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ABSTRACT 
 

Adaptive Video Segmentation 
 

Nagamani Banda 
 

With the explosive growth of video data in digital libraries and other repositories, 
there is an increasing need for robust indexing techniques which can provide faster access 
to the desired information content.  The efficiency of a video indexing technique depends 
on the efficiency of the video segmentation algorithm which is a fundamental step in 
video indexing.  Video segmentation is a process of splitting up a video sequence into its 
constituent scenes.  This work focuses on the problem of video segmentation.  A content-
based approach has been used which segments a video based on the information extracted 
from the video itself.  The main emphasis is on using structural information in the video 
such as edges as they are largely invariant to illumination and motion changes. The edge-
based features have been used in conjunction with the intensity-based features in a multi-
resolution framework to improve the performance of the segmentation algorithm.  Higher 
resolutions provide information about the localized structures in the video frames and 
hence capture the minute variations from one frame to the other frame.  The multi-
resolution edge-based features produced an average of 90% performance, in terms of 
precision and recall.   

 
To further improve the performance and to reduce the problem of automated 

choice of parameters, we introduce adaptation in the video segmentation process.  The 
motivation for using adaptive analysis of video comes from the fact that video data 
contains wide variety of content.  Thus, adjusting the analysis parameters according to 
the video content should lead to a better result.  We consider adaptation at three levels: at 
the feature extraction stage, at the video sequence level, and at the individual scene level.  
Adaptation at video sequence level produced 99% performance; however, characterizing 
an entire video into one type is difficult.  Scene-level adaptation characterizes the scenes 
in a video based on activity and motion measures, and processes each scene with a 
different set of parameters based on the scene characteristics.  Scene level adaptation 
produced an average of 91% performance. 
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CHAPTER 1:  INTRODUCTION 

1.1 INTRODUCTION 

 With rapid advances in storage and communication technologies, video databases 

have become very popular.  Digital libraries and video-on-demand systems store 

thousands of hours of video data.  These huge video databases need to be carefully 

organized in order for the users to browse through them and access the relevant 

information efficiently.  Hence arises the problem of providing an index for the video 

database which provides rapid access to the desired locations in the videos.  Video 

indices save a user the trouble of fast-forwarding or rewinding a video to reach the 

desired scene or content in the video. 

 Since video data comes in large volumes, it is not possible to index it manually.  

Analyzing and annotating a video manually is a very labor-intensive task and almost 

impossible for very long videos.  Thus arises the need for automating the process of 

indexing a video sequence. 

1.2 CURRENT APPROACHES FOR VIDEO INDEXING 

Video indexing can be done in compressed domain or uncompressed domain.  In 

compressed domain (also called transform domain), the DCT or a similar transformation 

is applied to the original image which produces a set of AC and DC coefficients.  Since 

these coefficients are mathematically related to the spatial domain, they can be used to 

detect scene changes in a video.  Hence, video indexing in the transform domain is done 

using these AC and DC coefficients. 

In uncompressed domain (also called spatial domain), video indexing can be done 

using the pixel values directly or by using features extracted from the pixel values.  Pixel 
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values represent the color or intensity values at the pixel locations.  Features are the 

quantitative measures computed from the pixel values, which give useful information 

about the image. 

 In this thesis, video indexing has been done in an uncompressed domain using 

color and edge features.  Indexing in either domain can further be classified as content-

based or context-based.  Content-based video indexing techniques index a video based on 

its visual similarity.  In the case of context-based indexing, the video is indexed based on 

context or events in the video.  This thesis focuses on content-based video indexing. 

Video indexing in general includes two major stages: (i) Video segmentation or 

partitioning, and (ii) Video abstractions.  Video segmentation is usually done by 

computing a difference metric, also called as distance metric, between successive frames 

in a video.  The distance metric gives the amount of dissimilarity between two frames, 

and it is calculated using a set of features extracted from each frame.  In a video, the 

successive frames in the same scene do not differ much.  But the difference between two 

frames is high when there is a scene change between the two frames, i.e., one of the 

frames is the last frame of a scene and the next frame is the first frame of the next scene.  

The next stage in video indexing is generating video abstractions.  There are several ways 

in which a video can be abstracted.  Examples of video abstractions include: key-frames, 

video mosaics, super-resolution frames etc. 

 The entire process of video indexing can be represented using the following 

flowchart (Fig. 1.1): 
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Figure 1.1: Block diagram showing the entire process of video indexing 

In this thesis, we consider the problem of video segmentation.  The performance 

of the video indexing system depends on the accuracy with which the system can detect 

all the scene cuts in a video without any human intervention, and the amount of 

computation required in order to generate the index for the entire video.  In particular, we 

focus on accuracy rather than speed because indexing is done offline and only once for 
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each video.  Also the indexing has been done in the uncompressed domain in order to get 

accurate results. 

One problem in video partitioning is the detection of gradual transitions.  Gradual 

transitions are the scene transitions which occur within a duration of several frames rather 

than between two frames.  Examples of gradual transitions are dissolves, wipes and fades.  

Hence the gradual transitions result in missed detection if special care is not taken to 

handle them.  Another problem in video partitioning is the detection of false alarms.  

False alarms are generally due to camera motion such as panning, zooming etc.  False 

alarms can also be generated due to fast moving objects in a scene.  Hence special care 

should be taken when a scene has high motion; this motion may be due to camera 

movement or object movement. 

The performance of a video segmentation system is evaluated using two 

quantitative measures which compute the proportion of false and missed detections.  

These measures are called precision and recall.  Precision is the proportion of correct 

detections out of the total scenes detected by the system.  Recall is the proportion of 

correct detections out of the total true scenes in the video.  True scenes were detected for 

the test data set by human observation. 

1.3 ADAPTIVE VIDEO INDEXING 

 Adaptive video indexing increases the performance of the indexing technique in 

terms of effectiveness and efficiency.  The indexing technique adapts itself to the wide 

variety of content in the video.  The variety may be in terms of motion and activity in the 

video scenes.  Ideally, with adaptive indexing, each video scene is treated in such a way 

that will produce the best performance.  Adaptivity can be implemented at various levels: 
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video-level, scene-level and resolution-level.  There could be several parameters for 

adaptation, such as features, scene thresholds, skip factors etc.  Adaptation can be done in 

temporal, motion or spatial domain.  Temporal adaptation introduces a skip factor, φ 

which is the number of frames that can be skipped or excluded from being processed, 

without degrading the results of the video indexing algorithm.  This can reduce the 

amount of processing and hence speed up the process of indexing.  Similarly, in the case 

of spatial adaptation, only a significant part of a frame can be used in the computation 

rather than considering the entire frame.   

 We see that video partitioning is a major step in video indexing, and the 

efficiency of a video indexing technique depends on the efficiency of the video 

partitioning algorithm.  Hence, we study the problem of video partitioning using an edge-

oriented adaptive framework in order to gain improvements in efficiency and 

effectiveness of the system.  In the next chapter, we discuss the related work done in this 

direction.  Chapter 3 describes our approach to video segmentation using edge-based 

features.  Chapter 4 presents the multi-resolution framework and introduces adaptivity in 

our algorithm.  Chapter 5 presents experimental results on real video sequences.  We 

conclude the thesis in chapter 6. 
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CHAPTER 2:  LITERATURE REVIEW 

Earliest methods of video indexing were based on manually entered keywords.   

But manual indexing is not feasible for large video databases.  Also the keywords do not 

represent the exact content of the video.  Hence further research was done on techniques 

to index a video based on its content.  Automatic video indexing techniques were 

developed which were based on the information contained in the video.  These automatic 

techniques are sometimes called content-based video indexing techniques since they 

depend only on the contents of the video.  One limitation with content-based video 

indexing was its inability to capture the contextual information.  Contextual information 

represents the meaning of the objects or the events in a video.  To overcome this 

limitation, researchers came up with several approaches for context-based indexing.  This 

thesis focuses on content-based video indexing and hence in the rest of the chapter, our 

discussion will be mainly on content-based video indexing techniques. 

 Various approaches for content-based video indexing have been proposed.  These 

approaches can be broadly grouped into 3 categories: pixel-comparisons, histogram-

comparisons, and feature-based segmentation.  In pixel-comparisons, the pixel values in 

one frame are directly compared against the corresponding pixel values in the successive 

frame.  This approach suffered with illumination and motion changes in the video.  The 

histogram-comparisons compared the distribution of the intensity values in the two 

frames being compared.  But this approach will not produce correct results when two 

quite different frames have similar intensity distribution.  In feature-based video 

segmentation, the comparison between two frames is made using the features extracted 

from the frames.  This approach also suffers from illumination and motion changes based 
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on the features used.  Hence, the challenge is to generate the features that are robust to 

illumination and motion changes.  The effectiveness of a feature-based segmentation 

algorithm depends on the effectiveness of the features. 

2.1 PIXEL-BASED COMPARISONS 

In 1993, Zhang et. al. [19] developed a difference metric for video segmentation 

based on pair-wise pixel comparisons.  The pair-wise segmentation algorithm compares 

the corresponding pixels in the two successive frames and counts the number of pixels 

that changed from one frame to the other.  A scene cut is detected if the total number of 

pixels that changed exceeds a given percentage of the total number of pixels in a frame.  

The difference metric is given as a binary function ),( lkDPi , where ),( lk  is the pixel 

position being compared and subscript i denotes the index of the frame, and ),( lkI i  is the 

intensity value at pixel ),( lk .  The difference metric ),( lkDPi  is defined as: 



 >−

= +

otherwise   , 0
),(),( if   ,  1

),( 1 tlkIlkI
lkDP ii

i                                 (2.1) 

The criteria for identifying a scene cut is then given as: 
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k

N

l
i

>
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= = 100*
*

),(
1 1                                              (2.2) 

where T is the scene threshold, and M and N are the frame dimensions.  This metric was 

sensitive to camera movement, and hence the likelihood ratio was proposed. 



 8

2.2 LIKELIHOOD RATIOS 

In the likelihood ratio approach [19], the corresponding regions (blocks) in two 

successive frames were compared using a likelihood ratio.  The likelihood ratio was 

computed as follows: 

2
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where iµ  and 1+iµ  denote the mean intensity values for a given region in frame i and 

frame i+1, and 2
iσ  and 2

1+iσ  denote the corresponding variances.  The likelihood ratio of 

all the regions in a frame are compared against a threshold and a camera break is detected 

if the total number of regions whose likelihood ratio exceeds the threshold is sufficiently 

large.  One major limitation of the likelihood ratio is that if two sample areas to be 

compared have the same mean and variance, but completely different probability density 

functions, no change will be detected. 

2.3 HISTOGRAM-BASED COMPARISONS 

 An alternative approach to pixel-comparisons and likelihood approach is the 

histogram approach [19], which is based on the principle that two frames having an 

unchanging background and unchanging objects will show little difference in their 

respective histograms.  The histogram difference between two successive frames is given 

as: 

∑
=

+−=
G

j
iii jHjHSD

1
1 )()(                                               (2.4) 



 9

where )( jH i  is the histogram value for the i-th frame and j is one of the G possible grey 

levels.  A scene cut is detected when the overall difference iSD  is larger than a given 

threshold T.  To select a suitable threshold, iSD  can be normalized by dividing it by 2*M 

* N. 

2.4 FEATURE-BASED COMPARISONS 

2.4.1 COLOR RATIOS 

In 1997, Adjeroh and Lee [1] proposed a robust and fast video indexing technique 

using neighborhood-based color ratios.  These color ratio features are invariant to 

illumination and motion changes.  The neighborhood color ratios were defined as: 

),(

),(1

),( 1

yxh

yxh
myx

mi

i
i∑

=

==Φ                                               (2.5) 

where m is the size of the neighborhood, ),( yxhi  is the pixel value at the i-th neighbor. 

A color ratio histogram was computed using the obtained color ratios.  The color 

ratio histogram indicates the number of color changes in an image.  The color ratios 

appeared to be congested and mostly close to 1, except in a region where there was a 

distinctive color boundary.  The histogram matching was done in a stepwise incremental 

fashion, by choosing a step size at each matching step.  The matching process was 

terminated (without necessarily comparing all the bins) when it became clear that further 

comparisons would not make any significant difference to the match results already 

obtained.  This was called premature termination.  Hence the histogram matching process 

involves the determination of formal thresholds, optimal match step size and the optimal 
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termination step.  The threshold in this case is the minimum proportion of the bins that 

must be matched before deciding whether two images were similar or not.   

The color-ratio model is stable under linear combinations making it suitable for 

DCT, KLT and other linear transforms.  Hence it is applied in transform domain video 

indexing.  In the transform domain, the color ratio features are obtained using the 

neighboring blocks.  Rather than using ratio histograms to compare two frames, a new 

measure for block-wise color ratio comparison was formulated using the transform 

coefficients and the block-based neighborhoods as shown in equation (2.6). 

),(

),(1

),( 1

vuH

vuH
mvu

mi

i
i∑

=

==Φ                                               (2.6) 

where m is the number of neighboring blocks, ),( vuH  is the transform coefficient at 

location ),( vu  for the block under consideration, and ),( vuH i  is the coefficient at the 

corresponding ),( vu  location in the i-th neighboring block. 

The optimal parameters for the color-ratio model were obtained using the 

transform domain coefficients.  For detecting special effects, DC components were used 

directly without calculating their neighborhood-based ratios. 

2.4.2 EDGE-BASED 

In 1999, Zabih et. al. [18] proposed a feature-based algorithm for detecting and 

classifying production effects like scene cuts, fades, wipes and dissolves.  They extracted 

edges from the images using Canny�s edge detector [6].  The dissimilarity measure was 

computed as the proportion of edge pixels in a frame that appear far (i.e., more than a 

distance r) from the edge pixels in the previous frame.  The dissimilarity metric was 
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called Edge change fraction and represented as ρ.  Scene cuts were detected when the ρ 

assumed high values between consecutive frames.  One limitation of Zabih and Miller�s 

algorithm was its sensitivity to the illumination changes and to rapid motion of multiple 

objects. 

2.4.3 HIDDEN MARKOV MODEL 

In 2003, Park et. al. [13] proposed a video scene change detection technique using 

hierarchical Hidden Markov Models (HMMs).  Two types of features, histogram-based 

and moment-based, were used to train the HMMs.  First, a wavelet transform was applied 

to each frame of a video, and then the frame was decomposed into frequency-localized 

sub-bands.  Histogram-based features were extracted from a low frequency sub-band 

which preserves the video information in the form of smoothed and compressed patterns.  

Moment-based features were extracted from the double wavelet difference of wavelet 

coefficients in the high-frequency sub-bands of wavelet-transformed images.  Since the 

wavelet coefficients that lie in high frequency sub-bands of a wavelet transformed frame 

represent the edge information with the intrinsic direction, they can be efficiently used to 

segment the scene of a video that transforms gradually.    

This method was tested on a video database containing news, movies and music 

videos.  The two HMMs were trained using histogram difference and the moment-based 

features.  After training the models, the Viterbi Algorithm was used to find the optimal 

state sequence with maximum posterior probability and the segmentation was carried out 

by simply mapping the state sequence onto the given model.  The histogram-based HMM 

was first used to segment the input video sequence into three categories: shot, cut and 

gradual scene changes.  Then the moment-based HMM was used to further segment the 
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gradual changes into fades, dissolves and wipes.  The experimental results were 

compared against those obtained from threshold-based methods, and the HMM-based 

method was shown to be more effective in segmenting the videos than the threshold-

based methods, with 94.3% recall and 97.5% precision. 

2.5 MOTION-BASED COMPARISONS 

 In 2001, Porter et. al. [14] used the average inter-frame correlation coefficient and 

block-based motion estimation to distinguish changes caused by shot transitions from 

those caused by camera and object motion.  Each frame was divided into blocks and the 

normalized correlation between blocks was calculated in the frequency domain because 

calculating the normalized correlation in the spatial domain is very expensive.  A high-

pass filter was applied to each image before performing the correlations as the correlation 

field derived from high-pass regions contained more detectable peaks.  As a consequence 

of applying the high-pass filter, the mean of the image was removed and hence the 

correlation was invariant to changes in the mean intensity.  Normalization of correlation 

was done in order to make the method insensitive to the positive scaling of the image 

intensities.  Hence the method was robust to the changes in the global illumination. 

 The value of the maximum correlation coefficient was used as a goodness-of-fit 

measure for each block.  The value of the goodness-of-fit measure lies between 0 and 1, 

where a value of 0 indicates a complete mismatch and a value of 1 indicates a perfect 

match.  A similarity metric for each frame pair was derived by taking the mean of the 

goodness-of-fit measure of all the blocks. 

Given M as the average of the previous similarity measures since the last shot cut, 

and Mn be the similarity metric between frames n and n+1, then a shot cut is detected if 
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M- Mn > Tc , i.e., if the rate of change from the average similarity measure is greater than 

some threshold Tc.  Other motion-based approaches have been described in [5, 8]. 

2.6 SPECIAL-EFFECT TRANSITIONS 

Zhang et. al. [19] used Twin comparison approach to detect special effects such as 

dissolves, fade-ins and fade-outs.  Twin comparison required the use of two cutoff 

thresholds: Tb for camera break detection and Ts for special effect detection, where Ts < 

Tb.  Twin comparison detects the difference values that exceed Tb and declares them as 

camera breaks.  It also detects the difference values that are less than Tb but greater than 

Ts, and marks them as the potential start (Fs) of a gradual transition.  This start frame (Fs) 

is then compared to subsequent frames and the end of transition is detected when this 

comparison gives the difference value that exceeds Tb.  The changes due to camera 

movements like panning and zooming also produce the same kind of behavior and they 

may be detected as gradual transitions.  In order to distinguish camera movements from 

special effect transitions, motion vectors were detected and analyzed. 

Zabih et. al. [18] computed a proportion of entering (ρin) and exiting (ρout) edge 

pixels between frames in order to detect gradual transitions.  Fade-outs are detected when 

ρin assumes higher values, and fade-ins are detected when ρout assumes higher values.  

During a dissolve, one scene fades-out and the next scene fades-in.  Hence a dissolve can 

be detected in an interval where ρout is high for the first half and then ρin is high for the 

next half of the interval.  Wipes can be distinguished from dissolves and fades by 

analyzing the spatial distribution of the entering and exiting pixels (which are also called 

changing pixels).  A percentage of changing pixels in the top half and left half of the 

frame was computed.  For a left-to-right wipe, the majority of changing pixels occur in 
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the left-half of the image during the first-half of the wipe, then in the right-half of the 

image during the second-half of the wipe.  Similarly for top-to-bottom wipe, majority of 

changing pixels occurs in top half, then in the bottom half.  The edge change fraction in 

case of instantaneous cuts is computed as: 

),max( outin ρρρ =                                                (2.7) 

Porter et. al. [14] detected fades based on the value of Mn.  The correlation of an 

image with a constant image results in 0=nM .  Hence, fades were detected 

when 0=nM .  A fade is a scaling of the pixel intensities over time which can be 

observed in the standard deviation of the pixel intensities.  If Mn falls to 0 and the 

standard deviation of the pixel intensities decreased prior to this, the frame where the 

standard deviation started to decrease is marked as the first frame of the fade-out.  If the 

standard deviation of the pixel intensities increases after the similarity metric increases 

from 0, the frame where the standard deviation becomes constant is marked as the end of 

the fade-in.  In order to detect dissolves, the first frame of the sequence is divided into a 

regular grid of blocks of size 32x32, and a selection of these blocks is used to represent 

regions of interest (ROI) in the image.  A block is selected as a ROI if 

)ln( 2

2
2

I

I
b σ

σσ =                                                     (2.8) 

where bσ  is the variance of a block b and Iσ  is the variance of the image I.  Between 

each frame pair n and n+1, maximum correlation between each ROI is used as a 

goodness-of-fit measure, and a single similarity metric Fn for the set of ROI is calculated 

as the average of the goodness-of-fit measures of the set of ROI.  Fn remains high during 

a shot indicating that the contents of each ROI has not changed significantly.  During a 
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dissolve, the content of each ROI gradually changes and Fn will decrease until it reaches 

its lowest value at the end of the dissolve.  During a shot Mn and Fn should be 

approximately equivalent.  Fn is compared against Mn and the change in Fn with respect 

to Mn is calculated as the ratio Rn, 

n

n
n F

M
R =                                                        (2.9) 

The start of a dissolve is marked when Rn starts to increase, and the end of dissolve is 

marked once Rn reaches its maximum. 

2.7 ADAPTIVE METHODS 

 In 2000, Yusoff et. al. [17] proposed the use of adaptive thresholds in order to 

improve the performance of shot detection methods. They experimented with 3 methods 

of adaptive thresholding on 4 shot boundary detection algorithms.  The 4 shot boundary 

detection algorithms used were: 

•  Average Intensity Measurement (AIM) 

•  Histogram Comparison (HC) 

•  Likelihood Ratio (LH) 

•  Motion Estimation (ME) 

The AIM algorithm computes the average of the intensity values in the current frame 

and compares it with that for the following frame.  The HC and LH algorithms [1] have 

been explained earlier in this chapter.  In ME approach, the next frame in a video 

sequence is estimated and reconstructed based on the motion information in the current 

frame.  The dissimilarity measure is given by the mean absolute difference between the 

reconstructed frame and the original frame. 
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 In each of the shot boundary detection algorithms, a single statistic m was 

generated for each pair of frames to quantify the degree of dissimilarity between the two 

frames.  Their scheme for determining the decision threshold Tm  was based on the 

assumption that the dissimilarity measure {m} comes from one of the two distributions: 

one for shot boundaries (S) and one for �not-a-shot-boundary� (N).  In general, S has a 

considerably larger mean and standard deviation than N as shown in Fig. 2.1.  Assuming 

the cost of false positives and undetected true positives to be same, the standard 

classification methods would indicate that the decision threshold Tm  should be fixed so 

that the tails of the two density functions Sp  and Np  have an equal area as shown in the 

figure.  We can see that the decision threshold Tm  is fairly close to the mean Nµ  of N, 

and hence it is important that the position and width of N  be accurately determined. 

 

Figure 2.1: Distribution of Dissimilarity measure m 

  Experiments demonstrated that a single decision threshold can be consistently 

grossly over- or underestimated when applied to video material with distinctive 

characteristics, such as sports events or cartoons.  And hence, Np  was estimated 

dynamically using the dissimilarity measures from the previous and next few frames.  
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Then, the mean, Nµ  and the variance Nσ  were estimated and used in determining the 

decision threshold Tm  as some function of these two statistics.  The 3 models used for 

computing decision thresholds were: 

! Constant variance model (A):  The decision threshold was set at some fixed 

positive offset from Nµ . 

cNT Tm += µ                                                    (2.10) 

where cT  was determined by experimenting with a range of values on a training set of 

video data. 

! Proportional variance model (M):  The decision threshold was set at some 

multiple of Nµ . 

NpT Tm µ=                                                       (2.11) 

where pT  was determined from experimentation. 

! The Dugad model (D):  The decision threshold was set at some multiple of Nσ  

from Nµ . 

NdNT Tm σµ +=                                             (2.12) 

where dT  was obtained by experimenting with a range of values on the training data 

set. 

The adaptive thresholds were determined based on the statistics of the dissimilarity 

measure within a sliding window.  For each of the above 3 models, two different 

strategies: single window and dual windows, were adopted leading to six different 

adaptive thresholding methods.  The single window strategy considered all the samples, 
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including the central sample for the calculation.  In the dual windows strategy, the 

window was split into two halves on either side of the center sample.  All the shot 

boundary detection algorithms showed considerable improvement in their performance 

when adaptive thresholding was used.  

In 2004, Adjeroh and Lee [2] proposed scene-adaptive video partitioning in 

compressed domain using transform domain coefficients.  They analyzed the scenes in a 

video sequence and classified them into eight scene classes based on the scene 

complexity.  Scene complexity was calculated using scene activity and motion measures.  

They made use of AC and DC coefficients and the neighborhood differences in order to 

obtain scene activity and motion.  The neighborhood approach is relatively robust to 

camera operations such as panning and zooming, and is invariant to the illumination 

changes in the image.  The parameters of the video partitioning algorithm were adapted 

according to the scene classes.  Five video analysis parameters were used: number of 

DCT coefficients, temporal skip factor, weights on AC and DC coefficients, minimum 

frame proportions to be involved fmin, and scene threshold.  The generalized color ratio 

(GCR) model [1] was used for video partitioning. The scenes were also classified into 6 

temporal classes based on scene duration.  This temporal classification was useful in 

selecting local thresholds for scene partitioning.  Video sequences were also classified 

into video classes based on the video quality which is useful in determining fmin, and the 

measures used for such a classification were peak signal to noise ratio (PSNR) and mean 

square error (MSE).  The temporal skip factor was determined using motion class.  The 

number of coefficients to be used was determined by the scene class.  Adaptive skip 

factor improves efficiency, whereas scene-adaptive thresholds and weights improve the 
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robustness of the system.  The parameters (no. of coefficients) and fmin have impact on 

both efficiency and robustness.  The scene thresholds were determined from the mean 

and standard deviation of the similarity evaluation function.  Thresholds were defined for 

each scene, using the scene class and the temporal class (local and global thresholds).  

The experimental results showed an improvement in detection performance. 

 In this thesis, we propose an adaptive approach for video segmentation in an 

uncompressed domain.  The adaptation is not only in terms of scene thresholds, but also 

in terms of the features used in the computation of the dissimilarity measure.  It is unique 

in its approach, as it uses motion and illumination invariant edge-based features in a 

multi-resolution framework.    
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CHAPTER 3:  MULTI-RESOLUTION EDGE RESPONSE VECTORS 

3.1 INTRODUCTION 

 Edges in an image typically manifest as sudden changes in intensity.  They can be 

thought of as locations of abrupt grey-level change.  They form the boundary between 

two dissimilar regions in an image.  Edges are very important features in an image as 

they provide information about structure in the image (see Fig. 3.1).   

        

Fig 3.1 (a) Original Image  (b) Edges in the image 

Edges in an image can be detected using high pass filters like Sobel, Canny, 

Prewitts, Roberts etc.  The high pass filters retain only the high frequencies, that is, the 

sharp details like edges in the image.  Edge detection using the above filters can be 

performed by convolving the horizontal and vertical kernels over the entire image and 

then adding up the results obtained by the two convolutions.  Convolving an image with a 

horizontal kernel gives the horizontal edges, whereas convolving the image with a 

vertical kernel gives the vertical edges.  Combining these two results would give us both 

the horizontal and vertical edges.  We have used Sobel filters as the edge detector in our 

method.  The reason for such a selection is that the Sobel filter is simple and easy to 

implement, and at the same time produces a good result. 
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3.2 FEATURE EXTRACTION 

In order to analyze a video, we need to extract some quantitative measures from 

the video content.  These quantitative measures are called the features.  Color, edges, 

texture and shape are simple examples of image features.  In this work, we use the color 

feature along with edge-based features.  The edge-based features are derived from edge 

information in the images.  We use the mean and standard deviation of these features at 

various resolution levels as the quantitative measures for video analysis.   

 We use a multi-resolution approach in the processing of the images.  That is, an 

image is divided into smaller blocks and these smaller blocks are then used for 

comparison between images.  We process the image at multiple resolutions, with the 

lowest resolution corresponding to the original image, and the highest resolution being 

the smallest blocks into which the image is being divided (see Fig. 3.2).  Based on our 

experiments, we considered only 3 levels of resolution, since higher levels do not yield 

better results but involve more of computation.  We number the resolution levels as k = 0, 

1 and 2.  Level 0 is the lowest resolution, that is, the original image.  At Level 1, the 

image is divided into 4 blocks, and at level 2, the image is divided into 16 blocks.  Hence, 

at a given level k, an image is divided into 22k number of blocks.  The comparisons at all 

the levels are taken into consideration while measuring the similarity or dissimilarity 

between the images.   
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M/20   (k=0)

M/22

(k=2)

M/21   (k=1)

M/2 3

 

Figure 3.2: Multi-resolution Decomposition of a frame 

3.2.1  EDGE DETECTION 

Edges can be detected by calculating the gradient of the image in the x- and y- 

directions.  The horizontal and vertical gradients detect the horizontal and vertical edges 

respectively.   

Let ),( yxI  be an image, and xH  and yH  be the horizontal and vertical Sobel 

masks respectively, then the gradients ),( yxGx and ),( yxGy  are obtained by convolving 

xH  and yH  over the image ),( yxI .  That is,
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),(*),(),( yxHyxIyxG xx =                                          (3.1) 

),(*),(),( yxHyxIyxG yy =                                          (3.2) 

* represents the convolution operation. 

The gradient amplitude ),( yxGA  is given by: 

),(),(),( 22 yxGyxGyxG yxA +=                                          (3.3) 
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The gradient magnitude can also be calculated approximately using the simple absolute 

sum: 

|),(||),(|),( yxGyxGyxG yxA +=                                    (3.4) 

The gradient magnitude gives the edge response at each pixel position in the 

image.  The edge pixels can be determined by comparing the edge response of each pixel 

with an edge threshold, eτ .  If the pixel�s edge response exceeds the edge threshold, then 

the pixel is said to be an edge pixel or edge point.  The edge threshold is calculated as: 
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where α  is a constant.  (Based on empirical results, we chose 3
2=α  or 6

5=α ). 

The edge direction or the phase angle at pixel ),( yxI  can be calculated as: 









= −

),(
),(

tan),( 1

yxG
yxG

yxG
x

y
φ                                                (3.6) 

3.2.2  EDGE-BASED FEATURES 

 One of the advantages of using edge-based features is that, since they represent 

the structural information in the image, they are invariant to illumination changes, and 

also relatively robust under changes due to motion.  The edge-based features used in our 

research work are: 

•  Edge Response 

•  Edge Response at edge-points 

•  Edge Direction 

•  Edge Density 
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At each resolution level k, and for each given block r, the mean and standard deviation of 

each of the edge-based features are calculated as follows: 

(i) Edge Response 
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(ii) Edge Response at points 

It is same as the edge response calculated in Eqn (3.7) & (3.8), except that instead 

of considering all the pixels in a given block r, we consider only the edge pixels in the 

given block r for the calculation of k
rep,µ  and k

rep,σ . 

(iii) Edge Direction 
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(iv) Edge Density 

Edge density is computed using an edge map.  An edge map is defined using the 

edge threshold eτ  as follows: 
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where 
( ) ∑∑= =

=
M

x
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where α is a constant (as described earlier). 

Edge density has no standard deviation, and hence only the mean is calculated as follows: 
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Essentially, the edge density represents the average number of edge points per pixel in 

the image block r. 

3.2.3  COLOR FEATURE 

 The color feature is given by the intensity value or the gray-level value of the 

pixels in the image.  Though the color feature is sensitive to illumination changes, it 

provides an important measure of information content in the image, when combined with 

the illumination and motion invariant edge-based features.  At each resolution k, the 

mean and standard deviation of the color feature are calculated in a manner similar to the 

edge-based features: 
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3.3 DISTANCE METRIC 

 Having computed the features, we need a method to use these features to 

determine similar frames in the video.  The distance metric gives the amount of 

dissimilarity between two frames.  The distance can be calculated using the extracted 
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multi-resolution edge response vectors.  The distance calculation using edge densities 

involves only the mean, since edge density has no standard deviation. 
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The distance calculation for the rest of the features involves both mean and standard 

deviation. 
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To prevent the distance value from being dominated by one component (typically, the 

mean), the distances are normalized to restrict their values to the range of 0 to 1.  This 

gives a better picture of the variation in the distance values. 
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Similarly, we obtain normalized distances ),( 21 IIdc , ),( 21 IIdep and ),( 21 IIdϕ , for color, 

edge response at edge points and the edge direction respectively.   

The overall distance between the two frames is determined as a simple average of the 

individual distances from all the features: 

)],(),(),(),(),([*),( 21212121215
1

21 IIdIIdIIdIIdIIdIID epec λϕ ++++=         (3.19) 

3.4 DETECTING SCENE CUTS 

A scene is a collection of all the video frames generated in a single camera 

operation.  It is also called as a shot.  The shot boundaries or the scene changes are 
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detected based on the fact that the last frame of a scene and the first frame of the next 

scene should differ quite a lot.  This difference leads to a large distance between these 

two frames when compared to any two successive frames within a scene.  Hence, such 

peaks in the distance measure can be captured as the scene cuts using a scene threshold.  

The effectiveness of the system is based on the determination of an appropriate scene 

threshold that can pick up all the scene cuts, and at the same time it should not pick up 

any false scene cuts.  Fig. 3.2 shows a distance plot for �Canyon� video sequence.  The 

�x� symbols in the figure show the true scene cuts. 

Fig 3.2 Distance plot of “Canyon” video sequence 

The scene threshold is determined as: 

{ }),(max* 21 IIDtts =                                                  (3.20) 

where t is the threshold parameter.  (we use 4.0=t  in our tests). 
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3.5 HANDLING SPECIAL EFFECTS 

A video consists of several production effects like dissolves, wipes and fades 

which mark the transition from one scene to another in a sequence of successive frames 

rather than just two successive frames.  These are called the special effects in a video and 

are difficult to capture because the scene transition is gradual. 

Fade:  A fade is a gradual transition from a scene to a constant image (fade-out), or from 

a constant image to a scene (fade-in). 

Dissolve:  A dissolve is a gradual transition from one scene to another, in which the first 

scene fades out and the second scene fades in. 

Wipe:  A wipe is a gradual transition from one scene to another, in which a line moves 

across the screen, with the new scene appearing behind the line. 

Since the scene change in case of special effects involves more than two frames 

and is gradual, the distance metric does not show any peaks during these transitions (see 

Fig. 3.3).   
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Fig 3.3 Distance Plot showing the variation in distance during the dissolves at frames  

2610–2625 and 2905-2920. 

From the figure, we can clearly see that the distance values during the dissolve do 

not show large variation, and hence they cannot be captured with the simple distance 

metric.  Hence we follow a different approach for distance calculation in the case of 

special effects.  The distance is calculated between every iI  and niI + th frame, where n is 

the number of frames involved in the scene transition.  The new distance obtained by 

comparing two frames separated by n frames is shown in Fig. 3.4. 

Dissolves
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      Figure 3.4 Plot showing the new distance calculated between every iI  and niI +  frame. 

From the above figure, we can clearly see the peaks in the new distance values at the 

dissolves, and hence a dissolve can be detected.  One problem with this approach is the 

detection of false alarms.  In the figure, we can see peaks in the distance values at frames 

1600-1650 and 2150-2200.  These false alarms are a result of high motion in the scene.  

Such false alarms could also be due to camera or object movement.  Since we assume the 

cost of missed detection to be more than the cost of false alarms, we are interested in 

detecting the dissolves at the expense of introducing some false alarms.  But we still need 

techniques to distinguish between a gradual transition and a camera or object movement.  
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CHAPTER 4:  ADAPTIVE VIDEO INDEXING USING MERVS 

4.1 INTRODUCTION TO ADAPTIVE VIDEO INDEXING 

 In chapter 3, the video was segmented based on a distance metric calculated using 

all the 5 features and using a fixed scene threshold which was obtained from the distance 

metric.  All the features contributed equally in the distance calculation.  But since we 

know that videos differ widely in their content, treating all the videos in a similar way 

will not yield the best results.  Some videos may have more of edges in them and very 

little color information whereas others may have much of color information and very few 

edges.  In such cases, equal contribution from all the features may produce sub-optimal 

results.  The contributions of the color and the edge features should be tuned according to 

the content of the video.  For the case of edge-oriented videos, larger weights should be 

given to the edge-features whereas in case of color-oriented videos, larger weights should 

be given to the color feature.  Moreover, in case of high motion videos, a specific 

combination of color and edge features may produce the best overall results.  This 

combination of features may differ from one video to the other depending upon the 

amount of motion in the video.  Hence the features and their weights can be adapted with 

respect to the video content.  In addition to the features, the scene thresholds can also be 

adapted to the video content.  Further, sub-adaptive analysis can be performed at different 

conceptual levels in the video sequence. 

4.2 ADAPTIVITY AT THE VIDEO SEQUENCE LEVEL 

First, we consider adapting the video analysis algorithm based on the entire video 

sequence.  That is, for each video sequence, we try to determine the analysis parameters 
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that will produce the best indexing results.  This set of parameters are then used to 

analyze all the frames or scenes in the video. 

In section 3.3, the distance metric was calculated using all the 5 features (edge-

based features and 1 color feature).  Rather than considering all the features for the 

distance calculation, we could consider only those features that are relevant to the video 

being analyzed.  Thus, the selection of the features should depend on the type of video.  

Hence the distance metric defined in Equation (1) can be modified as:  

),(),(),(),(),(),( 212121212121 IIdwIIdwIIdwIIdwIIdwIID epepeecc λλϕϕ ++++=       (4.1) 

where 1=++++ λϕ wwwww epec .  The parameters wc, we, wep, wφ and wλ are the 

respective weights for the color, edge response, edge response at edge points, edge 

direction and edge length features.  A feature can be totally discarded from the distance 

calculation by setting its weight equal to 0.  In chapter 3, we assumed equal contribution 

for each feature (i.e., 5
1===== λϕ wwwww epec ).  We use the parameter w as an index 

to a particular set of weights (see Table 4.1). 

To check the effect of each feature on the different video sequences, we used a 

combination of these weights.  The 32 combinations used are shown in Table 4.1. 

Table 4.1: Table of weights for the MERVs 

w 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 
c 0 0 0 0 1 0 0 0 0 0 0 0.5 0.5 0.5 0.5 0 
er 0 0 0 1 0 0 0 0 0.5 0.5 0.5 0 0 0 0.5 0 
erp 0 0 1 0 0 0 0.5 0.5 0 0 0.5 0 0 0.5 0 0.33
φ 0 1 0 0 0 0.5 0 0.5 0 0.5 0 0 0.5 0 0 0.33
λλλλ 1 0 0 0 0 0.5 0.5 0 0.5 0 0 0.5 0 0 0 0.33

 

w 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 
c 0 0 0 0.33 0.33 0.33 0.33 0.33 0.33 0 0.25 0.25 0.25 0.25 0.2 0.25
er 0.33 0.33 0.33 0 0 0 0.33 0.33 0.33 0.25 0 0.25 0.25 0.25 0.2 0.13
erp 0 0.33 0.33 0 0.33 0.33 0 0 0.33 0.25 0.25 0 0.25 0.25 0.2 0.25
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φ 0.33 0 0.33 0.33 0 0.33 0 0.33 0 0.25 0.25 0.25 0 0.25 0.2 0.25
λλλλ 0.33 0.33 0 0.33 0.33 0 0.33 0 0 0.25 0.25 0.25 0.25 0 0.2 0.13

 

The scene threshold was determined as: 

{ }),(max* 21 IIDtts =                                                   (4.2) 

Experiments were conducted with 9 values for the threshold, t.  The scene cuts 

detected by the system at different scene thresholds are recorded (see Table 4.2).  In the 

table, PR is used as the performance measure.  Its value ranges between 0 and 1.  Higher 

values of PR indicate good performance.  Our goal is to achieve PR close to 1, that is, 

100% performance.  PR is explained in detail in Chapter 5.  

Table 4.2: Performance of video sequences at different thresholds 

PR 
t ANTELOPE 

(w=12) 
CANYON 
(w=15) 

DIARY 
(w=15) 

JOURNAL 
(w=23) 

0.15 0.88 0.89 0.63 0.72 
0.18 0.88 0.93 0.77 0.81 
0.22 0.92 0.95 0.99 0.88 
0.26 0.96 1.00 0.81 0.92 
0.3 0.92 1.00 0.78 0.97 

0.33 0.88 1.00 0.77 0.91 
0.37 0.84 1.00 0.7 0.91 
0.41 0.83 0.94 0.65 0.92 
0.45 0.79 0.92 0.57 0.89 

   

We observe that, different videos may require different contributions for each 

feature (i.e., different w-value**) for the best performance.  We also observe that, at a 

given w, different thresholds produce different results.  In general, video sequences differ 

widely in their content.  For instance, a sports video usually have a higher motion content 

when compared to an ordinary scientific documentary.  Instead of using equal weights for 

all the features, we may vary the weights to change the contribution of the features in the 

                                                 
** We use w and contribution of the features synonymously in this thesis. 
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distance calculation.  Some videos may yield good results when the color feature is given 

more weight, whereas other videos may yield good results when the edge features are 

given more weight.  Depending on the content or type of video, one feature may be more 

important than the other.   

Further analysis shows that, for a given video sequence, the best PR results can be 

obtained with different w-values, but at different thresholds.  For instance, Table 4.3 

shows a more fine-grained result for one of the video sequences. 

Table 4.3: Performance of “Canyon” video sequence 

w  t=0.15  0.18 0.22 0.26 0.3 0.33 0.37 0.41 0.45 
4 0.76 0.86 0.91 0.95 1.00 0.94 0.94 0.94 0.92 
5 0.91 0.95 0.95 0.95 1.00 1.00 1.00 1.00 0.89 

15 0.89 0.93 0.95 1.00 1.00 1.00 1.00 0.94 0.92 
18 0.89 0.95 0.95 1.00 0.94 0.92 0.92 0.83 0.75 
23 0.93 0.93 0.95 0.95 0.95 0.95 0.95 0.94 0.94 
25 0.91 0.95 1.00 1.00 0.92 0.92 0.92 0.86 0.83 
29 0.91 0.95 0.95 1.00 0.94 0.92 0.92 0.89 0.76 

 
In the above table, the maximum performance is 1.00.  This performance is 

achieved at w = 4, 5, 15, 18, 25 and 29, but at different thresholds.  Through experiments, 

the best threshold for each w can be determined.  Other video sequences could require  

different sets of w in order to produce maximum performance (see Table 4.4). 

Table 4.4: w and t values for the best performance of video sequences 

Video PR w t 
ANTELOPE 0.96 12 0.26 
CANYON 1.00 4, 5, 15, 18, 25, 29 0.26, 0.33, 0.41 
DIARY 0.99 12,15, 23 0.22 

JOURNAL 0.97 23, 29, 31 0.3 
 

It is obvious from the results that the contribution of the features should change 

depending on the video content.  The problem is that, at the video sequence level, we still 



 35

have a very coarse granularity.  A more refined approach may be more appropriate, and 

could pave the way for complete automation. 

4.3 ADAPTIVITY AT THE SCENE LEVEL 

 The results obtained in the previous section can be further improved by 

introducing adaptivity at the video scene-level.  Scenes in a video vary widely in their 

content.  Hence using the same set of features and thresholds for all the scenes may not 

produce the best results.  Each scene should be treated differently with a different set of 

features and thresholds, depending upon its content and complexity.  A scene with high 

motion produces higher values of distance between the successive frames and hence 

needs a higher scene threshold to identify the scene cut.  One more measure of 

dissimilarity between scenes is the activity measure.  Activity in a scene is related to the 

scene variability, and usually depends on the amount of detail or edges in the scene. 

 The scenes can be classified into various scene classes based on the activity and 

motion measures calculated from the scenes.  Each scene class is treated with the best 

possible set of features and scene threshold.  In the rest of the thesis, we will refer to the 

set of features and the scene threshold together as the parameter or the parameter set for 

processing the scene.  The parameter set for each scene class is determined using a 

training data set containing a sufficient number of scenes from each scene class.    

4.3.1  SCENE ACTIVITY 

The activity in an image is a measure of the significant detail in the image.  Scene 

activity can be determined by the activity of the first frame (or selected frames) in the 

scene.  We consider three activity measures: A1, A2 and A3. 

Neighborhood differences (A1): 
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The first activity measure is calculated as the sum of the horizontal and vertical 

neighborhood differences.  Let ),( yxI , be an MM ×  image.  Let ),( yxh  and ),( yxv  be 

horizontal and vertical neighborhood differences respectively.  Then the activity A1 is 

computed as: 
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Sum of Squares (A2): 

The second activity measure A2 is calculated as the sum of the square of the horizontal 

and vertical neighborhood differences at each pixel in the image.  
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Image Variance (A3): 

A3 is calculated as the standard deviation of the intensity values. 
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It is easy to extend the above schemes under the multi-resolution framework.  For 

instance, with A3, the activity for r-th block at the k-th resolution is computed as follows: 
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where 
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Then, activity A3 at a given resolution k is given as the average of activities of all the 

blocks at the given resolution-level. 
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Then, ∑=
k

k
k AwA 33 , where wk is a weight factor. 

The three activity measures were computed for a training data set and A3 was 

chosen to be the best activity measure.  The decision of choosing one of the three activity 

measures was subjective.  Using the three measures, we computed quantitative estimates 

of the activity for some test images from different video scenes.  We then chose the 

measure that produced results that were closest to our subjective observation on the 

activity in the image.  The activity values obtained at different resolution levels where 

almost similar, and hence we chose to consider only the lowest resolution level, 0=k  for 

calculating the activity of an image (i.e., 02 =w , 01 =w , 10 =w ). 

Activity Classes: 

Based on the activity values, a scene can be classified into one of three activity 

classes: Low, Medium and High activity.  Table 4.5 shows the activity classes using A3, 

the variance activity measure. 

Table 4.5: Activity classes 

Activity Activity Class Description 

0 � 0.14 I Low 

0.15 � 0.19 II Medium 

> 0.19 III High 
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The range of activity values for each class is determined using the cumulative distribution 

function of the activities of all the scenes in a training data set (see Fig. 4.1). 

 

Figure 4.1: Cumulative Probability Distribution of Activity values 

4.3.2 MOTION ESTIMATION 

The amount of motion in a scene is also one of the factors to be considered when 

deciding on the parameters to be used for segmenting the video.  If a scene has a lot of 

motion, then it may require higher thresholds for segmentation. 

For motion estimation, we use the block matching technique, which is the most 

common and a widely used technique for motion estimation.  Given a pair of successive 

frames, a given number of macro-blocks are considered in the first frame as shown in the 

Fig 4.2.  Each macro-block in the current frame is matched against candidate macro-

blocks within its search area in the next frame.  The candidate macro-blocks are just the 

displaced versions of original macro-block.  The best matching candidate block is found 

using minimum absolute difference (MAD) between the original block and the candidate 
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block, and its displacement (motion vector) is recorded.  The total motion between the 

two frames is computed as the average displacement of all the macro-blocks. 

 

 

Figure 4.2: Motion Estimation 

Let mi be a macro-block of size nm ×  in frame i, and S be the corresponding 

search area in frame i+1 of size )2()2( dndm +×+  as shown in figure.  The minimum 

absolute difference (MAD) between the original macro-block mi and the candidate 

macro-blocks is computed using Eqn. 4.10.   

( ) ∑∑ −=
x y

jiji yxmyxmmmMAD ),(),(,                          (4.10) 

The best matching block, m2 is determined as: 

{ }),(minarg2 jiSj
mmMADm

∈
=                                       (4.11) 
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Let ),( 11 yx  be the coordinates of the centroid of macro-block m1, and ),( 22 yx   be the 

centroid of the best matching macro-block m2, then the motion vector of m1 is determined 

in terms of displacement from position m1 to m2. 

2
21

2
211 )()( yyxxd −+−=                                       (4.12) 

The total motion between the two frames is computed using Eqn. 4.13: 
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where nb is the number of macro-blocks.  In our experiments, the value of nb was taken as 

4, and d=10. 

Motion Classes: 

Based on the motion values, a scene can be classified into one of three motion classes: 

Low, Medium and High motion.  Table 4.6 shows the motion classes. 

Table 4.6: Motion classes 

Motion Motion Class Description 

0 � 4.71 I Low motion 

4.72 � 9.42 II Medium motion 

9.43 � 14.4 III High motion 

 

The range of motion values for each class is determined by uniformly dividing the range 

0 � 14.4 into 3 partss. 

4.3.3  SCENE CLASSIFICATION 

Using the activity and motion class, we define a simple mapping function (.)f  to define 

the overall scene class.   
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Hence, the scenes in a video sequence are classified into 9 scene classes.  Fig. 4.3 gives 

the pictorial representation of the above mapping function.  

 

Fig 4.3: Scene Classes 

4.3.4  ADAPTIVE FEATURES AND ADAPTIVE SCENE THRESHOLDS 

Having characterized and classified the scene based on the motion and activity 

measures, the next question is to determine the parameters for video scene partitioning 

for a given scene.  Formally, given a video scene js , we classify it into a certain scene 

class , ic   },...,,,{ IXIIIIIIci ∈ . The problem of scene-level adaptation then is to 

determine the parameter set (i.e. the ( )τ,w  pair) that will produce the best results for all 

scenes, ij cs ∈ , ji,∀ .  Here, best results are defined in terms of information retrieval 

measures of precision and recall. 

We take a pragmatic approach to the problem of determining the parameters. 

Using a training set of video scenes, we use a simple clustering technique to determine 
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the ( )τ,w  pairs that produce the best results for each scene class in the training set. We 

then use these pairs for analysis of the test video sequences. 

Let ( )τ,wP =  be the weight-threshold pair that defines the parameter set for video 

segmentation.  Let N  be the number of video sequences used for the training set. We use 

the edge-response vectors to analyze the video scenes in the training set, using all the 

available weights and thresholds (i.e. 32 weights, and 9 thresholds in all). Let c
jP  denote 

the set of ( )τ,w  pairs that produced correct partitioning results for the class c scenes in 

video sequence j.   To select the best  ( )τ,w  pair for a given scene class, c, all we need is 

the intersection of c
jP , for all the N sequences: 

c
N

cccc PPPPP ∩∩∩= L321                                        (4.14) 

When we have 1>cP , then any member of cP  can be used as the best parameter set.  

The major problem is when ∅=cP , that is, the intersection is empty, implying that no 

single parameter set always produced correct results for all the class c scenes in the test 

sequences.  Two approaches can be used to address this problem. 

For each scene in a given video sequence, we define an array jia , , 

maxmax ,...,2,1,,...,2,1 ι== jwi ,  such that 1, =jia  if the scene is correctly partitioned with 

the parameter set ),( ji  pair, and 0, =jia  otherwise. We use 9,32 maxmax == ιw  in our 

implementation. Let )(, kac
ji  denote the jia ,  arrays for all the class c scenes in video 

sequence k.  Then, the best parameter set for the class c scenes is determined as : 
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The above selects the parameter set that produced the best overall result, over all the 

scenes of a given class in the training set. This could be dominated by one video 

sequence that has many scenes of the given class. A variation could be to use the 

parameter set that produced the best result over the scenes of a given class from most of 
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the video sequences, although it may not necessarily produce the best results over all the 

scenes.  That is,  

( ){ }kPP c

k

c maxarg= , where, ( ){ }kakP c
jiji

c
,,

maxarg)( =                      (4.16) 

A similar problem can arise in determining the thresholds. Here, one can choose the 

average threshold when two or more thresholds are producing the best result, or to choose 

the minimum threshold to avoid potential false misses in the segmentation.  Table 4.8 

shows the adaptive parameters determined for each of the 9 scene classes using a training 

data set shown in Table 4.7. 

Table 4.7: Distribution of scene classes in the training data set 

Scene Class ANTELOPE JOURNAL LAS Total 
I 4 19 8 31 
II 7 11 17 35 
III 10 14 8 32 
IV 2 10 5 17 
V 3 4 2 9 
IV 3 5 2 10 
VII 0 2 1 3 
VIII 1 2 1 4 
IX 2 0 0 2 

Total 32 67 44 143 
 

Table 4.8: Weight-Threshold pairs for the scene classes 

Scene Class Weights (w) Threshold (t) 
I 12 0.22 
II 9 0.18 
III 13, 24 0.15, 0.22 
IV 12 0.22, 0.33 
V 1 0.18, 0.22 
VI 15 0.33 
VII 28, 29 0.37 
VIII 6 0.45 
IX 2 0.41, 0.45 
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4.4 ADAPTIVE VIDEO SEGMENTATION 

From the foregoing, we can describe the steps involved in adaptive video segmentation as 

follows: 

1. Calculate the activity and motion measures for the first frame in the video. 

2. Determine the scene class for the first scene based on the activity and motion 

measures. 

3. Calculate the distance between the successive frames using the feature set pre-

determined for the given scene class.  Compare the distance using the pre-

determined scene threshold for the given scene class. 

4. If the distance between the two frames exceeds the scene threshold, record a 

scene cut.   

5. Repeat the above procedure on the first frame in the next scene, until the entire 

video sequence is analyzed.  Hence all the scene cuts are detected by tuning the 

parameters according to the scene classes. 
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CHAPTER 5:  EXPERIMENTAL RESULTS 

5.1 EXPERIMENTAL DATA AND EXPERIMENTAL ENVIRONMENT 

5.1.1  EXPERIMENTAL DATA 

Apart from Canyon and Crops, the other video sequences used in the experiments 

were taken from MPEG-7 videos.  Table 5.1 shows the list of the videos used in the 

experiments: 

Table 5.1: Summary of the experimental data 

Video Duration 
min:sec 

Total # of 
Frames 

Total # of 
Scene Cuts Frame Size Description 

ANTELOPE 4:10 6271 32 288x352x3 Wild Life 
CANYON 1:46 3183 18 240x352 Documentary 
CROPS 1:31 2198 13 60x160x3 Farming 

CULTURE 6:00 9000 33 288x352x3 Documentary 
DIARY 4:13 6337 29 288x352x3 News 

JOURNAL 6:04 9100 67 288x352x3 News, Sports 
LAS 4:05 6142 44 288x352x3 Documentary 

Total 27:49 42231 236   
  

5.1.2 EXPERIMENTAL ENVIRONMENT 

The experiments were carried out in a MATLAB 6.5 environment, using Zenith 

personal computers with AMD Athlon[TM] MP 1800+, AT/AT Compatible, dual 

processor, running at 1.5 GHz with 1GB RAM. 

5.2 PERFORMANCE MEASURES 

The performance of our method is evaluated using Precision and Recall measures.  

Precision is defined as the proportion of the correct scene detections out of the total scene 

detections.  Let C be the set of all the correctly detected scenes, and S be the set of all the 

scenes detected by the system, then precision Pr is given as: 
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S
C

=Pr  

Recall is defined as the proportion of the correct scene detections out of the total true 

scene cuts.  Let R be the set of true scene cuts, then recall Rc is given as: 

R
C

Rc =  

We measure the overall system performance in terms of the average precision and recall, 

2
)(Pr RcPR += .  An ideal system will perform at 1Pr =  and 1=Rc .  The performance 

can also be measured in terms of the time taken for the segmentation process. 

5.3 RESULTS FOR NON-ADAPTIVE VIDEO PARTITIONING 

Table 5.2 shows the results obtained using non-adaptive approach for partitioning 

the video.  The results show average precision to be 92% and average recall to be 88%, 

which constitute on an average of 90% system performance.  This shows that the edge-

based features provide a significant measure of the video content, and hence are the 

important features for video analysis.   

Table 5.2: Results for Non-Adaptive Video Partitioning 

Video Scenes Retrieved Correct False Miss Pr Rc PR 
ANTELOPE 32 37 30 7 2 0.81 0.94 0.88 
CANYON 18 18 18 0 0 1.00 1.00 1.00 
CROPS 13 16 13 3 0 0.81 1.00 0.90 

CULTURE 33 21 20 1 13 0.95 0.61 0.78 
DIARY 29 25 24 1 5 0.96 0.83 0.90 

JOURNAL 67 70 65 5 2 0.93 0.97 0.95 
LAS 44 35 35 0 7 1.00 0.83 0.92 

Average      0.92 0.88 0.90 
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5.4 RESULTS FOR ADAPTIVE VIDEO PARTITIONING 

5.4.1 ADAPTATION AT VIDEO SEQUENCE LEVEL 

Table 5.3 shows the results obtained by the video partitioning algorithm using 

adaptation at the sequence-level.  The last two columns show the weights and the 

corresponding thresholds used for each video sequence.   

Table 5.3: Results for Sequence-level Adaptive Video Partitioning 

Video Scenes Retrieved Correct False Miss Pr Rc PR Weight 
w 

Threshold 
ιιιι  

ANTELOPE 32 31 30 1 2 0.97 0.94 0.96 12 0.26 
CANYON 18 18 18 0 0 1.00 1.00 1.00 15,18,

25,29 
0.26,0.30,
0.33,0.37 

CROPS 13 13 13 0 0 1.00 1.00 1.00 15 0.37 
CULTURE 33 33 33 0 0 1.00 1.00 1.00 9,23 0.18 
DIARY 29 30 29 1 0 0.97 1.00 0.99 12,15,

23 
0.22 

JOURNAL 67 71 67 4 0 0.94 1.00 0.97 23 0.3 
LAS 44 45 44 1 0 0.98 1.00 0.99 23,27,

28 
0.18 

Average      0.98 0.99 0.99   
 

We can clearly see that different video sequences use different weights to give the 

best performance in terms of scene cuts detection.  Also the weight-threshold pair is not 

fixed.  It changes from one video to the other depending on the content of the video.  For 

instance, 12=w uses 0.26 as the threshold for ANTELOPE video sequence, whereas the 

same w uses 0.22 as the threshold for DIARY video sequence. 

The results shown in the table were obtained by running the 32 weights with each 

of the 9 thresholds, and the best results were recorded in the table.  The multiple entries 

in the weight column in the table indicate that all the listed weights gave the same results.  

Same is the case with the thresholds.  All the listed thresholds gave the same results.  

Defining the correct weight-threshold pair for a given video sequence is a difficult task 

because characterizing an entire video sequence into just one type is very difficult.  
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Hence we go for scene-level adaptivity, where scenes can be easily characterized and 

classified into scene classes as described in section 4.3.3.   

5.4.2 ADAPTATION AT THE SCENE-LEVEL 

 Table 5.4 shows video partitioning results obtained using adaptation at the scene-

level.  The scene-level adaptation approach gives 91% performance in detecting scene 

cuts.  This is slightly better than the non-adaptive approach, but worse than the sequence-

level adaptation scheme.  A better scene classification method could further improve the 

results. 

Table 5.4: Results for Scene-level Adaptive Video Partitioning 

Video Scenes Retrieved Correct False Miss Pr Rc PR 
ANTELOPE 32 35 30 5 2 0.86 0.94 0.90 
CANYON 18 19 18 1 0 0.95 1.00 0.98 
CROPS 13 14 13 1 0 0.93 1.00 0.97 
CULTURE 33 18 18 0 15 1.00 0.55 0.78 
DIARY 29 26 23 3 6 0.88 0.79 0.84 
JOURNAL 67 70 64 6 3 0.91 0.96 0.91 
LAS 44 44 43 1 1 0.98 0.98 0.98 

Average      0.93 0.89 0.91 
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CHAPTER 6:  SUMMARY AND FUTURE WORK 

6.1 SUMMARY 

A scene-adaptive content-based video segmentation technique has been proposed 

which uses the color feature along with the edge-based features.  The significance of 

edge-based features has been studied, and also experiments have been conducted with 

different combinations of these features.  An adaptive approach has been used both at the 

video sequence level and at the scene level.  From the experimental results, it is clear that 

the video-level adaptivity gives better results than a non-adaptive approach.  The scene-

level adaptivity provides a more automated method for choosing the analysis parameters, 

and also performs better than the non-adaptive scheme.  The multi-resolution approach 

helps us compare the video frames in a better way taking into account both local and 

global changes in the video.  With the proposed approach, the system could successfully 

detect 98% of all the scene cuts in a video using sequence-level adaptation, and 91% 

using scene-level adaptation. 

6.2 FUTURE WORK 

The efficiency of the system can be improved by introducing a temporal skip factor.  

This will result in a smaller number of frames that need to be processed.  Adaptivity can 

also be introduced at resolution-level in order to get more accurate results.  Further 

research is needed in order to determine scene thresholds dynamically from the scene 

content rather than by pre-determining them using a training data set.  This can lead to 

more accurate results.  Also the effect of combining edge-features with texture and shape 

features can be studied.  The proposed approach for the detection of gradual transitions 

needs further study. 
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