: Aliasing in high frequency zones in the ISO 12233 chart [224].

This segment of signal processing has been studied for several decades, gathering more and

more attention with the increase in computational capability verified by today’s standards. Authors

usually refer to SR as a 3-step process: (1) image registration, (2) image interpolation and (3)

image regularisation. Some authors call it a 2-step process wherein they consider that image

interpolation and image regularisation to be a single normalisation step.

Image restoration is oftentimes associated with SR and to recover a degraded image. Most

imaging capture devices render LR images, and due to technology limits, these images present

blurring, noise and aliasing effects. Therefore, part of the enhancement of the captured images is

rendered by eliminating artifacts. For that matter, most SR techniques use image restoration for

deblurring and denoising as part of their processing chain.

The registration step corresponds to the motion estimation that is verified in a set of images.

This assumes that there are sub-pixel misalignments, where the aliased information resides. If

the shifts are at integer levels, the images would contain the same information, not presenting any

gain in detail to the HR image. Also, this step is crucial for the entire process chain. If this step

fails to accomplish a good registration, the entire process is rendered void and a poor, and often

very bad, output image is produced. Due to image shifts and to the fact that their occurrence is not
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predictable, the interpolation step is responsible for creating a uniformly spaced HR grid through

non-uniform interpolation. Image restoration is then performed on this resulting HR image to

remove blur and noise artifacts, resulting in a final HR output image.

SR image reconstruction is typically an ill-posed inverse problem and is generally modelled

as [64]:

y = D×H× x+ v (8.6)

where y is the low resolution image and x is the unknown high resolution image. D and H

are degrading operators regarding the downgrading blur and noise present in the images, and v is

additive noise.

The SR methods can be roughly classified into multi-frame, single-frame or example-based

variants, either applying algorithms in the frequency or spatial domain. Multi-image methods

try to take advantage from the aliased high frequency information that is split across multiple

images, while example-based methods consider that it is possible to reconstruct HR information

from existing database patches. Single-image methods employ a combination of the other two

approaches. They assume that patches can recur inside an image and can be found in the same

scale (multi-image) or across different scales (example-based).

Frequency domain algorithms take advantage of redundant information present in the LR im-

ages by the shifting and aliasing properties of the Fourier transform, assuming that aliasing has

occurred or attempted to extrapolate information to retrieve values within intervals. Spatial do-

main algorithms usually employ regularisation based approaches which enable a priori knowledge

inclusion, non-uniform interpolation to have the advantage of low computational cost, Projec-

tion Onto Convex Sets (POCS) [187] usually designed for simplicity, Iterative Back Projection

(IBP) [111,191] for straightforward implementations, and Maximum A Posteriori (MAP) estima-

tion. The stochastic and example-based approaches also include a priori knowledge or may use

the recurrence of patches within images or even the same image.

8.4.1 Super-Resolution Applied to Depth Maps

Usually, SR methods were not designed or tested on depth images. But more recently, presumably

due to the wider spread of sensors capable of providing depth images, there have been projects

using SR and more research on techniques for the specific use of SR in this type of images. Li et

al. [146] proposed a multi-frame regularisation-based method with new regularisation items to

yield better results in images with sharp edges and smooth flat regions. Although the performance

of the proposed method led to "better results with noise suppression and detail preservation", ex-

periments were not conducted on depth maps. Moreover, new techniques have been proposed for

range-enhanced oriented methods, such as [257], reportedly registering enhances of spatial resolu-

tion up to 100 times, and in [88] using both depth maps and colour images to increase resolution.

This proved to be computationally efficient when compared to probabilistic approaches. In [257]
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(see Figure 8.16), the authors propose a method to enhance the resolution by iteratively refining

the LR image using HR images as reference. They up-sample the LR input image to the high

resolution camera image and process an iteratively refinement over the first image. The refine-

ment module iteratively applies bilateral filtering to each slice of 3D volume of depth probability

referred as cost volume. The HR image is obtained by selecting the depth hypothesis with the

minimal cost followed by sub-pixel estimation.

Figure 8.16: Experimental results using the methodology by Yang et al. [257].

The approach presented in [88] uses an original interpolation technique exploiting side in-

formation from a single colour camera image to increase resolution. The proposed method is

performed by first pre-processing the colour image through a graph-based segmentation algorithm

to identify main surfaces. Then, a projection of points of the LR depth map is made on the seg-

mented colour image to create a depth grid. The points within each grid are then the initial values

of the LR depth map. The value of each pixel in the HR image is then estimated by interpolation

of the grid samples belonging to the same regions (see Figure 8.17).

(a) (b)

Figure 8.17: Experimental results using the methodology by Garro et al. [88]. (a) Input image; b)
Output image.

SR presents many advantages with several use cases presenting successful implementations.

In theory, multi-image (MI) based methods are able to achieve a substantial increase in detail,

but require strict conditions to perform adequately. Most single-image (SI) based methods em-

ploy stochastic approaches and the inclusion of a priori knowledge. While achieving very good

reconstructions, they also take high computational load and may see its performance restrained
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to the quality of training dictionaries used. The approaches that use redundant information also

show good reconstructions without needing a priori knowledge, but have serious limitations if

no redundant information exists. Moreover, the cases of SR application on depth maps are very

encouraging, and it is hoped that good outcomes are achieved with the type of images in this

project.

8.4.2 Performance Tests

Several state-of-the-art SR algorithms were tested in order to understand the impact of SR appli-

cation in patient images acquired using a Kinect. Eventually, tests are restricted to more recent

or updated versions of the accessible implementations. Although this confined the general set of

results, it would be impractical to test all implementations that could be found. Not relying on

eventual published results for any given algorithm, we have decided to conduct tests with our own

images. Then, we are in the position to provide an overview of performance and adaptability over

the results, and decide which suits best the project’s needs. A total of ten programs were tested,

nine of which were Matlab R© implementations and the other was a binary executable written in

C/C++. Out of the ten, only four were deemed to execute or produce viable results with depth

images. Programs were named accordingly to the order they were tested, assuming a nomenclature

of "program#<number>".

The experiments were conducted with a total of 131 patients (see Section 4). A synthetic,

gradient-like image was also put under scrutiny of the tested methods. Due to its linearity, any

method should cope far better with it than any other type of image. This was used to confirm the

applicability and results. Tests with RGB images were also subjected to SR algorithms.

The respective identifiers for each program, author, year, paper, number of images used and

the web address where they have been retrieved are shown in Table 8.4.

Program Info #imgs Web Address

#1 Elad’97 [69] MI http://www.mathworks.com/matlabcentral/fileexchange/33839
#2 Barzigar’12 [15] SI http://www.mathworks.com/matlabcentral/fileexchange/30488
#3 Farsiu’04 [76] MI http://www1.idc.ac.il/toky/videoproc-07/projects/superres/srproject.html
#4 Yang’10 [256] SI http://www.ifp.illinois.edu/~jyang29/codes/ScSR.rar
#5 Pickup’08 [195] MI http://www.robots.ox.ac.uk/~elle/SRcode/index.html
#6 Cheung’05 [47] SI http://www.psi.toronto.edu/~vincent/sourcecode.html
#7 Vandewalle’06 [243] MI http://rr.epfl.ch/3/
#8 Vandewalle’06 [242] MI http://rr.epfl.ch/6/
#9 Dong’11 [64] SI http://www4.comp.polyu.edu.hk/~cslzhang/ASDS_AReg.htm

#10 Dong’09 [63] SI http://www4.comp.polyu.edu.hk/~cslzhang/

Table 8.4: Super-Resolution tested programs.

8.4.3 Performance Evaluation

The performance of each SR method was evaluated for a scale factor of 2 and, accordingly to their

nature, using single or multi-image based approaches. Some multi-image based methods were

also subjected to sets of images comprising the same image to verify the performance impact of

such use case.

http://www.mathworks.com/matlabcentral/fileexchange/33839
http://www.mathworks.com/matlabcentral/fileexchange/30488
http://www1.idc.ac.il/toky/videoproc-07/projects/superres/srproject.html
http://www.ifp.illinois.edu/~jyang29/codes/ScSR.rar
http://www.robots.ox.ac.uk/~elle/SRcode/index.html
http://www.psi.toronto.edu/~vincent/sourcecode.html
http://rr.epfl.ch/3/
http://rr.epfl.ch/6/
http://www4.comp.polyu.edu.hk/~cslzhang/ASDS_AReg.htm
http://www4.comp.polyu.edu.hk/~cslzhang/
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Since we do not hold HR depth images from the scene, the acquired images using the Kinect

were the ground truth (see Chapter 4). Images were then downsized with the same scale factor of

2, and then subjected to SR methods so that the final spatial resolution would match the original.

Images were downsized assuming a loss of integer pixel information for every 2 pixels, thus not

presenting any interpolation that could have an impact on the outcome.

All output images were subjected to visual inspection and the Peak Signal to Noise Ratio

(PSNR) value was registered in comparison with the original image. The PSNR calculation over

multi-image based methods output was calculated with the image, of that set, which presented the

best linearity in breast contours.

All experiments were conducted using Matlab R© R2011a, running on an Intel R© i5 M450 (@

2.4 GHz) with 4 GB of RAM.

8.4.4 Results

8.4.4.1 Depth Images

Most methods showed the ability to choose from several registration, motion estimation or re-

construction algorithms, as well as changing some parameters for these steps. Throughout the

experiments, some programs were not deemed to run or produce viable results. That was the case

of programs #1, #2, #3, #5, #6 and #8, whereas programs #1,#2 and #3 produced undesirable

output resolutions and program#6 produced an output image that did not truly correlate to the

original. Besides all efforts, programs #5 and #8 were not able to run effectively, and similarly to

the other programs, they were excluded from further tests.

The remaining programs, #4 ,#7 ,#9 and #10, were able to run and produce the expected

results. Program#4, a single-image based method, used of dictionaries to improve image re-

construction [256]. This method relies on patches from the input image; however, instead of

working directly with the image patch pairs sampled from the HR and LR images, authors used

a compact representation for these patch pairs to capture the co-occurrence beforehand, signifi-

cantly improving the speed of the algorithm. Program#7 represented an updated version of pro-

gram#8 [242] and used three other registration methods [124, 157, 162] for comparison with the

original method [243]. Unlike other motion estimation algorithms whose performance is often

very low for noisy or highly aliased images, their algorithm only uses low-frequency information.

They developed a computationally method to estimate planar rotations. To reconstruct the HR

image, they apply bicubic interpolation on a high-resolution grid.

Finally, programs #9 and #10 were tested last. Program#9 is also a Matlab R© implementa-

tion while program#10 is a binary executable program. Program#9 used internal procedures to

simulate a LR image presenting blur and noise [64]. Considering that the contents can vary sig-

nificantly across different images or different patches in a single image, they proposed to learn

various sets of bases from a precollected dataset of example image patches, and then, for a given

patch to be processed, one set of bases is adaptively selected to characterise the local sparse do-

main. Program#10 was the only binary executable to be tested that was not a Matlab R© Graphical
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User Interface (GUI) or code-only program. The program’s files were in C/C++ language and all

project material were provided for the program to effectively run. It accepted single-image inputs

of type Portable GrayMap Format (PGM) which was not a limitation for now, since the actual

output from the Kinect is given in that file format. This algorithm is based on the IBP technique,

which is argued by authors to often produce "jaggy" and "ringing" artifacts because the recon-

struction errors are back projected to the reconstructed image isotropically and locally. In their

technique they propose to adaptively incorporate the non-local information into the IBP process

so that the reconstruction errors can be reduced.

Within the set of programs that did provide usable results, Table 8.5 shows the performance

obtained by applying SR algorithms.

Table 8.5: Performance Overview

Program Exec. Time (s) PSNR (dB) - µ (σ )
#4 444.42 40.1(1.3)
#7 3.00 46.0(0.8)
#9 380.99 51.4(1.2)
#10 7.35 40.1(1.0)

The average PNSR value obtained for each program is shown, as well as the respective stan-

dard deviation. The medium execution time to produce a single image is also provided. From

these results it is clear that program#9 shows the best results. Even though the processing time

was not the expected, this program presents clear reconstructions above the remaining contenders.

The results are shown in Figure 8.18.

From this evaluation, both from Table 8.5 and Figure 8.18, it is possible to clearly state that

program#9 produces the best results. By looking at Figure 8.18(d) it is possible to confirm that

edges are preserved with program#9 and are similar to the original image. Program#10 creates

images that are also similar to the original, but the colour of the pixels is modified, mainly near

to the edges. Program#7 presents worse results than program#9; however, the results are better

than program#10, producing an image similar to the original one, but slightly blurred. Program#4

provided the worst results, which is confirmed in Figure 9.19(b). With this method, artifacts are

introduced in the images in the form of pixellation.

8.4.4.2 Synthetic Images

To acknowledge the performance of the tested methods, a synthetic image was used (see Fig-

ure 8.19(a)). The relationship between the outputs provided by each method should confirm the

data gathered from the set of tests, also expecting an increase in performance with this simpler and

linear image (see Figure 8.19).

Tests showed the best expected performance achievable in comparison with results presented

in Table 8.5. The best output was still from program#9, with a 70.40 dB PSNR value. Again, it

outperformed the remaining methods in PSNR value; nevertheless, with the visual inspection this

comparison is not simple. Table 8.6 shows the results obtained.
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(a)

(b)

(c)

(d)

(e)

Figure 8.18: Results from the application of Super-Resolution algorithms to an example depth
image. a) Original; b) Output of program#4; b) Output of program#7; c) Output of program#9; d)
Output of program#10.

8.4.4.3 RGB Images

For the automation of BCCT.core and in the interest of using the images captured from the Kinect,

using RGB images captured by the device may prove to be extremely beneficial. This would

render void the use of a separate HR digital camera. At the beginning, the LR of the RGB images

from the Kinect is a setback for that scenario. However, if the images are successfully enhanced,
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(a) (b)

(c) (d)

Figure 8.19: Example of application of Super-Resolution in synthetic images. a) Original; b)
output of program#7; c) Output of program#9; d) Output of program#10. (The output obtained by
the program#4 was not included due to its poor results both for the execution time and PSNR.))

Program Exec. Time (s) PSNR (dB)
#4 358.10 50.94
#7 4.05 55.05
#9 353.75 70.40
#10 5.01 53.2

Table 8.6: Synthetic Image Performance Overview
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it would be a strong breakthrough. For that reason the study of SR methods on RGB images is

welcome. The best performing methods were tested using data from a total of 79 patients (see

Chapter 4)

One last obstacle was imposed by the methods themselves. Program#10 was not able to use

colour images because it assumes inputs of 8−bit gray scale images only.

After several efforts, the only output sets came from programs #4, #7 and #9. Results for this

experimental procedure are shown in Table 8.7, and their respective output can be visualised in

Figure 8.20, where program#7 used single-image based input similarly to programs #4 and #9.

(a) (b)

(c) (d)

Figure 8.20: Example of application of Super-Resolution in RGB images. a) Original; b) output
of program#4; c) Output of program#7; d) Output of program#9.

Program #4 #7 #9
Average PSNR (db) 35.57 38.57 38.18

Table 8.7: RGB Performance Overview

The PSNR value presented was obtained using the average of the individual PSNR channel

(Red,Green,Blue). Although they are not poor results, they are clearly inferior to those with depth

images, most likely due to the higher complexity needed to enhance these images.
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8.4.5 Discussion

Through the experimentation sets with SR methods, we faced different results that may vary sub-

stantially; however, there were some similar results. In some cases, when only the methodology

of one processing step is applied, the overall result can be similar to the combination of others. In

any case, the general standard deviation throughout the experimentations on the set of patients is

very satisfactory with values to be around plus or minus 1 dB, within methods applied to depth

images. From the general results it is possible to detect the potential of using SR methods to

enhance image resolution, before proceeding to further processing. Two programs recorded an

average PSNR value above 45 dB, one of which even recorded an average value above 50. This

is a very satisfactory reconstruction as confirmed by visual inspection. However, the execution

time, mainly for the algorithm which performed better, is not the desired, obviously for on-line

utilisation.

It is also important to highlight the fact that multi-image based approaches did not produce

the expected results, in most cases, representing a poorer reconstruction in comparison to single-

image application, even within the same program. This was attributed to the fact that some images

presented a substantial motion, compared to the remaining images of the set. Also, that motion

may be significant enough to not be at sub-pixel misalignments; therefore, the registration step

may compromise the entire process. In order to reach a conclusion on this topic, a clear study

should be performed to verify if the multi-image based approach may be beneficial to this project

application. This would require the source images to be captured within fractions of a second, or

noticeably with minor shifts.

With regard to RGB images, the study was not conclusive. In fact, the results were poorer

than for depth-map images, probably due to more complex processing. This may compromise the

immediate use of these algorithms for RGB images.

8.5 Joint RGB-D Calibration

As previously presented, the Kinect consists of a colour camera rigidly attached to a depth sen-

sor which comprises a projector-camera pair. Using the capabilities of the Kinect device to the

solution of the problem proposed in this thesis, the hypothesis is that the simultaneous detection

of characteristics on RGB and depth images. However, it has been observed that such systems

suffer from geometric distortions due to the processing performed and the inevitable tolerances

in their manufacturing. While a radial and tangential distortion model is usually sufficient to cor-

rect the 2D pixel position in colour cameras, depth cameras require a more complicated model to

correct the 3D measurement volume [108]. In order to reconstruct a scene from the camera pair

measurements the system must be calibrated. This includes internal calibration of each camera,

as well as relative pose calibration between the cameras. The calibration of a colour camera is a

well-studied problem and it is the most used approach based on Zhang’s method [264]. However,

colour discontinuities typically used in calibration approaches are not visible on the depth image.
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It is then essential to get the best compromise possible in order to find correspondences between

the information typically extracted from checkerboard corners present in a colour image and the

depth image of the same scene in which the corners are not visible.

In this case, the standard approach is to calibrate the cameras independently and then calibrate

only the relative pose between them [214, 262]. However, with this solution the calibration of

each camera cannot be improved with the calibration of the other. Furthermore, the calibration

of a depth camera may require a high precision 3D calibration object that can be avoided using

joint calibration. Fuchs and Hirzinger [82] propose a multispline model for Time-of-Flight (ToF)

cameras. This model requires a large number of parameters and has to know the exact pose of

the camera. A method for fusing depth from stereo and ToF cameras was described by Zhu et

al. [266]. Their calibration is based on triangulation from the stereo cameras as ground truth,

which cannot be an optimal solution as it ignores possible errors from the stereo triangulation and

measurement uncertainties.

ToF cameras are characterised by distortions both on the optical ray direction and on the mea-

sured depth. The work by Kim et al. [128] presented a principled approach calibration which

enables simultaneous recording of dynamic scenes with multiple HR video and LR ToF depth

cameras. The authors created this methodology to serve as a testbed for the development of new

algorithms for high-quality multi-view dynamic scene reconstruction and 3D video. Cui et al. [54]

show in their work that the depth distortion of ToF cameras is radially symmetric and scene de-

pendent. Hence, they estimate new distortion correction parameters for each image.

The Kinect device has also shown radially symmetric distortions [216]. However, being a

structured light sensor, the nature of the distortions is different. Kinect devices are calibrated

during manufacturing with a proprietary algorithm, and calibrated parameters are stored in the

device’s internal memory to be used by the official drivers to perform the reconstruction. How-

ever, manufacturer calibration does not correct the depth distortion, and each Kinect has its own

calibration parameters. For this reason, many authors developed their own Kinect calibration. In

of the first algorithms 1 only the intrinsics (focal length and principal point) of the infrared camera

were calibrated, and not the parameters to convert Kinect disparity units to meters. Herrera et

al. [107, 108] performed a comprehensive calibration of all parameters of the camera pair. A

similar formulation improved previous work with correspondences between the colour and depth

images [261].

The approach introduced by Herrera et al. [107, 108] was used here. Although this toolbox

is not the only possible solution 2 3, and still presents obstacles, it is one of the most flexible and

complete. The toolbox authors proposed a technique to calibrate Kinect cameras by observing a

planar pattern shown at a few different orientations. It requires the pattern to be printed and at-

tached to a planar surface (see Figure 8.21). In such approaches the checkerboard corners provide

suitable constraints for the colour images, while the planarity of the points provides constraints to

1http://nicolas.burrus.name/index.php/
2http://nicolas.burrus.name/index.php/
3http://www.rgbdtoolkit.com/

http://nicolas.burrus.name/index.php/
http://nicolas.burrus.name/index.php/
http://www.rgbdtoolkit.com/
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the depth images. The pixels at the borders of the calibration object are ignored and thus depth

discontinuities are not required.

Figure 8.21: Samples from the calibration images. Top: Kinect colour images. Bottom: Kinect
depth images.

Figure 8.22 shows the different reference frames present in the scene. Points from one refer-

ence frame can be transformed into another using a rigid transformation denoted by T = f (R, t),

where R is a rotation and t is a translation. For example, the transformation of a point xw from

world coordinates W to colour camera coordinates C, follows xc = Rc× xw + tc. Reference V is

anchored to the corner of the calibration plane and is only used for initialisation. The relative pose

Tr is constant, since each image has its own world pose Tc.

Figure 8.22: Reference frames and transformations presented on the scene. C and D are the
colour and depth camera reference frames respectively. V is the reference frame anchored to the
calibration plane and W is the world reference frame anchored to the calibration pattern. Adapted
from [107]

In a concise manner the method proposes an initial estimation for the calibration parameters

obtained by independently calibrating each camera. The independent calibrations give an estima-

tion of the transformations Tc and Td . The depth intrinsic parameters of the depth camera and the
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relative pose Tr are then refined using a non-linear optimisation. Finally, all parameters are refined

simultaneously.

8.5.1 Calibration Method

Based on a toolbox released by Daniel Herrera 1 accompanying the work published in [107, 108],

we conducted experiments that show an improved accuracy with regard to colour/depth alignment,

seeking to pave the way for fusion and interoperability of the two types of information that the

Kinect provides.

Nevertheless, some repairs may have to be performed, mostly related to its lack of automatic

segmentation methods in the depth images used to extract information in order to calibrate the

depth camera. Furthermore, the approach largely depends on the image set provided for training

and lacks flexibility in the reciprocity of possible conversions, from RGB to depth and vice-versa.

Figure 8.23 depicts some of the efforts made in order to achieve the desired depth colour

camera calibration. The data acquired (see Figure 8.21) cover the entire viewing area, providing an

overall operating range of the Kinect device and introducing variability to the relative orientation

of the reference surface and the camera.

The calibration procedure has five steps, after acquisition:

1. Select image: a set of images are chosen from the complete set of images acquired;

2. Select corners in RGB images: the corner extraction can be performed manually or auto-

matically;

3. Select planes in disparity images: a polygon is drawn to select the area of the image where

the plane is visible;

4. Perform initial estimation: the initial estimation is performed by calibrating the RGB cam-

eras individually and taking well-known calibration values for the depth camera. This pro-

vides an approximate calibration that serves as an initial guess for the non-linear minimisa-

tion;

5. Calibration: the final calibration is performed here.

Two Kinect devices were used to create the database (see Section 4). As stated before, each

device has its own calibration. With the methodology proposed by Herrera et al. [107, 108], it

is possible to compute the disparity uncertainty, which was modelled by a Gaussian distribution.

Using Gaussian distribution and the estimated disparity variance, it is possible to numerically

obtain the expected variance in depth for each disparity value (see Figure 8.24).

From Figure 8.24, it is possible to see, as expected, that uncertainty increases as the depth

increases. By looking the graphs, it is possible to state that the two devices present more or less the

same uncertainty curve. Each point in the graph represents an image used during the calibration

1http://www.ee.oulu.fi/~dherrera/kinect/

http://www.ee.oulu.fi/~dherrera/kinect/
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Figure 8.23: Flowchart from the calibration methodology used.

process. During the acquisition procedure the quantity of images acquired in lower and higher

distances are the same; however, the graph shows more values at lower depths. This is due to the

conditions presented in the calibration workflow (see Figure 8.23).

Figure 8.25) presents histograms of the reprojection errors for the set of images used during

the calibration.

As in the uncertainty, the reprojection error is very similar in both devices. The obtained values

are very good, since standard deviation for RGB images is less than one pixel and for the depth

images it represents less than one Kinect units (see Table 8.8).

Figure 8.26 shows the alignment of depth and colour information performed after the Kinect

calibration.

Figure 8.27 provides a 3D perspective of two patients.
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(a)

(b)

Figure 8.24: Measurement uncertainty for varying depths for the two Kinect devices.

Kinect device Image type µ (σ )

#1 RGB 0.00 (0.47)
Depth 0.00 (0.72)

#2 RGB 0.00 (0.42)
Depth 0.01 (0.85)

Table 8.8: Reprojection error after Kinect device calibration.

8.6 Conclusion

It is clear that the BCCT.core can be improved by adding more features. Particularly, the aim is

to add dimensionality to the measurements in order to decrease the limitation of only measuring

based on what can be seen in a frontal photograph. The ability of manipulate and measure over

3D readings from the breasts can improve the accuracy and objectivity of the tool.

3D capabilities are recognised as having high clinical potential. However, the current tech-

niques, applied to the aesthetic evaluation of breast surgical interventions, face two major prob-

lems: the high cost of required equipment and the need for specialised operators to operate them.

Current techniques are based on especially designed cameras and hardware, mainly resorting to

different lenses on the same camera or to laser scanners. Due to these special needs, 3D applica-
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(a) (b)

(c) (d)

Figure 8.25: Reprojection error after the Kinect device is calibrated. a) and b) are from the first
Kinect, while c) and d) are from the second.

(a) (b)

Figure 8.26: Depth and RGB data overlap.

tions are considered costly and are not commonly implemented and, therefore, the benefit of 3D

modelling is not availed.

This chapter presents a study on RGB-D low cost devices, their main characteristics, problems

and software to operate these devices. Many research applications have been presented, most

of them in the area of body scanning, in order to demonstrate the applicability to the problem

presented here. Additionally, a preliminary study is demonstrated in which the image of a female

phantom torso is acquired using a Kinect device. The device has shown very satisfactory results,

making possible to detect volumetric differences of the breasts using the disparity map generated.

The results were very similar to the reference performed manually, and for that reason we believe

that this approach presents a huge potential as it is a low-cost, user friendly, infrared laser projector
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(a) (b)

Figure 8.27: A 3D perspective of the scene after correct calibration.

that can be used for aesthetic evaluations after breast surgery.

Therefore, the importance of improving the quality of images obtained with Kinect is empha-

sized with the application of SR methods. For that purpose, an initial study was conducted on

the applicability of SR. Even though the study was limited to the publicly available programs, the

general output images were considered to be fairly good. Nonetheless, due to the unavailability

of open SR solutions, it was not possible to study state-of-the-art methods specifically tailored for

depth images. Therefore, there is no true knowledge on the performance they could achieve on

these projects’ images. Furthermore, applying SR onto this project’s RGB images may be consid-

ered standard. However, their use in the BCCT.core software needs to be studied in order to render

unnecessary the use of a HR digital camera. Moreover, single-image based methods provided the

best results.

The database of input images may show inappropriate for multi-image methods, and therefore

it is necessary to study the required characteristics and if they can be acquired using the device,

or even if the process of acquisition can be changed to render more consecutive images. The use

of SR methods onto the raw depth images did not provide the expected improvement. Thus, no

beneficial gain was verified. Nevertheless, the data provided by enhanced images are identical.

The reconstructed 3D models were sufficient, but other techniques have been applied in order to

render better approximation models [55, 105, 114]. The introduction of these enhanced models

could provide better results than those achieved using the statically acquired model. Furthermore,

applying the SR onto other processing chain may render a higher and valuable significance.

Lastly, a discussion was provided on the Kinect calibration method, which is necessary to align

Kinect data from depth and colour images. Furthermore, the existence of differences between

devices were illustrated, an aspect that causes calibration parameters to change (which includes

lens correction model, and parameters intrinsic to each of the cameras), and consequently a poor

alignment result when transforming the images with resulting calibration parameters of a device

different from the images under analysis.
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Chapter 9

A 3D Low-cost Solution for the
Aesthetic Result Assessment∗

As stated in the previous Chapters, the BCCT.core software was developed due to the limited re-

producibility of standard aesthetic evaluation methods. Although results are satisfying, there are

still limitations concerning complete automation and the inability to measure volumetric informa-

tion. With the fundamental premise of maintaining the system at a low-cost, this thesis studied the

incorporation of the Microsoft Kinect sensor (see Chapter 8).

The current methodologies for assessing aesthetic results after breast cancer surgery present

two major challenges. Methods based on photographs do not allow a complete characterisation of

the aesthetic result, while techniques based on 3D information are not practical on a daily basis as

they are very expensive and require specialized staff. In both cases, automation is a complicated

process because breasts are characterised as feature less surfaces.

9.1 A Kinect Based System for the Aesthetic Evaluation of BCCT

Over the last years, there have been dramatic improvements in the capabilities of RGB-D cameras,

which provide both RGB and Depth information in each image pixel (as in Microsoft Kinect).

Combining depth and visual information brings new challenges and opens new possibilities in

different fields of application, including medical applications. Several research communities have

been making considerable progress in dealing either with 3D depth scans or camera images; now

it is time to take advantage of these advances and study the combination of them both.

This Chapter addresses the development of a Kinect based system (BCCT.kore) to predict the

overall outcome from data acquired with the Kinect (see Figure 9.1). The proposed methodology

requires: a) the automatic identification of fiducial points on the image; b) suitable features must be

chosen capturing the main factors (colour, shape, geometry, irregularity of the visual appearance

of the treated breast) with an impact on the overall aesthetic result; finally, c) it is necessary to find

the optimum rule to map the individual features which will help make the overall decision.

∗Some portions of this Chapter appeared in [177, 178, 183]
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(a) (b)

Figure 9.1: Microsoft Kinect data for patient#62. a) Patient photograph; b) Generated disparity
map (normalised values).

9.1.1 Overview

The proposed system can be implemented as a sequence of a few high-level operations, as repre-

sented in Fig. 9.2.

 
RGB Images 

Nipple Detection 

Extraction of 2D 
Information 

Depth Images 

Peak and Breast 
Contour 

Detection 

Extraction of 
Volumetric 
Information 

Prominent Points 

Aesthetic Result 
Model 

Sternal Notch 
Detection 

Figure 9.2: System flowchart for the joint RGB-D based system.

In the first step, the breast peak and breast contour are detected simultaneously based on

the gradient vector flow theory and on a shortest path approach, respectively, in depth Kinect
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data. Nipples are detected based on the local invariant feature detectors theory, namely corner and

regional detectors. Nipple detection is performed using RGB Kinect data, assisted by the breast

contour previously obtained. Next, volumetric features are defined over Depth data, using all

prominent points previously detected. Finally, using previous 2D measurements (see Section 3.3)

and the new 3D features introduced in this work, a predictive model is built using a machine

learning methodology to evaluate the overall cosmetic result. With the inclusion of measurements

extracted from the 3D model, the global assessment result was improved over the 2D version in

the BCCT.core without increasing complexity significantly.

9.2 A Joint RGB-D Based Detection of Prominent Points

9.2.1 Simultaneous Detection of Breast Contour and Breast Peak Points

Researchers are now paying more attention to the context to aid visual recognition processes. Con-

text plays an important role in the human visual system recognition processes and many important

visual recognition tasks critically rely on context. Here, the mutual contexts of breast contour and

breast peak (the area in the breast closer to the camera or further away from the chest wall, not nec-

essarily the nipple) are modelled so that each one can facilitate the recognition of the other. When

performed independently, both tasks are non-trivial since many other parts of the image may be

falsely detected. However, the two tasks can benefit greatly from serving as context to each other.

To model the breast peak point, a filter is used which evaluates the degree of divergence of the gra-

dient vectors within its region of support from a pixel of interest. The breast contour is modelled

as a short path in a graph whose nodes correspond to the pixels on the image and the edges connect

neighbouring pixels. The weight function on the edges is defined so that short paths correspond

to paths that maximise the amount of gradient strength on the image along the path. The quality

or probability of the joint model for the co-occurrence of breast peak and breast contour will be

proportional to the individual qualities of the two parts. Next, the proposed algorithm is described

in detail.

In this part of the algorithm depth images are used. Contour detection is a very difficult task

to perform on RGB images to the fact that its boundary is not clearly visible. Using depth images

the boundary contrast increases. This process was implemented as a sequence of a few high-level

operations over the depth information: 1) background segmentation, 2) breast peak candidate

detection, 3) contour detection and 4) peak and breast contour decision (see Figure 9.3).

Two simplifications were introduced with regard to the main steps presented above. Firstly,

the detection is performed only over the patient’s body, just to speed up the computation pro-

cess. Secondly, the mutual detection of prominent points is addressed first by over-detecting peak

candidates, and then by detecting contours using all peaks found.

As in other depth technologies, such as laser scanners or range finding cameras, the Kinect’s

output contains a large amount of missing data and noise as a result of occlusions. These undesir-

able conditions are typically represented as white pixels (see Figure 9.1(b)). These missing values
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Figure 9.3: Algorithm flowchart for the simultaneous detection of breast contour and breast peak
points.

were excluded from all of the following operations. The remaining pixels were scaled between 0

and 1. Finally, a 3×3 smooth filter was applied to eliminate noise resulting from the acquisition

process. Figure 9.4(c) and Figure 9.4(d) already shows the output of this pre-processing task.

9.2.1.1 Adaptive Background Segmentation

Acquisitions are mainly performed in a uniform background. However, occasionally the back-

ground is cluttered with the presence of different objects at different depths. Objects can appear

at depths similar to the patients’, or just the different body parts at different depths, dismissing the

application of traditional thresholding methods such as Otsu’s (see Figure 9.4(c)). In this work,

it was considered that the patient is at a somewhat central position on the image and is likely the

’object’ closer to the camera.

This property was exploited using a density image defined by transforming the depth infor-

mation on the XY plane (D) to the XZ plane (Φ) [127]. The value at position (x,z) of the density

image denotes the number of points at depth z in column x of the depth image (by counting along

the Y direction), (see Figure 9.4(a)).

Φ(x,z) =
n

∑
y=1

(D(y,x) == z) (9.1)

Intuitively, each column of the density image is the histogram of the corresponding column

in the depth image. A global thresholding method of the original XY image corresponds to a

horizontal line in the XZ image, differentiating background from foreground (see Figure 9.4(a)

and Figure 9.4(c)). A more adaptive method is allowing the threshold to vary from column to

column. Since it is not expected that the threshold will change significant between consecutive

columns, the method can be constrained to enforce this knowledge. The constrained adaptive

thresholding leads to a continuous curve in the XZ image from left to right.

The constrained thresholding can be easily tackled using graph based concepts. For that,

the quality (cost) of each candidate threshold needs to be estimated; in the resulting cost image

(interpreted as a graph), the computation of the shortest path between left and right margins yields

the individual thresholds (see Figure 9.4(d)).

In our application scenario, the information along each column can present one of three differ-

ent patterns: (1) background only, (2) ‘object’ and background and (3) ‘object’ only. The cost will
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be set according to an initial estimate of the column pattern. The specific patterns are predicted by

analysing the mean and the variance of a Gaussian Distribution N fitted to XZ data (Φ). Table 9.1

shows the qualitative indication of the values expected for each pattern type.

Pattern N (σ2) N (µ)

(1) low high
(2) high high and low
(3) low low

Table 9.1: Fitting parameters.

Furthermore, for each depth z and position of column x, the variance above: Vara (the variance

in the column x of the depth values greater than z); and the variance below: Varb (the variance in

the column x of the depth values less than z) are computed. The cost for each possible threshold is

then set according to the following rule, according to the predicted pattern: (pattern 1) cumulative

value of the minimum of the variance (Varmin) from 1 to Nbins; (pattern 2) average of the two

variances (Varmean); (pattern 3) cumulative value of the minimum of the variance (Varmin) from

Nbins to 1 (see Figure 9.4(b)).

Varmin(x,z) = min(Vara(x,z),Varb(x,z)) (9.2)

Varmean(x,z) =
Vara(x,z)+Varb(x,z)

2
(9.3)

9.2.1.2 Breast Peak Candidate Detection

The breast peak is modelled using a filter that evaluates the degree of divergence of the gradient

vectors from a pixel of interest. A major benefit of using depth-map images is the high contrast

observed in the breast area. The peak point of the breast corresponds to the point in the breast

where disparity attains the lowest value. The typically round or tear drop shape of a breast leads to

a distinctive pattern in the gradient vector field, where the gradient diverges in all directions (see a

toy example in Figure 9.5).

Breast peaks (see Figure 9.6(a)) are detected using an approach similar to the Convergence

Index Filter [130], in which the image is filtered with a radial vector field pattern, as presented in

Figure 9.6(b).

Gradient g(x,y) is computed firstly calculating the horizontal Gx and vertical Gy components

of the image gradient. In this work, a Gaussian filter was applied, and only the gradient orientation

angle θ(x,z) was used by previously normalising the norm of the gradient vectors to unity.

θ(x,z) = tan−1 Gy

Gx
, with |g(x,y)|= 1 (9.4)
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(a) (b)

(c) (d)

Figure 9.4: Adaptive Background Segmentation. a) XZ plane depth information; b) XY variance
plane; c) Otsu’s segmentation; d) Adaptive segmentation.

(a) (b)

Figure 9.5: Toy example of different gradient shapes. a) Gradient example; b) Gradient vector
field from toy example in Figure 9.5(a).

The similarity between the template and the image was assessed using two different measure-

ments:

• cross-correlation

( f ∗g)[n] de f
= ∑

m
f ∗[m]g[n+m] (9.5)

where f and g represent the gradient orientation vector field and the template vector field

respectively. f ∗ denotes the complex conjugate of f .
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(a) (b)

Figure 9.6: Breast peak candidate detection. (a) Breast gradient vector field (5-pixel spacing); (b)
Template vector field

• circular correlation, introduced by Nicholas Fisher [79].

The result of cross-correlation and circular correlation, with regard to Figure 9.5(a), can be

graphically represented as shown in Figure 9.7, where the values range from −1 to 1, with −1

represented in blue and 1 in red.

(a) (b)

Figure 9.7: Graphical demonstration of correlation approach. (a) Cross-correlation result; (b)
Circular correlation result

Breast peak candidates correspond to all local maximum positions.

9.2.1.3 Contour Detection

Breast contour detection was modelled using a shortest-path in a graph whose nodes correspond

to the pixels on the image and the edges connect neighbouring pixels, an approach that is similar

to [34, 176]. Breast boundary can be seen as a change in the grey-level values of the pixels,

originating an edge in the resulting image. Interpreting the image as a graph with pixels as nodes
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and edges connecting adjacent pixels, the low-cost path through edge pixels corresponds to the

breast contour, using an appropriate weight function.

In this work, the image grid is considered as a graph G= (V,A) with pixels V as nodes and arcs

A connecting neighbouring pixels (p,q), p,q ∈ V . Each arc is associated with a weight w(p,q),

which is a function of pixel values and pixel relative positions. A path from vertex (pixel) v1

to vertex (pixel) vn is a list of unique vertices v1,v2, . . . ,vn, with vi and vi+1 corresponding to

neighbour pixels. The total cost of a path is the sum of each arc weight in the path ∑
n
i=2 w(vi−1,vi).

A path from a source vertex v to a target vertex u is said to be a shortest path if its total cost is

minimum among all v-to-u paths. The distance between a source vertex v and a target vertex u on

a graph, d(v,u) is the total cost of a shortest path between v and u.

A path from a source vertex v to a sub-graph Ω is said to be a shortest path between v and Ω

if its total cost is minimum among all v-to-u ∈Ω paths. The distance from a node v to a sub-graph

Ω , d(v,Ω) is the total cost of a shortest path between v and Ω :

d(v,Ω) = min
u∈Ω

d(v,u). (9.6)

A path from a sub-graph Ω1 to a sub-graph Ω2 is said to be a shortest path between Ω1 and

Ω2 if its total cost is minimum among all v ∈Ω1-to-u ∈Ω2 paths. The distance from a sub-graph

Ω1 to a sub-graph Ω2, d(Ω1,Ω2) is the total cost of a shortest path between Ω1 and Ω2:

d(Ω1,Ω2) = min
v∈Ω1,u∈Ω2

d(v,u). (9.7)

Since the breast contour is approximately circular and centered on the breast peak candidates,

the computation is more naturally performed by adopting polar coordinates, with the origin of

the coordinates in the peak candidate. The computation of the shortest path is performed using

dynamic programming to increase efficiency. Assuming the simplifying assumption that the hori-

zontal paths do not zigzag back and forth, up and down, in the transformed image, the search may

be restricted among connected paths containing one, and only one pixel in each column of the

path.

Formally, let I be an N1×N2 image and define an admissible path as:

s = {(x,y(x))}N1
x=1 , s.t. ∀x |y(x)− y(x−1)| ≤ 1,

where y is a mapping y : [1, · · · ,N1]→ [1, · · · ,N2].

This means that an admissible path is an 8-connected path of pixels on the image from left to

right, containing only one pixel in each column of the image. The first step is to traverse the image

from the second column to the last and to compute the cumulative minimum cost C for all possible

connected staff lines at each entry (i, j):



9.2 A Joint RGB-D Based Detection of Prominent Points 165

C(i, j) = min


C(i−1, j−1) + w(pi−1, j−1; pi, j)

C(i−1, j) + w(pi−1, j; pi, j)

C(i−1, j+1) + w(pi−1, j+1; pi, j)

,

where w(pi, j; pl,m) represents the weight of the edge incident with pixels at positions (i, j) and

(l,m).

At the end of this process,

min
j∈{1,··· ,N2}

C(N1, j)

indicates the end of the minimal connected path. Hence, in the second step, one backtrack from

this minimum entry on C is applied to find the optimal path.

Each column in the polar image corresponds to the derivative along each radial line in the

original space:

Gθ (r) =
f (r+h)− f (r−h)

2h
(9.8)

where h = 1 and r is the radius.

Each 4-neighbour pixel arc corresponds to a weight determined by the derivative value of the

two incident pixels, expressed as an exponential law:

f (g) = fl +( fh− fl)
exp(β (255−g))−1

exp(β255)−1
(9.9)

with fl, fh,β ∈ℜ and g is the minimum of the gradient computed for the two incident pixels.

For 8-neighbour pixels the weight was set to
√

2 times that value. The parameters fl , fh, and β

were fixed at fl = 2, fh = 128, β = 0.0208. This cost function and parameters were optimised in

a previous work [176].

Since the start and ending of the breast contour are unknown, at this phase a conservative

approach is used, searching only for angles between π and 2π (see Figure 9.8(a)). Later the

contour will be completed. The candidate contour is then the output of the shortest path algorithm

in the polar image (see Figure 9.8(b)). The shortest path was computed between the whole external

margin and a single point (point of highest gradient) in the internal margin.

9.2.1.4 Peak and Breast Contour Decision

The quality or probability of the joint model for the co-occurrence of breast peak and breast con-

tour is computed maximising the joint probability of the individual parts. It is assumed that the

joint probability is a monotonous function of the product of the correlation outputted by the diver-

gence filter ρp and the quality of the detected contour µ(∆C). The quality of the contour µ(∆C)
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(a) (b)

Figure 9.8: Brest contour detection. (a) Breast contour - ground truth (solid red line), detected
(dashed white line); (b) Polar image and detected contour (white line).

is evaluated by the average magnitude of the directional derivative along it and ρp is the cross-

correlation or circular correlation of the centre candidate. Therefore, the final decision consists of

selecting the pair (peak, contour) that maximises the quality measurement:

Q(Cp) = µ(∆C) ·ρp (9.10)

Taking advantage of body symmetry with regard to the sagittal plane, a pair (peak, contour)

was selected for the right and another for the left of the body centre of mass. The centre of mass

is computed using the patient body mask obtained in Section 9.2.1.1.

9.2.1.5 Complete Breast Contour Detection

The complete detection of the breast contour is an extension of the methodologies presented in

Section 9.2.1.3. The algorithm is divided into the following operations: a) defining contour end-

points and b) defining contour between detected endpoints.

Although the definition of the external endpoints is not consensual, even among the medical

community, the position of the external endpoints can be assumed to be at the point of the body

where the arm contour intersects the trunk contour. However, when the patient’s arms are along-

side the body, the arm’s contour is almost indistinguishable from the trunk’s contour. Therefore,

the aim was to find the external endpoint by simply measuring the ‘strength’ of vertical edges in

the external boundary of the breast. External endpoints are detected with the following operations:

1. Computing horizontal derivative;

2. Extracting vertical edges with an appropriate threshold (experimentally tuned);

3. Detecting connected components;

4. Extracting extremities from connected components;

5. Obtaining contour endpoints from detected extremities.

These operations are illustrated in Figure 9.9(a).
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(a) (b)

Figure 9.9: External endpoint detection. (a) Horizontal derivative and vertical ’strong’ edges de-
tection (green lines); (b) Detected external endpoint (red circle) - previous outer endpoint (yellow
circle) - breast peak point (red cross).

After detecting all extremities from vertical edges, the outer contour endpoint is defined as the

closest extremity to the endpoint obtained during the partial contour detection phase, presented

in Section 9.2.1.3 (see Figure 9.9(b)). These operations are performed separately for each breast

according to the sagittal plane defined previously.

The internal endpoint of each breast contour is defined during the complete contour detec-

tion. This task is performed following the theory presented previously in Section 9.2.1.3 with

the following constraints: the starting point contour is defined as the external endpoind detected

previously; and the search for the internal endpoind is limited to the sagittal plane or to the hori-

zontal plane defined as the plane where the distance to the two external endpoint is the same (see

Figure 9.10).

Figure 9.10: Complete contour detection and internal endpoint definition - external endpoint de-
tected (red circle) - previous outer endpoint (yellow circle) - breast peak point (red cross).

In conclusion, the internal endpoints are obtained by intersecting each breast contour and the

sagittal plane or the average horizontal plane defined by the external endpoints.
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9.2.2 Sternal Notch Detection

The jugular notch is a visible dip found at the superior border of the manubrium of the sternum,

between the clavicular notches. To automatically detect the sternal notch, it is necessary to lo-

cate the midpoint of the upper portion of the region at the intersection of the neck and the torso.

To determine the point where the torso intersects with the neck, the depth values are projected

(summed) along the rows image (see Figure 9.11).

Figure 9.11: Neck position detection. (red ∗ - local maximums; green ∗ - local minimums; blue
circle - neck position; magenta circle - chest position)

The graph from horizontal projection presents a characteristic shape. Specific parts of women’s

bodies can be found by detecting local minima (green ∗) and maxima (red ∗). The pair sternal

notch (local maximum) - chest (local minimum) is the pair of consecutive maximum and mini-

mum at the highest distance, yielding the location of the sternal notch (blue circle).

9.2.3 Nipple Detection

Nipple detection was performed using RGB images, converting them to gray scale, after a correct

alignment of depth and colour information. As seen in Section 8.5.1, the Kinect colour sensor

is separated and not synchronised with the depth sensor. Furthermore, it has a slightly wider

field of view and is offset (by about 2 cm) from the depth sensor. Nipples detection was help by

the delimitation of breast contours previously performed in the depth images, which obviously

simplifies the process.

The breast surface is generally characterised as a featureless shape, and typically the nipple is

the most prominent feature. However, many other characteristics can be mistaken by the nipple

when using traditional feature detectors based on colour or more complex features such as texture.

Since the nipple is part of the areola complex, a closed region enclosing the nipple, regional

information can make it easier to detect the nipple.
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We start by over-detecting nipple candidates; then, one or more closed contour(s) were found

enclosing each candidate. Finally, the best pair candidate/closed contour was selected combining

information from the contour and the nipple candidate.

The areola complex is typically more textured than the rest of the breast surface. Therefore, a

corner-based method was applied to detect the nipple. However, it was quite difficult to achieve

a good detection rate without detecting multiple spurious points; controlling the spurious points

leads to a high miss detection rate. Therefore, a corner descriptor (Harris detector [95]) is used

as an initial step by over-detecting possible nipple locations (see Figure 9.12(a)). Afterwards, the

proposed closed contour method (see Chapter 5) is applied using nipple candidate as centre of

coordinates, with the aim of finding the areola contour (see Figure 9.12(b) and Figure 9.12(c)).

Since the areola complex is often rich in edges and false contours, the algorithm was implemented

to produce all closed contours found in the process. Instead of just keeping the closed contour

with the smallest cost, all of them are kept to perform a joint analysis of the contour features (such

as shape) and centre candidate. This approach has two main assumptions: firstly, at least a nipple

candidate lies within the true areola contour; secondly, the areola contour represents a closed path

over strong gradient pixels. The areola contour is not necessarily circular and the candidate nipple

does not need to match the true position of the nipple to correctly detect contour.

(a)

(b) (c)

Figure 9.12: Nipple detection. a) Harris corner detection inside the breast; b) Areola detection
(true corner); c) Areola detection (false corner).
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After completing these two steps, several pairs (nipple candidate/areola contour) are detected.

The challenge now is to discriminate the correct candidate/contour pair. A combination of several

features and a classifier-based approach was implemented. The extracted features include:

• The Harris corner quality factor, ρh;

• The average magnitude of the directional derivative of the areola contour, µ(∆Ca);

• The shape factor, Sa, of the contour;

• The equivalent diameter, da, of the contour.

The Harris corner quality factor ρh measures the confidence of the detector in the corner or

junction found. The average derivative µ(∆Ca) measures the magnitude (strength) of the direc-

tional derivative over the areola contour; the circularity of the contour is measured by the shape

factor Sa:

Sa =
4 ·π ·A

P2 (9.11)

where P is the perimeter and A is the area enclosed by the contour. The shape factor takes val-

ues in the interval [0,1], where 1 represents a perfect circle. The equivalent diameter da represents

the diameter of a circle with the same area as the inner contour region, computed as:

da =

√
4 ·A

π
(9.12)

Classification methods based on SVM classifiers were adopted, using the popular LIBSVM [45]

implementation and a probability estimation approach.

9.3 Volumetric Feature Definition

Previous techniques to evaluate the cosmetic result are based on measurements taken from repre-

sentative frontal photographs of the patients, being therefore limited by the information present in

the frontal view. Besides the appearance of the surgical scar and the skin colour change induced

by radiotherapy, the measurements are mostly based on asymmetries between the breasts.

The use of volumetric data enables a more complete understanding and reliable aesthetic as-

sessment. Nevertheless, the volumetric features must be objectively and consistently processed,

a requirement for a reproducible assessment. Furthermore, the use of enhanced images provided

by SR on depth images may improve the definition of features (see Section 8.4). In this work,

the thirty features extracted from the frontal view in the BCCT.core (see Section 3.3) are comple-

mented with volume, surface area, nipple height and 3D Nipple Retraction Assessment measured

in the 3D information taken from the Kinect.

Instead of limiting any subsequent analysis to an initial choice of a volumetric feature, it was

decided to record multiple indices (some of which already introduced in the literature [67]) with
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the purpose of proceeding later to a feature selection process). The measurement of the volumetric

features relied on the prominent points detected as reported previously (see Section 9.2). The

indices recorded to assess volumetric information were the following:

• Volume Difference Assessment (VDA): quantifies the ratio of the total volume between the

two breasts. The volume is defined as the sum of unit values between the estimated body

plane and the breast surface (see Figure 9.13(a) - red blocks);

• Surface Area Assessment (SAA): quantifies the ratio of the surface area between the two

breasts. To compute the area of a surface, it is necessary to compute the area of each rectan-

gular face of the surface and then put them together (see Figure 9.13(a) - green rectangular

faces). To compute the area of each rectangular face, it is convenient to imagine the face as

being split into two triangular pieces. The cross product can be used to compute the area of

a triangle in a 3D space. If the coordinates of the vertices are given vi = (Xi,Yi,Zi) then the

surface area As is computed as:

As = 0.5 · |(v2− v1)× (v3− v1)| (9.13)

• Nipple Height Assessment (NHA): quantifies the ratio of the nipple height between the two

breasts. The nipple height is defined by measuring the distance (in depth) between nipple

and chest position;

• 3D Nipple Retraction Assessment (3DNRA): quantifies the ratio between the retraction of

the two nipples. The nipple retraction index is computed based on the 3D information of

three fiducial points: right nipple (RN), left nipple (LN) and the sternal notch (ST) (see

Figure 9.13(b)). The 3DNRA is the ratio of the 3D Euclidean distance between the nipples

and the sternal notch.

Three of the features considered (volume, surface area and nipple height) have to take the chest

wall plane (inter mammary fold) as reference. The chest wall plane is considered to be parallel to

the camera plane at the minimum depth that is found in the area between the inner breast contour

extreme points and the lowest bottom point of the breasts.

9.4 Aesthetic Model

The problem addressed here, which deals with predicting the overall Harris score, involves classi-

fying examples into classes that have a natural order. Therefore, techniques were used which are

specifically designed for that purpose [29] instantiated in SVMs. Two schemes were investigated

to integrate 3D and 2D features. The first approach is based on a typical scheme where 2D and

3D features are combined in a simple vector without any restriction. A classifier is then trained

on this enlarged vector. A second approach is based on a cascade scheme [87]; here, the output of
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(a) (b)

Figure 9.13: Volumetric measurements. (a) Illustration of VDA and SAA measurement based on
voxels; (b) Illustration of 3DNRA measurement.

the model based on 2D features is used only as input together with the 3D features for a second

model (see Figure 9.14).
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Figure 9.14: Cascade classifier flowchart.

9.5 Results

As showed in Chapter 4 the database includes data from 135 patients acquired during several ses-

sions by an expert on breast cancer. For each patient the data include several depth and colour

frontal images for each patient acquired with Kinect and images acquired with a standard 5MP

portable camera. However, the database does not include Kinect colour and/or depth-map im-

ages for all patients. The height of both nipples (distance between the medial projection of the

nipple and the sternum measured with 2 rulers) was manually obtained by the physician during

acquisition period.
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Manual ground truth annotation was performed both for the Kinect data and for the data ac-

quired with 5MP portable camera (see Chapter 4). The annotation of prominent points in the

Kinect data, was performed in the type of data where their detection is facilitated. The positioning

of the breast peaks, defining breast contour and locating endpoints were annotated in depth-map

images, as well as nipple position and suprasternal notch position in the Kinect colour image. For

data acquired with portable camera ground truth annotation was performed with BCCT.core soft-

ware, only for frontal patient data, defining the breast contour, the nipple position and suprasternal

notch position. Subjective evaluation for the aesthetic result is also provided, based on the Harvard

scale (see Chapter 4).

9.5.1 Breast Peak Detection

Breast peak detection was evaluated in 487 depth-map images from 131 patients. In this study only

131 patients were used, since 4 of them were not acquired using the Kinect device. The accuracy

of breast peak point detection was measured using the Euclidean metric distance (see Table 9.2).

Metric Breast Standalone Simultaneous detection
µ (σ ) # Miss (%) µ (σ ) # Miss (%)

Circ. corr. Right 18.05 (51.56)
73 (7.50)

10.05 (34.43)
27 (2.77)Left 11.39 (26.80) 6.95 (15.49)

Cross-corr. Right 12.08 (37.80)
43 (4.41)

4.94 (3.38)
0 (0.00)Left 8.71 (19.63) 4.87 (2.88)

Table 9.2: Breast peak point detection error (in pixels).

The first column (standalone) shows the detection error that would be obtained by making the

decision based on maximising the output of the convergence filter. The second column (simultane-

ous detection) depicts the performance for the proposed scheme. Miss detection means that breast

peak point was detected outside the breast area. Therefore, using context in this task is clearly

advantageous. Moreover, cross-correlation attains better results both in the mean error and in the

miss detection. Since the Kinect resolution is 1.3mm/px, the average error corresponds to 6.38mm.

Some results using simultaneous detection and cross-correlation, are shown in Figure 9.15.

9.5.2 Breast Contour Endpoints Detection

Breast contour endpoints detection was also evaluated in 487 depth-map images. The endpoint

detection accuracy was measured using the Euclidean metric distance (see Table 9.3).

The average error of 12.6 mm is a consequence of the ambiguity of the endpoint concept.

Nevertheless, as will be presented next, the impact on the remaining tasks is low. Some results for

the contour endpoints detection are shown in Figure 9.16.
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(a) Patient #83 (b) Patient #85 (c) Patient #106

Figure 9.15: Breast peak detection examples. Detected breast peak (red circle) - ground truth
breast peak (green cross).

Breast End Point µ (σ )

Right Outer 9.15 (9.39)
Inner 10.16 (8.86)

Left Outer 9.18 (9.03)
Inner 10.26 (7.89)

Table 9.3: Endpoint detection error (in pixels).

9.5.3 Breast Contour Detection

The breast contour detection error using the joint model for the co-occurrence of breast peak

and breast contour was evaluated based on the Hausdorff and average distances (Table 9.4). The

Hausdorff distance is defined as:

h(A,B) = maxmin
a∈A b∈B

‖a−b‖ (9.14)

where B represents the set of pixels of the ground truth and A is the segmented breast contour;
‖.‖ is the Euclidean distance. The motivation for using this metric is that it represents the worst

case scenario. As in the previous steps, breast contour detection was evaluated in 487 depth-map

images.

Detected⇒ Ground truth Ground truth⇒ Detected
Right breast Left breast Right breast Left breast

Mean Max Mean Max Mean Max Mean Max
Average 2.51 10.86 2.45 9.64 2.25 10.83 2.17 9.41

Stdev 1.39 8.09 1.65 7.84 1.30 7.10 1.60 7.54
Max 18.37 48.62 17.02 62.85 18.27 46.87 14.22 77.73
Min 0.98 3.03 0.88 2.79 0.76 2.40 0.77 2.18

Table 9.4: Breast contour detection error (in pixels).
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(a) Patient #76 (b) Patient #110 (c) Patient #118

(d) Patient #76 (e) Patient #110 (f) Patient #118

Figure 9.16: Contour endpoints detection examples. Detected endpoints (red circle) - ground truth
endpoints (green cross).

From Table 9.4, it is possible to observe that the proposed algorithm presents a very interesting

performance. The average error is quite low, around 3mm. It represents the result after the two

phases of the algorithm: contour endpoint detection and complete contour definition. Although

a relatively high error is found on the location of the endpoints, the breast contour algorithm

recovered the correct contour rapidly, thus obtaining a lower average error and a high Hausdorff

distance. Some results for the complete contour detection are shown in Figure 9.17.

9.5.4 Nipple Detection

A training set to design a binary classifier was built by manually labelling all pairs of candi-

dates/contours detected in a set of 76 images (yielding 1740 candidates/contour pairs). An SVM

classifier was optimised by performing a grid-search on the parameters of the model (C param-

eter, degree of the polynomial kernel and bandwidth of the RBF kernel) using cross-validation

with 4 folds. Finally, the performance of the model was estimated in a test set composed of 248

colour images. When more than one pair nipple/contour is predicted as positive in an image, the

prediction with the highest probability is selected (SVMs were implemented with LIBSVM [45],

enabling the estimation of the probability).

The cross-validation results in the training set are presented in Table 9.5), for the first ranked

parameterisation:.
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(a) Patient #62 (b) Patient #76 (c) Patient #78

(d) Patient #62 (e) Patient #76 (f) Patient #78

Figure 9.17: Complete contour detection examples. Detected contour (dashed cyan line) - ground
truth contour (solid red line).

Features/ Linear Polynomial (degree) RBF (gamma)
Kernel (Parameters) - 2 3 0.2 0.4 0.6 0.8 1

{Sa} 0.14 0.14 0.13 0.14 0.14 0.14 0.14 0.14
{µ(∆Ca)} 0.19 0.19 0.21 0.19 0.19 0.19 0.19 0.19

{ρh} 0.18 0.19 0.21 0.15 0.16 0.16 0.16 0.15
{da} 0.21 0.18 0.19 0.20 0.18 0.19 0.17 0.18

{Sa µ(∆Ca)} 0.10 0.09 0.10 0.12 0.11 0.11 0.10 0.11
{Sa ρh} 0.11 0.12 0.36 0.13 0.11 0.11 0.11 0.11

{µ(∆Ca) ρh} 0.17 0.16 0.21 0.12 0.11 0.11 0.11 0.11
{ρh da} 0.13 0.17 0.24 0.11 0.11 0.11 0.11 0.11
{Sa da} 0.08 0.08 0.08 0.09 0.08 0.08 0.08 0.08

{µ(∆Ca) da} 0.13 0.15 0.11 0.10 0.10 0.10 0.10 0.09
{Sa µ(∆Ca) ρh} 0.08 0.07 0.14 0.10 0.09 0.08 0.08 0.08
{Sa µ(∆Ca) da} 0.05 0.04 0.05 0.05 0.05 0.05 0.05 0.05
{µ(∆Ca) ρh da} 0.13 0.13 0.14 0.11 0.10 0.10 0.09 0.09

{Sa ρh da} 0.06 0.08 0.10 0.08 0.07 0.06 0.06 0.06
{Sa µ(∆Ca) ρh da} 0.05 0.04 0.16 0.07 0.06 0.06 0.05 0.05

Table 9.5: Miss classification error (cross-validation).
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A first observation from Table 9.5 is that more complex models obtained better results. These

results are important only to reduce the modes used during testing phase.

The performance in the test set, presented as the average distance between the manually

marked nipple and the predicted nipple, using the best sub-set of features, is summarised in Ta-

ble 9.6. Miss detection means that the nipple was detected outside the areola. The table includes

the results for the best parameterisation of each kernel, and for different subsets of features. The

best results show an average error around 6 mm and a single detection outside the areola complex.

Linear Polynomial RBF
Features/ - degree (2) gamma(1)

Kernel (Parameters) µ (σ ) µ (σ ) µ (σ )
# Miss (%) # Miss (%) # Miss (%)

{Sa µ(∆Ca)}
0.80 (1.00) 0.78 (0.95) 0.79 (0.92)
26 (5.66) 24 (5.23) 27 (5.88)

{Sa ρh} 0.84 (1.08) 0.73 (0.85) 0.84 (1.00)
41 (8.93) 25 (5.45) 35 (7.63)

{Sa da} 0.92 (1.40) 0.92 (1.41) 0.89 (1.35)
40 (8.72) 39 (8.50) 37 (8.06)

{Sa µ(∆Ca) ρh} 0.77 (0.96) 0.65 (0.62) 0.80 (0.92)
35 (7.63) 11 (2.40) 31 (6.75)

{Sa µ(∆Ca) da} 0.74 (1.00) 0.65 (0.66) 0.65 (0.65)
19 (4.14) 10 (2.18) 12 (2.61)

{Sa ρh da} 0.79 (1.15) 0.65 (0.69) 0.74 (0.84)
25 (5.45) 11 (2.40) 23 (5.01)

{Sa µ(∆Ca) ρh da} 0.74 (1.00) 0.64 (0.62) 0.61 (0.47)
24 (5.23) 16 (3.49) 1 (0.22)

Table 9.6: Average distance between the manually marked nipple and the predicted nipple in cm
(Results are presented in the format "mean (standard deviation))", and miss classification error.

Some results for the nipple detection are shown in Figure 9.18.

(a) Patient #76 (b) Patient #90 (c) Patient #114

Figure 9.18: Nipple detection examples. Detected nipple (red circle) - ground truth nipple (green
cross).
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9.5.5 Volumetric Feature Definition

This section presents the results for the computation of volumetric features. Patients without NAC

were removed from the study, totalling 70 patients, however in 5 of them the nipple height was

not measured by the physician. Table 9.7 shows the ratio values obtained for the nipple height,

volume, surface area and 3D nipple retraction for each patient, as well the ground truth ratio for

the nipple height.

Here, it is presented a direct evaluation of the nipple height feature (based on the ratio be-

tween the treated and the untreated breast) by comparison with the measurement taken by the

physician. Due to the absence of a ground truth, the quality and effectiveness of the other features

(volume, surface and 3D Nipple Retraction) will be evaluated indirectly in Section 9.5.6 through

the improvements to the final overall aesthetic evaluation. Additionally, and based on the results

obtained in Section 8.4, nipple height was also computed in SR resolution images (×2 the initial

resolution) obtained with the SR algorithm that obtained best performance.

Figure 9.19 presents a comparison between the ratios detected automatically and the ground

truth ratios for the nipple height feature, for the 65 patients where the physician performed the

ground truth measurement.

(a) Low Resolution Images (b) High Resolution Images

Figure 9.19: Scatter plot of depth height ratios. Red line is the trendline for graph data. Blue
dashed line represents the ideal trendline.

The ratios automatically detected are very similar to those obtained by the physician. This can

make clinical experts approve the use data acquired with Kinect device to evaluate the aesthetic

outcome. Aspects that can interfere with the data include smaller patient breasts or similar breast

shapes. It is also important to highlight the errors introduced by the physician during manual

ground truth measurement. Comparing the results obtained with the LR and SR images, the second

presented better results, although they are not significant. With LR images a correlation of 0.92

was obtained, whilst with SR images obtained a value of 0.95.
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Patient # Nipple GT Nipple ratio Nipple ratio (SR) Volume ratio Surface area ratio 3D Nipple Retraction

52 1.08 1.07 1.11 1.07 1.66 1.09
53 1.19 1.19 1.10 1.28 1.81 1.05
54 1.35 1.39 1.36 1.33 2.40 1.03
55 1.95 2.00 2.00 1.33 1.28 1.07
61 - 1.18 1.07 1.25 2.27 1.06
62 - 1.25 1.37 1.11 1.99 1.03
63 - 1.10 1.12 1.73 1.54 1.17
64 - 1.14 1.23 1.15 1.93 1.01
66 1.36 1.25 1.34 1.52 1.56 1.08
67 1.00 1.11 1.04 1.40 2.08 1.03
69 - 1.06 1.05 1.14 2.29 1.04
70 1.11 1.05 1.11 2.06 1.82 1.05
71 1.63 1.83 1.62 1.15 1.94 1.02
73 1.09 1.15 1.11 1.44 2.28 1.02
74 1.24 1.14 1.25 1.41 1.98 1.03
75 1.15 1.10 1.21 1.43 2.09 1.08
76 1.00 1.01 1.01 1.11 1.97 1.00
77 1.23 1.14 1.28 1.00 1.25 1.03
78 1.48 1.44 1.58 1.98 1.38 1.04
79 1.06 1.10 1.02 1.58 2.09 1.01
80 1.07 1.03 1.09 1.00 1.62 1.02
81 1.05 1.14 1.06 1.51 1.79 1.02
83 1.04 1.00 1.07 1.23 1.50 1.02
84 1.15 1.13 1.15 1.13 1.64 1.03
85 1.19 1.18 1.17 1.48 1.59 1.02
86 1.37 1.36 1.48 1.22 1.57 1.01
87 1.31 1.28 1.32 1.06 2.29 1.11
88 1.27 1.21 1.30 1.10 1.62 1.04
89 1.33 1.25 1.22 1.01 1.34 1.00
90 1.67 1.60 1.56 1.02 1.25 1.09
91 1.52 1.45 1.57 1.05 1.20 1.00
92 1.13 1.10 1.20 1.36 1.26 1.20
93 1.67 1.70 1.71 1.19 1.18 1.20
94 1.00 1.01 1.05 1.08 1.58 1.01
95 1.00 1.05 1.01 1.06 1.24 1.01
96 1.08 1.07 1.17 1.06 1.20 1.02
98 1.00 1.03 1.06 1.13 1.62 1.03
99 1.29 1.29 1.29 1.07 1.67 1.02
100 1.07 1.05 1.05 1.75 1.94 1.04
101 1.07 1.14 1.10 1.24 1.71 1.00
103 1.11 1.16 1.17 1.29 2.14 1.02
104 1.13 1.18 1.23 1.09 1.41 1.01
106 1.41 1.40 1.48 1.32 1.51 1.11
107 1.06 1.09 1.07 1.32 2.00 1.03
108 1.17 1.22 1.19 1.17 2.13 1.04
109 1.00 1.07 1.07 1.54 1.24 1.01
110 1.00 1.06 1.11 1.19 1.61 1.09
113 1.28 1.20 1.28 3.02 2.31 1.01
114 1.00 1.03 1.00 1.14 1.92 1.01
115 1.48 1.57 1.51 1.84 1.97 1.06
116 1.33 1.25 1.36 1.08 1.56 1.03
117 1.14 1.15 1.16 1.67 1.49 1.06
118 1.18 1.14 1.14 1.81 1.60 1.08
119 1.11 1.13 1.20 1.38 1.74 1.04
120 1.52 1.51 1.54 1.73 1.53 1.06
121 1.00 1.02 1.02 2.07 1.78 1.03
122 1.08 1.10 1.04 1.05 1.24 1.17
123 1.54 1.56 1.46 1.37 1.03 1.07
124 1.29 1.26 1.29 1.04 1.64 1.04
125 1.27 1.22 1.26 1.36 2.65 1.06
126 1.30 1.37 1.36 1.62 1.83 1.06
127 1.15 1.17 1.16 1.02 2.27 1.01
128 1.03 1.04 1.03 2.03 1.38 1.05
129 1.00 1.06 1.00 1.54 1.75 1.04
130 1.15 1.21 1.13 1.73 1.63 1.03
131 1.22 1.29 1.21 1.16 1.53 1.01
132 1.11 1.16 1.12 1.12 1.93 1.04
133 1.20 1.23 1.20 1.32 1.20 1.08
134 1.28 1.30 1.25 1.58 2.05 1.02
135 1.12 1.14 1.10 1.14 1.56 1.01

Table 9.7: Volumetric feature values.

9.5.6 Aesthetic Evaluation

The SR methods presented in this thesis did not seem to improve the result and therefore they were

not included in this section.

As in previous work (see Section 6.1), the problem involves classifying examples into classes
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which have a natural order. Thus, ordinal SVMs classifiers were adopted based on the data repli-

cation method for ordinal data [29].

9.5.6.1 Database Analysis

First of all, subjective evaluation is necessary to build and compare the models. As presented

in Chapter 4, the subjective evaluation was provided by two experts in the field of breast cancer.

Table 9.8 shows the distribution of the 70 patients over the four classes for the two evaluators.

Class Excellent Good Fair Poor Total

# cases Phy. #1 24 26 15 5
70

Phy. #2 47 18 4 1

Table 9.8: Distribution of the 70 patients over the four classes.

By looking at Table 9.8, it is easy to understand that agreement between the experts is low.

Moreover, class #4 is not significantly represented. For that reason, there was also an attempt

to create models using only three classes, merging class #3 and #4. Table 9.9 shows the new

distribution of the 70 patients over the classes.

Class Excellent Good Fair Total

# cases Phy. #1 24 26 20
70

Phy. #2 47 18 5

Table 9.9: Distribution of the 70 patients over the three classes.

To better understand the relation between the assessment between the experts, the disagree-

ment, the correlation coefficient and Cohen’s kappa coefficient are shown in Table 9.10.

# of classes Disagreement Correlation Coefficient Kappa Weighted Kappa
4 0.59 0.62 0.11 0.28
3 0.56 0.54 0.15 0.28

Table 9.10: Disagreement between evaluators for the subjective evaluation of the 70 patients.

From Table 9.10 it easy to observe that agreement is not high, which highlights the need for

a panel of experts to perform the evaluation. As in Section 4, the Weighted Kappa coefficient wk
was used. For the analysis with three classes, the weight matrix was set as follows:

wk =

 1 2/3 1/3

2/3 1 2/3

1/3 2/3 1
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9.5.6.2 Previous Models Analysis

The BCCT.core model and the new Linear model presented in Section 6.1 were not designed for

the data presented in the database. Those models were designed only for patients who underwent a

BCCT surgical intervention, and our database includes patients who have been subjected to other

type of interventions. In any way, using the data acquired from the portable camera, it was decided

to evaluate these models (see Table 9.11), as well as compare the output between each model (see

Table 9.12) and compare them with the subjective evaluation performed by the specialists (see

Table 9.13 and Table 9.14).

Class Excellent Good Fair Poor Total

# cases
4 classes BCCT.core 26 31 13 0

70
Linear 33 24 9 4

3 classes BCCT.core 26 31 13 -
Linear 33 24 13 -

Table 9.11: Distribution of the 70 patients for BCCT.core and linear model.

# of classes Miss Classification Correlation Coefficient Kappa Weighted Kappa
4 0.30 0.72 0.54 0.61
3 0.26 0.74 0.60 0.66

Table 9.12: Disagreement between output from BCCT.core and linear model.

Model Phy. # Miss Classification Correlation Coefficient Kappa Weighted Kappa

BCCT.core 1 0.51 0.48 0.23 0.33
2 0.47 0.64 0.25 0.38

Linear 1 0.46 0.62 0.33 0.46
2 0.41 0.65 0.29 0.42

Table 9.13: Disagreement between output from previous model and the subjective evaluation per-
formed by the physicians with 4 classes.

Model Phy. # Miss Classification Correlation Coefficient Kappa Weighted Kappa

BCCT.core 1 0.47 0.46 0.28 0.36
2 0.46 0.65 0.27 0.39

Linear 1 0.43 0.54 0.35 0.43
2 0.40 0.61 0.31 0.42

Table 9.14: Disagreement between output from previous model and the subjective evaluation per-
formed by the physicians with 3 classes.
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One first comment from previous Tables is that the BCCT.model did not classify any patient

with "Poor" class, which was very similar to the subjective evaluation from Physician #2. From

the comparison between these two models (BCCT.core model and the linear model designed in

Section 6.1), it is possible to state that they are very similar, presenting a Miss Classification

around or below than 30%, which is similar to that obtained in previous studies [28, 180]. The

high agreement between these models is validated with the weighted Kappa value, which is above

60%. Comparing the output of these models with the subjective evaluation from physicians, in

terms of Miss Classification the best agreement is between Physician #2 and the Linear model

with a value around 40%. By looking at weighted Kappa values, the best agreement is between

Physician #1 and the Linear model with a value around 45%. This analysis is very important

to understand how much the output classifications are related: however, new models have to be

created, not only to incorporate 3D information but also for the 2D analysis - which happens

because Kinect RGB data differ substantially from previous data used in the BCCT.core -, but also

to run the automatic detection of fiducial points developed in this thesis.

9.5.6.3 Feature Selection and Models Creation

Before designing a new model, it was necessary to select the set of features to be used in the study.

The selection of 2D features was based on previous studies [28, 180], whereas the 3D features

were those presented in this work.

The model was designed using the selected features, considering all the possible subsets, using

a LOO scheme [65]. The subjective evaluation performed by the physicians was used as reference

to train the models. Since the two experts did not reach consensus, the evaluation was performed

separately for each of the physicians. Models considering three and four classes were developed

for the first physician evaluation, while for the second physician the evaluation was only per-

formed with three classes due to the lack of patients evaluated as “Poor”. Taking into account

previous work on the same problem, the SVMs proved to be a suitable solution, mostly due to

the limited amount of data available [30, 31]. Linear and RBF kernel were tested, performing a

“grid-search” on the parameters of the models (h and s parameters of the data replication method

were left constant at 1 and 2, respectively). Exponentially growing sequences of C were tested:

C = 20,22,24,26, while γ , for the RBF kernel, was tested with: γ = 0.125,0.25,0.5.

The test results concerning the misclassification error (MER), the correlation (Corr) and Kappa

statistics for the first ranked feature subset are summarised in Table 9.15 for 2D features, Table 9.16

for the cascade scheme and Table 9.17 for the cascade scheme and Table 9.17 for the non-restricted

scheme, which combines 2D and 3D features.

The discrimination of the features are presented in TABLE 9.18.

In some of the tests, more than one subset of features obtained the same miss-classification er-

ror. The Tables present the subset with less complexity. A first observation is that the introduction

of 3D features improved the aesthetic evaluation. Generally, as expected, 3D features contribute

to a correct evaluation, both for Physician #1 and #2. Particularly, the result obtained for Physi-

cian #2 is remarkable: a miss detection of 0.14, which is very low in comparison with the error
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GT # classes Kernel C γ MER Corr Kappa wKappa Feat. Set

Phy.#1 4 RBF 64 0.5 0.44 0.58 0.33 0.43 [10,12,13,14,16]
3 RBF 64 0.5 0.36 0.51 0.45 0.47 [10,12,13,14,16]

Phy.#2 3 RBF 64 0.25 0.20 0.66 0.54 0.58 [8,10,12,16,24]

Table 9.15: Results obtained considering 2D features only.

GT # classes Kernel C γ MER Corr Kappa wKappa Feat. Set

Phy.#1 4 RBF 64 0.5 0.40 0.63 0.40 0.50 [34]
3 RBF 64 0.5 0.36 0.51 0.45 0.47 [34]

Phy.#2 3 RBF 64 0.25 0.17 0.71 0.59 0.63 [33]

Table 9.16: Results obtained for the cascade scheme.

GT # classes Kernel C γ MER Corr Kappa wKappa Feat. Set

Phy.#1 4 RBF 64 0.5 0.43 0.63 0.41 0.51 [9,10,13,14,16,34]
3 RBF 64 0.5 0.36 0.48 0.45 0.46 [9,10,13,14,16,34]

Phy.#2 3 linear 64 - 0.14 0.81 0.68 0.73 [9,24,32,33,34]

Table 9.17: Results obtained for the non-restricted scheme of 2D and 3D features.

Table 9.18: Selected features.

# Acronym Description
8 pBRA Dimensionless Breast Retraction Assessment
9 pLBC Dimensionless Lower Breast Contour
10 pUNR Dimensionless Upward Nipple Retraction
12 pBCD Dimensionless Breast Contour Difference
13 pBAD Dimensionless Breast Area Difference
14 pBOD Dimensionless Breast Overlap Difference
16 cχ2

a χ2 distance between the histograms in the a channel of the CIE L*a*b*
24 sχ2

a surgical scar visibility measured with χ2 in the a channel of the CIE L*a*b*
32 VDA Volume Difference Assessment
33 SAA Surface Area Assessment
34 3DNRA 3D Nipple Retraction Assessment

around 30% of the BCCT.core [28]. However, this result may be biased by the evaluation of this

specialist, corroborating the need for a panel of experts to reach consensus. The cascade scheme,

using the aesthetic evaluation from Physician #1 as reference, and using three classes only, did

not improve the initial 2D result. From the results, it is possible to observe that 3DNRA and SAA

features appear in almost all selected models, meaning that they have a greater influence on the

aesthetic evaluation. However, the results need to be read with caution. More data, both in number

and in diversity, with a more robust reference evaluation by specialists, are required to validate the
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results.

9.6 Conclusion

The work presented in this Chapter demonstrated the use of low-cost equipment, the Kinect device,

to build a system for the aesthetic evaluation of BCCT with improved automation, robustness,

reproducibility and overall cosmetic accuracy. This work takes advantage of both the depth and

RGB information acquired with the Kinect. The two are combined in order to take advantage of

the best of each data modality.

Firstly, depth information is used to extract the complete breast contour and the breast peak

point. With this information, after an appropriate RGB-D joint calibration, the breast contour

is superimposed on the RGB image to help detect the nipples. All these prominent points are

detected automatically, as well as the volumetric information obtained afterwards on the depth map

images. It was demonstrated that depth-map images facilitate the automation of the overall system,

maintaining BCCT.kore an affordable and easy-to-use tool. Results also confirm an excellent

performance and robustness for a wide variety of patients.

Afterwards, it was confirmed that the detected volumetric features on Kinect data (nipple

height, volume, surface area and 3D nipple retraction) have enough quality for aesthetic quantifi-

cation. For the particular case of the breast height, the comparison with measurements performed

by physicians provided evidence of the process reliability. The results prove that it is possible to

extract reliable 3D information from the Kinect, improving the aesthetic evaluation comparatively

to the subjective evaluation performed by specialists.

Regarding the two schemes tested for the inclusion of 3D information, it seems natural that

the model integrating 2D and 3D features should present better results. Looking at the results, it is

possible to confirm that this happens when the reference classification used is from the Physician

#2, but not from the first physician. To understand the impact of 3D features, some examples will

be presented next, by analysing the classification output performed by the different models. The

examples were chosen based on visual inspection. The chosen patients were the ones whose breast

deformation is easier to detect using volumetric information. Figure 9.20 presents the frontal pho-

tographs of three patients, and Table 9.19 shows the different model output, as well the subjective

evaluation performed by the physicians.

The subjective classification performed by the Physician #1 classified all the three examples

as "Poor", while Physician #2 evaluated two of them as "Fair" and the other as "Good". A first ob-

servation, is that there is no consensus in some patients. From the results presented in Table 9.19,

considering the reference classification by Physician #1, it is possible to confirm that models that

used only 2D information evaluated all the patients as "Fair", which is different from the reference

classification. With the inclusion of 3D information, both with Cascade and the normal scheme,

the classification now matches the reference. With Physician #2 as reference, the behaviour is not

linear. For example, the initial classification of patient #122 only with 2D features is "Good" and

the reference is "Fair". While the cascade model did not alter the classification value, the normal
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(a) Patient #63 (b) Patient #92 (c) Patient #122

Figure 9.20: Patient examples.

Automatic Classification
Model 2D Cascade 2D+3D GT
Phy. # Phy. #1 Phy. #2 Phy. #1 Phy. #2 Phy. #1 Phy. #2 Phy. #1 Phy. #2

# classes 4 3 4 3 4 3
Pat.#63 3 3 4 3 4 3 4 3
Pat.#92 3 2 4 2 4 3 4 2
Pat.#122 3 2 4 2 4 3 4 3

Table 9.19: Impact of 3D features. The output of the models trained with three classes and with
reference assessment performed by Physician #1, were removed from this analysis as they were
not relevant.

scheme corrects it to the "true" value. On the other hand, for patient #92 the classification with

2D features matches the reference, and when 3D features are added the classification is changed.

From the global results, it is possible to state that 3D features help the overall classification of

the aesthetic result; however, more tests, with a broader database with different cases, must be

performed to validate the obtained results.
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Chapter 10

Conclusions

Breast size and shape are a significant part of female body image and sense of femininity, and

they are determined by physical characteristics such as tissue volume, skin dimensions and chest

wall circumference. This is a dynamic structure that is easily deformed by position, gravity and

external pressure. The configuration of a mature breast in an individual, changes in response to

physiologic alterations (such as pregnancy, menstrual cycle) and age.

Breast Cancer Treatments alter the shape of the tissues. While some treatments change con-

siderably the size of the breast, some alter not so much the size, but the shape and location of the

Nipple-Areola Complex. Some procedures result in a combination of these effects; however, the

most recent techniques, in particular the oncoplastic ones, try to recreate the entire breast (for in-

stance, after mastectomy) using breast implants or tissue transferred from other parts of the body.

In the conservative approach, however, approximately one third of the patients will have a fair or

poor aesthetic outcome, affecting directly the psychosocial recover and, consequently, patients’

QOL.

The lack of a standard method for measuring the aesthetic outcome has been considered an

obstacle in the assessment and evaluation of the techniques applied. Until recently most used meth-

ods were based on a subjective evaluation, made by one or more observers by visual inspection;

however, these methods’ lack of reproducibility led to the introduction of objective methods. They

are based on measurements taken directly from the patient or from patient photographs which that

are essentially based on asymmetries between treated and non-treated breasts. In order to over-

come the idea that objective asymmetry measurements were insufficient, other groups introduced

a method based on the sum of the individual scores of subjective and objective indices. All these

additions improved the aesthetic evaluation methods but were considered insufficient due to a great

intra- and inter-observer variability. This fact corroborates the idea that it is necessary to replace

or enhance human expert evaluation of the aesthetic result of BCCT. A possible solution should

be supported by an objective tool, which has to be easy to use, highly reproducible and acceptable

by those who would be evaluated. To overcome the lack of objectivity of the evaluation of the aes-

thetic outcome of BCCT, a semi-automatic tool named BCCT.core was developed, which is based

on the comparison between breasts on frontal patient photographs. Although the BCCT.core sys-

187
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tem obtained satisfactory results, it presents some limitations related with interpretability of the

models and the fact that only patient frontal photographs are used.

The female breast is a complex 3D object and its boundaries are rather fuzzily defined in

2D pictures, thus making it difficult to identify body landmarks. On the contrary, the use of

a 3D model would make it possible to compare real geometrical characteristics of the breasts

including the possibility of estimating volume and 3D surface differences. Some authors have

already tried using 3D methodologies in this field and, although the benefits of these methods are

known, some drawback has been identified. The main drawback of 3D techniques is the need

for specific hardware, software and personnel. The high cost and the difficulty of operating the

equipment on a daily basis prevents its widespread use. Furthermore, these kinds of techniques do

not try to predict the aesthetic result for a more informed choice of treatment, neither are they able

to provide an automatic evaluation of the aesthetic result.

There was two principal focus on this thesis, regarding the aesthetic evaluation of the cosmetic

result. Firstly, compare the BCCT.core model with new interpretable models and models that

incorporate side-views from the patient. Secondly, develop a simple 3D model of a female torso,

using low-cost solutions, namely: a reconstruction algorithm from two uncalibrated views, using

the epipolar geometry approach and a Kinect sensor device. The idea is that the created model

will be used in an updated version of a BCCT.core to obtain a full 3D aesthetic assessment of

the surgical outcome. With the inclusion of measurements extracted from the 3D model, the aim

is to improve the global assessment result, without increasing its complexity, as the pictures are

acquired with a single camera or with a portable device.

This work was supported by the creation of an original multi-modal database. This database

could be used in the future by breast cancer researchers in order to compare different methodolo-

gies. The database created is a unique tool and can lead to new developments in the area.

In the initial study, interpretable models were proved to be an alternative to the current BCCT.core

model, since similar results were obtained with simpler models. The inclusion of lateral-views to

perform an aesthetic evaluation of the cosmetic result, was introduced for the first time during

this thesis. Results have demonstrated that this type of images can be useful to perform a correct

evaluation; however, the improvements have not been significant. More information on the shape

of the breasts is required, adding dimensionality with the acquisition of volumetric information.

An uncalibrated methodology based on epipolar geometry was used in order to maintain the

acquisition of patient data with a normal camera. The idea was to acquire several views from

the patient using the same camera, and reconstruct the scene only using the information on the

photographs, without any calibration procedure. After applying uncalibrated state-of-the-art al-

gorithms to our database, it was possible to conclude that current methodologies are not able to

correctly reconstruct the breast. The main reason to this drawback is related to the lack of features

in the breast and the repetitive texture which is typical of the skin. These methodologies do not

work also when features are created artificially on a female phantom torso. This indicates that

more investigation is needed, with specific algorithms designed to this kind of data, incorporating

parametric models introducing some restrictions on the shape of the breast, or using specific pat-
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terns to generate artificial features, trying to simplify the reconstruction process. The volumetric

methodology presented here was based on this second approach.

Aiming to provide an affordable and practical tool, and taking advantage of the available low-

cost systems on the market, a decision was made to use the Microsoft Kinect device. Note that the

Kinect was introduced after an initial validation of Kinect depth data, which proved to be accurate

to measure volumetric differences in this specific data, the limitations and capabilities of Kinect

device were studied.

One of the great assets of this device is that it provides synchronised depth and colour data,

which is very useful to detect specific characteristics simultaneously. However, depth and colour

information are not aligned, requiring a joint calibration stage, specific for each device. This

step was successfully addressed, using one of the latest state-of-the-art algorithms. It is well

acknowledged that these devices are of great value; however, these advantages are confronted with

the relatively LR of generated disparity, which can be a limitation to produce a clear model. This

disadvantage was tackled with a comparative study of state-of-the-art SR algorithms applied to

Kinect data. The study conducted proved that SR algorithms produced output images with good

quality; however, the algorithms that achieved the best results are computationally expensive,

which prevents them from being used in real-time applications.

Lastly, and looking to the BCCT.core limitations concerning the complete automation and

inability to measure volumetric information, new algorithms were developed to detect fiducial

points and breast contour without user intervention and new models were created for the aesthetic

evaluation of the cosmetic result incorporating volumetric information. The prominent points were

detected using sychronised depth and colour information. Each characteristic point was detected

on the type of date where their detection is facilitated.

This innovation makes it easier to automate the software without increasing the complexity of

the system, enhancing the reproducibility of the software since the user does not have any interven-

tion during the process. The process of locating the nipple is based on detecting the aureola, using

a closed contour methodology. This thesis introduced an algorithm which computes the closed

contour in the original coordinates, in contrast to the typically approach which transforms the

image into polar coordinates and the closed contour is transformed into an open contour between

two opposite margins. The volumetric information is obtained using fiducial point localisation and

breast contour delimitation in the depth image. Finally, using 2D features and the new volumetric

information, new models were developed to evaluate the aesthetic result. With the inclusion of

measurements extracted from the 3D model, it was possible to improved the overall assessment

result, without increasing complexity significantly. The results proved that it is possible to extract

reliable 3D information, comparatively to the subjective evaluation performed by physicians.

During this thesis, the work has been published in several technical conferences and recently in

specialised journals. The work was also validated by the medical community, with the publication

of several papers in top medical conferences [159–161].
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10.1 Future Work

Regarding the contributions presented in this thesis, we identified the necessity of developing

specific 3D reconstruction algorithms for uncalibrated environments, to be used in our data. Fur-

thermore, we propose the acquisition of video frames using a Kinect device, in order to create a

real 3D model, obtained from the registration of the depth images.

It is difficult to predict exactly how the breast will be changed by a specific procedure in any

particular patient. How long should incisions be and where should they be placed? What size of

breast implant will yield the best results? Is there enough tissue to recreate a breast that would meet

the expectations of the patient? What does the patient want her breast to look like? Answering

these questions is essential in pre-operative planning.

The uncertainties associated with breast surgery may be reduced by applying modelling and

simulation process. A computer-aided breast simulator may enhance the practice of breast surgery

at multiple points, allowing the patient to communicate her expectations more clearly to the sur-

geon. It allows the surgeon to educate the patient with more accurate explanations of what can be

accomplished, and after, it helps the surgeon plan specific aspects of the procedure so as to achieve

the agreed and desired goals. Finally, it facilitates surgical training by allowing trainees to design

procedures and understand the results before performing surgery on the patient.

The development of a model fitting method will allow the system to automatically fit a generic

deformable model to patient specific 3D breast surface measurements using a physically-based

framework. This can be used to quantitatively and reliably assess the aesthetic outcomes of breast

reconstructive surgery. In addition, this will also allow the surgeon to quantitatively analyse the

degrees of various deformities and asymmetries in the shape of the breast. Finally, a model creation

mode will allow the surgeon to interactively adjust the shape of the breast by varying key shape

variables analogous to the aesthetic and structural elements surgeons inherently vary manually

during breast reconstruction.

Given the triangular mesh data of the patient’s breast, the model fitting method could be used to

fit a parametric breast model to the data mesh. One aim is to use the reference shape to capture the

salient shape features that are innate to the object being modelled and appropriate for comparison

with other object instances. Furthermore, the deformations can be used in the reconstruction of

fine scale structures and natural irregularities of real world data that the reference shape disregards.

The stated reference shape could be obtained from the result of applying global deformations

to a geometric primitive. The geometric primitive could be for example defined parametrically,

employing a superquadric.

As a final point, it should be noted that has been proposed an European health project and has

been accepted for funding. Entitled "PICTURE - Patient Information for the Combined Assess-

ment of Specific Surgical Outcomes in breast cancer", the project combines the analysis of 3D

pictures with routine medical examinations which, together, will make it possible to develop tech-

niques for biomechanically modeling the anatomy of the breast, and to understand the effect that

the surgery to remove cancerous tissue can have on the patient. With these tools it will be possible
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to explore new alternative strategies and to evaluate the consequences of the options available,

always respecting the appearance of the breast. This is a three-year project developed in part-

nership with Philips, the University College London (UK), the Academisch Ziekenhuis Leiden -

Leids Universitais Medisch Centrum (the Netherlands) and the Institut National de la Santé et de

la Recherce Medicale (France). The opportunity to collaborate with these partners should be seen

as a valuable tool to further reinforce the competencies and knowledge of the research group.
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