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ABSTRACT 

Recent research approaches in semantics based video content analysis require shot 

boundary detection as the first step to divide video sequences into sections. Furthermore, 

with the advances in networking and computing capability, efficient retrieval of 

multimedia data has become an important issue. Content-based retrieval technologies have 

been widely implemented to protect intellectual property rights (IPR). In addition, 

automatic recognition of highlights from videos is a fundamental and challenging problem 

for content-based indexing and retrieval applications. 

In this thesis, a paradigm is proposed to segment, retrieve and interpret digital videos. Five 

algorithms are presented to solve the video segmentation task. Firstly, a simple shot cut 

detection algorithm is designed for real-time implementation. Secondly, a systematic 

method is proposed for shot detection using content-based rules and FSM (finite state 

machine). Thirdly, the shot detection is implemented using local and global indicators. 

Fourthly, a context awareness approach is proposed to detect shot boundaries. Fifthly, a 

fuzzy logic method is implemented for shot detection. Furthermore, a novel analysis 

approach is presented for the detection of video copies. It is robust to complicated 

distortions and capable of locating the copy of segments inside original videos. Then, 
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objects and events are extracted from MPEG Sequences for Video Highlights Indexing 

and Retrieval. Finally, a human fighting detection algorithm is proposed for movie 

annotation. 

 

 

 

 

 

 

 

 

 

 

 



v 
 

ACKNOWLEDGEMENTS 

 
I would like to give my deepest thanks and best wishes to my dearest parents Mr. Ya 

Xiong Chen and Mrs. Bi Hua Wu. Their love and support is the strongest influence for me 

to do the research work and finish my PhD study. Also, I would like to thank my beloved 

cousin Mr. Ge Wu for his wise suggestions to help me make correct decisions during my 

PhD study.   

I would like to give my special thanks to my primary supervisor Prof. Jianmin Jiang. His 

sponsorship gives me this precious opportunity to be a PhD student. His profound 

knowledge and wisdom inspires me to make progress in my research work. His patience 

and kindness helps me to overcome the difficulties in the PhD study. 

Many thanks are given to my second supervisor, Dr. Stan S. Ipson for his kind help in my 

study. His preciseness and excellence of using the English language inspires me a lot in 

the paper writing. 

Also, I would like to thank my colleagues and friends. Their kind help and encouragement 

supports me in a difficult time. 

 

 

 

 

 



vi 
 

TABLE OF CONTENTS 

 

CHAPTER 1 

INTRODUCTION                                                                                                               1 

1.1 Background……………………………………………………………………………..1 

1.2 Problems……………………………………………………………………………..…3 

1.3 Aims and Objectives……………………………………………………………………4 

1.4 Layout of the Thesis……………………………………………………………………6 

CHAPTER 2 

LITERATURE REVIEW                                                                                                   8 

2.1 Introduction…………………………………………………………………………….8 

2.2 Survey of the Video Segmentation……………………………………………………..8 

2.3 Survey of the Video Retrieval………………………………………………………...14 

2.4 Survey of the Video Interpretation……………………………………………………17 

2.5 Summary………………………………………………………………………………19 

CHAPTER 3 

VIDEO SEGMENTATION                                                                                              20 

3.1 Introduction…………………………………………………………………………...20 

3.2 Real-Time Shot-Cut Detection in Compressed Domain……………………………...22 

3.3 Compressed-Domain Shot Boundary Detection using Finite State Machine and 

Content-Based Rules…………………………………………..……………………..34 

3.4 Shot Boundary Detection in MPEG Videos using Local and Global Indicators……...45 



vii 
 

3.5 A Hierarchical Content-Aware Approach for Shot Cut Detection in Compressed 

Domain……………………………………………..………………………………...54 

3.6 A Fuzzy Logic Method of Feature Representation for Shot Boundary Detection……82 

3.7 Summary………………………………………………………………………………90 

CHAPTER 4 

VIDEO RETRIEVAL                                                                                                       93 

4.1 Introduction…………………………………………………………………………...93 

4.2 A Novel Analysis Approach towards the Detection of Video Copies under 

Complicated Distortions……………………………………………………………..93 

4.3 Summary……………………………………………………………………………..111 

CHAPTER 5 

VIDEO INTERPRETATION                                                                                         112 

5.1 Introduction………………………………………………………………………….112 

5.2 Knowledge-Supported Segmentation and Semantic Contents Extraction from MPEG 

Videos………………………………………………………………………………113 

5.3 Trajectory Based Human Fighting Detection for Movie Annotation………………..120 

5.4 Summary……………………………………………………………………………..128 

CHAPTER 6 

CONCLUSION                                                                                                                130 

6.1 Thesis Conclusion…………………………………………………………………....130 

6.2 Thesis Contribution………………………………………………………………….131 

6.3 Future Work………………………………………………………………………….134 

REFERENCE…………………………………………………………………………...136 

APPENDIX------Author’s Contributions……………………………………………..153                  



viii 
 

LIST OF TABLES 

 
Table 3.1 Summary of experimental results for shot detection…………..……………….28 

Table 3.2 Comparative experiments for abrupt cut detection…………………………….33 

Table 3.3 Description of the test video sequences………………..……………………….43 

Table 3.4 Evaluation results of cut: the proposed algorithm V.S. the best results from 

TRECVID 2001……………………………………………………………………..…….44 

Table 3.5 Evaluation results of gradual transition: the proposed algorithm V.S. the best 

results from TRECVID 2001……………………………………………………………...44 

Table 3.6 Weighted average evaluation results: the proposed algorithm V.S. the best 

results from TRECVID 2001……………………………………………………………...44 

Table 3.7 Performance comparison using AdaBoost based cross validation on the data 

from TRECVID in 2005 and 2006………………………………………………………..47 

Table 3.8 Summary of multiple thresholds for neighbourhood frame difference and inter-

frame difference indicators………………………………………………………………..62 

Table 3.9 Comparative frame difference indicators………………………………………62 

Table 3.10 FSM states description………………………………………………………..71 

Table 3.11 Definition of conditions for inter-state transition in FSM…………………….72 

Table 3.12 Description of the video sequences in the test set…………………………….74 

Table 3.13 Recall and precision results for 17 sequences………………………………...76 

Table 3.14 Recall and precision results for all teams in TRECVID 2007………………...78 

Table 3.15 F1-measure results for all teams………………………………………………79 

Table 3.16 Top 6 F1 results in TRECVID 2007…………………………………………..79 



ix 
 

Table 3.17 Mean runtime of participants in TRECVID 2007…………………………….79 

Table 3.18 Performance of the proposed algorithm compared to teams from TRECVID 

2007.............................................................................…………………………………....90 

Table 4.1 The evaluation contribution of the features…………………………………...108 

Table 4.2 Description of transformation types…………………………………………..109 

Table 4.3 Experimental results of method from [67],[68] and the proposed algorithm…110 

Table 4.4 Processing time of method from [67],[68] and the proposed method………...111 

Table 5.1 Description of the test video sequences……………………………………….119 

Table 5.2 Performance on shot detection and highlights extraction……………………..119 

Table 5.3 Determination of camera motion type………………………………………...124  

Table 5.4 Behaviour labelling of points of interest……………………………………...126 

Table 5.5 Human fighting detection results under various camera motions…………….128 

 

 
 

 

 

 

 

 

 

 

 

 

 



x 
 

LIST OF FIGURES 

 
Figure 2.1 Illustration of MPEG video structure for motion estimation & compensation....9 

Figure 2.2 Illustration of abrupt shot cut detection……………………………………….11 

Figure 3.1 Overview of the proposed shot cut detection algorithm………………………24 

Figure 3.2 Frame sample illustration of the test video clips………………………………29 

Figure 3.3 Analysis of shot cut modes in variable video streams………………………...32 

Figure 3.4 The basic cut detector….………………………………………………………37 

Figure 3.5 The improved cut detector…………………………………………………….39 

Figure 3.6 FSM for gradual transition detection..………………………………………...41 

Figure 3.7 The shapes of fades in the Temporal domain of intensity…………………….51 

Figure 3.8 The shape of fades in the Temporal domain of variance……………………...52 

Figure 3.9 The shape of fades in the Temporal domain of intensity……………………...52  

Figure 3.10 Luminance neighbourhood frame difference indicator (D) with respect to 

ground truth cuts…………………………………………………………………………..56 

Figure 3.11 Decision tree for initial shot detection……………………………………….63 

Figure 3.12 The second phase: decision tree for removal of false positives……………...64 

Figure 3.13 The third phase: decision tree for removal of false negatives……………….67 

Figure 3.14 Example illustration of IVC with respect to dissolves……………………….69 

Figure 3.15 Illustration of MPEG motion compensation error graph on dissolves.............69 

Figure 3.16 Structure of FSM for dissolve detection……………………………………..71 

Figure 3.17 Illustration of “others”………………………………………………………..77 



xi 
 

Figure 3.18 Three types of inter-frame differences for cut detection……………………..83  

Figure 3.19 Two types of inter-frame differences for gradual transition detection………84  

Figure 4.1 Overview of video copy detection strategy………………………………........95 

Figure 4.2 Sample frames of gap frames and temporally redundancy frames…………....97 

Figure 4.3 Examples of different geometrical editing methods within one video..............99 

Figure 4.4 Examples of the locations for video in video.......……………………………103 

Figure 5.1 Fuzzy sets of Length………………………………………………………….125 

Figure 5.2 Fuzzy sets of Movement………………………….…………………………..126 

 
 

 

 

 

 

 

 

 

 

 

  

 

 

 

 



Chapter 1. Introduction 
 

1 
 

Chapter 1 

Introduction 

1.1 Background  

There has been an explosive growth of digital media applications in the past two decades 

caused by the rapid developments in Internet and multimedia techniques. Among these 

applications, digital video processing technology has become a hot topic owing to its 

flexibility and huge commercial potential. Some applications in digital video processing 

technology are summarized as follows. 

(1) Video indexing: For browsing, searching, and manipulating video documents, an 

index describing the video content is required. It forms the crux for applications 

like digital libraries storing multimedia data, or filtering systems which 

automatically identify relevant video documents based on a user profile. To cater 

for these diverse applications, the indexes should be rich and as complete as 

possible. 

(2) Visual surveillance: Visual surveillance in dynamic scenes attempts to detect, 

recognize and track certain objects from image sequences, and more generally to 

understand and describe object behaviours. The aim is to develop intelligent 

visual surveillance to replace the traditional passive video surveillance that is 

proving ineffective as the number of cameras exceeds the capability of human 

operators to monitor them. 
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(3) Video data mining: In visual media an object may appear in different imaging 

conditions (different camera angles, zoom positions, or lighting conditions) and 

may also be occluded. All these variations make visual data mining more 

challenging compared to text data mining. 

(4) Video summarization: Video summarization aims to generate a series of visual 

contents for users to browse and understand efficiently the whole story of a video. 

From the perspective of the video summarization, presenting video content in the 

form of a structuralized and systematic view is important. Video content as well 

as articles are highly organized, and usually this content can be outlined 

according to the people involved, where the events took place, the things they 

related to and when they happened. 

(5) Video copy detection: With the exponential growth of social media, there exist 

huge numbers of near-duplicate web videos, ranging from simple re-formatting to 

complex mixtures of different editing effects. In addition to the abundant video 

content, the social web provides rich sets of context information associated with 

web videos, such as thumbnail image, time duration and so on. At the same time, 

the popularity of Web 2.0 makes demands for timely response to user queries. 

Although much research effort has been devoted to the development of digital 

video processing technologies, there are still many research problems related to the 

effective and accurate implementation of applications such as video segmentation, video 

content retrieval and video interpretation, which are discussed in detail in the next section. 
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1.2 Problems 

It is well known that shot boundary detection is a major and important task for all content 

based video processing, analysis and applications. In the past decades, many shot 

boundary detection algorithms and techniques have been reported in the literature. 

However, there is still some work remaining unsolved. First, even the latest formal studies 

have not been advanced enough to cover the recent development of shot boundary 

detection (SBD) techniques. Second, the previous work, though it identified various 

specific core techniques, did not evaluate the calculation methods for content discontinuity. 

Content-based video copy detection is one of the main approaches to IPR 

(intellectual property rights) protection, which searches the extracted signatures in an 

indexed database. The primary advantage of content-based copy detection is the fact that 

copies are detectable without previously embedded marks or the availability of the original 

material. On the other hand, retrieval efficiency is a key issue in the applications of 

multimedia search. Redundant copies from the search results need to be identified and 

removed in order to improve the efficiency and effectiveness of multimedia browsing. 

Video copy retrieval has been successfully applied to many content-based video 

processing and applications such as media tracking, video indexing, etc. Most of the video 

copy detection algorithms reported so far primarily focuse on simple changes introduced 

by different encoding parameters or simple editing effects, such as letter-box and frame 

rate changes. Little research has been carried out to address the combination of various 

distortions. 

For extracting useful information from massive multimedia data sources, 

conventional text-based methods rely on adequate and accurate annotation of associated 
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contents. Due to the lack of flexibility and robustness in such annotations, a content-based 

approach to analysis, indexing and retrieval of media data has attracted much attention. 

Owing to its flexible nature and huge commercial potential, content-based approaches 

have been usefully applied in many applications such as digital library, video on demand, 

telemedicine, etc. Among these applications, a fundamental task is how to extract 

semantics and meaningful highlights from videos. This is highly desired as it could help to 

automate the annotation and abstract general video content for fast browsing and searching 

of whole videos. Unfortunately, this problem is still far from being completely solved as 

far as real applications are concerned. 

1.3 Aims and Objectives 

In shot boundary detection, my objective is to: (i) extract new features to facilitate the 

robust detection of gradual transition; (ii) construct new models to achieve a good trade-

off between the detection accuracy and computation speed; (iii) apply human knowledge 

for the algorithm design. I aim to improve the shot boundary detection in five aspects. 

Firstly, a fast and simple shot cut detection algorithm needs to be designed, which operates 

directly in the compressed domain and is suitable for real-time implementation. Secondly, 

a fast and systematic method needs to be investigated for shot boundary detection in the 

compressed domain using content-based rules and finite state machine (FSM). Thirdly, 

shot boundary detection in MPEG videos can be implemented using local and global 

indicators. Fourthly, a context awareness approach can be studied with multiple feature 

indicators and multiple thresholds to detect shot boundaries. Fifthly, a fuzzy logic method 

of feature representation can be examined for shot boundary detection. 
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In video copy detection, my objective is to propose a new algorithm which is 

robust to a range of complicated distortions, and capable of locating the copy of segments 

inside original videos. Specific aims for video copy detection are summarized as follows. 

Firstly, a dedicated video distortion analysis can be implemented for input videos, which 

ensures the accurate detection of the complicated distortions query videos may undergo. 

Secondly, simple signatures can be extracted for the benefit of time and space efficiency, 

and a frame mask needs to be generated adaptively to reduce video temporal redundancy. 

Thirdly, a progressive matching process can be implemented and the property of linear 

regression can be utilized to find video copies. 

In video interpretation, my objective is to extract semantics for video highlight and 

detect new events from video sequences. For video highlight extraction, my aims are 

summarized as follows. Firstly, compressed domain features can be extracted such as 

luminance, chrominance and motion. Then, the input video needs to be segmented into 

shots using the knowledge-supported rules. Zoom-in highlights can be determined by 

integrating the estimation of camera motion and the segmentation of skin patches.  

In addition, for event detection from video sequences, my aim is to investigate a 

trajectory based approach for human fighting detection. The Kanade-Lucas-Tomasi (KLT) 

tracking record can be utilized to build the trajectory of points of interest and global 

motion estimator can be constructed based on the trajectory features. Then, camera motion 

can be measured and classified. Furthermore, the behaviours of points of interest can be 

measured by fuzzy scores and labelled by a voting scheme. Finally, the main movement 

and direction of points of interest with the same label can be used to detect human fighting. 
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1.4 Layout of the Thesis 

This thesis consists of six chapters, the remainder of which are organized as follows: 

Chapter 2 Literature Review 

A literature review is presented of the state-of-art techniques and algorithms for video 

segmentation, video retrieval and video interpretation. Specifically, existing methods of 

shot boundary detection, content-based video copy detection and human activity 

recognition are discussed and summarized.  

Chapter 3 Video Segmentation 

Shot boundary detection is the fundamental task in content-based analysis, indexing and 

retrieval of videos, as it helps to provide a hierarchical structure for videos and enables the 

extraction of meaningful highlights from such a structure. As a result, this topic has 

continuously attracted extensive attention, which was also one of the motivations for the 

well-known TREC Video Retrieval Evaluation (TRECVID) activity, providing objective 

samples as a common platform for SBD and other video processing tasks. Five algorithms 

are presented to solve the video segmentation task. 

Chapter 4 Video Retrieval 

My strategy for video copy detection is implemented in three major procedures, including 

video distortion analysis, signature extraction and video matching. Firstly, a dedicated 

video distortion analysis is implemented for input videos, so that different kinds of 

complex editing effect are usefully tackled. Secondly, key frames are scaled down to 

extract simple signatures, and the frame mask is generated adaptively to reduce video 

temporal redundancy. Thirdly, linear regression and Support Vector Machines (SVM) are 
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utilized in the matching and decision making process to guarantee robust copy retrieval 

results. 

Chapter 5 Video Interpretation 

It is a fundamental problem to extract semantic events and highlights from video 

sequences for the interpretation of video content. Two approaches are proposed to address 

this problem. A knowledge-supported approach is presented to segment videos and extract 

semantic highlights, and a trajectory-based method is proposed to detect human fighting 

for movie annotation. 

Chapter 6 Conclusion 

In Chapter Six, the research is summarized and the contributions of the thesis are 

highlighted. Furthermore, some future plans are proposed to improve the current work. 
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Chapter 2 

Literature Review 

2.1 Introduction 

This chapter mainly presents a literature review of the state-of-art techniques and 

algorithms for video segmentation, video retrieval and video interpretation. Specifically, 

existing methods on shot boundary detection, content-based video copy detection and 

knowledge-supported video highlights extraction are discussed and summarized. This 

chapter is organized into three parts. Firstly, existing shot boundary detection methods in 

both pixel domain and compressed domain are summarized in a survey of video 

segmentation. Secondly, video retrieval systems and content-based video matching 

methods are analyzed in a survey of video retrieval. Thirdly, camera motion estimation, 

skin detection techniques and human activity recognition are reviewed in a survey of video 

interpretation.  

2.2 Survey of the Video Segmentation 

It is well recognized that shot boundary detection is a major and important task for all 

content based video processing, analysis and applications. Recent research trends in 

semantics based video content analysis [1, 2] requires shot boundary detection as the first 

step to divide video sequences into sections maintaining a certain level of visual 

consistency so semantics can be extracted within content consistent sections [3-6]. 
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For the past decades, numerous algorithms and techniques have been reported in 

the literature for shot boundary detections. Recently, such efforts are coordinated by 

TRECVID evaluations organized as an annual event since the year of 2001 [7-10]. A brief 

highlight of the existing work is given below. 

The platforms for shot boundary detection are classified into two kinds: the pixel 

domain and the compressed domain. In the compressed domain, the algorithms proposed 

in [11-15] exploited the MPEG properties and its embedded motion estimation and 

compensation scheme for shot cut detection. In the pixel domain, shot cut detection is 

mainly conducted by detecting the major differences between adjacent frames. 

Representative techniques include histogram comparisons and edge difference 

examinations etc. [3, 16-20]. 

In order to achieve effective and efficient motion estimation and compensation 

inside digital videos, MPEG arranges video sequences into groups of pictures (GoP). The 

structure of such arrangement is illustrated in Figure-2.1. The MPEG video structure has 

the feature that inside each GoP there exist two B-frames between every pair of I-P frames 

or P-P frames. For the convenience of discussion, I refer the first B-frame as Bf (front-B) 

and the second B-frame as Br (rear-B). As a result, shot cut detection can be designed in 

terms of these front-B and rear-B frames. 

 

Figure 2.1 Illustration of MPEG video structure for motion estimation and compensation. 
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Fernando et al. [11] proposed an algorithm to detect shot cuts by exploiting the 

motion vectors which are available inside MPEG compressed videos. Lelescu [12] 

modelled video sequences as stochastic processes, in which changes of characteristics or 

parameters were exploited to detect scene changes. Kobla et al. [13] provided a detailed 

analysis of MPEG compressed domain, based on which shot cut detection was proposed 

via exploiting the MPEG motion estimation and compensation scheme. An earlier attempt 

for shot cut detection in the compressed domain was reported in [14], where Meng et al. 

used motion vectors and I, P-frame DC images to detect shot cuts. In [15], Pei and Chou 

proposed a simpler macro-block (MB) type based scene change detection algorithm for 

both abrupt and gradual scene changes. This algorithm differs from all others as only the 

type of MB is monitored to exploit the motion estimation and compensation scheme in 

MPEG and no motion vector or prediction status is analyzed. Therefore, such a scheme 

has the advantage of extremely low computing costs. Specifically, the scheme firstly 

counts the number of MBs in intra-coding mode inside P-frames. Whenever the number of 

intra-coded MBs is above a pre-defined threshold, two separate operations for scene 

change detection are activated for detecting abrupt changes and gradual changes 

respectively. The detection of abrupt changes is based on one of the three motion 

estimation and compensation forms in MPEG videos as illustrated in Figure-2.2. The 

detection of gradual changes is based on two conditions. One is that a significant number 

of MBs inside P-frames are intra-coded, indicating significant change of content and the 

other is that a dominant number of MBs inside B-frames are interpolative motion 

compensated. While the scheme is simple, with low computing cost, detailed analysis 

reveals that there exist a range of weaknesses, which include: (i) the scene change 
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detection is dependent on four fixed and pre-defined thresholds; (ii) abrupt change 

detection and gradual scene change detection are two separate operations; (iii) the 

performance is low in terms of the precision of detecting scene changes. Therefore, a new 

algorithm is proposed in Section 3.2 to improve the method [15]. 

 

Figure 2.2 Illustration of abrupt shot cut detection. 
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In the approach proposed by Fang et al. [16], colour histogram intersection, motion 

compensation, texture change and edge variances are integrated in a fuzzy logic 

framework for the temporal segmentation of videos. However, the proposed fuzzy rules 

are designed without the integration of any domain knowledge. Yuan et al. [7] introduce a 

graph partition model to construct features for the SVM classification of shot boundaries, 

which requires massive training and the complex fusion of SVM classification results. 

Bescos et al. [21] map the inter-frame distance values onto a multidimensional space and 

selected a set of thresholds for shot change detection, the major weakness of which is the 

requirement for many manually defined thresholds. 

In [17-19], colour intensity histogram features between consecutive frames are 

extracted to find the frame similarity on the hypothesis that frames in one shot will have 

similar histograms in the colour domain. Although this approach is less sensitive to motion, 

it has difficulty in detecting gradual transitions in similar colour shots. Edge-based 

methods can be found in [20], where the spatial distribution of exiting and entering edge 

pixels in successive frames is considered in a term called edge change ratio. However, it is 

found that edge features are sensitive to camera motions such as zoom, pan and tilt.  

Additionally, some fast algorithms are proposed in [13, 14, 22], which focus on 

performing the shot boundary detection directly in the compressed domain. In general, 

these approaches use features like macro-block type information, discrete cosine transform 

(DCT) coefficients and motion vectors to characterize shot boundaries. However, the shot 

boundary detection is disturbed by special edit effects. Grana and Cucchiara [8] develop a 

linear transition model to identify the shot transition centre and length. Their proposed 

iterative algorithm measures the linear behaviour of shot transitions by minimizing an 
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error function. However, the performance of the model suffers from camera and object 

motions. Urhan et al. [23] present a hard-cut detection system based on modified phase 

correlation with application to archived films. Video frames are spatially sub-sampled for 

phase correlation and the generated peaks are detected by double thresholding, i.e. using 

global and local thresholds. A false detection is carried out using the mean and variance 

test in uniformly coloured frames. The main drawback of this approach is that the 

computational load of the frequency-domain processing is high and hence the processing 

speed is very low. 

Boccignone et al. [24] partition a video into shots based on a foveated 

representation of the video. Their proposed method computes a consistency measure for 

the foveation sequences and Bayesian inference is adopted to detect the change of 

consistency. Due to the requirement of computing visuo-motor traces, the method is 

computing intensive. Cooper et al. [9] represent the local temporal structure of shot 

transitions using the pair-wise inter-frame similarity derived from YUV colour histograms. 

A discriminative feature selection process is performed based on mutual information for 

the K-Nearest Neighbours (KNN) classification of video shots. This method needs an 

offline feature selection so it is inefficient for fast applications. 

Cao and Cai [10] employ a multi-class support vector machine (SVM) classifier to 

differentiate video frames into three categories: abrupt change, gradual change and non-

change. The macro-block information from all frames within a temporal window is 

primarily exploited to construct the feature vector. The major disadvantage of their 

proposed algorithm is its lack of robustness as indicated in the experimental results. 

Another compressed domain method, introduced in [25], extracts DC images from videos 
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and an intensity variance sequence is generated to find “U” shape intervals for shot 

detection via an adaptive resonance theory 2 (ART2) neural network. In practice, however, 

such “U” shape intensity variance sequences often becomes indistinct due to motion, light 

changes, and error propagation caused by inaccurate feature extraction.  

Matsumoto et al. [26] propose a 2-stage data fusion approach with an SVM 

technique to decide whether a boundary exists or not within a given video sequence. In 

[27], a temporal multi-resolution analysis is introduced to classify shot boundaries using 

SVM. A classification method based on rough sets and fuzzy c-means clustering for 

feature reduction and rule generation is proposed in [28] to deal with shot detection. In 

[29], frame features based colour histograms are clustered into shot change clusters, 

suspected shot change clusters and no change clusters using a fuzzy c-means method. 

Then, shot change frames are identified from the shot change clusters and suspected shot 

change clusters. In [30], a Fuzzy c-means algorithm is used to detect video-shot 

boundaries for the segmentation step. 

2.3 Survey of the Video Retrieval 

With the advances in high-performance networking and improvements in computing 

capability, efficient retrieval of multimedia data has become an important issue. Content-

based retrieval technologies have been widely implemented to protect intellectual property 

rights (IPR) [31-35]. Watermarking and content-based copy detection are the main 

approaches for IPR protection. Watermarking inserts the identification of a document prior 

to distribution, while content-based copy detection searches the extracted signatures in an 

indexed database [36-39]. The primary advantage of content-based copy detection over 

watermarking is the fact that copies are detectable without previously embedded mark or 
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the availability of the original material. On the other hand, retrieval efficiency is a key 

issue in applications of multimedia search. Redundant copies from the search result need 

to be identified and removed in order to improve the efficiency and effectiveness in 

multimedia browsing. Video copy retrieval has been successfully applied to many content-

based video processing and applications such as media tracking [40], video indexing [41], 

etc.  

Video retrieval has been extensively studied, and several prototype systems have 

been developed [41-49]. Recently, a video analysis and retrieval system named 

InsightVideo [50], was proposed to integrate video content hierarchy, hierarchical 

browsing and retrieval for efficient video access, in which key frame extraction, shot 

grouping, scene detection and pair wise scene clustering are applied to construct the video 

content hierarchy. The video similarity evaluation at different levels enables progressive 

video retrieval. The weakness of this system, however, lies in the fact that too many 

thresholds are needed and they are determined by empirical studies. As a result, content 

hierarchy constructed in such a way could be sensitive to changes of video content. Shao 

et al [51] report a novel approach towards efficient high-dimensional Batch nearest 

neighbour (BNN) search called dynamic query ordering (DQO) for advanced 

optimizations of both I/O and CPU costs. A comprehensive overview of the retrieval topic 

can be found in [52-55].  

Several shot-based similarity matching approaches have been proposed for query-

by-clip applications [56-60]. In [5], an attention-driven shot matching method is proposed, 

and a concept called focus of attention (FOA) has been introduced. It combines spatial and 

motion attention maps adaptively to form an overall attention map, from which the FOA is 
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detected for a given frame. Hence, the shot matching method is designed to match frames 

with emphasis on attentive regions. However, the FOA detection method has a limitation 

on the use of the threshold in the object segmentation process. A fast coarse-to-fine video 

retrieval scheme using shot-level spatio-temporal statistics is addressed in [61]. In the 

coarse search stage, the shot-level motion and colour distribution is computed as spatio-

temporal features for shot matching. An extra step is required to refine the search result by 

using the local colour features extracted from the key frames inside the query shots. The 

performance of these shot-based methods depends heavily on the accuracy of shot 

detection. As known to all, the detection of gradual transitions is still challenging and 

unresolved. Therefore, shot-based approaches are vulnerable to the inaccurate detection of 

shot boundary transitions.  

Rothganger et al. [62] proposed the representation of multiple rigid objects in 3D 

models, and apply the constructed models for shot matching. By using multiple cameras, 

the work reported establishes groups of affine-covariant scene patches and segments each 

scene into its rigid components in a three dimensional space. The major disadvantage of 

this approach is its implementation time. The total processing time for a typical shot is 

approximately 90 minutes [62]. Approaches based on points of interest [63-65] were 

proposed recently and good results are reported in term of robustness to geometry changes 

such as cropping, shifting and change of ratios. In [66], a new approximate similarity 

search technique is proposed, in which the probabilistic selection of the feature space is 

based on the distribution of the features distortion. Chiu et al. [67] defines the problem of 

video copy detection as a partial matching problem in a probabilistic model and transforms 

it into a shortest-path problem in a matching graph. To reduce the computation costs, the 
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beginning and ending part of query videos are directly selected as the candidate segments 

to compare with target videos. However, the framework would fail if the query video is 

generated by incorporating irrelevant scenes, especially those added at its beginning and 

ending parts. In [68], a sequential search approach is proposed to identify video copies. 

The drawback of this method is that it ignores the effect of many other changes, such as 

frame rate change inside the query videos, and the search process is time-consuming. 

Most of the video copy detection algorithms reported so far focus primarily on 

simple changes introduced by different encoding parameters or simple editing effects, 

such as letter-box and frame rate changes. Little research, however, has been carried out to 

address the combination of various distortions. Hence, in Chapter 4 a new algorithm is 

proposed for video copy detection, in which combination of complicated distortion is 

taken into consideration when those copied parts of query videos are determined. The 

advantage of my proposed algorithm lies in the fact that it is robust to a range of 

complicated distortions, and yet is capable of locating the copy of segments inside original 

videos. 

2.4 Survey of the Video Interpretation 

It is found that camera motion usually represents the focus and interest of human beings 

on the video content. Therefore, the estimation of camera motion is used to facilitate 

effective video parsing [69] and browsing [70]. Some existing work on camera motion 

estimation is discussed and summarized below. 

The direction change and magnitude difference of motion vectors are calculated for 

the estimation of camera motion in [69]. In the approach proposed by Kobla et al. [13], a 

histogram of motion direction is constructed to facilitate the detection of camera pan and 
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tilt. The determination of camera zoom is based on the focus of contraction and expansion. 

Ewerth et al. [71] studied the distinction between camera translation and rotation in the 

MPEG domain. By the investigation of motion vectors, outliers are removed and the 

appropriate ones are chosen for camera motion estimation. Tan et al. [70] estimated the 

camera zoom in (out), pan and tilt based on the project camera model.  

The human skin occupies a consistent range in the colour space and this is the 

primary principle for skin detection algorithms. The segmented skin patches provide 

efficient visual clues for the detection of human objects. Some representative approaches 

on skin detection are reviewed below. 

A universal colour model is proposed in [72] and the skin pixels are segmented by 

thresholding the Mahalanobis distance. Phung et al. [73] addressed the problem of skin 

detection in terms of colour representation, colour quantization and classifier selection. It 

shows that the luminance is necessary for the colour representation. In addition, the 

selection on quantization level and classifier are compared and discussed. In the approach 

proposed by Jones et al. [74], the construction of skin colour models on a large data set is 

described. The performance of histogram and mixture models is compared. Kakumanu et 

al. [75] provided a review on skin modelling and classification, as well as the illumination 

adaptation techniques, which are applied to improve the performance of skin detection 

under environmental changes. A Markov model is used in [76] to predict evolution for 

real-time skin segmentation in video sequences.  

The automatic recognition of human activities [77-81] is a fundamental step for the 

annotation of video content. Thus, it has a wide range of applications for video 
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surveillance [82-86]. Some state-of-art algorithms on human activity recognition are 

summarized below. 

Lv et al. [79] proposed a statistical learning method to detect human activities in 

videos. The dynamic programming-based training algorithm complying with Neyman-

Pearson criterion is used to select the optimal classifiers. In the approach presented by 

Ribeiro et al. [80], data distributions are learned by a Bayesian classifier with the 

likelihood functions of Gaussian mixtures. Human activities of daily living are recognized 

by a switching hidden semi-Markov model in [81]. Both the inherent hierarchical 

organization and the typical duration of human activities are exploited to build the model. 

Oliver et al. [87] introduced a layered hidden Markov model to recognize human activity 

in an office environment.  

 A combination of category components is proposed in [88] to represent human 

activities such as walking, running and fighting. The proposed method is flexible for new 

activities added into the system. This method utilized the changes of bounding boxes, 

which embraced human objects, as the main feature for activity recognition. However, this 

feature is unavailable in the real-world video sequences. Hence, general features are 

extracted in the proposed algorithm in Section 5.2 for movie annotation. 

2.5 Summary 

A literature review of video segmentation, video retrieval and video interpretation is 

presented in this chapter. The state-of-art algorithms are discussed and summarized in the 

survey. Specifically, algorithms and methods for shot boundary detection, video retrieval 

systems, content-based copy detection, camera motion estimation, skin detection and 

human activity recognition are introduced and analyzed in the literature review.  
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Chapter 3 

Video Segmentation 

3.1 Introduction 

Shot boundary detection (SBD) plays important roles in many video applications. A fast 

and simple shot cut detection algorithm is proposed in Section 3.2, which operates directly 

in the compressed domain and is suitable for real-time implementation. The proposed 

algorithm exploits the existing MPEG techniques by examining the prediction status for 

each macro-block inside B frames and P frames. As a result, locating both abrupt and 

dissolved shot cuts is achieved by a sequence of comparison tests, and thus no feature 

extraction or histogram differentiation is needed. Although the description of the 

algorithm is primarily based on MPEG-1 and MPEG-2 streams, the scheme can be readily 

extended to other video compression standards such as MPEG-4 and H.264 by following 

the principles of monitoring: (i) balance between forward prediction and backward 

prediction; (ii) boundaries among P, B and I frames. Extensive experiments demonstrate 

that the proposed algorithm outperforms similar existing algorithm, providing a useful 

technique for fast and on-line video content processing. 

A fast and systematic method is presented for shot boundary detection in the 

compressed domain using content-based rules and finite state machine (FSM) in Section 

3.3. Firstly, several feature indicators are acquired from DC images in MPEG videos 

including luminance, colour, edge, prediction error and inter-frame difference as well as 
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motion. Then, several content-based rules are utilized to detect abrupt cuts. Thirdly, 

boundaries of gradual transitions are determined by a coarse to fine procedure with a pre-

processing module and an FSM. The results from experiments using publicly available 

sequences from TRECVID have showed that the proposed algorithm outperforms the 

representative existing algorithms in both precision and recall rates. 

In Section 3.4, my contribution for the submission to TRECVID 2007 on the shot 

boundary detection task is summarized as: (i) Novel features are extracted from the 

compressed domain and the feature selection is carried out using Adaboost; (ii) Typical 

gradual transitions including fade in (out), dissolve and wipes, as well as a new type of 

gradual transition called “others” are detected. (iii) The MPEG decoding scheme is 

thoroughly studied so that the whole shot detection system is embedded in the compressed 

domain of the standard MPEG2 decoder to achieve the real-time efficiency. 

In Section 3.5, some recent work on a hierarchical content-aware approach to 

design multiple test conditions for shot cut detection is described. This is organized into a 

multiple phase decision tree for abrupt cut detection and an FSM for dissolve detection. In 

comparison with existing approaches reported in the literature, the proposed algorithm is 

characterized by two categories of content difference features and testing. While the first 

category indicates the content changes that are directly used for shot cut detection, the 

second category indicates the contexts under which the content change occurs. As a result, 

indications of frame differences are tested with context awareness to make the detection of 

shot cuts adaptive to both content and context changes. Evaluations announced by 

TRECVID 2007 indicate that, among all submissions, the proposed algorithm achieved the 
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fifth best results for gradual transition detection, the fourth best results for gradual 

transition frame accuracy and sixth best results for abrupt shot cut detection. 

Unlike most approaches reported in the literature, the proposed algorithm in 

Section 3.6 is characterized by using a fuzzy logic method for feature representation of 

shot detection. Firstly, novel features are extracted in the compressed domain. Secondly, a 

fuzzy logic method is used to implement feature representation. Thirdly, multiple Support 

Vector Machines (SVMs) are constructed for further verification using features generated 

from the fuzzification process in step two. The proposed algorithm combines the merits of 

the generalization ability of the SVM and the comprehensibility of the fuzzy logic. I have 

carried out extensive experiments using the data from TRECVID 2007. The proposed 

algorithm achieved very good detection results compared with TRECVID 2007 algorithms 

and its run time is 4 times faster than the video play time. 

3.2 Real-time Shot Cut Detection in Compressed Domain 

To improve the scheme in [15], I propose to: (i) introduce an adaptive mechanism so that 

comparison tests are adaptive to the outcome of motion estimation and compensation for 

each B frame; (ii) control all comparison tests by using only three parameters; (iii) 

combine abrupt change detection and gradual change detection into an integrated shot cut 

detection algorithm. 

3.2.1 The Proposed Algorithm Design 

Following the spirit of the work reported in [15], the MPEG motion estimation and 

compensation technique is exploited to detect shot cuts by monitoring the number of 

predicted macro-blocks inside each P or B frame. For the convenience of description and 

presentation, a range of essential variables is defined as follows: 
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Ni, the number of intra-coded blocks inside P-frames; 

N, the total number of blocks inside each video frame; 

Nfb, the number of both forward and backward predicted macro-blocks inside each 

B-frame; 

Nb, the number of backward predicted macro-blocks inside each B-frame; 

Nf, the number of forward predicted macro-blocks inside each B-frame. 

A global view of the overall proposed algorithm is shown in Figure 3.1. Given the input 

video sequence, the number of intra-coded blocks inside each P-frame is monitored via the 

following comparison test: 

T
N
Ni > . 

(3.1) 

where T stands for a threshold, which is to be determined empirically. The essence of the 

ratio between Ni and N calculated in (3.1) determines whether this tested P-frame is 

content correlated to its reference frame or not. When the ratio is smaller than the 

threshold, it indicates that most of the macro-blocks can be motion compensated by its 

reference frame, and hence a significant extent of correlation between this P-frame and its 

reference frame can be established. Therefore, it is not likely that there exists any shot cut 

around this P-frame. As a result, the next P-frame should be examined. Otherwise, if the 

condition represented by (3.1) is satisfied, it should indicate that most of the macro-blocks 

are not well compensated by the reference frame, and hence it is likely that there exists a 

shot cut in the neighbourhood of this P-frame. As a result, further confirmation of such a 

shot cut needs to be tested by examining its subsequent B-frames to find out: (i) whether 

such shot cut is abrupt or gradual; (ii) the exact location of the shot cut. 
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Figure 3.1 Overview of the proposed shot cut detection algorithm 

According to MPEG specifications, all B-frames have three possibilities for their 

specific process of motion estimation and compensation, which include: (i) forward 

prediction, (ii) backward prediction and (iii) bi-directional prediction. To confirm a shot 

T
N
Ni >  
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cut and its location, it is needed to determine for each B frame whether its content is more 

correlated to its preceding reference frame (P or I) or subsequent reference frame (P or I) 

by monitoring its prediction status, i.e. forward, backward, or bidirectional prediction. A 

B-frame is more content correlated to its preceding reference frame if there exists an 

overwhelming number of forward predicted macro-blocks. In other words, MPEG motion 

estimation and compensation is more balanced towards forward prediction. This 

corresponds to the illustration in part (a) of Figure 2.2. Equally, a B-frame will be more 

content correlated to its subsequent reference frame if more macro-blocks are backward 

predicted, which corresponds to the illustration shown in Part (c) of Figure 2.2. Therefore, 

to test whether the B-frame is more content correlated to its preceding reference frame, the 

following test is proposed: 

bf NN ⋅> λ . (3.2) 

where λ  is a parameter controlling the balance between the backward prediction and 

forward prediction. Similarly, the balance towards backward reference frame can be 

detected via: 

fb NN ⋅> λ . (3.3) 

Correspondingly, the abrupt shot cut detection can be designed into the following two 

steps: 

Step-1: By using equation (3.1), examine every P-frame inside the video sequence to 

see if the shot cut detection process should be activated or not. For positive test of 

(3.1), go to step-2. Otherwise, carry on with step-1 to examine the next P-frame; 
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Step-2: Following satisfaction of (3.1), examine Bf and Br to detect an abrupt shot cut 

according to one of the three situations: (i) if both Bf and Br have more forward 

predicted blocks (satisfaction of equation (3.2)), an abrupt shot cut is detected 

between Br and its subsequent P or I frame (see part (a) of Figure 2.2); (ii) if both Bf 

and Br have more backward predicted blocks (satisfaction of equation (3.3)), an 

abrupt shot cut is detected between Bf and its preceding P or I frame (see part (c) of 

Figure 2.2); (iii) if Bf has more forward predicted blocks yet Br has more backward 

predicted blocks, an abrupt shot cut is detected between Bf and Br (see part (b) of 

Figure 2.2).  

If none of the conditions given in Step-2 is detected, it is needed to check if there exists a 

possible gradual shot cut by examining the B-frames with the following test 

( )bfbf NNN +⋅>α . (3.4) 

where α  is another parameter indicating the dominance of bi-directional prediction of 

MBs inside B-frames.  

The above test exploits the fact that gradual shot cuts incur gradual content change 

and such gradual change support bidirectional prediction inside B-frames such as fade-ins 

and fade-outs. To detect the possible gradual shot cuts out of those candidates satisfying 

(3.4), following the work in [16], a consecutive number of such candidate frames are 

examined. In general, the duration of most gradual shot boundaries is more than 1 second, 

which means that the duration of such changes is around 30 frames. To this end, a simple 

counting process is adopted to monitor the number of consecutive B frames that satisfy the 

condition given in (3.4). As illustrated in Figure 3.1, whenever the consecutive number of 

candidate B-frames is greater than 10, a gradual cut is detected. This value of 10 is 
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determined on both theoretical and empirical bases, where the duration of 30 frames 

corresponds to around 20 B frames (see Figure 2.1), leading to around 10 P frames. The 

empirical investigation also verifies that consecutive satisfaction of (3.4) for 10 times is an 

appropriate indicator for a gradual shot cut in consideration of general trend on most 

duration of gradual changes. For other compression schemes, this value needs to be 

adjusted according to a specific ratio between P frames and B frames. 

3.2.2 Experimental Results  

To evaluate the performance of the proposed shot cut detection algorithm, a test set with 

three groups of video sequences is prepared, including news (12 video clips), movies (8 

video clips) and cartoons (7 video clips). The test set contains a total of 403 abrupt shot 

cuts and 87 dissolved shot cuts lasting around 90 minutes. The selected test sequences are 

complex with extensive graphical effects. Videos were captured at a rate of 30 frames/s 

and resolution of 640×480 pixels.  

For benchmarking purposes, the algorithm reported in [15] is selected as a 

representation of the existing techniques to provide a comparison for the evaluation of the 

proposed algorithm. It is understood that there exists extensive research work on shot cut 

detections, with numerous algorithms reported in both pixel domain and compressed 

domain. However, this selection is justified by applying the principle that any benchmark 

selected should maintain fair comparisons with comparable computing cost and algorithm 

complexity. To provide some further information about the proposed algorithm, the work 

in [16] is used as the second benchmark, which is an unfair comparison since this 

algorithm has much higher complexity and computing cost. 
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To measure the performances on shot cut detection for the evaluated algorithms, 

the recall and precision rates [16, 89, 90] are used following the common practice. By the 

analysis, the three parameters ( )αλ,,T , are in the range of (0%,100%), (1,5) and (1,5), 

respectively. (5%, 3.6, 2.5) are used in the experiments, which was determined empirically. 

Such an empirical approach has the same nature as all those threshold-based techniques 

reported in the pixel domain [16, 89, 90], where a certain range of flexibility exists. As 

indicated by equation (3.1), higher values of T increases the reliability of shot cut 

detection but misses more shot cuts. Similarly, equations (3.2) and (3.4) also indicate that, 

while higher values of λ  or α  reduce the false positive detection rate, it could increase 

the number of shot cuts being missed. 

All the experimental results are summarized in Table 3.1, where the number in the 

first row specifies the total number of shot cuts inside the video sequences, and the pair of 

values inside the brackets are recall and precision. For the convenience of visual 

inspection, samples of detected shot boundaries are shown in Figure 3.2, where each row 

of frames corresponds to one category of the video clips. 

Table 3.1 Summary of experimental results for shot detection 
Video Sequences News (93) Movies(138) Cartoons(172) Total(403) 

Proposed method 
Abrupt (87%,82%) (88%,85%) (84%,90%) (86%,85%) 

Dissolved (72%,52%) (53%,68%) (63%,73%) (63%,64%) 

Benchmark-1 
Abrupt (38%,64%) (31%,78%) (32%,39%) (34%,68%) 

Dissolved (35%,46%) (28%,50%) (36%,58%) (33%,51%) 

Benchmark-2 
Abrupt (96%,94%) (100%,100%) (98%,100%) (98%,98%) 

Dissolved (87%,73%) (81%,77%) (79%,80%) (82%,77%) 
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(a): Shot boundary samples in news.

(b): Shot boundary samples in movies.

(c): Shot boundary samples in cartoons. 

Figure 3.2 Frame sample illustration of the test video clips 

From Table 3.1, it can be seen that the proposed algorithm outperforms the 

benchmark-1 in terms of both recall and precision rates for abrupt and dissolved shot cut 

detections. Specific comparisons between the proposed and benchmark-1 can be 

summarized as: (i) for abrupt shot cut detection, the proposed algorithm achieves on 

average a 86% recall rate and a 85% precision rate, yet the benchmark achieves 34% recall 

rate and 68% precision rate; (ii) for dissolved shot cut detection, the proposed algorithm 

delivers 63% recall and 64% precision rate, yet the benchmark delivers 33% recall and 51% 

precision; (iii) both the techniques work better for abrupt shot cut detection than for 

dissolved shot cut detection. 

Compared with benchmark-2, the proposed algorithm is about 12% inferior on all 

measurements. Considering the fact that benchmark-2 has much more complicated 

operations, such as multiple feature extraction (colour histograms, motion compensation 
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and textures) and fuzzy inferences [16], the proposed algorithm possesses unique 

advantages in terms of real-time applications and compressed domain operation. Further 

comparisons in practical terms are given below. 

As the work is prompted by an EU funded FP-6 integrated project, the figures 

shown in Table 3.1 can be further interpreted in practical applications to reveal its general 

performance. In this integrated project, a video processing tool is to be developed to 

extract series of semantic features, like close-up of human objects, given input videos of 

various types (documentary, sporting, news, films etc.). The first step in applying such a 

tool is to cut the input video sequence into sections, where consistent spatial content can 

be identified and thus semantics can be extracted within each section. In this circumstance, 

both benchmark-2 and the proposed algorithm are applied to the video processing system. 

It was discovered that both algorithms meet the needs for semantics feature extraction and 

no noticeable difference was found during the comparative tests. The further observations 

explain the reason that: (i) although some cuts were missed by the proposed algorithm, the 

visual content still maintains certain level of consistency, such as both shots follow the 

same human objects but with different background (different corners of the same room 

etc.). To this end, the missed cuts do not produce any noticeable negative impact upon 

semantics feature extraction; (ii) for those false positive cuts detected, it was noticed that 

the boundary visual content does present significant differences, and thus such false 

alarms do not produce any noticeable negative impacts either. 

While the proposed algorithm is primarily based on MPEG-1 or MPEG-2 schemes, 

it is readily extendable to other video compression standards such as MPEG-4 and H.264. 

The major implications are two fold. One is the variable block sized motion estimation and 



Chapter 3. Video Segmentation 
 

31 
 

compensation and the other is variable allocation of B-frames and P-frames. For the issue 

of variable block size, the proposed algorithm will still work without any significant 

change, since the balance between forward-prediction and backward-prediction can still be 

monitored by testing the number of predicted blocks. Further consideration may be 

required by looking into the size of each predicted block, which can be implemented via 

introducing a table of fixed weighting factors. Regarding the issue of variable allocation of 

B-frames and P-frames, detailed analysis of their corresponding modes of motion 

estimation and compensation is required. However, the same principle can still be applied 

to such analysis in the sense that only three boundaries need to be examined. That is: (i) 

the boundary between the front P-frame or I-frame and all other B-frames; (ii) the 

boundary between B-frames and (iii) the boundary between the last P-frame or I-frame 

and all other B-frames. This is illustrated in Figure 3.3. 

Finally, to provide a wider evaluation of the proposed algorithm, comparisons are 

made with the motion-vector based scene change detection algorithm [14]. This algorithm 

is very different from the proposed. The major differences can be highlighted by the fact 

that: (i) Meng’s algorithm monitors motion vectors, yet the proposed algorithm monitors 

the MB types; (ii) while Meng’s work could be interpreted as monitoring MB type through 

motion vectors, no consideration is given for bi-directional prediction; (iii) the proposed 

algorithm goes one step further by monitoring the MB types to detect the correlation of B 

frames, i.e., more correlated to front reference frame or more correlated to rear reference 

frame (see Figure 2.2). (iv) Meng’s algorithm requires the variances of DC image for I and 

P frames; (v) Meng’s work relies on distances among suspected scene changed frames to 
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detect the scene changes, yet the proposed algorithm uses the content adaptive thresholds 

to determine how close the B frames are correlated to their front or rear reference frames. 

 

 

Figure 3.3 Analysis of shot cut modes in variable video streams 

To highlight the comparison in terms of exploiting MPEG motion estimation and 

compensation scheme, this algorithm is implemented based on the three ratios of Rp, Rb 

and Rf to detect their peaks and then decide the scene changes by using the distance 

criteria Trejection (default one GOP) [14]. The experimental results are shown in Table 3.2. 

From these results, it can be seen that the proposed algorithm outperforms Meng’s work in 

terms of abrupt shot cut detection. While Meng’s recall rates are close to the proposed 

algorithm, its precision rates are significantly lower due to a large number of false alarms. 
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As suggested by the reviewer, Meng’s algorithm on dissolved cut detection is not 

implemented since it requires variance of DC images, which cannot be implemented 

within the designated deadline. In addition, such variance-based parabolic detection 

remains the same as conventional techniques in pixel domain, which is much more 

computing intensive than the proposed. 

 
 

Table 3.2 Comparative experiments for abrupt cut detection 
Video Sequences The proposed Meng’s algorithm 

News (93) (87%,82%) (85%,63%) 
Movies(138) (88%,85%) (74%,38%) 

Cartoons(172) (84%,90%) (81%,47%) 
Total(403) (86%,85%) (83%,78%) 
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3.3 Compressed-domain Shot Boundary Detection using 

Finite State Machine and Content-based Rules 

In this section, I propose techniques to efficiently detect shot boundaries via content based 

indicators for cuts and a finite state machine (FSM) for gradual transitions. This algorithm 

uses YCbCr components, DCT coefficients, and motion vectors extracted directly from the 

compressed domain to form the features. Its efficiency comes from compressed domain 

processing where only partial decoding is required, avoiding the computationally 

expensive inverse discrete cosine transform (IDCT). 

3.3.1  Algorithm Design 

In this Section, the algorithm design is presented including feature extraction from the 

compressed domain and detection of cuts and gradual transitions using a rule-based 

approach and FSM, respectively. The rules and FSM states are derived by observations on 

more than 50000 frames containing several hundreds of shots in various types. Technical 

details are given in the following sections. 

3.3.1.1 Compressed Domain Feature Extraction 

Given an input MPEG video sequence, {IPBBP … IBBP…}, I use the technique proposed 

in [91] to extract the DC image from DC coefficients. Please note that according to the 

definition of DCT in (3.5), it is easily found that the first DC coefficient F(0,0) is 8 times 

the average intensity of the 88×  block. 
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where 2/12)0( −=C and for other u or v, 1)()( == vCuC . In the following I discuss 

how to extract several feature indicators including luminance, colour, motion, edge, 

prediction error and inter-frame difference. 

Luminance indicator: the normalized intensity difference between the thn  frame 

and the thn )1( −  frame is represented as: 

∑∑
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(3.6) 

where, M and N are the number of macro-blocks in the frame on the vertical and 

horizontal direction, respectively. ),( jiYn  is the luminance value of block ),( ji .  

Colour indicator: the colour dissimilarity based on histogram correlation between 

the thn  frame and the thn )1( −  frame is determined as follows: 
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(3.7) 

where, ),( jiH n  is the two dimensional 88×  colour histogram in the thn  DC image, from 

which Cb and Cr are both placed into 8 bins.  

Motion indicator: the normalized motion magnitude extracted from motion vectors 

),( jiVx  and ),( jiVy  in the thn  frame is represented as: 

)),(,),(max()10( 1 ∑∑−= jiVjiVKmag yxnn . (3.8) 

where nK  is the number of inter-coded macro-blocks in the thn  frame. Here, the value 10 

is used for normalization.  
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Edge indicator: the compressed domain block-edge ratio difference between the 

thn  frame and the thn )1( −  frame is defined as follows:     

)))1()(,)1()((max()4( 1 ∑∑ −−−−= − nHnHnHnHMNedge hhvvn . (3.9) 

where, )(nHv  and )(nH h  are respectively the numbers of vertical block-edges and 

horizontal block-edges (defined in [92]) in the thn  frame.  

Prediction error indicator: the normalized prediction error of the thn  frame is 

given as: 

∑
=

−=
nC

i
nn iDCCerr

1

1 )()816( . (3.10) 

where nC  is the number of non-intra coded 88×  blocks. The value 816 is used for 

normalization. )(iDC  is the DC coefficient of the prediction error of the Y component.  

The mean of prediction errors from the thn  frame to the thm  frame is defined as:  

∑
=+−

=
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1),(_ . (3.11) 

Inter-frame difference indicator: the normalized YUV histogram intersection 

between the thn  frame and the thdn )( −  frame is defined as follows: 
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where, 9=d  is a re-sample step. n
U

n
Y HH ,  and n

VH  represent the histograms of the Y, Cb 

and Cr components of the thn  DC image, which are quantized into 32 bins. uy NN ,  and 

vN  are the corresponding numbers of 88×  blocks. 

(6) 
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3.3.1.2 Cut Detection 

To improve the method in [93], the basic cut detector is proposed to reduce the massive 

false alarms caused by feature peaks at the presence of motions and sudden light changes. 

Hence, I add a sliding window to choose the cut candidate and the improved method is 

presented in Figure 3.4. The size of the sliding window varies from 5 frames to 11 frames. 

In the experiment, it is chosen as 7 frames based on the trade-off of computation load and 

detection accuracy. Here, nD  and np  are respectively the luminance and colour indicator 

of the 
thn  element in the sliding window. 1β , 1χ , 1δ  and 1ε  are the parameters for the 

elements comparison inside the sliding window and they were chosen as 0.6, 0.08, 0.5, 

and 0.05, respectively, in the experiments. 

 

 

 

 

    

        Figure 3.4 The basic cut detector 

Based on the following observation, edge and motion indicators are applied to 

design the improved cut detector for robustness. In some cases, a shot cut occurs with 

indistinct luminance and colour indicators but the edge indicator is dominant in the sliding 

window. The Edge indicator facilitates the detection of this kind of shot cut missed by the 

basic cut detector. In other cases, the luminance indicator is dominant due to object or 

camera movement, so the luminance indicator needs to be verified by a threshold when the 

IF ),max( 5314 DDD >×β  and ),max( 5314 ppp >×β  

THEN a cut candidate is detected; 

ELSE IF 4p > 1χ  THEN a cut candidate is detected; 

ELSE IF ),max( 5314 DDD >×δ  or ),max( 5314 DDD >− ε  

THEN a cut candidate is detected. 
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corresponding motion indicator is large enough and triggered by another threshold. Hence, 

frames with large values of motion indicator but small values of luminance indicator are 

excluded as false alarms from the cut candidates. Flowcharts of the improved cut detector 

are given in Figure 3.5.  

 

R1(rule1) Luminance indicator is larger than 0.3 
R2(rule2) Luminance indicator is larger than 0.11 
R3(rule3) Luminance indicator is larger than 0.08 
M1(module1) Step1 IF luminance indicator is the local peak in the sliding window, THEN 

go to step2; ELSE flag=0; 
 Step2 IF the luminance mean of the other elements in the sliding window is 

no more than 45 percent of the current luminance peak, THEN go to 
step3; ELSE flag=0; 

 Step3 IF motion indicator is larger than 0.25 and luminance indicator is 
smaller than 0.2, THEN flag=0; ELSE go to step4; 

 Step4 IF luminance indicator and colour indicator satisfy the rules of the 
basic cut detector, THEN flag=1; ELSE flag=0; 

M2(module2) Step1 IF luminance indicator is the local peak in the sliding window, THEN 
go to step2; ELSE flag=0; 

 Step2 IF the luminance mean of the other elements in the sliding window is 
no more than 20 percent of the current luminance peak, THEN go to 
step3; ELSE flag=0; 

 Step3 IF motion indicator is larger than 0.25 and luminance indicator is 
smaller than 0.2, THEN flag=0; ELSE go to step4; 

 Step4 IF luminance indicator and colour indicator satisfy the rules of the 
basic cut detector, THEN flag=1; ELSE flag=0; 

 

Video in 
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M3(module3) Step1 IF colour indicator is the local peak in the sliding window and its value 
is larger than 0.9, THEN a cut is detected; ELSE go to step2. 

 Step2 IF edge indicator is the local peak in the sliding window and its value 
is larger than 0.4, THEN a cut is detected; ELSE no cut is detected. 

Figure 3.5 The improved cut detector 

In the improved cut detector, the luminance indicator is classified into four levels, 

where the first level is the highest. If the luminance indicator achieves the first level, a cut 

is detected. Otherwise, if the luminance indicator achieves either the second or the third 

level, module1 or module2 is triggered respectively for further verification. It is noted that 

module1 and module2 have similar procedures but employ different values of the 

percentage parameter for the luminance comparison in the sliding window. This design is 

based on the observation that when the level of luminance indicator is higher, the 

luminance peak is more dominant compared to other elements in the sliding window. In 

both module1 and module2, a sliding window of 7 frames is applied for the luminance 

peak location and the dominance comparison. Then, if the motion is large enough and 

triggered by the threshold, the false alarms featured with small values of luminance are 

excluded. These false alarms are usually caused by object or camera movement. Otherwise, 

the basic cut detector is applied for further verification. If there is no cut detected so far or 

the luminance indicator is in the fourth level, module3 is triggered. Module3 detects shot 

cuts with indistinct luminance change but dominant edge or colour indicators in a sliding 

window. 

3.3.1.3 Gradual Transition Detection 

Many existing methods [14, 93] use the intensity variance curve (IVC), which roughly 

shows a parabolic (‘U’ type) shape when a gradual transition occurs, to locate the shot 

boundary of the gradual transition. However, IVC can be unsmooth due to motion or 
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camera flashes which make the ‘U’ shape indistinct. The shot boundaries detected from 

the identified parabolic shape of the IVC then become inaccurate. In addition, error 

propagation caused by misdetection of the previous parabolic shape is unavoidable, and 

this can affect the further verification process based on the boundaries which have already 

been located. The twin comparison method proposed in [94] is likely to cause false 

positives due to camera or object motion, and long gradual transitions may be truncated 

frequently, which is caused by editing effects.  

To overcome such shortcomings, the detector proceeds in two steps. Firstly, a pre-

processing module acts as a filter to select the promising gradual transition candidate 

frames after the cut detection for efficiency. Secondly, the FSM is applied to locate the 

boundaries of the gradual transition candidates and further verify the candidates in two 

aspects: (i) the colour indicator is employed to detect gradual transitions between shots in 

distinct colour; (ii) the prediction error indicator is used to determine gradual transitions 

between shots in similar colour. 

By observation, I find that the values of prediction error indicator and the inter-

frame difference indicator of gradual transition frames are higher than those of normal 

frames. In the pre-processing module, if either of these two values is lower than some 

threshold, there is no gradual transition detected. False alarms caused by motion are 

filtered out by excluding frames with large values of motion indicator but small values of 

inter-frame difference indicator. Considering the above principles, the rule based pre-

processing module was designed as follows:  

Rule1 ;0,015.0||1.0 =<< nnn errTHENerrdiffIF  

Rule2 ;0,25.0&2.0 =<> nnn errTHENdiffmagIF  
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where ndiff  is the inter-frame difference, nerr  is the prediction error, and nmag  is the 

motion indicator of the thn  frame. For frames satisfying either of the two rules, the 

corresponding prediction error indicators are set to be zero. Then, candidate frames with 

non-zero prediction error are in clusters, and this helps the FSM to group candidate frames 

for the location of shot boundaries by reducing the computation cost.  

 

 

 

 

 

 

1 IF ,0&0 1 ==> −nn errerr  THEN start-frame=n 

2 IF 0==nerr  

3 IF ,0==merr  m=n+1…n+9, THEN end-frame=n-1 
4 IF ,25.0, >mnp  n=start-frame, m=end-frame, THEN a gradual transition is detected; 

5 IF ,25.0, ≤mnp  n=start-frame, m=end-frame 

6 IF ,03.0),(_ >mnerrmean  n=start-frame, m=end-frame THEN a gradual 
transition is detected, ELSE there is no gradual transition; 

7 IF the end-frame is not found 
8 IF the length of the gradual transition candidate is longer than 100 frames 

Figure 3.6 FSM for gradual transition detection 

The algorithm for the location of the shot boundaries and the further verification of 

the gradual transition candidates is integrated by an FSM. There are five states in the FSM: 

state 1 is the initial state, when there is no shot boundary; state 2 indicates that the start 

frame of a gradual transition is found; state 3 indicates the verification of the end frame of 

the gradual transition; state 4 indicates the verification of the gradual transition with 
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distinct colour change; state 5 indicates the verification of the gradual transition with 

indistinct colour change. Details of state transitions in the FSM are shown in Figure 3.6. 

When the detection process begins, if the prediction error indicator of the current 

frame is above zero and that of the previous frame is zero, then the current frame is 

marked as the start of the gradual transition, and the FSM enters state 2. In state 2, once 

the prediction error indicator of the thn  frame is zero, the FSM enters state 3 to wait for 

the following 9 frames to verify the end of the gradual transition; or if the length of the 

gradual transition candidate is longer than 100 frames, the FSM enters state 4. In state 3, if 

the prediction error indicators of the following 9 frames are all zero, then the thn )1( −  

frame is marked as the end-frame of the gradual transition, and the FSM enters state 4 for 

further verification; otherwise, the FSM returns to state 2. In state 4, the colour 

dissimilarity between the start frame and the end frame is calculated, if the colour 

dissimilarity is above some threshold, a gradual transition is detected, and the FSM returns 

to state 1; otherwise, the FSM enters state 5 to verify the shot boundaries between shots in 

similar colour. In state 5, the mean of the prediction errors from the start frame to the end 

frame of the gradual transition candidate is calculated, if it is above some threshold, a 

gradual transition is detected, and the FSM returns to state 1. 

3.3.2 Experimental Results 

To evaluate the proposed algorithm, extensive experiments were carried out on a number 

of test video clips from the well-known TREC Video Retrieval Evaluation (TRECVID) 

activity which is organized by National Institute of Standards and Technology (NIST) 

annually [95]. Currently the data used are the MPEG-1 format video clips available on the 

web from the competition in 2001.  Accordingly, the results from this year are also used as 
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benchmarks in the experiments for comparisons. The resolution of the test sequences is 

240352×  pixels. 

The computing environment used includes: (i) a PC with 1.73GHz CPU, 512MB 

memory and windows XP operating system; (ii) Microsoft VC++ 6.0 programming 

platform. To compare the performances of the proposed algorithm with the algorithm from 

the TRECVID competition team, the following measurements were adopted for 

quantitative evaluations [96, 97]: 

,)(Re 1−+= MCC NNNcall  (3.13) 

1)(Pr −+= FCC NNNecision  
(3.14) 

.)Pr(RePrRe21 1−+⋅⋅= ecisioncallecisioncallF  
(3.15) 

where cN  is the number of correctly detected shot boundaries, MN  is the number of 

missed shot boundaries, and FN  is the number of falsely detected shot boundaries. The 

higher these ratios are, the better the performance. 

Table 3.3 Description of the test video sequences  
Video name Number of frames Cut count Gradual transition count 

Bor08 50569 375 153 
Bor03 48451 226 11 

Anni005 11364 38 27 
Anni009 12307 38 65 
In total 122691 677 256 

 

Table 3.3 gives the total numbers of frames, cuts and gradual transitions within 

each video clip. Table 3.4 and 3.5 illustrate the experimental results from the proposed 

algorithm and those among the best performing from TRECVID 2001 including teams 

from Microsoft research, Tsinghua University and the University of Florida [98]. Table 
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3.6 illustrates the weighted average recall, precision and F1 of cuts and gradual transitions, 

where the weighted average is calculated via the number of cut count in each sequence.  

Table 3.4 Evaluation results of cut: the proposed algorithm V.S. the best results from 
TRECVID 2001 

Video name 
Best results from TRECVID 2001 Proposed algorithm 

Recall Precision F1 Recall Precision F1 
Bor08 0.965 0.882 0.922 0.899 0.988 0.941 
Bor03 0.938 0.954 0.946 0.952 0.989 0.970 

Anni005 0.973 0.948 0.960 1 0.844 0.915 
Anni009 0.842 0.888 0.864 0.949 0.925 0.937 
Average 0.930 0.918 0.923 0.950 0.937 0.941 

Table 3.5 Evaluation results of gradual transition: the proposed algorithm V.S. the best 
results from TRECVID 2001 

Video name 
Best results from TRECVID 2001 Proposed algorithm 

Recall Precision F1 Recall Precision F1 
Bor08 0.758 0.816 0.786  0.940 0.707 0.807 
Bor03 0.818 0.281 0.418 1 0.360 0.529 

Anni005 0.666 0.782 0.719 0.963 0.900 0.930 
Anni009 0.507 0.733 0.599 0.813 0.825 0.819 
Average 0.687 0.653 0.631 0.929 0.698 0.771 

Table 3.6 Weighted average evaluation results: the proposed algorithm V.S. the best 
results from TRECVID 2001 

Weighted average Best results from TRECVID 2001 Proposed Algorithm 

Cut 
Recall 0.9495 0.9252 

Precision 0.9101 0.9767 
F1 0.9289 0.9490 

Gradual transition 
Recall 0.6871 0.9128 

Precision 0.7684 0.7424 
F1 0.7156 0.8111 

Generally speaking, average recall rate and precision rate provide a reasonable 

measurement of the overall performance, but it is difficult to find a good trade-off between 

these two measurements as normally one is higher than the other. Consequently, F1 seems 

more suitable in such an evaluation. By observing the experimental results, it can be seen 

that the proposed algorithm outperforms those reported in the TRECVID competition 

teams in terms of the combined measurement of average recall and precision rate, i.e. F1 

measurement.  
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3.4 Shot Boundary Detection in MPEG Videos using Local 

and Global Indicators  

In this section, my contribution for the submission to TRECVID 2007 on the shot 

boundary detection task is summarized as: (i) Novel features are extracted from the 

compressed domain and the feature selection is carried out using Adaboost; (ii) Typical 

gradual transitions including fade in (out), dissolve and wipes, as well as a new type of 

gradual transition called “others” are detected. (iii) The MPEG decoding scheme is 

thoroughly studied so that the whole shot detection system is embedded in the compressed 

domain of the standard MPEG2 decoder to achieve the real-time efficiency.  

3.4.1 Feature Extraction 

Given the input of an MPEG video, DC images are extracted for the corresponding frames 

in the video sequence. In the thi  DC image, the thn  Y, Cb and Cr components are denoted 

as n
iY , n

iCb  and n
iCr , respectively. Hence, a DC-difference image D  between the thi

 

frame and the thj
 
frame is calculated as follows:   
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,  (3.16) 

Furthermore, the mean and standard deviation of D  are calculated and denoted as ji ,µ  and 

ji,σ  respectively. In order to identify the activity of the pixels in D , a classification 

scheme is implemented as follows:  
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jijisT ,, σµ −=
 

(3.18) 

jijiaT ,, σµ +=  (3.19) 

Therefore, the percentages of active and inactive pixels in D  are calculated as AR  and IR  

respectively. Since thresholds sT  and aT  for the classification of pixel activity are adaptive 

to the video content, the percentage AR  and IR  are insensitive to the disturbing factors for 

shot cut detection, such as camera motion, object movement and sudden light changes.  

In the thi  DC image, the MPEG motion compensation error ierr  
is defined in 

(3.20). Here, iN
 
is the total number of inter-coded blocks in the thi  frame and )( jDC  is 

the thj  DC coefficient from the B, P frames. In the I frames, ierr  are copied from those of 

the latest output B frames because there are no inter-coded macro-blocks in I frames. In 

addition, the definition of energy iE
 
is given in (3.21), where yN

 
is the total number of 

pixels in the thi  DC image.  
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3.4.2 Feature Validation and Shot Cut Detection 

AdaBoost [99] is utilized to verify the discrimination power of the selected features. The 

extracted features IAjiji RR ,,, ,, σµ  and ierr  constitute a five dimensional feature set 1S . In 

addition, some existing features are extracted to constitute a six dimensional feature set 2S , 

which includes luminance, colour, motion magnitude, edge and inter-frame differences. A 



Chapter 3. Video Segmentation 
 

47 
 

sliding window of the chosen features is employed to measure the temporal differences for 

shot cuts. There are two choices for the size of the sliding window, 3 frames 3W  and 11 

frames 11W . Hence, the feature set are divided into three groups: 1121 )( WSS ×+ , 111 WS ×  

and 31 WS × . In the AdaBoost training stage, a five-fold cross-validation scheme is utilized, 

based on the test videos from TRECVID in 2006 and 2005 with manually labelled shot 

boundaries. The training results are presented in Table 3.7. Here, the first test uses 11 

features combining 1S  and 2S  with a sliding window of 11 frames. The second test uses 

features 1S  with a sliding window of 11 frames. The third test uses features 1S  with a 

sliding window of 3 frames. From the detection rates, it is found that the third choice of 

feature selection produces good performances. In addition, it has the advantage of low 

feature dimensions.  

Table 3.7 Performance comparison using AdaBoost based cross validation on the data 
from TRECVID in 2005 and 2006 

Experiments Test 1 Test 2 Test 3 

Feature dimension 1111×  115×  35×  
Average recall 0.9709 0.9718 0.9716 
Average precision 0.9702 0.9706 0.9705 

Description 1121 )( WSS ×+  111 WS ×  31 WS ×  

By modelling the visual features of the shot cuts into five kinds, cut detection is 

implemented in a decision-making process. For further details please refer to the paper [P1] 

in appendix. 

3.4.3 Detecting Gradual Transitions 

In this section, the detection of typical gradual transitions including fade in (out), dissolve 

and wipes, as well as a new type of gradual transition called “others” are described.  
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3.4.3.1 Detecting Dissolves and Wipes 

One of the spatial features widely used for dissolve detection is the intensity variance 

curve (IVC), which often has an approximately parabolic (‘U’ type) shape when a dissolve 

occurs. However, the U shape IVC is often corrupted in reality due to motion, camera 

flash, and many other factors. Consequently, it is difficult in practice to capture such 

transition processes. Looking for an alternative feature, presenting a stronger indication of 

dissolves, a range of possibilities was tested in the experiments, such as luminance, colour 

and edge features. MPEG motion compensation error ierr  was found to be the best choice. 

In comparison with IVC, the MPEG motion compensation error indicator presents two 

advantages: (i) it can be readily extracted from MPEG compressed domain; (ii) it presents 

a sequence of peaks during dissolve transitions and thus can be exploited to detect 

dissolves. 

To optimize the exploitation of the MPEG motion compensation error indicator, a 

two-step procedure is proposed for dissolve detection, where the first step is to pre-process 

the video sequence and remove those unlikely to be dissolve candidates, and the second 

step is to apply a cluster procedure to detect and verify the dissolves. 

During a dissolve, frames within a dissolve actually present large inter-frame 

differences as well as MPEG motion compensation errors. Therefore, the following pre-

processing is defined to remove those frames that are not likely to be dissolve candidates: 

0||, =<<+ ieidii errthenTerrTif µµ  (3.22) 

Here, µT  and eT  are thresholds. In the experiment, both dii +,µ  and ierr  were scaled in the 

range from 0 to 1. The thresholds µT  and eT  are determined by applying the principle of 
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maximum entropy to the labelled dissolves and normal frames from the training data. In 

the experiment, µT  and eT  are set as 0.14 and 0.02, respectively.   

Following the pre-processing, the remaining operation is focused on those frames 

with non-zero ierr  values to detect candidates for dissolves under the principle that 

dissolves present a sequence of peak values in ierr . A cluster procedure is proposed to 

group these frames, the details of which are as follows: 

• Input iG : candidate frames with non-zero ierr  values in a circular buffer. 

• Output: dissolve candidates  

• Procedure:  

            Step 1: Select the frame iF  in iG , with smallest frame number as the seed for 

cluster iC , and subtract iF  from iG . If the last frame in the buffer is reached, wait 

for buffer to fill, until the whole video sequence is processed. 

            Step 2: If there exists another candidate frame jF  in the rightwards neighbourhood 

of d  frames, absorb frame jF  in cluster iC . Subtract jF  from iG . 

            Step 3: Iteratively execute step 3, until there are no candidate frames in the 

rightwards neighbourhood of d  frames. As a result, cluster iC constitutes a 

dissolve candidate. Go to step 1. 

In the cluster procedure, d  represents the scale of the neighbourhood and it is set 

as 5 in the experiment. This is because typical dissolves are longer than 5 frames. The use 

of a circular buffer to monitor the frames to be clustered enables the real-time detection of 

dissolves. Given the beginning and ending frames of the dissolve candidate as bF  and eF , 
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respectively, a temporal verification is carried out by a thresholding process as follows. 

This represents the fact that longer dissolves have larger temporal differences. 

founddissolvethenT
d

beif eb ,)(
, µµ ⋅

−
>  (3.23) 

In the experiment, it was found that the proposed scheme for dissolve detection is also 

effective for the detection of typical wipes.  

3.4.3.2 Detecting Fades 

A typical fade combines with three different stages of transition: fade out, a serial of stable 

monochrome frames and fade in. In the temporal intensity domain, the fade transition is 

featured with either of the shapes illustrated in the figure 3.7. In the temporal variance 

domain, the fade transition is featured with the shape illustrated in figure 3.8. Hence, the 

variance of the pixel intensity in the DC image is a reliable indicator for the detection of 

fades. Fade out is modelled as a variance decreasing process while fade in is modelled as a 

variance increasing process. Therefore, the proposed knowledge-based rules are described 

as follows to facilitate the detection of fades. A fade is detected when the test for all the 

six rules are positive.  

• Rule 1: if 0≥− +dii VV  then candidate fade out frames are found. Here, iV  is the 

variance of the thi  frame. The frame step d  is introduced for robustness, since the 

variance curve of fade out may not be strictly decreasing due to the effect of noise. 

In the experiment, d  is set as 2. 

• Rule 2: if Rule 1 is satisfied for a number of n  frames, a fade out candidate is 

claimed. 
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• Rule 3: if Rule 2 is satisfied, a sequence of stable monochrome frames need to be 

identified. If mi TV < , candidate monochrome frames are found. 

• Rule 4: if Rule 3 is satisfied for a number of n  frames, a stable stage is claimed.  

• Rule 5: if Rule 4 is satisfied, the fade in process needs to be monitored. If 

0≥−+ idi VV  then candidate fade in frames are found. 

• Rule 6: if Rule 5 is satisfied for a number of n  frames, a fade in candidate is 

claimed. 

• Rule 7: if Rule 6 is satisfied, a temporal verification is carried out. The averaged 

variance of the monochrome frames is calculated as mV . The variance of the first 

frame of fade out is denoted as bV . The variance of the last frame of fade in is 

represented as eV . If v
e

m
v

b

m T
V
VT

V
V

<< & , a fade is claimed.  

In the experiment, the variance is scaled in the range from 0 to 1. n  is a measurement 

of the length of fade and it is determined as 5, according to the minimum length of 

fade in real cases. mT  controls the variance of monochrome frames. By the visual 

observations on training frames, it is acceptable that the variance of monochrome 

frames is under 5%. vT  represents the temporal difference of fade, it is decided as 20% 

by the empirical study on the training data.  

 

 

 

Figure 3.7 The shapes of fades in the Temporal domain of intensity 
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Figure 3.8 The shape of fades in the Temporal domain of variance 

3.4.3.3 Detecting “others” 

A new type of gradual transition is defined as “others” by TRECVID in the challenge of 

difficult cases in practical video sequences. The category “other” is a kind of combined 

shot boundaries. In the case of “other”, there is a shot cut at the thi  frame and another shot 

cut at the thj  frame, with a sequence of monochrome frames in between. Since the two 

shot cuts are quite near each other and there is no meaningful video content in between, it 

can be seen as a whole transition process. In the temporal domain of 1, +iiµ , this process is 

featured with the shape illustrated in Figure 3.9. It can be seen that the beginning and 

ending points are like impulses while the middle parts are almost static. Based on the 

detection of monochrome frames in section 3.4.3.2 and the detection of shot cuts in section 

3.4.2, “others” are identified by the fusion of previous detection results.    

 

 

 

Figure 3.9 The shape of fades in the Temporal domain of intensity.  

3.4.4 Evaluation Result 

In the shot boundary detection task of TRECVID 2007, 35 teams participated and 15 

teams finished the task with 128 runs for submission. The submission was evaluated by 

TRECVID and its performance is summarized as follows [95]:  
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• In terms of the cut detection, the submission is ranked as number 1. 

• In terms of gradual transition detection, the submission is ranked as number 6.  

• In terms of gradual transition frame accuracy, the submission is ranked number 7. 

• In terms of overall evaluation, the submission is ranked as number 3. 
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3.5 A Hierarchical Content-Aware Approach for Shot Cut 

Detection in Compressed Domain 

In this section, a content-aware approach is proposed, with multiple feature indicators and 

multiple thresholds to detect shot boundaries. The proposed approach extracts all features 

in MPEG compressed domain, and organizes all operations into a decision tree for cut 

detection and a finite state machine (FSM) for dissolve detection.  

3.5.1 Content-aware Construction of Multiple Content Difference 

Indicators with Multiple Thresholds 

Given an MPEG compressed video input, a DC image sequence { }endn YYYY ,...,..., 21  is 

extracted from the corresponding video frames. If the original video frame size is HW × , 

the DC image will have the size of 
88
HW

× . Around the current DC frame nY , which is to 

be examined for shot cut detection, I define a shifting window with 11 neighbouring DC 

frames to test all the features extracted and determine whether there exists a cut or not 

between the frame 1−nY  and the frame nY  . The window function is defined as: 



 ≤≤−

=−
else

m
mnw

0
551

)( . (3.24) 

where ],1[ endn∈ . 

In other words, the proposed shot cut detection is essentially carried out inside the 

window set { }5432112345 ,,,,,,,,,, +++++−−−−− nnnnnnnnnnn YYYYYYYYYYY . 

To detect shot cuts, most of the existing work reported in the literature measure the 

content difference between the current frame nY  and its preceding frame 1−nY , and then 
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apply a threshold to decide whether the difference measured is large enough to justify a 

cut detection [21, 23, 100]. Many algorithms have been developed and reported on how to 

decide such a threshold, which can be briefly summarized as: (i) statistics based 

approaches such as Bayesian rules, maximum likelihood based probabilistic modelling etc. 

[8, 24]; (ii) empirical studies [21, 23]; (iii) machine learning approaches such as SVM, 

neural networks etc to bypass the threshold and make decisions based on the training and 

learning process [7, 9, 10]. The fundamental issue here, however, is that such a measured 

neighbourhood frame difference indicator alone would not provide sufficient information 

for shot cut detection. In practice, many cuts do not necessarily generate sufficiently high 

peak values for this neighbourhood frame difference. Such a situation makes it impossible 

to apply one threshold and get all the cuts detected.  As an example, Figure 3.10 shows the 

values of such neighbourhood frame differences at the locations of all the shot cuts for the 

video sequence 20051205-185800-PHOENIX-GOODMORNCN-CHN from TRECVID 

2005, in which all the cuts are indicated by a negative peak value of -0.05. As can be seen, 

to ensure that all the cuts are detected, the threshold value should be as low as 0.025 since 

the value of neighbourhood frame difference at the 27th cut (close to frame-1400) is 

around 0.029. If I apply this value as the threshold, however, many false positives would 

have been generated. On the other hand, to ensure that no false positive is generated, the 

threshold value should be set as high as 0.175 (see the non-cut peak value around frame-

1250). Yet if I use this value as the threshold, I can only manage to detect 5 shot cuts, 

generating many false negatives. 
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Figure 3.10 Luminance neighbourhood frame difference indicator (D) with respect to 
ground truth cuts 

The above empirical analysis reveals that: (i) I need to apply multiple thresholds 

and examine multiple indicators in order to ensure that true cuts are differentiated from 

those non-cuts; (ii) to optimize the application of multiple thresholds, I need to be aware 

of the contexts under which the frame difference indicators are generated, and thus 

different contexts should have different thresholds applied.  

To this end, three frame difference indicators are proposed, including: (i) 

neighbourhood frame difference indicators to measure the content difference between the 

current frame nY  and its preceding frame 1−nY ; (ii) inter-frame difference indicators to 

measure the content difference between the current frame nY  to be examined and its 

preceding 9th frame 9−nY ; and finally (iii) comparative frame difference indicator to 

measure the difference of all the indicators inside the shifting window as defined in (3.24). 

While the first frame difference indicator follows the same principle adopted by all 
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existing work [3, 4, 7, 16-22, 25, 89-93, 101] that, if there exist a cut at the current frame, 

there should exists some content difference between the two neighbouring frames, the 

second frame difference indicator is mainly used to verify such a possible cut by 

examining the difference between the current frame and a frame some distance away [21, 

102] to overcome the false positives caused by factors other than cuts, such as motion, 

camera movement, or editing effect etc. Selection of the preceding 9th frame is just one of 

the reasonable choices which could be made, and any other neighbouring frame will be 

sufficient to serve the same purpose, as long as it is located within the same shot as 1−nY . 

The third frame difference indicator is to compare the indicators within a shifting window 

to test the consistency and remove the false negatives for cases where some cuts may 

present small content differences. 

To measure the three frame difference indicators, the proposal is to extract four 

features to construct the neighbourhood frame difference indicator and fully exploit 

MPEG compression techniques to enable shot cut detection to be carried out in the 

compressed domain rather than the pixel domain. These four features are luminance, 

colour, edge, and motion, the details of which are as follows. 

Based on the work described in [103], a normalized luminance feature is proposed 

to make it convenient for evaluation of all the features in a systematic and unified way. 

Such a normalized luminance difference between the thn  frame and the thn )1( −  frame is 

represented as: 
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where M and N are the number of 88×  blocks inside video frames along the vertical 

direction and horizontal direction, respectively, ),( jiyn  is the DC luminance value of the 

block positioned at ),( ji  inside the thn  DC frame, and ]1,0[∈nD . 

To extract the colour feature in compressed domain, a normalized colour histogram 

correlation between the thn  frame and the thn )1( −  frame is used, defined as: 
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where ),( jiHn  is the two dimensional 88×  colour histogram in the thn  DC image, from 

which the components of U and V are both placed into 8 bins respectively. To produce the 

histogram ),( jiHn , all the DC values inside the U and V blocks are quantized into 8 levels 

and thus the histogram would have 64 bins altogether. 

Considering the work on block-based edge detection directly carried out in the 

compressed domain [104], I propose the following edge ratio difference between the thn  

frame and the thn )1( −  frame as defined below: 

( )( ))1()(,)1()(max1
−−−−

×
= nNnNnNnN
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e
h
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e
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e
vnγ . (3.27) 

where )(nN e
v  and )(nN e

h  are the number of vertical block-edges and horizontal block-

edges, respectively in the thn  frame. 

As MPEG makes the motion information available in the compressed domain, I 

extract a normalized motion feature based on the MPEG motion vector ( )),(),,( jiVjiVM yxn =  

in the thn  frame as: 
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where ( )vyvx TT ,  is the maximum allowable motion vector designed by MPEG. 

Consequently, the four features defined in (3.25-3.28) can be applied as content 

features, which can be directly used to indicate the content difference and thus detect the 

shot cuts, or context features, which can be used to indicate the contexts of the content 

changes. For example, the luminance and colour can be readily used as content features 

since both of them are primarily used to represent the visual information in all image 

generation processes (such as TV, cameras, printing etc.). Yet motion and edges can be 

used as context features since both of them mainly reflect the activities inside the captured 

visual scenes. In this way, shot cut detection can be made adaptive to the context changes 

as well as content changes. When motion is high, for example, it indicates that 

proportional content difference is caused by motion rather than by cuts, and thus the 

threshold should be moved higher. To this end, a training video set has assembled, drafted 

from the TRECVID test sequences in 2001 and 2005, and carrying out empirical studies 

by extracting the neighbourhood frame difference indicators for all the four features to 

determine the multiple thresholds. 

By analyzing the value of neighbourhood frame difference indicators in 

correspondence with the ground truth cuts inside the training set, I am able to determine 

two threshold values for the content features, where one is the lowest possible threshold, 

under which no cut could possibly exist, and the other is the highest possible threshold, 

above which a maximum number of false positives are eliminated. For major content 
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features such as luminance, one or two medium thresholds are needed to fine tune the 

decision process, which can be determined as: 
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where LT  and HT  are the lower threshold and higher threshold respectively, which are 

determined via empirical approaches from the training video sequences, MT  is the medium 

threshold if only one medium threshold is needed, and 1MT  and 2MT are the lower medium 

threshold and higher medium threshold respectively for cases where two medium 

thresholds are needed. 

As an indicator for content activities rather than content itself, edge is used as a 

context feature. Hence, a certain threshold is observed and determined for the 

neighbourhood frame difference indicator of edge, at all locations of the ground truth cuts 

inside the training sequences, which serves as a necessary condition for cut detection. 

The Motion feature is also used as a context feature in the proposed algorithm, for 

which the main purpose is to determine whether the extracted peak value of 

neighbourhood frame difference, such as nD  and np , is caused by motion or cuts. As a 

result, I need to determine a lower threshold, under which the incurred motion is too small 

to cause any concern. Similarly, a higher threshold also needs to be determined, above 

which all motion indicators should cause concerns. Furthermore, a medium threshold can 

be determined as given in (3.29) in order to ensure that motion indicators could be further 

classified into different regions to provide sufficient contexts and discriminating power. 
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The inter-frame difference indicator is designed to check whether there exists any 

significant difference between the frame under examination and its preceding 9th frame.  

This is essentially a verification test for shot cut detection. For the current frame nY , for 

example, any peak value of its neighbourhood frame difference indicator should be 

verified by another peak value of its inter-frame difference indicator between nY  and 9−nY . 

This follows the principle that the existence of a cut should cause significant content 

change between nY , the first frame of the next shot, and all the frames inside the current 

shot, including 1−nY , 2−nY , ... 9−nY …. In contrast, if the peak value of neighbourhood frame 

difference at nY  is accompanied by another peak value of inter-frame difference at 1−nY , it 

is likely that such content change is caused by factors other than cuts. 

To measure the inter-frame difference in the current DC frame nY , a normalized 

histogram is introduced, with 32 bins for all YUV components. By representing such 

normalized YUV histograms as ( )3221 ,..., YnYnYnYn hhhH = , ( )3221 ,..., UnUnUnUn hhhH = , 

( )3221 ,..., VnVnVnVn hhhH =  respectively, the inter-frame difference indicator can be defined as: 
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where yN , uN  and vN  are the corresponding number of 88×  blocks for Y, U and V 

components respectively. 

Similarly, to ensure that all cuts can be differentiated by a peak value of the inter-

frame difference indicator, a lower threshold value is determined by considering all the 

peaks with respect to the ground truth cuts inside the training set. To ensure that all peaks 

do not generate any false positive, a higher threshold value is determined. Based on these 
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two thresholds, more contexts can be identified to fine tune the cut detection by 

determining two medium thresholds as described in (3.29). Details of all the multiple 

threshold values for the two frame difference indicators are summarized in Table 3.8. 

Table 3.8 Summary of multiple thresholds for neighbourhood frame difference and inter-
frame difference indicators 

Content feature Lower threshold ( )LT  Higher threshold ( )HT  Medium threshold ( )MT  

nD (luminance) 0.027 0.09 0.045 

np  (colour) 0.025 0.09 - 

nγ  (edge) 0.02 - - 

nM  (motion) 0.06 0.2 0.1 

n∆ (inter-frame 
difference) 

0.14 0.3 (0.17, 0.2) 

 
Table 3.9 Comparative frame difference indicators 

Comparative frame difference 
indicators Definitions 

Comparative luminance higher 
peak 

( )
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Comparative luminance lower 
peak 
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Comparative colour peak 
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Comparative edge peak 
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Comparative inter-frame peak 
( )
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(3.35) 

 
Generally, if there exists a cut between frames nY  and 1−nY , all the frames inside 

the shifting window would be classified into two different shots, where the first shot 

contains frames )( mnwY mn −− , ]5,1[∈m , and the second shot contains frames 

)( mnwY mn −− , ]0,5[−∈m . Consequently, the concept of comparative frame difference 

indicators is introduced to make sure that suspicious candidates can be further confirmed 



Chapter 3. Video Segmentation 
 

63 
 

and screened whether they are true positives or not. Details of their definitions for frame 

nY  are summarized in Table 3.9. 

The two parameters, α  and β , are used to determine the minimum peak value to 

allow the extracted feature to be regarded as a comparative peak inside the window. Their 

values are normally within the range of [1,5]. In this algorithm, 5.2=α  and 8.1=β  are 

selected. Apparently, equations (3.31-3.35) indicate that the larger the values of α  and β  

selected, the higher the comparative peaks are required to confirm the cut detection. 

3.5.2 Cut Detection 

With the proposed multiple frame difference indicators and thresholds, the shot cut 

detection is designed in a coarse-to-fine manner with three phases. The first phase is an 

initial shot cut detection, in which the aim is filtering through all suspicious candidates 

that could be cuts. Following that, two further phases process its outputs. While the second 

phase is to process all those cut candidates to remove as many as possible of the false 

positives, the third phase is designed to process those non-cut candidates to remove as 

many as possible of the false negatives. 

 

 

 

 

 

 

 

Figure 3.11 Decision tree for initial shot detection 
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Given the current DC frame nY , its luminance content feature nD  is primarily used 

for the first phase cut detection. Since the major aim of this first phase is to detect as many 

cuts as possible, only the lower threshold and the medium threshold in Table 3.8 are used 

to process the luminance neighbourhood frame difference nD . The entire detection process 

is summarized into a decision tree as shown in Figure 3.11. 

As can be seen, the decision is made by examining nD  against both medium 

threshold and lower threshold supported by consistency tests via the comparative frame 

difference indicators defined in (3.31) and (3.32). 

 

 

 

 

 

 

 

 

 

Figure 3.12 The second phase: decision tree for removal of false positives 

In the second phase, the primary aim is to remove false positives by applying the 

principle that, if a peak value detected at nY  in the initial phase is accompanied by another 

inter-frame difference peak at 1−nY , the peak difference detected in the first phase at nY  is 

likely caused by factors other than a cut. As a result, the inter-frame difference indicators 
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play leading roles in the second phase detection, and the entire process is structured into 

another decision tree as illustrated in Figure 3.12. 

As seen, satisfaction of the first condition Hnn T>∆=∆ −1&0ˆ  establishes that the 

peak frame difference detected in the first phase is not caused by a true cut, since it is 

accompanied by a high inter-frame difference between 1−nY  and 10−nY , yet there exists no 

comparative peak at nY . As a result, the input cut candidate is detected as a false positive. 

Non-satisfaction of the first condition leads to further examination of 1−∆ n  across 

all the remaining regions divided by its multiple thresholds as shown in Table 3.8. Figure 

3.12 shows that the remaining tests of 1−∆ n  are arranged in terms of ),[ 23 HM TTC =∆ , 

),[ 212 MM TTC =∆ , and 11 Mn T<∆ − , respectively. Since all these regions have different 

strengths in indicating the inter-frame difference at 1−nY , I need to use other features to 

indicate its contexts and complete the false positive detection. 

Furthermore, in the test: Hnn TMC <∈∆ ∆− &31 , Hn TM <  is a context condition 

to improve the strength of 31 ∆− ∈∆ Cn . In other words, if 31 ∆− ∈∆ Cn  is true and meanwhile 

the motion feature is less than the higher threshold, indicating that motion is not sufficient 

to cause a peak value between nY  and 1−nY , it is likely that the initially detected cut could 

still be a false positive. This is verified by Hn TD <  , as it indicates that the peak in the 

neighbourhood frame difference detected in the first phase and is not strong enough to 

justify that this is a true cut. 
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The test 1ˆ& => nHn pTp  along the decision tree in Figure 3.12 is the strongest 

indication for a colour peak at nY , which is used to maintain that the input cut candidate is 

indeed a cut. Otherwise, it is detected as a false positive. 

A positive test on 21 ∆− ∈∆ Cn  indicates that a peak value is still detected at 1−nY , 

suggesting that the input cut candidate could be a false positive. Since such a peak is 

relatively weak in comparison with 31 ∆− ∈∆ Cn  and Hn T>∆ −1 , a stronger condition 

Ln TM <  is required to make sure that the motion extracted at nY  is definitely unable to 

make any contribution to the high frame difference. Therefore, its positive test suggests 

that the initially detected cut candidate is likely to be a true cut. To verify this judgment, 

another strong condition 1ˆ =∆ n  is tested to indicate that the inter-frame difference 

indicator at nY  is the largest in comparison with all inter-frame difference indicators inside 

the shifting window, which overrules 21 ∆− ∈∆ Cn , and hence the input cut candidate should 

be decided as a true positive. 

Along the decision tree in Figure 3.12, the final test 11 Mn T<∆ −  indicates that the 

frame difference between 1−nY  and 10−nY  is relatively small, suggesting that the candidate 

cut detected in the first phase is likely to be a true positive, which is verified by 1ˆ =∆ n . 

To remove false negatives in the third phase, it is proposed to use the strongest 

possible test for a cut. If the input non-cut candidate satisfies such a strongest possible 

condition, it is likely that the input is a false negative. The entire decision tree for the third 

phase false negative detection is illustrated in Figure 3.13 where the strongest test is 

defined as: 
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( ) 1ˆ&1ˆ&1ˆ&&&1ˆ|| ===∆>>=> nnnLnLnnHn prTTpDTD γ . (3.36) 

As can be seen, the condition is to test that, if all content features including neighbourhood 

frame difference and comparative inter-frame difference for colour, luminance, and edges 

are high, it is likely that the non-cut candidate could be a false negative. To verify such a 

possibility, two context tests are carried out in Figure 3.13. Firstly, if the comparative 

inter-frame difference at its preceding frame 1−nY  is relatively low by testing Ln T<∆ −1 , 

this confirms that all the peaks indicated by (3.36) are not accompanied by any inter-frame 

difference peak at 1−nY , and thus the non-cut candidate should be declared a false negative 

and hence detected as a cut instead. Otherwise, I further test the context: Mn TM <  to see 

if all the peaks indicated by (3.36) are caused by motion or not. If the test is negative, 

indicating that motion is sufficiently strong to account for all the peaks at nY , the input 

non-cut candidate is maintained as a non-cut. 

 

 

 

 

 

Figure 3.13 The third phase: decision tree for removal of false negatives 

 

 

Non-cut candidates in 

Ln T<∆ −1

 

Cut 

Yes 

Yes 

No 
Mn TM <

 

No 

Yes 
Cut 

Non-cut 

No 
Non-cut 

( )
1ˆ&1ˆ&1ˆ&

&&1ˆ||

===∆

>>=>

nnn

LnLnnHn

p

TTpDTD

γ

γ

 



Chapter 3. Video Segmentation 
 

68 
 

3.5.3 Dissolve Detection 

Many existing methods for dissolved cut detection [14] use the intensity variance curve 

(IVC), which shows a roughly parabolic (‘U’ type) shape when a gradual transition occurs, 

to locate the shot boundary of the gradual transition in dissolves. The principle behind it is 

that a gradual transition incurs gradual increase and gradual decrease inside the intensity 

variance. However, the U shape inside IVC is often corrupted in reality due to motion, 

camera flash and many other factors. Consequently, it is difficult in practice to capture 

such transition processes, or in other words, the transition process is not sufficiently clear 

to be captured by the intensity variance curve. As a result, the detected shot boundaries 

based on such an ambiguous parabolic shape of IVC become inaccurate. In addition, 

misdetection of such parabolic shapes could cause error propagation, producing negative 

impact upon detection of other dissolves. Figure 3.14 illustrates an example of IVC for the 

video sequence 20051227-125800-CNN-LIVEFROM-ENG from TRECVID 2005, from 

which it can be seen that the parabolic shape is not sufficiently clear and thus making it 

difficult to detect dissolves accurately in many practical cases. Looking for an alternative 

feature, presenting a stronger indication of dissolves, a range of possibilities were tested 

and  a new feature, MPEG motion compensation error indicator is proposed, which is 

defined as follows:  

∑
=×

=
nC

in
n iDC

C
err

1
)(1

σ
. (3.37) 

where nC  is the number of inter-coded blocks, and σ  is the threshold applied by MPEG to 

decide whether a block should be inter-coded or not. 
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Figure 3.14 Example illustration of IVC with respect to dissolves 

 

Figure 3.15 Illustration of MPEG motion compensation error graph on dissolves 

In comparison with IVC, the MPEG motion compensation error indicator presents 

two advantages: (i) it can be readily extracted from MPEG compressed domain; (ii) it 

presents a sequence of peaks during dissolve transitions and thus can be exploited to detect 

dissolves. Figure 3.15 presents a graph of the MPEG motion compensation error for the 
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same example video illustrated in Figure 3.14, from which it is seen that a sequence of 

peaks is present in every dissolve. While such peaks may not indicate the increase and the 

decrease transition for dissolves, their starting and ending locations would certainly be 

helpful for detection of boundaries inside the dissolves. 

To optimize the exploitation of the MPEG motion compensation error indicator, a 

two-step procedure is proposed for dissolve detection, where the first step is to pre-process 

the video sequence and remove those unlikely to be dissolve candidates, and the second 

step is to apply a finite state machine (FSM) to detect and verify the dissolves. In 

comparison with existing work in FSM [105], the proposed FSM features: (i) dissolve 

candidates are detected by monitoring the MPEG motion compensation errors in DC 

values; (ii) the detected dissolve candidates are further verified by testing the colour 

correlation between the beginning and the ending frame of the detected dissolve. 

During the gradual transition, frames within a dissolve actually present large inter-

frame difference as well as MPEG motion compensation errors. Therefore, the following 

pre-processing is defined to remove those frames that are not likely to be a dissolve 

candidate: 
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 (3.38) 

where LT  and HT  are the lower and higher thresholds as defined in Table 3.8, and T  is a 

new threshold introduced for nerr  , which is determined as 0.015 via empirical studies as 

discussed in the previous sections. 
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Essentially, the pre-processing forces the value of nerr  to be zero when either the 

inter-frame difference indicator or the MPEG motion compensation error indicator is 

sufficiently small. Under the context of strong motion indicated by Hn TM > , however, 

the threshold for the inter-frame difference indicator needs to be increased in order to 

reduce the negative effect brought in by the strong motion. 

Following the pre-processing, the remaining operation is focused on those frames 

with non-zero nerr  values to detect candidates for dissolves under the principle that 

dissolves present a sequence of peak values in nerr . To this end, an FSM with five states is 

proposed to complete the detection, details of which are summarized in Table 3.10 and 

Figure 3.16. 

Table 3.10 FSM states description 
State-ID State Description 
State_0 Initial state 
State_1 Detection state for the beginning frame of a possible dissolve candidate 
State_2 Detection state for the ending frame of a possible dissolve candidate 
State_3 Verification state 
State_4 Dissolve detected state 

 

 

 

 

 

 

Figure 3.16 Structure of FSM for dissolve detection 
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and E stand for the beginning frame and the ending frame of the dissolve candidate, and 

EBp ,  is their colour correlation which is defined in (3.26) by replacing n-1 and n with B 

and E. In addition, three fixed length values, minL , maxL  and transitionL   are used to control i  

in recording the length of the dissolve candidate. minL  and maxL  controls the minimum and 

the maximum length of all dissolve candidates. After the pre-processing, most of the 

frames within the dissolve present non-zero values of nerr  and these frames are closer to 

each other compared to the neighbouring normal frames. Hence, transitionL  is utilized as a 

distance measurement for grouping these candidate frames of a dissolve together. In this 

algorithm, the parameters are set as follows: 5min =L , 100max =L  and 10=transitionL . 

Table 3.11 Definition of conditions for inter-state transition in FSM 
Condition Number Condition Definition 

1 ( )0&0 1 => −nn errerrif  
2 ( )min&0 Lierrif in ≥=+  
3 ( )010 =+Eerrif  

4 
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5 ( )transitioniE Lierrif <=+ &0  
6 ( )max&0 Lierrif in ≥≠+  
7 ( )max&0 Lierrif in <≠+  

 
Given the current frame nY , its pre-processed MPEG compensation error indicator 

and its preceding error indicator are examined (condition-1). If the condition 1 is satisfied, 

the initial state transition is to state_1, where the current frame is taken as the starting 

frame of a possible dissolve candidate )( nB = , and the length of the possible dissolve 

candidate is recorded by the variable i , while further frames are taken in to see whether 

there should be further transitions from state_1. 
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As seen in Figure 3.16, state_1 has three conditions to be tested, i.e. 2, 6 and 7. 

When condition 2 is satisfied, indicating that the dissolve candidate has reached its end 

( )inE += , and thus the transition should be to state_2. Condition 6 sets up a maximum 

length for dissolves to be detected. In other words, if the dissolve candidate has recorded 

maxL  frames where all MPEG compensation error indicators are non zeros, the 

state_1should go straight to state_3 for its verification. Satisfaction of condition 7 will 

keep it in the state_1 without any transition since the maximum length for dissolves is not 

reached. Finally, if none of the three conditions are satisfied, the state has to go back to the 

initial state. 

To detect that ( )inE +=  is the ending frame of the dissolve candidate, I require 

that transitionL  continuous frames with 0=+inerr  (specified by condition 5) should be 

recorded. If condition 3 is satisfied, indicating that transitionL  continuous frames with 

0=+inerr  have been recorded, the state transfers to state_3 for verification of the dissolve 

candidate. Otherwise, the state will transfer back to state_1 as indicated in Figure 3.16, 

and the corresponding frame will be taken as part of the dissolve candidate.  

At state_3, verification is done by two examinations as indicated by condition 4. 

One is to examine the colour correlation between the beginning frame and the ending 

frame of the dissolve candidate, and the other is to examine the average of the 

compensation errors for all the frames inside the dissolve candidate. If the candidate is a 

true dissolve, there should exist some colour dissimilarity as defined in (3.26), or 

alternatively, the average of the compensation errors is larger than a threshold. Satisfaction 

of this condition leads to state_4, where a dissolve is detected. Otherwise, the state has to 

be transferred back to the initial state. 
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3.5.4  Experimental Results  

To evaluate the proposed algorithm, extensive experiments were carried out on a number 

of test video clips from the TRECVID activity, which is organized by National Institute of 

Standards and Technology (NIST) annually [95]. I also submitted my detection results as 

one of the 9 runs to participate in the shot boundary detection task in TRECVID 2007, and 

therefore, the experimental results reported here are mainly for the TRECVID 2007 test 

data set, in which the resolution of the test sequences is 240352×  pixels. Table 3.12 

provides a summary description of all test video sequences, including the total number of 

frames, cuts and gradual transitions within each video clip. 

Table 3.12 Description of the video sequences in the test set 
Video name Number of frames Cut count Gradual transition count 

BG_2408 35892 103 18 
BG_9401 50049 89 3 

BG_11362 16416 104 4 
BG_14213 83115 107 60 
BG_34901 34389 225 15 
BG_35050 36999 100 2 
BG_35187 29025 135 23 
BG_36028 44991 87 0 
BG_36182 29610 96 13 
BG_36506 15210 77 6 
BG_36537 50004 259 30 
BG_36628 56564 196 6 
BG_37359 28908 165 5 
BG_37417 23004 84 4 
BG_37822 21960 120 9 
BG_37879 29019 95 4 
BG_38150 52650 215 4 

In total 637805 2257 206 
 

The computing environment used for software implementation of the proposed 

algorithm includes: (i) a PC with 1.73GHz CPU, 512MB memory and windows XP 

operating system; (ii) Microsoft VC++ 6.0 programming platform. The performances of 

the proposed algorithm are measured by recall rate, precision rate and F1 rate as defined 

by TRECVID.  
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Table 3.13 presents the experimental results using the proposed algorithm for all 

the 17 sequences as evaluated and announced by TRECVID 2007, where the recall and 

precision rate figures are listed in four groups, including overall, cuts, gradual transitions 

and gradual transition boundary frame accuracy, in accordance with the submission 

requirement specified by TRECVID 2007 organizers. While the two groups, cuts and 

gradual transitions, directly relate to the performances on cut detection and gradual 

transition detection respectively, the overall recall and precision rates are worked out 

according to the proportion of cuts and gradual transitions inside each video sequence. The 

group, gradual transition boundary frame accuracy, is used by TRECVID 2007 to measure 

the accuracy of boundary detection for gradual transitions, and the figure specifies the 

percentage of detected frames that overlap with the ground truth. 

From Table 3.13, it can be seen that the proposed algorithm provides some 

excellent experimental results as well as some poor results depending on the nature of the 

video sequence content. The performance on cut detection is overwhelmingly better than 

gradual transitions. Specifically, it is noticed that the proposed algorithm produced zero 

detection rates for three video sequences, among which one indicates an excellent 

performance for the video sequence BG_36028 but poor performances for the other two 

sequences, BG_36182 and BG_36628.  Further analysis reveals that the poor performance 

of the proposed algorithm is largely due to the missed type defined by TRECVID 2007 as 

“others”, which are neither standard dissolve gradual transition nor cuts. Yet in my 

proposed algorithm, no techniques have been designed to target such special type of shot 

boundaries. Figure 3.17 illustrates two examples of such “others”, from which it is seen 

that part-(a) is very close to a cut since only a small part of the picture goes through the 
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wipe transition inside the second frame and then the third frame is entirely different. In 

part-(b) of Figure 3.15, the transition part is again very small, only involving a few white 

letters inside the middle of the picture. As the proposed algorithm is designed primarily for 

those standard cuts and dissolves, the performance on these kinds of “others” are poor and 

more dedicated detection techniques are required in the future work. 

Table 3.13 Recall and precision results for 17 sequences 
Video name Overall Cut 

Recall Precision Recall Precision 
BG_2408 0.958 0.943 0.961 0.970 
BG_9401 0.934 0.843 0.943 0.988 

BG_11362 0.888 0.653 0.913 0.655 
BG_14213 0.874 0.797 0.971 0.954 
BG_34901 0.895 0.884 0.928 0.976 
BG_35050 0.950 0.941 0.96 1.0 
BG_35187 0.835 0.874 0.911 0.891 
BG_36028 0.977 0.867 0.977 0.904 
BG_36182 0.779 0.944 0.885 1.0 
BG_36506 0.807 0.893 0.831 0.969 
BG_36537 0.878 0.927 0.915 0.995 
BG_36628 0.905 0.915 0.933 0.989 
BG_37359 0.941 0.958 0.945 1.0 
BG_37417 0.863 0.873 0.880 0.913 
BG_37822 0.891 0.898 0.9 0.955 
BG_37879 0.757 0.903 0.768 1.0 
BG_38150 0.922 0.935 0.934 1.0 

 
 
 

Video name Gradual transition Gradual transition frame-based 
 Recall Precision Recall Precision 

BG_2408 0.944 0.809 0.8958 0.4841 
BG_9401 0.666 0.117 0.9091 0.7692 

BG_11362 0.25 0.5 0.5094 1.0 
BG_14213 0.7 0.567 0.8281 0.8124 
BG_34901 0.4 0.206 0.7692 0.2564 
BG_35050 0.5 0.142 0.6800 1.0 
BG_35187 0.391 0.692 0.8209 0.9643 
BG_36028 0 0 0 0 
BG_36182 0 0 0 0 
BG_36506 0.5 0.333 0.8012 0.8808 
BG_36537 0.566 0.472 0.5395 0.6287 
BG_36628 0 0 0 0 
BG_37359 0.8 0.363 0.9423 0.5568 
BG_37417 0.5 0.333 0.7647 1.0 
BG_37822 0.777 0.466 0.7160 0.9206 
BG_37879 0.5 0.2 1.0 0.7624 
BG_38150 0.25 0.066 0.7500 0.0612 
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Part-(a) First example of “others” 

 

 

Part-(b) Second example of “others” 

Figure 3.17 Illustration of “others” 
 

Table 3.14 lists the average experimental results produced by all 15 participating 

teams, and Table 3.15 lists the F1 measurement of all the participating teams’ 

performances as announced in TRECVID 2007, where my submission is denoted by the 

letter M and only the results produced by the proposed algorithm are included. As 

indicated by F1 measurements, my proposed algorithm achieved the 5th best overall 

performance, the 5th best performance for gradual transition detection, the 4th best 

performance for gradual transition boundary frame accuracy, and the 6th best performance 

for cut detection. It is worthy of mention that the differences among the top 6 participating 

teams is small, the results of which are summarized in Table 3.16. 
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Table 3.14 Recall and precision results for all teams in TRECVID 2007 
Team name Overall Cut 

Recall Precision Recall Precision 
A 0.7435 (14) 0.9505 (2) 0.8035 (13) 0.9540 (5) 
B 0.9419 (3) 0.9506 (1) 0.9718 (2) 0.9639 (2) 
C 0.9220 (4) 0.8210 (9) 0.9614 (5) 0.9591 (4) 
D 0.8879 (9) 0.9120 (5) 0.9689 (4) 0.9120 (10) 
E 0.8360 (12) 0.7392 (12) 0.8840 (12) 0.8094 (12) 
F 0.8801 (10) 0.4995 (15) 0.9064 (11) 0.7429 (14) 
G 0.8797 (11) 0.8157 (10) 0.9201 (9) 0.9346 (7) 
H 0.7514 (13) 0.8646 (8) 0.7663 (15) 0.8885 (11) 
I 0.9018 (6) 0.8726 (7) 0.9288 (7) 0.9337 (8) 
J 0.9036 (5) 0.9284 (4) 0.9304 (6) 0.9620 (3) 
K 0.9509 (2) 0.9328 (3) 0.9692 (3) 0.9763 (1) 
L 0.9005 (7) 0.6171 (13) 0.9276 (8) 0.9154 (9) 
M 0.8890 (8) 0.8870 (6) 0.9200 (10) 0.9520 (6) 
N 0.9525 (1) 0.6080 (14) 0.9778 (1) 0.7248 (15) 
O 0.7108 (15) 0.7514 (11) 0.7758 (14) 0.7514 (13) 

 

 

 

 

 

 

 

Team name Gradual transition Gradual transition Frame-based 
Recall Precision Recall Precision 

A 0.0900 (13) 0.6785 (2) 0.5365 (11) 0.9315 (1) 
B 0.6142 (3) 0.7579 (1) 0.7312 (4) 0.9279 (2) 
C 0.4909 (10) 0.2555 (8) 0.6628 (6) 0.7927 (10) 
D 0 (14) 0 (14) 0 (14) 0 (14) 
E 0.3124 (12) 0.2455 (9) 0.5811 (9) 0.8105 (8) 
F 0.5923 (6) 0.0937 (13) 0.6540 (8) 0.6056 (13) 
G 0.4378 (11) 0.2233 (10) 0.5390 (10) 0.8510 (6) 
H 0.5873 (8) 0.6458 (3) 0.6584 (7) 0.8687 (5) 
I 0.5922 (7) 0.4008 (6) 0.4010 (12) 0.8013 (9) 
J 0.6118 (4) 0.6298 (4) 0.6824 (5) 0.8894 (4) 
K 0.7504 (1) 0.6036 (5) 0.7755 (2) 0.8382 (7) 
L 0.6014 (5) 0.1332 (12) 0.7490 (3) 0.7292 (11) 
M 0.5530 (9) 0.3940 (7) 0.7920 (1) 0.7180 (12) 
N 0.6747 (2) 0.1972 (11) 0.2649 (13) 0.9096 (3) 
O 0 (14) 0 (14) 0 (14) 0 (14) 

*The number in brackets is the rank of the corresponding value from each team. 
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Table 3.15 F1-measure results for all teams 
Team 
name Overall F1 Cut F1 Gradual transition 

F1 
Gradual transition 

frame-based F1 
A 0.8343 (9) 0.8723 (10) 0.1563 (12) 0.6724 (8) 
B 0.9460 (1) 0.9677 (2) 0.6602 (1) 0.8177 (1) 
C 0.8651 (7) 0.9601 (3) 0.2725 (8) 0.7180 (7) 
D 0.8975 (4) 0.9372 (5) 0 (14) 0 (14) 
E 0.7815 (10) 0.8431 (11) 0.2287 (10) 0.6402 (10) 
F 0.6280 (15) 0.8158 (13) 0.1462 (13) 0.5971 (11) 
G 0.8455 (8) 0.9272 (8) 0.2818 (7) 0.6593 (9) 
H 0.7500 (11) 0.7671 (14) 0.5769 (4) 0.7481 (5) 
I 0.8847 (6) 0.9307 (7) 0.4532 (6) 0.5344 (12) 
J 0.9148 (3) 0.9456 (4) 0.6038 (3) 0.7722 (3) 
K 0.9414 (2) 0.9727 (1) 0.6577 (2) 0.8056 (2) 
L 0.7230 (13) 0.9190 (9) 0.1768 (11) 0.7384 (6) 
M 0.8880 (5) 0.9357 (6) 0.4602 (5) 0.7532 (4) 
N 0.7261 (12) 0.8241 (12) 0.2696 (9) 0.4102 (13) 
O 0.6773 (14) 0.7073 (15) 0 (14) 0 (14) 

Our Rank 5 6 5 4 

*The number in brackets is the rank of the corresponding F1 value from each team. 
 

Table 3.16 Top 6 F1 results in TRECVID 2007 
Overall F1 Cut F1 Gradual transition F1 Gradual transition 

Frame-based F1 
0.9460(B) 0.9727(K) 0.6602(B) 0.8177(B) 
0.9414(K) 0.9677(B) 0.6577(K) 0.8056(K) 
0.9148(J) 0.9601(C) 0.6038(J) 0.7722(J) 
0.8975(D) 0.9456(J) 0.5769(H) 0.7532(M) 
0.8880(M) 0.9372(D) 0.4602(M) 0.7481(H) 
0.8847(I) 0.9357(M) 0.4532(I) 0.7384(L) 

*The letter in brackets is the name of the corresponding team. 
 

Table 3.17 Mean runtime of participants in TRECVID 2007 
Team name Runtime (seconds) Ratio to real-time Rank 

A 10586.3 0.4150 9 
B 7325.5 0.2871 8 
C 4157.9 0.1630 3 
D 17540 0.6875 12 
E 611200.2 23.9572 15 
F 15637.9 0.6130 11 
G 3615.1 0.1417 2 
H 96948.8 3.8001 14 
I 5517.9 0.2163 6 
J 1686.5 0.0661 1 
K 12974.7 0.5086 10 
L 7319.7 0.2869 7 
M 5357.6 0.2100 5 
N 4223.1 0.1656 4 
O 42397.3 1.6618 13 

Real-time of all videos playing               25512.2 
Our performance 4 times faster than video real-time playing Rank 5 
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Table 3.17 presents the runtime of the proposed algorithm and TRECVID 2007 

participants. As indicated by the ratio of runtime to real-time video playing, my algorithm 

is 4 times faster than real-time video playing. 

3.5.5 Conclusions 

In Section 3.5, I describe a hierarchical content-aware algorithm with multiple content 

difference indicators and thresholds for shot cut detection. While this area has been well 

researched over the past decades, the proposed algorithm has made three contributions. 

Firstly, a hierarchical content-aware approach with multiple content difference indicators 

and multiple thresholds is proposed to deal with cuts and dissolves in practical cases, 

which are much more complicated than theoretically described or expected. The 

application of each individual threshold is controlled by multiple context indicators 

extracted in compressed domain. Secondly, the entire detection process is organized by 

decision trees as well as FSM to achieve operation efficiency and effectiveness in its 

performances. Thirdly, a coarse-to-fine procedure is introduced with pre-processing and 

post-processing modules to reduce the computation cost and increasing its detection 

reliability. Extensive experiments demonstrate that the proposed algorithm achieves 

promising results and performances for a well-known but complicated test set (TRECVID 

2007), where video sequences present a wide range of cuts and gradual transitions under 

various circumstances and mixed scene changes. 

While empirical study on training video sequences is required to determine the 

multiple thresholds, the specific process is much simpler than the training and learning 

process for machine learning approaches such as SVM [7]. As illustrated in Table 3.8, 

such empirical study only needs to determine the lower threshold and higher threshold, 
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where the principle is very clear that above LT , the corresponding frame difference 

indicator should enable all cuts to be detected, and above HT , no false positives should 

exist. Following that, medium thresholds are calculated via equation (3.29), providing 

more fine-tuned scopes for detecting cuts under complicated contexts. Similar to machine 

learning approaches, the proposed algorithm is also sensitive to training video sequences 

in special cases, such as a shot change with very small content difference not occurred 

inside the training sequences. However, such special cases are rare in practice and often 

require dedicated attention as illustrated in Figure 3.17. Under this circumstance, machine 

learning approaches will require no exception simply because learning from what 

happened inside the training video sequences is primarily required for all machine learning 

approaches to detect shot changes. To this end, the robustness of the proposed algorithm 

remains the same as those machine learning approaches. Due to the nature of context-

aware with multiple difference indicator and multiple thresholds, however, the proposed 

algorithm could be more robust than machine learning approaches. This can be established 

on the grounds that, while one content difference indicator remains small, other content 

difference indicators could be high as identified by multi-level thresholds. Such 

advantages are illustrated in Figure 3.11 to Figure 3.13. 

Finally, the proposed algorithm is not strong enough for the detection of “others”.  

It usually includes very complicated transitions, such as part of the picture incurring 

gradual transition, and picture-in-picture transition. The extraction of novel features and 

the use of relevant knowledge-supported rules would improve the detection performance 

of “others” in the future work. 
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3.6 A Fuzzy Logic Method of Feature Representation for 

Shot Boundary Detection 

In this section, all features are extracted in the compressed domain exploiting MPEG 

compression techniques and features are organized into a fuzzy logic representation. Then 

a uniform framework based on SVM is implemented for cut and gradual transition 

detection.  

3.6.1 Feature Selection 

To correctly locate shot boundary, the first requirement is to select effective features. 

Another criterion is that the feature extraction should be robust to disturbing factors, such 

as lighting changes and motion. I choose four kinds of features as the measurement for 

shot detection. The first feature is inter-frame difference, which measures the difference 

between frames in a local context. The second feature is motion, which calculates camera 

and object movements. The third feature is luminance energy, which detects luminance 

changes between frames, i.e. flashing light. The fourth feature is motion compensation 

error (MCE), which is a unique feature for gradual transition detection. All the features are 

examined in a sliding window containing the DC components of 12 consecutive images, 

i.e. { }5456 ,,...,,...,, ++−− nnnnn fffff . 

3.6.1.1 Inter-frame Difference 

Given a DC image in the YUV domain, a normalized histogram with 32 bins is 

constructed. The inter-frame difference of the histogram is used to measure the temporal 

content change. By representing such normalized Y, U and V histograms as: 



Chapter 3. Video Segmentation 
 

83 
 

( )3221 ,..., YnYnYnYn hhhH = , ( )3221 ,..., UnUnUnUn hhhH = , ( )3221 ,..., VnVnVnVn hhhH =  respectively, an inter-frame 

difference between frame nf  and frame mf  can be defined as: 
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where yN , uN  and vN  are the corresponding numbers of 88×  blocks for Y, U and V 

components respectively. 

Given a shot cut between frame 1−nf  and frame nf , the frames { }16 ,..., −− nn ff  

belong to the previous shot, while the frames { }5,..., +nn ff  belong to the subsequent shot. 

Therefore, the inter-frame differences could be classified into two groups, the differences 

inside shots and differences between shots. The inter-frame differences inside the previous 

and subsequent shots are measured by the vectors { })1,6(),2,5(),3,4( −−∆−−∆−−∆=∆ nnnnnnp  

and { })5,(),4,1(),3,2( +∆++∆++∆=∆ nnnnnns  respectively. In addition, the inter-frame 

difference between two shots is measured by the vector { }6...1),1,( =−+−∆=∆ iinint . 

This is illustrated in the following figure. 

The inter-frame Difference between two shots:  

)}5,6(),...,3,4(),...,,1({ +−∆+−∆−∆=∆ nnnnnnt  

 

 

 

 

The inter-frame difference inside the previous shot:       The inter-frame difference inside the subsequent shot: 

{ })1,6(),2,5(),3,4( −−∆−−∆−−∆=∆ nnnnnnp                      { })5,(),4,1(),3,2( +∆++∆++∆=∆ nnnnnns  

Figure 3.18 Three types of inter-frame differences for cut detection 

6−nf  5−nf  4−nf  3−nf  2−nf  1−nf  nf  1+nf  2+nf  3+nf  4+nf  5+nf  
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On the other hand, given the gradual transition candidate with a serial of frames 

{ }eis fff ,...,,..., , the whole transition is divided into 6 segments with equal length, which 

is taken as the re-sample rate t . This segmentation is based on the fact that the minimum 

length of a gradual transition is 6 frames. Hence, the gradual transition candidate is 

represented by the re-sampled frames { }etststststss fffffff ,,,,,, 5432 +++++ . Therefore, 

the inter-frame difference for a gradual transition candidate is measured by the 

neighbouring inter-frame difference vector 

}4...1),,5(),...,)1(,(),...,,({ =+∆⋅++⋅+∆+∆=∆ ietstististssn  and the expansion inter-

frame difference vector )},(),5,(),4,2({ eststststse ∆++∆++∆=∆ . This is illustrated in 

the below figure. 

The expansion inter-frame difference: )},(),5,(),4,2({ eststststse ∆++∆++∆=∆  
 

 

 

The neighbouring inter-frame difference:

)},5(),...,4,3(),...,,({ etstststssn +∆++∆+∆=∆  

Figure 3.19 Two types of inter-frame differences for gradual transition detection 

3.6.1.2 Motion 

As MPEG video has motion information available in the compressed domain, I extract a 

normalized motion feature based on the MPEG motion vector ( )),(),,( jiVjiV yx  in the thn   

image as: 

tsf 3+  tsf 2+  tsf 4+  tsf 5+  tsf +  sf  ef  
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where ( )vyvx TT ,  is the maximum allowable motion vector designated by MPEG. erNint is the 

number of inter-coded macro blocks. For an I frame, the motion information is copied 

from the latest P frame to be output. 

3.6.1.3 Luminance Energy 

Luminance is a basic and reliable visual feature for checking lighting change in video 

shots. The luminance energy of the thn  image is defined in (3.42) as: 

∑∑
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Here, M  and N  are the number of macro blocks in a frame on the vertical and horizontal 

direction, respectively. )(, ny ji  is the luminance value of the pixel ),( ji  in the thn  DC 

image. 

3.6.1.4 Motion Compensation Error 

One of the spatial features widely used for gradual transition detection is the intensity 

variance curve (IVC), which often has an approximately parabolic (‘U’ type) shape when 

a gradual transition occurs. However, the U shape IVC is often corrupted in reality due to 

motion, camera flash and many other factors. Consequently, it is difficult in practice to 

capture such transition processes. Looking for an alternative feature, presenting a stronger 

indication of gradual transitions, I tested a range of possibilities and propose a new feature, 

MPEG motion compensation error (MCE), which is defined as follows: 
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Here nC  is the number of inter-coded blocks and κ  is the threshold applied in MPEG 

video to decide whether a block should be inter-coded or not. In comparison with IVC, 

MCE possesses two advantages: (i) it can be readily extracted from MPEG compressed 

domain; (ii) it presents a sequence of peaks during gradual transitions and thus can be 

exploited to detect gradual transitions.  

3.6.2 Feature Representation using Fuzzy Logic 

Fuzzy logic is introduced to represent the relationships of the feature elements inside a 

sliding window of 12 frames. The features include inter-frame difference, motion, 

luminance energy and motion compensation error, which are defined as linguistic 

variables. Three fuzzy sets, small, medium and large are defined for each linguistic 

variable and I choose a Gaussian membership function for each fuzzy set. The relation 

between the feature elements inside the sliding window can be represented by the fuzzy 

operator AND. Hence, the fuzzification of the feature is represented as follows, where 

( )LMS µµµµ ,,∈ indicates the membership functions of small, medium and large. 

• The fuzzification of the inter-frame difference in the previous shot: 

            ( )( ) ( )( ) ( )( )1,62,53,4~ −−∆−−∆−−∆=∆ nnANDnnANDnnp µµµ  

• The fuzzification of the inter-frame difference in the subsequent shot: 

            ( )( ) ( )( ) ( )( )5,4,13,2~ +∆++∆++∆=∆ nnANDnnANDnns µµµ  

• The fuzzification of the inter-frame difference between two shots: 

            ( )( ) ( )( )5,6...,1~ +−∆−∆=∆ nnANDANDnnt µµ  

• The fuzzification of the neighbouring inter-frame difference in gradual transition: 
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( ) ( ) ( )),5(,...)4,3(...,),(~ etsANDtstsANDtssn +∆++∆+∆=∆ µµµ

 
• The fuzzification of the expansion inter-frame difference in gradual transition: 

            
( ) ( ) ( )),()5,()4,2(~ esANDtstsANDtstse ∆++∆++∆=∆ µµµ

 
• The fuzzification of motion in the x direction: 

             ( )( ) ( )( )5...6~ +−= nMANDANDnMM xxx µµ  

• The fuzzification of motion in the y direction: 

            ( )( ) ( )( )5...6~ +−= nMANDANDnMM yyy µµ  

• The fuzzification of luminance energy: 

             ( )( ) ( )( )5...6~ +−= nANDANDn ηµηµη  

• The fuzzification of motion compensation error: 

            ( )( ) ( )( )5...6~ +−= nANDANDn εµεµε  

3.6.3 Cut Detection 

SVM is utilized to determine the shot cuts using feature vectors generated from the feature 

fuzzification process. The chosen feature vector is{ }η~,~,~,~,~,~
yxtsp MM∆∆∆ . The feature 

vectors labelled as cut or non-cut form the training set for SVM. During the training 

process, a parallel grid search based on cross-validation is applied to optimize penalty 

factor C  and kernel parameter γ  for an SVM model with radial basis function (RBF) 

kernel. Since the cross-validation procedure solves the over fitting problem, pairs of 

),( γC  are tried and the one with the best cross-validation accuracy is selected. The strong 

generalization ability of the SVM facilitates accurate cut detection. 
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3.6.4 Gradual Transition Detection 

The gradual transition detection contains three phases: (i) gradual transition candidate 

frames are selected by the SVM; (ii) the selected frames are grouped by a cluster scheme; 

(iii) the temporal difference of a gradual transition candidate is verified by SVM.  

In the first phase, SVM is utilized to determine the candidate frames within a 

gradual transition using the feature vector { }εη ~,~,~,~
yx MM , generated from the feature 

fuzzification process. Here, the motion and luminance features are combined to verify the 

peak values of motion compensation error. Because in the real cases, the movement of 

large objects like human beings and the change of lightning condition will cause peak 

values of motion compensation error other than a true gradual transition.  

The second operation is to group the candidate frames selected by phase one into 

gradual transition candidates for further verification. We propose a cluster procedure to 

complete the grouping, details of which are given below. 

• Input: candidate frames iG  in a circular buffer. 

• Output: gradual transition candidates  

• Procedure:  

            Step 1: Select the candidate frame iF  in iG , with smallest frame number as the 

seed for cluster iC , and subtract iF  from iG . If the last frame in the buffer is 

reached, wait for buffer to fill until the whole video sequence is processed. 

            Step 2: If there exists another candidate frame jF  in the rightwards neighbourhood 

of Hn  frames, absorb frame jF  in cluster iC . Subtract jF  from iG . 
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            Step 3: Iteratively execute step 3, until there are no candidate frames in the 

rightwards neighbourhood of Hn  frames. As a result, cluster iC  constitutes a 

gradual transition candidate. Go to step 1. 

In the cluster procedure, Hn  represents the scale of the neighbourhood. Using a 

multi-resolution approach, it is chosen from the set (5,10,15,20) in the experiments. The 

use of circular buffer to monitor the frames to be clustered enables the real-time detection 

of gradual transitions. 

According to the re-sample scheme proposed in Section 3.6.1.1, seven re-sampled 

motion elements for both x and y direction, and seven re-sampled luminance elements are 

obtained within a gradual transition candidate. Furthermore, the fuzzified re-sampled 

motion and luminance features are denoted as { }ss
y

s
x MM η~,~,~ . For the process of temporal 

verification of gradual transition detection, I use { }en
ss

y
s
x MM ∆∆ ~,~,~,~,~ η  as the vector for 

making the SVM decision.  

3.6.5 Experimental Results 

To evaluate the proposed algorithm, we carried out extensive experiments on a number of 

test video clips from the TREC Video Retrieval Evaluation (TRECVID) activity which is 

organized annually by National Institute of Standards and Technology (NIST). The 

experimental results reported here are mainly for the TRECVID07 test data set, in which 

the resolution of the test sequences is 240352×  pixels. The whole video set consists of 

637805 frames from 17 videos, including 2257 cuts and 206 gradual transitions. 

Table 3.18 illustrates the performance of the current algorithm compared with 

those from participants in TRECVID07. The recall, precision and F1 rate are listed for 
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both cut and gradual transition. The time ratio of runtime to video play time is also 

compared. It shows that the current algorithm achieves very competitive results in terms of 

the detection rate. Also, the runtime of the current algorithm is 4 times faster than the 

video play time, which ensures the real time shot detection. 

Table 3.18 Performance of the proposed algorithm compared to teams from TRECVID 
2007 

Team 
Cut Gradual transition 

Time   ratio 
Recall Precision F1 Recall Precision F1 

A 0.80 0.95 0.87 0.09 0.68 0.16 0.42 
B 0.97 0.96 0.96 0.61 0.76 0.68 0.29 
C 0.96 0.96 0.96 0.49 0.26 0.34 0.16 
D 0.97 0.91 0.94 0.00 0.00 0.00 0.69 
E 0.88 0.81 0.84 0.31 0.25 0.28 23.96 
F 0.91 0.74 0.82 0.59 0.09 0.16 0.61 
G 0.92 0.93 0.92 0.44 0.22 0.29 0.14 
H 0.77 0.89 0.83 0.59 0.65 0.62 3.80 
I 0.93 0.93 0.93 0.59 0.40 0.48 0.22 
J 0.93 0.96 0.94 0.61 0.63 0.62 0.07 
K 0.97 0.98 0.97 0.75 0.60 0.67 0.51 
L 0.93 0.92 0.92 0.60 0.13 0.21 0.29 
M 0.92 0.95 0.93 0.55 0.39 0.46 0.21 
N 0.98 0.72 0.83 0.67 0.20 0.31 0.17 
O 0.78 0.75 0.76 0.00 0.00 0.00 1.66 

Current 0.98 0.98 0.98 0.64 0.84 0.73 0.21 
 

3.7 Summary 

In Section 3.2, we described a simple and fast algorithm for detection of both abrupt shot 

cuts and dissolved shot cuts. The proposed algorithm works in compressed domain via 

exploiting existing MPEG motion estimation and compensation mechanisms. While the 

proposed algorithm can save a lot of computation cost, extensive experiments support that 

the proposed algorithm also achieves superior performances over the existing counterpart. 

In summary, the feature and the advantage of the proposed algorithm can be highlighted as: 

(i) an integrated technique for both abrupt shot cut and dissolved shot cut detection; (ii) 

directly operates in compressed domain and thus suitable for real-time implementation; 
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and (iii) only two thresholds and two parameters are required for shot cut detection and yet 

the detection mechanism is made adaptive to the input video content; (iv) such technique 

will provide a range of useful applications for on-line video content analysis, processing 

and management. Specific examples include real-time scene change analysis for MPEG 

compressed video streams, on-line annotation of video sequences and shot-based video 

content retrievals. 

In Section 3.3, I propose techniques for shot boundary detection with two main 

contributions. Firstly, content-based rules via multiple indicators are acquired from 

compressed domain to detect cuts. Secondly, a coarse-to-fine procedure is introduced with 

a pre-processing module to lower the computation cost and a FSM to verify gradual 

transitions and locate their boundaries. Extensive experiments have demonstrated that the 

proposed algorithm is highly efficient and yields quite promising results in terms of recall 

rate and precision rate. 

In Section 3.4, my contribution for the submission to TRECVID 2007 on the shot 

boundary detection task is summarized as: (i) Novel features are extracted from the 

compressed domain and the feature selection is carried out using Adaboost. (ii) Typical 

gradual transition including fade in (out), dissolve and wipes, as well as a new type of 

gradual transition called “others” are detected. (iii) The MPEG decoding scheme is 

thoroughly studied so that the whole shot detection system is embedded in the compressed 

domain of the standard MPEG2 decoder to achieve the real-time efficiency.  

In Section 3.5, a context awareness algorithm with multiple thresholds and features 

for shot cut detection is described. While this area is well researched for the past decades, 

the proposed algorithm has made two contributions. Firstly, given the fact that presence of 
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cuts and gradual transitions in practical cases is much more complicated than theoretically 

described or expected, I applied multiple thresholds to deal with various and different 

cases, and application of each individual threshold is controlled and indicated by multiple 

context features, all of which are extracted in MPEG compressed domain. Secondly, the 

complicated controlling process and detection is organized by decision trees as well as 

FSM to achieve operation efficiency as well as effectiveness in its performances. Thirdly, 

a coarse-to-fine procedure is introduced with pre-processing and post-processing modules 

to reduce the computation cost and increasing its detection reliability. Extensive 

experiments demonstrate that the proposed algorithm achieves promising results and 

performances in a test set, where video sequences present a wide range of cuts and gradual 

transitions under various circumstances and mixed scene changes. The proposed algorithm 

presents certain level of weakness in dealing with special type of shot cuts, such as part of 

the picture incurs gradual transition, picture-in-picture transition, etc, which requires 

dedicated techniques and tailored designs for their correct detection. 

In Section 3.6, a fuzzy logic method of feature representation for shot detection is 

proposed. By carrying out extensive experiments, it is found that the proposed algorithm 

achieves very competitive results compared to other state-of-art algorithms. 
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Chapter 4 

Video Retrieval 

4.1 Introduction 

In this chapter, a novel analysis approach for the detection of video copies subject to 

complicated distortions is presented. The main contribution of the proposed method lies in 

three aspects. Firstly, a dedicated video distortion analysis is implemented for input videos, 

which ensures the accurate detection of the complicated distortions query videos may 

undergo. Secondly, simple signatures are extracted for the benefit of time and space 

efficiency and a frame mask is generated adaptively to reduce video temporal redundancy. 

Thirdly, a progressive matching process is implemented and the property of linear 

regression is utilized to find video copies. Extensive experiments were carried out using 

data from the TRECKVID 2008 content-based video copy detection task. The proposed 

video copy detection framework is very effective, and robust against spatial and temporal 

variations, in comparison with other state-of-art algorithms. 

4.2 A Novel Analysis Approach towards the Detection of 

Video Copies under Complicated Distortions 

In comparison with all existing approaches, a new algorithm is proposed in this chapter for 

video copy detection, in which combinations of complicated distortions are taken into 

consideration when those copied parts of query videos are determined. The advantage of 

the proposed algorithm lies in the fact that it is robust to a range of complicated distortions, 



Chapter 4. Video Retrieval 
 

94 
 

and yet capable of locating the copied segments inside original videos. Most of the video 

copy detection algorithms reported so far focus primarily on simple changes introduced by 

different encoding parameters or simple editing effects, such as letter-box and frame rate 

changes. Little research, however, has been carried out to address the combination of 

various distortions. 

4.2.1 Video Copy Detection Strategy 

By analyzing the causes and properties of video distortions, they are classified into five 

major categories, including geometrical editing, extra information insertion, video in video, 

video quality decline and temporal sequence editing. Geometrical editing is a video 

distortion that changes the geometry of the original frame. Shift, letter box and crop are 

examples of geometrical editing. Extra information insertion is a video distortion that 

inserts text or patterns into the original frame. Video in video is a video distortion that 

displays a foreground video over a background video. Video quality decline is a video 

distortion that changes encoding parameters or introduces disturbances. Encoding 

parameters include resolution, contrast, bit rate, gamma, etc. Disturbances are mainly 

noise or blur. Temporal sequence editing is a video distortion that changes the frame rate 

or the display order of original videos. Hence, my copy detection process is implemented 

in two major stages to handle the video distortions. The first one is a video distortion 

analysis stage. The second one is a signature extraction and matching stage. The overview 

of video copy detection strategy is shown in figure 4.1. 

In the video distortion analysis stage, the first three video distortions, including 

geometrical editing, extra information insertion and video in video, are analyzed and 

processed. Firstly, key frames are extracted to save computation time and space for 
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processing video distortions. Secondly, geometrical editing is analyzed and processed 

using a cluster scheme. Thirdly, extra information insertion is detected via the difference 

frame calculation. Finally, video in video is determined by an edge search method. 

In the signature extraction and matching stage, the last two video distortions, video 

quality decline and temporal sequence editing are tackled. Firstly, each key frame is scaled 

down for the sake of signature representation in terms of compression and robustness. 

Secondly, the corresponding frame mask is generated adaptively to filter the extra 

insertions. Thirdly, the input video is classified into video groups. Fourthly, query and 

target signatures are matched via my video group level and frame level comparison. 

Fifthly, linear regression is applied to the matched frame sequence. Finally, SVM is 

utilized to make the final decision based on the matching similarity and linear regression 

properties. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 4.1 Overview of video copy detection strategy. 

 

Video distortion analysis Signature extraction and matching 

Input video 

Key frame extraction 

Geometry distribution editing 

Extra information insertion 

Video in Video  

Temporal sequence editing 

Video quality decline 

Copy detection result 
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In order to maintain consistency between the query and target videos, extra 

information insertion and video in video are not carried out for the target videos in the 

video distortion analysis stage. As a result, frame masks are not generated for target videos.  

4.2.2 Video Distortion Analysis 

In order to save computation time and space for processing video distortions, key frames 

are extracted from input videos. Key frames should meet two requirements. First, key 

frames do not contain gap frames, i.e. monochrome frames, especially black or white 

frames that are inserted to separate video sequences, causing a visual gap effect. Second, 

key frames do not contain temporally redundant frames, i.e. static frames or colour bar 

frames that last for a long time. Examples of gap frames and temporally redundant frames 

are shown in Figure 4.2. Gap frames are characterised by uniform pixel intensities, while 

temporally redundant frames are characterised by very small frame differences. Hence, the 

normalized standard deviation and frame difference of pixel intensity are calculated as 

follows. 
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(4.2) 

where  t
jiI ,  is the intensity of pixel ),( ji  in the tht  frame and Pm  and Pn  are the number 

of pixels on the vertical and horizontal directions respectively. )(tR  measures the pixel 

change rate and varies in the range of )1,0( . ),( std F  measures the frame difference 

between the tht  frame and the thst )( +  frame and also varies in the range of )1,0( .  
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2th frame 
 

3th frame 4th frame 5th frame 6th frame 

     

7th frame  
 

8th frame  9th frame  10th frame  11th frame  

2.mpg gap frames 
 

 

631th frame  
 

632th frame  633th frame  634th frame  635th frame  

 

636th frame  
 

637th frame  638th frame  639th frame  640th frame  

154.mpg colour bar frames 
 

     

1350th frame  
 

1351th frame  1352th frame  1353th frame  1354th frame  

     

1355th frame  
 

1356th frame  1357th frame  1358th frame  1359th frame  

365.mpg static frames 

Figure 4.2 Examples of gap frames and temporally redundant frames. 
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Based on a visual test of a large number of video frames, a universal threshold uT  

is set at 5%, which represents the visual perception of no change. Hence, if the values of 

),( std F
 and )(tR  are lower than uT , temporally redundant and gap frames, respectively, 

are detected. 

Hence, the non gap frames and non temporally redundant frames constitute a 

meaning frame sequence of input video. Furthermore, key frames are searched based on 

meaningful frame sequence. The search process always begins with the latest detected key 

frame. The only exception is that, if it is the first time to screen the input meaningful frame 

sequence, the search process begins with the first meaningful frame. Given the latest 

detected key frame t , the subsequent frame )( st + , is determined as follows: 

( ) ( )
( )
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(4.3) 

where ( )stK ,  is a flag indicating that the subsequent frame )( st +  is determined to be a 

key frame when it is 1. Otherwise, it is determined to be a normal frame. The value of the 

threshold kth  controls the sampling rate of key frames, which was set as 10% in the 

experiment. 

The proposed processing of video distortions is based on the spatial position of 

area of interest (AOI) in key frames, which locates the margin introduced by the 

geometrical change. Hence, points of interest in key frames are extracted using the Harris 

detector [106]. Suppose that Axmin  and Axmax  are the lower and upper limits, respectively, of 

the AOI location in the vertical direction. Aymin  and Aymax  are those in the horizontal 

direction. The AOI is the 2-D area enclosed by ( )AA xx maxmin ,  and ( )AA yy maxmin , . It is likely that 
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noise exists in video sequences, especially in low quality video scenes. So it will not be 

reliable to operate directly on the location of AOI in each key frame. In addition, the 

change of geometry may be of different kinds within one video sequence, so the location 

of the AOI may vary from frame to frame. An example is shown in Figure 4.3. Therefore, 

it is necessary to group the key frames having similar locations of AOI together, and 

obtain the averaged location of AOI. The simplest strategy is to implement a two-class 

cluster in a temporal unit. The current cluster centre is obtained by averaging the location 

of AOI from key frames existing in the same cluster. Furthermore, the difference of the 

AOI location between the tht key frame and the thu  cluster centre is calculated as follows.  
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(4.4) 

where h  and w  are the height and width of the original frame, respectively. In the 

experiment, u  is up to 2.  

    

264th frame  
 

270th frame  2211th frame  2219th frame  

Sample frames from video 121.mpg 
 

 

600th frame  
 

1080th frame  2590th frame  3491th frame  

Sample frames from video 268.mpg 
 

Figure 4.3 Examples of different geometrical editing methods within one video. 
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Given the tht  key frame, I can test whether it has a different location of AOI, by 

thresholding the Ad  value with uT . If the Ad  value is less than uT , it is determined to have 

a similar location of AOI. Firstly, I set the first key frame as the seed of the first cluster, 

and the first temporal unit starts. Secondly, the second key frame is screened by 

calculating )1,2(Ad . If it is determined to have a different location for AOI, it is set as the 

seed of the second cluster. Otherwise, it belongs to the first cluster and the second cluster 

remains empty. Thirdly, the third key frame is compared with the existing cluster centres. 

)1,3(Ad  is calculated when it is compared to the first cluster centre. If the second cluster is 

not empty, )2,3(Ad  is also calculated. With a smaller difference in AOI location ( Ad  

value), if the third key frame is determined to have a similar AOI location, then it belongs 

to the corresponding cluster. Otherwise, it is set as the seed of a new cluster. If the current 

cluster number exceeds two, a new temporal unit starts. The subsequent key frames are 

processed similarly using the above criteria.  

Once a cluster is determined, the final cluster centre is obtained by averaging the 

location of AOI from all key frames in the cluster. Then, the location of AOI from the key 

frames is replaced with the location of AOI from the cluster centre. Furthermore, the 

boundary areas outside the location of AOI are removed. In this way, the margin effect 

introduced by the change of geometry is minimized. 

Extra information inserted areas are often characterised by static pixels. In a 

specified cluster, a difference image DI  of every two neighbouring frames is obtained.  

All the difference images are averaged to get a new image denoted as AI . In the image AI , 
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the spatial positions of static pixels are located by thresholding the pixel intensity with uT . 

If the intensity value is less than uT , a static pixel is found. 

Video in video is a complicated transformation where a foreground video is 

combined with a background video. The video copy could be either the foreground video 

or the background video. The key issue to handle video in video is to locate the foreground 

video. The insertion of the foreground video occurs mainly in five positions, the top right, 

top left, bottom right, bottom left and centre of frame. Its scale usually varies from 50 

percent to 20 percent of the original size. The proposed strategy for the detection of video 

in video is implemented in two steps. Firstly, the foreground video candidates are located 

using the edge information. Secondly, the final decision of foreground video is decided 

among candidates.  

Vertical and horizontal discontinuities are present at the boundaries between the 

foreground video and background video. These are characterised by lines of edge points. 

Hence, the solution is to locate the lines with maximum edge points. The Sobel edge 

detector [107] is implemented to find horizontal and vertical edge points for its 

computation efficiency.  

If pixel ),( yx  is a vertical edge point, its value is set 1 in the vertical edge buffer 

),( yxEx . Otherwise, its value is set 0 in ),( yxEx . Similarly, the corresponding value is 

set in the horizontal edge buffer ),( yxEy . In addition, if pixel ),( yx  is a static pixel, its 

value in ),( yxEx  is set as 0 and the same for ),( yxEy . 

Hence, vertical and horizontal boundary lines could be located by finding the lines 

with the maximum accumulation value from ),( yxEx  and ),( yxEy . For example, to 
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locate a foreground video at the top left, the search of the maximum accumulation value is 

defined as following: 
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where ),( maxmin
PP xx and ),( maxmin

PP yy  is the range of pixels on vertical and horizontal 

direction, after the removal of margins. G  is a normalized value in the range from 0 to 1, 

which measures the percentage of edge points in a frame. The location of foreground 

video candidate at the top right, bottom left and bottom right of frame picture is similarly 

defined. As for the location of foreground video candidate at the centre, only the top and 

left boundary lines are searched to save computation load, since the left and right 

boundary lines are symmetrical, as are the top and bottom boundary line. The location 

process is illustrated in Figure 4.4.                                      

 

 

Foreground video on the top left  
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                      Foreground video on the centre  

Boundary lines are searched and located in the shadow areas.              is the line being examined. 

Figure 4.4 Examples of the locations for video in video.  

After the location process, five candidates for a foreground video are generated at 

the five positions (top left, top right, bottom left, bottom right and centre). The candidate 

whose G  value, is the maximum and is larger than 15%, is chosen as the foreground video. 

The remaining part of the frame picture is determined to be the background video.  

4.2.3 Signature Extraction and Matching  

In the frame scaling down process, each key frame is classified into non-overlapping equal 

sized blocks, with 9 blocks in the vertical direction and 11 blocks in the horizontal 

direction. Hence, there are 99 pixels in the scaled down frames. The pixel intensities in the 

scaled down frame equal the averaged intensity values of the corresponding blocks. In 

order to measure the discrimination ability of a pixel, its significance is calculated as the 

percentage of non-static pixels in the corresponding block. If video in video is detected, 

this process applies to both the foreground and background video respectively.  

An appropriate number of pixels need to be selected based on the significance 

values. Furthermore, the principle of maximum entropy is utilized to find the threshold for 
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the pixel selection. Assume there are sf  pixels whose significances have the value 

[ ]( )1,0∈ss . Given a threshold, say sTh , the probability for the non-selected pixels ( )sPn  

and selected pixels ( )sPe  can be defined as (4.6) and (4.7), respectively. 
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where ∑
=

sTh

h
hf

0
 give the total number of pixels with significance in the range of [ ]sTh,0 . The 

entropies for these two classes are then given by (4.8) and (4.9).  

( ) ( ) ( )

( ) ( ) ( ).log

,log

1
0

∑

∑

>

=

−=

−=

s

s

Ths
eese

Th

s
nnsn

sPsPThH

sPsPThH
 

(4.8) 

 

(4.9) 

The optimal threshold cT
 
for classification has to satisfy the following criterion 

function: 
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As a result, the frame mask is generated by marking the selected pixels as ones and 

the unselected pixels as zeros. This excludes the video temporal redundancy from my 

signature extraction. 

The similarity between query video and target video could be observed in two 

aspects: temporal similarity between video groups and spatial similarity between frames. 
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Based on the extracted signatures, the query and target video matching strategy is 

implemented in four steps. Firstly, both target video and query video are classified into 

video groups. Secondly, the two-stage matching procedure is implemented on the video 

group level and frame level. Thirdly, linear regression is applied to the mapping sequence 

of frames. Finally, a decision is made using a SVM based on the properties of the linear 

regression result. 

Motion information is utilized to classify query and target videos into video groups. 

Hence, motion activity between neighbouring scaled down frames, defined in (4.11), is 

calculated as the motion information measurement. 

∑
=

+−=
n

k

t
k

t
k II

n
M

ˆ

1

1ˆˆ
ˆ
1

. 
 

(4.11) 

where t
kÎ  is the intensity value of the thk  pixel in the tht  scaled down frame and n̂  is the 

total number of pixels in a scaled down frame. The value of M


 is classified by two levels 

into: low motion, medium motion and high motion. My scheme for the motion level 

classification is given by: 
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The definition of lM  and hM  depends on the application. However, a simple way 

to define them automatically is proposed based on the training frames, assuming that most 

observations have medium motion. An array is generated containing the motion 
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information for all frames, and its mean Mµ  and standard deviation Mσ  are computed. 

Thresholds lM  and hM  are determined according to:  
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where k  controls the spread of medium motion. In the experiment, k  was set as 2. Then, 

consecutive frames with the same motion level are clustered as a video group.  

In order to compare the similarity between query and target video groups, 

representative frame and representative frame mask are generated from the video group. 

The representative frame is obtained by averaging pixel intensities from all scaled down 

frames inside the same video group. The representative frame mask is generated by 

averaging the values from frame masks of the query video group. The value 0 in the 

representative frame mask indicated that the pixel is temporally redundant information. 

Hence, if the value in the representative frame mask is 0, the corresponding pixel intensity 

is set to -1 in both representative frames from query video and target video. The intensity 

value -1 indicates it is a pixel with temporal redundancy and will not be taken into 

consideration for subsequent processing. This setting has the advantage of not affecting 

the rank order relation among other pixels with useful information. Rank order of pixels is 

generated using the quick sort method [108]. The similarity between query and target 

video group is measured using (4.14). 
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where q
kR  and t

kR  are the rank order of the thk  pixel in frames being examined from query 

and target videos. In this case, the frames are query and target representative frames. For a 
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query video group, its matched target video group is defined as the one with the maximum 

value of β . Furthermore, rank orders of pixels are calculated from scaled down frames 

inside matched query and target video groups. For a scaled down frame inside a query 

video group, its matched target frame is defined as the one with maximum value of β . All 

the matched frame pairs constitute the mapping sequence of query and target video groups. 

This two-stage matching procedure ensures the robustness of the framework to temporal 

editing changes, such as video copies generated from segments of target videos and frame 

dropping in the query video. 

The mapping sequence of frame pairs is examined by linear regression. This is 

implemented by fitting the curve represented by (4.15) to verify the order property of 

query and target frame numbers from the mapping sequence. 

bkxy += . (4.15) 

where k  is slope of the line and b  is the y-intercept. The ideal fitting curve of frame 

numbers is xy = . The increasing tendency of frame number’ order is characterised by the 

positive sign of the slope k , despite the frame rate change in query video. The y-intercept 

b reflects the transfer error for linear fitting. The residual sum defined in (4.16) reflects the 

accumulative error of linear fitting.  

∑
=

−=
n

k

k
f

k
t NN

1

2)(χ . 
 

(4.16) 

where, for the thk  query frame, k
tN  is the frame number of its matched target frame and 

k
fN  is the  frame number obtained by fitting. n  is the total number of matched frame pairs. 
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The linearity of fitting data defined in (4.17) reflects the non-overlapped mapping from 

query frames to target frames.  

∑
=

−−=
n

k
t

k
t NN

1

2)(1 χδ . 
 

(4.17) 

where tN   is the mean value of frame numbers from  target frames. Moreover, β , the 

overall similarity value, generated by averaging similarity values from all matched frame 

pairs, reflects the spatial similarity between target video and query video.  

The final decision is made using SVM based on the five features, including slope 

k , the y-intercept b , residual sum χ , linearity δ  and overall frame similarity β . The 

evaluation contribution of the features is summarized in table 4.1. 

Table 4.1 The evaluation contribution of the features 
Feature Description  Evaluation contribution 
k  Slope  Reflecting the increasing tendency of frame numbers’ order 
b  The y-intercept  Reflecting the transferring error of linear fitting 
χ  Residual sum Reflecting the accumulative error of linear fitting 

δ  Linearity Reflecting the non-overlapped mapping from query frames to target 
frames 

β  
Overall frame 
similarity 

Reflecting the spatial similarity between target video and query 
video. 

 
4.2.4   Experimental Results  

Extensive experiments were carried out to evaluate the proposed algorithm using the data 

set from TRECVID [95] 2008 content-based copy detection task. The whole data set 

includes 218.88 hours of target videos (in total 18,723,596 frames) and 2010 query video 

clips that are generated by 10 types of transformation from the original videos. The 10 

types of the transformation are described in table 4.2. The video format is 288352×  pixels. 

The experiment using the proposed algorithm was implemented on a PC with windows XP 

operating system, Intel Core 2 CPU, 6400 @ 2.13GHz and 1.99 GB of RAM. 
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Table 4.2 Description of transformation types 
Transformation type Sub-transformation Description 
T1: Cam Cording  Change  of angle 

T2: Picture in picture Type 1  The original video is inserted in a front 
of a background video 

T3: Insertions of pattern  Random pattern inserted 
T4: Strong re-encoding  Change of resolution and bit-rate 
T5: Gamma  Change of gamma 
T6 and T7: decrease in quality  
 
T6: 3 sub-transformations are  
randomly selected and combined 
 
T7: 5 sub-transformations are 
randomly selected and combined 

Blur Blur added 
Gamma Change of gamma 
Frame dropping Change of frequency 
Contrast Change of contrast 
Compression Change of resolution and bit-rate 
Ratio Letterbox 
Noise White noise 

T8 and T9: post production 
transformation 
 
T8: 3 sub-transformations are 
randomly selected and combined 
 
T9: 5 sub-transformations are 
randomly selected and combined 

Crop Pixels covered 
Shift In the vertical and horizontal direction 
Contrast Change of contrast 
Caption Text insertion 
Flip Vertical mirroring 
Insertion of pattern Random pattern inserted 
Picture in picture type 2 The original video is in the background 

T10: Combination of everything  
5 transformations among all the 
transformations described above (T1-
T9) are randomly selected and applied 

 
Two state-of-art algorithms from [67] and [68] were also implemented on the same 

data set for bench marking purposes. Table 4.3 lists all the experimental results using the 

proposed algorithm in comparison with the two benchmarks [67], [68]. From the 

experimental results, it can be seen that the proposed algorithm achieves satisfactory 

performances in terms of recall, precision and F1 rate, which are as following: 

precisionrecall
precisionrecallF

NN
Nprecision

NN
Nrecall

FPTP
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+
××
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+
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21
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(4.18) 
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where TPN  is the number of true positives, that video copies are correctly detected by the 

algorithms. FPN  is the number of false positives that video copies are incorrectly detected, 

while FNN  is the number of  false negatives that video copies are missed by algorithms. 

Table 4.3 Experimental results of method from [67], [68] and the proposed algorithm 
Transfor-
mation 
type 

Shortest path search [67] Sequential search [68] Proposed algorithm 

Recall Precision F1 Recall Precision F1 Recall Precision F1 
T1 0.0597 0.0143 0.0230 0.4552 0.4266 0.4404 0.8833 0.8346 0.8583 
T2 0.0299 0.0111 0.0162 0.1940 0.1926 0.1933 0.9237 0.9646 0.9437 
T3 0.0746 0.0291 0.0418 0.3358 0.3782 0.3557 0.9592 0.8785 0.9171 
T4 0.0746 0.0195 0.0310 0.5373 0.4832 0.5088 0.9845 1.0000 0.9922 
T5 0.0896 0.0243 0.0382 0.5373 0.4675 0.5000 1.0000 0.9524 0.9756 
T6 0.0821 0.0251 0.0385 0.5373 0.5496 0.5434 0.9672 0.9752 0.9712 
T7 0.0970 0.0255 0.0404 0.4403 0.5566 0.4917 0.9217 0.9815 0.9507 
T8 0.0448 0.0117 0.0185 0.2090 0.2593 0.2314 0.8283 0.8723 0.8497 
T9 0.0299 0.0136 0.0186 0.1866 0.2252 0.2041 0.7973 0.8082 0.8027 
T10 0.0373 0.0127 0.0189 0.2313 0.2696 0.2490 0.8506 0.8506 0.8506 
Total  0.0619 0.0188 0.0288 0.3664 0.3863 0.3761 0.9196 0.9187 0.9192 

 
The method from [67] uses shortest path search model to find the video copy. In 

the pre-processing stage, the candidate segments from query clips are sampled from the 

head and tail parts of video. This limitation hinders the detection of the mixed video copy, 

where the video copy is only part of query clip instead of whole query clip. This is the 

main reason causing the low detection performance of the method from [67], since many 

true video copies are skipped in the pre-processing stage. In addition, the method from [68] 

utilizes sequential search for the detection of video copy. This method ignores frame rate 

changes in query clips and is time-consuming compared to the proposed method and the 

method from [67]. Both methods from [67] and [68] use simple features, i.e. block rank 

order as the signatures for video copy search. There is no analysis of input videos, so 

different kinds of editing effects are not taken into consideration. 

The processing time of the methods from [67], [68] and the proposed method are 

measured and summarized in table 4.4. The time for feature extraction is measured by the 
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mean time of extracting signatures from all query clips. The time for the search process is 

measured by the mean time spent on comparing one query with one target clip. In the 

feature extraction process, the proposed algorithm analyzed the different kinds of video 

distortions. This is why it takes longer time in the proposed algorithm for the feature 

extraction. In the search process, the proposed algorithm used the two-step matching 

which makes the search efficient and effective. By a trade-off of the feature extraction and 

search process, the run-speed of proposed algorithm is in the middle level. 

Table 4.4 Processing time of method from [67], [68] and the proposed method 
Time (seconds) Shortest path search [67] Sequential search[68] Proposed method 
Feature 
extraction 11.8633 11.8519 32.2069 

Search process 0.3592 37.6325 2.5173 
In total 12.2225 49.4844 34.7242 

4.3 Summary 

The proposed strategy for video copy detection is implemented in three major procedures, 

including video distortion analysis, signature extraction and query and target video 

matching. Firstly, a dedicated video distortion analysis is implemented for input videos, so 

that different kinds of complex editing effect are well tackled. Secondly, key frames are 

scaled down to extract simple signatures, and the frame mask is generated adaptively to 

reduce video temporal redundancy. Thirdly, linear regression and SVM are utilized in the 

matching and decision making process to guarantee a robust copy retrieval result. 
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Chapter 5 

Video Interpretation 

5.1 Introduction 

It is a fundamental requirement to extract semantic events and highlights from video 

sequences for the interpretation of video content. In this chapter, two approaches are 

proposed to address this problem. In Section 5.2, a knowledge-supported approach is 

presented to segment videos and extract semantic highlights. Firstly, luminance, 

chrominance and motion features are extracted directly in the compressed domain. 

Secondly, video shots are segmented based on knowledge-supported rules. Thirdly, 

camera motion is estimated using motion vectors and skin patches are segmented in the 

video frames. Finally, zoom-in human objects are extracted as semantic highlights. 

In Section 5.3, a trajectory-based method is proposed to detect human fighting for 

movie annotation. Firstly, the trajectory of points of interest is constructed based on KLT 

tracker. Secondly, global motion is estimated to get high motion frames using the 

trajectory record and camera motion is classified via the tracking information. Thirdly, the 

behaviour of points of interest is labelled by a voting scheme. Hence, the main movement 

and direction of the same kind of points of interest are calculated for the detection of 

human fighting. 

 



Chapter 5. Video Interpretation 
 

113 
 

5.2 Knowledge-Supported Segmentation and Semantic 

Contents Extraction from MPEG Videos 

In the proposed algorithm, the compressed streams of MPEG videos are used as the input 

data. In the MPEG scheme, the embedded motion estimation and compensation of macro-

blocks could be further exploited for the shot detection and camera motion estimation. 

Each macro-block consists of 1616×  pixels, which is further divided into four 88×  sub-

blocks for application of the DCT and IDCT. In most video sequences, the format 4:2:0 

chromatic is applied, which indicates that there are four Y components, one Cb component 

and one Cr component in a macro-block.  

5.2.1 Feature Extraction  

Given an MPEG compressed video input, a DC image sequence is extracted from its 

corresponding video frames. If the original video frame size is HW × , the DC image will 

have the size 
88
HW

× . The total number of Y components in each DC image is represented 

by yN  and 
88
HWN y ×= . According to the 4:2:0 chromatic format, the total numbers of 

Cb and Cr components both equal yN
4
1 , which also equals the total number of macro-

blocks in each frame. At the thi  DC image, the Y, Cb and Cr component are denoted as 

ii CbY , and iCr . Hence, the luminance difference between the thi  and thj  frame is defined 

as 

( ) .1,
1
∑
=

−=
yN

n

n
j

n
i

y
y YY

N
jiD  

 

(5.1) 
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Similarly, the chrominance differences for the Cb and Cr components are defined as 

( )jiDCb ,  and ( )jiDCr , , respectively. In the thi  DC image, given the MPEG motion vector 

components ( )iV n
x  and ( )iV n

y  from the thn  macro-block in the vertical and horizontal 

direction respectively, the motion strength n
iM  is defined as follows:  

( ) ( ),iViVM n
y

n
x

n
i +=

 
(5.2) 

In B frames, the motion strength of the macro-block which is bi-directional coded is 

calculated by choosing the larger one from the forward and backward motion strengths. 

Hence, the mean µ
iM  and standard deviation σ

iM  of the motion strength in the thi  DC 

image are defined as follows: 
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The macro-blocks with sound values of motion strength n
iM  are chosen by the following 

voting scheme to estimate the overall motion magnitude for the current DC image. 

,
0
1



 −≥

=
otherwise

MMMif ii
n
i

n

σµ

β  
 

(5.5) 

Here, nβ  is the voting score for the thn  macro-block. If nβ  is one, the corresponding 

motion strength is counted for the calculation of motion magnitude. Otherwise, it is 

excluded as an outlier. Furthermore, the overall motion magnitude iM


 is calculated based 

on the selected macro-blocks as follows: 
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(5.7) 

where iα  is the total number of selected macro-blocks and iλ  indicates the selection rate. 

In I frames, the motion magnitudes are copied from those of the latest output B frames 

since there are no inter-code macro-blocks in I frames.  

5.2.2 Shot Detection  

From observations on more than 50000 frames containing several hundreds of shots, it 

was recognized that the disturbing factors for shot detection include large object 

movement, camera motion and sudden light change. Hence, the proposed knowledge-

supported rules are summarized as follows for the detection of both cuts and typical 

gradual transitions. 

• Rule 1: if CrCrCbCbyy TidiDTidiDTidiD >−>−>− ),(||),(||),( , a potential shot 

change is claimed. Here, yT , CbT  and CrT  are the thresholds for the difference of Y, 

Cb and Cr components between the thi  and thdi )( −  frames.  

• Rule 2: if Rule 1 is not satisfied, the screened frame is stepped forward by d  

frames to examine the thdi )( +  frame. Then, Rule 1 is repeated until all the frames 

in the video are addressed. 

• Rule 3: if Rule 1 is satisfied, further examination is carried out to decide whether 

the potential shot change is a cut or gradual transition. If 
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CrCrCbCbyy TiiDTiiDTiiD >+>+>+ )1,(||)1,(||)1,( 000000 , a cut candidate is 

determined. Here, the thi0  frame is any frame between the thi  and thdi )( −  frames. 

• Rule 4: if Rule 3 is not satisfied, the accurate boundary of the gradual transition 

needs to be decided. If CrCrCbCbyy TiiDTiiDTiiD >>> −−− ),(||),(||),( , a gradual 

transition is found. Here, −i  is initialized as )( di −  and updated by decreasing d  

each time until the test is positive or the length limit for gradual transition is 

reached. If the test is positive, a gradual transition is found between the thi−  and thi  

frames. 

• Rule 5: if Rule 3 is satisfied, a verification test is carried out to avoid the effect of 

flashing light. If CrCrCbCbyy TtitiDTtitiDTtitiD >+−>+−>+− ),(||),(||),( 000000 , 

a cut is determined. Here, t  equals to d5.0 . 

The threshold yT  is determined by the primary constant yC , which measures the 

difference of the Y component, and the selection rate iλ . Their relationship is presented as 

follows:  

iyy CT λ⋅=  (5.8) 

Therefore, yT  is adaptive to the overall motion magnitude. In the experiment, yD , CbD  

and  CrD  are scaled in the range from 0 to 1. yC  and d  are set as 0.09 and 6, respectively. 

CbT  and CrT  are similarly determined. 
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5.2.3 Camera Motion Estimation 

In the algorithm proposed by Tan et al. [70], the projective camera model with 6 

parameters is summarized in (5.9) and (5.10). The parameter 1p  is an indicator for the 

detection of camera zoom.  

• If the value of 1p  is larger than one, camera zoom-in is detected.  

• If the value of 1p  is smaller than one, camera zoom-out is detected.  

• Otherwise, there is no camera zoom. 
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Here, ( )n
i

n
i yx ,  is the spatial position of the thn  motion vector in the thi  frame.  

In the experiment, it was found that the proposed method in [70] is sensitive to 

noise and produced lots of false positives. Hence, the smoothness condition [109] is 

introduced to filter out the motion vectors from the outlier macro-blocks.  

5.2.4 Skin Detection 

The proposed method for skin detection is mainly based on the posterior probability in 

YCbCr colour space. In the training stage, given the pixels )},,(,{ CrCbYXX =  labelled 

as skin, the histogram of their YCbCr values is constructed and denoted as )(XHs . 

Similarly, given the pixels labelled as non-skin, the corresponding histogram of YCbCr is 

obtained and represented as )(XHs . Hence, the likelihood function of the observed 
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YCbCr of the pixel being skin is represented as )|( SXP . Similarly, the likelihood 

function of the observed YCbCr of the pixel being non-skin is denoted as )|( SXP . 

Furthermore, the likelihood function )|( SXP  and )|( SXP  are determined as following: 

)()|( XHSXP s=    (5.11) 

)()|( XHSXP s=  
(5.12) 

The histogram of the YCbCr values of all training pixels is obtained and denoted 

as )(XH . Among all the labelled pixels, the ratio of skin pixels and non-skin pixels are 

calculated as )(SR  and )(SR . Therefore, the prior probabilities of the YCbCr values, 

skin and non-skin are determined as follows: 

)()( XHXP =    (5.13) 

)()( SRSP =  (5.14) 

)()( SRSP =  
(5.15) 

The classifier for the skin and non-skin pixel is proposed as follows according to 

the Bayesian rule and maximum posterior principle. 

  )|(maxarg
),(

* XCPC
SSC∈

=  (5.16) 

)(
)()|()|(
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SPSXPXSP ⋅
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5.2.5 Video Highlights Extraction 

The proposed video highlight extraction is implemented in the following steps: 

• Shot boundaries are determined for both cuts and gradual transitions.  

• Camera zoom-in is estimated inside each detected video shot. 

• The skin areas are located and human objects are found based on the skin areas. 

• The highlight frames featured with camera zoom-in and human objects are 

extracted. 

5.2.6 Results  

The description of the test videos is shown in table 5.1. There are 6 test videos with 68225 

frames and 227 shots, including films, sports and news. The experimental results are 

illustrated in table 5.2.  

 
 
 

Table 5.1 Description of the test video sequences 
Sequence (a) (b) (c) (d) (e) (f) Sum 
Category Film Film Sports Sports News News N/A 
Frames 13281 6900 9605 22162 7554 8727 68225 
Shots 57 29 31 76 21 23 227 
Highlights 3 2 3 5 2 3 18 

 
 
 
 

Table 5.2 Performance on shot detection and highlights extraction 
Sequence (a) (b) (c) (d) (e) (f) Average 
Shot 
Detection 

Precision 83.3% 80.2% 84.9% 84.2% 81.1% 79.1% 81.7% 
Recall 91.5% 92.0% 93.8% 92.4% 90.2% 87.6% 91.2% 

Highlights 
extraction 

Precision 67.7% 67.7% 75.0% 80.0% 100.0% 75.0% 77.6% 
Recall 67.7% 100.0% 100.0% 80.0% 100.0% 100.0% 91.3% 
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5.3 Trajectory Based Human Fighting Detection for Movie 

Annotation 

In the approach presented by Lin et al. [88], since the background in the video sequence is 

fixed, the segmentation of human object can easily be carried out. All the human objects 

are located by bounding boxes, so the spatial positions and sizes of human beings are 

known. However, in real-world movies, the background is changing due to camera 

movements and the locations of human objects are very difficult to determine. Hence, a 

trajectory based approach is presented to address the problem of human activity 

recognition in general movies. The proposed algorithm for human fighting detection is 

carried out in four steps. Firstly, shot boundary detection is implemented for the robust 

tracking of points of interest via the Kanade-Lucas-Tomasi (KLT) algorithm and the 

tracking record is used to build the trajectory of points of interest. Secondly, global motion 

is estimated based on the trajectory features. Thirdly, camera motion is measured and 

classified into zoom, pan, tilt and mixed motion via the movements of points of interest. 

Fourthly, the behaviours of points of interest are measured by fuzzy scores and labelled as 

background points, active body points and inactive body points by a voting scheme. Hence, 

the main movement and direction of the three kinds of points of interest are used to detect 

human fighting by SVM.  

5.3.1 Trajectory Building for Points of Interest 

There exist various approaches towards points of interest tracking. Generally, points of 

interest are selected to measure the temporal differences between consecutive frames. 

Linking strategies are applied to find the correspondences for points of interest and 

minimize the cost functions. One of the most popular approaches is the Kanade-Lucas-
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Tomasi (KLT) tracker. The KLT tracker is based on the early work of Lucas and Kanade 

[110], which is fully developed by Tomasi and Kanade [111] and clearly explained in the 

paper by Shi and Tomasi [112]. Firstly, points of interest are located by examining the 

spatial intensity gradient of frames. Then, points of interest are tracked by using a 

Newton-Raphson iteration method. The KLT tracker is reliable for the real-time tracking 

of points of interest. 

The majority of points of interest lose track at the presence of shot cuts due to the 

dramatic change of video contents. Hence, the shot cut detection [113] is implemented to 

ensure the robust tracking of points of interest in subsequent frames. At the presence of 

gradual transitions of shot changes, the lost track rate of points of interest is tolerable so 

the detection of gradual transitions is not implemented on the balance of computation cost 

and tracking accuracy. In the technique implementation, the KLT tracker is restarted at the 

first frame of each shot. In the experiment, 120 points of interest were extracted at the first 

frame of every shot and tracked in the subsequent frames. However, due to strong 

movements or occlusions, some points of interest are inevitably lost track of. Therefore, 

new points of interest with high texture scores are extracted to replace those lost and 

maintain the fixed number of points of interest. Based on the tracking record of points of 

interest, three decisions can be made to build the trajectory of points of interest: 

• Matching only in the future: start of a new trajectory 

• Matching only in the past: end of a trajectory 

• Matching in the future and in the past: add the point to an existing trajectory 

After the trajectory building process, the following parameters for the thi  trajectory are 

calculated: 
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• Time code of the beginning and end: ],[ i
out

i
in tctc  

• Distance of the spatial movement between neighbouring frames: 

)},1(,{ i
out

i
in

i
l tctcld +∈  

Hence, the life period iL  and the averaged distance iD  are defined as follows to 

describe the length and movement of the thi  trajectory. 
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Furthermore, the thi  trajectory is defined as follows: 

},...,,...,{},,,{ elb
iiiii nnnssDLT ∈=

 
(5.21) 

Here, s  is the set of frames whose time codes are covered by the thi  trajectory. bn  and bn

are the first and last frame in the frame set s . There are 120 points of interest in the frame

ln , so there are 120 trajectories across it. 

5.3.2 Global Motion Estimator 

In a movie clip, fighting frames always contain high motions due to strong body 

movements or quick camera movements. Therefore, high motion is a very straightforward 

indicator for human fighting. From observations, high motion frames are featured by a 

high lost track rate for points of interest, small values of life period iL  and large values of 

averaged distance iD . Based on the trajectory definition, in the thn  frame, the histogram 

of the life period iL  and averaged distance iD
 
are calculated as )( i

n LH  and )( i
n DH . In 
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the experiment, the two histograms contain 10 bins each. The lost track rate for points of 

interest in the thn  frame, nP  is also measured. Hence, the feature vector 

}),(),({ n
i

n
i

n PDHLH  is formed to represent the global motion in the thn  frame and SVM 

is utilized to classify the high motion frames and ordinary frames.  

In the training set, the movie frames with high motions are labelled as 1, while the 

rest frames are labelled as -1. Then, the labelled feature vectors are trained by SVM in an 

off-line process and the global motion estimator is obtained through the training. In the 

experiment, LIBSVM [114] was implemented to do a “grid-search” for the best 

parameters C  and γ  of RBF kernel function using cross-validation. Here, C  is the 

penalty parameter of error and γ  is the parameter of kernel width. Basically, pairs of 

),( γC  are tried and the one with the best cross-validation accuracy is picked. It is found 

that trying exponentially growing sequences of C and γ  is a practical method to identify 

good parameters (for example, 313151535 2,...,2,2,2,...,2,2 −−−− == γC  ). Furthermore, 

the grid-search is parallelized because each ),( γC  is independent. In the data prediction 

stage, ordinary frames are filtered out through the global motion estimator. 

5.3.3 Camera Motion Classification 

Camera movement is the major disturbing factor in the detection of human fighting. Based 

on the 6-parameter projective camera model proposed in [70], which is repeated in (5.22-

5.23), camera movement such as zoom-in (out), pan and tilt are estimated by parameters 

1p , 3p
 and 4p  determined in (5.24-5.25). The spatial positions of the thk  point of 

interest in the thn )1( −  and thn  frames are represented as )},(),,{( 11
k
n

k
n

k
n

k
n yxyx −− . Hence, 
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the camera motion classification is conducted based on the spatial positions of the points 

of interest.  
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1 . Here, N  is the total number of tracked points of interest.  

Camera motions are estimated using the values of 31, pp  and 4p . The decision 

making process is summarized in the following table. Here, a parameter cT  is used for 

robust thresholding and it is set to 0.05 in the experiment. 

Table 5.3 Determination of camera motion type 
Camera motion type Condition  
Zoom in cTp +>11  

Zoom out cTp −<11  

No zoom cc TpT +≤≤− 11 1  

Pan cc TpTp 1010 43 <∧>  

Tilt cc TpTp 1010 43 >∧<  

Pan & tilt cc TpTp 1010 43 >∧>  

No pan or tilt cc TpTp 1010 43 ≤∧≤  
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5.3.4 Behaviour Labelling of Points of Interest 

The behaviour of the thk  point of interest in the thn  frame at the spatial position ),( k
n

k
n yx , 

can be analyzed by the crossing trajectory iT . Hence, the bin value (in the range from 0 to 

9) of iD  in )( i
n DH  is defined as movement of the thk  point of interest. Similarly, the bin 

value of iL  in )( i
n LH  is defined as length of the thk  point of interest. In order to measure 

their relative quantities, three fuzzy sets small, medium and large are established for the 

linguistic variables length and movement, respectively. The membership functions of small 

and large are chosen as triangle, and the membership function of medium is chosen as 

trapezoid. This is illustrated in figures 5.1 and 5.2. Given the numerical values of iL  and 

iD , the degrees of membership of length are calculated as L
Sµ , L

Mµ  and L
Lµ . Similarly, the 

degrees of membership of movement are calculated as M
Sµ , M

Mµ  and M
Lµ .  

 

           Figure 5.1 Fuzzy sets of Length 

0 1 2 3 4 5 6 7 8 9

0

0.2

0.4

0.6

0.8

1

Length (histogram bin value)

D
eg

re
e 

of
 m

em
be

rs
hi

p

samll medium large



Chapter 5. Video Interpretation 
 

126 
 

 

           Figure 5.2 Fuzzy sets of Movement 

Based on the behaviour trends of points of interest, they are classified into three 

kinds: background points, active body points and inactive body points. The background 

points are persistent and motionless and have small values of movement and large values 

of length. The active body points are moving fast and usually disappear quickly due to 

occlusion. They have large values of movement and small values of length. The inactive 

body points in essence can be seen as the transition points in between, which have medium 

values of movement and medium values of length. Their characteristics and the fuzzy score 

calculation are defined in table 5.4.  

Table 5.4 Behaviour labelling of points of interest 
Types of interest points Movement Length Fuzzy score 
Background points Small large L

L
M
S

B µµµ ⋅=  (5.26) 

Active body points large Small  L
S

M
L

A µµµ ⋅=  (5.27) 

Inactive body points Medium Medium L
M

M
M

I µµµ ⋅=  (5.28) 

 
Furthermore, a voting scheme is implemented for labelling the behaviour of the 

interest points as following.  

0 1 2 3 4 5 6 7 8 9

0

0.2

0.4

0.6

0.8

1

Movement (histogram bin value)

D
eg

re
e 

of
 m

em
be

rs
hi

p

samll medium large



Chapter 5. Video Interpretation 
 

127 
 

)(maxarg*
),,(

t

IABt
t µ

∈
= . 

 

(5.29) 

Here, *t  is the label that maximizes the fuzzy score of the corresponding behaviour of the 

interest point. 

After the point labelling process, the percentage of the background points, active 

body points and inactive body points are calculated as B
nP , A

nP  and I
nP . The movement 

and direction of the thk  point of interest from the thn )1( −  to thn  frames are measured 

as k
nM and k

nR . The averaged movement and direction of the background points, active 

body points and inactive body points are obtained as ),( B
n

B
n RM  , ),( A

n
A
n RM  and 

),( I
n

I
n RM . In the meanwhile, the percentage of the number of tracked active body points 

is calculated as T
nP . Finally, the feature vector },,,,,,,,,{ I

n
I
n

A
n

A
n

B
n

B
n

T
n

I
n

A
n

B
n RMRMRMPPPP  

is classified by a specific SVM according to the camera motion type for the human 

fighting detection. Hence, multiple SVMs are trained to detect human fighting in terms of 

different camera motion types.  

5.3.5 Experimental Results 

To evaluate the proposed algorithm, extensive experiments were carried out on a number 

of fighting movie clips. The resolution of the test sequences is 240320×  pixels. The 

computing environment used included: (i) a PC with 1.73GHz CPU, 512MB memory and 

windows XP operating system; (ii) Microsoft VC++ 6.0 programming platform. To 

evaluate the performance of the proposed algorithm, the following measurements are 

adopted for quantitative evaluations [96, 97]: 

,)(Re 1−+= MCC NNNcall  (5.30) 
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1)(Pr −+= FCC NNNecision  
(5.31) 

.)Pr(RePrRe21 1−+⋅⋅= ecisioncallecisioncallF  
(5.32) 

where cN  is the number of correctly detected shot boundaries, MN  is the number of 

missed shot boundaries, and FN  is the number of falsely detected shot boundaries. The 

higher these ratios are, the better the performance. The detection results are shown in table 

5.5. 

Table 5.5 Human fighting detection results under various camera motions 
Camera motion type Precision Recall  F1 
No camera motion 0.9251 0.9311 0.9281 
Pan 1 1 1 
Tilt 0.9259 1 0.9615 
Zoom  0.8333 0.6383 0.7229 
Zoom & Pan 0.8333 0.5882 0.6897 
Zoom & Tilt 0.6667 1 0.8 
Overall  0.9033 0.9013 0.9023 

5.4 Summary 

A knowledge-supported approach is presented to segment videos and extract semantic 

highlights. Compressed domain features are extracted including luminance, chrominance 

and motion. Then, the input video is segmented into shots using knowledge-supported 

rules. Zoom-in highlights are determined by the estimation of camera motion and the 

segmentation of skin patches. 

In addition, a trajectory based approach is proposed to detect human fighting for 

movie annotation. The KLT tracking record is utilized to build the trajectories of points of 

interest and a global motion estimator is constructed based on the trajectory features. Then, 

camera motion is measured and classified. Furthermore, the behaviours of the points of 

interest are measured by fuzzy scores and labelled by a voting scheme. Finally, the main 
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movement and direction of points of interest with the same label are used to detect human 

fighting.  
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Chapter 6 

Conclusion 

6.1 Thesis conclusion 

Digital video processing is a wide research topic including various techniques and 

algorithms for video segmentation, video retrieval and video interpretation. Segmenting 

video streams is a fundamental problem which has found many multimedia applications. 

Properly segmented streams provide points of access that facilitate browsing and retrieval. 

The core research in content-based video retrieval is developing technologies that 

automatically parse video, audio and text in order to identify meaningful composition 

structure and to extract and represent content attributes of any video sources. The goal of 

video interpretation is to develop a systematic methodology for the design, 

implementation and integration of cognitive vision systems for recognizing scenarios 

involved in a scene depicted by a video sequence. 

In this thesis, paradigms for the video segmentation, retrieval and interpretation are 

proposed to process and manage the digital videos. Five algorithms are proposed to 

address the video segmentation problem focusing on the detection of video shot boundary. 

Content-based video copy detection is an application of video retrieval to protect 

intellectual property rights. A new algorithm is proposed for video copy detection, in 

which combination of complicated distortion is taken into consideration when those 

copying parts of query videos are determined. For the video interpretation task, techniques 
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are proposed to solve this problem using knowledge supported extraction of semantics, 

and employing compressed-domain processing for efficiency. Statistical skin detection is 

applied for human object detection and the improved detection of camera motions is also 

implemented. High-level semantics like video highlights are then automatically extracted 

via low-level analysis in the detection of human objects and camera motion events. In 

addition, a trajectory based approach is proposed to detect human fighting for movie 

annotation.  

6.2 Thesis contribution 

The main contribution of the thesis is concluded in terms of eight aspects and stated as 

follows. 

(1) A simple and fast algorithm is described for detection of both abrupt shot cuts and 

dissolved shot cuts. The proposed algorithm works in the compressed domain and 

exploits existing MPEG motion estimation and compensation mechanisms. While 

the proposed algorithm saves a lot of computational cost compared with some of 

its existing counterparts, extensive experiments verify that the proposed algorithm 

also achieves superior performances over the existing counterparts. In summary, 

the features and the advantages of the proposed algorithm can be highlighted as: (i) 

an integrated technique for both abrupt shot cut and dissolved shot cut detection; (ii) 

operating in the compressed domain and thus suitable for real-time implementation; 

(iii) only two thresholds and two parameters are required for shot cut detection and 

yet the detection mechanism is made adaptive to the input video content; (iv) such 

technique will provide a range of useful applications for on-line video content 

analysis, processing, and management. Specific examples include real-time scene 
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change analysis for MPEG compressed video streams, on-line annotation of video 

sequences, and shot-based video content retrievals. 

(2) Techniques are proposed for shot boundary detection with two main contributions. 

Firstly, content-based rules via multiple indicators acquired from the compressed 

domain to detect abrupt cuts are presented. Secondly, a coarse-to-fine procedure is 

introduced with a pre-processing module to lower the computational cost and a 

FSM to verify gradual transitions and locate their boundaries. Extensive 

experiments have demonstrated that the proposed algorithm is highly efficient and 

yields quite promising detection results in terms of recall and precision rates. 

(3) My contribution for the submission to TRECVID 2007 on the shot boundary 

detection task is summarized as: (i) Novel features are extracted from the 

compressed domain and the feature selection is carried out using Adaboost. (ii) 

Typical gradual transition including fade in (out), dissolve and wipes, as well as a 

new type of gradual transition called “others” is detected. (iii) The MPEG 

decoding scheme is well studied so that the whole shot detection system is 

embedded in the compressed domain of the standard MPEG2 decoder to achieve 

the real-time efficiency.  

(4) A context awareness algorithm with multiple thresholds and features for shot cut 

detection is described. While this area is well researched for the past decades, the 

proposed algorithm has made two contributions. Firstly, given the fact that the 

presence of cuts and gradual transitions in practical cases is much more 

complicated than theoretically described or expected, I applied multiple thresholds 

to deal with various different cases. The application of each individual threshold is 
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controlled and indicated by multiple context features, all of which are extracted in 

the MPEG compressed domain. Secondly, the complicated controlling process and 

detection is organized by decision trees as well as FSM to achieve operation 

efficiency as well as effectiveness in its performances. Thirdly, a coarse-to-fine 

procedure is introduced with pre-processing and post-processing modules to reduce 

the computational cost and increase its detection reliability. Extensive experiments 

demonstrate that the proposed algorithm achieves promising results and 

performances in a test set, where video sequences present a wide range of cuts and 

gradual transitions under various circumstances and mixed scene changes.  

(5) A fuzzy logic method of feature representation for shot detection is proposed. By 

carrying out extensive experiments, it was found that the proposed algorithm 

achieves very competitive results compared to other state-of-art algorithms. 

(6) The proposed strategy for video copy detection is implemented in three major 

procedures, including video distortion analysis, signature extraction and query and 

target video matching. Firstly, a dedicated video distortion analysis is implemented 

for input videos, so that different kinds of complex editing effect are well tackled. 

Secondly, key frames are scaled down to extract simple signatures, and the frame 

mask is generated adaptively to reduce video temporal redundancy. Thirdly, linear 

regression and SVM are utilized in the matching and decision making process to 

guarantee the robust copy retrieval result. 

(7) A knowledge-supported approach is presented to segment videos and extract 

semantic highlights. Firstly, luminance, chrominance and motion features are 

extracted directly in the compressed domain. Secondly, video shots are segmented 
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based on the knowledge-supported rules. Thirdly, camera motion is estimated 

using motion vectors and skin patches are segmented in the video frames. Finally, 

zoom-in human objects are extracted as semantic highlights.  

(8) The proposed algorithm for human fighting detection is carried out in four steps. 

Firstly, shot boundary detection is implemented for the robust tracking of points of 

interest via KLT algorithm and the tracking record is used to build the trajectory of 

points of interest. Secondly, global motion is estimated based on the trajectory 

features. Thirdly, camera motion is measured and classified into zoom, pan, tilt and 

mixed motion via the movements of points of interest. Fourthly, the behaviours of 

points of interest are measured by fuzzy scores and labelled as background points, 

active body points and inactive body points by a voting scheme. Hence, the main 

movement and direction of the three kinds of points of interest are used to detect 

human fighting by SVM.  

6.3 Future work 

In the near future, the proposed paradigms would be improved in terms of three aspects 

discussed as follows. 

(1) Better detection result of shot boundary could be obtained by solving the 

challenging problem of gradual transition detection. High level features and 

semantic components would be further studied and extracted within the video 

sequences, which could facilitate the accurate detection of various types of gradual 

transitions. 

(2) More machine learning algorithms would be surveyed and examined for the 

classification of the content-based video copy detection task. The mapping 
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methods would be studied to better formulate the relationship between the original 

video and the video copy. 

(3) Semantic-based video events would be further studied. The performance of human 

fighting detection could be improved by analyzing the relationship between movie 

content and camera motion. More meaningful video events such as sport highlights 

would be detected and classified by extracting novel features and content-based 

rules within the video sequences.  
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