185 research outputs found

    Word Sense Disambiguation for clinical abbreviations

    Get PDF
    Abbreviations are extensively used in electronic health records (EHR) of patients as well as medical documentation, reaching 30-50% of the words in clinical narrative. There are more than 197,000 unique medical abbreviations found in the clinical text and their meanings vary depending on the context in which they are used. Since data in electronic health records could be shareable across health information systems (hospitals, primary care centers, etc.) as well as others such as insurance companies information systems, it is essential determining the correct meaning of the abbreviations to avoid misunderstandings. Clinical abbreviations have specific characteristic that do not follow any standard rules for creating them. This makes it complicated to find said abbreviations and corresponding meanings. Furthermore, there is an added difficulty to working with clinical data due to privacy reasons, since it is essential to have them in order to develop and test algorithms. Word sense disambiguation (WSD) is an essential task in natural language processing (NLP) applications such as information extraction, chatbots and summarization systems among others. WSD aims to identify the correct meaning of the ambiguous word which has more than one meaning. Disambiguating clinical abbreviations is a type of lexical sample WSD task. Previous research works adopted supervised, unsupervised and Knowledge-based (KB) approaches to disambiguate clinical abbreviations. This thesis aims to propose a classification model that apart from disambiguating well known abbreviations also disambiguates rare and unseen abbreviations using the most recent deep neural network architectures for language modeling. In clinical abbreviation disambiguation several resources and disambiguation models were encountered. Different classification approaches used to disambiguate the clinical abbreviations were investigated in this thesis. Considering that computers do not directly understand texts, different data representations were implemented to capture the meaning of the words. Since it is also necessary to measure the performance of algorithms, the evaluation measurements used are discussed. As the different solutions proposed to clinical WSD we have explored static word embeddings data representation on 13 English clinical abbreviations of the UMN data set (from University of Minnesota) by testing traditional supervised machine learning algorithms separately for each abbreviation. Moreover, we have utilized a transformer-base pretrained model that was fine-tuned as a multi-classification classifier for the whole data set (75 abbreviations of the UMN data set). The aim of implementing just one multi-class classifier is to predict rare and unseen abbreviations that are most common in clinical narrative. Additionally, other experiments were conducted for a different type of abbreviations (scientific abbreviations and acronyms) by defining a hybrid approach composed of supervised and knowledge-based approaches. Most previous works tend to build a separated classifier for each clinical abbreviation, tending to leverage different data resources to overcome the data acquisition bottleneck. However, those models were restricted to disambiguate terms that have been seen in trained data. Meanwhile, based on our results, transfer learning by fine-tuning a transformer-based model could predict rare and unseen abbreviations. A remaining challenge for future work is to improve the model to automate the disambiguation of clinical abbreviations on run-time systems by implementing self-supervised learning models.Las abreviaturas se utilizan ampliamente en las historias clínicas electrónicas de los pacientes y en mucha documentación médica, llegando a ser un 30-50% de las palabras empleadas en narrativa clínica. Existen más de 197.000 abreviaturas únicas usadas en textos clínicos siendo términos altamente ambiguos El significado de las abreviaturas varía en función del contexto en el que se utilicen. Dado que los datos de las historias clínicas electrónicas pueden compartirse entre servicios, hospitales, centros de atención primaria así como otras organizaciones como por ejemplo, las compañías de seguros es fundamental determinar el significado correcto de las abreviaturas para evitar además eventos adversos relacionados con la seguridad del paciente. Nuevas abreviaturas clínicas aparecen constantemente y tienen la característica específica de que no siguen ningún estándar para su creación. Esto hace que sea muy difícil disponer de un recurso con todas las abreviaturas y todos sus significados. A todo esto hay que añadir la dificultad para trabajar con datos clínicos por cuestiones de privacidad cuando es esencial disponer de ellos para poder desarrollar algoritmos para su tratamiento. La desambiguación del sentido de las palabras (WSD, en inglés) es una tarea esencial en tareas de procesamiento del lenguaje natural (PLN) como extracción de información, chatbots o generadores de resúmenes, entre otros. WSD tiene como objetivo identificar el significado correcto de una palabra ambigua (que tiene más de un significado). Esta tarea se ha abordado previamente utilizando tanto enfoques supervisados, no supervisados así como basados en conocimiento. Esta tesis tiene como objetivo definir un modelo de clasificación que además de desambiguar abreviaturas conocidas desambigüe también abreviaturas menos frecuentes que no han aparecido previamente en los conjuntos de entrenaminto utilizando las arquitecturas de redes neuronales profundas más recientes relacionadas ocn los modelos del lenguaje. En la desambiguación de abreviaturas clínicas se emplean diversos recursos y modelos de desambiguación. Se han investigado los diferentes enfoques de clasificación utilizados para desambiguar las abreviaturas clínicas. Dado que un ordenador no comprende directamente los textos, se han implementado diferentes representaciones de textos para capturar el significado de las palabras. Puesto que también es necesario medir el desempeño de cualquier algoritmo, se describen también las medidas de evaluación utilizadas. La mayoría de los trabajos previos se han basado en la construcción de un clasificador separado para cada abreviatura clínica. De este modo, tienden a aprovechar diferentes recursos de datos para superar el cuello de botella de la adquisición de datos. Sin embargo, estos modelos se limitaban a desambiguar con los datos para los que el sistema había sido entrenado. Se han explorado además representaciones basadas vectores de palabras (word embeddings) estáticos para 13 abreviaturas clínicas en el corpus UMN en inglés (de la University of Minnesota) utilizando algoritmos de clasificación tradicionales de aprendizaje automático supervisados (un clasificador por cada abreviatura). Se ha llevado a cabo un segundo experimento utilizando un modelo multi-clasificador sobre todo el conjunto de las 75 abreviaturas del corpus UMN basado en un modelo Transformer pre-entrenado. El objetivo ha sido implementar un clasificador multiclase para predecir también abreviaturas raras y no vistas. Se realizó un experimento adicional para siglas científicas en documentos de dominio abierto mediante la aplicación de un enfoque híbrido compuesto por enfoques supervisados y basados en el conocimiento. Así, basándonos en los resultados de esta tesis, el aprendizaje por transferencia (transfer learning) mediante el ajuste (fine-tuning) de un modelo de lenguaje preentrenado podría predecir abreviaturas raras y no vistas sin necesidad de entrenarlas previamente. Un reto pendiente para el trabajo futuro es mejorar el modelo para automatizar la desambiguación de las abreviaturas clínicas en tiempo de ejecución mediante la implementación de modelos de aprendizaje autosupervisados.Programa de Doctorado en Ciencia y Tecnología Informática por la Universidad Carlos III de MadridPresidente: Israel González Carrasco.- Secretario: Leonardo Campillos Llanos.- Vocal: Ana María García Serran

    Mining the Medical and Patent Literature to Support Healthcare and Pharmacovigilance

    Get PDF
    Recent advancements in healthcare practices and the increasing use of information technology in the medical domain has lead to the rapid generation of free-text data in forms of scientific articles, e-health records, patents, and document inventories. This has urged the development of sophisticated information retrieval and information extraction technologies. A fundamental requirement for the automatic processing of biomedical text is the identification of information carrying units such as the concepts or named entities. In this context, this work focuses on the identification of medical disorders (such as diseases and adverse effects) which denote an important category of concepts in the medical text. Two methodologies were investigated in this regard and they are dictionary-based and machine learning-based approaches. Futhermore, the capabilities of the concept recognition techniques were systematically exploited to build a semantic search platform for the retrieval of e-health records and patents. The system facilitates conventional text search as well as semantic and ontological searches. Performance of the adapted retrieval platform for e-health records and patents was evaluated within open assessment challenges (i.e. TRECMED and TRECCHEM respectively) wherein the system was best rated in comparison to several other competing information retrieval platforms. Finally, from the medico-pharma perspective, a strategy for the identification of adverse drug events from medical case reports was developed. Qualitative evaluation as well as an expert validation of the developed system's performance showed robust results. In conclusion, this thesis presents approaches for efficient information retrieval and information extraction from various biomedical literature sources in the support of healthcare and pharmacovigilance. The applied strategies have potential to enhance the literature-searches performed by biomedical, healthcare, and patent professionals. The applied strategies have potential to enhance the literature-searches performed by biomedical, healthcare, and patent professionals. This can promote the literature-based knowledge discovery, improve the safety and effectiveness of medical practices, and drive the research and development in medical and healthcare arena

    A system to extract abbreviation-expansion pairs from biomedical literature

    Get PDF
    We present a system to identify abbreviation expansion pairs from scientific articles. We work with the Genomics track of the TREC collection. Authors report abbreviations in two places - an abbreviations section and within the body of a scientific article. Articles with an abbreviations section had fewer abbreviations than those that did not have an abbreviations section (an average of 7.1 versus 13.2 abbreviations per article). For articles that do have an abbreviations section, authors report 98.2% of the abbreviations present in the document in that section. Inspired by Schwartz & Hearst's earlier work our program identified 2.1 million abbreviations from 162,259 documents. A manual inspection of a randomly selected set of articles revealed that our system achieved 86.7% precision and 81.9% recall

    Word-sense disambiguation in biomedical ontologies

    Get PDF
    With the ever increase in biomedical literature, text-mining has emerged as an important technology to support bio-curation and search. Word sense disambiguation (WSD), the correct identification of terms in text in the light of ambiguity, is an important problem in text-mining. Since the late 1940s many approaches based on supervised (decision trees, naive Bayes, neural networks, support vector machines) and unsupervised machine learning (context-clustering, word-clustering, co-occurrence graphs) have been developed. Knowledge-based methods that make use of the WordNet computational lexicon have also been developed. But only few make use of ontologies, i.e. hierarchical controlled vocabularies, to solve the problem and none exploit inference over ontologies and the use of metadata from publications. This thesis addresses the WSD problem in biomedical ontologies by suggesting different approaches for word sense disambiguation that use ontologies and metadata. The "Closest Sense" method assumes that the ontology defines multiple senses of the term; it computes the shortest path of co-occurring terms in the document to one of these senses. The "Term Cooc" method defines a log-odds ratio for co-occurring terms including inferred co-occurrences. The "MetaData" approach trains a classifier on metadata; it does not require any ontology, but requires training data, which the other methods do not. These approaches are compared to each other when applied to a manually curated training corpus of 2600 documents for seven ambiguous terms from the Gene Ontology and MeSH. All approaches over all conditions achieve 80% success rate on average. The MetaData approach performs best with 96%, when trained on high-quality data. Its performance deteriorates as quality of the training data decreases. The Term Cooc approach performs better on Gene Ontology (92% success) than on MeSH (73% success) as MeSH is not a strict is-a/part-of, but rather a loose is-related-to hierarchy. The Closest Sense approach achieves on average 80% success rate. Furthermore, the thesis showcases applications ranging from ontology design to semantic search where WSD is important

    Information retrieval and text mining technologies for chemistry

    Get PDF
    Efficient access to chemical information contained in scientific literature, patents, technical reports, or the web is a pressing need shared by researchers and patent attorneys from different chemical disciplines. Retrieval of important chemical information in most cases starts with finding relevant documents for a particular chemical compound or family. Targeted retrieval of chemical documents is closely connected to the automatic recognition of chemical entities in the text, which commonly involves the extraction of the entire list of chemicals mentioned in a document, including any associated information. In this Review, we provide a comprehensive and in-depth description of fundamental concepts, technical implementations, and current technologies for meeting these information demands. A strong focus is placed on community challenges addressing systems performance, more particularly CHEMDNER and CHEMDNER patents tasks of BioCreative IV and V, respectively. Considering the growing interest in the construction of automatically annotated chemical knowledge bases that integrate chemical information and biological data, cheminformatics approaches for mapping the extracted chemical names into chemical structures and their subsequent annotation together with text mining applications for linking chemistry with biological information are also presented. Finally, future trends and current challenges are highlighted as a roadmap proposal for research in this emerging field.A.V. and M.K. acknowledge funding from the European Community’s Horizon 2020 Program (project reference: 654021 - OpenMinted). M.K. additionally acknowledges the Encomienda MINETAD-CNIO as part of the Plan for the Advancement of Language Technology. O.R. and J.O. thank the Foundation for Applied Medical Research (FIMA), University of Navarra (Pamplona, Spain). This work was partially funded by Consellería de Cultura, Educación e Ordenación Universitaria (Xunta de Galicia), and FEDER (European Union), and the Portuguese Foundation for Science and Technology (FCT) under the scope of the strategic funding of UID/BIO/04469/2013 unit and COMPETE 2020 (POCI-01-0145-FEDER-006684). We thank Iñigo Garciá -Yoldi for useful feedback and discussions during the preparation of the manuscript.info:eu-repo/semantics/publishedVersio

    Special Libraries, April 1969

    Get PDF
    Volume 60, Issue 4https://scholarworks.sjsu.edu/sla_sl_1969/1003/thumbnail.jp

    Preface

    Get PDF

    Simple identification tools in FishBase

    Get PDF
    Simple identification tools for fish species were included in the FishBase information system from its inception. Early tools made use of the relational model and characters like fin ray meristics. Soon pictures and drawings were added as a further help, similar to a field guide. Later came the computerization of existing dichotomous keys, again in combination with pictures and other information, and the ability to restrict possible species by country, area, or taxonomic group. Today, www.FishBase.org offers four different ways to identify species. This paper describes these tools with their advantages and disadvantages, and suggests various options for further development. It explores the possibility of a holistic and integrated computeraided strategy

    Contributions to information extraction for spanish written biomedical text

    Get PDF
    285 p.Healthcare practice and clinical research produce vast amounts of digitised, unstructured data in multiple languages that are currently underexploited, despite their potential applications in improving healthcare experiences, supporting trainee education, or enabling biomedical research, for example. To automatically transform those contents into relevant, structured information, advanced Natural Language Processing (NLP) mechanisms are required. In NLP, this task is known as Information Extraction. Our work takes place within this growing field of clinical NLP for the Spanish language, as we tackle three distinct problems. First, we compare several supervised machine learning approaches to the problem of sensitive data detection and classification. Specifically, we study the different approaches and their transferability in two corpora, one synthetic and the other authentic. Second, we present and evaluate UMLSmapper, a knowledge-intensive system for biomedical term identification based on the UMLS Metathesaurus. This system recognises and codifies terms without relying on annotated data nor external Named Entity Recognition tools. Although technically naive, it performs on par with more evolved systems, and does not exhibit a considerable deviation from other approaches that rely on oracle terms. Finally, we present and exploit a new corpus of real health records manually annotated with negation and uncertainty information: NUBes. This corpus is the basis for two sets of experiments, one on cue andscope detection, and the other on assertion classification. Throughout the thesis, we apply and compare techniques of varying levels of sophistication and novelty, which reflects the rapid advancement of the field
    corecore