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Event Detection in Field Sports Video Using
Audio–Visual Features and a Support Vector Machine

David A. Sadlier and Noel E. O’Connor, Member, IEEE

Abstract—In this paper, we propose a novel audio–visual feature-
based framework for event detection in broadcast video of multiple
different field sports. Features indicating significant events are se-
lected and robust detectors built. These features are rooted in char-
acteristics common to all genres of field sports. The evidence gath-
ered by the feature detectors is combined by means of a support
vector machine, which infers the occurrence of an event based on
a model generated during a training phase. The system is tested
generically across multiple genres of field sports including soccer,
rugby, hockey, and Gaelic football and the results suggest that high
event retrieval and content rejection statistics are achievable.

Index Terms—Event detection, field sports video, MPEG, signal
processing, support vector machine (SVM).

I. INTRODUCTION

MODERN developments in digital video compression
technologies have paved the way for extensive archiving

of content. More and more video material is being digitized
and archived worldwide [1]. However, the problems of limited
bandwidth and/or battery life, which impede the development
of hand-held wireless video applications, built upon such
archives, suggests an increasingly crucial role for highlighting
or summarization of such content. Sports video analysis in par-
ticular has received much attention in the area of digital video
processing. Existing approaches can be broadly classified into
two distinct categories—genre-specific and genre-independent
analyses.

Due to the dramatic variances in broadcast styles for different
sports genres, much of the prior art concerns genre specific ap-
proaches, and within this area, soccer video analysis almost
saturates the field. In [2]–[4] the authors exploit visual charac-
teristics such as camera motion, and perform object tracking, in
automatically detecting soccer video highlights. Cabasson et al.
[5] exploit both visual and aural features to achieve the same
aim. Visual analysis methods, including player tracking, for au-
tomatic soccer video indexing are described in [6], while Xie et
al. [7] present visual methods for soccer video structure anal-
ysis. Basketball video is also a well-researched specific genre.
Nepal et al. [8] describe audio–visual techniques for the de-
tection of basketball goals, while Zhang and Ellis [9] present
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an audio only approach. Further instances of automated bas-
ketball video indexing can be found in [10] and [11]. Audio
and/or video based analyses for event detection toward summa-
rization or indexing, can be found in the literature for a variety of
sports genres; formula-1 [12]; baseball [13]–[15]; cricket [16];
tennis [17]–[19]; American football [20], and Gaelic football
[21]. These works show that genre specific approaches typically
yield successful results within the targeted domain.

However, central to all these works are complex algorithms,
performing standalone modeling of specific events, based on
intrinsically critical characteristic features, which tend to be
particular to each sports type. Their effectiveness is somewhat
diluted by their inherent inapplicability to other sports genres.
Relatively little prior work addresses a more generic, genre in-
dependent methodology, concerning the more challenging task
of revealing the common structures of multiple events across
multiple genres. In Hanjalic et al. [22], the author discusses a
generic approach to highlights detection in sports video, while
methods for the syntactical segmentation of generic sports video
are presented in Jianyun et al. [23]. However, both these works
suffer from the fact that only results concerning soccer video
are presented. Wu et al. [24] present visual analysis techniques
for event detection, which, albeit within integrated athletics
broadcasts, are tested successfully across track-and-field sports
genres. Zhong et al. [25] illustrate visually-based structure
analysis methods, which are examined across tennis and baseball
video. Generic aural and/or visual techniques for sports video
are used in [26]–[28] for semantic annotation and highlights
detection, respectively, and together these approaches are shown
to operate across multiple genres. Further examples of multiple
genre approaches may be found via [29] and [30]. Pan et al. [31]
discuss the detection of replay segments for generic sports video
by a logo detection method. However, while not genre specific,
it may require a priori knowledge of a particular broadcaster.
Finally, Babaguchi et al. [32] present a video-textual technique
for event detection in generic sports video, which exploits
closed-captioning. However, this has an inherent geographical
restriction, e.g., closed-captioning of broadcast sports content
is not mainstream in Europe.

For a given indexing or event detection task, it is unfeasible
to consider that there exists a unique solution that will operate
successfully across all genres of sports video. For example, a
solution that functions effectively on golf video cannot conceiv-
ably be expected to work to the same degree on Sailing con-
tent. The work described herein, aims to set some meaningful
boundary on a generic approach to sports video event detection.
To this end, we limit our scope to some extent, while at the same
time, we avoid becoming too content specific. Our chosen do-
main is field sport broadcasts, encompassing all sports genres
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that fall within this ambit. The reasoning behind this is that field
sport broadcasts (i.e., soccer, American football, rugby, Aus-
tralian rules football, field hockey, Gaelic football, hurling etc.)
all share common characteristics, which may be generically ex-
ploited in the analysis. These include:

1) two opposing teams referee(s);
2) enclosed playing area;
3) grass pitch;
4) field lines;
5) commentator voice-over;
6) spectator cheering;
7) on-screen video text (scoreboard);
8) three well-defined styles of camera shot: global (main),

zoom-in, and extreme close-up;
9) objectives concerned with territorial advancement and di-

recting an object (e.g., ball) toward a specific target.
For the purposes of these experiments, and for the following

discourse, an event hereafter refers to that constituting a suc-
cessful scoring incident from a broadcast field sport game, e.g.,
a goal in soccer or hockey, a try or conversion in rugby, a point
in Gaelic football, etc. Each one of the above characteristics is
present in all genres of field sports broadcasts. Thus, if event-
defining feature detectors are designed so that they are rooted in
such commonality, then it is possible that no other assumption
need be made about the nature of the content for the analysis.

For the purposes of developing our approach a video corpus
consisting of a variety of field sport genres including rugby,
hockey, soccer and Gaelic football was created. To ensure
generality, the content was captured from various broad-
casts sources. Video images were captured at CIF resolution
(352 pixels wide 288 pixels high) at a rate of 25 frames/s.
Audio data was captured in 128 kbits/s stereo, with sampling
frequency of 44 100 samples/s/channel. The entire corpus was
compressed according to the MPEG-1 digital video standard.
In all, 100 h of content was captured. This was split into two
subcorpuses. The training corpus was to be used in developing
model hypotheses, and the testing corpus purely for evaluation
purposes. Both were manually annotated, such that advanced
knowledge of all event locations was ascertained—and subse-
quently used as our ground truth.

II. FIELD SPORT EVENT CHARACTERISTICS

In field sports video there exist many circumstances in which
events may be manifested. However, this approach does not
attempt to model the individual scenarios of such events, but
rather model what is common to all situations, irrespective of
circumstance.

A subjective examination of multiple-events from multiple
field sport genres within the training corpus was performed. From
the evidence it was apparent that 98% of all such events were
followed by an action replay. While generic methods for action
replay detection have been researched [31], most are rooted in
exploitation of slow-motion based frame repetition. Thus, with
the onset of high-speed camera technology, such methods are
vulnerable to breakdown. However, it was noted that a further
consistent feature is the lag time that immediately follows the oc-
currence of an event, before the cut to action replay. The director

Fig. 1. Distribution of reaction-phase durations across multiple events
contained in the training corpus.

utilizes this reaction-phase to capture the responses of players
and/or crowds to the significance of the event. Moreover, the evi-
dence suggests that during the reaction-phase, the characteristics
of the content typically include: 1) a close-up shot of the player(s)
and/or relevant parties involved; 2) a camera shot showing the
crowd celebrating; 3) an increase in audio activity (particularly in
the voice band frequency range, corresponding to commentator
vocals); 4) activity in the on-screen graphics (scoreboard); and
5) a surge in near-field motion activity (as the camera attempts
to capture the intense celebratory behavior of the scorer). Fig. 1
illustrates the distribution of reaction-phase durations across all
types of multigenre events contained in the training corpus. The
mode reaction-time duration was 18 s, which corresponds to 16%
of events. It is clear from this data that a negligible amount of
reaction-phase durations are in excess of 25 s. Considering this
25-s limit as a post-event critical-seek-window (CSW), it was
manually quantified (using prescribed feature extraction tools
where required) that over said events, within this CSW: 1) 96%
were immediately followed by a close-up image; 2) 73% were
followed by a sequence of crowd images; 3) 84% of the accom-
panying audio tracks had peak levels in excess of corresponding
broadcast mean levels; 4) 61% exhibited a temporary removal
of the on-screen graphic during scoreboard update; and 5) 76%
of the near-field motion activity measures had peaks in excess of
corresponding broadcast mean levels. Furthermore, considering
point 4) in Section I, the evidence also suggests that for a given
event, it is typical for the action to be situated at the end-zone
region of the playing field. In fact, itwas manually confirmed that,
over all events contained in the training corpus, 73% occurred
with the camera focused on action in the end-zone region of the
field.

III. CONTENT PREPROCESSING

It is desirable to incorporate a preprocessing phase, where the
content is initially segmented and clearly irrelevant periods are
initially rejected, prior to subsequent analysis.

A. Shot Boundary Detection

Because of the high tempo nature of field sports, during the
live action segments the broadcast director has little chance to
utilize shot transition types other than hard shot-cuts. In fact it
was manually quantified that 94% of all shot transitions within
our multigenre training corpus were of this nature. It was found
that dissolves, wipes, etc., tend only to occur when the director
has time to be more creative, i.e., during a break in the play or
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Fig. 2. Close-up image samples.

Fig. 3. Regions of expectation for close-up images.

during a break in the live action (e.g., during action replays). For
these reasons we concerned ourselves only with hard shot-cut
detection. Hard shot-cut boundary detection is effectively a
solved problem in the area of digital video analysis, and for this
purpose our own algorithm [33] was employed.

B. Probing Domain Restriction

Supplementary content (e.g., advertisements) typically ac-
companies the main event in a sports broadcast. Segments such
as athlete profiles, highlights of recent events, etc., may contain
audio–visual signal attributes with patterns similar to the events
of interest. Hence, it is desirable that the temporal boundaries
of the live play segments are detected within the overall broad-
cast, and the retrieval probing domain restricted accordingly.
For a given sports genre, the play segments may be detected by
searching through the entire audio track for extended periods of
sustained volume [34]. However, this method requires advanced
knowledge of specific sports genres. For our generic approach,
an advertisement detection algorithm [35] is utilized, which has
been shown to operate successfully on generic video. Once ad-
vertisements are located, they are disregarded from the probing
domain.

C. Close-Up Image Detection and Shot Filtering

Although color-based object recognition may not be prac-
tical in many video scenarios, it is suitable for sports, where
colors are purposely used to differentiate players, and clearly
defined rules constrain the action [36]. As a result the colors of
the playing surface and the players/referee shirts usually con-
sist of one or two (striped) dominant colors. Two close-up im-
ages are displayed in Fig. 2. From these examples it is clear that
the salient characteristics of such images are: 1) the presence
of a face in the top-middle-center region (i.e., the focus) of the
frame, together with 2) a jersey in the bottom-middle region of
the frame, occluding an arbitrary background. Based on the ev-
idence of numerous close-up images selected from the training
corpus, estimations of the regions of expectation for said charac-
teristics were delineated—see Fig. 3. Region-1 (R1), the region

Fig. 4. Hue analysis of critical regions of interest.

of expectation for the face, was chosen to be a square of di-
mension 1/4 W centered on the vertical median, at a horizontal
position corresponding to 1/3 H from the top of the image. Re-
gion-2 (R2), the region of expectation for the shirt, was chosen
to be a rectangle of dimensions 1/4 H 1/2 W centered on the
vertical median, at a horizontal position corresponding to 1/3 H
from the bottom of the image. Region-3 (R3), the region of ex-
pectation for the background, is simply the outstanding regions
in extending the dimensions of Region-2 to the image width.

A proposed close-up detection model is based on the degree
to which the image has: 1) a skin-toned entity (i.e., a face) in Re-
gion-1 and 2) a monochromatic entity (i.e., a shirt) in Region-2,
occluding the background in Region-3. Consider the examples
A and B in Fig. 4. It has been shown that skin-color clusters
well in the hue space at – [37], and therefore may be
easily discriminated from other colors in the images. For Re-
gions-1 the skin-hue pixel ratios are calculated. For
image A this corresponds to 0.6320, likewise for image B this is
0.6256. For Regions-2 the dominant hue pixel ratios
is computed. For images A and B this corresponds to 0.8033 and
0.5856, respectively.

For Regions-3 the pixel ratios of the same dominant hue of
Region-2 is computed. For images A and B this
corresponds to 0.3164 and 0.0303, respectively. For an ideal
close-up image with face and shirt perfectly encapsulated in
the appropriate regions, it is expected that both and

will be relatively large values, while will
be a relatively small value. Hence, a formula for image close-up
confidence (CuC) exploiting these perceptions is defined as

(1)

Using the values of examples A and B in this formula yields
close-up confidence values of 0.3474 for image A, and 0.3078
for image B, respectively. Comparing these values with those
generated for nonclose-up images shows that this model works
well at discriminating such images in the context of the lim-
ited image domain of field sports content. For example, similar
analyses performed on images 2 and 3 in Fig. 5 yield CuC values
of 0.0390 and 0.0133, respectively.

As outlined in Section II, it was estimated that 97% of all
training corpus events included a close-up image sequence
during the post-event, preaction replay, reaction-phase. Thus,
it was decided to employ this feature as the basis for a shot-re-
tention condition. The stipulation requires that for a given
shot to be retained, it must be followed by an instance of
a close-up (I-frame) image within the post-event CSW (as
defined in Section II). This should provide for a reasonable
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Fig. 5. Field-sports video images. Block A: Generic images from standard
camera perspectives. Block B: Crowd Images.

TABLE I
VARIANCE OF EVENT SHOT-RETENTION VERSUS IMAGE CUC THRESHOLD

initial retention of eventful shots and rejection of uneventful
shots. Experiments were performed on the training corpus. The
variance of event shot-retention versus image CuC threshold
is presented in Table I. As expected the number of retained
event-shots decreases as the condition threshold becomes more
stringent. Based on these observations, a CuC threshold of 0.1
was chosen since this provided 96% retention of all training
corpus events, which is acceptably close to the 97% maximum.
When combined with the probing domain limit, this condition
was found to provide overall preprocessor content rejection of
43% across the entire training corpus.

IV. FEATURE DETECTORS: DESIGN AND IMPLEMENTATION

A. Feature Detector 1: Crowd Image Detection

As outlined in Section II, it was estimated that of all the
events contained in the training corpus, 73% contained a crowd
image sequence within the post-event reaction-phase. Thus, it
is postulated that crowd image sequence detection is a valuable
cue, which should contribute effectively to the event detection
task. Crowd image detection may be performed by exploiting
the inherent characteristic that, in the context of a typically
noncomplex image environment, such images are relatively
detailed—see Fig. 5. It is proposed that discrimination between
detailed and nondetailed pixel blocks may be made by exam-
ining the number of nonzero frequency (ac) discrete cosine
transform (DCT) coefficients used to represent the data in the
frequency domain. It may be assumed that an (8 8) pixel
block, which is represented by very few ac-DCT uniform coef-
ficients, contains spatially consistent, nondetailed data. A block
which requires a considerable amount of ac-DCT coefficients
for its representation, may be assumed to consist of relatively
more detailed information. In field sports video content, the
majority of images capture relatively sizeable monochromatic,
homogeneous regions, e.g., grassy pitch, player’s shirt—see
Fig. 5, block A. Therefore, in the context of this limited envi-
ronment, it is proposed that crowd images may be isolated by
detecting such uniformly, high frequency images.

Fig. 6. Division of image into four quadrants.

Each I-frame is divided into four quadrants—see Fig. 6. For
each quadrant of each image, the ac-DCT coefficients of every
(8 8) luminance pixel block are analyzed. If the number of
ac-DCT coefficients used to encode such blocks is greater than a
preselected threshold, it can be deduced that the block represents
reasonably complex data, and is counted, obtaining an overall
value representing the number of high frequency blocks, per
total number of blocks, for each quadrant.

These values are normalized to lie between zero and one,
and values for both mean number of high-frequency blocks

and standard deviation per quadrant , are
calculated from the four quadrant values. It was noted that for
uniform crowd images, and should have high and
low values, respectively. A crowd image confidence feature set,

, is calculated as follows:

(2)

B. Feature Detector 2: Speech-Band Audio Activity

Again, as mentioned in Section II, of the audio tracks ac-
companying the events in the training corpus, during the reac-
tion-phases, 84% exhibited (speech-band) energy levels greater
than that of corresponding broadcast mean levels. A comprehen-
sive discourse on how speech-band energy may be estimated by
examining bit-stream scalefactor [38] weights may be found via
[34].

From the audio tracks, scalefactor data, from subbands 2–7,
is parsed from the audio bit-stream and grouped together in
0.5-s intervals. The average of the root-mean-square scalefactor
values is then calculated, to yield feature set —speech-
band energy levels for each temporal interval. For each partic-
ular broadcast these values are normalized to lie between zero
and one

scalefactors (3)

C. Feature Detector 3: On-Screen Graphics Tracking

As mentioned in Section II, it was estimated that of all the
events contained in the training corpus, 61% were characterized
by a temporary disappearance of the graphic during the score-
board updating procedure during the post-event reaction-phase.
The on-screen scoreboard graphic is a synthesized component
placed over video content. See Fig. 7, images 1 and 2. The
format of each graphic is particular to each broadcaster, and may
even occasionally change format on an intra-broadcaster basis.
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Fig. 7. Image 1: Scoreboard graphic location. Image 2: Enlarged view score-
board graphic. Image 3: Scoreboard graphic following contrast enhancement.
Image 4: Mode values for contrast-enhanced scoreboard graphic pixels.

Fig. 8. Contrast enhancer: Pixel value scaling characteristic based on 180
cycle of sine function.

1) Scoreboard Graphic Locating: One of the prominent
characteristics of a scoreboard graphic is the presence of text.
For text to be visible, there must be a strong luminance contrast
between the foreground and background. Thus, during the
encoding process, this text requires a relatively large amount
of ac-DCT luminance coefficients to represent it. Furthermore,
for a given broadcast, the location of the graphic is static,
and it is present on-screen for the main duration of the game.
Hence, for a given broadcast, the pixel blocks that constitute the
graphic will exhibit a large number of ac-DCT luminance coef-
ficients consistently over the duration of the game. In contrast,
nongraphic associated pixel blocks will naturally constitute
many different aspects of the images captured over the course
of the broadcast and, hence, will not exhibit a consistently
high number of said coefficients. On this basis the pixel block
location of the graphic may pinpointed.

2) Scoreboard Presence/Absence Tracking: It is not un-
common for the scoreboard graphic to have some degree of
transparency in its background. This is done to limit the occlu-
sion disturbance to the viewer. Thus, the graphic pixel values,
although reasonably constant throughout a given broadcast,
are subject to transparency-noise, which especially affects
those constituting the background. To combat the effects of
this on graphic presence/absence tracking, the contrast of the
luminance pixel spectrum – of the images is warped
(enhanced), such that the effects of fleeting contrast variations
in the scoreboard pixels are suppressed. Specifically, a 256-bin
scaling characteristic (4), based on a 180 cycle period of the
sine function, is used to perform this task. This characteristic
is illustrated in Fig. 8

Contrast Enhancer

(4)

The effect of this scaling operator in the luminance domain is
to push reasonably dark pixels to very dark, reasonably bright
pixels to very bright, while leaving other greylevels relatively
unaffected. Pixel values outside the permitted range are clipped
accordingly—see Fig. 7, images 2 and 3.

Fig. 9. Variance of number of events with reaction-phase visual activity peaks
in excess of corresponding mean levels with “zero” threshold.

Once the pixels of the graphic are pinpointed, their temporal
mode luminance value is computed, by examining the values
over all I-frames within the broadcast. An example of the re-
sulting mode is given in Fig. 7, image 4. The mode values of the
graphic region, by definition, represent the most continuously
recurring luminance pixel values, over the duration of a given
broadcast. Therefore, for a given image, a high absence confi-
dence value will correspond to a high sum of absolute difference
(SAD) value between the current image values, and those of the
mode.

Thus, for each I-frame, an image-mode SAD operation is per-
formed on the values of the critical pixels. The outputs constitute
another feature set

I-frame Mode (5)

D. Feature Detector 4: Motion Activity Measure

As previously discussed, during the post-event reaction-
phase, it is typical for the camera operator to follow a cele-
brating player(s), generally by means of a close-up shot. Due
to the dynamic nature of the content, coupled with the type
of camera shot used, a significant increase in near-field visual
motion activity is typically apparent.

Visual motion activity is estimated from the evidence con-
veyed by the motion vectors present in the MPEG video
bit-stream [39]. From the video content, every P-frame is
extracted and from these images, motion vectors for each
macroblock are extracted directly from the encoded bit-stream.
From the motion vectors of each P-frame image, a critical
statistic, the nonzero vector value (NZVV) is calculated. This
is calculated by counting the number of macroblocks in the
frame whose motion vector length is greater than a preselected
“zero” threshold. The “zero” threshold value should be chosen
to be large enough as to ignore slow, smooth motion, while
detecting, jerky, uneven motion, i.e., the type of turbulent
motion expected during the celebratory moments. Fig. 9 il-
lustrates how the percentage of training corpus events with
reaction-phase visual activity peaks in excess of corresponding
broadcast mean values, varies with the selection of the “zero”
threshold. As mentioned in Section II, a maximum value of
76% may be achieved using a “zero”-threshold of 50. Hence,
it is this threshold value that is used for this analysis. The
NZVV statistic is calculated for each P-frame, thus yielding a
visual activity feature set . Higher values should indicate
increased visual activity. These data sets are smoothed, i.e.,
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Fig. 10. Orientation of most prominent field lines during field sport events.
A: rugby. B: hockey. C: soccer.

mean-filtered, using a one-dimensional (1-D) kernel of length
. The values are then normalized such that they lie between

zero and one

Smoothed - (6)

E. Feature Detector 5: Field Line Orientation

As outlined in Section II, a typical characteristic of field sport
events is that they are characterized by activity particular to the
end-zone region of the playing field. In fact, it was estimated that
73% of all training corpus events adhere to this scenario. For
example, events such as goals, tries, points, conversions, etc.,
are achieved either by: 1) directing the ball toward a target in
the field end-zone, or 2) player, with ball, advancing toward the
end-zone. Due to the fixed position of the camera, the resulting
perspective is such that the field lines may only assume certain
angles, which lie within a particular narrow interval, relative
to the point of observation. Fig. 10 displays the final I-frame
images of camera shots corresponding to a try-score in rugby
(image A), a goal-score in hockey (image B) and a goal-score
in soccer (image C). It is clear from these images that the angles
of the most prominent field lines lie within a common narrow
interval. Of the events in the training corpus that adhere to these
circumstances, it was manually recorded that of the most promi-
nent field lines, only a negligible number of the angles of the
final I-frames in the shots mapped outside the interval (5 –25 ).
Thus, by detecting the field lines and continuously tracking their
angle of orientation, it should be possible to detect these images
that correspond to field end-zone shots. Again, it was anticipated
that analysis of I-frames would be sufficient for this task.

It is assumed that the global mode hue (GMH) value, com-
puted over the duration of the probing domain, corresponds to
the pixels of the playing field. This is a reasonable assumption
since the playing field is the largest reoccurring object that con-
stitutes the images of a given broadcast. For a given image, the
playing field pixels are segmented in the hue space based on
this value. Segmentation of field lines from the playing field is
achieved via a binarization of the luminance space of the image,
using a threshold equivalent to the mode greyscale value of the
playing field pixels. This provides for a segmentation of the
white field lines (which are bright, i.e., luminance values gen-
erally exceed threshold) from the playing field (which is dark,
i.e., luminance values generally suppressed by threshold)—see
Fig. 11.

A Roberts’ edge detector [40] was utilized to isolate the edges
of the binarized images. For each edge-detected binary image,
the field lines were extracted by means of the Hough transform
[41]. Specifically, the pixels of each binary image were trans-
formed from spatial space to Hough space. For each case the

Fig. 11. Field line segmentation based on dynamic threshold.

angle of the most prominent detected line was chosen as the rep-
resentative value for that image. These values were calculated
for each I-frame, thus yielding a field-line orientation angle fea-
ture set

Angle of Most Prominent Line - (7)

F. Other Features Investigated

So far, five critical features have been described for the pattern
recognition phase of the event detection task. Clearly, to max-
imize the accuracy of the overall system, exploitation of other
useful features would be desirable.

As outlined in Section III, in the case of 61% of training
corpus events, the scoreboard update procedure occurs while
the graphic temporarily disappears off-screen. In other circum-
stances, it would be desirable to detect the relatively minute
activity of the on-screen update of individual scoreboard nu-
merals. However, there are certain problems associated with
compressed video images that prevent an optical character rec-
ognizer from easily recognizing such characters. For example,
an effect of transparency-noise is that the background luminance
is typically unstable, which has detrimental consequences for
the segmentation of the text region into foreground/background
regions. For these reasons, no further development of this fea-
ture has been investigated to date.

In the audio domain, as well as a surge in energy level during
exciting moments, subjective evidence shows that it is not un-
common to observe an increase in the pitch of the commentator
vocals during periods of heightened enthusiasm. Hence, an indi-
cator of this characteristic should further contribute to the event
detection task. There exist many reliable vocal pitch estimation
techniques in the literature, e.g., [42], [43]. However, they as-
sume pure speech signal input, i.e., free from background noise,
which is certainly not characteristic of the content dealt with in
these experiments. Thus, the task initially concerns the isolation
of a clean speech signal from a noisy ensemble. If it is a case that
the vocal signal is a mono signal, center panned in a stereo pair,
then, by exploiting both this and the assumed stereo asymmetry
of the background/spectator noise, it is possible to isolate the
vocal signal from the original stereo signal. However, this ap-
proach is critically dependent upon the above assumption, and
the inconsistency observed in such has discouraged any further
development.

V. FEATURE DATA AGGREGATION

For a given shot, it is required to aggregate its corresponding
feature data, estimated exactly as described in the previous sec-
tion, such that it is tagged with its own shot feature vector (SFV)

(8)
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The vector should convey event-critical information, i.e., for
a given SFv, it is required that the individual vector component
coefficient (Vcc) values, computed from the feature data sets,
reflect the features’ contribution to the overall probability that
the content of the shot exhibits an event. Specifically, within the
CSW from the end-boundary of each retained shot, is de-
fined as the maximum I-frame crowd image confidence value;

is defined as the maximum speech-band energy value;
is defined as the maximum I-frame graphic activity value;

and is defined as the maximum P-frame visual motion ac-
tivity confidence value

(9)

is a feature data set representing the angles of the most
prominent field lines for I-frame images. To quantify the con-
fidence that a given shot culminates with the camera focused
on activity located in the field end-zone, the field-line angles of
the last six I-frames preceding the shot-end boundary (critical
I-frames) are examined. As the corresponding orientations are
found to lie in the key range 5 –25 , the confidence value in-
creases accordingly, i.e.,

critical I-frame orientations within the key range

(10)

If a given shot duration does not contain at least six I-frames,
is set to zero.

These five-dimensional SFvs constitute the input data for the
classifier.

VI. SUPPORT VECTOR MACHINE

A. Overview

The performance of a learning machine is measured by its
generalization [44]. This is the ability of a resultant decision
function to correctly classify data points not in the training set.
Support vector machine (SVMs) are an implementation of the
latest generation of machine learning algorithms based on re-
cent advances in statistical learning [44]. SVMs offer a solu-
tion to optimizing the generalization performance of a decision
function, inferred from a given set of training data. For event
detection, the desired output is a binary (positive or negative)
decision. It is for this reason that an SVM (with radial basis
function kernel) was chosen as the learning algorithm for the
purposes of this experiment. Alternative classification schemes
such as hidden Markov models are likely to be more appropriate
in video indexing applications, where continuous knowledge of
past and present states is desired [45]. A special feature of an
SVM is the regularization parameter, . This is a user-defined
value that is set during the training phase. Variation of this pa-
rameter essentially provides for an effective tuning aspect to the
classification. A comprehensive discourse of this topic can be
found in [44].

Fig. 12. Rugby content: ERR versus CRR.

VII. EXPERIMENTAL EVALUATION

A. Training and Testing Phases

The training corpus consisted of 210 events—70 events from
soccer, 70 from rugby, and 70 from Gaelic football. For each
individual event, the corresponding SFVs, coupled with the
ground truth, were used to train the SVM, such that a generic
field sport event model was generated, inferred from the key
feature patterns. To provide an indication of the range of pos-
sible results obtainable from the model, the SVM was trained
for wide-varying values of the regularization parameter .

The test corpus consisted of 60 events from soccer video, 80
events from both rugby and Gaelic football video, and 40 events
from hockey video. Each trained classifier was run on the SFVs
of the test corpus content, such that corresponding shots are
deemed either eventful or noneventful. Consecutive shots with
identical classification were grouped together yielding eventful
or noneventful scenes.

B. Results and Evaluation

The scene classifications were compared to that of the ground
truth. Estimations for event retrieval ratios (a true-positive
statistic) and content rejection ratios (a true-negative statistic)
were computed. Fig. 12 presents a plot of content rejection ratio
(CRR) against event retrieval ratio (ERR), for varying values
of , with respect to the rugby content alone. The maximum
ERR value achievable is 97%, i.e., the retrieval of 97% of all
events that constitute the game i.e., tries, drop-goals, conver-
sions, and penalties. The corresponding CRR value for this
particular value of is 38%. This maximum ERR limit, and
corresponding CRR value, are a consequence of the filtering
performed during the preprocessing stage—the preprocessor
limit. By varying during the training phase, the resulting
classification varies from the preprocessor limit toward a sat-
uration limit of 78% CRR and 68% ERR. Similar statistical
analyses are performed for the other field sport genres. Fig. 13
plots CRR versus ERR for retrieval of goals in soccer, Fig. 14
plots CRR versus ERR for retrieval of goals in hockey, and
Fig. 15 plots CRR versus ERR for retrieval of goals and points
in Gaelic football.

For cross-genre performance comparison, Table II lists the
preprocessor limit for each genre. Also, the CRR values for a
sensibly chosen ERR evaluation point are juxtaposed. Clearly,
it is desirable to maintain both statistics as high as possible.
However, in a real retrieval system, high recall is paramount
since a user would be more likely to tolerate the inclusion of
nonevents as opposed to event omissions. Thus, the evaluation
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Fig. 13. Soccer content: ERR versus CRR.

Fig. 14. Hockey content: ERR versus CRR.

Fig. 15. Gaelic football content: ERR versus CRR.

TABLE II
ERR/CRR PREPROCESSOR LIMITS AND CRR VALUES AT EVALUATION POINT

point is chosen to be the maximum CRR achievable for 90%
ERR. From this table it is clear that in general, the preprocessor
limits are satisfactory except in the case of hockey where, al-
though 52% of content was rejected, only 90% of events were
retained from this phase. It is desirable that the ERR of this pre-
processor limit be higher. Considering the performances at the
evaluation point, the best overall performing genre was soccer
for which 74% CRR may be achieved at the evaluation point of
90% ERR. The poorest performing genre at the evaluation point
was rugby for which 65% CRR may be achieved. hockey per-
formed slightly better than Gaelic football, with 72% CRR and
69% CRR, respectively, at said point.

It is postulated that the reasons for these individual genre per-
formances may be related to the pace of the respective games.

It was noted that at the evaluation point, it was the faster paced
games, i.e., soccer and hockey, which outperformed the more
slowly paced games of Gaelic football and rugby. Following
a subjective examination of the content it was observed that
the faster paced games tend to contain more live action. There-
fore, the video structure tends to be more defined, i.e., less play
breaks. On the other hand, broadcasts of a relatively slowly
paced game such as rugby, tend to include more contextual con-
tent, e.g., more close-up shots, more crowd shots, more replays,
more dissolves, etc., i.e., a relatively sporadic abundance of the
features critical to this analysis.

VIII. CONCLUSION AND FUTURE WORK

In this paper we have outlined an approach to event detec-
tion in field sports broadcast video. An event model is inferred
from evidence from feature detectors, which are chosen such
that they are recyclable across multiple sports genres within the
field sport domain. The techniques have been applied and tested
generically across four distinct genres of field sport video. A
large experimental corpus, which was obtained from multiple
broadcast sources, was utilized for the analysis. Compared to a
manually annotated ground truth, it has been shown that both
high event retrieval and content rejection statistics are achiev-
able. It has further been described how the SVM can be tuned
such that the classification may be biased to any point on the
classification characteristic of the model.

Future work will focus on further investigation on certain key
aspects of the scheme. First, an investigation is required that
shows the individual contribution of each feature to the task.
Second, an analysis of the effect of feature threshold selection
on overall system performance (not just on feature performance)
is desirable. A final issue is the efficiency. Where possible, the
feature detectors are implemented from low-level data taken
directly from the compressed domain audio/visual bit-stream.
This aspect of the system will be quantified in the future, with
a view to making the overall approach as computationally effi-
cient as possible.
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