104 research outputs found

    Event detection in field sports video using audio-visual features and a support vector machine

    Get PDF
    In this paper, we propose a novel audio-visual feature-based framework for event detection in broadcast video of multiple different field sports. Features indicating significant events are selected and robust detectors built. These features are rooted in characteristics common to all genres of field sports. The evidence gathered by the feature detectors is combined by means of a support vector machine, which infers the occurrence of an event based on a model generated during a training phase. The system is tested generically across multiple genres of field sports including soccer, rugby, hockey, and Gaelic football and the results suggest that high event retrieval and content rejection statistics are achievable

    Highly efficient low-level feature extraction for video representation and retrieval.

    Get PDF
    PhDWitnessing the omnipresence of digital video media, the research community has raised the question of its meaningful use and management. Stored in immense multimedia databases, digital videos need to be retrieved and structured in an intelligent way, relying on the content and the rich semantics involved. Current Content Based Video Indexing and Retrieval systems face the problem of the semantic gap between the simplicity of the available visual features and the richness of user semantics. This work focuses on the issues of efficiency and scalability in video indexing and retrieval to facilitate a video representation model capable of semantic annotation. A highly efficient algorithm for temporal analysis and key-frame extraction is developed. It is based on the prediction information extracted directly from the compressed domain features and the robust scalable analysis in the temporal domain. Furthermore, a hierarchical quantisation of the colour features in the descriptor space is presented. Derived from the extracted set of low-level features, a video representation model that enables semantic annotation and contextual genre classification is designed. Results demonstrate the efficiency and robustness of the temporal analysis algorithm that runs in real time maintaining the high precision and recall of the detection task. Adaptive key-frame extraction and summarisation achieve a good overview of the visual content, while the colour quantisation algorithm efficiently creates hierarchical set of descriptors. Finally, the video representation model, supported by the genre classification algorithm, achieves excellent results in an automatic annotation system by linking the video clips with a limited lexicon of related keywords

    Scene extraction in motion pictures

    Full text link
    This paper addresses the challenge of bridging the semantic gap between the rich meaning users desire when they query to locate and browse media and the shallowness of media descriptions that can be computed in today\u27s content management systems. To facilitate high-level semantics-based content annotation and interpretation, we tackle the problem of automatic decomposition of motion pictures into meaningful story units, namely scenes. Since a scene is a complicated and subjective concept, we first propose guidelines from fill production to determine when a scene change occurs. We then investigate different rules and conventions followed as part of Fill Grammar that would guide and shape an algorithmic solution for determining a scene. Two different techniques using intershot analysis are proposed as solutions in this paper. In addition, we present different refinement mechanisms, such as film-punctuation detection founded on Film Grammar, to further improve the results. These refinement techniques demonstrate significant improvements in overall performance. Furthermore, we analyze errors in the context of film-production techniques, which offer useful insights into the limitations of our method

    Automatic Summarization of Soccer Highlights Using Audio-visual Descriptors

    Get PDF
    Automatic summarization generation of sports video content has been object of great interest for many years. Although semantic descriptions techniques have been proposed, many of the approaches still rely on low-level video descriptors that render quite limited results due to the complexity of the problem and to the low capability of the descriptors to represent semantic content. In this paper, a new approach for automatic highlights summarization generation of soccer videos using audio-visual descriptors is presented. The approach is based on the segmentation of the video sequence into shots that will be further analyzed to determine its relevance and interest. Of special interest in the approach is the use of the audio information that provides additional robustness to the overall performance of the summarization system. For every video shot a set of low and mid level audio-visual descriptors are computed and lately adequately combined in order to obtain different relevance measures based on empirical knowledge rules. The final summary is generated by selecting those shots with highest interest according to the specifications of the user and the results of relevance measures. A variety of results are presented with real soccer video sequences that prove the validity of the approach

    Video Shot Boundary Detection Using Generalized Eigenvalue Decomposition and Gaussian Transition Detection

    Get PDF
    Shot boundary detection is the first step of the video analysis, summarization and retrieval. In this paper, we propose a novel shot boundary detection algorithm using Generalized Eigenvalue Decomposition (GED) and modeling of gradual transitions by Gaussian functions. Especially, we focus on the challenges of detecting the gradual shots and extracting appropriate spatio-temporal features, which have effects on the ability of algorithm to detect shot boundaries efficiently. We derive a theorem that discuss about some new features of GED which could be used in the video processing algorithms. Our innovative explanation utilizes this theorem in the defining of new distance metric in Eigen space for comparing video frames. The distance function has abrupt changes in hard cut transitions and semi-Gaussian behavior in gradual transitions. The algorithm detects the transitions by analyzing this distance function. Finally we report the experimental results using large-scale test sets provided by the TRECVID 2006 which has evaluations for hard cut and gradual shot boundary detection

    A new audio-visual analysis approach and tools for parsing colonoscopy videos

    Get PDF
    Colonoscopy is an important screening tool for colorectal cancer. During a colonoscopic procedure, a tiny video camera at the tip of the endoscope generates a video signal of the internal mucosa of the colon. The video data are displayed on a monitor for real-time analysis by the endoscopist. We call videos captured from colonoscopic procedures colonoscopy videos. Because these videos possess unique characteristics, new types of semantic units and parsing techniques are required. In this paper, we introduce a new analysis approach that includes (a) a new definition of semantic unit - scene (a segment of visual and audio data that correspond to an endoscopic segment of the colon); (b) a novel scene segmentation algorithm using audio and visual analysis to recognize scene boundaries. We design a prototype system to implement the proposed approach. This system also provides the tools for video/image browsing. The tools enable the users to quickly locate and browse scenes of interest. Experiments on real colonoscopy videos show the effectiveness of our algorithms. The proposed techniques and software are useful (1) for post-procedure reviews, (2) for developing an effective content-based retrieval system for colonoscopy videos to facilitate endoscopic research and education, and (3) for development of a systematic approach to assess endoscopists\u27 procedural skills

    A COMPUTATION METHOD/FRAMEWORK FOR HIGH LEVEL VIDEO CONTENT ANALYSIS AND SEGMENTATION USING AFFECTIVE LEVEL INFORMATION

    No full text
    VIDEO segmentation facilitates e±cient video indexing and navigation in large digital video archives. It is an important process in a content-based video indexing and retrieval (CBVIR) system. Many automated solutions performed seg- mentation by utilizing information about the \facts" of the video. These \facts" come in the form of labels that describe the objects which are captured by the cam- era. This type of solutions was able to achieve good and consistent results for some video genres such as news programs and informational presentations. The content format of this type of videos is generally quite standard, and automated solutions were designed to follow these format rules. For example in [1], the presence of news anchor persons was used as a cue to determine the start and end of a meaningful news segment. The same cannot be said for video genres such as movies and feature films. This is because makers of this type of videos utilized different filming techniques to design their videos in order to elicit certain affective response from their targeted audience. Humans usually perform manual video segmentation by trying to relate changes in time and locale to discontinuities in meaning [2]. As a result, viewers usually have doubts about the boundary locations of a meaningful video segment due to their different affective responses. This thesis presents an entirely new view to the problem of high level video segmentation. We developed a novel probabilistic method for affective level video content analysis and segmentation. Our method had two stages. In the first stage, a®ective content labels were assigned to video shots by means of a dynamic bayesian 0. Abstract 3 network (DBN). A novel hierarchical-coupled dynamic bayesian network (HCDBN) topology was proposed for this stage. The topology was based on the pleasure- arousal-dominance (P-A-D) model of a®ect representation [3]. In principle, this model can represent a large number of emotions. In the second stage, the visual, audio and a®ective information of the video was used to compute a statistical feature vector to represent the content of each shot. Affective level video segmentation was achieved by applying spectral clustering to the feature vectors. We evaluated the first stage of our proposal by comparing its emotion detec- tion ability with all the existing works which are related to the field of a®ective video content analysis. To evaluate the second stage, we used the time adaptive clustering (TAC) algorithm as our performance benchmark. The TAC algorithm was the best high level video segmentation method [2]. However, it is a very computationally intensive algorithm. To accelerate its computation speed, we developed a modified TAC (modTAC) algorithm which was designed to be mapped easily onto a field programmable gate array (FPGA) device. Both the TAC and modTAC algorithms were used as performance benchmarks for our proposed method. Since affective video content is a perceptual concept, the segmentation per- formance and human agreement rates were used as our evaluation criteria. To obtain our ground truth data and viewer agreement rates, a pilot panel study which was based on the work of Gross et al. [4] was conducted. Experiment results will show the feasibility of our proposed method. For the first stage of our proposal, our experiment results will show that an average improvement of as high as 38% was achieved over previous works. As for the second stage, an improvement of as high as 37% was achieved over the TAC algorithm

    Adaptive video segmentation

    Get PDF
    The efficiency of a video indexing technique depends on the efficiency of the video segmentation algorithm which is a fundamental step in video indexing. Video segmentation is a process of splitting up a video sequence into its constituent scenes. This work focuses on the problem of video segmentation. A content-based approach has been used which segments a video based on the information extracted from the video itself. The main emphasis is on using structural information in the video such as edges as they are largely invariant to illumination and motion changes. The edge-based features have been used in conjunction with the intensity-based features in a multi-resolution framework to improve the performance of the segmentation algorithm.;To further improve the performance and to reduce the problem of automated choice of parameters, we introduce adaptation in the video segmentation process. (Abstract shortened by UMI.)

    Automatic detection of salient objects and spatial relations in videos for a video database system

    Get PDF
    Cataloged from PDF version of article.Multimedia databases have gained popularity due to rapidly growing quantities of multimedia data and the need to perform efficient indexing, retrieval and analysis of this data. One downside of multimedia databases is the necessity to process the data for feature extraction and labeling prior to storage and querying. Huge amount of data makes it impossible to complete this task manually. We propose a tool for the automatic detection and tracking of salient objects, and derivation of spatio-temporal relations between them in video. Our system aims to reduce the work for manual selection and labeling of objects significantly by detecting and tracking the salient objects, and hence, requiring to enter the label for each object only once within each shot instead of specifying the labels for each object in every frame they appear. This is also required as a first step in a fully-automatic video database management system in which the labeling should also be done automatically. The proposed framework covers a scalable architecture for video processing and stages of shot boundary detection, salient object detection and tracking, and knowledge-base construction for effective spatio-temporal object querying. (c) 2008 Elsevier B.V. All rights reserved
    corecore