27,806 research outputs found

    Automatic Classification of Breast Tissue

    Full text link

    Improving High Resolution Histology Image Classification with Deep Spatial Fusion Network

    Full text link
    Histology imaging is an essential diagnosis method to finalize the grade and stage of cancer of different tissues, especially for breast cancer diagnosis. Specialists often disagree on the final diagnosis on biopsy tissue due to the complex morphological variety. Although convolutional neural networks (CNN) have advantages in extracting discriminative features in image classification, directly training a CNN on high resolution histology images is computationally infeasible currently. Besides, inconsistent discriminative features often distribute over the whole histology image, which incurs challenges in patch-based CNN classification method. In this paper, we propose a novel architecture for automatic classification of high resolution histology images. First, an adapted residual network is employed to explore hierarchical features without attenuation. Second, we develop a robust deep fusion network to utilize the spatial relationship between patches and learn to correct the prediction bias generated from inconsistent discriminative feature distribution. The proposed method is evaluated using 10-fold cross-validation on 400 high resolution breast histology images with balanced labels and reports 95% accuracy on 4-class classification and 98.5% accuracy, 99.6% AUC on 2-class classification (carcinoma and non-carcinoma), which substantially outperforms previous methods and close to pathologist performance.Comment: 8 pages, MICCAI workshop preceeding

    A review on automatic mammographic density and parenchymal segmentation

    Get PDF
    Breast cancer is the most frequently diagnosed cancer in women. However, the exact cause(s) of breast cancer still remains unknown. Early detection, precise identification of women at risk, and application of appropriate disease prevention measures are by far the most effective way to tackle breast cancer. There are more than 70 common genetic susceptibility factors included in the current non-image-based risk prediction models (e.g., the Gail and the Tyrer-Cuzick models). Image-based risk factors, such as mammographic densities and parenchymal patterns, have been established as biomarkers but have not been fully incorporated in the risk prediction models used for risk stratification in screening and/or measuring responsiveness to preventive approaches. Within computer aided mammography, automatic mammographic tissue segmentation methods have been developed for estimation of breast tissue composition to facilitate mammographic risk assessment. This paper presents a comprehensive review of automatic mammographic tissue segmentation methodologies developed over the past two decades and the evidence for risk assessment/density classification using segmentation. The aim of this review is to analyse how engineering advances have progressed and the impact automatic mammographic tissue segmentation has in a clinical environment, as well as to understand the current research gaps with respect to the incorporation of image-based risk factors in non-image-based risk prediction models

    Automated Detection and Classification of Breast Cancer Nuclei with Deep Convolutional Neural Network

    Get PDF
    Heterogeneous regions present in tissue with respect to cancer cells are of various types. This study aimed to analyze and classify the morphological features of the nucleus and cytoplasm regions of tumor cells. This tissue morphology study was established through invasive ductal breast cancer histopathology images accessed from the Databiox public dataset. Automatic detection and classification was carried out by means of the computer analytical tool of deep learning algorithm. Residual blocks with short skip were employed with hidden layers of preserved spatial information. A ResNet-based convolutional neural network was adapted to perform end-to-end segmentation of breast cancer nuclei. Nuclei regions were identified through color and tubular structure morphological features. Based on the segmented and extracted images, classification of benign and malignant breast cancer cells was done to identify tumors. The results indicated that the proposed method could successfully segment and classify breast tumors with an average Dice score of 90.68%, sensitivity = 98.64, specificity = 98.68, and accuracy = 98.82

    Efficacy of MobileNet Models in Detecting Breast Cancer in Patient Histopathology Images – An Empirical Examination

    Get PDF
    Breast cancer, the most common of all the cancers, is treatable when detected early. Histopathology (HP) biopsy images generated from breast tissue samples are commonly used as early screening tools for detecting malignancy. This study has developed and compared the efficacy of two convolutional neural network (CNN) models that are based on MobileNet architecture for automatic detection of Invasive Ductal Carcinoma (IDC), the most common form of breast cancer, in histopathology (HP) images of breast tissues. The best of the two models has shown encouraging classification performance in terms of accuracy, precision and recall. The results attest to the viability of using lighter CNN models such as MobileNet for decision support when screening for breast cancer

    Breast Cancer Classification Using Deep Convolutional Neural Networks

    Get PDF
    Breast cancer remains the primary causes of death for women and much effort has been depleted in the form of screening series for prevention. Given the exponential growth in the number of mammograms collected, computer-assisted diagnosis has become a necessity. Histopathological imaging is one of the methods for cancer diagnosis where Pathologists examine tissue cells under different microscopic standards but disagree on the final decision. In this context, the use of automatic image processing techniques resulting from deep learning denotes a promising avenue for assisting in the diagnosis of breast cancer. In this paper, an android software for breast cancer classification using deep learning approach based on a Convolutional Neural Network (CNN) was developed. The software aims to classify the breast tumors to benign or malignant. Experimental results on histopathological images using the BreakHis dataset shows that the DenseNet CNN model achieved high processing performances with 96% of accuracy in the breast cancer classification task when compared with state-of-the-art models

    Assessment of algorithms for mitosis detection in breast cancer histopathology images

    Get PDF
    The proliferative activity of breast tumors, which is routinely estimated by counting of mitotic figures in hematoxylin and eosin stained histology sections, is considered to be one of the most important prognostic markers. However, mitosis counting is laborious, subjective and may suffer from low inter-observer agreement. With the wider acceptance of whole slide images in pathology labs, automatic image analysis has been proposed as a potential solution for these issues. In this paper, the results from the Assessment of Mitosis Detection Algorithms 2013 (AMIDA13) challenge are described. The challenge was based on a data set consisting of 12 training and 11 testing subjects, with more than one thousand annotated mitotic figures by multiple observers. Short descriptions and results from the evaluation of eleven methods are presented. The top performing method has an error rate that is comparable to the inter-observer agreement among pathologists
    corecore