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Abstract

With the ever increase in biomedical literature, text-mining has emerged as an important technology

to support bio-curation and search. Word sense disambiguation (WSD), the correct identification of terms

in text in the light of ambiguity, is an important problem in text-mining. Since the late 1940s many

approaches based on supervised (decision trees, naive Bayes, neural networks, support vector machines)

and unsupervised machine learning (context-clustering, word-clustering, co-occurrence graphs) have been

developed. Knowledge-based methods that make use of the WordNet computational lexicon have also

been developed. But only few make use of ontologies, i.e. hierarchical controlled vocabularies, to solve

the problem and none exploit inference over ontologies and the use of metadata from publications.

This thesis addresses the WSD problem in biomedical ontologies by suggesting different approaches

for word sense disambiguation that use ontologies and metadata. The “Closest Sense” method assumes

that the ontology defines multiple senses of the term; it computes the shortest path of co-occurring

terms in the document to one of these senses. The “Term Cooc” method defines a log-odds ratio for

co-occurring terms including inferred co-occurrences. The “MetaData” approach trains a classifier on

metadata; it does not require any ontology, but requires training data, which the other methods do not.

These approaches are compared to each other when applied to a manually curated training corpus of

2600 documents for seven ambiguous terms from the Gene Ontology and MeSH. All approaches over all

conditions achieve 80% success rate on average. The MetaData approach performs best with 96%, when

trained on high-quality data. Its performance deteriorates as quality of the training data decreases. The

Term Cooc approach performs better on Gene Ontology (92% success) than on MeSH (73% success) as

MeSH is not a strict is-a/part-of, but rather a loose is-related-to hierarchy. The Closest Sense approach

achieves on average 80% success rate.

Furthermore, the thesis showcases applications ranging from ontology design to semantic search where

WSD is important.
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Chapter 1

Motivation

1.1 Definition of Open Problems

In the bioinformatics domain, a vast molecular biology literature discusses the relationships between

genes, proteins, the biological processes in which they participate, the diseases they are related to, the

molecular functions they perform, the cellular location in which they act, and many other types of

information. Huge databases with number of records exceeding one million such as Entrez Gene1 or

containing more than 50 million associations such as the UniProt Gene Ontology Annotation2 (GOA)

are under construction tabulating such relationships, but there is a gap between the free text data in

articles and the structured data in the databases. Most such databases are manually curated by domain

experts and constantly improved in terms of quantity and quality with input from the respective research

communities. This process guarantees high data quality and reliability. For instance, annotations of genes

and gene products are stored in structured manners (associated functions, phenotypes, etc.), so that they

can easily be queried (Camon et al., 2004). Controlled vocabularies and ontologies designed for specific

types of annotations reduce the amount of ambiguity for both curation and later access.

Database curators constantly scan the relevant literature to find evidence for new annotations related

to their domain. These annotations are standardised terms from controlled vocabularies, often referred

to as ontologies. For genes and gene products, annotations reflecting functions, locations, and processes

are sought (Ashburner et al., 2000). For drugs, it is interesting to find known biochemical pathways and

respective (desired and undesired) targets (Degtyarenko et al., 2008; Arikuma et al., 2008; Banville, 2009;

Skrzypek et al., 2010). Such facts are often reported in the literature and spread over a large variety of

journals and other publication formats.

Databases vs. Literature

Queries across disparate databases are required to exploit available data. However, a lot of data are not

yet stored in a structured form. This is due to two main reasons:

1. there is no immediate interest for researchers to submit their findings to (one or more) relevant

databases, as scientific publications function as the main instrument for making information acces-

sible and gaining reputation, and

2. the necessary process of manual curation of database entries and annotation needs to maintain a

certain quality standard.

Another resource of data are the aforementioned scientific publications themselves. Fairly often, these

provide insight into more recent findings than databases. In addition, more information can be found

1See http://www.ncbi.nlm.nih.gov/sites/entrez?db=gene
2See http://www.ebi.ac.uk/GOA/uniprot release.html
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in texts, such as background knowledge and descriptions of experimental settings, showing broader

context as well as in-depth details. Natural language is often more suitable to express facts than the

structured form of any database. Moreover, many annotations in databases come in the form of free

text, e.g., functions and diseases in UniProt3. This shows that scientific publications and other textual

descriptions present important resources to be considered when searching for certain information.

Text Mining and Ambiguity

In biomedical text mining, researchers use techniques from Natural Language Processing, Information

Retrieval, and Machine Learning to extract desired information from text (Jensen et al., 2006; Win-

nenburg et al., 2008). Even when the concepts to extract are available in a structured form, such as a

controlled vocabulary or ontology, mining them from free text is not always an easy task. For instance,

a recent assessment for extracting Gene Ontology terms revealed performances around 20% success rate

only (Ehrler et al., 2005). Deciding on the correct sense of the term is also not an easy task; the KDD

Cup competition for 2002 (Yeh et al., 2002) challenged researchers with the task of analyzing scientific ar-

ticles in order to extract information useful for human annotators of the Drosophila genome - specifically

with identifying all the genes mentioned in an article and determining for each one whether the article

reports a relationship between that gene and a gene product (protein and/or mRNA). A complicating

factor in the task - and in the biomedical literature in general - is that the term can often refer to the

gene, protein or mRNA. Other problems of ambiguity include abbreviations, e.g., whether MG refers to

milligram or magnesium (Yu et al., 2002, 2007) and the interpretation of acronyms, e.g., whether or not

COLD should be interpreted as chronic obstructive pulmonary disease.

1.1.1 Open Problem 1: Word Sense Disambiguation in Biomedical Corpora

Terms can have a very specific meaning in biomedical research, but mean other things in other contexts;

they can resemble common names, diseases, or common English words. Examples of ambiguous gene

names are “Ken and Barbie”, “multiple sclerosis” or “the”. Some drug names such as “Trial” or “Act”

are also ambiguous. In the BioCreAtIvE 24 challenge, the results for the gene name normalization task

where promising, with up to 86% success rate for human genes (Hakenberg et al., 2007; Wermter et al.,

2009). Disambiguation in gene identification can be performed using background knowledge on each gene,

such as function, chromosomal location, related diseases, etc (Hakenberg et al., 2008). When extracting

ontology terms from text, such valuable information is not present. Hence the two problems are slightly

different in that disambiguation in gene identification can use additional data about the entities which

the task at hand here cannot.

Identification of ontological terms in literature is in general a challenging problem due to a series

of points: term variation in natural language text (orthographic, morphological, lexical, structural,

acronyms/abbreviations, synonyms, etc.), synonymity of ontological terms, ambiguity, stemming and

missing words. Coming to ambiguity, ontology term labels can have multiple senses and therefore be

ambiguous. The standard problems in ambiguity stem from polysemy and synonymy of words. Polysemy

means to have multiple meanings; it is an intrinsic property of words (in isolation from text), whereas

ambiguity is a property of text. Whenever there is uncertainty as to the meaning that a speaker or

writer intends, there is ambiguity. So, polysemy indicates only potential ambiguity, and context works

to remove ambiguity (Edmonds and Agirre, 2006). The word ‘bank’, for example, can have several

homonyms/homographs with clearly different senses including the financial institution, a step or edge as

in “snow bank” or “river bank”, or other as in the “piggy bank”, the ‘BANK’ gene, protein or mRNA.

To demonstrate polysemy, ‘bank’ as a financial institution can split into the following cloud of related

3http://www.uniprot.org/
4See http://biocreative.sourceforge.net/biocreative 2.html
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senses: the company or institution, the building itself, the counter where money is exchanged, a fund or

reserve of money, the funds in a gambling house and the dealer in a gambling house.

The task of disambiguation is hard even for human annotators, when it comes to fine grained sense

inventory. According to Halliday and Hasan (1976), the human performance in WSD reaches 97-99%

accuracy in coarse grained sense inventories, and 65-70% in fine grained. The average f –measure for inter-

annotator agreement for manual GO curation reaches 82% (Camon et al., 2005). With disambiguation

being already hard for human annotators, the challenge is even bigger for automated methods which

identify ontology terms in text.

Word Sense Disambiguation Research

Word sense disambiguation (WSD) was first formulated as a distinct computational task during the early

days of machine translation in the late 1940s, making it one of the oldest problems in computational

linguistics. Weaver (1955) introduced the problem as follows:

“If one examines the words in a book, one at a time through an opaque mask with a hole in

it one word wide, then it is obviously impossible to determine, one at a time, the meaning of

words. “Fast” may mean “rapid”; or it may mean “motionless”; and there is no way of telling

which.

But, if one lengthens the slit in the opaque mask, until one can see not only the central word

in question but also N words on either side, then, if N is large enough one can unambiguously

decide the meaning.”

Weaver acknowledged that context is crucial and recognized the basic statistical character of the

problem in proposing that “statistical semantic studies should be undertaken, as a necessary primary

step”.

During the 1950s, there was a lot of research in estimating the degree of ambiguity in texts and bilin-

gual dictionaries, and applying simple statistical models. Zipf (1949) published the “Law of Meaning”

that accounts for the skewed distribution of words by number of senses, meaning that more frequent

words have more senses than less frequent words in a power-law relationship. Edmonds (2005) has con-

firmed this relationship for the British National Corpus. Kaplan (1955) determined that two words of

context on either side of an ambiguous word was equivalent to a whole sentence of context in resolving

power. Most of the early work set the basis for approaches still followed today. Masterman (1957)

used the headings of the categories in Roget’s International Thesaurus (Chapman, 1977) to represent

the different senses of a word, and then chose the heading whose contained words were most prominent

in the context. Madhu and Lytle (1965) calculated sense frequencies of words in different domains –

based on their observation that domain constrains sense – and then applied Bayes formula to choose the

most probable sense given a context. The problem of WSD was one of the reasons why most of machine

translation was abandoned in the 1960s, due to the report from the Automatic Language Processing

Advisory Committee (ALPAC report) (ALPAC, 1966).

WSD was revisited in the 1970s within artificial intelligence (AI) research on natural language un-

derstanding. Wilks developed “preference semantics”, where the system used selectional restrictions

and frame-based lexical semantics to find a consistent set of word senses for the words in a sentence

(Wilks, 1975). In Hirst’s system (Hirst, 1987), a word was gradually disambiguated as information was

passed between the various modules (including a lexicon, parser, and semantic interpreter) in a process

he called “Polaroid Words”. “Proper” knowledge representation was important; knowledge sources had

to be hand-crafted.

In the 1980s large-scale lexical resources and corpora became available and handcrafting could be

replaced with knowledge extracted automatically from the resources (Wilks et al., 1990). Lesk (1986)

used the overlap of word sense definitions in the Oxford Advanced Learner’s Dictionary of Current
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English (OALD) to resolve word senses. Given two or more target words in a sentence, the pair of senses

whose definitions have the greatest lexical overlap were chosen.

With dictionary-based disambiguation the relationship of WSD to lexicography became explicit. For

example, Guthrie et al. (1991) used the subject codes (e.g., Economics, Engineering) in the Longman

Dictionary of Contemporary English (LDOCE) (Procter, 1978) on top of Lesk’s method. Yarowsky

(1992) combined the information in Roget’s International Thesaurus with co-occurrence data from large

corpora in order to learn disambiguation rules for Roget’s classes, which could then be applied to words in

a manner reminiscent of Masterman (Masterman, 1957). Although dictionary-based methods were useful

in some cases such as homographs, they were not robust, since dictionaries lacked complete coverage of

information on sense distinctions.

Three key points for disambiguation during the 1990s were the development and publication of

WordNet (Fellbaum, 1998), the statistical revolution in Natural Language Processing (NLP), and the first

Senseval/Semeval evaluation contest (see next paragraph). WordNet pushed research forward because it

was both computationally accessible and hierarchically organized into word senses called synsets. Today,

English WordNet (together with wordnets for other languages5) is the most-used general sense inventory

in WSD research (Edmonds and Agirre, 2006).

SemEval

SemEval (former Senseval, http://www.senseval.org/) is an evaluation contest for WSD systems that runs

every 3 years since 1997. It organizes and runs evaluation and related activities to test the strengths and

weaknesses of WSD systems with respect to different words, different aspects of language, and different

languages. SemEval is run by a small committee under the auspices of ACL-SIGLEX (the Special Interest

Group on the LEXicon of the Association for Computational Linguistics).

Before SemEval, it was extremely difficult to compare and evaluate different systems because of dis-

parities in test words, annotators, sense inventories, and corpora. Gale et al. (1992b) noted that “the

literature on word sense disambiguation fails to offer a clear model that we might follow in order to quan-

tify the performance of our disambiguation algorithms”, and so they introduced lower bounds (choosing

the most frequent sense) and upper bounds (the performance of human annotators). However, these

could not be used effectively until sufficiently large test corpora were generated. Semeval was first dis-

cussed in 1997 (Resnik and Yarowsky, 1999; Kilgarriff and Palmer, 2000) and has grown into the primary

forum for researchers to discuss and advance the field. Its main contribution was to establish a frame-

work for WSD evaluation that includes standardized task descriptions and an evaluation methodology.

It has also focused research, enabled scientific rigor, produced benchmarks, and generated substantial

resources in many languages (e.g., sense-annotated corpora), thus enabling research in languages other

than English.

WSD in the Biomedical Domain

In the biomedical domain, WSD has become a hot topic in the last years. The challenge here is the

rapid growth of the biomedical literature in terms of new words and their senses, with the situation

getting worse with the use of abbreviations and synonyms. Quoting Ide and Véronis (1998), “WSD

work has come full circle, returning most recently to empirical methods and corpus-based analyses that

characterized some of the earliest attempts to solve the problem”. This illustrates the exact need in

the case of the biomedical domain; the development of statistical approaches that utilize “established

knowledge” (like thesauri, dictionaries, ontologies and lexical knowledge bases) and require no or only

some parsing of the text in order to perform the correct annotation.

Two main decision points for WSD in the biomedical domain are the granularity to which WSD

should be performed and the selection of an appropriate corpus for training and evaluation. Concerning

5For wordnets around the globe, see http://www.globalwordnet.org/gwa/wordnet table.htm
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granularity, some tasks are easier than others (e.g., distinguishing between ‘bank’ as a building vs the

‘BANK’ gene is easier than ‘BANK’ gene vs the protein). Concerning the biomedical corpora, those are

either few or do not apply universally, mainly due to the time-consuming and labor-intensive process

of manual or semi-automatic annotation. Examples of biomedical datasets are the NLM WSD test

collection (Weeber et al., 2001), Medstract6 for acronyms and the BioCreAtIvE7 set for mouse, fruitfly,

and yeast. However, depending on the task, researchers need to collect their own gold standard datasets.

WSD approaches can be broadly distinguished as supervised and unsupervised, with a further dis-

tinction between knowledge-based (or knowledge-rich, or dictionary-based, or using established knowledge)

and corpus-based (or knowledge-poor) (Schuemie et al., 2005; Edmonds and Agirre, 2006; Navigli, 2009).

In the biomedical domain researchers have focused on supervised (Hatzivassiloglou et al., 2001; Liu et al.,

2004; Gaudan et al., 2005; Pahikkala et al., 2005) and knowledge-based methods (Schijvenaars et al.,

2005; Humphrey et al., 2006; Hakenberg et al., 2008; Farkas, 2008) to perform gene name normalization

and resolve abbreviations. According to the BioCreAtIvE 2 challenge, the former problem can be solved

with up to 86% success rate for human genes, which are challenging with 1.03 genes per name on average

(Hakenberg et al., 2008). A more detailed description of WSD algorithms is given in Chapter 2, Section

2.1.1.

Open problem 1: Word sense disambiguation (WSD) is required for the

accurate analysis of text in many applications. Since 2004, the most active

domain-specific application area for WSD seems to be bioinformatics (Liu

et al., 2004; Schuemie et al., 2005; Edmonds and Agirre, 2006). Classical

approaches to WSD use co-occurring words or terms. However, most treat on-

tologies as simple terminologies, without making use of the ontology structure

or the semantic similarity between terms. We explore disambiguation of terms

in abstracts of biomedical publications using co-occurrence analysis, document

clustering, the ontology structure and semantic similarity between terms, as

well as metadata.

1.1.2 Open problem 2: Text mining and WSD in Biomedical Terminologies

As already mentioned, ambiguity is widespread among the biomedical ontologies. ‘CAM’, for example,

can stand for ‘constitutively active mutants’, ‘cell adhesion molecule’, or ‘complementary alternative

medicine’. ‘Embryo’ can refer to ‘human embryo’ or ‘mouse embryo’; ‘male’ can refer to a human patient

or an animal; ‘development’ can refer to ‘embryo development’, ‘software development’, ‘cell culture

development’, ‘staff development’, etc. There have been some efforts to use several biomedical ontologies

in automated document retrieval and annotation. Here we address the major obstacles faced during the

development of a biomedical ontology for use in text-mining.

Text Mining in the Life Sciences

The World Wide Web contains a huge amount of data and information for many topics. However, this

information cannot be automatically processed without the presence of semantics associated with it.

The Semantic Web is a vision of the next generation World Wide Web in which data from multiple

sources described with rich semantics are integrated to enable processing by humans as well as software

agents. Text mining offers methods to automatically extract relevant information contained in free text.

In the Semantic Web context, the annotations generated are formalized by ontologies to ensure semantic

interoperability between the extracted knowledge embedded in annotations and other knowledge sources.

Examples of other knowledge sources are not only other documents (for instance providing summaries

or definitions of terms), but also databases, web-services, queryable tools, and comparable dynamic

6See http://www.medstract.org/
7See http://biocreative.sourceforge.net/resources.html
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resources. In the life sciences, such dynamic resources provide data on genes or proteins (including

sequences), online access to bioinformatics tools (for instance for similarity searches or multiple sequence

alignment), etc. For the purpose of document annotation, most text mining methodologies rely on a

dataflow whose core components are the following:

• a Natural Language Processing (NLP) pipeline comprises different modules and techniques used to

analyze text;

• a term extractor module finds all occurrences of an entity in the corpus using information produced

by the NLP pipeline and ontology instances;

• a relation extractor module is used to extract the relation instances that hold between terms. For

this purpose, it can use information embedded in the ontology (the relationship hierarchy) and

information produced by the NLP pipeline;

• an annotation generator collects information generated by all modules and generates a structured

annotation based on the ontology. This annotation can be stored separately or embedded in the

text document. In the Semantic Web context, most systems use the RDF language to represent

these annotations.

Natural Language Processing (NLP)

Text analysis comprises several distinct stages beginning by breaking the text in words until the presen-

tation of its contents. Natural language processing (NLP) systems implement either the totality of these

stages, or a combination of certain stages. The complete text analysis must go through the following

steps:

• Morphological analysis: identification of word variations (plural form, abbreviation, etc.) and

assigning some lexical information to each word (category, gender, number, etc.);

• Syntactic analysis: identifying the syntactic structures associated to each phrase (subject, verb,

object, etc.);

• Semantic analysis: building a set of semantic representations from the syntactic trees;

• Pragmatic analysis: identifying discourse items associated to each text.

These steps need the use of different techniques which include tokenization, PoS tagging and parsing:

• Tokenization is the process of breaking the text into its constituent units called tokens. Tokens

may vary in granularity depending on application but the most common method of tokenization is

the fragmentation of text into words and sentences (sentences splitting).

• The PoS (part of speech) tagging is the annotation of words with their appropriate PoS tags taking

into account their context within the sentence. The most common tags are: article, noun, verb,

adjective, preposition, number, etc. Commonly, the PoS tagging systems are based on rules taggers

or on probabilistic models.

• Parsing is the process of analyzing an input sequence in order to determine its grammatical struc-

ture with respect to a given formal grammar. In NLP, it allows to determine a complete syntactic

structure of a sentence. For example, the output of a linguistic role parser is a tree, whose leaves

correspond to individual words in the text, and nodes represent linguistic roles, such as Subject,

Object, Verb, etc. A particular form of parsing, called shallow parsing, consists of computing word

sequences (phrases), which are a set of syntactically related words. Each phrase is then tagged by

specific predefined tags to annotate noun, verb, and adjective phrases.
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Finding Ontology Terms in Text

In biomedical text mining (Jensen et al., 2006), researchers aim to solve problems in automatic anno-

tation of documents by using techniques from natural language processing, information retrieval, and

machine learning. But the problems are hard: in a competition to assign Gene Ontology terms to given

proteins that occur within given publications, Ehrler et al. achieved the best results with only 20%

success rate (Ehrler et al., 2005). The evaluation was based on a manually curated data set of proteins,

documents, and Gene Ontology terms called GOA (Camon et al., 2004). The difficulty of automating

manual annotation is evident from the fact that only as few as 15% of manually annotated terms appear

literally in the associated abstracts. When annotating documents, different sections of the document

have varying values. Title and Abstract concisely summarize an article and will therefore have fewer

terms than Materials and Methods, which may contain terms not capturing the topic of the document.

Ontologies/taxonomies such as the Gene Ontology (GO) (Ashburner et al., 2000) and the Medical Sub-

ject Headings8 (MeSH) (Nelson et al., 2001) have been designed to annotate data and to function as

classification schemes, rather than to build novel search engines. Indeed, the identification of ontology

terms in text is a difficult problem. Text mining approaches use a variety of techniques such as ma-

chine learning, information content of words and alignment techniques (Couto et al., 2005; Doms and

Schroeder, 2005; Ehrler et al., 2005) to tackle this task. Typical problems that arise from mining life

scientific literature are:

• Stemming: often words will appear in different forms, such as ‘binding’ and ‘binds’, which can

be reduced to their stem ‘bind’. However, reducing ‘dimerization’ to ‘dimer’ is not valid, since the

former describes the process, while the latter the outcome. Reducing ‘organization’ to ‘organ’ is

clearly not valid, since they belong to a completely different context.

• Missing words: the text “...tyrosine phosphorylation of a recently identified STAT family mem-

ber...” should match the ontology term “tyrosine phosphorylation of STAT protein”; the text “...a

transcription factor that binds...” should match the ontology term “transcription factor binding”;

the text “alkaline phosphatase” should match the ontology term “alkaline phosphatase activity”.

In general, matching is allowed to ignore words such as “of”, “a”, “that”, “activity”, but obviously

not “STAT” or “alkaline phosphatase”.

• Format of terms: ontology terms may contain commas, hyphens, brackets, etc. which require

special treatment. For ‘thioredoxin-disulfide’ the dash can be dropped, for ‘hydrolase activity, act-

ing on ester bonds’ the clause after the comma is important, but unlikely to appear as such in text.

Terms containing additions such as ‘(sensu Insecta)’ contain important contextual information, but

are also unlikely to appear in text.

• Synonymity: ontology terms might not appear literally in a text, but authors use synonyms

for the same concept instead. When searching for ‘digestive vacuole’, a user would want to find

references that use ‘phagolysosome’; mentioning of a ‘ligand’ refers to the concept of ‘binding’; an

‘entry into host’ might appear as an ‘invasion of host’.

• Word sense disambiguation (WSD): Terms can have a very specific meaning in biomedical

research, but mean other things in other contexts. Examples are cell, development, envelope,

spindle, death, growth, regeneration, transport, host, reproduction, circulation, and many others.

Protein names such as ‘Ken and Barbie’, ‘multiple sclerosis’ or ‘the’ that resemble common names,

diseases, or common English words are especially hard to disambiguate. The same problems arise

from drug names like ‘Trial’ or ‘Act’.

8See http://www.nlm.nih.gov/mesh/meshhome.html
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In contrast to ontologies designed primarily for annotating biological objects, there is a clear distinc-

tion to ontologies designed for text mining. As far as the biomedical ontologies are concerned, during the

last years there have been major efforts in the biological community for organizing biological concepts in

the form of controlled terminologies or ontologies (Eilbeck et al., 2005; Whetzel et al., 2006; Ashburner

et al., 2000; Evsikov et al., 2004). A key difference between terminologies and ontologies is that the

former lack the semantic depth of the latter. However, when it comes to design, terminologies can serve

as basis for ontologies and vice-versa. An example where a terminology can serve for ontology is that

of the Gene Ontology (Ashburner et al., 2000), which provides a controlled vocabulary to describe gene

and gene products in any organism. On the other side, the Gene Ontology Next Generation (GONG)

project (Wroe et al., 2003) aims at the migration of current bio-ontologies to a richer and more rigorous

status, using formal representation languages like OWL. Examples of true ontologies are the GALEN

project (Rector et al., 1996) and the Systematized Nomenclature of Medicine (SNOMED) (Spackman,

2004) which are based on Description Logic for concept representation and the Foundational Model of

Anatomy (FMA) (Rosse and Mejino, 2003) which is based on frames representing information about

anatomical classes, designed so that content can be maintained as a dynamic resource and can be used

as terminologies. The OBO Relation Ontology (Smith et al., 2005) has been designed to promote inter-

operability of ontologies and support new types of automated reasoning about the spatial and temporal

dimensions of biological and medical phenomena. The Relation Ontology assists the ontology develop-

ment process by providing consistent and unambiguous formal definitions of the relational expressions

used in biomedical ontologies. In this manner, developers and users avoid errors in docing and annotation.

Semantic meta-information provided in the form of ontologies has proven useful in order to search

(Doms and Schroeder, 2005) or index large collections of documents (e.g., MeSH for indexing MEDLINE

(Nelson et al., 2001)). Meta-information found for text documents is often general (keyword list) or still

too complex for an automated evaluation (article abstract). Finding terms of controlled vocabularies in

text overcomes this shortage, while relations between terms provide the necessary navigation structures.

Ontological background knowledge can serve to answer questions with knowledge-based search en-

gines, by easing the task of finding relevant documents through the term automatic annotation (Doms

and Schroeder, 2005; Mueller et al., 2004; Perez-Iratxeta et al., 2003; Wermter et al., 2009; DeLuca

et al., 2009). In the domain of lipoprotein metabolism, for example, in case of a syndrome, such as the

“metabolic syndrome”, in a properly designed ontology the articles retrieved will contain symptoms and

other characteristics for it (e.g., type II diabetes, hypertension, insulin resistant, low HDL, hypertension,

all of them being parts of the metabolic syndrome).

Open problem 2: Which are the common obstacles during the design of an

ontology to be used for text mining? Can automatic term recognition (ATR)

methods assist the ontology generation process?

In Chapter 4 we share the experience acquired during the manual development of a lipoprotein

metabolism ontology (LMO) to be used for text-mining. We provide guidelines for the design of this

ontology and describe the common obstacles during the process. We compare the manually created

ontology terms with the automatically derived terminology from four different automatic term recognition

(ATR) methods.
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1.1.3 Overview

In the following chapters we address the aforementioned open problems, starting with an overview of the

existing research in each field (see Figure 1.1 for an overview).

Chapter 2 provides an overview of research in word sense disambiguation in general and more specific

in the biomedical domain and continues with the use of ontologies in the life sciences and in text mining.

Chapter 3 addresses open problem 1 by suggesting different approaches for word sense disambiguation

that use ontologies and metadata. These approaches are compared to each other when applied to

benchmark datasets especially collected for the purpose of disambiguation in the biomedical domain.

The question whether ontologies can play an important role to improve disambiguation is investigated.

Chapter 4 addresses open problem 2 by suggesting guidelines for the design of terminologies/ontologies

for use in text mining, based on the experience acquired during the manual development of a lipoprotein

metabolism ontology (LMO) to be used for text-mining by researchers at Unilever. A comparison between

the manually created ontology terms with the automatically derived terminology from four different

automatic term recognition (ATR) methods is also performed to investigate how automatic methods can

help decrease development time and provide support for the identification of domain-specific vocabulary.

Chapter 5 shows use cases of word sense disambiguation in ontology-based text-mining and more

specifically in biomedical document retrieval with the GoPubMed semantic search engine (Doms and

Schroeder, 2005) and in mouse-anatomy-specific document retrieval (with the MousePubMed variant of

GoPubMed). It also describes a user-centred evaluation framework developed to evaluate Semantic Web

Browsers, showing the readiness of common users to exploit the benefits of the semantic web in the life

sciences domain.

Figure 1.1 provides an overview of the structure of the current document.
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Fig. 1.1: Thesis overview. Chapter 3 suggests different approaches for word sense disambiguation that use
ontologies and metadata. Chapter 4 describes problems during the construction of a Lipoprotein Metabolism
Ontology and includes a comparison of the manually created terminology to terminologies automatically created
by four different automatic term recognition (ATR) methods. Chapter 5 shows applications of word sense dis-
ambiguation in ontology-based text-mining and more specifically in question answering with GoPubMed and in
mouse-anatomy-specific document retrieval (MousePubMed). It also describes a user-centred evaluation frame-
work developed to evaluate Semantic Web Browsers, showing the readiness of common users to exploit the benefits
of the semantic web in the life sciences domain.
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Chapter 2

Introduction

2.1 Word Sense Disambiguation (WSD)

Since the announcement of the Human Genome in 2000, some 200 model organisms have been sequenced

and novel sequencing technologies will lead to a further increase in data generation. A prime task

after sequencing a genome is the identification of genes and their annotation with relevant functions,

processes, and cellular components. In order to facilitate the comparison of genomes, biologists devised

a shared, species independent vocabulary, the Gene Ontology (GO) (Ashburner et al., 2000), with some

20,000 terms and synonyms. Annotation of novel genomes with the Gene Ontology is a manual process, in

which editors read relevant literature for a gene and then decide on suitable annotation. However, manual

annotation is labor-intensive: currently, there are several million genes and proteins of almost 60,000

different species represented in the public databases, but only approximately 500 of these species have

had GO terms manually assigned in GOA, the Gene Ontology Annotation (Camon et al., 2005, 2004).

Presently, much effort is devoted to automating or aiding the annotation process (Jensen et al., 2006). In

a recent text mining competition, BioCreative1, one task consisted in the identification of suitable Gene

Ontology terms for a given gene and document. As reported by Ehlrer (Ehrler et al., 2005), the best

result in this category achieved only 20% accuracy. Identification of Gene Ontology terms in literature

is in general a challenging problem (Doms and Schroeder, 2005). As already mentioned in Section 1.1.2,

typical problems that arise from mining life scientific literature are stemming, missing words, format of

terms and ambiguous terms. The last problem is particularly challenging and various approaches ranging

from the use of tagged corpora, dictionaries and thesauri to supervised and unsupervised machine learning

have been tried (Xu et al., 2006; Schuemie et al., 2005; Navigli and Velardi, 2005; Liu et al., 2002; Navigli

et al., 2003; Schijvenaars et al., 2005; Pahikkala et al., 2005; Gaudan et al., 2005).

Coming to the example of the ambiguous term development, the Gene Ontology defines ‘development’

as follows:

The biological process whose specific outcome is the progression of an organism over time

from an initial condition (e.g., a zygote, a young adult or a young single celled organism)

to a later condition (e.g., a multicellular animal, an aged adult or a mature single celled

organism).

It should be noted here that we refer as True or True Positive to the sense of the ambiguous term that

corresponds to the one included in the ontology (biological development in GO, psychological inhibition

in MeSH, mitotic spindle in GO, etc.) and as False to all other senses (e.g., in the context of soft-

ware/algorithm development, staff development, Ministry of Development, developing country, method

development, etc.)

1See http://www.mitre.org/public/biocreative/
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Title: Genetic imprinting and embryonic development
Authors: Yin LJ, Huang HF.
Journal: Zhejiang Da Xue Xue Bao Yi Xue Ban. 2007 Sep;36(5):509-14.

Abstract: Erasure, establishment and maintenance of genetic imprinting are indis-
pensable for normal embryonic development . All these processes depend on accurate
expression and intimate cooperation of kinds of DNA methyltransferases. Many genetic
syndromes and embryo developmental anomalies are caused by abnormality of
genetic imprinting. Genetic imprinting is important for the nucleus totipotential
of primordial germ cell, maturation of gamete,growth and development of embryo,
structure and function of placenta as well as postnatal growth and development
of individuals.

PMID: 17924473 [PubMed - indexed for MEDLINE]

Fig. 2.1: Example of the true sense for the ambiguous term ‘development’ in the abstract of an
article in PubMed. The true sense corresponds to the sense of development in the available terminology. Here
the terminology is the Gene Ontology and the GO sense is that of embryonic development.

Some examples of text in PubMed abstracts containing the True sense for development are the

following:

• “Erasure, establishment and maintenance of genetic imprinting are indispensable for normal em-

bryonic development.”, see also Figure 2.1.

• “Arabidopsis ribonucleotide reductases are critical for cell cycle progression, DNA damage repair,

and plant development.”

• “Homeodomain-containing proteins are transcription factors that regulate the coordinated expres-

sion of multiple genes involved in development, differentiation and malignant transformation.”

• “Involvement of the TRAP220 component of the TRAP/SMCC co-activator complex in embryonic

development thyroid hormone action.”

• “Lymphedema-distichiasis (LD) is an autosomal dominant disorder that classically presents itself

as lymphedema of the limbs, with variable age at onset, and double rows of eyelashes (distichiasis).

Other complications may include cardiac defects, cleft palate, extradural cysts and photophobia,

suggesting a defect in a gene with pleiotrophic effects acting during development.”

Some examples of text in PubMed abstracts containing a False (or False Positive for automatic

annotation by GoPubMed) sense for development are the following (see also Figures 2.2, 2.3, 2.4):

• “The development of the Na+ gradient during illumination thus, plays an important role in energy

coupling”, see also Figure 2.2.

• “The recent discovery of several hypothalamic factors involved in the regulation of anterior pituitary

function and the development of sensitive immunocytochemical techniques have greatly contributed

to...”

• “Limited diagnostic and therapeutic interventions should be addressed as separate entities in the

development of the patient care plan.”

• “Academic research, especially university research, tends to be substituted by development inno-

vation for the production process.”
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Title: Existence of electrogenic hydrogen ion/sodium ion antiport in Halobacterium halobium
cell envelope vesicles.
Authors: Lanyi JK, MacDonald RE.
Journal: Biochemistry. 1976 Oct 19;15(21):4608-14.

Abstract: ...Glutamate transport appears to be energized only by the Na+ gradient. The
development of the Na+ gradient during illumination thus plays an important
role in energy coupling. The results obtained are consistent with the existence of an
electrogenic H+/Na+ antiport mechanism (H+/Na+ greater than 1) in H halobium which
facilitates the uphill Na+ efflux...

PMID: 9978 [PubMed - indexed for MEDLINE]

Fig. 2.2: Example of a false sense for the ambiguous term ‘development’ in the abstract of an
article in PubMed. To a human reader, it is clear that development here does not correspond to biological
development (as in the GO sense). However, this is not easy to automatically extract; the context remains of
biomedical nature.

Title: Immunohistochemical analysis of accelerated graft atherosclerosis in cardiac transplan-
tation.
Authors: Louie HW, Pang M, Lewis W, Drinkwater DC, Laks H.
Journal: Curr Surg. 1989 Nov-Dec;46(6):479-83.

Abstract: HHT was performed between minimally genetic mismatched inbred strains of
rats. There was no evidence of rejection and immunosuppressive therapy was not instituted.
Immunohistochemical analysis using peroxidase conjugated monoclonal anti-rat ASMA of
cardiac arterioles in which AGAS developed revealed a decreased peroxidase signal. The
data suggest that modulation of actin expression in subintimal cells of cardiac
arterioles may play a critical role in the pathologic development of AGAS.

PMID: 2620541 [PubMed - indexed for MEDLINE]

Fig. 2.3: Example of a false sense for the ambiguous term ‘development’ in the abstract of an
article in PubMed. Development here is falsely annotated as ‘heart development’.

Title: Corticosteroid cataracts following kidney transplantation. Investigations on the
influence of additional factors upon the development of opacities
Authors: Koch HR, Weikenmeier P, Siedek M.
Journal: Albrecht Von Graefes Arch Klin Exp Ophthalmol. 1975;194(1):39-53.

Abstract: 15 patients with kidney transplants were followed up for a period of 3 to 45 months.
All but one developed lenticular opacities in the posterior subsapsular region.
The opacities were classified according to their severity. It could be shown that the cataract
index was correlated to the total amount of corticosteroids given. There is probably an
additional effect of age and azathioprin therapy. Possibly, the time of treatment with
intermittent hemodialysis also influences cataract development.

PMID: 1092198 [PubMed - indexed for MEDLINE]

Fig. 2.4: Example of a false sense for the ambiguous term ‘development’ in the abstract of an
article in PubMed. “Development of opacities” or “cataract development” here are falsely annotated as the
biological sense.
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Title: Monocytes and histiocytes in cell cultures of cerebrospinal fluid. Morphology of
cultured CSF cells.
Author: Dommasch D.
Journal: J Neurol. 1975 Jun 9;209(2):103-14.

Abstract: A method of CSF cell culturing, based on observations of cultured cells isolated
from 700 CSF specimens obtained for routine diagnostic procedures by lumbar puncture from
patients who had no proven or suspected neoplastic disease, is described which enables the
demonstration of proliferating mononuclear elements even when they are present in specimens
with low cell count. Spread on surfaces of plastic and glass material, monocytes
and histiocytes in CSF cell cultures can appear as polygonal or crescent shaped
epitheloid cells, may assume spindle shapes, or transform into multinucleated
giant cells. Some cells given rise to clones with different rates of proliferation, up to the
formation of a monolayer....

PMID: 51047 [PubMed - indexed for MEDLINE]

Fig. 2.5: Example of a false sense for the ambiguous term ‘spindle’ in the abstract of an article in
PubMed. Spindle in “spindle shapes” here is falsely annotated as ‘mitotic spindle’.

The difference of the former two examples from the latter two is that the former will contain other

Gene Ontology terminology, while the latter are about general topics and thus, they do not contain any

other GO terms. The context of the former remains biomedical, while the context of the latter will be

completely different, making the disambiguation easier.

There also exist cases where documents do not contain the term ‘development’ literally, but they are

on developmental biology according to the curators (e.g., in GOA). We call these False Negatives (FNs)

because if the term does not literally appear, the document will not be automatically annotated with

this term. Examples of such documents are:

• “RYBP, a new repressor protein that interacts with components of the mammalian Polycomb

complex, and with the transcription factor YY1.” The protein YY1 is annotated in the Uniprot

sequence database as ‘development’.

• “Virtual cloning and physical mapping of a human T-box gene, TBX4”. The protein TBX4 is

annotated in the Uniprot sequence database as ‘development’.

• “Isolation of two novel WNT genes, WNT14 and WNT15, one of which (WNT15) is closely linked to

WNT3 on human chromosome 17q21”. The protein WNT14 is annotated in the Uniprot sequence

database as ‘development’.

• “EDF-1, a novel gene product down-regulated in human endothelial cell differentiation”. The

protein EDF-1 (Endothelial differentiation-related factor 1) is annotated in the Uniprot sequence

database as ‘development’.

Word Sense Disambiguation (WSD) deals with relating the occurrence of a word in a text to a

specific meaning, which is distinguishable from other meanings that can potentially be related to that

same word (Schuemie et al., 2005). WSD is essentially a classification problem: given an input text

and a set of sense tags for the ambiguous words in the text, assign the correct senses to these words.

Sense assignment often involves two assumptions: a. within a discourse, e.g., a document, a word is only

used in one sense (Gale et al., 1992b) and b. words have a tendency to exhibit only one sense in a given

collocation - neighbouring words (Yarowsky, 1993).
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2.1.1 Algorithms for Word Sense Disambiguation

As already mentioned in Section 1.1.1, WSD approaches can be broadly distinguished as supervised and

unsupervised, with a further distinction between knowledge-based (or knowledge-rich, or dictionary-based,

or using established knowledge) and corpus-based (or knowledge-poor) (Schuemie et al., 2005; Edmonds

and Agirre, 2006; Navigli, 2009):

• Supervised WSD approaches use machine-learning techniques to learn a classifier from labeled

training sets, that is, sets of examples encoded in terms of a number of features together with their

appropriate sense label (or class).

• Unsupervised WSD methods are based on unlabeled corpora, and do not exploit any manually

sense-tagged corpus to provide a sense choice for a word in context.

• Knowledge-based WSD approaches rely on the use of external lexical resources, such as machine-

readable dictionaries, thesauri, ontologies, etc.

• Corpus-based WSD approaches do not make any use of the aforementioned knowledge resources

for disambiguation. They are based on information from corpora that can be either ‘raw’ (without

any annotation for word senses), ‘sense-tagged’ or ‘automatically-tagged’ (for details on corpora,

see Unstructured Resources below).

In Figure 2.6, the WSD approaches are put on a bidimensional space, according to the degree of

supervision and the amount of knowledge used (Navigli, 2009). The degree of supervision is expressed

by the ratio of sense-annotated data to unlabeled data used by the system: a system is defined as

fully (or strongly) supervised if it exclusively employs sense-labeled training data, semisupervised and

weakly (or minimally) supervised if both sense-labeled and unlabeled data are employed in different

proportions to learn a classifier, fully unsupervised if only unlabeled plain data is employed. The amount

of knowledge concerns all other data employed by the system, including dictionary definitions, lexico-

semantic relations, domain labels, and so on. It is hard to quantify the degree of supervision and the

amount of knowledge as discrete numbers, so putting on the plane specific methods discussed next is not

feasible. However, the letters (a) to (i) in Figure 2.6 give the approximate position of general approaches:

(a) fully unsupervised methods, which do not use any amount of knowledge (not even sense inventories)

(b) minimally supervised approaches, requiring a minimal amount of supervision

(c) semi-supervised approaches, requiring a partial amount of supervision

(d) supervised approaches (machine-learning classifiers).

Associating other points in space with specific approaches is more difficult and depends on the spe-

cific implementation of each method. However, most knowledge-based approaches relying on structural

properties (g), such as the graph structure of semantic networks, use more supervision and knowledge

than those based on gloss overlap (e) or methods for determining word sense dominance (f). Finally,

domain-driven approaches, which often exploit hand-coded domain labels, can be placed around point

(h) if they include supervised components for estimating sense probabilities, else around point (i).

Knowledge Sources

Knowledge sources provide data which are essential to associate senses with words. They can vary from

corpora of texts, either unlabeled or annotated with word senses, to machine-readable dictionaries, the-

sauri, glossaries, ontologies, etc. Knowledge sources can be categorized into structured and unstructured

ones, as follows (Navigli, 2009):
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Fig. 2.6: A space of WSD approaches according to the degree of supervision and the amount of
knowledge used. At point (a) lie the fully unsupervised methods, which do not use any amount of knowledge to
perform the disambiguation. In (b) are the minimally supervised approaches, (c) the semi-supervised approaches
and (d) the supervised approaches. The rest of the areas express methods that are combinations of the four
categories. These are knowledge-based approaches relying on gloss overlap (e), methods for determining word
sense dominance (f), methods based on structural properties (g), and domain-driven approaches which exploit
hand-coded domain labels, including supervised components for estimating sense probabilities (h) or not (i).
Adapted from Navigli (2009).
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Structured Resources

• Thesauri provide information about relationships between words, like synonymy (e.g., car is a

synonym of motorcar), antonymy (representing opposite meanings, e.g., ugly is an antonym of

beautiful) and, possibly, further relations. The most widely used thesaurus in the field of WSD is

Roget’s International Thesaurus (Chapman, 1977).

• Machine-readable dictionaries (MRDs) have become a popular source of knowledge for Natural

Language Processing since the 1980s, when the first dictionaries were made available in electronic

format. Some of these are the Collins English Dictionary, the Oxford Advanced Learner’s Dic-

tionary of Current English, the Oxford Dictionary of English, and the Longman Dictionary of

Contemporary English (LDOCE) (Procter, 1978). The latter has been one of the most widely

used machine-readable dictionaries within the NLP research community, before the diffusion of

WordNet2 (Fellbaum, 1998), presently the most utilized resource for word sense disambiguation

in English. WordNet is often considered one step beyond common MRDs, as it encodes a rich

semantic network of concepts. For this reason it is usually defined as a computational lexicon.

• Ontologies are specifications of conceptualizations of specific domains of interest (Gruber, 1993),

usually including a taxonomy and a set of semantic relations. In this respect, WordNet and its

extensions can be considered as ontologies. Efforts in a domain-oriented direction include the Open

Biomedical Ontologies (OBO) foundry3, the NCBO BioPortal4 and the Unified Medical Language

System (UMLS) (Bodenreider, 2004), which includes a semantic network providing a categorization

of medical concepts. For more details, see Section 2.2.1.

Unstructured Resources

• Corpora are collections of texts used for learning language models. Corpora can be sense-annotated

or raw (i.e., unlabeled). Both kinds of resources are used in WSD, and are most useful in supervised

and unsupervised approaches, respectively. Popular examples of raw corpora are the Brown Corpus

(Kuc̆era and Francis, 1967) – a million word balanced collection of texts published in the United

States in 1967 –, the British National Corpus (BNC) (Clear, 1993) – a 100 million word collection

of written and spoken samples of the English language (often used to collect word frequencies and

identify grammatical relations between words) –, and the Wall Street Journal (WSJ) corpus (Char-

niak et al., 2000) – a collection of approximately 30 million words from WSJ. SemCor (Miller et al.,

1993) is the largest and most used sense-annotated corpus, which includes 352 texts tagged with

around 234,000 sense annotations. Other examples of sense-annotated corpora are MultiSemCor

(Pianta et al., 2002), the Interest corpus (Bruce and Wiebe, 1994), the Line-Hard-Serve corpora5

with 4,000 sense-annotated examples for each of the words ‘line’, ‘hard’ and ‘serve’ and the SensE-

val/SemEval6 data sets, semantically-annotated corpora from the four evaluation contests. Most

of these corpora are annotated with different versions of the WordNet sense inventory. The sense-

annotation of corpora has a high degree of variability, mainly due to the variability of domains

of interest. Tomanek et al. (2007) have used active learning for text corpus annotation, reporting

reduction rates for annotation efforts ranging up to 72%.

• Collocation resources register the tendency for words to occur regularly with others. Examples

include the Word Sketch Engine7, JustTheWord8, The British National Corpus collocations9, the

2See http://wordnet.princeton.edu/
3See OBO foundry http://www.obofoundry.org/
4See BioPortal http://bioportal.bioontology.org/
5See http://www.d.umn.edu/ tpederse/data.html
6See http://www.senseval.org/
7See http://www.sketchengine.co.uk
8See http://193.133.140.102/JustTheWord
9Available through the SARA system from http://www.natcorp.ox.ac.uk
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Collins Cobuild Corpus Concordance10, etc. Recently, the Google Web1T corpus11 (Brants and

Franz, 2006) has been released; it is a large dataset of text co-occurrences which has rapidly gained

large popularity in the WSD community. The Google Web1T corpus contains frequencies for

sequences of up to five words in a one trillion word corpus derived from the Web.

• Other resources include word frequency lists, stoplists (i.e., lists of undiscriminating non-content

words, like a, an, the, and so on), domain labels (Magnini and Cavaglià, 2000), etc.

As aforementioned, WSD algorithms can be distinguished between supervised and unsupervised, and

knowledge-based and corpus-based (Schuemie et al., 2005; Edmonds and Agirre, 2006; Navigli, 2009) (see

also Table 2.1).

Supervised Machine Learning WSD Approaches

Supervised WSD uses machine-learning techniques to learn a classifier from labeled training sets. The

training set used to learn the classifier typically contains a set of examples in which a given target word

is manually tagged with a sense from the sense inventory of a reference dictionary. In general, supervised

approaches to WSD have obtained better results than unsupervised methods (described later). The

supervised WSD approaches can be listed as follows (for a more detailed description of each, see Navigli

(2009)):

Decision Lists: A decision list (Rivest, 1987) is an ordered set of rules for categorizing test instances

(in the case of WSD, for assigning the appropriate sense to a target word). It can be seen as a list of

weighted ‘if-then-else’ rules. A training set is used for inducing a set of features. As a result, rules of

the kind (feature-value, sense, score) are created. The ordering of these rules, based on their decreasing

score, constitutes the decision list. Given a word occurrence w and its representation as a feature vector,

the decision list is checked, and the feature with highest score that matches the input vector selects the

word sense to be assigned. Decision lists have been the most successful technique in the first Senseval

evaluation competitions (Yarowsky, 2000). Agirre and Martinez (2000) applied them in an attempt to

relieve the knowledge acquisition bottleneck caused by the lack of manually tagged corpora.

Decision Trees: A decision tree is a predictive model used to represent classification rules with a tree

structure that recursively partitions the training data set. Each internal node of a decision tree represents

a test on a feature value, and each branch represents an outcome of the test. A prediction is made when

a terminal node (i.e., a leaf) is reached. A popular algorithm for learning decision trees is the C4.5

algorithm (Quinlan, 1993). In a comparative experiment with several machine learning algorithms for

WSD, Mooney (1996) concluded that decision trees obtained with the C4.5 algorithm are outperformed

by other supervised approaches suffering mainly from data sparseness due to features with a large number

of values and unreliability of predictions due to small training sets.

Naive Bayes: A Naive Bayes classifier is a simple probabilistic classifier based on the application of

Bayes’ theorem. It relies on the calculation of the conditional probability of each sense Si of a word w

given the features fj in the context. Naive Bayes compares well with other supervised methods (Mooney,

1996; Ng, 1997; Leacock et al., 1998; Pedersen, 1998; Bruce and Wiebe, 1999).

Neural Networks: A neural network (McCulloch and Pitts, 1943) is an interconnected group of

artificial neurons that uses a computational model for processing data based on a connectionist approach.

10See http://www.collins.co.uk/Corpus/CorpusSearch.aspx
11See http://www.ldc.upenn.edu/Catalog/CatalogEntry.jsp?catalogId=LDC2006T13
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Pairs of input feature–desired response are input to the learning program. Cottrell (1989) employed neural

networks to represent words as nodes: the words activate the concepts to which they are semantically

related and vice versa. The activation of a node causes the activation of nodes to which it is connected by

excitory links and the deactivation of those to which it is connected by inhibitory links (i.e., competing

senses of the same word). Véronis and Ide (1990) built a neural network from the dictionary definitions

of the Collins English Dictionary. They connect words to their senses and each sense to words occurring

in their textual definition. Recently, Tsatsaronis et al. (2007) successfully extended this approach to

include all related senses linked by semantic relations in WordNet. In several studies, neural networks

have been shown to perform well compared to other supervised methods (Leacock et al., 1993; Towell

and Voorhees, 1998; Mooney, 1996). However, these experiments are often performed on a small number

of words. Major drawbacks of neural networks are the difficulty in interpreting the results, the need for

large sets of training data, and the tuning of parameters such as thresholds, decay, etc.

Exemplar-Based / Instance-Based Learning: Exemplar-based (or instance-based, or memory-

based) learning is a supervised algorithm in which the classification model is built from examples. The

model retains examples in memory as points in the feature space and, as new examples are subjected

to classification, they are progressively added to the model. An example of such an approach is the

k-Nearest Neighbor (kNN) algorithm, one of the highest-performing methods in WSD (Ng, 1997; Daele-

mans et al., 1999). Currently, exemplar-based learning approaches achieve the best performance in WSD

(Escudero et al., 2000a; Fujii et al., 1998; Ng and Lee, 1996; Hoste et al., 2002; Decadt et al., 2004).

According to Daelemans et al. (1999), these approaches tend to be superior because they do not neglect

exceptions and they accumulate further aid for disambiguation as new examples are available.

Support Vector Machines (SVM): introduced by Boser et al. (1992), SVM is based on the idea

of learning a linear hyperplane from the training set that separates positive examples from negative

examples. The hyperplane is located in that point of the hyperspace which maximizes the distance to

the closest positive and negative examples (called support vectors). SVM has been applied to WSD

(Escudero et al., 2000b; Murata et al., 2001; Keok and Ng, 2002; Lee et al., 2004; Buscaldi et al., 2006;

Novischi et al., 2007) and has been shown to perform best compared to several supervised approaches.

Ensemble Methods are combination strategies that put together learning algorithms of different

nature, that is, with significantly different characteristics. Single classifiers can be combined with different

strategies, such as majority voting, probability mixture, rank-based combination, and adaptive boosting

(AdaBoost)(Freund and Schapire, 1999). Ensemble methods are becoming more and more popular as they

allow one to overcome the weaknesses of single supervised approaches. When employed on a standard

test set, such as that of the Senseval-3 all-words WSD task, ensemble methods overcome state-of-the-art

performance among unsupervised systems (up to +4% accuracy) (Mihalcea and Edmonds, 2004).

Minimally and Semi-Supervised Disambiguation

There is not always a clear line separating supervised and unsupervised disambiguation. There also exist

minimally or semi-supervised methods which learn sense classifiers from annotated data with minimal

or partial human supervision. Such approaches can be based, for example, on automatic bootstrapping

of a corpus from a small number of manually tagged examples or on the use of monosemous relatives:

• Bootstrapping: a sense classifier is built with little training data, thus overcoming the main

problems of supervision, namely the lack of annotated data and the data sparsity problem. Boot-

strapping usually starts from few annotated data A, a large corpus of unannotated data U , and a

set of one or more basic classifiers. As a result of iterative applications of a bootstrapping algo-

rithm, the annotated corpus A grows increasingly and the untagged dataset U shrinks until some
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threshold is reached for the remaining examples in U . The small set of initial examples in A can

be generated from hand-labeling (Hearst, 1991) or from the automatic selection with the aid of ac-

curate heuristics (Yarowsky, 1995). The objective of bootstrapping is labeling data which is costly

or hard to obtain with no human intervention, by excluding the initial selection of manually anno-

tated examples. There are two main approaches to bootstrapping in WSD, namely co-training and

self-training. The difference between the two is that co-training alternates two classifiers, whereas

self-training uses only one classifier which retrains on its own input at each iteration.

Yarowsky (Yarowsky, 1995) and Mihalcea (Mihalcea, 2004) have used the “self-learning” and “co-

learning” approaches for WSD, respectively. These methods were based on classifier(s) trained on

a small amount of manually tagged data. The same classifiers were then used to tag new data and

the most confident predictions were added to the labeled dataset. Yarowsky achieved an accuracy

of 96.5% on a test set of 12 ambiguous words with an average of 4000 instances per word. Mihalcea

used the same approach on the Senseval-2 generic English corpus and resulted in an improvement

of 9.8% over the baseline score using a Bayesian classifier.

A major drawback of co- and self-training is the lack of a method for selecting optimal values for

parameters like the pool size p, the number of iterations and the number of most confident examples

(Ng and Cardie, 2003). One of the main points of boostrapping is the selection of unlabeled data

to be added to the labeled data set.

• Monosemous Relatives are possibly synonymous words with a unique meaning. Viewing the

Web as a corpus (Kilgarriff and Grefenstette, 2003) is an interesting idea exploited to build an-

notated data sets, with the aim to relieve the problem of data sparseness in training sets. Such

a large corpus can be annotated with the aid of monosemous relatives by way of a bootstrapping

algorithm similar to Yarowsky’s (Yarowsky, 1995), starting from a few number of seeds. As a

result, the automatically annotated data can be used to train WSD classifiers.

In the biomedical domain, a lot of approaches have used supervised machine learning (ML) for WSD.

Hatzivassiloglou et al. (2001) developed an automated system for assigning protein, gene and mRNA

labels to free text. They used three ML techniques, namely naive Bayesian learning, decision trees and

inductive rule training and investigated the contribution of different features of textual information (like

stopword removal, stemming, positional information of surrounding words) with final accuracy rates

up to 85%. Ginter et al. (2004) worked on the disambiguation between gene and protein symbols, by

introducing a new family of classifiers based on ordering and weighting of the feature vectors obtained

from word counts and word co-occurrence in text. This method achieved 86.5% accuracy. Liu et al. (Liu

et al., 2002, 2004) showed that there is a need for a larger window size for disambiguation of words in the

biomedical domain. Liu et al. (2002) used UMLS (Bodenreider, 2004) as ontology. They identified UMLS

concepts in abstracts and analyzed the co-occurrence of these terms with the term to be disambiguated.

The correct sense was inferred from the majority sense associated with the co-occurring UMLS terms.

Co-occurrence was defined using a Bayes approach. The authors achieved a precision of 93% and a recall

of 47%. Gaudan et al. (2005) used SVMs on their algorithm to resolve abbreviations in MEDLINE and

obtained a precision of 98.9% and a recall of 98.2%. Excluding rare senses (appearing in less than 40

documents) from the test set and keeping in the training set only the ambiguous short-forms that also

had long-forms in the documents made the disambiguation task easier. Pahikkala et al. (2005) followed a

similar approach with Schijvenaars et al. (2005). But instead of using the full abstract, they defined the

context of a gene symbol as a number of words before and after. The size of the context could be varied

and optimized. The context was represented as a vector and a support vector machine was trained. They

achieved 85% accuracy. Support vector machines are widely used in word sense disambiguation. Their

performance depends on a number of parameters such as the sample size, sense distribution and degree

of difficulty (Xu et al., 2006). Small datasets and clear or fuzzy borderline between senses impact on the
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classification task.

Unsupervised Machine Learning WSD Approaches

Coming to the approaches using unsupervised ML, they have the potential to overcome the knowledge-

acquisition bottleneck (Gale et al., 1992a), that is, the lack of large-scale resources manually annotated

with word senses. These approaches are based on the idea that the same sense of a word will have

similar neighbouring words. They use context-clustering, word clustering, or co-occurrence graphs. In

context-clustering, each occurrence of a target word in a corpus is represented as a context-vector. The

vectors are then clustered into groups, each identifying a sense of the target word. In word clustering,

words that are semantically similar - and can therefore convey a specific meaning - are clustered together.

In a co-occurrence graph G = (V,E), the vertices V correspond to words in a text and edges E connect

pairs of words which co-occur in a syntactic relation, in the same paragraph, or in a larger context.

Schütze (Schütze and Pedersen, 1995; Schütze, 1998) adapted LSA/LSI (Latent Semantic Analy-

sis/Indexing) to represent entire contexts rather than single word types using second-order co-occurrences

of lexical features. Pedersen and Bruce’s (Pedersen and Bruce, 1997, 1998) work with average link clus-

tering relied on a small number of first-order features to create matrices that show the pairwise similarity

between contexts. These features were localized around the target word and included word co-occurrences

and PoS tags. Purandare and Pedersen (Purandare and Pedersen, 2004) have tested a variety of sim-

ilar algorithms obtaining an average F-measure of 44%. Yarowsky’s (Yarowsky, 1995) and Mihalcea’s

(Mihalcea, 2004) approaches with “self-learning” and “co-learning” could also be accounted as unsuper-

vised, since the classifier(s) were trained on a small amount of manually tagged data (See Minimally

and Semi-Supervised Disambiguation above). Dorow’s approach (Dorow and Widdows, 2003) was based

on a graph model representing words and relationships (co-occurrences) between them. Sense clusters

were iteratively computed by clustering the local graph of similar words around an ambiguous word.

The ambiguous words were identified by looking at the nodes connecting otherwise unrelated clusters.

These clusters represented the different senses of the word and then the labels were assigned according

to WordNet (Fellbaum, 1998), a dictionary of terms and their definitions.

Knowledge-Based WSD Approaches

The objective of knowledge-based WSD is to exploit knowledge resources (such as dictionaries, the-

sauri, ontologies, collocations, etc. described earlier) to infer the senses of words in context. The main

knowledge-based techniques are the overlap of sense definitions, selectional preferences, and structural

approaches, like semantic similarity measures and graph-based methods. Most approaches exploit infor-

mation from WordNet or other knowledge resources. A review of knowledge-based approaches can be

found in Manning and Schütze (1999) and Mihalcea (2006).

A simple and intuitive knowledge-based approach relies on the calculation of the word overlap between

the sense definitions of two or more target words. This approach is named gloss overlap or the Lesk

algorithm (Lesk, 1986). Given a two-word context (w1, w2), the senses of the target words whose

definitions have the highest overlap (i.e., words in common) are assumed to be the correct ones. However,

the accuracy of such methods remains low, with 18.3% for the original Lesk algorithm and 34.6% for the

extended Lesk (Banerjee and Pedersen, 2003).

A historical type of knowledge-based algorithm is one which exploits selectional preferences to restrict

the number of meanings of a target word occurring in context. Selectional preferences or restrictions

are constraints on the semantic type that a word sense imposes on the words with which it combines in

sentences (usually through grammatical relationships). For instance, the verb “eat” expects an animate

entity as subject and an edible entity as its direct object. We can distinguish between selectional restric-

tions and preferences in that the former rule out senses that violate the constraint, whereas the latter

(more typical of recent empirical work) tend to select those senses which better satisfy the requirements.
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In general, approaches to WSD based on selectional restrictions have not been found to perform as well

as Lesk-based methods (Navigli, 2009).

Since the availability of computational lexicons like WordNet, a number of structural approaches have

been developed to analyze and exploit the structure of the concept network in such lexicons. Two main

structural approaches are similarity-based and graph-based methods. Similarity-based methods rely on

different similarity measures that have been developmed since the early 1990s. For more details on

semantic similarity measures and some of their applications, see Section 2.2.2. Graph-based approaches

exploit the graph structures to determine the most appropriate senses for words in context. Most of

them are related to the notion of lexical chain (Halliday and Hasan, 1976; Morris and Hirst, 1991). A

lexical chain is a sequence of semantically related words w1, ..., wn in a text, such that wi is related to

wi+1 by a lexicosemantic relation (e.g., is-a, has-part, etc.). Mihalcea et al. (2004) presented an approach

based on the use of the PageRank algorithm (Brin and Page, 1998) to study the structure of the lexicon

network and identify those nodes (senses) which are more relevant in context. Navigli and Velardi (2005)

recently proposed the Structural Semantic Interconnections (SSI) algorithm, a development of lexical

chains based on the encoding of a context-free grammar of valid semantic interconnection patterns. A

key feature of the algorithm is that it outputs justifications for sense choices in terms of semantic graphs

which can be used as a support for the validation of manual and automatic sense annotations. SSI

outperformed state-of-the-art unsupervised systems in the Senseval-3 all-words and the Semeval-2007

coarse-grained all-words competition.

As far as the biomedical domain is concerned, there have been developed some knowledge-based

approaches, especially in the problem of gene/protein symbols’ abbreviations. Wren et al. (Wren et al.,

2005) presented a collection of four databases maintaining a vast list of abbreviations together with their

meaning. Schijvenaars et al. (Schijvenaars et al., 2005) and Pahikkala et al. (Pahikkala et al., 2005)

developed two approaches to resolve gene/protein symbols. Schijvenaars et al. (Schijvenaars et al., 2005)

achieved 92.5% accuracy on human gene symbols. The authors compared a gene’s definition compiled

from a database to abstract where the gene symbol occurs. Both definition and abstract were represented

as concept finger prints, i.e., vectors of biomedical terms. Both vectors were compared by a similarity

measure based on cosine. Humphrey et al. (Humphrey et al., 2006) at the NLM used lately the Journal

Descriptor Indexing (JDI) methodology to handle the ambiguity problem when trying to map free text to

terms from the UMLS metathesaurus. JDI combined a statistical, corpus-based method with utilization

of pre-existing medical domain knowledge sources. For the 45 ambiguities studied, the overall average

precision of the highest-scoring JDI method was 78.7% compared to 25% for their baseline method based

on the frequency counts of MeSH terms in a document subset.

2.1.2 WSD Approaches in the Biomedical Domain

As already mentioned in Chapter 1, in the biomedical domain the focus has been on supervised (Hatzivas-

siloglou et al., 2001; Liu et al., 2004; Gaudan et al., 2005; Pahikkala et al., 2005) and knowledge-based

approaches (Schijvenaars et al., 2005; Humphrey et al., 2006; Hakenberg et al., 2008; Farkas, 2008)

to disambiguation. These approaches use cosine similarity (Schijvenaars et al., 2005), SVM (Gaudan

et al., 2005; Pahikkala et al., 2005), Bayes, decision trees, induced rules (Hatzivassiloglou et al., 2001),

and background knowledge sources such as the Unified Medical Language System (UMLS)(Bodenreider,

2004), Medical Subject Headings (MeSH)(Nelson et al., 2001), and the Gene Ontology (GO)(Ashburner

et al., 2000). Two approaches use metadata, such as authors (Farkas, 2008) and Journal Descriptor In-

dexing (Humphrey et al., 2006). Most of the unsupervised approaches so far were evaluated outside the

biomedical domain (Schütze and Pedersen, 1995; Schütze, 1998; Pedersen and Bruce, 1998; Purandare

and Pedersen, 2004; Yarowsky, 1995; Dorow and Widdows, 2003; Mihalcea, 2004), with the exception of

(Widdows et al., 2003), who used relations between terms given by the UMLS for unsupervised WSD of

medical documents and achieved 74% precision and 49% recall. Another approach that uses the UMLS
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as background knowledge for WSD is that of (Leroy and Rindflesch, 2005), who compared the results

from a naive Bayes classifier and other algorithms (decision tree, neural network) to conclude that differ-

ent senses in the UMLS could contribute to inaccuracies in the gold standard used for training, leading

to varied performance of the WSD techniques. Another approach by (Dorow and Widdows, 2003) is

based on a graph model representing words and relationships (co-occurrences) between them and uses

WordNet (Fellbaum, 1998) for assigning labels.

Interestingly, most of the above approaches consider the background knowledge sources as termi-

nologies, without taking into account the taxonomic structure or the terms’ semantic similarity (Rada

et al., 1989; Sussna, 1993; Resnik, 1995; Lin, 1998; Lord et al., 2003; Azuaje et al., 2005; Schlicker et al.,

2006; del Pozo et al., 2008) (see Section 2.2.2 below). Our hypothesis is that ontologies can improve

disambiguation. In the next sections we review taxonomies, thesauri and ontologies in the life sciences,

some of which we later use to perform disambiguation.

2.2 Ontologies, Text mining and WSD

2.2.1 Ontologies in the Life Sciences

Taxonomies, Ontologies, Thesauri are all background knowledge resources which are related but

differ in their degree of expressiveness and support for reasoning.

A taxonomy is a form of a classification scheme, arranged in a hierarchical structure, organized by

supertype-subtype relationships, also called parent-child relationships. In a taxonomy, children (sub-

types) inherit all the properties and constraints of their parents (supertypes) and can have additional

ones. One of the best known forms of taxonomies is the “Linnaean taxonomy”, a biological classification

of organisms.

A thesaurus is a type of controlled vocabulary used mainly for indexing or tagging purposes. A

thesaurus groups together terms that are semantically close to each other. The relationships between

the terms in a thesaurus can be hierarchical (‘broader than’, ‘narrower than’), equivalent (to connect

synonyms and near-synonyms, e.g., ‘used for’) and associative, used to connect related terms whose

relationship is neither hierarchical nor equivalent (e.g., ‘related to’).

A common definition for an ontology is “a formal explicit specification of a shared conceptualization”

(Gruber, 1993). According to Tim Berners-Lee, “an ontology is a document or file that formally defines

the relations among terms. The most typical kind of ontology for the Web has a taxonomy and a set of

inference rules” (Berners-Lee et al., 2001). An ontology is a formal representation of a set of concepts

within a specific domain and the relationships between them. Within an ontology, the types of relations

between the concepts can be more than simple supertype-subtype, therefore ontologies are broader and

more flexible than taxonomies and thesauri. Ontologies provide dynamic, controlled vocabularies of

concepts to help manage the interoperability between data sources. A typical ontology is a hierarchical

structure of concepts (classes), definitions for these concepts, and associations between concepts. Ad-

ditional logical axioms serve as further constraints among these entities. In a state-of-the art setting,

an agent queries the ontology and a knowledge base that is based on this ontology. By exploiting the

structure of an ontology, specific and reliable retrieval becomes possible.

At present the field of biology also faces the problem of the presence of a large amount of data without

any associated semantics. Therefore, biologists currently waste a lot of time and effort in searching for

all of the available information about each small area of research. This is hampered further by the wide

variations in terminology that may be in common usage at any given time, and that inhibit effective

searching by computers as well as people.

In recent years, to facilitate biomedical research, various ontologies and knowledge bases have been

developed. For example the Gene Ontology (GO) project is a collaborative effort to address the need for

consistent descriptions of gene products in different databases (Ashburner et al., 2000). Another widely
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used system has been developed by the United States National Library of Medicine called the Unified

Medical Language System (UMLS) which is a consolidated repository of medical terms and their rela-

tionships, spread across multiple languages and disciplines (chemistry, biology, etc) (Bodenreider, 2004).

Medical Subject Headings (MeSH) is a controlled vocabulary maintained by the U.S. National Library

of Medicine12, mainly used for annotating and indexing articles from PubMed (Nelson et al., 2001).

Moreover, several specialised databases for various aspects of biology have been developed, providing

rich vocabularies including several synonyms. For example, the UniProt/Swiss-Prot Knowledge base13

is an annotated protein sequence database.

Gene Ontology

A renowned ontology in the life sciences, especially for biology and bioinformatics, is the Gene Ontology

(GO) (Ashburner et al., 2000). It provides a controlled vocabulary to annotate gene products according

to the biological processes in which they participate, the molecular functions they perform, and the

cellular location in which they act. With each resource describing its gene products in a common form,

this sharing, together with the structure provided by the relationships between terms in the GO, makes

querying of within and between resources possible. A section of the GO graph is given in Figure 2.7

Although the Gene Ontology was created for the express purpose of providing a common terminology

for functional annotation of genes and gene products in biological databases towards the goal of database

interoperability, it has since been widely used for a variety of purposes, including analyses of experimental

data, predictions of experimental results, and document retrieval.

GO is the most prominent ontology of the Open Biomedical Ontologies (OBO)14, a collection

of biological ontologies that are open in that they can be used by all without constraint so long as the

sources are acknowledged and the ontologies are not edited and re-distributed under the same names. In

addition to the taxonomies of GO, the OBO ontologies deal with anatomies of humans and of various

model organisms, biochemical substances, and sequence types, among others. Over the past years, GO

has developed into the main ontology in molecular biology. Today, over 19,000 terms organised in three

sub-ontologies (biological process, molecular function, cellular location) comprise the Gene Ontology.

The terms are linked by three relations, ‘is–a’, ‘part–of’, ‘is–synonym’.

Medical Subject Headings (MeSH)

The Medical Subject Headings (MeSH) is a controlled vocabulary maintained by the U.S. National

Library of Medicine15 (Nelson et al., 2001). It is mainly used for annotating and indexing articles

from PubMed. The MeSH terminology provides a consistent way to retrieve information that may use

different terminology in different articles for the same concepts. In the 2009 MeSH there are 25,186

descriptors, with an additional over 160,000 supplementary concepts, called entry terms. These entry

terms assist in finding the most appropriate MeSH Heading, for example, “Vitamin C” is an entry

term to “Ascorbic Acid”. In addition to these headings, there are more than 180,000 headings called

Supplementary Concept Records within a separate thesaurus. MeSH is organized in a tree, with concepts

such as anatomy and diseases, but also geographic locations, at the top level. The MeSH vocabulary is

used for indexing journal articles from Index Medicus and Medline and also for cataloguing books and

audiovisuals. PubMed contains links to full-text articles at participating publishers’ websites as well as

links to other third party sites. It also provides access and links to the integrated molecular biology

databases maintained by the National Center for Biotechnology Information. Table 2.2 shows the main

differences between GO and MeSH.

12See http://www.nlm.nih.gov/mesh/meshhome.html
13See http://www.uniprot.org/
14See OBO foundry http://www.obofoundry.org/
15See http://www.nlm.nih.gov/mesh/meshhome.html
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Fig. 2.7: Section of the GO graph showing the three aspects (molecular function, biological process,
and cellular component) and some of their descendant terms. The fact that GO is a directed acyclic
graph (DAG) rather than a tree is illustrated by the term ‘transcription factor activity’ which has two parents.
An example of a part of relationship is also shown between the terms ‘cell part’ and ‘cell’.

Gene Ontology (GO) Medical Subject Headings (MeSH)

Primary purpose gene product annotation (biolog-
ical process, molecular function,
cellular location)

annotation & indexing of biomedical arti-
cles (Index Medicus, MEDLINE)

Number of con-
cepts

>19,000 terms 25,186 descriptors, >160,000 entry terms

Type of relations ‘is–a’, ‘part–of’, ‘is–synonym’ A narrower than B (so that users in-
terested in Bs are given the option to
look at As), associative relationships (see

http://www.nlm.nih.gov/mesh/intro entry.html)

Tab. 2.2: Gene Ontology (GO) vs. Medical Subject Headings (MeSH).
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Unified Medical Language System (UMLS)

The Unified Medical Language System16 (UMLS) is an attempt to make a collection of clinical/medical

terminologies interoperable (Bodenreider, 2004). The UMLS Metathesaurus is a large, multi-purpose,

and multilingual vocabulary database that contains information about biomedical and health related

concepts, their various names and the relationships among them. It is built from the electronic versions

of many different thesauri, classifications, code sets, and lists of controlled terms used in patient care,

health services billing, public health statistics, indexing and cataloging biomedical literature, and /or

basic, clinical, and health services research. The 2009 release of the UMLS Metathesaurus17 comprises of

150 biomedical vocabularies, including the Gene Ontology, the Medical Subject Headings, the Founda-

tional Model of Anatomy (FMA) (Rosse and Mejino, 2003), the Systematized Nomenclature of Medicine

(SNOMED) (Spackman, 2004) and others. The Metathesaurus does not represent a comprehensive ontol-

ogy of biomedicine or a single consistent view of the world (except at the high level of the semantic types

assigned to all its concepts). It preserves the many views of the world present in its source vocabularies

because these different views may be useful for different tasks.

Ontologies for Anatomy

While most biological databases contain information at the molecular level, there is a growing need to

link this information to concepts about the global structure of organisms, that is to their anatomy. This

development is due to two main reasons.

A central question in genetics is which genes influence the development of which parts of an organism

and which genetic mutations cause which deviations from the standard phenotype. Researchers tackle

this question by exploring which genes are expressed at which stage of development in which tissues of an

organism. To make such findings generally accessible, a standardized vocabulary about developmental

stages and tissues is needed for annotations. A second reason is that biological image data are increasingly

being published on the Web. To describe in a uniform way what tissue an image shows one has to resort

to some anatomical vocabulary.

Much data is collected on a variety of organisms, and very often represented in structured, thus

queryable, databases:

• Mouse Genome Informatics (MGI)18 gives integrated access to various types of genetic and genomic

data on the mouse (Ringwald et al., 2001).

• Wormbase19 has information on the worm C. elegans and other nematodes (Stein et al., 2001).

• Wormatlas20 is another resource for C. elegans and provides an anatomy handbook (Altun and

Hall, 2006).

• FlyBase21 collects genomic information on the fruit fly Drosophila (Consortium, 1998).

• Saccharomyces Genome Database (SGD)22 collects genomic information on the baker’s yeast, S.

cerevisiae.

• Zebrafish Information Network (ZFIN)23 makes gene expression, mutant, and other genomic data

on the zebrafish available (Sprague et al., 2006).

16See http://www.nlm.nih.gov/research/umls/
17See http://www.nlm.nih.gov/research/umls/knowledge sources/metathesaurus/release/source vocabularies.html
18http://www.informatics.jax.org/
19http://www.wormbase.org/
20http://www.wormatlas.org/
21http://flybase.bio.indiana.edu/
22http://www.yeastgenome.org/
23http://zfin.org/
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Anatomy ontologies can be sizable. The mouse anatomy, for instance, comprises more than 8,000

terms. Anatomies can be integral parts of larger ontologies or controlled vocabularies, like in the Medical

Subject Headings (MeSH) system described earlier. MeSH contains mostly terms for human anatomy,

but also some that relate to various mammal species. MeSH terms are used to annotate entries in large

bibliographical databases.

The Edinburgh Mouse Atlas Project (EMAP) provides a resource that combines an anatomy ontology

with a three-dimensional spatial model of the mouse embryo to give access to gene expression data

(Baldock et al., 2003). Anatomical terms are linked to regions in the spatial model and vice versa.

The Mouse Atlas is based on the same anatomy as Jackson Lab’s MGI, but has been enriched it to

represent groupings between tissues such as the “skin” group, which comprises tissues in many different

locations (Bard et al., 1998). We will elaborate on ontologies for anatomy in Chapter 5, while describing

MousePubMed, a system for mining scientific literature on mouse anatomy.

2.2.2 Semantic Similarity of Terms: Measures and Applications

This section provides an overview on semantic similarity measures and some of their applications in

biomedical context. So far, most of the aforementioned Word Sense Disambiguation approaches consider

the background knowledge sources as terminologies, without taking into account the taxonomic structure

or the terms’ semantic similarity. This gap is filled by the systematic comparison of the three approaches

that use ontologies with inference and semantic similarity and the use of metadata to solve the problem

of WSD for ontological terms (see Chapter 3, Section 3.3). In this context, a semantic similarity

measure is a function that, given two ontology terms, returns a numerical value reflecting the closeness

in meaning between them.

Semantic Similarity Measures

An overview of some semantic similarity measures proposed to assess the conceptual distance between

concepts or sets of concepts and some of their applications are given in Table 2.3.

Rada et al. (1989) were among the first ones to talk about similarity between concepts on Semantic

Nets. They proposed a metric, called Distance, in order to assess the conceptual distance between sets

of concepts when used on a semantic net of hierarchical relations. Distance between two concepts in a

hierarchy is defined as the minimum number of edges separating the concepts. They also defined the

Distance on sets of nodes, in order to check the similarity between sets of concepts. They tested the

appropriatness of the metric for measurement of the conceptual distance between concepts in MeSH

(Nelson et al., 2001) and compared it to human assessment. They conclude that Distance is a valuable

tool for simulating human assessments of conceptual distance and evaluating some cognitive aspects of

semantic nets. Their long-term goal is to solve the problem of document ranking in response to a query.

Sussna (1993) used the WordNet semantic network (Fellbaum, 1998) and applied disambiguation on

a Times magazine corpus (of 5 documents). Sussna introduced the idea of mutual constraint among

terms and its special case, the frozen past approach, in order to achieve total distance minimization (or

“energy minimization”). He used a moving window of terms in focus while moving from the beginning

of a document towards its end. In the frozen past approach actually all terms except the one being

disambiguated have had their senses determined and “frozen”. Sussna concludes that using the moving

frozen past window gives ascending performance to a point and then plateaus. The method trades off

space for time, with the use of large data structures kept in memory, a minimum runtime processing

effort and without any syntactic analysis.

Resnik (1995) introduced and quantified a new measure for semantic similarity, the information

content of a concept. He converted the measure from pure distance (number of intervening is a links)

to similarity. Resnik defined the similarity between two concepts as the extent to which they share

information in common. Considering this in a hierarchical concept/class space, this common information
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“carrier” could be identified as a specific concept node that subsumed both of the two in the hierarchy

(a parent super-class of both). The similarity value was defined as the information content value of

this specific super-ordinate class. The value of the information content of a class was then obtained

by estimating the probability of occurrence of this class in a large text corpus. The problem is that,

sometimes, the measure produces fake high similarity measures for words on the basis of inappropriate

word senses (e.g., due to synonyms). In measuring similarity between words, it is the relationship among

word senses that matters.

Richardson and Smeaton (1995) introduced an approach to Information Retrieval (IR) based on com-

puting a semantic distance measurement between concepts of words and using this word distance to com-

pute a similarity between a query and a document. They applied Resnik’s (Resnik, 1995) information-

based similarity estimator and Rada’s conceptual distance estimator to WordNet synsets and found that

the measures were less accurate than expected. Richardson and Smeaton found that irregular densities

of links between concepts result in unexpected conceptual distance outcomes.

Jiang and Conrath (1997) proposed a combined approach that inherits the edge-based approach of

the edge counting scheme (Rada’s distance (Rada et al., 1989)), enhanced by the node-based approach of

the information content calculation (Resnik’s information content (Resnik, 1995)). They first considered

the link strength factor which is the difference of the information content values between a child concept

and its parent concept. Considering other factors, such as local density (the greater the density, the

closer the distance between the nodes), node depth (distance shrinks as one descends the hierarchy) and

link type (relation type, is a, part of), Jiang and Conrath first defined the overall edge weight for a child

node and its parent and then the overall distance between two nodes as the summation of edge weights

along the shortest path linking the two nodes. Jiang and Conrath tested their approach on a common

dataset of word pair similarity ratings, outperformed other computational models and gave the highest

correlation value with a benchmark based on human similarity judgements.

Lin (1998) provided a universal definition of similarity in terms of information theory: “the simi-

larity between A and B is measured by the ratio between the amount of information needed to state

the commonality of A and B and the information needed to fully describe what A and B are”. Lin

demonstrated the universality of this definition by its application in different domains, such as similarity

between ordinal values, feature vectors (string similarity), word similarity and semantic similarity in a

taxonomy.

Approaches to measuring semantic similarity (or semantic relatedness) can be categorized into dictionary-

based24, corpus-based and hybrid (Budanitsky and Hirst, 2006; Tsatsaronis et al., 2010). Resnik’s mea-

sure (based on the Information Content, Resnik (1995)) can be considered as a hybrid measure, since it

combines both the hierarchy of the used thesaurus and statistical information for concepts measured in

large corpora. The same applies for the measures of Jiang and Conrath (1997) and Lin (1998).

Budanitsky and Hirst (2006) performed an evaluation of five semantic similarity measures (Jiang and

Conrath, 1997; Hirst and St-Onge, 1998; Leacock and Chodorow, 1998; Lin, 1998; Resnik, 1995), all of

which use WordNet as their central resource, by comparing their performance in detecting and correcting

real-word spelling errors. The information-content-based measure proposed by Jiang and Conrath (Jiang

and Conrath, 1997) was found to perform best.

Applications in Biomedical Ontologies

Lord et al. (2003) implemented GOGraph, a tool for calculating the semantic similarity of protein pairs

based on Resnik’s information content measure. They investigated the application of semantic similar-

ity measures to ontological annotations of the SWISS-PROT database, as well as how the ontological

structure affects the similarity.

24Also found in the bibliography as knowledge-based, thesaurus-based, or lexicon-based.
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Metric Description

Rada et al. (1989) min # of edges separating the concepts
Sussna (1993) frozen past : all terms except the ambiguous one have their senses determined & frozen
Resnik (1995) information content (common information between two concepts)

Lin (1998) universal definition: sim(A,B) = info needed to state the commonality of A and B
info needed to fully describe what A and B are

(application as sim between ordinal values, feature vectors, word sim
& semantic sim in taxonomy)

Application Description

Richardson and Smeaton (1995) Resnik + Rada, measure distance between concepts of words to compute sim between
a query and a document (Information Retrieval)

Jiang and Conrath (1997) Rada + Resnik, compared to human similarity judgements
Lord et al. (2003) Resnik, semantic sim of protein pairs
Azuaje et al. (2005) gene similarity (GO terms assigned)
Schlicker et al. (2006) Lin + Resnik, comparison of sets of GO terms & gene functional sim assessment
Camous et al. (2007) Resnik, sem sim in MeSH; extend MeSH representation of Medline docs
del Pozo et al. (2008) functional distance between GO terms (term cooc in Interpro)

Tab. 2.3: Semantic similarity measures and some applications.

Azuaje et al. (2005) used a semantic similarity measure to assess gene similarity with a view to

providing a solid basis for the implementation of classification tools and the automated validation of

functional associations. Azuaje et al. assessed the similarity between genes based on their GO terms.

They used the distance measure and considered only the best semantic match amongst genes of group B

for each gene in group A. The method gave an asymmetrical measure expressing the semantic contribution

of A genes in relation to B.

Schlicker et al. (2006) introduced two semantic similarity measures for comparing sets of GO terms

and for assessing the functional similarity of gene products. The first measure (sim rel) was based on

Lin’s (Lin, 1998) and Resnik’s (Resnik, 1995) measures and took into account how close two GO terms

are to their lowest common ancestor (LCA) as well as the LCA’s relevance (i.e. how general/specific

it is). Based on the sim rel score, the second measure, called funSim, compared the annotation of two

gene products. The funSim score could compare two sets of GO terms from different ontologies and

allowed for partial matches (was independent from the sequence similarity). Therefore, it was suitable

for comparison of multi-functional gene products.

Camous et al. (2007) applied Resnik’s information content measure to evaluate semantic proximity

between concepts within the MeSH hierarchy. They proposed a method for extension of ontology-based

representations of biomedical documents and used the Medical Subject Headings for this representation.

The initial MeSH-only representations were extended with MeSH concepts that were semantically close

within the MeSH hierarchy. The extension method was evaluated within a document triage task organized

by the Genomics track of the 2005 Text REtrieval Conference (TREC) and lead to an improvement of

18.3% over a non-extended baseline in terms of normalized utility, the metric defined for the task.

A recent review by Pesquita et al. (2009) describes the semantic similarity measures applied to

biomedical ontologies and proposes a classification according to the strategies they employ: node-based

vs. edge-based and pairwise vs. groupwise. The authors also survey the existing implementations of

semantic similarity measures and describe examples of applications to biomedical research.

2.2.3 Ontology Engineering and Text Mining

The engineering of ontologies is still a new research field. There does not yet exist a well-defined theory

and technology for ontology construction. This means that many of the ontology design steps remain

manual and a kind of “art” and intuition (Soldatova and King, 2005; Sowa, 2000; Castro et al., 2006).

There exists a variety of different ontologies, constructed for different purposes and projects.

As far as the biomedical ontologies are concerned, during the last years there have been major efforts

in the biological community for organizing biological concepts in the form of controlled terminologies or
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ontologies (Eilbeck et al., 2005; Whetzel et al., 2006; Ashburner et al., 2000; Evsikov et al., 2004). A

key difference between terminologies and ontologies is that the former lack the semantic depth of the

latter. However, when it comes to design, terminologies can serve as basis for ontologies and vice-versa.

An example where a terminology can serve for ontology is that of the Gene Ontology (Ashburner et al.,

2000), which provides a controlled vocabulary to describe gene and gene products in any organism. On

the other side, the Gene Ontology Next Generation (GONG) project (Wroe et al., 2003) aims at the

migration of current bio-ontologies to a richer and more rigorous status, using formal representation

languages like OWL. Examples of true ontologies are the GALEN project (Rector et al., 1996) and the

Systematized Nomenclature of Medicine (SNOMED) (Spackman, 2004) which are based on Description

Logic for concept representation and the Foundational Model of Anatomy (FMA) (Rosse and Mejino,

2003) which is based on frames representing information about anatomical classes, designed so that

content can be maintained as a dynamic resource and can be used as terminologies.

There have also been developed systems to provide interoperability among different ontologies, such

as the Unified Medical Language System (Bodenreider, 2004) in order to provide a common frame

of reference among the different research communities. The Open Biomedical Ontologies (OBO)

Foundry25 hosts over 60 open source ontologies associated with phenotypic and biomedical information,

such as the Mouse Anatomy (MA) (Evsikov et al., 2004) and the Cell Ontology (CL) (Bard et al.,

2005). Schulz et al. (2007) have recently proposed a formalism that deals with “role propagation along

non-taxonomic hierarchies”, and appears suitable for the redesign of compositional hierarchies in bio-

ontologies of the OBO Relation Ontology framework. Bodenreider and Stevens (2006), Blake and Bult

(2006) and Baker et al. (1999) give overviews on biomedical ontologies, the consortia involved, formalisms

as well as semantic web technologies and representation tools.

Semantic meta-information provided in the form of ontologies has proven useful in order to search

(Doms and Schroeder, 2005) or index large collections of documents (e.g., MeSH for indexing MEDLINE

(Nelson et al., 2001)). Meta-information found for text documents is often general (keyword list) or still

too complex for an automated evaluation (article abstract). Finding terms of controlled vocabularies in

text overcomes this shortage, while relations between terms provide the necessary navigation structures.

Ontological background knowledge can serve to answer questions with knowledge-based search en-

gines, by easing the task of finding relevant documents through the term automatic annotation (Doms

and Schroeder, 2005; Mueller et al., 2004; Perez-Iratxeta et al., 2003; Wermter et al., 2009; DeLuca et al.,

2009). In the domain of lipoprotein metabolism, for example, a search for “analphalipoproteinemia” will

retrieve articles for Tangier’s disease, which is actually a synonym. In case of a syndrome, such as the

“metabolic syndrome”, in a properly designed ontology the articles retrieved will contain symptoms and

other characteristics for it (e.g., type II diabetes, hypertension, insulin resistant, low HDL, hyperten-

sion, all of them being parts of the metabolic syndrome). Researchers explore literature on different

parameters that can affect the lipoprotein metabolism, such as the phenotype, genotype and age of the

patients/animals tested, environmental factors and lifestyle, specific lipoprotein and enzyme concentra-

tions and others. Questions like ‘what is the activity of cholesterol ester transfer protein in diabetes’,

‘which cells/tissues is apoE expressed in’, ‘what is the impact of a fish oil diet on metabolic syndrome

individuals’, ‘which genes/proteins/metabolites are hypertension-specific’ can be answered with the use

of a well designed ontology on lipoprotein metabolism, containing terminology found in literature with

semantically interconnected terms.

The GoPubMed26 search engine (Doms and Schroeder, 2005) allows users to explore PubMed search

results with the Gene Ontology (GO) (Ashburner et al., 2000) and Medical Subject Headings (MeSH)

(Nelson et al., 2001). GoPubMed retrieves PubMed abstracts for a search query, detects terms from

the GO and MeSH in the abstracts, displays the subset of GO and MeSH relevant to the keywords and

allows for browsing the ontologies and displaying only articles containing specific GO and MeSH terms

25See OBO foundry http://www.obofoundry.org/
26See http://gopubmed.org/
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Fig. 2.8: Which proteins are related to Alzheimer’s disease? GoPubMed uses its ontological background
knowledge to index search results according to the Gene Ontology and MeSH. Abstracts of articles in PubMed
are automatically annotated with GO/MeSH terms and protein names and the results of the search are grouped
based on these annotations.

(see Figure 2.8 for an example). The search engine is developed in a way that any ontology (e.g., a

Lipoprotein Metabolism Ontology) can be easily integrated and used for a domain-specific literature

search. One of the benefits of such an ontology-based literature search is the categorization of abstracts

according to a specific ontology, allowing users to quickly navigate through the abstracts by category and

providing an overview of the literature. It can also automatically show general ontology terms related

to the original query, which often do not even appear directly in the abstract.

In Chapter 4 we introduce design principles for ontologies used for text mining, based on our personal

experience with the manual development of a Lipoprotein Metabolism Ontology. This LMO ontology

was later used together with the GoPubMed infrastructure to assist researchers from Unilever27 into

lipoprotein-metabolism-specific literature search.

27http://www.unilever.com/
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2.3 The Semantic Web and Semantic Search

Semantic Web The World Wide Web is a collection of documents/pages interconnected by links.

Vast amounts of information remain inaccessible, well-hiden into databases that need to be queried by

users. The World Wide Web has a huge amount of data and is a reliable source of information for many

topics. However, since there is not much semantics associated with that data, the information cannot be

processed by autonomous computer agents and is only understandable to humans.

The Semantic Web is a vision of the next generation World-Wide Web in which data from multiple

sources described with rich semantics are integrated to enable processing by humans as well as software

agents. One of the goals of Semantic Web research is to incorporate most of the knowledge of a domain

in an ontology that can be shared by many applications. Ontologies organise information of a domain

into taxonomies of concepts, each with their attributes, and describe relationships between concepts.

Mukherjea (2005) gives an overview on semantic web languages and current efforts to represent biomedical

knowledge, as well as on techniques that have been developed to effectively retrieve information from

the semantic web.

Semantic Annotation In order to make the content of web pages machine-understandable, people

use semantic annotation. The web pages are being manually annotated with tags that provide a specific

sense to text. For example, in a web page about a certain protein, types of information such as the

protein name, function, three dimensional structure, location in the cell and source organism can be

annotated with XML mark-up. To continue, the marked-up text can be recognized by other programs

and exploited. A key point to this annotation is the agreement on the senses of the annotations. Such

senses can be defined and structured into ontologies, where terms can have synonyms and be combined

to form new ones.

Semantic Web Browsers The sheer volume of resources available online makes it increasingly harder

for users to find specific information and make quality judgements (Roy et al., 2006). This problem is

of particular concern to the life sciences, where sharing and making data available on the Web is widely

accepted (Schroeder et al., 2006). Commonly, scientists and medical practitioners need easy access to

information about chemical compounds, biological systems, diseases, and the interactions between these

entities, which requires this data to be effectively integrated (W3C Interest Group, 2008). The emerging

Semantic Web (SW) technology (Berners-Lee et al., 2001) aims to provide a solution. While general

purpose Semantic Web Browsers (SWBs) such as Tabulator28 may enhance the search and browsing

experiences of everyday users, Semantic Web technology in the life sciences has the potential to address

the urgent needs of clinicians to find specific, quality-assured information under severe pressure of time

(Gray and de Lusignan, 1999). Through Semantic Web Browsers, using underlying domain ontologies,

context-based knowledge integration and semantically enhanced navigation can be achieved.

Semantic Web languages and formalisms Ontologies may vary in their content, structure and

implementation. A number of possible formal languages can be used for ontology construction, including

general logic programming languages (like Prolog). More common, however, are languages that have

evolved specifically to support ontology construction. When comparing ontology languages, what is

given up for computability and simplicity is usually language expressiveness. A language needs only

be as rich and expressive as is necessary to represent the nuance and intricacy of knowledge that the

ontology’s purpose and its developers demand. Several ontology languages have been developed during

the last years. Some of them are based on XML syntax, such as Ontology Exchange Language (XOL),

SHOE (which was previously based on HTML), and Ontology Markup Language (OML) (using a markup

scheme to encode knowledge), whereas Resource Description Framework (RDF) and RDF Schema are

28See http://www.w3.org/2005/ajar/tab
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languages created by World Wide Web Consortium (W3C) working groups. Finally, two additional

languages are being built on top of RDF(S) - the union of RDF and RDF Schema - to improve its

features: Ontology Inference Layer (OIL) (Fensel et al., 2001) and DAML+OIL29. OWL30 is a language

for making ontological statements, developed as a follow-on from RDF and RDFS, as well as earlier

ontology language projects including OIL, DAML and DAML+OIL. OWL is intended to be used over

the World Wide Web, and all its elements (classes, properties and individuals) are defined as RDF

resources, and identified by URIs (Uniform Resource Identifiers).

The Web Ontology Language (OWL) is the most recent development in standard ontology languages,

endorsed by the World Wide Web Consortium (W3C) to promote the Semantic Web vision. An OWL

ontology may include descriptions of classes, properties and their instances. Given such an ontology, the

OWL formal semantics specifies how to derive its logical consequences, i.e. facts not literally present in

the ontology, but entailed by the semantics.

29See DAML+OIL http://www.daml.org/2001/03/daml+oil-index.html
30See OWL working group at http://www.w3.org/2007/OWL/wiki/OWL Working Group
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Chapter 3

Word Sense Disambiguation

With more and more genomes being sequenced, a lot of effort is devoted to their annotation with terms

from controlled vocabularies such as the Gene Ontology (Ashburner et al., 2000). Manual annotation

based on relevant literature is tedious, but automation of this process is difficult. One particularly

challenging problem is word sense disambiguation. Ontology term labels such as ‘development’, ‘spindle’,

‘nucleus’, ‘cell’, ‘host’ can be ambiguous and have multiple senses. ‘Development’, for example, can refer

to developmental biology or to the more general sense. While this is no problem for human annotators,

it is a challenge to automated methods, which identify ontology terms in text.

Classical approaches to word sense disambiguation use co-occurrence analyses of words/terms to the

ambiguous term to reach a decision about the correct sense. However, most treat ontologies as simple

terminologies, without making use of the ontology/hierarchy structure or the semantic similarity between

terms. Another useful source of information for disambiguation are metadata. Examples of metadata in

the abstract of a scientific article in PubMed can be the title of the journal, the title of the article, the

author name and other features not directly included in the text of the abstract.

The current chapter gives details on four approaches to address the problem of ambiguous biomedical

terms, making use of term co-occurrences, document clustering, the ontology structure, the semantic

similarity between terms and metadata. The co-occurrence method, called Term Cooc, is first compared

against document clustering which groups documents containing similar ontology terms (see Section 3.2,

Term Co-occurrences vs. Document Clustering).

Furthermore, the Term Cooc method is extended by several means (using the hierarchy structure

in GO and MeSH, and combination with a support vector machine in a co-training scheme) and a

systematic comparison of Term Cooc and two more disambiguation methods developed by partners is

performed. The first method, called MetaData, uses metadata such as the ones mentioned earlier. The

second method, called Closest Sense, uses the UMLS semantic network as background knowledge for

the computation of similarities between the different senses of the ambiguous term, the senses of its

neighbours and the type of relations that could occur between them. A systematic comparison of the

Term Cooc, MetaData and Closest Sense disambiguation approaches is performed on a manually curated

training corpus for seven ambiguous terms from the Gene Ontology and MeSH (see Section 3.3, Term

Cooc vs. Closest Sense vs. MetaData).

The current work on word sense disambiguation has been published in bioinformatics journals (An-

dreopoulos et al., 2008; Alexopoulou et al., 2009), and presented in several bioinformatics and compu-

tational biology conferences as poster (Alexopoulou et al., 2007a,b) or short presentations (Alexopoulou

et al., 2008a). It has also been part of the EU–funded project Sealife1 (Schroeder et al., 2006).

1http://www.biotec.tu-dresden.de/sealife/
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3.1 Motivation and contribution

Most of the aforementioned Word Sense Disambiguation approaches described in Section 2.1 and Table

2.1 consider the background knowledge sources as terminologies, without taking into account the tax-

onomic structure or the terms’ semantic similarity (Rada et al., 1989; Sussna, 1993; Resnik, 1995; Lin,

1998; Lord et al., 2003; Azuaje et al., 2005; Schlicker et al., 2006; del Pozo et al., 2008) (see Introduction,

Section 2.2.2). An exception to that is the work of Resnik (1999), who applied semantic similarity to

assign confidence values to word senses of nouns within thesaurus-like groupings. Here, the gap is filled

by the systematic comparison of the three approaches that use ontologies with inference and semantic

similarity and the use of metadata to solve the problem of WSD for ontological terms (see Section 3.3,

Term Cooc vs. Closest Sense vs. MetaData). We investigate means of embedding information from the

ontology structure and metadata to improve the performance of word sense disambiguation.

We first develop and evaluate two approaches to the WSD problem, namely ‘Term Cooc’ (term

co-occurrences in PubMed abstracts) and document clustering, with the results published in An-

dreopoulos et al. (2008) (see Section 3.2). We propose a methodology for finding whether the annotation

of an article in an automatically annotated database is likely to be true or false with respect to the bio-

logical meaning and construct a co-occurrence graph of GO terms based on Gene Ontology Annotations

(GOA) (Camon et al., 2004).

We further extend the ‘Term Cooc’ approach in the following ways: first, we additionally disam-

biguate MeSH terms and use a larger training corpus to get the co-occurrence scores, since there exist

∼ 16, 400, 000 documents to which experts have assigned MeSH terms. Second, we make use of the

hierarchy structure in both GO and MeSH (given an ambiguous term α, the co-occurrence of α with a

term β should not be lower than α’s co-occurrence with any of β’s descendants, ‘Inferred Cooc’). We

therefore investigate how two different hierarchies influence the performance2 of disambiguation. Third,

we combine our graph–based decision function with a support vector machine, arranged in a co–training

scheme, to learn and improve models without any labelled data. Finally, we test the disambiguation per-

formance in new larger benchmark datasets of varying curation quality that we collected3. The ‘Term

Cooc’ approach is similar to Dorow’s approach (Dorow and Widdows, 2003), with the difference that we

construct the co-occurrence graph based on GOA and MeSH, which are manually annotated datasets.

Therefore, our graphs contain only relations (edges) between terms (nodes) that are semantically mean-

ingful in the context of an article. Dorow’s graph contains all the nouns that co-occur, but in the case

of the biological context we are interested only in a local subgraph of Dorow’s graph (i.e. ‘development’

only in the biomedical sense). Another difference is that we use established knowledge in GO and MeSH

to draw the nodes and in the different configurations of our ‘Term Cooc’ method we use a support vector

machine and/or incorporate the term relationships in GO and MeSH.

We introduce two more methods for disambiguation, differing from the ‘Term Cooc’ approach in

terms of automation and background knowledge required. The ‘Closest Sense’ approach computes

similarities between the senses of the ambiguous term, the senses of its neighbours (co-occurring terms)

and the type of relations that could occur between them (‘subClassOf’ relations as well as ‘subPropertyOf’

relations, see Section 3.3.1, Closest Sense, Semantic distances). ‘Closest Sense’ (CS) uses the UMLS

semantic network as background knowledge, like Widdows et al. (2003), who rely on the context of the

ambiguous term in order to compute a score for each sense candidate. This score consists of the number

of terms in the document which are related, in the UMLS, with the different senses of the ambiguous

term. In comparison to the ‘Closest Sense’ method, this approach is different in two main points : (i) it

does not take advantage of the hierarchies of concepts and relations in the UMLS and (ii) it ignores terms

which co-occur with the ambiguous term in the same context but do not have a direct link with it in the

2We measure performance in terms of Precision, Recall, Specificity and f–measure.
3The benchmarks were manually, semi-automatically and automatically collected, see Section 3.3.2, Datasets, and

Appendix A
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UMLS. The ‘MetaData’ method uses maximum entropy for modelling the behaviour of occurrence of

contextual terms and phrases in text together with a potentially ambiguous term. The features selected

are n-tuples of word stems and metadata such as the journal and document title. The method requires

a set of labelled documents for each term to be disambiguated.

We evaluate and compare the three strategies for WSD, namely ‘Closest Sense’, ‘Term Cooc’, and

‘MetaData’, starting from the unsupervised/automated to the least automated one. The comparison

includes each method’s requirements and limitations in terms of training data and automation, the be-

haviour of the methods during the use of different taxonomies (GO/MeSH/UMLS) as well as comparison

against a classical stem co-occurrence approach. We additionally make the benchmark datasets created

for the purpose of disambiguation publicly available, since the collection process is time-consuming and

labour-intensive. These include 2600 manually curated documents of high/medium curation quality for

7 selected GO and MeSH terms4.

3.2 Term Co-occurrences vs. Document Clustering

The key problem is avoiding False Positives during automatic annotation of articles with ontology terms,

as, for example, in the automatic annotation of PubMed articles with GO or MeSH terms performed by

GoPubMed (Doms and Schroeder, 2005).

One key idea is that term co-occurrences in a training dataset of manually annotated articles (e.g.,

GOA) can help to solve the problem. With the co-occurrence graph, we can define term groups

which are associated with a given term. For example, does ‘cell proliferation’ co–occur frequently with

‘development’? This knowledge can be utilized in two ways:

• If a document under examination contains ‘development’ but none of its co-occurring terms from

the hand-curated data, then ‘development’ is likely to be a False Positive.

• If a document does not contain ‘development’, but some of its frequently co-occurring terms, then

it is likely to be a False Negative (the document is not automatically annotated as developmental

because ‘development’ does not literally appear, but actually talks about development).

Co-occurrence of terms can be defined in various ways. Here, we examine two approaches:

• First, we calculate the likelihood of co-occurrence, i.e., the number of documents in which two terms

co-occur divided by the total number of documents. This likelihood does not take into account the

probability of each of the terms occurring. A rarely occurring term should get a higher score than

a frequently occurring term. Therefore, we define a score based on the BLOSUM (Henikoff and

Henikoff, 1992) approach to substitution matrices in sequence comparison. In this context, this

log − odds score, TCscore, is the logarithm of the probability of two terms co-occurring divided by

the probability of the two terms occurring.

• Besides the use of term co-occurrences, we also cluster documents by automatically derived anno-

tations of the GoPubMed algorithm (Doms and Schroeder, 2005). For clustering, we use MULIC, a

clustering algorithm for categorical data (Andreopoulos et al., 2007). The clusters are organized in

layers and for each layer of documents we assign an annotation based on the likelihood method in

the first step. In the same way that co-occurring terms can give a clue for the correct annotation,

grouping documents with similar annotations can further improve precision and recall.

4For details see Section 3.3.2, Datasets. To access the corpora, see Appendix A

37



development occurrence

GoPubMed GOA Number of documents

False Negative (FN) – X 122
True Positive (TP) X X 109
False Positive (FP) X – 100

Tab. 3.1: Benchmark dataset for ‘development’ based on GOA.

3.2.1 Datasets

Our training and test datasets are GOA and GoPubMed, respectively. GoPubMed represents arti-

cles automatically annotated with GO terms (Doms and Schroeder, 2005), while GOA represents arti-

cles manually annotated with GO terms (Camon et al., 2005, 2004). GoPubMed consists of approxi-

mately 15,000,000 articles (PubMed) and GOA consists of approximately 34,000 articles. We map each

GoPubMed article’s annotations onto the corresponding subsection of the GOA corpus.

We manually generated three datasets containing True Positives (TP), False Positives (FP) and False

Negatives (FN), with respect to the ‘development’ annotation (see Table 3.1). Then, we united these

datasets into one dataset of 331 articles in total.

GoPubMed and GOA Statistics

The key data for the first step of our approach are terms co-occurring with ‘development’. Tables 3.2 and

3.3 show the top ten terms associated with ‘development’ according to the number of co-occurrences and

the TCscore, respectively. Both tables are broken down into terms according to GoPubMed’s automated,

comprehensive, but more error prone annotation and GOA’s manual, less comprehensive, but higher

quality annotation. The first row in Table 3.2 shows that ‘cell’ is the term appearing most frequently

with ‘development’ in GoPubMed. The relatively low TCscore (negative unlikely, positive likely) reflects

that the term is very general and hence not very predictive for ‘development’. However, ‘cell’ is very

effective for separating articles on cell biology from medical abstracts. The most frequently co-occurring

term in GOA is ‘cell proliferation’. It also has a good TCscore.

Table 3.3 shows the top terms according to the TCscore. The first line shows for GoPubMed ‘petal

development’, which is clearly related to ‘development’ as it is a more specific term in the ontology,

while the GOA annotation shows the extremely specific and term ‘3-mercaptopyruvate sulfurtransferase

activity’, which co-occurs only once. As GOA is limited in size, high TCscores come with low co-

occurrences. The reason could be that very specific proteins like TBX4, YY1, etc. are indicative of

correct annotation with ‘development’ and these proteins are in turn correlating very well to the very

detailed ontology terms listed in table 3.3.

The co-occurrence of terms can be extended to pairs frequently co-occurring with ‘development’.

Tables 3.4 and 3.5 summarize the joint probabilities of ‘development’ with the two most frequent terms.

For GoPubMed (Table 3.4) the terms cover cell growth and differentiation in general, while for GOA

(Table 3.5) the terms related to transcription are prominent. Both tables appear intuitively meaningful

topics to indicate abstracts on cell biology.

3.2.2 Methodology

Our objective is to find two classes of articles, those that: a. should not be annotated with ‘development’,

i.e., False Positives (FPs), and b. should be annotated with ‘development’, i.e., False Negatives (FNs)

or True Positives (TPs). We map the annotations in each GoPubMed article to a graph representing

co-occurrences of annotations in ∼ 34, 000 manually annotated articles in GOA. Based on several proba-
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GoPubMed GOA

Term name cooc. TCscore Term name cooc. TCscore

cell 200142 0.21 cell proliferation 25 2.40
growth 80751 0.62 transcription factor

activity
23 1.29

biosynthesis 69146 0.17 regulation of tran-
scription, DNA -
dependent

22 1.95

cell development 46722 2.56 protein binding 20 -0.21
viral life cycle 45527 -0.01 nucleus 20 -0.04
antigen binding 45448 0.06 signal transduction 17 0.9
brain development 39119 0.22 integral to plasma

membrane
15 0.66

cellularization 35330 0.4 DNA binding 14 0.8
binding 35042 -0.14 cytoplasm 11 -0.21
regulation of biolog-
ical process

33777 0.45 apoptosis 11 1.88

behavior 33306 0.099 immune response 10 1.25

Tab. 3.2: The top 10 GO annotations in GoPubMed and GOA, according to their co-occurrence
with ‘development’.

bilistic metrics described below we infer the likelihood that ‘development’ should or should not annotate

each article.

Overview

Our methodology uses a co-occurrence graph based on manually annotated GOA articles. We find co-

occurring terms in all GOA articles and build a co-occurrence graph representing how frequently pairs

of GOA terms co-occur in all GOA articles. The nodes represent annotations and edges represent the

frequency of co-occurrence of two annotations. We view each GoPubMed article as representing co-

occurring GoPubMed annotations. Our approach involves mapping each GoPubMed article onto the

co-occurrence graph of manual GOA annotations. Each GoPubMed article is mapped to the nodes

and edges of the GOA co-occurrence graph. Then, we use several metrics to estimate the likelihood

of a ‘development’ annotation being appropriate for the GoPubMed article, based on an n-word of n

annotations that are neighbors of ‘development’ in the GOA co-occurrence graph.

GOA is sparsely annotated because of the effort required in assigning manual annotations. For this

reason, we use the GOA co-occurrence graph such that high correlations of annotations with ‘devel-

opment’ are considered more significant than low correlations. In the GOA co-occurrence graph an

annotation ai’s low correlation with ‘development’ is not a very strong sign for a FP. On the other

hand, an annotation ai’s high correlation with ‘development’ is a stronger sign for a FN or TP. With

this rationale, we assign to each article a 2-word, including ‘development’ and the article’s annotation

most closely correlated with ‘development’ in the GOA co-occurrence graph. We use these 2-words with

probabilistic metrics to assess which articles are most likely to be relevant to ‘development’ (TPs/FNs);

the rest of the articles are considered more likely not to be relevant to ‘development’ (FPs). The use of

2-words is specific to our application, which classifies articles as TPs/FNs based on the annotation most

correlated with ‘development’; however, n-words for any n could potentially be used.

We also propose a clustering methodology for finding groups of GoPubMed articles (clusters or

subclusters) that are FPs or FNs/TPs. Our clustering methodology improves the results, since many

GoPubMed articles are incomplete with missing annotations (FNs) or have wrong annotations that

should be filtered out (FPs). Moreover, most annotations occur infrequently in GOA. Clustering allows
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GoPubMed GOA

Term name TCscore cooc. Term name TCscore cooc.

petal development 2.55 78 3 - mercaptopyru-
vate sulfurtrans-
ferase activity

4.95 1

sepal development 2.55 19 hydrolase activity,
acting on acid an-
hydrides, catalyzing
transmembrane
movement of sub-
stances

4.95 1

stamen development 2.55 80 intramolecular
transferase activity,
phosphotrans-
ferases

4.95 1

carpel morphogenesis 2.55 3 carbon-nitrogen lig-
ase activity, with
glutamine as amido-
N-donor

4.95 1

sepal morphogenesis 2.55 2 lipoate-protein lig-
ase B activity

4.95 2

stamen morphogenesis 2.55 2 transcription initia-
tion factor activity

4.95 2

carpel structural orga-
nization

2.55 1 sigma factor activ-
ity

4.95 1

establishment of petal
orientation

2.55 2 glutamyl-
tRNA(Gln) amido-
transferase activity

4.95 1

meristem development 2.55 215 protein prenylation 4.95 1
gut development 2.55 578 protein amino acid

prenylation
4.95 2

regulation of post-
embryonic develop-
ment

2.55 13 alkane 1-
monooxygenase
activity

4.95 1

Tab. 3.3: The top 10 GO annotations in GoPubMed and GOA, according to their TCscore with
‘development’.
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GoPubMed

Term name A Term name B Prob(A,B,development)

cell growth growth 10−3

cell cell growth 10−3

cell cell surface 10−3

cell cell differentiation 1.2× 10−3

cell regulation of biological
process

1.3× 10−3

cell binding 1.3× 10−3

cell cellularization 1.7× 10−3

cell antigen binding 1.7× 10−3

cell biosynthesis 2.4× 10−3

cell growth 2.7× 10−3

cell cell development 3.1× 10−3

Tab. 3.4: The top 10 pairs of non-‘development’ GO annotations in GoPubMed, according to their
probability of co-occurring with ‘development’.

GOA

Term name A Term name B Prob(A,B,development)

signal transduction cell proliferation 1.5× 10−4

DNA binding transcription factor activity 1.7× 10−4

DNA binding nucleus 1.7× 10−4

transcription factor
activity

transcription from RNA
polymerase II promoter

1.7× 10−4

protein binding nucleus 1.7× 10−4

protein binding regulation of transcription,
DNA - dependent

1.7× 10−4

nucleus regulation of transcription,
DNA - dependent

1.7× 10−4

transcription factor
activity

regulation of transcription,
DNA - dependent

2× 10−4

protein binding cytoplasm 2× 10−4

transcription factor
activity

nucleus 2.6× 10−4

Tab. 3.5: The top 10 pairs of Non-‘development’ GO annotations in GOA, according to their
probability of co-occurring with ‘development’.
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Fig. 3.1: Mapping a GoPubMed article’s annotations onto the GOA co-occurrence graph. A
GoPubMed article points to the edges of the GOA co-occurrence graph corresponding to pairs of co-occurring
GOA annotations.

to aggregate information on the occurrences of annotations over all GoPubMed articles. Clustering allows

to build groups of GoPubMed articles and to identify the union set of articles’ annotations in a group.

We can map the union of annotations in a group of GoPubMed articles onto the GOA co-occurrence

graph, rather than each individual article’s annotations. This allows to return to the user for examination

groups of articles that are likely to be FPs or FNs/TPs, rather than individual articles. This makes the

process of looking for FPs and FNs/TPs more accurate. This also makes the process faster by avoiding

redundant mappings of GoPubMed articles with the same annotations to the GOA co-occurrence graph.

Co-occurrence Graph of GOA Annotations

In order to formalize the notion of GO annotations’ co-occurrences, we consider pairs of GO terms that

appear in the same article’s abstract and we represent all such pairs of GO terms in a GOA co-occurrence

graph. We created a GOA co-occurrence graph for the set of all manually annotated articles in the GOA

database. GOA articles annotated with ‘development’ are most likely to be TPs. Each node represents

a GO annotation. An edge between nodes a1 and a2 represents:

• A probability P (a1, a2, development) representing the likelihood of co-occurrence of the terms a1, a2

and ‘development’ in all GOA articles. For an edge between a1 and the ‘development’ node this is

equal to P (a1, development).

• A real number, called a TCscore, representing the frequency TCscore(a1, a2) of the terms’ a1, a2

co-occurrence over all articles. The TCscore for a pair a1 and a2 is estimated as: log P (a1,a2)
P (a1)P (a2) .

Figure 3.1 shows an example of mapping a set of GoPubMed annotations for an article onto the GOA

co-occurrence graph.

Using special metrics we assess the likelihood of ‘development’ being a TP/FN or FP for an article.

First TCscore metric for finding ‘development’ TPs, FPs, FNs

The first metric is the TCscore, which was presented in the previous section. For an article we find the

annotation a1 which is the most correlated to ‘development’ in the GOA co-occurrence graph. (If there

is a tie, it will not affect the result). Then, we assign to the article the TCscore(a1, development).

The rationale for considering only one non-‘development’ annotation a1 for each article, as described

earlier, is that we consider annotations most closely correlated with ‘development’ as most reliable for

classifying a GoPubMed article as FN/TP.
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Second probabilistic metric for finding ‘development’ TPs, FPs, FNs

We are given a set of annotations a1, · · · , an (for our purposes n=1) that are prominent in an article (or

a group of articles derived via clustering). Suppose the GOA co-occurrence graph suggests that given

these annotations a1, · · · , an co-occurring in an article, the ‘development’ annotation has a probability

π of correctly describing this article (TP/FN). Then, we estimate the likelihood that ‘development’ is a

correct annotation for a GoPubMed article, based on several manual GOA annotations a1, · · · , an. This

pseudo-Bayesian application is a simplification of strict statistical Bayesian rules for making our method

practically useful. The rationale behind this application stems from the following motivating arguments:

a. The relatively infrequent automatic GoPubMed annotations a1, · · · , an, are usually less likely to be

FNs or FPs than ‘development’. b. GOA manual annotations a1, · · · , an are less likely to be FNs or FPs

than automatic GoPubMed annotations.

We find FNs/TPs by initially looking for GoPubMed articles with annotations most frequently co-

occurring with ‘development’ in GOA. We rank as most likely FNs/TPs the GoPubMed articles with

annotations most frequently co-occurring with ‘development’ in GOA.

The GoPubMed articles ranked as most likely FPs are those with annotations that co-occur less

frequently with ‘development’ in GOA.

For estimating the likelihood of co-occurrence, we use the following probability:

P (development, a1, · · · , an) = P (development|a1, · · · , an)P (a1, · · · , an) =

P (a1, · · · , an|development)P (development)P (a1, · · · , an)

P (a1, · · · , an)

where {a1, · · · , an} = set of n GoPubMed annotations that

co− occur in GOA co− occurrence graph with ‘development′

In our case, we are only interested in estimating the part P (a1, · · · , an|development), since P (development)

remains constant and it will not affect our decision on which articles should or should not be annotated

with ‘development’.

We consider one annotation a1 for each GoPubMed article, the one most closely correlated with

‘development’ in the GOA co-occurrence graph. Thus, we just need to estimate:

P (a1|development) =
P (a1, development)

P (development)

For fast retrieval of the values of this measure we use the co-occurrence graph, as previously described.

This is one of the purposes of our co-occurrence graph, to serve as a data structure allowing for quick

retrieval of the probabilities.

Threshold for separating likely FNs/TPs from FPs

We set a threshold for each of the two metrics described above, to separate:

1. GoPubMed articles that are ‘development’ FNs or TPs. These articles are often manually annotated

as ‘development’ in GOA.

2. GoPubMed articles that are ‘development’ FPs. These articles are automatically annotated as

‘development’ in GoPubMed, but often do not have this manual annotation in GOA.

By comparing each GoPubMed article’s annotations to the GOA co-occurrence graph we establish a

threshold for the values of each metric previously described. The threshold separates articles into two

groups: FNs/TPs from FPs. We examine the appropriate value of threshold in the next section on

experiments.
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Input: a set S of articles with GoPubMed annotations;
Parameters: (1) δφ : the increment for φ;

(2) threshold for φ : the maximum number
of annotations that can differ between an
article and the mode of its cluster;

Default parameter values: (1) δφ = 1;
(2) threshold = the number of
distinct annotations in GoPubMed;

Output: a set of clusters;
Method:

1. Order the articles from lowest to highest degree;
2. Insert the first article into a new cluster, use the
article as the mode of the cluster, and remove the
article from S;
3. Initialize φ to 1;
4. Loop through the following until S is empty or φ > threshold

a. For each article o in S
i. Find o’s closest cluster c by using the
similarity metric to compare o with the
modes of all existing cluster(s);
ii. If the number of different annotations between o
and c’s mode is larger than φ, insert o into a
new cluster
iii. Otherwise, insert o into c and update c’s mode;
iv. Remove article o from S;

b. For each cluster c, if there is only one article in
c, remove c and put the article back in S;
c. If in this iteration no articles were inserted in a
cluster with size > 1, increment φ by δφ.

Fig. 3.2: The MULIC clustering algorithm (Andreopoulos et al., 2007).

Clustering

We use the MULIC clustering algorithm for partitioning the articles into groups of articles with similar

GoPubMed annotations. Consider a group (cluster or subcluster) of articles. If ‘development’ is a TP

or FN for the group of articles, then, the group likely contains a set of GoPubMed annotations which

in the GOA co-occurrence graph are correlated with one another and ‘development’. If the group’s set

of GoPubMed annotations are not connected to ‘development’ in the GOA co-occurrence graph, then

‘development’ is more likely to be a FP for the group of articles.

The objects to be clustered are the GoPubMed articles. Clustering decisions are based on each

article’s set of GoPubMed annotations. MULIC clusters consist of layers, where each layer corresponds

to a different value of the similarity criterion used for inserting articles in clusters.

Each MULIC cluster has a mode, which is the union of annotations of all article members of the

cluster.

MULIC ensures that, when each article o is clustered, it is inserted into the cluster c with the most

similar mode µc, thus, maximizing the similarity between article and mode. The similarity metric is

defined as follows:

similarity(o, µc) = |o ∩ µc|

where o is an article in the dataset and µc is the mode of the cluster c in which o is to be inserted.

Figure 3.2 shows the MULIC clustering algorithm, as used in our application. The algorithm starts

by reading all articles from the input file and storing them in S. Objects (articles) are ordered from

lowest to highest degree, where the degree is the number of annotations. The first article is inserted in

a new cluster, the article becomes the mode of the cluster and the article is removed from S. Then, it

continues iterating over all articles that have not been assigned to clusters yet, to find the closest cluster.

In all iterations, the closest cluster for each unclassified article is the cluster with the highest similarity

between the cluster’s mode and the article, as computed by the similarity metric.

The variable φ is maintained to indicate how high the dissimilarity is allowed to be between an article
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Fig. 3.3: A MULIC cluster consists of one or more layers representing dissimilarities between the articles and
mode. Ovals are layers and circles are articles.

and the closest cluster’s mode, for the article to be inserted in the cluster. The dissimilarity metric is

defined as follows:

dissimilarity(o, µc) = |(o− µc) ∪ (µc − o)|

Initially φ equals 1, meaning that only one annotation can differ between an article and the closest

cluster’s mode. If the number of different annotations between the article and the closest cluster’s mode

is greater than φ, then, the article is inserted in a new cluster on its own, else, the article is inserted in

the closest cluster and the mode is updated.

At the end of each iteration, all articles assigned to clusters of size one have their clusters removed

so that the articles will be re-clustered at the next iteration. This ensures that the clusters that persist

through the process are only those containing at least two articles. Articles assigned to clusters of

size greater than one are removed from the set of unclassified articles S, so those articles will not be

re-clustered.

At the end of each iteration, if no articles have been inserted in clusters of size greater than one,

then the variable φ is incremented by δφ. Thus, at the next iteration the criterion for inserting articles

in clusters will be more flexible. The iterative process stops when all articles are classified in clusters of

size greater than one, or φ exceeds a user-specified threshold. If the threshold equals its default value,

the process stops when all articles are assigned to clusters of size greater than one.

The MULIC algorithm can eventually classify all articles in clusters, even if the closest cluster to

an article is very dissimilar, because φ can continue to increase until all articles are classified. Even in

the extreme case, where an article o has only zero or one annotation similar to the mode of the closest

cluster, it can still be classified when φ reaches a high value.

Figure 3.3 illustrates what the results of MULIC look like. Each cluster consists of one or more

different “layers”. The layer of an article represents how high the article’s dissimilarity was to the mode

of the cluster when the article was assigned to the cluster. The cluster’s layer in which an article is

inserted depends on the value of φ. Bottom layers such as 1000 correspond to higher values of φ and

have a lower coherence - meaning a higher average dissimilarity between all pairs of articles in the layer.

MULIC starts by inserting as many articles as possible in top layers - such as layer 1 - and then moves

to bottom layers, creating them as φ increases.

If an unclassified article has equal similarity to the modes of the two or more closest clusters, then

the algorithm tries to resolve this ‘tie’ by comparing the article to the mode of the top layer of each of

these clusters - the top layer of a cluster may be layer 1 or 2 and so on. Each cluster’s top layer’s mode

was stored by MULIC when the cluster was created, so it does not need to be recomputed. If the article
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has equal similarity to the modes of the top layer of all of its closest clusters, the article is assigned to

the cluster with the highest bottom layer. If all clusters have the same bottom layer then the article is

assigned to the first cluster, since there is insufficient data for selecting the best cluster.

Ordering the Articles before Clustering

When running MULIC with different random orderings of the dataset objects (articles), the result is

often different. The modes and clusters are influenced most by the annotations of the articles that are

clustered first in top cluster layers. It makes more sense to cluster first the articles of low degree (i.e.,

articles with few annotations) and last the articles of high degree.

Two articles of high degree are unlikely to have the exact same annotations, thus, it is unlikely that

there will be many articles of high degree in top cluster layers. By ordering the articles and presenting

them to the clustering process from low to high degree, and by gradually relaxing φ, the clusters get

an onion-layered structure where articles in top layers have similar sets of annotations and articles in

bottom layers have less similar sets of annotations.

Characteristics for GoPubMed Article Clustering

We implemented several characteristics specific for GoPubMed article clustering, such as the mode’s

updating and the dis/similarity metric as described in the previous section.

While the MULIC clustering algorithm follows the basic framework of k-Modes (Huang, 1998), it has

substantially different characteristics. First, clusters are layered. Second, the number of clusters is not

specified by the user - clusters are created, removed or merged, as the need arises. K-Modes requires

the user to specify the number of clusters and the algorithm builds and refines the specified number of

clusters. Third, all MULIC clusters are of size two or greater.

3.2.3 Experimental evaluation

Each article had an original classification as FP, FN or TP with respect to the ‘development’ annotation.

Our goal was to find out whether an article could be classified correctly as FP, FN, or TP based on its

mapping to the GOA co-occurrence graph. We are interested in articles that were erroneously automat-

ically annotated as ‘development’ (FPs), or should be automatically annotated as ‘development’ (FNs

or TPs).

In order to evaluate the success of our methodology for separating likely FPs from FNs and TPs we

used the precision/recall measure, as described next.

Precision (P ) and Recall (R)

Without loss of generality assume that the optimal mapping assigns class ci to the retrieved group of

articles gi. There are two known classes in our test dataset S: a. c1 consisting of articles known to be

FNs/TPs and b. c2 consisting of articles known to be FPs. Our result consists of two groups of articles,

g1 and g2, the former believed to be FN/TP articles and the latter believed to be FP articles. We define

precision, Pi, and recall, Ri, for a group of articles gi, 1 ≤ i ≤ 2 as follows (Andritsos et al., 2004):

Pi =
|gi ∩ ci|
|gi|

and Ri =
|gi ∩ ci|
|ci|

Pi and Ri take values between 0 and 1 and, intuitively, Pi measures the accuracy with which group gi

reproduces class ci, while Ri measures the completeness with which group gi reproduces class ci. We

define the precision and recall of the result as the weighted average of the precision and recall of each
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group of articles. More precisely:

P =

k∑
i=1

|ci|
|S|

Pi and R =

k∑
i=1

|ci|
|S|

Ri

We think of precision, recall, and misclassification as indicative values (percentages) of the ability of our

methodology to reconstruct the existing classes in the dataset.

Results for Classifying Articles Individually

In order to classify articles we define a threshold drawing a line that separates likely FPs from FNs and

TPs. Tables 3.6 and 3.7 show the precision and recall achieved for the two metrics and different values of

threshold. The precision and recall show how effectively each metric and threshold partition the articles

into the classes of FPs and FNs/TPs.

As shown, for the first TCscore metric the best partitioning is achieved with a threshold value of

0. This points to the significance of the results, since 0 would be the natural choice for the TCscore

threshold value for separating FPs from FNs/TPs.

For the second probabilistic metric (range from 0 to 1) the best partitioning is achieved with a

threshold value of 0.00004. The best precision and recall for the second probabilistic metric are 0.77,

slightly better than the first TCscore metric. The reason for the improved result may be that the

first TCscore metric is slightly biased by considering in its denominator the likelihood of individual

annotations’ occurrences. While the second probabilistic metric just considers the likelihood of co-

occurrences of annotations.

Results with Clustering

We clustered all 331 automatically annotated GoPubMed articles in our dataset. We used MULIC with

its default parameter values. For clustering we excluded the GoPubMed ‘development’ annotations. We

did not use the manually annotated GOA articles. We got 22 clusters, where each cluster had on average

4 layers. Most clusters had a top layer of 0 or 1, containing annotation sets that are representative of

corpus groups of articles.

We consider each cluster as a distinct group of GoPubMed articles, the combined annotation set of

which is mapped onto the GOA co-occurrence graph. Then, we classify each cluster as FP or FN/TP.

Articles in different clusters might have dissimilar GoPubMed annotations and there is a large number

of annotations in the dataset.

Then, we used the metrics previously described for finding whether the ‘development’ annotation is

more likely to be a FP or FN/TP for a group of GoPubMed articles. We examined how accurately the

neighborhood of the GOA co-occurrence graph corresponding to the group’s articles’ annotations reflects

whether ‘development’ is or is not appropriate for the group.

Tables 3.8 and 3.9 show that the results with clustering are improved and the best precision reached

is 0.82. The best threshold values are the same as without clustering. For the first TCscore metric the

best partitioning is achieved with a threshold value of 0, while for the second probabilistic metric with

a threshold value of 0.00004.

The main reason for the improved results with clustering is that we aggregate information on anno-

tations of clusters of related GoPubMed articles. This way, articles that are incomplete with missing

annotations have a less negative effect on finding ‘development’ FPs, FNs and TPs.

3.2.4 Conclusion

We have proposed and evaluated an approach for improving the quality of automatically annotated

articles. This approach is based on co-occurrence graphs, which in our case we built on the basis of

47



Threshold Precision Recall

−1.0 0.74 0.74
−0.5 0.74 0.74
0 0.74 0.74
0.5 0.74 0.74
1.0 0.73 0.73
1.5 0.72 0.71
2.0 0.71 0.7
3.0 0.68 0.55

Tab. 3.6: Precision and Recall for the first TCscore metric and different threshold values (without
MULIC clustering of articles).

Threshold Precision Recall

0 0.74 0.74
1× 10−5 0.74 0.74
2× 10−5 0.74 0.74
3× 10−5 0.77 0.77
4× 10−5 0.77 0.77
5× 10−5 0.77 0.77
6× 10−5 0.75 0.65
7× 10−5 0.75 0.65
8× 10−5 0.75 0.65
9× 10−5 0.77 0.61

Tab. 3.7: Precision and Recall for the second probabilistic metric and different threshold values
(without MULIC clustering of articles).

Threshold Precision Recall

−1.0 0.82 0.72
−0.5 0.82 0.72
0 0.82 0.72
0.5 0.82 0.72
1.0 0.79 0.73
1.5 0.78 0.74
2.0 0.79 0.75
3.0 0.71 0.7

Tab. 3.8: Precision and Recall with MULIC clustering of articles, for the first TCscore metric and
different threshold values.
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Threshold Precision Recall

0 0.82 0.72
1× 10−5 0.82 0.72
2× 10−5 0.82 0.72
3× 10−5 0.82 0.75
4× 10−5 0.82 0.75
5× 10−5 0.82 0.75
6× 10−5 0.77 0.75
7× 10−5 0.77 0.75
8× 10−5 0.77 0.75
9× 10−5 0.75 0.73
10−4 0.75 0.73

Tab. 3.9: Precision and Recall with MULIC clustering of articles, for the second probabilistic
metric and different threshold values.

GOA.

Even though we have focused on the ‘development’ annotation, the method proposed can be applicable

to diverse annotations that are often FPs or FNs, such as ‘cell’ or ‘growth’ or ‘determination of affect’.

One problem with this approach is that GOA is sparsely annotated because of the difficulty and

effort required for manual annotations. For example, in GOA only 243 articles have a ‘development’

annotation. This may raise questions as to the statistical significance of mapping an automatically

annotated GoPubMed article onto the GOA co-occurrence graph. Even though the GOA corpus that we

used for the co-occurrence graph contains only 243 articles annotated with ‘development’, our results are

still shown to be meaningful. As the GOA corpus increases, the statistical significance of the relationships

in the co-occurrence graph will become stronger. Then, future experimental results will be even more

meaningful for predicting FPs and FNs.

We further extend the co-occurrence approach (called ‘Term Cooc’) in the next section in the

following ways:

1. We additionally disambiguate MeSH terms and use a larger training corpus to get the co-occurrence

scores, since there exist ∼ 16, 400, 000 documents to which experts have assigned MeSH terms.

2. We make use of the hierarchy structure in both GO and MeSH (given an ambiguous term α, the

co-occurrence of α with a term β should not be lower than α’s co-occurrence with any of β’s

descendants, ‘Inferred Cooc’), whereas before we used term co-occurrence without any inference.

We therefore investigate how two different hierarchies influence the performance of disambiguation.

3. We combine our graph–based decision function with a support vector machine, arranged in a co–

training scheme, to learn and improve models without any labelled data.

4. We test the disambiguation performance in new larger benchmark datasets of varying curation

quality.
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3.3 Term Cooc vs. Closest Sense vs. MetaData

In this section we further extend the co-occurrence approach presented previously and develop two

more approaches to word sense disambiguation, which use ontologies and metadata. The ‘Term Cooc’

method defines a log-odds ratio for co-occurring terms including co-occurrences inferred from the ontology

structure. The ‘Closest Sense’ method assumes that the ontology defines multiple senses of the term.

It computes the shortest path of co-occurring terms in the document to one of these senses. The

‘MetaData’ approach trains a classifier on metadata. It does not require any ontology, but requires

training data, which the other methods do not.

To evaluate these approaches we define a manually curated training corpus of 2600 documents for

seven ambiguous terms from the Gene Ontology and MeSH (see Appendix A).

3.3.1 Methods

Terminology and classification of approaches

The types of relations between terms in the Gene Ontology (GO), the Medical Subject Headings (MeSH)

and the Unified Medical Language System (UMLS) semantic network make them completely different

knowledge sources (Bodenreider and Stevens, 2006). GO has a simple structure in the form of a directed

acyclic graph and GO terms are interconnected via is a and part of relations. The semantics of relations

used in MeSH make it a terminology rather than an ontology. Terms in MeSH are related through A

narrower than B relations, giving users who are interested in Bs the option to look at As. The UMLS

is considered to be a terminology integration system comprising over 150 biomedical vocabularies and

relations like subClassOf or subPropertyOf between terms. Therefore, it is located in the space between

a structured terminology and an ontology. The most popular semantic web formalisms for representing

taxonomies, ontologies and terminologies in general are the Resource Description Framework (RDF) and

the Web Ontology Language (OWL), with OWL being more suitable for ontologies and RDF sufficient

for terminologies. The Simple Knowledge Organization Systems5 (SKOS) is an area of work developing

specifications and standards to support the use of knowledge organisation systems (KOS) such as thesauri,

classification schemes, subject heading systems and taxonomies within the framework of the Semantic

Web. SKOS provides a standard way to represent knowledge organisation systems using RDF. Lately,

there have also been provided OWL translations of GO and MeSH by the responsible consortia.

We designed, implemented, and evaluated three WSD methods that we refer to as: Closest Sense

(CS), Term Cooc (TC), and MetaData (MD). Their differences are explained in the following:

Background knowledge: Closest Sense (CS) uses the UMLS semantic network; it represents an

abstract as a list of UMLS terms occurring in the abstract. Term Cooc (TC) uses co-occurrences of

terms in GO and MeSH, built from a curated dataset; it represents a document abstract as a list of

GO and MeSH terms occurring in the abstract. The MetaData method (MD) uses metadata about the

journal and title; it represents a document abstract as n-tuples of word stems and metadata.

Classification: Closest Sense uses shortest semantic distance of co-occurrences to sense. Term Cooc

uses Support Vector Machines and co-occurrences from a training dataset for finding boundary between

senses. MetaData uses the maximum entropy to model the behavior of the co-occurrence of contextual

words and metadata with the ambiguous term.

Figure 3.4 gives an overview of the disambiguation performed by the three methods. ‘Thrush’ can

refer to a mouth disease (oral candidiasis) or to a songbird (e.g., thrush nightingale). The CS method

examines what appears in the same sentence and/or paragraph (e.g., ‘mouth diseases’ or ‘oral ulcer’)

5See SKOS http://www.w3.org/2004/02/skos/
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Fig. 3.4: Three disambiguation approaches for one term. Thrush is an ambiguous term, as its senses
include songbird or oral candidiasis. This figure shows the possibilities for disambiguating ‘thrush’. Solid edges
are is a relationships.

and then computes a similarity based on semantic distances to ‘songbird’ and ‘oral candidiasis’ in the

UMLS semantic network, with the highest similarity determining the result. The TC method examines

what appears in the same abstract (e.g., ‘swallows’) and then considers all known co-occurrences between

taxonomy terms in the training corpus. The value of the highest co-occurrence determines the result,

e.g., ‘swallows’ would have relatively high co-occurrence with ‘thrush’ songbird. The MD method uses

metadata for the document and then decides based on what was previously learned about this metadata

from training examples. If, for example, the article comes from the Journal of Oral Hygiene, then it is

more likely that ‘thrush’ refers to ‘oral candidiasis’.

Closest Sense method (CS)

This WSD approach was initially used to address the ambiguity problems in the MeatAnnot system

(Khelif et al., 2007) and developed by colleagues from INRIA Sophia Antipolis, in the framework of the

Sealife6 project. The main idea of the approach is the following: given a set of different senses of the

ambiguous term, the co-occurring terms in the same text and the hierarchy where they belong (including

the different types of relations), decide which sense is true based on the (shortest) distance to the senses

of the co-occuring terms.

To clarify this, we can have the following sentence as an example: ‘I also tracked lipid profiles,

HBA1C, blood pressure, body mass index, hostility and nicotine use’. The term ‘blood pressure’

can have three senses, namely ‘organism function’, ‘diagnostic procedure’ and ‘laboratory or test result’

(see Table 3.10). The senses of the co-occurring terms are ‘laboratory procedure’ (lipid profile), ‘gene or

genome’ (HBA1C), ‘diagnostic procedure’ (body mass index), ‘mental process’ (hostility) and ‘organic

chemical’ (nicotine). The sense of ‘diagnostic procedure’ for blood pressure is in average closer to the

6http://www.biotec.tu-dresden.de/sealife/
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Organism Function Diagnostic Procedure Laboratory or Test Result

lipid profile 0.291 0.862 0.167
HBA1C 0.166 0.167 0.3
body mass index 0.29 1 0.169
hostility 0.98 0.28 0.168
Average 0.431 0.549 0.201

Tab. 3.10: Disambiguation of ‘blood pressure’ with the Closest Sense approach. The term ‘blood
pressure’ can have three senses, namely ‘organism function’, ‘diagnostic procedure’ and ‘laboratory or test result’.
The sense of ‘diagnostic procedure’ for blood pressure is in average closer to the senses of the co-occurring terms
than the other candidate senses (it has the highest average semantic similarity).

senses of the co-occurring terms than the other candidate senses. For the example in Figure 3.4, the

CS method determines the meaning of ‘thrush’ by examining what appears in the same sentence and/or

paragraph (e.g., ‘mouth diseases’ or ‘oral ulcer’) and then computing a similarity based on semantic

distances to ‘songbird’ and ‘oral candidiasis’ in the UMLS hierarchy; the highest similarity determines

the result. Intuitively, with semantic distances, two senses are close if there exists a possibility to use

them in a concise annotation graph.

Algorithm The ‘Closest Sense’ algorithm takes as input: (i) the ambiguous term τ , (ii) the vector Vτ

of different senses of τ , (iii) the vector V Cτ of senses found in the context (sentence and/or paragraph

containing the ambiguous term τ), and (iv) the UMLS semantic network.

First, the disambiguator builds a vector V Cτ of senses describing the context of the ambiguous term

τ . This vector includes the senses of terms that are neighbours of τ . Then, it computes the similarity

between each sense in vectors Vτ and V Cτ .

The resulting similarity is the average of similarities between senses in the two vectors. Finally, the

sense in Vτ that has the highest average similarity to V Cτ is proposed as the best for τ .

Semantic distances The distance metrics used to find the correct sense are the subsumption distance

and the subtype-aware signature distance.

The subsumption distance is the length of the shortest path between two senses in the hierarchy of

senses, where the length of an individual subsumption link gets exponentially smaller with the depth of

the senses it links in the hierarchy.

The subtype-aware signature distance is the length of the shortest path between two concepts/terms

through the graph formed by the property types with their range links and domain links. With this new

semantic distance we merge signature and hierarchies graphs. The main idea is to find a path between

two concepts/terms by using the ontology structure (subClassOf relations between terms, subProper-

tyOf relations between properties) and the signature of relations (domain and range). The subtype-aware

signature consists of relations in the hierarchy (subClassOf, subPropertyOf) additional to the common

signature (domain and range of a property). It is aware of the properties of a term (signature), the

position of the term in the hierarchy (subClassOf relations) and the hierarchy of the properties (sub-

PropertyOf relations). The formal definitions of the distance metrics are explained in Khelif et al.

(2008).

Figure 3.5 provides an example of the subtype-aware signature distance calculation between two terms

in the UMLS semantic network. ‘Body Part Organ or Organ Component’ is a subClassOf ‘Fully Formed

Anatomical Structure’, which belongs to the signature of the relation ‘produces’. This relation has as

range ‘Organic Chemical’ which is a superClassOf ‘Amino Acid Peptide or Protein’.

The optimized distance is a combination of the subsumption distance and the signature distance,

parameterized with three optimal weights, wsig for signatures, wsubclass for class subsumption links and

wsubprop for property subsumption links. From a first experiment on the UMLS WSD test collection
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Fig. 3.5: Subtype-aware signature calculation. The figure shows the path between the UMLS
terms ‘Body Part Organ or Organ Component’ and ‘Amino Acid Peptide or Protein’. The edges describe re-
lations between entities (in our case, the subtype-aware-signature and its sub-properties) and nodes con-
sist of classes and relations of the ontology. ‘Body Part Organ or Organ Component’ is a subsumption of
‘Fully Formed Anatomical Structure’, which belongs to the signature of the relation ‘produces’. This relation
has as range ‘Organic Chemical’ which is a super-class of ‘Amino Acid Peptide or Protein’. The length of this
path is 4.

(Weeber et al., 2001) where we tested different weights starting from a distance favouring the class

subsumption relation to a distance favouring the signature relation, we ended up in the following optimal

weights giving the best accuracy: wsig = 0.4, wsubclass = 0.2 and wsubprop = 0.4.

Term Cooc method (TC)

The Term Cooc method relies on selecting the term that most frequently co-occurs with the ambiguous

term in the training corpus. It selects the highest co-occurring term with the ambiguous term for defining

the given sense as true or false. In order to formalize the notion of term co-occurrences (GO or MeSH),

we consider pairs of GO/MeSH terms that appear in the same abstract and we represent all such pairs

of terms in a manually annotated GOA or MeSH co-occurrence graph (see training with co-occurrence

graphs subsection below). Each node in the co-occurrence graph represents a GO or MeSH manual

annotation. An edge between nodes α and β represents a real number, the log-odds score, representing

the frequency log − odds(α, β) of the terms’ α and β co-occurrence over all articles, weighted by their

total number of occurrences (TCscore previously defined in Section 3.2.2).

For the example in Figure 3.4, the TC method determines the meaning of ‘thrush’ by examining what

appears in the same abstract (e.g., ‘swallows’) and then considering all known co-occurrences between

ontology terms in a training corpus; the value of the highest co-occurrence determines the result, e.g.,

‘swallows’ would have relatively high co-occurrence with ‘thrush’ songbird.

Algorithm First, we use a simple threshold considering how close to an ambiguous term the highest

co-occurring term (of the ones in the article) is; if below a user-defined threshold θ, the ambiguous term

is negative, else it is positive with respect to the term. Second, we use Support Vector Machines (SVMs)

trained on all tokens of a text (Klinkenberg and Joachims, 2000).

The method first runs a binary SVM against a set of articles ordered by maximum co-occurrence

with the ambiguous term. The highest and lowest 10% of articles in the set are labelled as positive and

negative, respectively; then the SVM is trained on lower 10% (article with least co-occurring term with

the ambiguous term) and upper 10% (article with highest co-occuring term with the ambiguous term).

After the initial convergence is achieved, the error (wrongly classified vectors) will be low, likely near 0.
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The algorithm next improves this result by iteratively re-classifying the remaining articles that have less

extreme co-occurrences with the ambiguous term, one-by-one, followed by re-training the SVM on the

newly relabelled data set. This continues until no more articles are left. The steps are:

1. Set S = Order articles based on their highest co-occurring GO/MeSH annotation (from the co-

occurrence graph) with the ambiguous term.

2. T = lowest and highest 10% of S; label T as negative and positive; train SVM with T ; remove T

from S.

3. For s ∈ S: move s to T ; classify s; re-train SVM with T .

Training with co–occurrence graphs These graphs are used in the TC method for training. For

WSD of GO terms, the co-occurrence graph was derived from the Gene Ontology Annotations (GOA)

(Camon et al., 2004), and for the MeSH terms from the Medical Subject Headings (MeSH) (Nelson

et al., 2001). GOA represents articles manually annotated with GO terms and consists of ∼ 34, 000

articles. There exist ∼ 16, 400, 000 documents to which experts have assigned MeSH terms. We found

co-occurring terms in the GOA and MeSH annotated articles and built a co-occurrence graph representing

how frequently pairs of GO or MeSH terms co-occur. Nodes represent annotations and edges represent the

frequency of co-occurrence of two annotations in the same article, normalized based on each GOA/MeSH

annotation’s individual occurrence frequency in the specific corpus.

Training with inferred co–occurrences We extend the co-occurrences in a hierarchical fashion to

ensure that given a GOA-derived co-occurrence between a pair of terms, GOAcooc(α, β), the ancestors of

α and β in the ontology are updated with the co-occurrence such that only the maximum co-occurrence

is kept. This is important given the few annotations in GOA and the is a relationships between GO

terms, since ancestors inherit the co-occurrences of their children.

With the inferred co-occurrences, given an ambiguous term α, the co-occurrence of α with a term β

will not be lower than α’s co-occurrence with any of β’s descendants (see Figure 3.6).

Fig. 3.6: Inferred co-occurrences (Inferred Cooc). Given an ambiguous term a, the co-occurrence of a
with a term b will not be lower than a ’s co-occurrence with any of b’s descendants.

MetaData method (MD)

As an alternative method for WSD we use a maximum entropy approach as described in (Berger et al.,

1996; Pietra et al., 1997). Maximum entropy models have been successfully used in tasks like part of

speech tagging, sentence detection, prepositional phrase attachment, and named entity recognition.

For the example in Figure 3.4, the MD method7 determines the meaning of ‘thrush’ by using metadata

for the document and then deciding based on what was previously learned about this metadata from

training examples. The metadata used are n-tuples of word stems from different scopes, namely the

7Implementation of the MetaData method by Dr. A. Doms (Bioinformatics group, BIOTEC, TU Dresden,
http://www.biotec.tu-dresden.de/∼adoms/)
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paper title, the sentence including the ambiguous term or the whole abstract, the journal title as well

as the publication period, since some topics can be popular in different decades. The occurrence of

contextual words and phrases in a text together with a potentially ambiguous term can be seen as a

random process. Maximum entropy modelling aims at modelling the behavior of this random process.

Provided a large amount of training examples, the algorithm automatically extracts a set of relationships

inherent in the examples, and then combines these rules into a model of the data that is both accurate

and compact.

Algorithm The training and test data in our case are sentences containing the potentially ambiguous

term flagged with the sense. Each training example, one sentence each, is represented as a set of features.

An implementation of the Porter stemmer is used (Porter, 1980) and as features we select n-tuples of word

stems and meta information of the document, such as the journal and title words and the publication

period (10 years ranges).

The implementation8 takes a series of events to train a model. Each event is a configuration of binary

relations associated with a label. The resulting model is applied to an unknown configuration of binary

relations. The result is the predicted probability for the previously trained outcomes. MeSH terms

already assigned to the articles are excluded, for the performance evaluation to be independent of them.

Given the abstract of a scientific article and the ambiguous term, the steps followed are:

1. extract binary features (n-tuples of word stems from different scopes - title, sentence, entire

abstract -, publication period, journal title)

2. get scalar product of feature vector and model (vector based on training)

3. the result is the probabilities for predefined outcomes (in this case True or False)

4. if above a threshold 0.5, the term is True, else False.

As an illustrating example of the features extracted, articles mentioning ‘signal transduction’, ‘kinase’,

‘embryo’, ‘neuron’ or ‘stage’ are more likely to refer to ‘multicellular organismal development’ than to

another sense, such as development of an algorithm or a disease in an organism. Some extracted features

indicating positively the sense of ‘psychological inhibition’ are the journals ‘Physiol Behav’, ‘J Abnorm

Psychol’ and phrases such as ‘conditioned stimulus’, ‘emotion regulation’, ‘anxiety’ and ‘fear’. On the

other hand, when an article contains mentions such as ‘diabetes’, ‘pH’, ‘tumor’, ‘antibody’, ‘enzyme’,

‘protein’ and ‘membrane’, then it is more likely to refer to other senses of the ambiguous term ‘inhibition’,

such as e.g., ‘enzyme inhibition’.

3.3.2 Experimental setup

Classification task and limitations

The disambiguation performed here is mainly a classification task; it represents the prediction whether

an annotation is positive or negative with respect to the GO/MeSH sense. We do not assign one of the

numerous different senses to a term, but instead a positive or negative label to it, when it corresponds

to the GO/MeSH sense or not, respectively. We do not handle acronym ambiguity separately. However,

in cases where an acronym belongs to an ontology term label (e.g., FA for GO term ‘Fanconi Anaemia’

vs ‘Fatty Acids’, AMP as of MeSH term ‘Adenosine Monophosphate’ vs ‘Antimicrobial Peptides’, etc.),

this is disambiguated in the same way as all ontology term labels.

As mentioned in the introduction, some disambiguation tasks are easier than others; ‘bank’ the

building and the ‘BANK’ gene will appear in completely different context, whereas the ‘BANK’ gene,

protein or mRNA are even likely to appear in the same article abstract, making the disambiguation

8See http://sourceforge.net/projects/maxent/ for Maximum Entropy implementation
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Term Senses

Development biological process of maturation (GO); development of a syndrome/disease/
treatment; cataract development; colony development; development of a method;
staff/economic development; software/algorithm development

G
O Spindle mitotic spindle (GO); sleep spindles; muscle spindle; spindle-shaped cells

Nucleus cell nucleus (GO); body structure (UMLS, subthalamic/cochlear/caudate nucleus);
aromatic nucleus

Transport directed movement of substances into/out of/within/between cells (GO);
patient transport (UMLS); transport by air;transport of virus cultures;
maternal transport

Thrush Oral Candidiasis (MeSH); songbird (e.g., thrush nightingale)

M
eS

H

Lead heavy metal (MeSH); lead measurement (UMLS); to result in
Inhibition psychological/behavioral inhibition (MeSH); metabolic inhibition (UMLS);

% inhibition (SNOMED)

Tab. 3.11: Ambiguous terms and their senses in the WSD datasets collected. Examples of the senses
(in and out of the taxonomies) per ambiguous term included in the benchmark dataset collected.

task often difficult even for a domain expert. ‘Transport by air’ or ‘patient transport’ will be easier

to distinguish from the GO sense of transport, but ‘transport of virus cultures’ will appear in a closer

molecular biology context. Distinguishing between ‘transport’, ‘RNA transport’, ‘tRNA transport’ or

‘ion transport’ can become less difficult by using the hierarchical information in the ontology (e.g.,

exploiting subClassOf/subPropertyOf relations between ontology terms). Some terms are also easier to

disambiguate in the same task, depending on the number of their different senses (see Table 3.11) and

the distance between them, the way they appear in text (e.g., some can be easily distinguished with the

help of regular expressions) and the number of tokens they consist of (one-token terms are usually more

ambiguous as they are more likely to correspond to common English).

The ambiguous terms examined are the GO terms ‘Development’ (GO:0007275), ‘Spindle’ (GO:0005819),

‘Nucleus’ (GO:0005634) and ‘Transport’ (GO:0006810) and the MeSH terms ‘Thrush’ (D002180), ‘Lead’

(D007854) and ‘Inhibition’ (D007266). Most of the different senses of the terms examined (see Table

3.11) belonged as well to the biomedical domain, making the disambiguation task more difficult (e.g.,

development of a cell culture, development of a cytopathic effect, maturation–GO development). The

limited number of terms examined is due to the labor-intensive process of manual collection of proper

benchmark datasets. As mentioned in the introduction, in contrast with corpora for the general problem

of disambiguation, there exist few annotated biomedical corpora for evaluation and depending on the

task, researchers need to collect their own gold standard datasets. We9 collected datasets for a list of

ambiguous terms based on the amount of true/false data available and the frequency of occurrence in

PubMed (2600 manually curated documents of high/medium curation quality for 7 selected GO and

MeSH terms). We aimed at keeping the ratio of true/false abstracts close to 1, giving a 50% chance to

each appearance of the term to be true or false with respect to the GO/MeSH sense (although the ratios

in Medline will be different per term). We first examined the UMLS WSD collection (Weeber et al.,

2001) for ambiguous GO/MeSH terms and data availability and later a list of common False Positive

terms based on manual curations in GoPubMed (terms that were often falsely annotated by GoPubMed

as GO/MeSH terms and curators disagreed with the automatic annotation). From the UMLS WSD col-

lection we selected terms that were GO/MeSH terms and the senses provided were distant to each other,

i.e. in the case of ‘lead’, the two senses with short semantic distance (compound; laboratory procedure of

lead measurement) were considered as one, as they both are about the compound. A semantically more

distant sense is that of the verb to lead/result in. Regarding the false/positive ratio limitation/criterion,

9The collection of the datasets has been completely done by the author of this PhD thesis. For purpose of smoother
reading, the person is not changed from “we” to “I”. Whenever people assisted in the collection process, this is mentioned
accordingly.
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for some terms this was not satisfied, not allowing the inclusion into the evaluation dataset. For example,

for ‘transport’ the UMLS WSD collection contained 93 abstracts classified as sense1 (True for GO sense)

and only 7 as other (curators in this collection had 3 options: sense1, sense2 or other, here sense1 as

the biological transport and sense2 as patient transport). We therefore needed to manually collect False

examples containing other senses for a balanced corpus.

Another question was whether the definition of the negative datasets would influence the results. To

test this, we defined a more general negative dataset by completely randomly choosing articles. Defining

a random set as a negative set is common practice, e.g., in predicting protein-protein interactions.

Obviously, the random negative dataset is very different from the positive dataset, since most likely it

does not contain any of the negative senses at all, but is just the bias for the “average” paper. Results

showed a decrease of ∼7% in the performance of the methods.

This argument can be turned around. While our initial negative dataset was carefully and manually

chosen, it could be further improved by letting its composition of other senses reflect the distribution of

use of these senses in PubMed as a whole. However, achieving this ideal would require annotating all

articles with the term in the whole of PubMed with the senses. Given that PubMed has for example

more than 1 million articles on development, this cannot be easily accomplished.

However, the composition of negative senses in our negative dataset aims to reflect the composition

of negative senses in PubMed as well as possible through the query and annotation strategy, that was

pursued. Since we needed to include every possible sense of the ambiguous terms, the queries formed

were such that could collect representative abstracts for each sense, a process that was manual and time-

consuming. The collection of the positive examples was easier, since there was one sense (with respect

to the taxonomy) and also more frequent in PubMed, therefore the term itself or one of its synonyms

were enough to be put in the query to PubMed. The collection of negative examples was as expected

harder, since they were not frequent in PubMed and we needed to include enough examples of every

possible sense. Most of the queries used for this included the ambiguous term or synonyms of it and

keywords that were often in the context, based on personal experience from previous curation of auto-

matic annotations in GoPubMed. For example, for ‘development’, the queries used were ‘development

AND staff’, ‘development AND algorithm’, ‘development AND software’, ‘development AND treatment’,

‘development AND method’, etc. For ‘thrush’, since we could only locate one negative sense, we used

queries such as ‘thrush nightingale’, ‘thrush AND songbird’, ‘mountain thrush’, etc.

The other aspect is the question of size composition of positive and negative. We chose roughly 50%

positive and 50% negative. This basically means that the a priori likelihood is 50% for the corect sense.

If, instead, we aim to identify each sense correctly, the following problem arises: assume there are ten

senses, i.e. 1 positive and 9 negative. Then the a priori probability for the classification would be 10%

and then a simple strategy would be to always vote negative.

Overall, the approach pursued (manual selection of negative senses, roughly covering the common

negative senses) plus equally weighted positive and negative datasets is a suitable approach for evaluation.

Datasets

We collected three different benchmark datasets (see Table 3.12) to evaluate the performance of the

three methods. They differ in quality and quantity, depending on their collection process (manual by

one curator, directed manual by several curators, mainly automatic). The common reference dataset

between the three methods is the manually annotated by a domain expert one:

High quality, low quantity corpus: this corpus consists of ∼100 true and 100 false example documents

(abstracts) per ambiguous term. For the ambiguous GO terms examined and the MeSH term thrush we

collected both true and false examples manually. True examples are abstracts that discuss, for instance,

‘Development’, in the sense specified by GO. False examples also contained the ambiguous term, but

in other senses, closer or not (see Table 3.11). For the ambiguous MeSH terms ‘Lead’ and ‘Inhibition
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Term Manual Manual Semi-
(expert) (non-experts) automatic

False True False True False True
Development 98 111 271 56 2296 715

G
O Spindle 50 48 70 48 519 599

Nucleus 99 100 25 61 131 1336
Transport 102 91 102 56 1043 699
Thrush 17 83 45 7 35 1131

M
eS

H

Lead 71 27 202 22 1564 735
Inhibition 98 100 454 79 5247 553

Tab. 3.12: Benchmark datasets for WSD. The above datasets contain manually collected PubMed articles
by one expert (high quality / low quantity), manually curated articles by a group of non-experts (medium quality
/ medium quantity) and semi-automatically collected articles (low quality / high quantity). See Datasets section
for details.

(psychology)’, the test set originated from the UMLS WSD corpus (Weeber et al., 2001). These two

were the only terms depicting MeSH terms. All other terms in the UMLS WSD (such as growth, repair

and reduction) were only found in GO or MeSH as substrings and would thus not be contained in either

co-occurrence graph as single nodes.

Medium quality, medium quantity corpus: this corpus consists of documents for which the annotation

has been manually confirmed by a group of expert and non-expert curators. We asked colleagues to

confirm or reject the automatic annotations (for GO and MeSH terms) provided by GoPubMed for a col-

lection of article abstracts. This collection has been mainly automatically created, as described next (low

quality, high quantity corpus). For each of the automatic annotations, the curators could select among

three options: a. true and important for the context of the publication, b. of minor importance/relevance

and c. false annotation. The curation tool is available via GoPubMed (Doms and Schroeder, 2005) (see

Figure 3.7).

Low quality, high quantity corpus: this corpus was created mainly automatically. We implemented

similarity-based clustering of abstracts with literal occurrence of the ambiguous terms. Each abstract

was matched to its nearest abstract, conceptualized as a directed edge from the former to the latter.

Then every connected component was considered as a cluster. From an initial manual evaluation of the

clustering results, clusters of size > 60 were consistent enough, meaning that articles in such clusters

were referring to one sense of the ambiguous term in 72-95% of the cases. Each cluster’s abstracts were

input into a system developed in-house (also used in Alexopoulou et al. (2008b)) that generated a list of

terms describing each cluster based on term frequency inverse document frequency (TFIDF). The top 20

terms of the list were later evaluated by an expert which labelled the clustered articles as true or false

for the respective GO/MeSH term. The above facilitated and accelerated the dataset collection process

without any significant loss in data quality (compared to the gain of data quantity for benchmarking).

Experiment

For evaluation and comparison purpose, each method’s performance was tested (in terms of precision,

recall and specificity) on the high quality / low quantity dataset (see CS1-2, TC1-4 and MD1-3 in Table

3.13 and Tables 3.14, 3.15, 3.17, 3.18 and 3.19 for specificity and detailed results per method). We also

applied classical stem co–occurrence analysis as a baseline on the same dataset; this consisted of basic

maximum entropy modelling on stems without any use of metadata or hierarchical information (see bME

in Table 3.13, Table 3.16 for more details).

We additionally tested each method’s performance separately with different test datasets. For the

‘Term Cooc’ method (TC), the performance of co-occurrences of GO/MeSH terms and inferred co-

occurrences of GO/MeSH terms (each one of the variants combined -or not- with Support Vector Ma-
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Fig. 3.7: Curation tool in GoPubMed. End-users can confirm or reject the automatic annotations (for GO
and MeSH terms) provided by GoPubMed for article abstracts.

chines) was tested in the three benchmark datasets described earlier, in order to evaluate the method in

larger (but of lower quality) datasets, since it has been shown that sample size, sense distribution and

degree of difficulty impact on the classification task (Xu et al., 2006) (see results in Tables 3.20, 3.21).

Input to this method were the automatic annotations per article provided by GoPubMed (GO/MeSH

terms and MeSH hand annotation) and the respective co-occurrence graph. As a side experiment, we

tested the TC method for the disambiguation of MeSH terms without including the MeSH hand anno-

tations in the automatic annotations provided by GoPubMed, to estimate how the quality of the input

influences the quality of the results (see results in Table 3.22). For the ‘Closest Sense’ method (CS),

input was the UMLS semantic network and the article abstracts. This method was additionally tested

on the WSD Test Collection (Weeber et al., 2001) (see results in Table 3.23). For the ‘MetaData’ method

(MD), we used the three different datasets for training and testing. The high quality dataset was used

in an initial experiment (MD1, detailed results in Table 3.17) as training and testing dataset, in a 5-fold

cross validation. Then the medium quality and low quality datasets were separately used as training

sets, with testing of the method on the high quality dataset (MD2 and MD3, detailed results in Tables

3.18 and 3.19, respectively).

3.3.3 Results

The performance of the three disambiguation approaches (CS, TC, MD) and the baseline (bME) was

tested on a common high quality / low quantity dataset. The overall results of this comparison are shown

in Table 3.13 (detailed results per method are given in Tables 3.14, 3.15, 3.16, 3.17, 3.18 and 3.19).

All methods perform well between 73-96% average f -measure. In particular, the MetaData (MD1-3)

approach is the best one: when trained on high quality data (MD1), it achieves 96% f -measure. When

the metadata are not used (baseline method, bME) the accuracy falls to 90%. The Term Cooc (TC1-4)

method follows with 81% and the Closest Sense (CS) approach with 77% (80% for the optimized signature

together with the subsumption distance, in CS2). All methods present low f -measure for ‘development’

and ‘lead’ (79% and 60% in average). The best results (in average for all methods) are obtained for GO

terms ‘transport’, ‘nucleus’ and ‘spindle’ (88%, 87% and 85% respectively).

As far as the Closest Sense approach is concerned, there is a clear improvement in the results (from

CS1 to CS2) with the use of the optimized signature together with the subsumption distance. For the

Term Cooc approach, when the inferred co-occurrences are taken into account (the scores are propagated

to the parents of the terms, from TC1 to TC2) in the case of the GO terms the results remain the same,

whereas in the case of the MeSH terms the results are worse, mostly in terms of recall (see Table 3.15 ).

For GO terms, the results are best when inferred co-occurrences are combined with SVMs (TC4, 79-98%
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Term CS1 CS2 TC1 TC2 TC3 TC4 bME MD1 MD2 MD3 Avg

Development 87 86 74 71 57 79 90 96 80 80 80
Spindle 70 79 90 80 95 98 98 100 77 78 87
Nucleus 89 94 81 78 75 95 97 99 91 77 88
Transport 83 71 90 89 88 94 89 98 91 88 88
Thrush 88 94 87 82 78 81 82 94 94 58 84
Lead 36 53 89 49 93 81 85 85 36 14 62
Inhibition 66 84 77 62 85 58 92 100 95 97 82
Avg 74 80 84 73 82 84 90 96 81 70 81

Tab. 3.13: Results (% f –measure) for the baseline (bME) and the three methods (Closest Sense,
Term Cooc, MetaData) for 7 ambiguous terms, tested on a high quality / low quantity corpus
(manually annotated by expert). CS1 column contains the results (% f -measure) for the Closest Sense (CS)
approach with the use of the classic distance (only subsumption). CS2 column contains the results for the CS
approach with the use of the optimized signature together with the subsumption distance. TC1 and TC2 contain
the results of the Term Cooc (TC) approach, when the co-occurrences or the inferred co-occurrences are used,
respectively. TC3 contains the results for the TC approach with co-occurrences and support vector machines,
and TC4 when inferred co-occurrences and SVMs are used. bME column contains the results for the baseline
method (classical Maximum Entropy modelling of stems without metadata or hierarchical information), trained
and tested on the high quality corpus in a 5-fold cross validation. MD1 is for the MetaData approach, trained and
tested on the high quality corpus in a 5-fold cross validation. MD2 is trained on the medium quality/quantity
corpus and tested on the high quality one. MD3 was trained on the low quality / high quantity corpus and
tested on the high quality corpus. Some terms (spindle, nucleus, transport) are easier to disambiguate than
others (development, lead). Overall, all methods perform well between 73-96% f -measure (f -measure, F, is the
weighted harmonic mean of precision, P and recall, R: F = 2 × P ×R/(P + R)).

f -measure), whereas for MeSH terms, the best f -measure (79-93%) is achieved when co-occurrences with

SVMs are used, without the inferred co-occurrences (TC3). This difference can be explained by the

different structure of the two hierarchies. GO can be described as “tall and thin” (few children per node,

many levels, with maximum number of levels 19), whereas MeSH is “short and fat” (many children per

node, not many levels, with a maximum of 9 for the version of 2007). Additionally, the relations between

terms in MeSH are not exact is a relations, but rather is related to. Therefore, propagating the term

co-occurrences in MeSH does not improve the results, since it does not necessarily mean that annotating

with term MeSHX also means all of X’s ancestors. On the contrary, in GO this is more likely to hold.

The MetaData method gives - as expected - the best results. When the method is trained and tested on

the same high quality test (with a 5-fold cross validation, see MD1), it results in an average f -measure

of 96%. When trained on the medium quality (MD2) and low quality (MD3) corpora and tested against

the high quality corpus, the f -measure decreases into 81% and 70%, respectively, which are nonetheless

high, compared to the quality of the training sets. The high performance of the MetaData approach

is mainly due to the use of metadata as the title of the abstract and the journal. For example, for

the terms ‘inhibition’ and ‘spindle’ it achieves 100% f -measure and for ‘nucleus’ 99%. The true sense

of inhibition for MeSH is psychological inhibition, which is easier to disambiguate, since it will mostly

appear in psychology/psychiatry journals. The same applies for ‘spindle’, which will mostly occur in cell

biology and cell division/cycle journals.

We additionally tested each method’s performance separately with different test datasets. The ‘Clos-

est Sense’ method was also tested on the NLM UMLS WSD Collection (Weeber et al., 2001) to compare

four versions of semantic distance computation in order to disambiguate term mapping to the UMLS

semantic network (see results in Table 3.23). The experiment showed that the use of the ontology defini-

tion can improve significantly the precision. Over the 22 ambiguous terms examined, the overall average

precision was 83%.

For the ‘Term Cooc’ method, the performance of the different variants (co-occurrences +/- inferred

co-occurrences +/- SVMs) was tested in the three benchmark datasets described earlier (see Datasets

section and results in Tables 3.15, 3.20 and 3.21), in order to evaluate the method in larger (but of

60



lower quality) datasets. Testing the method from the highest towards the lowest quality (but higher

quantity), the f -measure decreases only by 3-10%, indicating a consistent behavior of the method. As

a side experiment, we tested the ‘Term Cooc’ method for the disambiguation of MeSH terms without

including the MeSH hand annotations in the automatic annotations provided by GoPubMed, to estimate

how the quality of the input influences the quality of the results. As expected, the results decreased

dramatically (∼46%), indicating that the MeSH hand annotations provided per article are important for

the disambiguation (see Table 3.22).

3.3.4 Discussion

Overall, the MetaData method gave the highest f -measures among all methods. The results became

worse for the medium and high quantity datasets, since these were of lower quality in terms of correctness.

The MetaData approach’s consistency with giving the highest results is due to integrating metadata,

such as journal and title, which are representative of the true meaning of an ambiguous term. The

MetaData approach needs plenty of labelled data for training.

When comparing the results of the Term Cooc and Closest Sense methods to the baseline method

(bME) that performs only maximum entropy modelling of stems (without use of metadata), bME still

gives better results, but this is due to the available training data of high quality. The disadvantage of

MetaData and bME compared to Term Cooc and Closest Sense is the need of high quality training data.

The MetaData approach is less scalable in terms of storage demands as the number of articles in-

creases, while the Closest Sense and Term Cooc approaches have constant storage demands (ontology

and a co-occurrence graph).

In the Term Cooc method the SVMs increase the results up to 98%. The Term Cooc method requires

an ontology and co-occurrence graphs. The origin of this graph should be a manually curated data source,

in our case GOA and MeSH. The quality of the graph will heavily depend on its origin and quality of

the data.

The inferred co-occurrences improve the results for GO, while for MeSH they get worse. This is due

to the different structures of the two semantic hierarchies; the ancestors of an applicable GO term are

more likely to also be applicable to the same article, because of GO’s structure that is “tall and thin”.

But MeSH’s structure is “short and fat” and is not always a thesaurus; not all of a node’s ancestors are

also applicable.

Moreover, in the Term Cooc method the inferred co-occurrences only improve the result if combined

with the SVM. This is because the inferred co-occurrences make the extreme co-occurrences with the

ambiguous term, which the SVM uses for training, more representative of an ambiguous term’s true

meaning. Figure 3.8 shows that the most extreme co-occurrences with the ambiguous term are most

likely to be classified correctly, since the inferred co-occurrences make more precise the highest and

lowest co-occurrences with an ambiguous term. The middle co-occurrences are not necessarily made

more precise with inferred co-occurrences. That is why inferred co-occurrences help with the (initial)

SVM training; while later on for middle co-occurrences the errors accumulate.

The Closest Sense approach needs only a semantic hierarchy in the form of an ontology, and in

this sense is the most automated of the three methods. Moreover, Closest Sense gives good results,

where the only problematic term is ‘lead’. However, Closest Sense is sensitive to the design of the

ontology or subdomain of UMLS used, which reflects the view of the designers. As shown by the

accuracy of Humphrey et al. (2006) and Liu et al. (2004), UMLS may not be the best choice to be

used as background knowledge as the different parts of the hierarchy are modelled differently (MeSH,

GO, SNOMED, etc.), resulting in different granularity. Different groups of people design ontologies

differently; the various subdomains of an ontology will reflect the designers’ views respecting depth,

number of nodes, and structure. Therefore, the subdomains of the ontology influence the performance

of the Closest Sense method, and the design rationale of the ontology may be ultimately responsible

61



T
e
rm

C
la

ssic
d

ista
n

c
e

(o
n

ly
su

b
su

m
p

tio
n

)
O

p
tim

iz
e
d

sig
n

a
tu

re
+

su
b

su
m

p
tio

n
d

ista
n

c
e

T
h

re
sh

o
ld

0
.8

T
h

re
sh

o
ld

0
.7

T
h

re
sh

o
ld

0
.8

T
h

re
sh

o
ld

0
.7

P
R

S
F

P
R

S
F

P
R

S
F

P
R

S
F

D
evelop

m
en

t
0.40

0.94
0.5

9
0
.5

6
0
.9

8
0
.7

8
0
.9

7
0
.8

7
0
.9

8
0
.5

5
0.83

0.71
0.77

0.98
0.79

0.86
S

p
in

d
le

0.65
1

0
.7

5
0
.7

8
0
.9

0
0
.5

7
0
.7

8
0
.7

0
0
.9

8
1

0.98
0.99

0.96
0.67

0.93
0.79

N
u

cleu
s

0.63
0.96

0.5
6

0
.7

6
0
.9

7
0
.8

2
0
.9

0
0
.8

9
0
.9

4
1

0.88
0.97

0.98
0.91

0.94
0.94

T
ran

sp
ort

0
.2

4
0.88

0
.4

6
0
.3

8
0
.8

7
0
.8

0
0
.7

8
0
.8

3
0
.3

2
0
.9

7
0.50

0.48
0.81

0.64
0.54

0.71
T

h
ru

sh
0.62

1
0.3

8
0
.7

6
0
.8

9
0
.8

8
0
.5

0
0
.8

8
0
.9

7
0
.9

9
0.89

0.98
1

0.89
1

0.94
L

ea
d

0.30
0
.5

7
0
.7

7
0
.3

9
0
.4

1
0
.3

2
0
.7

5
0
.3

6
0
.3

0
0
.5

7
0.77

0.39
0.74

0.42
0
.86

0.53
In

h
ib

ition
0.52

0.70
0.6

2
0
.6

0
0
.8

9
0
.5

2
0
.6

0
0
.6

6
0
.8

5
0
.9

6
0.86

0.90
1

0.73
1

0.84

T
a
b
.

3
.1

4
:

H
ig

h
q
u
a
lity

/
lo

w
q
u
a
n
tity

c
o
rp

u
s:

P
re

c
isio

n
/

R
e
c
a
ll/

S
p

e
c
ifi

c
ity

/
F

–
m

e
a
su

re
fo

r
th

e
C

lo
se

st
F
rie

n
d
s

(C
F

)
m

e
th

o
d

o
n

th
e

G
O

a
n
d

M
e
S
H

te
st

d
a
ta

se
ts.

62



T
e
rm

C
o
-o

c
c
u

rr
e
n

c
e
s

H
ie

ra
rc

h
ic

a
l

C
o
o
c

C
o
o
c

+
S

V
M

s
H

ie
ra

rc
h

ic
a
l

C
o
o
c

+
S

V
M

s

P
R

S
F

P
R

S
F

P
R

S
F

P
R

S
F

D
ev

el
op

m
en

t
0.

74
0.

74
0.

31
0.

74
0
.7

0
0
.7

2
0
.2

0
0
.7

1
0
.6

1
0
.5

4
0
.9

1
0
.5

7
0
.7

9
0
.7

8
0
.8

5
0
.7

9
S

p
in

d
le

0.
91

0.
90

0.
79

0.
90

0
.8

3
0
.7

8
0
.4

9
0
.8

0
0
.9

5
0
.9

4
1

0
.9

5
0
.9

8
0
.9

8
1

0
.9

8
N

u
cl

eu
s

0.
81

0.
80

0.
10

0.
81

0
.8

0
0
.7

5
0
.0

7
0
.7

8
0
.7

7
0
.7

3
0
.9

0
0
.7

5
0
.9

5
0
.9

5
0
.9

0
0
.9

5
T

ra
n

sp
or

t
0.

90
0.

9
0

0.
60

0.
90

0
.8

9
0
.8

9
0
.3

0
0
.8

9
0
.9

0
0
.8

7
0
.9

9
0
.8

8
0
.9

4
0
.9

3
1

0
.9

4
T

h
ru

sh
0.

92
0.

83
0.

94
0.

87
0
.8

2
0
.8

2
0
.7

2
0
.8

2
0
.8

9
0
.7

0
1

0
.7

8
0
.8

9
0
.7

4
1

0
.8

1
L

ea
d

0.
89

0.
89

0.
94

0.
89

0
.8

1
0
.3

5
0
.5

0
0
.4

9
0
.9

3
0
.9

2
0
.9

3
0
.9

3
0
.8

0
0
.8

1
0
.9

5
0
.8

1
In

h
ib

it
io

n
0.

78
0.

76
0.

62
0.

77
0
.7

2
0
.5

5
0
.3

5
0
.6

2
0
.8

5
0
.8

5
0
.6

5
0
.8

5
0
.5

9
0
.5

6
0
.8

5
0
.5

8

T
a
b
.

3
.1

5
:

H
ig

h
q
u
a
li
ty

/
lo

w
q
u
a
n
ti

ty
c
o
rp

u
s:

P
re

c
is

io
n

/
R

e
c
a
ll

/
S
p

e
c
ifi

c
it

y
/

F
–
m

e
a
su

re
fo

r
th

e
T

e
rm

C
o
o
c

(T
C

)
m

e
th

o
d

o
n

th
e

G
O

a
n
d

M
e
S
H

te
st

d
a
ta

se
ts

.

63



Term neg pos P R S F

Development 111 98 0.84 0.98 0.81 0.9
Spindle 50 48 1 0.96 0.96 0.98
Nucleus 99 200 0.98 0.96 0.96 0.97
Transport 102 91 1 0.81 0.75 0.89
Thrush 17 80 0.77 0.88 0.87 0.82
Lead 71 27 0.96 0.77 0.71 0.85
Inhibition 98 100 0.93 0.92 0.91 0.92

Tab. 3.16: High quality / low quantity corpus: Precision / Recall / Specificity / F–measure for
the baseline (bME) method on the GO and MeSH test datasets. 5-fold cross validation on the high
quality/low quantity corpus.

Term neg pos P R S F

Development 98 111 0.92 1 0.91 0.96
Spindle 50 48 1 1 1 1
Nucleus 99 200 1 0.99 0.99 0.99
Transport 102 91 0.96 1 0.96 0.98
Thrush 17 80 1 0.88 1 0.94
Lead 71 27 0.74 1 0.64 0.85
Inhibition 98 100 1 1 1 1

Tab. 3.17: High quality / low quantity corpus: Precision / Recall / Specificity / F–measure for
the MetaData (MD) method on the GO and MeSH test datasets. 5-fold cross validation on the high
quality/low quantity corpus.

Term neg train pos train neg test pos test P R S F

Development 271 56 98 111 0.67 0.99 0.52 0.80
Spindle 70 48 50 48 0.63 1 0.42 0.77
Nucleus 25 61 99 200 0.85 0.98 0.83 0.91
Transport 102 56 102 91 0.84 1 0.80 0.91
Thrush 42 5 17 80 1 0.88 1 0.94
Lead 202 22 71 27 1 0.22 1 0.36
Inhibition 454 79 98 100 0.96 0.94 0.96 0.95

Tab. 3.18: MetaData (MD) method results: Training on medium quality/medium quantity corpus,
testing on high quality/low quantity corpus.

Term neg train pos train neg test pos test P R S F

Development 2296 715 98 111 0.67 1 0.50 0.80
Spindle 519 599 50 48 0.65 1 0.46 0.79
Nucleus 131 1336 99 200 0.63 1 0.40 0.77
Transport 1043 699 102 91 0.80 1 0.74 0.88
Thrush 35 1131 17 80 1 0.41 1 0.58
Lead 1564 735 71 27 1 0.07 1 0.14
Inhibition 5247 553 98 100 0.99 0.96 0.99 0.97

Tab. 3.19: MetaData (MD) method results: Training on low quality/high quantity corpus, testing
on high quality/low quantity corpus.
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Term Co-occurrences Hierarchical Cooc Cooc + SVMs Hierarchical Cooc + SVMs

P R F P R F P R F P R F
Thrush 0.54 0.25 0.34 0.69 0.46 0.55 0.86 0.83 0.85 0.86 0.83 0.85
Lead 0.72 0.75 0.73 0.69 0.73 0.72 0.80 0.35 0.48 0.81 0.35 0.48
Inhibition 0.24 0.47 0.32 0.37 0.48 0.42 0.80 0.67 0.73 0.80 0.67 0.73

Tab. 3.22: High quality / low quantity dataset with MeSH Text-mined annotations only: Precision
/ Recall / F–measure for the Term Cooc (TC) method on the GO and MeSH test datasets.

Term Only subsumption Optimized

adjustment 0.66 0.66
ganglion 0.92 0.93
extraction 0.62 0.65
japanese 0.65 0.92
pressure 0.98 0.86
surgery 0.61 0.6
depression 0.86 0.96
lead 0.64 0.6
radiation 0.94 0.92
sensitivity 0.98 0.74
transient 0.7 0.97
fat 0.64 0.73
growth 0.85 0.85
man 0.87 0.87
sex 1 0.94
cold 0.8 0.95
fit 0.97 0.69
immunosuppression 0.68 0.84
repair 0.65 0.74
condition 0.79 0.8
implantation 0.97 0.99
strains 0.92 0.94
Average
precision 0.8 0.83

Tab. 3.23: Results (precision) of the Closest Sense (CS) method tested on the WSD Test Collection
(Weeber et al., 2001), with the use of classic distance (only subsumption) and with the use of the
optimized signature together with the subsumption distance.

Fig. 3.8: Term Cooc classification over time. The x-axis is the TC classification over time. Left-most
articles are classified early, since they have the highest or lowest co-occurrences with the ambiguous term. Red
lines represent errors or wrong predictions. Almost none of the early classified articles are errors.
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for performance differences on various terms. For example, ‘nucleus’ is a subtree root in both GO and

SNOMED (anatomical structures); in GO there are 2000 descendants of nucleus, while in SNOMED 10.

3.3.5 Conclusion and Future work

Based on the results, metadata and training data of high quality seem to be the key point for the increase

of the accuracy. When such training data are not available - as happens in most of the cases - co–

occurrence of ontology/taxonomy/thesaurus terms can provide the way to the right decision. Moreover,

the hierarchy of the terms and the subdomain, when consistently modelled, can depict the correct sense

of an ambiguous term.

The MetaData method produced the best results by including metadata in the WSD decision, but

it requires high quality training data. The most interesting thing about the Term Cooc and Closest

Sense methods is that they are semi-automated, given a co-occurrence graph or ontology; then the

training does not require manual intervention. Term Cooc requires well modelled ontologies such as

GO, and deteriorates as the structure becomes less rigorous as in MeSH. Closest Sense requires large

and consistently modelled ontologies, which are two opposing requirements. Thus, for TC and CS the

structure of the ontology and subdomain affect the distance metric used and WSD quality. Future work

could include identifying ambiguous terms for a certain corpus automatically. For this purpose, we could

employ WordNet, clustering, Part of Speech and noun phrase statistics, and expert input.

For Term Cooc and Closest Sense, we assumed that the other terms in the context are correct and

independent of one another; in fact, they could also be ambiguous and therefore false. For Closest Sense

we could optimize the distance computation and propose other distances, taking into account existing

annotation bases and ontology structure.

So far, the disambiguation performed was between the true sense in the hierarchy and all other senses

that were considered as false. A possible extension of the methods would be to correctly identify if a sense

occurs that is not included in the thesaurus/ontology and possibly add it. The Closest Sense method can

potentially do this by setting a threshold. From all distances below this certain threshold, one should

be clearly shortest. If not, then this indicates a new sense. The Term Cooc and MetaData approaches

could be adjusted to identifying new senses by training each method on each sense and setting a certain

threshold. If the sense found is not above the threshold, then this can be a new sense.

Another idea would be to combine the three disambiguation approaches (MetaData, Term Cooc,

Closest Sense) and get a confidence score for each of the approaches each time a sense is being disam-

biguated.

So far, we have only worked on abstracts of PubMed articles. It would be interesting to see how the

accuracy would change once the disambiguation would be performed in the full text of articles and also

the co–occurrences would be computed based on full-text articles instead of abstracts. The context in

full text would definitely change from paragraph to paragraph and appearance in the same text of e.g.,

‘development’ as ‘heart development’ or ‘development of a syndrome’ is highly likely to happen. In some

rare cases, this happens also in the same paragraph or even in the article abstract, as shown for example

in Figure 3.9. In such cases, use of Natural Language Processing would be more suitable to resolve the

ambiguity, taking into account the exact sentence and the part of speech the ambiguous term belongs

to.

We have also tried to create a “negative co–occurrence graph” to be used in disambiguation. This

would include the ‘worst enemies’ (instead of the ‘best friends’ used so far) of the true sense of the

ambiguous term. Once a ‘negative cooc’ would be found, this would give a negative score additionally to

the Term Cooc score and the final score would give the decision for true or false. As already mentioned in

Section 3.3.2, corpus collection is tedious and time-consuming, especially that of the negative examples.

The corpora created for the evaluation (described in Section 3.3.2) were complete enough to serve as

benchmark datasets, but could not serve as a basis for the computation of co–occurrences representative

68



Title: Bioinformatics analysis of microarray data.
Authors: Zhang Y, Szustakowski J, Schinke M.
Journal: Methods Mol Biol. 2009;573:259-84.

Abstract: Gene expression profiling provides unprecedented opportunities to study
patterns of gene expression regulation, for example, in diseases or developmental
processes. Bioinformatics analysis plays an important part of processing the information
embedded in large-scale expression profiling studies and for laying the foundation for
biological interpretation. Over the past years, numerous tools have emerged for microarray
data analysis. One of the most popular platforms is Bioconductor, an open source
and open development software project for the analysis and comprehension of
genomic data, based on the R programming language. In this chapter, we use
Bioconductor analysis packages on a heart development dataset to demonstrate
the workflow of microarray data analysis from annotation, normalization, ex-
pression index calculation, and diagnostic plots to pathway analysis, leading to a
meaningful visualization and interpretation of the data.

PMID: 19763933 [PubMed - indexed for MEDLINE]

Fig. 3.9: Two senses for ‘development’ in the same article abstract in PubMed: ‘Software development’
and ‘biological development’ (and its descendant, ‘heart development’).

of the whole of PubMed.
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Chapter 4

Terminologies for Text-Mining

At present the field of biology faces the problem of the presence of a large amount of data without any

associated semantics. Therefore, biologists currently waste a lot of time and effort in searching for all of

the available information about each area of research. This is hampered further by the wide variations

in terminology that may be in common usage at any given time, and that inhibit effective searching by

computers as well as people. In recent years, to facilitate biomedical research, various ontologies and

knowledge bases have been developed.

As already mentioned in Section 2.2.3, the engineering of ontologies, especially with a view to a text-

mining use, is still a new research field. A well-defined theory and technology for ontology construction

does not yet exist. Many of the ontology design steps remain manual and are based on personal experience

and intuition. However, there exist several efforts on automatic construction of ontologies in the form

of extracted lists of terms and relations between them (Frantzi et al., 2000; Navigli and Verlardi, 2004;

Cimiano and Völker, 2005; Zavitsanos et al., 2007; Wächter, 2010).

In this Chapter, we share the experience acquired during the manual development of a lipoprotein

metabolism ontology (LMO) to be used for text-mining. We provide guidelines for the design of this

ontology and describe the common obstacles during the process. We compare the manually created

ontology terms with the automatically derived terminology from four different automatic term recognition

(ATR) methods. The top 50 predicted terms contain up to 89% relevant terms. For the top 1000 terms

the best method still generates 51% relevant terms. In a corpus of 3066 documents 53% of LMO terms

are contained and 38% can be generated with one of the methods. We conclude with a discussion on the

automation of the ontology generation process and how this can be best achieved.

The current work on ontology design has been published in Alexopoulou et al. (2008b) and has been

part of the EU–funded project Sealife1 (Schroeder et al., 2006).

1http://www.biotec.tu-dresden.de/sealife/
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4.1 Methods

4.1.1 Ontology Design Principles

The Open Biomedical Ontologies (OBO) Foundry2 provides ontology design principles concerning the

syntax, unique identifiers, content and documentation of ontologies to be added or edited, as a common

agreement between users/editors. OBO principles that are not discussed later (but were followed during

the Lipoprotein Metabolism Ontology design) refer mainly to the use of a common shared syntax (OBO

syntax and extensions or OWL), the insertion of a unique identifier per term, the relations included in the

OBO Relation Ontology and the clearly delineated content (terms in different ontologies should provide

distinguishable descriptions of a concept). The success of the OBO representation format is attributed

to its informal expressivity, combined with the ability of conversion into OWL and vice-versa.

The only OBO principles we did not follow were the free availability and collaboration with other

OBO Foundry members, due to corporate reasons. However, we present the knowledge acquired and the

problems faced during the ontology design. The following guidelines, as well as the decisions, compro-

mises and problems described later derive from our experience during the manual development of the

Lipoprotein Metabolism Ontology.

Some basic steps that should be followed during the design of any ontology include identifying the

range of intended users, deciding on the purpose and main research area of the ontology and defin-

ing/predicting further possible applications (e.g., GO has also been used by the search engine GoPubMed3

(Doms and Schroeder, 2005) and by GoMiner4 (Zeeberg et al., 2003) for gene expression data evaluation,

although its initial purpose did not include use for text-mining). Important points to start from are liter-

ature scanning for deciding on the basic concepts as well as the insertion of a textual definition for each

term. Formulation of questions is also crucial (Uschold, 1996). Examples of questions that researchers

from Unilever needed to answer were:

• “What is the activity of cholesterol ester transfer protein (CETP) in diabetes?”

• “Which tissues is apoE expressed in?”

• “What is the impact of fish oil diet in metabolic syndrome patients?”

• “Which tissues is LPL expressed in? How does this expression change in diabetes?”

• “What is the activity of HL in obese individuals?”

• “What is the Km for LPL catalyzed VLDL catabolism?”

• “How does HL work? Does it hydrolyze core lipids or surface only?”

• “What is the preferred substrate of EL?”

• “What is the mechanism of action of CETP? Does it have two lipid binding pockets or one?”

• “How does the lipid composition of LDL differ in diabetes and obese men?”

• “What is the role of PLTP in HDL metabolism?”

• “What is the role of apoE in apoB100-lipoprotein kinetics?”,

etc, indicating that terms such as ‘CETP’, ‘diabetes’, ‘apoE’, ‘diet’, ‘fish oil diet’, ‘metabolic syndrome’

and ‘patient’ should be included in the ontology. Reusing existing ontologies that may cover to some

extent the ontology under design or could be inserted as a separate branch of the ontology is also a

2See OBO foundry http://www.obofoundry.org/
3See GoPubMed http://www.gopubmed.org/
4See GoMiner http://discover.nci.nih.gov/gominer/
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possibility. In the case of the Lipoprotein Metabolism Ontology (LMO), we needed to include information

on diet. For this purpose, we included the Nutrition Ontology from the NCI Cancer Nutrition Ontology

Project5 as a separate part under diet. Deciding on a label for each concept is one of the most crucial steps

during the structuring of the ontology. This task is difficult for humans as it requires good knowledge

of the domain of interest so as to group concepts on the hierarchy in a semantically meaningful way. It

is even more difficult for machines to do this automatically. There exists previous work on automatic

labeling of document clusters (Popescul and Ungar, 2000) by using the most frequent and most predictive

words in clusters of documents, but there is still work to be done in this direction. One must firstly

concentrate on the semantics of a term, decide what is really needed to be expressed with that term,

and then choose the appropriate name. Last, but not least, and perhaps one of the very first steps of the

designing procedure is the selection of a suitable ontology editor. We used the Protégé OWL plug-in6

for building the ontology and CmapTools7 for visualization (see Figure 4.1). Ontology visualization is

crucial when the knowledge engineer and the domain expert are two different persons and need to agree

on the different versions of the ontology.

With GO we experienced some limitations for text-mining. For example, it is unlikely that a descrip-

tive label such as ‘cell wall (sensu Gram-negative bacteria)’ will literally appear in text. A comprehensive

overview of such problems is provided by Smith et al. (2004). There often exist ontology terms that are

unlikely to appear in text, and are rather of a structuring nature. For example, the terms ‘hydrolase

activity, acting on ester bonds’ (GO:0016788) or ‘hydrolase activity, acting on carbon-nitrogen (but not

peptide) bonds’ (GO:0016810) include several different types of information: activity (hydrolase), type of

bond affected (ester or carbon-nitrogen) and exception (but not peptide) (see Figure 4.2). These should

be 3 different branches of the tree, combined with relations, therefore structuring ‘logical formulas’. For

example, in the case of the second term (GO:0016810), the exception could be expressed as a certain

condition: the protein has a hydrolase activity and is acting on carbon nitrogen bonds, but not in all

bonds (peptide bonds are excluded).

Aranguren et al. (2007) provide a simple and indicative example of the problem: a Person is a Man

or a Woman, a Man has Testis, a Woman has no Testis, but what happens in the case of a Eunuch (who

is actually a man without Testis)? There is a need for distinguishing between relations that are strict

“always” rules and “normally” or “usually” relations that can also allow for exceptions. Biomedical

terms are usually connected with “usually” relations between them.

Another example is the definition of mammals: a simple definition8 can be ‘warm-blooded vertebrate

animals belonging to the class mammalia, including all that possess hair and suckle their young’. There-

fore, one can say that all mammals give birth to and suckle their young. But there exists the exception

of the monotremes, which are mammals that lay eggs instead of bearing live young. The definition here

would be “mammals are animals that normally bear live young and suckle them” and the exception

“monotremes are mammals that lay eggs”.

Another example is given by Hoehndorf et al. (2007) (from the Foundational Model of Anatomy),

where “every instance of a human body has as part an appendix”, corresponding to an idealized (canoni-

cal) “normal” human. However, an individual human body may lack an appendix as a part, demonstrat-

ing that canonical ontologies do not always represent default knowledge and should include exceptions.

Hoehndorf et al. developed a methodology for representing canonical domain ontologies within the OBO

foundry by adding an extension to the semantics for relationships in the biomedical ontologies that allows

for treating canonical information as default. Rector explored some of the alternatives in OWL and re-

lated languages for dealing with issues such as exceptions (predictable and not) and limited expressivity

(Rector, 2004). Rector’s analysis is divided in four cases, which can be resolved with OWL, more precise

5See http://gforge.nci.nih.gov/projects/nutrition/
6For the Protégé OWL plug-in, see http://protege.stanford.edu/overview/protege-owl.html
7For Concept Map Tools (CmapTools), see http://cmap.ihmc.us/
8See http://www.biology-online.org/dictionary/Mammals for definition of mammals
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Fig. 4.2: Problematic terms – the hydrolase activity example. Terms like hydrolase, hydrolase activity,
bond, ester bond and relations between them (e.g., acts on) can be easily found in text, whereas full GO terms
such as ‘hydrolase activity, acting on ester bonds’ are unlikely to appear literally in an article.

logical formulation (OWL-DL), more explicit context and generalized common information, and other

more complicated methods.

Compositional structure of terms is a major bottleneck for ontology design, especially when it comes

to text mining, as the relations between terms must be as simple as possible. Ogren et al. (2004, 2005)

have performed an analysis of the term names in the GO to investigate substring relations between

terms and revealed that 65.3% of all GO terms contain another GO term as a proper substring. These

terms can be categorized into two groups: GO terms that contain other GO terms as proper substrings

(e.g., ‘hydrolase activity, acting on acid sulfur-sulfur bonds’ (GO: 0016828) and ‘hydrolase activity’ (GO:

0016787)) and GO terms that contain strings that seem to recur frequently (e.g., ‘regulation of’ in GO,

‘predominance of’ in the Lipoprotein Metabolism Ontology). Text-mining ontologies can be extensions of

annotation ontologies which enrich annotation ontologies with synonyms suitable for text-mining. Some

decisions and compromises have to be made on the relationships and on the labels defined during the

concept hierarchy design.

4.1.2 Decisions that need to be made during the ontology design

Keep or dismiss a term: When using the ontology for text-mining over a specific biomedical domain,

it is important to include terms specific enough to define the domain and also general enough to cover it

entirely. For example, including information on ‘kinetics’ during the design of the Lipoprotein Metabolism

Ontology is crucial. But ‘kinetics’ is too general as a term, as the distinction between different kinds

of kinetics is important (e.g., when querying PubMed for ‘kinetics’, there are retrieved articles referring

to ‘kinetics of phenols’ or a ‘reconstruction kinetics well’, irrelevant to the domain of interest). On the

other hand, the term ‘lipoprotein kinetics’ is too specific and documents mentioning it do not cover all

essentials known in lipoprotein kinetics. Searches for “lipoprotein kinetics”, “lipoprotein” and “kinetics”

and retrieval of relevant articles (e.g., PMID: 12606523 ‘Differential regulation of lipoprotein kinetics

by atorvastatin and fenofibrate in subjects with the metabolic syndrome.’) lead to the decision that

the best term to use for ‘lipoprotein kinetics’ is the exact term. There already exist previous efforts on

automatic labeling of document clusters and identification of ontology components, based on Natural
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Language Processing techniques or hierarchical and suffix-tree clustering (Stefanowski and Weiss, 2003;

Lame, 2004; Popescul and Ungar, 2000).

Decide on ontology design/relations: the ontology must be a subsumption ontology. It can be

either a structured vocabulary/terminology containing only child-parent relationships (mostly ‘is a’ and

‘part of’) between concepts or an ontology of different complexity that could be easily translated into

a simple hierarchy. It should also be rich in synonyms and textual definitions (mentioned earlier), that

would be useful for disambiguation. For the Lipoprotein Metabolism Ontology we used the Protégé

OWL plug-in, with concepts being the term labels (e.g., human / Tangier’s disease) and instances the

term synonyms/variants (e.g., patient, test person, experimentee / analphalipoproteinemia).

Decide on synonyms: researchers do not have strict and formal ontologies or nomenclatures in their

minds when composing a scientific article and therefore use terminology of differing granularity. They

often use parent terms to refer to a child term, or vice-versa (e.g., ‘coronary artery disease (CHD,

CAD)’ is child of ‘cardiovascular disease’, but in many cases authors are treating them the same). Again

literature scanning, for both child and parent term, will help to clarify how researchers refer to different

terms. Another problematic case is that of the different lipoprotein subclasses (based on particle size,

buoyant density, composition, etc.) where there do not exist clear limits between them. Depending on

the way of measurement and the difference in surface lipid content, they can be expressed in different

ways. For example, in the case of LDL, there are 5 different subclasses based on particle size (LDL I-V),

but there are also references such as ‘small dense LDL’ or ‘buoyant LDL’ that are very often found in

text but could contain a mixture of different subclasses. Since we need to keep only a simple hierarchy

with parent-child relationships, we do not incorporate any “definitional” information (e.g., that ‘small

dense LDL’ consists of a mixture of LDLIII and LDLIV). In these cases, we put the synonyms according

to the authors’ use; for example ‘small dense LDL’ as a synonym for LDL III and ‘buoyant LDL’ or

‘large LDL’ as synonyms for LDL I (Berneis and Rizzo, 2005). A similar example from the GO is that of

‘transporters and carriers’. In every day language ‘transporter and carrier’ is the same as ‘transporters

or carriers’, but they are logically different.

Handle term variation: terms like ‘Tangier disease’, ‘Tangier’s disease’ or ‘Tangiers disease’ are

variants of the same term. Terms like ‘LDL I’, ‘LDL-I’, ‘LDL-1’, ‘LDL 1’, ‘LDL1’ and ‘LDLI’ are

also variants of the same term. The process of manually inserting such lexical variants (with hyphens,

apostrophes, slashes, or even American/British spelling variants) in the ontology is tedious and time-

consuming. There exist programs that handle such variations by producing the normalized form of a

term, such as the UMLS Lexical Variant Generation Program (McCray et al., 1994). For the Lipoprotein

Metabolism Ontology we did not use such a variant generation program. We included only term variants

we could find in literature.

4.1.3 Compromises that need to be made, Problems, Inconsistencies

Some compromises must be made to retain a correct ontology (meaning that it contains valid relations)

and still get the best possible results from text-mining:

Ambiguity resulting either from identical abbreviations for different terms (e.g., ‘CAM’ can stand

for ‘constitutively active mutants’, ‘cell adhesion molecule’, or ‘complementary alternative medicine’),

or ambiguous term labels (e.g., ‘embryo’ for ‘mouse embryo’ or ‘male’ for ‘male patients’) is always a

problem. Abbreviations and acronyms should be included in the ontology, but conservatively or with

an appropriate algorithm that could handle them. Word sense disambiguation is a salient point here;

knowledge sources like long-form/short-form combinations, domain (context under which the word is
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used) and collocations (adjacent words/terms) can be exploited to provide the correct sense of the term

(Agirre and Stevenson, 2006). For the case of incomplete term labels, let us consider the following

example: we are only interested in experiments performed in human patients and need to distinguish

between human- and animal- referring articles. One option is to insert into the ontology only human-

specific terms, such as ‘experimentee’, ‘patient’, ‘man’, ‘boy’, etc. ‘Male’ cannot be in the ontology, since

it could also be referring to animals. Another option is to maintain a list of human- and animal- specific

words or expressions and then transform the algorithm in a way that one could make a Boolean selection

(e.g., AND human, NOT animal) in the query and finally include or exclude the results for the specific

selections.

Try to avoid any possible inconsistencies. To illustrate the implication of inconsistencies on rea-

soning, let us describe the following example: a researcher is interested in the different lipoprotein levels

in patients of different race and geographical location, since there has been evidence that these two factors

affect lipoprotein metabolism. Combination of geographical information as well as racial information in

one part of the ontology is, therefore, needed. Many articles refer to “African-Americans” as “blacks”,

so the term must be included under ‘ethnic group’. Then the following must be valid:

• define ‘Caucasian’, ‘African’ and ‘Asian’ as ‘ethnic group’

• ‘American’ is a ‘Caucasian’

• ‘African-American’ is a ‘African’

• ‘African-American’ is a ‘American’

• ‘African-American’ is ‘black’ (synonym)

• ‘Caucasian’ is white (synonym)

• but ‘African-American’ cannot be ‘Caucasian’ or ‘white’ (although he is ‘American’).

This is similar to the case of mammals that lay eggs or the ‘Man, Woman, Eunuch’ example described

earlier in Section 4.1.1; people very often formulate rules such as “normally is-a”, as there are always

exceptions. For the LMO we excluded the ‘American’ concept and added ‘African-American’ as child of

‘African’ and ‘Hispanic-American’ as child of ‘Caucasian’.

4.2 Results

The Lipoprotein Metabolism Ontology (LMO) was manually built in collaboration with domain experts

from Unilever for the purpose of document retrieval. It consists of 223 concepts and 623 additional

synonyms, with an average term length of 14 (2 words of 7 characters). A concept as used here consists

of a concept label and optional synonymous terms. A term can be any word or phrase of relevance to

the studied domain. Together with the Nutrition Ontology from the NCI Cancer Nutrition Ontology

Project9, the LMO contains in total 522 concepts and 964 additional synonyms, with an average term

length of 15 (2 words of 7.5 characters). Concerning the relations between the concepts, the mean number

of parents is 2 (with a maximum of 3) and the mean number of siblings is 5 (with a maximum of 10).

We did not include the Nutrition Ontology terms in the experiment, as we only wanted to compare the

terminology created manually by us with the automatically derived terminologies from the different term

extraction methods.

9See http://gforge.nci.nih.gov/projects/nutrition/
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For Automatic Term Recognition (ATR), a ‘lipoprotein metabolism’-specific corpus was created,

consisting of 300 abstracts collected from PubMed with the query “lipoprotein metabolism” (limit for

Review papers). These 300 abstracts were the maximal number of articles where all methods deliv-

ered results. Five different ATR methods were tested on that corpus, namely Text2Onto, OntoLearn,

Termine (Cimiano and Völker, 2005; Navigli and Verlardi, 2004; Frantzi et al., 2000) and two methods

developed in-house, one considering the relative frequency (RelFreq) of a term in the corpus and the

other (TFIDF) additionally using the document frequency derived from all phrases contained in NCBI’s

PubMed database.

Termine (Frantzi et al., 2000) extracts noun phrases and for ranking it considers several statistical

characteristics of the candidate term, such as the total frequency of occurrence in the corpus, the fre-

quency of the term as part of other longer candidate terms (and the number of these) and the length of

the candidate term (in number of words).

Text2Onto (Cimiano and Völker, 2005) also extracts noun phrases and is based on algorithms

calculating the Relative Term Frequency and TFIDF, as well as Entropy and the C-value/NC-value used

by Termine in order to extract the concepts. It further exploits the hypernym structure of WordNet

(Fellbaum, 1998), matches Hearst patterns (Hearst, 1992) and others in the corpus in order to get the

relations (subclass of, part of, instance of), but at this point we only examined the terminology extraction

precision.

OntoLearn (Navigli and Verlardi, 2004) uses a linguistic processor and a syntactic parser in order

to extract a list of syntactically plausible terminological noun phrases. For filtering “true” terminology,

OntoLearn is based on two measures, namely Domain Relevance and Domain Consensus, which calculate

the specificity of a candidate term with respect to the target domain via comparative analysis across

different domains as well as the distributed use of a term in a domain. OntoLearn consists of a full

ontology learning pipeline, starting from extracting the terminology, building the hierarchy and creating

definitions for the terms.

The in-house method extracts noun phrases in a way similar to Termine. The ranking performed is

domain-specific, using term frequency and global frequency in all 17 million abstracts from PubMed. The

first version of the method considers the relative frequency (RelFreq) of a term in the corpus and the

second version (TFIDF) additionally uses the document frequency derived from all phrases contained in

PubMed. Terms of syntactic similarity are grouped together and abbreviations are linked to their long

forms. For more details, see (Wächter, 2010).

OntoLearn was excluded from further analysis, as it only generated a few terms so that a meaningful

comparison would be possible, see Table 4.1. Text2Onto was only included in the analysis for 300

abstracts as it was not possible to process all 3066 review article abstracts for “lipoprotein metabolism”

listed in PubMed.

We performed a bipartite analysis. We tried to automatically reconstruct the manually created LMO

terminology, compared the terms predicted by the four methods to the current LMO terms and also

evaluated manually the top 1000 retrieved terms. All automatic comparisons between candidate terms

and LMO were not case sensitive.

78



M
e
th

o
d
s

r
a
n
k

T
F
ID

F
R
e
lF

r
e
q

T
e
r
m

in
e

T
e
x
t2

O
n
to

O
n
to

L
e
a
r
n

1
x

m
et

a
b

o
li
c

sy
n

d
ro

m
e

re
v
ie

w
x

lo
w

-d
en

si
ty

li
p

o
p

ro
te

in
x

p
a
ti

en
t

m
u

ta
ti

o
n

2
x

H
D

L
x

m
et

a
b

o
li

c
sy

n
d

ro
m

e
x

ca
rd

io
v
a
sc

u
la

r
d

is
ea

se
x

d
is

ea
se

fi
sh

o
il

3
x

a
th

er
o
sc

le
ro

si
s

x
d

ia
b

et
es

x
m

et
a
b

o
li

c
sy

n
d

ro
m

e
ri

sk
h
y
p

er
ch

o
le

st
er

o
la

em
ia

4
re

v
ie

w
x

a
th

er
o
sc

le
ro

si
s

x
ri

sk
fa

ct
o
r

eff
ec

t
se

ru
m

5
x

L
D

L
x

H
D

L
x

ca
rd

io
v
a
sc

u
la

r
ri

sk
st

u
d

y
p

ro
g
re

ss
io

n
o
f

a
th

er
o
sc

le
ro

si
s

6
x

ca
rd

io
v
a
sc

u
la

r
d

is
ea

se
x

L
D

L
x

h
ig

h
-d

en
si

ty
li
p

o
p

ro
te

in
le

v
el

a
p

h
er

es
is

7
x

d
ia

b
et

es
x

ca
rd

io
v
a
sc

u
la

r
d

is
ea

se
x

lo
w

-d
en

si
ty

li
p

o
p

ro
te

in
ch

o
le

st
er

o
l

x
a
th

er
o
sc

le
ro

si
s

o
m

eg
a

3
8

x
d

y
sl

ip
id

em
ia

x
ch

o
le

st
er

o
l

x
h

ig
h

-d
en

si
ty

li
p

o
p

ro
te

in
ch

o
le

st
er

o
l

x
ch

o
le

st
er

o
l

tr
ea

tm
en

t
o
f

h
y
p

er
tr

ig
ly

ce
ri

d
em

ia
9

x
h

ig
h

-d
en

si
ty

li
p

o
p

ro
te

in
ty

p
e

x
fa

tt
y

a
ci

d
x

li
p

o
p

ro
te

in
re

d
u

ct
a
se

in
h

ib
it

o
r

1
0

x
ch

o
le

st
er

o
l

a
rt

ic
le

x
co

ro
n

a
ry

h
ea

rt
d

is
ea

se
x

st
a
ti

n
tr

ig
ly

ce
ri

d
e

1
1

x
lo

w
-d

en
si

ty
li
p

o
p

ro
te

in
x

fa
tt

y
a
ci

d
s

x
co

ro
n

a
ry

a
rt

er
y

d
is

ea
se

ro
le

a
d

h
es

io
n

m
o
le

cu
le

1
2

x
ca

rd
io

v
a
sc

u
la

r
ri

sk
x

h
ig

h
-d

en
si

ty
li
p

o
p

ro
te

in
cl

in
ic

a
l

tr
ia

l
sy

n
d

ro
m

e
ev

o
lu

ti
o
n

1
3

x
fa

tt
y

a
ci

d
s

ro
le

x
ld

l
ch

o
le

st
er

o
l

x
d

ia
b

et
es

p
u

ri
fi

ca
ti

o
n

p
ro

ce
ss

1
4

a
rt

ic
le

x
d

y
sl

ip
id

em
ia

x
h

ea
rt

d
is

ea
se

x
tr

ia
l

p
re

sc
ri

p
ti

o
n

o
m

eg
a
-3

1
5

x
in

su
li
n

re
si

st
a
n

ce
x

lo
w

-d
en

si
ty

li
p

o
p

ro
te

in
x

d
ia

b
et

es
m

el
li
tu

s
p

ro
te

in
o
m

eg
a
-6

1
6

ty
p

e
x

ca
rd

io
v
a
sc

u
la

r
ri

sk
x

o
m

eg
a
-3

fa
tt

y
a
ci

d
x

ri
sk

fa
ct

o
r

h
iv

-i
n

fe
ct

ed
1
7

x
st

a
ti

n
x

h
y
p

er
te

n
si

o
n

b
lo

o
d

p
re

ss
u

re
x

tr
ea

tm
en

t
m

a
rk

er
o
f

in
fl

a
m

m
a
ti

o
n

1
8

x
h
y
p

er
te

n
si

o
n

co
m

b
in

a
ti

o
n

x
o
x
id

a
ti

v
e

st
re

ss
ev

en
t

st
ro

n
g

ev
id

en
ce

1
9

x
in

fl
a
m

m
a
ti

o
n

x
in

su
li
n

re
si

st
a
n

ce
in

cr
ea

se
d

ri
sk

th
er

a
p
y

a
tt

ra
ct

iv
e

ta
rg

et
2
0

x
V

L
D

L
p

ro
te

in
d

en
si

ty
li
p

o
p

ro
te

in
re

v
ie

w
a
cc

el
er

a
te

d
a
th

er
o
sc

le
ro

si
s

2
1

x
li
p

id
m

et
a
b

o
li
sm

x
d

is
ea

se
x

ca
rd

io
v
a
sc

u
la

r
ri

sk
fa

ct
o
r

ty
p

e
in

te
rn

a
li

za
ti

o
n

2
2

co
m

b
in

a
ti

o
n

st
u

d
ie

s
co

ro
n

a
ry

a
rt

er
y

m
ec

h
a
n
is

m
sc

en
a
ri

o
2
3

ro
le

x
in

fl
a
m

m
a
ti

o
n

x
st

a
ti

n
th

er
a
p
y

ev
id

en
ce

p
ro

te
a
se

in
h

ib
it

o
r

2
4

x
o
x
id

a
ti

v
e

st
re

ss
a
ss

o
ci

a
ti

o
n

x
p

la
n
t

st
er

o
l

d
ev

el
o
p

m
en

t
in

fl
a
m

m
a
to

ry
ce

ll
2
5

x
o
b

es
it

y
x

p
la

sm
a

x
re

v
er

se
ch

o
le

st
er

o
l

tr
a
n

sp
o
rt

u
se

in
fl

a
m

m
a
to

ry
m

a
rk

er

T
a
b
.

4
.1

:
T

o
p

2
5

p
re

d
ic

te
d

te
rm

s
p

e
r

m
e
th

o
d
.

L
is

ti
n
g

o
f

th
e

to
p

2
5

p
re

d
ic

ti
o
n
s

fo
r

T
F

ID
F

,
R

el
F

re
q
,

T
er

m
in

e,
T

ex
t2

O
n
to

a
n
d

O
n
to

L
ea

rn
.

T
er

m
s

re
le

va
n
t

to
th

e
li
p

o
p
ro

te
in

m
et

a
b

o
li
sm

d
o
m

a
in

a
re

m
a
rk

ed
w

it
h

x
.

79



LMO

Precision Average Precision

Top TFIDF Termine Text2Onto RelFreq TFIDF Termine Text2Onto RelFreq
50 35% 19% 17% 35% 65% 54% 38% 54%
200 20% 10% 12% 22% 42% 28% 23% 37%
1000 8% 4% 5% 8% 21% 12% 12% 20%

LMO + Domain expert
Precision Average Precision

Top TFIDF Termine Text2Onto RelFreq TFIDF Termine Text2Onto RelFreq
50 75% 67% 33% 56% 86% 89% 52% 70%
200 55% 40% 49% 49% 74% 65% 38% 60%
1000 29% 20% 14% 28% 51% 40% 25% 45%

Tab. 4.2: Precision and Average Precision (rank dependent) for top 50 / 200 / 1000 predictions
for 4 methods (TFIDF, Relative Frequency, Termine, Text2Onto) in terms of coverage of LMO
and relevant vocabulary. The key finding is that among the top 1000 predictions there are up to 51% terms,
which are in the LMO or considered good terms by expert, implying that automated term recognition can play
an important role in semi-automated ontology design.

Reconstruction of LMO Terminology

Consider Table 4.2, which shows the percentage of terms that can be generated by the four methods.

The first table lists the results for LMO alone, the second for LMO and terms lacking in LMO that

were considered relevant after manual inspection. Furthermore, we distinguish precision and average

precision. The latter takes the ranking of terms into account:

1.

average precision =

∑N
r=1(P (r)× rel(r))

number of retrieved terms
, with

2.

rel(r) = − 2

N2
(r − 1) +

2

N

where r is the rank of retrieval and P (r) is the precision at a cut-off rank. For each of the four

methods we list the percentage of relevant terms for the top 50, top 200, and top 1000 predictions. The

results show that the precision for the top 50 predictions for LMO ranges from 17-35% and 4-8% for

the top 1000 predictions. Using LMO and the expert terms leads to better results of up to 75% for

the top 50 predictions and up to 29% for the top 1000. Considering the average precision and thus

the ranking of terms, results for the top 50 predictions go up to 89% and for the top 1000 up to 51%.

Generally, Termine which favours long terms performs well for the top 50, because long terms are a good

indicator of a relevant term. However, there are many short terms, which are relevant, too. The TFIDF

and RelFreq methods can pick up these terms, as they include background knowledge, i.e., frequencies

of terms in PubMed. By and large, Text2Onto does not perform so well as it neither includes domain-

specific background knowledge (as in the case of the TFIDF developed in-house) nor the ranking pursued

by Termine, which is biased towards longer frequent terms. Text2Onto suggested short and very general

terms, like ‘use’, ‘effect’, ‘study’, ‘event’, etc. Although we explicitly deactivated the relation extraction

part for this experiment, it is not clear why Text2Onto persisted in ranking these terms in the top of

the list. Overall, the results are encouraging, as they indicate that a large part of the terminology can

be generated automatically with a simple process.

Concerning recall, consider Table 4.3. 3066 documents contain only 53% of the LMO terms literally.

TFIDF manages to predict up 39%, which is an encouraging result. Increasing the document base to

50.000 only 71% of the LMO terms are included indicating a possible upper limit. Figure 4.3 provides

an overview of the results we acquired from these comparisons. Figures 4.4 and 4.5 provide zoom-ins of

Figure 4.3, describing the performance of each method in the top 50 predicted terms.
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LMO terminology predicted by TFIDF LMO terminology literally
contained

1000 all

300 review abstracts for
“lipoprotein metabolism”

8.75% 15.35% 20.98%

3,066 abstracts for “lipoprotein
metabolism”

14.99% 38.25% 53%

50,000 abstracts containing
“lipoprotein”

71.22%

Tab. 4.3: Coverage of LMO terminology in selected document sets. The table sets the upper limit of
terms that can be found with text-mining: Even a large text base with 50,000 documents contains only 71% of
LMO terms. TFIDF can predict up to 38% of LMO terms.

Fig. 4.3: Overlap with manually curated LMO and manual evaluation. Precision at a certain rank r
represents each method’s capability to recognize domain relevant terms within the top r retrieved terms. The
chart shows the overlap within the top r predicted terms with LMO and the manual evaluation (MANUAL). For
example, from the top 50 predicted terms by Text2Onto, 20% are in LMO and 36% are correct according to the
manual evaluation.
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Fig. 4.4: Overlap with LMO. Precision at a certain rank r represents each method’s capability to recognize
domain relevant terms within the top r retrieved terms. The chart shows the overlap within the top r predicted
terms with LMO. For example, from the top 20 predicted terms by TFIDF, 65% are in LMO.

Fig. 4.5: Overlap with controlled lipoprotein metabolism vocabulary and additional manual eval-
uation (makes sense/makes no sense). Precision at a certain rank r represents each method’s capability to
recognize domain relevant terms within the top r retrieved terms. The chart shows the overlap within the top r
predicted terms with the manual evaluation. For example, from the top 10 predicted terms by Termine, 100%
are relevant to lipoprotein metabolism.
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4.3 Discussion

The low coverage of the LMO in the data sets calls in question the document set selected and the

suitability of the manually built LMO itself. The straightforward approach to select relevant documents

from PubMed (review articles in “lipoprotein metabolism”) did not return enough documents to cover

all of the LMO.

The LMO terms that were absent from the 50,000 PubMed abstracts were grouped in five cat-

egories: rarely occurring terms, rarely occurring variants of terms, very long terms, combinations of

terms/variants and, finally, terms that should normally be easily found.

Terms such as ‘experimentee’ (2) (absolute count of appearance in PubMed per term is given in

parenthesis), ‘obesive’ (2), ‘test person’ (76) and ‘central fatness’ (9) are LMO terms, but rarely used by

authors and, therefore, rarely appearing in PubMed.

The second group contains variants of terms that appear rarely in PubMed, such as ‘Apo-F’ (14),

‘apolipoprotein c-3’ (4), ‘IDL I’ (1), ‘VLDL chol’ (34), ‘diabetis’ (37, instead of 270177 occurrences for

‘diabetes’), ‘free chol’ (0, instead of 2622 for ‘free cholesterol’), ‘hypolipoproteinaemia’ (5, “ae” spelling

is rare), ‘insuline resistant’ (0, instead of 3912 for ‘insulin resistant’), ‘slo syndrome’ (36) and ‘sphin-

gomyelinase deficiency disease’(0, MeSH synonym for ‘Niemann-Pick Disease’). However, we decided to

include such terms in the LMO for completeness.

The third category contains terms that are too long and, therefore, unlikely to appear as such in text:

‘receptor-mediated extra-hepatic cellular uptake’ (0), ‘macrophague cellular uptake’ (0), ‘predominance

of large low-density lipoprotein particles’ (0) and ‘apob100 containing particles’ (2). However, given the

initial purpose of the LMO for document retrieval, these terms were included to be recognized by the

ontology-based text-mining methods (Doms and Schroeder, 2005).

The fourth group is a combination of the previous two, i.e. LMO terms that are long terms and

contain rare variants of LMO terms, such as ‘elevated plasma-tg level’ (0), ‘increased total chol’ (0,

instead of 116 for ‘increased total cholesterol’), ‘long-lived test person’ (0), ‘apoprotein b100 kinetics’

(0), ‘elevated plasma tg concentrations’ (0), and ‘decreased hdl-chol’ (4).

The last group contains LMO terms that appear often in PubMed and should normally be identified,

but are probably absent from the document set, due to its size or specificity. Such terms are ‘diabetes

type I’ (126), ‘acetyl-coa c-acyltransferase’ (430), ‘apolipoprotein-c’ (1585), ‘type-II diabetic’ (1132),

‘long-lived population’ (23), ‘middle-aged adult’ (81), ‘human body composition’ (95), and ‘lipid poor

HDL’ (12).

The third and fourth groups of terms belong to the same category as the hydrolase activity example

described earlier in Section 4.1.1. Composite terms like ‘receptor-mediated extra-hepatic cellular uptake’

and ‘predominance of large low-density lipoprotein particles’ could be easily broken into several semantic

parts (e.g., receptor-mediated/ extra-hepatic/ cellular uptake, or more) and handled by an algorithm

that could later compose them and still keep their semantics.

The terms that were predicted by most of the methods but were not in the LMO were further

examined and grouped. These were either wrongly predicted ones, meaning phrases frequently occurring

in the corpus, but not relevant to LMO, (∼25% of the TFIDF predictions for the Top50 terms) (e.g.,

‘review’, ‘type’, ‘article’, ‘role’, ‘event’, ‘use’) or vocabulary that could extend the current ontology

(∼40% of the TFIDF predictions for the Top50 terms). This would include disease-specific terms such

as ‘atherosclerosis’, ‘cardiovascular risk’ and ‘atherogenic dyslipidemia’, drugs or other chemicals such as

‘statins’, ‘ezetimibe’ and ‘torcetrapib’, or even method and therapy related terms like ‘dose’ and ‘lipid

lowering therapy’.
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4.4 Conclusion

As pointed out by Castro et al. (2006), automated term recognition is missing from many ontology design

methologies. In this work, we manually created an ontology for lipoprotein metabolism with 223 con-

cepts and 623 additional synonyms (846 terms in total), we derived design principles and systematically

evaluated four methods for automated term recognition.

Automated predictions of up to 1000 terms generate in the order of 40-50% useful terms. Considering

only the top 50 terms, the results improve up to 89% average precision for LMO + domain expert

(defined earlier). This suggests that Automatic Term Recognition (ATR) methods can aid and speed up

the process of ontology design by providing lists of useful domain-specific terms, but that they cannot

(yet) replace the manually designed term lists. The key problem to further improve these results are

composite terms which do not appear literally in text, like GO’s ‘hydrolase activity, acting on ester

bonds’ or LMO’s ‘receptor-mediated extra-hepatic cellular uptake’.

In general, automatic term recognition can have good precision, with up to 75% of the top 50 terms

being correct. However, recall is quite low, with 53-71% of terms appearing in text and up to 38%

being possible to predict. The ranking doesn’t necessarily need to be complex; in our case, a ranking

that benefits from the term local frequency in a domain-specific corpus and the term global frequency in

PubMed is enough to extract a proper terminology with high accuracy.

Overall, our results show that ontology development can be performed in a semi-automatic way.

The domain expert must have as initial input the output from an automatic term recognition method

and proceed with enriching the ontology. The experiment as described aims at providing restrictions as

well as decision points for including, excluding and reforming ontology terms. Once the domain expert

acquires the list of candidate terms, he/she needs to decide on the relations between them. Formulation

of questions is one of the most important steps in the ontology design process, helping to step from a

list to an ontology.

We discussed principles for development of an ontology with text-mining as intended use, based on

our personal experience from the manual development of the Lipoprotein Metabolism Ontology and

GoPubMed. We related these principles to the performance of four different ATR methods and their

agreement with the manually built LMO. Open problems relate to the choice of suitable text bodies for

term recognition as well as generation of composite terms from basic ones.
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Chapter 5

Use cases of Word Sense

Disambiguation

As already shown in the previous chapters, word sense disambiguation in biomedical context and with

the use of biomedical terminologies is a salient issue. With the ever increasing size of scientific literature,

finding relevant documents and answering questions has become even more of a challenge. Recently,

ontologies have been introduced to annotate genomic data; they can also improve the question answering

and the selection of relevant documents in the literature search. Search engines such as GoPubMed1

(Doms and Schroeder, 2005) use ontological background knowledge to give an overview over large query

results and to answer questions. GoPubMed allows users to explore PubMed search results with hierar-

chical vocabularies such as the Gene Ontology or MeSH.

The GoPubMed infrastructure can be used with any ontology to search for specific scientific literature.

Such an example can be vocabularies used in the Edinburgh Mouse Atlas with genes, tissues, and

developmental stages of the mouse embryo, a lot of them containing ambiguities.

Semantically-enriched browsing has enhanced the browsing experience by providing contextualised

dynamically generated Web content, and quicker access to searches for information. However, adoption

of Semantic Web technologies is limited and user perception from the non-IT domain sceptical. Further-

more, little attention has been given to evaluating semantic browsers with real users to demonstrate the

enhancements and obtain valuable feedback.

This chapter demonstrates use cases of word sense disambiguation in ontology-based text-mining and

more specifically in question answering with the GoPubMed semantic browser and in mouse-anatomy-

specific document retrieval (MousePubMed) (published as book chapters, Dietze et al. (2008) and

Wächter et al. (2007), respectively). It also describes a user-centred evaluation framework developed

to evaluate Semantic Web Browsers, showing the readiness of common users to exploit the benefits of

the semantic web in the life sciences domain. The evaluation framework and results have been presented

at the SWAT4LS2 workshop and published in Oliver et al. (2009).

1See http://gopubmed.org/
2Semantic Web Applications and Tools for Life Sciences, 2008, http://www.swat4ls.org/2008/index.php
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5.1 Ontology-based Text Mining

Ontologies and vocabularies such as the Gene Ontology (Ashburner et al., 2000), UMLS (Bodenreider,

2004), MeSH3 (Nelson et al., 2001), OBO foundry4 , SNOMED5 , and GALEN6 are widely used for

annotating biomedical data. They typically contain thousands of terms and cover broad subject areas

of biomedical research. Additionally, many species-specific vocabularies for anatomy have been designed

covering, among others, plant (Jaiswal et al., 2005), C. elegans (Altun and Hall, 2006), drosophila

(Grumbling and Strelets, 2006), mouse (Baldock et al., 2003; Bard et al., 1998), and human (Rosse and

Mejino, 2003) anatomy. These vocabularies are used to facilitate communication between scientists in

different communities and inter-operability between databases. Annotators, who are usually human,

assign terms from such terminologies for example to genes. These assignments are ideally based on

direct evidence from literature. Therefore, it is an important problem to automatically identify terms

from ontologies in literature to support and even partly automate the annotation process.

However, if terms from ontologies can be found in text, then ontologies can serve directly in literature

search. With knowledge-based search engines such as Textpresso (Mueller et al., 2004), XplorMed (Perez-

Iratxeta et al., 2003), and GoPubMed (Doms and Schroeder, 2005), the ontological background knowledge

can serve to answer questions like the following:

• Which techniques use the Prominin-1 (CD133) marker?

• Which proteins are related to Alzheimer’s disease?

• Which hormone is Autistic Disorder associated with?

• Is apoptosis a hot topic?

• Which are leading centers and scientists for liver transplantation?

• Where is the main research done for dengue and leprosy?

• What treatments does the web discuss for Alzheimer?

These types of queries are known as “knowledge queries”. The scientific literature and the web hold

answers to all of these queries, but it is difficult to obtain them with classical search engines, as they

merely present possibly long lists of search results. In contrast, ontology-based search engines can use

their hierarchical background knowledge to provide an intelligent filing system, which categorizes results.

The categorization gives an overview over large result sets and can be used to answer questions. For

example to find the techniques associated with CD133, a query for CD133 will return many documents

as a long list in a classical search engine. In contrast, a search engine with ontological background

knowledge will identify flow cytometry as a technique and categorize the documents accordingly. The

user can then use this hierarchical filing system to select the few articles mentioning techniques and even

fewer ones mentioning flow cytometry. Key to this new search paradigm is the background knowledge,

which is used to categorize documents. With efforts such as the Gene Ontology (Ashburner et al., 2000)

and MeSH(Nelson et al., 2001), the needed knowledge is readily available. MeSH contains for instance

the fact that flow cytometry is a technique and the Gene Ontology contains that apoptosis is also known

as programmed cell death and that caspases are part of the apoptotic programme.

The central problem of ontology-based search is the mapping of ontology terms to text. As already

seen in the previous chapter, the task, known as term extraction, is difficult, as authors do not write their

abstracts with an ontology in mind. For instance, the mapping must be flexible and map the ontology

3nlm.nih.gov/mesh
4See http://www.obofoundry.org/
5See http://www.ihtsdo.org/
6See http://www.opengalen.org/
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term “transcription factor binding” to the text “...a transcription that binds...”, although it does not

appear literally.

Ontologies – Obstacles in Finding Ontology Terms in Text

A fundamental aspect for the work of researchers is the need to share knowledge. In the beginning

this was often done without the help of a controlled vocabulary or nomenclature. This is in particular

applicable for the biomedical area and life sciences. There are many genes and proteins that have multiple

names or identifiers. An example is ‘Hnrpa1’ which is also known as ‘Tis’, ‘Fli-2’, ‘heterogeneous nuclear

ribonucleoprotein A1’, ‘helix-destabilizing protein’, ‘single-strand-binding protein’, ‘hnRNP core protein

A1’, ‘HDP-1’ and ‘topoisomerase-inhibitor suppressed’.

Moreover, there seems to be also in some cases a competition for creative gene names like ‘Cleopatra’,

‘Ariadne’, ‘groucho’, ‘lost in space’, ‘brokenheart’, ‘hairy’, ‘superman’ and many more. There have been

efforts to standardize names or at least to reach a consensus for naming. In the context of yeast research

and for human genes, for example, there are widely used standards, even if they are not always adhered to

in literature. Similar issues arise, if the task is to annotate genes and their function within the categories

biomedical process, molecular function and cellular components. One can find that ‘cellulose 1,4-beta-

cellobiosidase’ is also known as ‘exoglucanase’, ‘superoxide-generating NADPH oxidase’ as ‘cytochrome

B-245’, ‘thiamin’ as ‘vitamin B1’, ‘pyrexia’ as ‘fever’, ‘heme’ can be also found as ‘haem’, and ‘apoptosis’

as ‘cell death’.

The aim of ontologies is to reduce this problem. They include concepts, synonyms and their rela-

tionships. We have already described some of the most popular ontologies in the life sciences in section

2.2.1. A non-trivial aspect is the design and, later on, the evolution of ontologies. With thousands of

concepts and definitions, one needs to keep everything intact and all the relations consistent. Discussing

consistency, the Gene Ontology follows an informal approach. The transitive closure still has to hold; this

means that, if a concept A is a B and B is a C then A is a C has to be true. These inferred redundant

relationships are not kept directly in the ontology. This helps to ease the maintenance of the ontology

as corrections, modifications and additions only need to check if their direct relations are still valid.

Even though this consistency definition is a pragmatic solution, there are more formal approaches.

One such idea is the usage of description logics to formally define concepts and their relations. This

was used for instance in the GALEN and SNOMED ontologies (Rector et al., 1996; Spackman, 2004).

The advantage of the formal definitions is the chance to automatically check for inconsistencies in the

ontology. Supposing that one adds the new fact ‘heparin is a glycosaminoglycan’, but it was not yet

stated that ‘heparin biosynthesis is a glycosaminoglycan biosynthesis’. Because of the formally defined

relations and concepts, this additional relation can be inferred with this new fact in the knowledge base.

As already described in Chapter 1, typical problems that arise from mining life scientific literature

are stemming (‘binding’ and ‘binds’ can be reduced to ‘bind’, but ‘organization’ to ‘organ’ not), missing

words (“...a transcription factor that binds...” should match the ontology term “transcription factor

binding”), complex format of terms (commas, hyphens, brackets, e.g. ‘hydrolase activity, acting on ester

bonds’), synonymity and ambiguity (‘development’, drug names ‘Trial’ or ‘Act’). The disambiguation

methods proposed and tested in Chapter 3, Section 3.3.1 are potential solutions to the latter.

5.1.1 Question Answering with GoPubMed

Traditional keyword based searching gives a long list of results. But finding the relevant documents is

only the start; the user has to check whether the results are relevant to him. GoPubMed can answer

all the questions mentioned earlier, as it uses the ontological background knowledge, namely the Gene

Ontology and MeSH to index search results in PubMed. This allows GoPubMed to categorize the search

results, identify relevant terms in the result set and to summarize trends for a topic. This topic can
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Fig. 5.1: Which proteins are related to Alzheimer’s disease? GoPubMed uses its ontological background
knowledge to index search results according to the Gene Ontology and MeSH. The interface consists of three parts.
The top most part on the right contains the input field for the query, in this example it is “Alzheimer”. The left
panel contains the ontological background knowledge relevant to the query, put into four answer categories, namely
what, who, where and when. These answer categories contain results such as the representative terminology
(what), the most active authors (who) and institutions, places and journals (where), as well as publishing years
(when). On the right side, the user can browse the retrieved articles, with the search terms and automatically
annotated terms highlighted. Additional links to Wikipedia and proteins identified in text are offered where
available. After selecting a term from the left side, here “Amyloid beta-Protein”, the result view is updated. It
shows now the articles containing the selected concept. This includes also all child terms of the selected term.
The initial result set size of 53,645 articles was reduced down to 9,987 relevant articles in two clicks.

either be a term and its children or the result set of a query. For ontology enhanced search in the web,

the GoWeb7 system is available. Figure 5.1 shows a screenshot of GoPubMed. The main panel contains

the search results and the panel on the left the relevant categories from the ontologies in a summary and

as a tree.

Considering the introductory questions, these can be answered with GoPubMed in the following way8:

Question: Which techniques use the Prominin-1 (CD133) marker?

Answer: A search in GoPubMed for “CD133” returns 1,201 documents. Opening Techniques and Equip-

ment in “Knowledge Base” on the left, listed as first is “Flow Cytometry” with 414 articles. The listed

articles for flow cytometry contain statements like: “ EPC were identified as CD34+/CD133+/kinase

insert domain receptor (KDR)+ cells by flow cytometry” (PMID: 20145430). Other interesting terms

are “Cell Separation” (115 articles) and “Immunohistochemistry” (111 articles).

Question: Which proteins are related to Alzheimer’s disease?

Answer: A search for Alzheimer returns 53,659 documents, 9,989 of which are about “Amyloid beta-

Protein” (fourth “Top Term”, first protein on the list) By clicking on Amyloid beta-Protein, we can

reduce the number or relevant articles and get the following: “A 4-kDa protein, 39-43 amino acids long,

7See http://gopubmed.org/web/goweb/
8Search results have been acquired on February 2010. They may vary in the future due to the increasing number of

publications
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expressed by a gene located on chromosome 21. It is the major protein subunit of the vascular and

plaque amyloid filaments in individuals with Alzheimer’s disease and in aged individuals with trisomy

21 (DOWN SYNDROME). The protein is found predominantly in the nervous system, but there have

been reports of its presence in non-neural tissue.” The article from Ohyagi Y et al. from 2007 mentions

e.g. “Inhibition of aggregation of amyloid pprotein (AP) ... are known as potent therapeutic tools for

Alzheimer’s disease (AD).” Another article (Chiarini A. et al., Ital J. Anat. Embryol., 2006) states

“Reportedly, betaamyloid peptides (Abeta40 and Abeta42) induce the neurodegenerative changes of

Alzheimer’s disease (AD) ...”.

Question: Was Abeta42 already used in a clinical setting?

Answer: A search for “Abeta42 drug clinical trial” into the GoPubMed system retrieves 22 articles.

By clicking on “Techniques and Equipment” → “Clinical Trials as Topic”, the results are reduced to 6

articles, all of which refer to clinical trials where Abeta42 has been used, as for example in Tarawneh

and Holtzman, CNS Neurol. Disord. Drug Targets, 2009, talking about “a recent analysis from a phase

I trial that involved active immunization with Abeta42”.

Question: Which hormone is Autistic Disorder associated with?

Answer: A search for “Autistic Disorder” in GoPubMed returns 12,677 documents. By selecting

“Chemicals and Drugs”→ “Hormones, Hormone Substitutes and Hormone Antagonists”→ “Hormones”,

the results are reduced to 537 articles talking about hormones related to Autistic Disorders. Going further

down the MeSH hierarchy, one can get results for a certain type of hormone. For example there are only

6 articles on “Estrogens”, one of them mentioning that “Estrogen and testosterone have very different

effects on calcitriol’s metabolism, differences that may explain the striking male/female sex ratios in

autism” (Cannell, Med. Hypotheses, 2008).

Hot Topics

Despite the overall growth of literature, some topics are hot and take-off while others are stagnant or are

in a cool down phase. Bibliometric analyses aim to shed light on such developments and help to identify

emerging trends. Such analyses date back to the 1960s (Price, 1965) and typically focus on research topics

(Garfield and Melino, 1997), specific journals (Boyack, 2004), or the researchers themselves (Price, 1965;

Newman, 2004). The Hot topic feature of GoPubMed (statistics tab) features views on ontology terms

from the knowledge base (see Figure 5.2). It considers a term and all its children as one topic. For each

topic a bibliometric analysis is provided.

The hot topic page for an ontology term includes two graphs showing the absolute number of publi-

cations per year for a topic (see Fig. 5.3). The second graph shows the relative share compared to the

total number of publications per year in PubMed. An increase in the share indicates that the topic is

growing faster than the overall number of publications. Both graphs can be used to check whether the

publication activity in a topic is decreasing, stagnant, or growing.

Additionally, the user can get a list of the most active authors, the list of journals with the most

publications for this topic and a list of cities and countries with the most publications (see Fig. 5.4, 5.5,

5.6). To visualize co-authorship, which author publishes together with which other authors, we provide

a co–author network image (see Fig. 5.7). Publications between authors are denoted as edges between

the author nodes. If no edge exists then the authors did not yet publish together, according to the

publications listed in PubMed for this topic. The last feature is a world map where red dots indicate

where all the publications are located for the current topic (Fig. 5.6). All these features of the hot topics

page are precalculated using the list of authors and affiliation of an article and the annotations from the

GoPubMed system for all 16 Million PubMed articles.

Coming back to the initial questions that need to be answered, we can have the following:
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Fig. 5.2: Hot topics in GoPubMed (screenshot of GoPubMed (Doms and Schroeder, 2005)). The result
page for a query to Hot Topics starts with a summary for the selected concept including a description, synonyms
or the number of all publications in PubMed. Under Publication over time there are two graphs. The first graph
displays the number of publications related to this term per year. The second graph visualizes the fraction of
publications on the topic over the total number of publications in that year. For “Liver Transplantation” the
first graph displays growing number of publication, but the second graph denotes over the last years stagnation
in comparison to the overall publication growth in PubMed. The top authors, journals, cities, and countries
are presented as tables. All table entries are links and retrieve the related articles. Clicking on “Neuhaus P”,
for example, retrieves all the publications which have an author with this name. The co-author graph shows
which author published together with whom. The thicker an edge is, the more articles contain their names as
co-authors. The world map shows the regional distribution of the articles.
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Fig. 5.3: Hot topic page for ‘liver transplantation’. The first graph shows the number of publications per
year related to the ontology term and the second graph shows the relative share compared to the total number
of publications per year in PubMed.

Fig. 5.4: Top co-occurring terms and countries with the most publications on ‘liver transplanta-
tion’.
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Fig. 5.5: Cities and journals with the most publications on ‘liver transplantation’ and publication
history of the last years.

Fig. 5.6: World map. Red dots indicate locations of all the publications for the current topic.
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Fig. 5.7: Co–author network. Publications between authors are denoted as edges between the author nodes.

Question: Is apoptosis a hot topic?

Answer: A search for apoptosis and a look at the statistics tab is indicative; the ‘publications over time’

graphs show that the topic has been growing since the early 1990’s. This is in line with Garfield and

Melino’s (Garfield and Melino, 1997) investigation of the field. But the second graph with the relative

research interest shows also, that in the last 3 years the growth was not faster than the average growth

of the whole PubMed literature.

Question: Which are leading centers and scientists for liver transplantation?

Answer: A query in GoPubMed for “liver transplantation” and a look at the statistics tab shows that

among the top authors is “Neuhaus P” and among the top cities is “Berlin” (see also Fig. 5.2). Prof.

Peter Neuhaus works at the Charité Hospital in Berlin, Germany. He is a leading specialist in the field.

A look at the coauthor graph reveals with whom Peter Neuhaus has worked and published.

Question: Where is the main research done for dengue and leprosy?

Answer: A search for Dengue and a click on the statiscs tab ends up in a list of top cities and countries

for this term. Bangkok and Rio de Janeiro are the two top cities and the top countries are the USA,

Brazil, Thailand and India. A similar search for the term Leprosy reveals that India is the top country.

This is also reflected in the list of important cities, where one can find several cities located in India.

Both terms show that the local occurrence of diseases can be shown in GoPubMed.
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Fig. 5.8: Related topics for Rab5 and ‘Endocytosis’. Top co-occurring terms in the Statistics tab are
terms like endosome, early endosome, membrane, etc.

GoWeb

Sometimes the search with PubMed is not enough and the user wants to use normal general purpose

search engines like Google or Yahoo to search the World Wide Web. GoWeb9 offers such a global search

with ontological background knowledge. Some of the resources the user can search for are for exam-

ple full text articles not included in PubMed, nonscientific sources like Wikipedia or web based patent

databases, commercial sites and vendors for equipment, special interest sites like the Alzheimer Research

Forum10, or even news sites. GoWeb uses standard web search engines and categorizes the results with

its annotation algorithms. Normally web searches return not only the url but also the title and a short

text snippet from the result page containing the searched keywords. These texts are text-mined and the

resulting terms are used in the same way as in GoPubMed to present the results of the search. The user

can exploit the ontological background knowledge to answer questions and reduce the result in a fast and

efficient way without the need to read all the presented results. It includes, if available, also Wikipedia

links and protein names. Coming back to the last of the introductory questions, this can be answered

with GoWeb in the following way:

Question: What treatments does the web discuss for Alzheimer?

Answer: A search in GoWeb for “Alzheimer treatment” returns 1,753,277 results. Clicking on the

left on “Chemicals and Drugs” reveals results containing the terms ‘Memantine’ (21 results), ‘Amyloid

beta-Protein’ (6 results), ‘Vitamins’ (17 results) and others. Clicking on Vitamins reduces the result set

from 1,753,277 to 17 documents. In the result snippets the user can find a statement like: “... vitamin

may also be an ideal natural treatment for Alzheimer’s disease too. ... Over the course of a small study,

researchers at the University of Wisconsin ...”

9See http://gopubmed.org/web/goweb/
10See http://www.alzforum.org/
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5.2 Mouse Anatomy Specific Document Retrieval

As already shown in the previous section, ontological background knowledge can serve to answer ques-

tions. Consider, for example, a researcher interested in the Pax6 gene. He/she might have the following

questions:

• Which processes is Pax6 involved in?

• Which diseases is Pax6 involved in?

• At which developmental stages is Pax6 active in mice?

Literature holds answers to these questions, but a classical literature search cannot answer the ques-

tions directly, as articles will not mention gene, disease or process, but rather specific instances such

as ‘Pax6’, ‘Aniridia’, or ‘eye development’. Since ontologies contain knowledge that ‘Pax6’ is a gene,

‘Aniridia’ is a disease, and ‘eye development’ is a process, they can help to answer such questions.

We have already shown in the previous section how ontology-based literature search with GoPubMed

can answer questions. In this section, we discuss the use of specialised background knowledge, namely

a mouse-anatomy-specific vocabulary built from genes, tissues, and developmental stages as used in the

Edinburgh Mouse Atlas (Baldock et al., 2003). We use the GoPubMed infrastructure together with the

Edinburgh Mouse Atlas in a system called MousePubMed and we evaluate MousePubMed’s automated

annotation of PubMed abstracts with the handcurated annotations of the Edinburgh Mouse Atlas. Given

emphasis on anatomical and developmental terminology, we discuss the problem of identifying ontology

terms in text, with ambiguity being a serious issue. This work has been published as a book chapter in

Wächter et al. (2007).

5.2.1 GoPubMed and MeshPubMed

GoPubMed (Doms and Schroeder, 2005), MeshPubMed11 and MousePubMed, which is discussed in

the next section, index articles provided by PubMed with ontology terms from GO, MeSH, and Mouse

anatomy/development, respectively. As an example consider Figure 5.9, which shows a screenshot of

MeshPubMed when queried for Pax6. The key difference to a classical search is that here all the

documents are annotated with terms from the domain specific ontology. Therefore, the user interface

shows ontological information on the left and the documents on the right side. A list of frequently

occurring terms is placed above the complete hierarchy of relevant terms found in documents mentioning

the given keywords. Clicking on any of these terms reduces the result set and allows users to quickly

filter large result sets to the necessary documents needed to answer their question.

Coming back to the three questions about Pax6 mentioned earlier:

• ‘Which processes is Pax6 involved in?’ A query in GoPubMed for Pax6 shows that the most

frequent process mentioned is development. Opening the development branch reveals the processes

of brain and eye development as well as organ morphogenesis including pancreas development.

Indeed the corresponding articles support this “essential role of Pax6 as transcription factor and

master control gene in development of eye, brain and pancreas” (Kleinjan et al., 2006).

• ‘Which diseases is Pax6 involved in?’ A query in MeshPubMed for Pax6 shows that the most

frequent disease mentioned is aniridia. Hovering the mouse over the term gives an explanation

that it is “a congenital abnormality in which there is only a rudimentary iris. This is due to the

failure of the optic cup to grow. Aniridia also occurs in a hereditary form, usually autosomal

dominant.” A click on aniridia shows articles mentioning both the disease and the gene such as for

example (Brinckmann et al., 2007), which confirm the answer.

11at the time of the experiment the annotation of GO and MeSH terms was separated into two search engines, GoPubMed
and MeshPubMed, respectively.
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Fig. 5.9: MeshPubMed query for “Pax6”. The five most frequent overall terms that occur within the
retrieved 1000 abstracts are shown in the upper left corner, together with the most frequent term in the category
disease. The hierarchy using the richest path (most abstracts retrieved for certain terms) that starts from disease
leads to aniridia (bold, lower left corner).

• ‘At which developmental stages is Pax6 active in mice?’ A query in MousePubMed for Pax6

shows that Theiler stages up to 14 (9 dpc, days post coitum/conception) are frequently mentioned

supporting Pax6’s role in early development. Clicking on a stage reveals, e.g., the statement “In

the early development of the vertebrate eye, Pax6 is required for...” in Azuma et al. (2005).

Indeed, Pax6 is the most researched gene of the family of Pax genes and appears throughout the

literature as a ‘master control’ gene for the development of eyes and is of medical importance because

heterozygous mutants produce a wide spectrum of ocular defects such as aniridia in humans.

5.2.2 MousePubMed

To use ontology-based literature search for developmental biology, we built MousePubMed using vocabu-

laries for mouse anatomy (EMAP), human anatomy (EHDA), mouse genes (from EMAGE12), and mouse

developmental stages (Theiler) as resources from the Edinburgh Mouse Atlas (EMAP13) (Baldock et al.,

2003). To demonstrate the usefulness of MousePubMed, we evaluate it against tissue and developmental

stage annotations in the Edinburgh Mouse Atlas. Before the evaluation, we introduce the matching

algorithm developed.

Extracting Gene Names, Anatomy Terms and Developmental Stages

Ontology based text mining is not restricted to finding words or word groups in texts. The structure of

the ontology can be used to state the relation between a term and a document by finding the children

of the term. This task is reasonably well solvable for the Gene Ontology where its term labels are self-

descriptive. Many terms in GO are contained in their child terms (Ogren et al., 2004). As an example,

the term “envelope” is refined into “organelle envelope” and further to “organelle envelope lumen”.

As shown in Table 5.1, anatomical terms can have senses in different domains. These can be common

12See http://www.emouseatlas.org/emage/
13For Edinburgh Mouse Atlas Project, see http://genex.hgu.mrc.ac.uk/
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Term Other meaning

rod common English
iris species: plant; common English
axis species: deer; common English
chin common English
beak common English
pons protein: Serum paraoxonase/arylesterase 1 (PON)
penis protein: Penicillinase repressor (penI)
sigma common English/Greek
patella species: limpet
cicatrix disease: scar
nephrons drug: bronchodilator (Nephron)
hemocytes drug: iron supplement (Hemocyte)
chondrocytes drug: cartilage cells for implantation
hippocampus species: seahorse

Tab. 5.1: Several ambiguous anatomical terms. Some anatomical terms can have other meanings in
different domains. Some misinterpretations occur only when certain spelling variations are allowed, for instance,
ignored capitalisation or plural forms.

English, drugs, proteins, species, etc. The ontology for the Abstract Mouse contains anatomical concepts

in the mouse embryo at different embryonic developmental stages. The vocabulary is used to annotate

images of mouse embryos. It unifies the vocabulary needed to describe the different parts throughout

26 Theiler stages. Concepts like organs or body parts are further refined into tissue types, unspecific

loci such as “cavities”, “left”, “upper”, as well as general terms such as “node” or “skin”. Considering

only the textual labels, one cannot distinguish between the different ontological concepts. For example,

“chorion” has the children “mesoderm”, “ectoderm” and “mesenchyme”. “Amnion” and “yolk sac” have

children sharing the same labels. Searching for documents related to “chorion” will retrieve very similar

document sets to searching for “amnion”, only because the documents mention “mesoderm”, in this case

with meaning “mesoderm specific to amnion”. Different anatomical concepts share the same term label.

For instance, there exist 171 individuals with label “epithelium”. These all refer to different body parts

at a specific stage in development.

Ontology-based text mining relies on the assumption that unique or similar types of directed non-

cyclic relationships exist, which can be unified in the hierarchical relationships creating a taxonomy.

This assumption does not hold for the Abstract Mouse ontology. There does not always exist a path to

the common root supported by only one type of hierarchical relationships. Therefore, in our analysis,

a document is annotated with a term from the Abstract Mouse ontology taking the term label and its

synonymous labels into account. In the Abstract Mouse Ontology the term labels follow various creation

patterns. Sometimes a child term contains information of the parent term (for example, “cavities” has the

child “amniotic cavity”). In other cases a term like “umbilical vein” has the children “left” and “right”,

rather than “left umbilical vein” and “right umbilical vein”, respectively. These short and common sense

labels make the text annotations arbitrary.

For our experiments we slightly adapted the ontology. For the terms “left”, “right”, “upper”, “lower”,

“common”, “anterior” and “posterior” we expanded the term labels with their parents labels. “Eyelids”

thus became “upper eyelids” and “lower eyelids”, for instance, and we removed the children terms

“upper” and “lower” accordingly. To distinguish between common terms such as “skin” occurring for

instance, for different organs the matching algorithm took text annotations for ancestor terms into

account. Terms with the same label were grouped according to the number of text annotations for their

ancestors in the same document. Only annotations of the top ranked group were confirmed. Figure 5.10

shows an example for the term “skin”. There were multiple possibilities to resolve this term to a specific

tissue. Only when a parental term (shoulder, upper arm, etc.) was found, the text was annotated with
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Fig. 5.10: Excerpt from the anatomy ontology, for different types of skin. Occurrences of the term
“skin” (yellow concept nodes) in a text were resolved using the hierarchical dependencies. Only when a parental
node was also found, for instance, “shoulder”, we annotated the text with “skin”.

the specific skin.

Finding gene names in documents is done using exact matching against gene names contained in

EMAGE. We enriched this set using additional names and synonyms for each gene taken from the MGI

database14. We tested all 1437 genes mentioned in EMAGE for their annotations with tissues and Theiler

stages in PubMed.

We analysed 123,074 abstracts retrieved from PubMed with the query “mouse AND development”.

This amounted to approximately 0.7 of all documents listed in PubMed. Based on the document an-

notations with ontology terms, we issued in total 36,358 statements on relations between genes, tissue

and developmental stages, which we extracted from EMAP/EMAGE. Cases with multiple Theiler stages

from EMAP were split into separate statements. We evaluated the tissues mentioned using EMAP’s

Abstract Mouse ontology and the anatomy part or MeSH. For path descriptions like “embryo.ectoderm”

in EMAP we required the matching document to be annotated with the terms “embryo” and “ectoderm”.

For MeSH, as in MeshPubMed, we also included descending terms. A document was annotated with the

term “embryo” if annotations for its descendants, for example, “germ layers” or its children “ectoderm”,

“endoderm” or “mesoderm”, were found.

To find mentions of Theiler stages in texts, it was not enough to search for them directly, as they

seldom occur as such in abstracts (“Theiler stage 12”, “TS12”, etc.). We therefore compiled a set of

regular expressions based on two main notions, the mentioning of embryonic days (E) and of days post

coitum (dpc). These expressions had to capture occurrences like

• “embryonic day 10.5”,

14See http://www.informatics.jax.org.
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• “day 9 mouse embryos”,

• “between E3.5 (E = embryonic day) and E8.5”,

• “12.5 days post coitum”, and also

• “7.5-13.5 days post-conception.”

As mentionings of Theiler stages do not often occur, but rather general time spans are given (“early

embryonic development”), we decided to assign Theiler stages 1 to 14 to “early development”, and stages

20 to 27 to “late development,” respectively. Every mention of an “early developmental stage” thus was

treated as a match for stages 1 through 14. Both assignments were based on statements found in PubMed

relating days to general time spans.

Experimental Design

To assess the potential of ontology-based literature searches, we designed two experimental scenarios.

For the first, we manually collected two sets of queries and detailed answers. For the second scenario,

we evaluated the complete EMAP/EMAGE data. Using the methodology described earlier, we tried to

find textual evidences for all sets in PubMed. This means that we searched PubMed for abstracts that

shared annotations for each collected triple consisting of a gene, tissue, and Theiler stage.

Manually Curated Test Set

At first we manually selected a set of questions to study the results in detail. The idea was to send

simple keyword queries to MousePubMed, asking for mouse abstracts that discuss a certain tissue and

embryonic day. MousePubMed should then identify all genes mentioned in the top-ranked abstracts.

Questions and retrieved answers were as follows:

• ‘Which genes play a role in the development of the nervous system in Theiler stage 14?’ A query

for “mouse development nervous system 9 dpc” finds the genes Adamts9, Hoxb4, Otx3, and EphA4

within the first eight abstracts. In addition, the genes EphA2, A3, A7, B1, B2, and B4 are found,

which are not yet annotated in the EMAGE database.

• ‘Which genes play a role in sex differentiation during murine embryo development?’ A correspond-

ing query for “mouse sex 10 dpc” results in a set of eight genes within the first fifteen abstracts:

Fgf9, Asx11, Sry, Sox9, Usp9x, Maestro/Mro, Wt1, Amh1 and Fra18 . Only half of the genes can

be found in EMAGE so far.

• ‘Which genes play a role in the development of the murine embryonic liver?’ A query for “mouse

‘liver development”’ results in a set of several genes, most of which can be found in EMAGE as well:

Shc, Pxn, Grb2, PEST/Pcnp, GATA6, HNF4a, Foxa1/2, Zhx2, HNF6, Mtf1, SEK1, Nfkb1, c-Jun,

Itih-4, and Hex. To answer this question exactly, however, too few abstracts mention particular

Theiler stages or days post conception. They rather refer to “early stages of development”, and

the exact time span might be presented in the full text article only.

All the results, in particular where genes and exact Theiler stages are concerned, are highly dependent

on the ordering of abstracts as provided by PubMed. Whenever a new publication appears containing

the same search keywords, it will displace abstracts potentially more informative regarding the original

question. Abstracts answering the original question might not appear among the first few and be imme-

diately present to the user. However, text mining methods will still extract all the data, even from older

publications, and still the right set of articles can easily be found.

The abstracts resulting from a keyword search occur in the same ordering as provided by PubMed.

That is, in general, the most recent articles occur first. However, querying for species, tissues, and
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Gene Tissue Stage PubMedID

Sparc retina, RPE, eye E4.5, E5, E10, E14, E17 9367648
Sparc lens embryonic day (E)14 16303962
Stat3 retina, RPE, eye -no specific stage- 12634107
Stat3 lens E10.5 14978477
Pedf RPE -no specific stage- 7623128
Pedf retina E14.5, 18.5 12447163

Runx1 inner retina embryonic day 13.5 16026391
Col15a1 conjunctiva, cornea E10.5-18.5 14752666

Otx2 outer retina -no specific stage- 15978261
Edn1 retina -no stage- 11413193

IGF-II eye, cornea, retina, scleral cells E14 2560708
Wnt7b anterior eye, cornea, optic cup, iris -no specific stage- 16258938
CDH2 — -no stage- 9210582

— lens -no stage- 9211469
Col9a1 eye, lens vesicle, neural retina, 13.5, 8305707

ciliary epithelial cells, cornea 16.5-18.5 d.p.c.
Tgfb2 cornea, lens, stroma -no specific stage- 11784073
Thra retina -no specific stage- 9412494

BMP4 retina E5 17050724
Bmp4 optic vesicle, lens -no specific stage- 15558471
BMP4 lens, optic vesicle -no specific stage- 9851982

— eyes N/A 15902435
Sox1/2 lens -no stage- 15902435

— retina, eye axis E2, E3, E5 15113840
Notch1 eye -no specific stage- 11731257
Notch2 eye -no specific stage- 11171333

Tab. 5.2: Expression patterns identified by MousePubMed in articles derived from Thut et al.
(2001). Often, an abstract does not mention a (specific) developmental stage; —: MousePubMed did not find
this particular fact; otherwise: facts as identified by MousePubMed. Given are only tissues related to the murine
eye. PubMed identifiers are shown in bold where all three types of information (gene, tissue, developmental
stage) are available in the PubMed abstract.

stages still returns the abstracts that discuss the interesting genes. Although corresponding expression

patterns might first have been described in older publications, even in recent publications the desired

genes reappear quite often.

Reconstructing Outcomes of Large-scale Screening

Thut et al. (2001) provided a list of 62 genes found expressed during eye development in mice, together

with developmental stage and substructure. Of the 62 genes, 26 were not previously reported (as of 2001);

to 16 genes, novel valuable information could be added; 20 genes were fully reported before. Expression

patterns were summarised for E12.5, E13.5, E14.5, E16.5, E18.5 and P2. Using MousePubMed, we tried

to reconstruct the result of this large-scale screen of 1000 genes.

As Table 5.2 shows, nine PubMed abstracts (in bold) contained the full information as stated by

Thut et al., mentioning gene, tissue, and specific stages (days). For most cases, however, not all data

were contained in one single abstract. In three cases, we were not able to automatically spot the gene

name (left column), in all cases this was due to synonyms lacking in EMAP and MGI. Note that the

assessment of recognising genes was based only on genes mentioned in EMAGE. The tissue could be

found in almost all of the cases; from most abstracts, even the specific part of the eye could be extracted.
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Type of information Amount of data

Genes with tissues, stages 1437
Genes with at least one non-trivial tissue, stages 1346
Triples of gene, tissue, stage 18,179
Triples of gene, non-trivial tissue, stage 12,782
Tuples of gene, non-trivial tissue 8653

Tab. 5.3: Types of information and quantity contained in EMAGE.

Type of information Amount of data

Triples of gene, non-trivial tissue, stage 1637 (12.8%)
Tuples of gene, non-trivial tissue 2667 (30.8%)
Genes with at least one tissue and stage 537 (37.4%)

Tab. 5.4: Number of tuples/triples consisting of gene and tissue or gene, tissue and stage found
in PubMed abstracts retrieved by the query “mouse AND development”.

Complete EMAP Test Set

To evaluate capabilities of automated searches against the complete EMAGE data, the experimental

setting was as follows. Genes in EMAGE have annotated tissues, in which they were detected at various

stages of embryo development. Thus, we queried MousePubMed with each gene and checked which

tissues were mentioned in the resulting PubMed abstracts. This was based on co-occurrence of the

gene considering, a tissue, and a Theiler stage (day) in the same abstract. Currently, there are 1437

genes in the EMAGE database annotated with (sometimes multiple) tissues and stages. All in all, we

identified 18,179 such triples gene, tissue, and stage in EMAGE. Many of the annotations consist

of general annotations for tissue, like “mouse”, “embryo”, “left”, “female”, “node”. We removed such

trivial instances, because they were very frequently found. 12,782 triples referred to specific tissues, and

we tried to find these triples using the aforementioned term extraction (also see Table 5.3).

As shown in Table 5.4, we were able to reconstruct 31% of the gene-tissue associations in EMAGE

using PubMed abstracts. Only 13% of the full information (gene, tissue, exact stage) was contained in

abstracts. All in all, the data recovered from PubMed included information on about 37% of the EMAGE

genes. We noted that in many cases, abstracts do not mention specific time points during development.

Sometimes, “early” and “late development” are mentioned, which we resolved as described previously

in this section. On the other hand, mentions like “in early liver development” could not be resolved to

specific overall-stages without background information. Cross-checks revealed that indeed much of the

necessary information was only mentioned in the full text of references annotated by EMAP for a specific

association.

Conclusion

Ontologies are widely used for annotation. They are also useful for literature search, but the extraction of

terms from text is a difficult problem due to the complexity of natural language. Here, we demonstrated

the use of the ontology-based literature engines GoPubMed, MeshPubMed, and MousePubMed to answer

questions in the context of development. We discussed the specific extraction algorithms needed for

MousePubMed and evaluated them small scale on examples relating to eye development and large scale

on gene-tissue-stage triple from the Edinburgh Mouse Atlas. We were able to reconstruct 37% of genes,

31% of gene-tissue associations and 13% of gene-tissue-stage associations from PubMed abstracts. These

figures are encouraging as only abstracts are used.
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5.3 User-centered Evaluation of Semantic Web Browsers

Semantically-enriched browsing has enhanced the browsing experience by providing contextualised dy-

namically generated Web content, and quicker access to searches for information. However, adoption

of Semantic Web technologies is limited and user perception from the non-IT domain sceptical. Fur-

thermore, little attention has been given to evaluating semantic browsers with real users to demonstrate

the enhancements and obtain valuable feedback. The EU–funded project Sealife15 investigates semantic

browsing and its application to the life sciences domain. Sealife’s main objective is to develop the notion

of context-based information integration by extending three existing Semantic Web browsers (SWBs) to

link the existing Web to the eScience infrastructure.

This section describes a user-centred evaluation framework that was developed to evaluate the Sealife

Semantic Web Browsers that elicited feedback on users’ perceptions on ease of use and information

findability. Three sources of data: i) web server logs; ii) user questionnaires; and iii) semi-structured

interviews were analysed and comparisons made between each browser and a control system. We focus

more on the comparison of the semantic browser GoPubMed against PubMed. Details on the evaluation

framework and the evaluation of two more semantic web browsers are provided in Appendix B. The

evaluation framework and results have been presented at the SWAT4LS16 workshop and published in

Oliver et al. (2009).

Semantic Web and Life Sciences As already mentioned in Section 2.3, there is a huge volume of

resources available in the web, increasing the difficulty for users to find specific information and make

quality judgements (Roy et al., 2006). Especially in the life sciences domain, scientists and medical

practitioners need easy access to information about chemical compounds, biological systems, diseases,

and the interactions between these entities, which requires this data to be effectively integrated (W3C

Interest Group, 2008). The emerging Semantic Web technology (Berners-Lee et al., 2001) aims to provide

a solution. Semantic Web technology in the life sciences has the potential to address the urgent needs of

clinicians to find specific, quality-assured information under severe pressure of time (Gray and de Lusig-

nan, 1999). Through Semantic Web Browsers (SWBs) using underlying domain ontologies, context-based

knowledge integration and semantically enhanced navigation can be achieved. A common assumption in

the IT community is that the excitement about the Semantic Web technology will be shared by domain

users. However, little attention has been given to evaluating SWBs with real users to demonstrate the

enhancements and obtain valuable feedback.

Sealife Project The EU–funded project Sealife (Schroeder et al., 2006) aims at providing easy access

to disseminated information and resources in the life sciences’ online databases. Its objective is the

design and implementation of a semantic Grid browser to link the existing Web to the currently emerg-

ing eScience infrastructure. This has been accomplished using eScience’s Web/Grid Services and its

XML-based standards and ontologies. The main targets of Sealife are the infectious disease and molec-

ular biology domains, illustrated respectively by the National Electronic Library of Infection17 (NeLI)

portal in the United Kingdom, and the National Library of Medicine PubMed18 publications database

(accessible via GoPubMed technology).

To meet the objectives of the Sealife project, browsers have been implemented for different target

audiences, including infectious disease clinicians and molecular biologists. As each target group has

different needs, prototypes have been developed following the principles of semantic browsing based on

structured vocabularies or domain ontologies. To evaluate these distinct browsers, a common evaluation

framework was needed.

15http://www.biotec.tu-dresden.de/sealife/
16Semantic Web Applications and Tools for Life Sciences, 2008, http://www.swat4ls.org/2008/index.php
17See http://www.neli.org.uk/
18See http://www.ncbi.nlm.nih.gov/pubmed/
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In this section we outline the work conducted to design a common evaluation framework for the

Sealife Semantic Web Browsers and the hypotheses that were tested. While a Web browser navigates

along links between documents, a SWB navigates along relationships in a web of concepts (Berners-Lee

et al., 2007). We use the term Semantic Web Browser (SWB) for any browser which:

• uses at least one knowledge organisation system (KOS), either a structured vocabulary or an

ontology, to support the browsing;

• is able to identify and highlight “useful” terms in the content being visited;

• enables semantic interpretation of these Web pages and adds semantic hyperlinks to their high-

lighted terms,

• gathers additional information from the highlighted terms, which may involve access to external

data and services (e.g., European Bioinformatics Institute or PubMed) (Diallo et al., 2008b) called

targets.

This is the first user-centred evaluation of SWBs to be conducted using established, real-world Web

resources as control platforms and recruiting participants from among the real-world users of these

resources.

The Sealife Semantic Web Browsers

To make the evaluation framework more comprehensible, we describe briefly in this section the different

implementations of the 3 Sealife browsers. The first browser, COHSE-NeLI, is based on the Conceptual

Open Hypermedia System (COHSE) (Yesilada et al., 2008) developed by the University of Southampton

and the University of Manchester. The second is the CORESE-NeLI framework (Diallo et al., 2008b)

based on the CORESE engine developed at INRIA. Finally, the GoPubMed/GoGene SWBs are developed

at the Technical University of Dresden (Doms and Schroeder, 2005).

The COHSE-NeLI SWB The COHSE system (Yesilada et al., 2008) automatically adds hyperlinks

on Web pages by recognising and highlighting terms contained in background knowledge, based on an

ontology or KOS (Figure 5.11). When a highlighted term is clicked, a link box appears (see Figure

5.12), populated with links to trusted external resources. For any highlighted term, resources are pro-

vided for broader, narrower, and related terms (e.g. affects/is affected by, is symptom of/has symptom,

causes/is caused by, treats/is treated by) obtained from the vocabulary. For the Sealife project, COHSE

was adapted for the NeLI portal, and the version discussed here uses the NeLI vocabulary (Diallo et al.,

2008a) enriched with MeSH terms (Nelson et al., 2001) as its KOS. The NeLI vocabulary formalises the

infectious disease domain and is modelled in the SKOS language19.

The CORESE-NeLI SWB The CORESE-NeLI (Diallo et al., 2008b) engine supports the navigation

of a portal by the use of a knowledge artefact (either a structured vocabulary or a domain ontology). The

browser can perform a) a semantic search and b) semantic browsing of the NeLI portal. The CORESE-

NeLI engine bases its semantic search on semantic annotations generated from Web pages using the

NeLI vocabulary, and using the relationships in the knowledge artefact (i.e., narrower, broader, related

to) to retrieve annotated pages related to the user query. For semantic browsing, CORESE-NeLI can

identify and highlight, in a Web page being visited, terms retrieved from a structured vocabulary. From

the highlighted terms, it can then create links to related pages within the portal, enabling semantic

browsing. A query can be built from the highlighted terms to query external resources such as Google

and PubMed.

19See http://www.w3.org/TR/skos-reference/
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Fig. 5.11: COHSE semantic links as seen on the NeLI portal.

Fig. 5.12: COHSE semantic links: link boxes which appear after a click on the highlighted terms.
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Fig. 5.13: The CORESE search box and graph showing terms related to “HIV” (Human Immun-
odeficiency Virus).

CORESE is accessible via a plugin in Firefox. Entering a search term which exists in the NeLI

vocabulary opens a tabbed pane. The first tab shows a graph of related concepts in the NeLI vocabulary

(Figure 5.13), with which the user can navigate the NeLI Digital Library (DL) by double-clicking on a

node or an edge. To the left of the graph is a history of recently visited search terms. The second tab

shows a list of related documents (Figure 5.14).

GoPubMed and GoGene for molecular biology GoPubMed and GoGene are search technologies

applied to the PubMed online database. GoPubMed, previously described in Section 5.1, uses ontolo-

gies to deal with the wealth of medical and biological research literature by grouping literature by the

underlying information in the abstract. GoPubMed offers name recognition and computational Web

Fig. 5.14: CORESE-NeLI pane of related documents.
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services. One of the major problems in text mining is the ambiguity of names of genes and proteins

(especially crucial for computational Web services), as well as context-based terms used in molecular

biology. GoPubMed and its underlying search engine handles this problem. GoGene20 associates all

genes from different model organisms with concepts of GO and MeSH. The hierarchical structure of the

vocabularies allows long lists of genes to be clustered and summarized. Because most knowledge is con-

tained only in publications and not in databases, GoGene integrates manually curated gene annotations,

literature references (GeneRIFs) and textual comments from UniProt and EntrezGene with text-mined

annotations from all abstracts in PubMed. In doing so, more than 4,000,000 associations between genes

and ontology concepts for the model organisms human, mouse, rat, worm, fruitfly, zebrafish, thale cress,

baker’s yeast, fission yeast, and E. coli are made available, thereby increasing the number of known GO

annotations by one order of magnitude. Additionally, GoGene provides 35,000 gene-mutation associa-

tions extracted from PubMed abstracts, which are not contained in UniProt. All associations are linked

to their origin (i.e. literature or database entries) for further investigation. By scanning the literature,

GoGene also compiles publication histories for each gene. Such histories allow to rank genes according

to what is new (many new publications recently), what is widely studied (many contributing authors),

or what is of high impact (accumulated journal impact points). All relevant concepts for a gene list are

displayed as a tree that allows quick navigation through long lists of genes.

5.3.1 Aims and Objectives

In the Semantic Web area in general, some comparable evaluations raising interesting issues have already

been reported in the literature (Uren et al., 2005; Reichert et al., 2005). The EON workshops initiative

(International Workshops on Evaluation of Ontology-based tools) provides an environment for technical

evaluation of Semantic Web tools. The aim of this user-centred evaluation of Semantic Web Browsers

was to compare each SWB not to the other SWBs, but to a non-semantic control platform.

The following hypotheses were made to test the key purposes of the SWBs: improving mobility and

travel within the system and improving user satisfaction.

Mobility and travel within the system

• H1: The SWB reduces the time taken for users to find information or perform tasks.

• H2: The SWB shortens the pathway taken to find information or perform tasks.

• H3: Where semantic links are available, users will always follow them instead of non-semantic

links.

User attitude and satisfaction

• H4: Users find the SWB easier to use than the control platform.

• H5: Where semantic links and ranking are available, users prefer them to non-semantic links and

ranking.

• H6: Use of the SWB is intuitive:

a) Users think the SWB helps them to find information or complete tasks.

b) Users intuitively understand how to use the SWB to find such information or complete tasks.

An evaluation framework was then designed to test the above hypotheses. More details on the

framework are given in Appendix B and in Oliver et al. (2009). In the following Section we describe one

part of the evaluation, which is the comparison between the Semantic Web Browser GoPubMed and the

control system PubMed.

20See http://projects.biotec.tu-dresden.de/gogene/gogene/
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5.3.2 GoPubMed vs. PubMed – Results

The evaluation of GoPubMed took place in the form of a workshop with 20 students from the Masters

Program in Molecular Bioengineering at the BIOTEC, TU Dresden. The students were first given a

short introduction to GoPubMed/GoGene functionality. They later had to fill in a pre-questionnaire

concerning their scientific background and their way of searching for scientific literature. They were

then given a series of tasks to perform with the use of PubMed, GoPubMed and GoGene (see following

subsection tasks – main test). The workshop finished with the students answering a post-questionnaire

comparing the unmodified system (PubMed) to the modified one (GoPubMed).

Pre-questionnaire

Based on the filled-in pre-questionnaires, 45% of the participants had a main University degree in Biology,

25% in Engineering and 30% in other fields. Their experience in this field was for the 65% under 5 years

and for the 35% 5 years or more. Only 6.25% of the participants use PubMed daily, 31.25% more than

once a week but not as often as daily, 12.5% once a week and the 50% of the participants use PubMed

for more than once a month but not as often as once a week. On average, they rate the usefulness of

PubMed to 68.75% Concerning what they search for in PubMed, the participants have chosen between

the following answers (being able to choose more than one):

75% I look for specific articles

75% I search for reviews for an overview

19% I look for papers in a specific journal

50% I look for papers of specific authors

62.5% I look for papers for specific diseases, genes, etc.

31% I look for the most recent papers.

Concerning the use of other search engines for their research, the participants have chosen between the

following answers (being able to choose more than one):

94% PubMed21

31% Google Scholar22

100% Google or other web search

6% Scopus23

19% Other specialist

21See http://www.ncbi.nlm.nih.gov/pubmed/
22See http://scholar.google.com/
23See http://www.info.scopus.com/
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Tasks – Main Test

The participants were given a set of questions they should answer with the use of PubMed and a set of

similar questions to be answered with the use of GoPubMed. These were especially conceived so as not

to favour one of the two systems (PubMed vs. GoPubMed) and to avoid as much as possible the bias for

a positive opinion towards GoPubMed. The participants were told not to spend more than 8 minutes to

answer each question. The participants were divided into two groups, answering half of the questions with

PubMed and the rest with GoPubMed and vice-versa. The two groups of questions were the following:

Group A

1. Which particular diseases are associated most often with HIV?

2. What kinds of diseases are also related to HIV?

3. Which techniques of treatment are used to help HIV patients?

4. Who are the top authors for Antiretroviral Therapy?

5. Where was this research done by those authors?

6. Which are leading centres for liver transplantation?

7. Which are leading scientists for liver transplantation?

8. Is the research on leukaemia decreasing?

9. Which proteins are related to Alzheimer’s disease?

10. What is the role of MMS2 in cancer?

Group B

11. How does BARD1 regulate BRCA1 activity?

12. Which are the different types of Paget’s disease (where does it locate)?

13. How can Paget’s disease be diagnosed?

14. Is there a treatment/therapy for Paget’s disease?

15. How rare/prevalent is this disease?

16. Which sex and age groups are the most affected?

17. Which are the leading 3 countries doing research on Paget’s disease?

18. Is there anybody in Brazil doing research on Paget’s disease?

19. Which are the top Brazilian authors for Paget’s disease?
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PubMed GoPubMed

1 I would like to use this system frequently 5.1 8

2 The system was easy to use 4.9 7.8

3 The system was too complex 5.3 4.3

4 The user interface was easy to understand 6.8 7.7

5 The system responded fast 7.3 6.3

6 The system provided enough help information and examples 3.5 6.8

7 Finding the answers to the tasks with the system was easy 3.8 7.6

8 Finding the answers to the tasks with the system was fast 3.8 7

9 A lot of information the system found was irrelevant to the tasks 7.5 4

10 Most of the information returned by the system was relevant 3.7 7

11 The amount of relevant information I found was less than expected 4.9 3.4

12 The amount of relevant information I found was same as expected 4.3 5

13 The amount of relevant information I found was more than expected 5 5.6

14 The modifications were mostly relevant to me – 6.8

Tab. 5.5: Post-questionnaire on GoPubMed vs. PubMed. The numbers for PubMed and GoPubMed
are averages for agreement on a 1 to 10 scale (1 strongly disagree, 10 strongly agree).

Post-questionnaire

The participants were given a post-questionnaire after completing the tasks and were asked to fill it on

a 1 to 10 scale (1 strongly disagree, 10 strongly agree). The results are shown in Table 5.5.

The post-questionnaire included also the following questions, giving the participants the freedom to add

more comments and suggestions:

15. Did you find the highlighting of ontology terms helpful?

16. Did you get an overview over your search results from the tree on the left?

17. Did you manage to navigate efficiently through the tree?

18. Did you find any papers you would probably have missed with PubMed?

19. What do you like/dislike about using the tree to explore your search results?

Most of the comments from the participants concerned the appearance of the browser, e.g. some could

not find an obvious link to the original paper site (could not easily locate the PMID link in light grey).

Others were asking for functionality such as information on how often the article has been cited or read.

All of the participants were very positive towards GoPubMed and GoGene, but still had concerns, since

94% of them have been using PubMed and were used to its simple interface.

5.3.3 Conclusion

For GoPubMed a number of the hypotheses formulated at the start of the evaluation were confirmed,

especially regarding ease of use. For the other two Semantic Web Browsers, COHSE-NeLI and CORESE-

NeLI, most of the hypotheses were contradicted. Table 5.6 shows how user feedback from each system

agreed or disagreed with the hypotheses.

The evaluation study demonstrated that the evaluation framework is suitable for eliciting user per-

ceptions of SWBs. The results have allowed us to answer our initial hypotheses fully for each SWB even
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Hypothesis COHSE CORESE GoPubMed

H1 The SWB reduces the time taken for
users to find information or perform
tasks.

No Yes No

H2 The SWB shortens the pathway taken
to find information or perform tasks.

No (targets
not found)

No (targets
found by few
users)

PubMed data not
available for com-
parison

H3 Where semantic links are available,
users will always follow them instead of
nonsemantic links.

No Yes No

H4 Users find the SWB easier to use than
the control platform.

Yes and No No Yes

H5 Where semantic links and ranking are
available, users prefer them to non-
semantic links and ranking.

Yes Yes Yes

H6 Use of the SWB is intuitive: a) Users
think the SWB helps them to find in-
formation or complete tasks.

No No Yes

b) Users intuitively understand how to
use the SWB to find such information
or complete tasks.

No No Yes

Tab. 5.6: Confirmation or contradiction of original hypotheses.

though each SWB had a distinct implementation and used different aspects of the SW technology. A

new evaluation framework for SWBs was designed and tested on 3 intervention Semantic Web Browsers,

with participants recruited from the intervention systems’ real-world target audiences. The control plat-

forms were live, real-world systems with substantial numbers of existing users. Using this evaluation

framework, all of the initial hypotheses were successfully confirmed or contradicted (Table 5.6).

Overall, the framework successfully elicited a range of feedback on 3 distinct Semantic Web technolo-

gies. It was found that, although potentially easier to elicit feedback via online questionnaires, observing

respondents in a workshop setting provides an excellent opportunity to gather both quantitative and

qualitative data from larger numbers of users.

The evaluation showed that users tended to prefer the system (GoPubMed) that had the most mature

interface, but were able to use the semantic features of all systems regardless of the interface or types

of semantic links presented. The evaluation feedback will contribute directly to future versions of each

Semantic Web Browser and there will be further analysis of the weblogs to determine the specific types

of semantic links that were or were not used.
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Chapter 6

Summary and Future Work

6.1 Open problem 1 revisited

Open problem 1: Word sense disambiguation (WSD) is required for the

accurate analysis of text in many applications. Since 2004, the most active

domain-specific application area for WSD seems to be bioinformatics (Liu

et al., 2004; Schuemie et al., 2005; Edmonds and Agirre, 2006). Classical

approaches to WSD use co-occurring words or terms. However, most treat on-

tologies as simple terminologies, without making use of the ontology structure

or the semantic similarity between terms.

We have addressed this problem in Chapter 3, where we used co-occurrences (Term Cooc, Sections

3.2, 3.3.1), document clustering (see Section 3.2), the ontology structure (Inferred Cooc, Section 3.3.1)

and semantic similarity between terms (Closest Sense, Section 3.3.1), as well as metadata like the year

of publication, journal and abstract title (MetaData, Section 3.3.1) in order to perform disambiguation

of terms in abstracts of biomedical publications. We furthermore made available a corpus of 2600

documents divided into three datasets of varying quality and quantity that can be used as benchmarks

for disambiguation.

The comparison of the methods shows that metadata and training data of high quality are key

points for increasing the performance of disambiguation, with up to 96% accuracy (MetaData method,

trained on high quality/low quantity dataset). However, the production of high quality training data is

a tedious and time-consuming process. When such training data are not available, the co–occurrence of

ontology/taxonomy terms can be used for disambiguation with high accuracy. The hierarchical structure

of the ontology can also improve the accuracy, especially when the ontology is consistently modelled. In

Section 3.3 we have showed that a ‘is a’ hierachy like the Gene Ontology gives higher disambiguation

accuracy compared to a ‘narrower than’ hierarchy such as the Medical Subject Headings.

For disambiguation one has to balance between achieving high accuracy and producing training data

of sufficient quality and quantity. The MetaData method gave the best results but it required high

quality training data, which were hard to produce. The Term Cooc and Closest Sense methods gave

lower accuracy than the MetaData. However, they are semi-automated, requiring no manual intervention

for training.

Future work on disambiguation

Future work can include several aspects ranging from the use of negative co–occurrences, disambiguation

in full-text articles, to a combination of the three methods (Term Cooc, MetaData, Closest Sense) and

a decision based on a confidence score for each of the approaches.
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While performing disambiguation with the Term Cooc and Closest Sense methods, all terms found

in the abstract apart from the term in question were considered as true with respect to the ontology.

However, they could as well be ambiguous terms and therefore insert an error into the disambiguation

process. In the future, we want to take such ambiguous terms into account as well.

A possible extension could be to correctly identify if a sense occurs that is not included in the ontology

and possibly add it. This can potentially be done by setting a threshold. In the Closest Sense approach,

from all distances below that threshold, one would be clearly shortest. If not, then this would be the

new sense. For the Term Cooc and MetaData methods this could be done by training each method on

each sense and if the sense found would be below the threshold, this would indicate a new one.

Another interesting aspect can be the automatic identification of an ambiguous term. So far, the

ambiguous terms tested were empirically identified. A more thorough and automated identification

pipeline employing WordNet, noun phrase statistics and expert input could be set up.

It would also be interesting to see how the accuracy would change once the disambiguation would

be performed in the full text of articles. Co–occurrences could also be computed based on the full-text

instead of the abstracts of articles. The number of terms occurring in a document could also be considered

in the disambiguation pipeline. We have noticed that in most of the cases where the ambiguous term

had one of the false senses, it usually co–occurred with only a few other terms (or in a lot of cases it was

the only term in the document).

WSD use cases

In Chapter 5 we demonstrated use cases of word sense disambiguation in ontology-based text-mining

and described a user-centred evaluation framework developed to evaluate Semantic Web Browsers. As

presented in Section 5.1, the GoPubMed infrastructure can be used with any ontology to search for

specific scientific literature. An example of such a search was the mouse-anatomy-specific document

retrieval presented in Section 5.2, where genes, tissues, and developmental stages of the mouse embryo

contained many ambiguities. We additionally described a user-centred evaluation framework developed

to evaluate Semantic Web Browsers in Section 5.3, where we mainly focused on the user satisfaction

about GoPubMed.

6.2 Open problem 2 revisited

Open problem 2: Which are the common obstacles during the design of an

ontology to be used for text mining? Can automatic term recognition (ATR)

methods assist the ontology generation process?

In Chapter 4 we presented the experience acquired during the manual development of a lipoprotein

metabolism ontology (LMO) that was afterwards used for text-mining. We manually created an ontology

for lipoprotein metabolism with 846 terms in total, we derived design principles and systematically

evaluated four methods for Automated Term Recognition (ATR).

We have shown that automated predictions of up to 1000 terms generate in the order of 40-50% useful

terms. Considering only the top 50 terms generated, the results improve up to 89% average precision for

terms that make sense to be included into the terminology (LMO + domain expert1).

Based on the results of the comparison between the manually built terminology and the terminologies

extracted from the automatic term recognition methods, we have shown that ATR methods can provide

lists of useful domain-specific terms. In this way, ATR methods can aid and speed up the ontology

1Some terms were not included in the manually created terminology because the domain expert missed them. However,
these made sense to be included into the LMO, therefore the LMO + domain expert set contains manual terminology
together with automated terminology that was domain related
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design process, but the terminologies produced cannot yet replace the manually created terminologies,

nor construct ontologies without any expert intervention.

Composite terms - such as the Gene Ontology term ‘hydrolase activity, acting on ester bonds’ or the

LMO term ‘receptor-mediated extra-hepatic cellular uptake’ - which do not appear literally in text seem

to be a key point for the further improvement of the results.

The terms that were absent from the automatically generated terminologies were grouped into five cat-

egories of ranging difficulty: rarely occurring terms (‘test person’, ‘experimentee’), rarely occurring vari-

ants of terms (‘insuline resistant’, ‘slo syndrome’), very long terms (‘receptor-mediated extra-hepatic cel-

lular uptake’, ‘predominance of large low-density lipoprotein particles’), combinations of terms/variants

(‘elevated plasma-tg level’) and, finally, terms that should normally be easily found (‘type-II diabetic’,

‘diabetes type I’, ‘apolipoprotein-c’).

Terms from the latter category were terms that appear often in PubMed and should normally be

identified, but were probably absent from the document set used to automatically generate the terminol-

ogy. The document selection seems to be another key point for producing terminologies that can cover

a whole domain. Much attention needs to be put at the first step in order to collect documents that are

specific enough and include detailed terminology, but also general enough in order to include basic terms

of interest.

Remaining open problems contain the selection of suitable corpora for term recognition as well as

generation of composite terms (such as GO term ‘hydrolase activity, acting on ester bonds’) from basic

ones.
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Appendix A

Word Sense Disambiguation

collected corpora

The WSD collected corpora used in the experiments can be found under:

http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2663782/bin/1471-2105-10-28-S1.txt

The three corpora (High quality/Low quantity corpus; Medium quality/Medium quantity corpus; Low

quality/High quantity corpus) are given in the form of PubMed identifiers (PMID) for True/False cases

for the 7 ambiguous terms examined (GO/MeSH/UMLS identifiers are also given).
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Appendix B

User-centered Evaluation of

Semantic Browsers

B.1 Methods

To prove or disprove the hypotheses H1-6, the following questions were considered:

Mobility and travel within the system

• O1: time taken for users to find information or perform tasks

• O2: pathway taken to find information or perform tasks

• O3: use of semantic links compared with non-semantic links

a) Do users use semantic links?

b) Which semantic links are they using - tree, semantic relationships, etc.?

c) What percentages of links are non-semantic and semantic?

User attitude and satisfaction

• O4: user satisfaction with the ease of use of the system

• O5: user attitudes to the availability of semantic links and ranking

• O6: user understanding of the SWB:

a) Does the user think it helps him/her find information or complete tasks?

b) Does the user understand how to use the SWB to find such information or complete such tasks?

Sample populations

Table B.1 shows the target population and the control platforms and intervention SWBs each population

used. The initial aim was to recruit 10 users per intervention SWB. Group A1 included mainly infectious

disease clinicians and group A2 molecular biologists.
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Population A1 – infectious disease practitioners A2 – molecular biologists

Control NeLI PubMed

Intervention COHSE-NeLI GoPubMed/GoGene
COHSE-NeLI GoPubMed/GoGene

Tab. B.1: Sample populations for the evaluation.

Step SC SI
users starting with the control platform users starting with the intervention SWB

1 Pre-questionnaire regarding user demographics
and previous experience with the control platform

Web server log collection

2 Task carried out using control platform Task carried out using intervention SWB

3 Post-task questionnaire

4 Repeat steps 2 and 3 until half of the tasks are completed

5 Task carried out using intervention SWB Task carried out using control platform

6 Post-task questionnaire

7 Repeat steps 5 and 6 until all of the tasks are completed

8 Post-questionnaire regarding user satisfaction and attitude

9 Semi-structured interviews (workshops only)

Tab. B.2: Evaluation structure.

Settings

The evaluation was carried out both online and in workshops. The online evaluation was necessary to

evaluate the SWBs in real-world conditions and to increase the number of participants. Because remote

users’ questionnaire answers may misrepresent their experience, their behaviour was tracked with Web

server logs. The workshop evaluation was necessary to observe users’ behaviour and collect further

qualitative data with semi-structured interviews.

Structure

Although users would become more familiar with the SWB by doing more tasks – and potentially give

more accurate feedback – time constraints were recognised as a possible problem. To manage the risk

that online users would fail to complete a lengthy evaluation, a short format, with fewer tasks, was

devised for the online evaluation, and the long format, with more tasks, was used in the workshops. A

complete list of tasks is provided in Section B.3. Table B.2 shows the final structure of the evaluation.

Control/intervention split

Instead of splitting the users into a control group and an intervention group, the evaluation was structured

so that each user would use both the control and the intervention systems. It was also decided that, for

each respective SWB, all of the users would be given the same set of tasks to do in the same order. The

split would be implemented through counterbalancing, with some users doing the first half of the tasks

using the control platform and the second half of the tasks using the intervention SWBs, and other users

vice versa.

118



Data collection

Data collection from three sources was planned. The first source was the Web server logs collected

automatically as users navigated the website. The second source was the pre-evaluation, post-task, and

post-evaluation questionnaires as described in Table B.2. The third source was the semi-structured

interviews to be conducted at the workshops.

Comparison with other evaluations Hoeber and Yang (2007) have identified a number of choices

faced by designers of user evaluations for Web search interfaces.

Number of interfaces evaluated by each user Because the goal was to compare the SWBs with

non-semantic browsers rather than with each other, and because of anticipated time constraints on users,

we chose a within-subjects rather than a between-subjects experiment design (exposing each user to both

the control and intervention interfaces, rather than to just one interface). Because each intervention SWB

was an enhancement to its control platform, a risk of bias typical of within- subjects experiments re-

mained: users might apply knowledge of one interface to the next. This was handled by counterbalancing

the order in which users were exposed to the control and intervention systems (see “Control/intervention

split” earlier). For the same reason we decided to use multiple tasks, rather than repetition of the same

task.

Task definition Another choice is between allowing users to choose their own search topics, or pre-

defining tasks for them. We chose to predefine our own tasks because user-defined tasks would have

made it difficult to define completion criteria. Sets of predefined tasks such as the TREC 2005 HARD

Track1 are available, but not necessarily applicable to the biomedical domain nor to the features of the

SWBs.

Uniformity of result sets Ensuring that all of the SWBs provide access to the same result set

(Hoeber and Yang, 2007) was not an issue for our study as the SWBs were being compared to non-

semantic systems, rather than to each other. Whereas CORESE-NeLI retrieves results only from the

NeLI DL, and GoPubMed/GoGene retrieves results only from PubMed, the purpose of COHSE is to

provide external links, so result sets between control and intervention could not have been uniform for

all SWBs.

Elicitation of relevance ratings Rather than require users to rate the relevance of individual doc-

uments or rank their top results (Nowicki, 2003; Su, 2003; Vaughan, 2004), we decided to use the

post-questionnaire to capture subjective ratings of the overall relevance of results, and use the weblogs

to record which documents were actually viewed.

Completion criteria For Group A1, it was decided to have a single target document for each task,

considered completed by the user’s visiting that document. Because links on PubMed change frequently,

there could be no specific target documents for Group A2, so the GoPubMed/GoGene task completion

criterion would be the user’s subjective perception of having found the answer. Asking participants to

print out the results (Su, 2003) would have been unfeasible, especially for COHSE’s link boxes.

Time to completion The weblogs would capture objective measures, and the post-task and post-

evaluation questionnaires subjective perceptions, of time to completion.

1http://trec.nist.gov/data/t14 hard.html
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Capturing responses to questionnaires We chose Web rather than paper forms for the question-

naires, to accommodate remote users and to maintain participants’ focus and facilitate data analysis.

Verbal protocols were ruled out; measures of intuitiveness might also have been biased by users’ over-

hearing each others’ comments. It would have been unfeasible – and a distraction from the SWBs’

functionality – to add features in the interface for capturing users’ opinions (Hu et al., 1999).

Implementation of data collection Data was collected from the three planned sources. The Web

server logs provided answers for O1, O2, and O3. The questionnaires provided answers for O4, O5, and

O6a) and the interviews provided answers for O6b).

Implementation of questionnaires All of the evaluations began with a pre-questionnaire for demo-

graphic information (occupation/main degree, length of professional experience, preferred online research

sources, experience of the control platform). Each task was followed by a post-task questionnaire con-

taining 2 questions: How well did the information you found answer the question? (answer choices: Not

at all, Partially, Fully) and Was finding the answer in the information returned by the search engine:

(answer choices: Hard, Neither Hard nor Easy, Easy). Each evaluation ended with a post-questionnaire

about ease of use of the system, information findability, relevance of information returned, overall system

speed, and overall system likeability. Except for one question relating only to the SWB, each question

required 2 answers: one for the control platform, and one for the intervention SWB (Shneiderman, 1992).

An example is: I found the system unnecessarily complex (Brooke, 1996). a) Unmodified system (NeLI

alone) b) Modified system (NeLI + [SWB]). The answer choices were on Likert scales, commonly used

in questionnaires to specify a level of agreement with a statement. An example would be a scale from

1 (strongly disagree) to 5 (strongly agree). Most of the answer choices for Group A1 were on a scale

of 1 (worst) to 5 (best), and most of the answer choices for Group A2 were on a scale of 1 (worst)

to 10 (best). Group A2 had additional questions about the functionality of GoPubMed/GoGene. The

complete questionnaires are shown in Section B.4.

Implementation of semi-structured interviews Workshop participants were interviewed where

possible, using a loose structure with introductory questions (name, job title, etc.) followed by questions

about the user experience such as “What would make you want to use [the SWB] regularly?”, a question

which was worded to overcome reluctance to give negative feedback by reframing it as suggestions for

improvement. The interview structure as well as notes from the interview are shown in Section B.5.

Implementation of web server logs The server logs of the respondents’ actions were analysed using

a combination of logs produced by the SWBs and the server at City University, which hosted the online

evaluation questionnaire and the NeLI website. Each respondent was assigned a unique identifier (uID)

at the start of the evaluation, which was then passed between each page of the online evaluation and the

SWB and the NeLI or GoPubMed website.

Implementation of tasks The COHSE and the CORESE-based SWB tasks were defined by one

of the evaluators, a lay person with no medical knowledge, and reviewed by a colleague with medical

expertise. The goal was for the framework to be applicable to any SWB. While we believe that this

goal has potentially been met by the framework as a whole, one part of the evaluation process cannot

be generalised: the task definition. Since each of the SWBs was different in nature, the same tasks

would not have been appropriate for each. COHSE uses the NeLI vocabulary to present links external

to the NeLI DL. The CORESE-based SWB presents a graph of the vocabulary for navigation within

the NeLI DL and sorts the search results according to the hierarchical position in the vocabulary of the

relevant terms found in the documents. GoPubMed and GoGene are search technologies applied to the

PubMed search engine. For COHSE and the CORESE-based SWB, the tasks were counterbalanced with
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users with even-numbered uIDs starting with the intervention SWB, and those with odd- numbered uIDs

starting with the control platform. Thus, the same task was sometimes answered with the SWB and

sometimes with NeLI. The answer to each task was always located in a single target document. A task

was considered complete when the user felt that the answer had been found, whereupon a “Completed”

button on the task page took them to the post-task questions. Users were asked not to spend more than 5

minutes on any one question. We were conscious of the contrivance inherent in posing questions the exact

answer to which could only be found in a single target document. However, the need for authenticity

had to be balanced against the need to know whether or not the test had been passed; detecting whether

a single target document was found was the most unequivocal way to achieve that. The answers also

needed to be detailed enough that participants would be unlikely to know every detail from memory,

and so mark the question as answered without first searching for the answer. To counterbalance this

contrivance, the questions needed to be general enough to be partially answerable through NeLI alone,

and this had to be demonstrable in search results without a single specific target document. For COHSE,

the target document was only reachable through a prominently visible link in a link box. The link box

would appear when the user clicked on a specific related term highlighted by COHSE and found either

on the NeLI home page or after searching for relevant terms in the NeLI website. An example is What

kind of certificate should be used for documenting yellow fever vaccination? Have there

been any changes to the format in the past two years? For the CORESE-based SWB, the target

document either could not be found using a search of the NeLI website alone (at least, not by using

predictable search terms), or else the target could be found via NeLI alone, but ranked lower than 20

in the results. An example is What are the recommended guidelines for hygienic cleaning of

surfaces after flooding? Dedicated tasks were also devised for GoPubMed (online) and GoGene

and an extended GoPubMed (workshop). These were not counterbalanced but were in the sequence

described in the paragraph “Format”. They were designed to avoid, as much as possible, bias in favour

of the SWB. Target documents were not specified for the GoPubMed evaluation because the results

change on PubMed so frequently. The participants were told not to spend more than 8 minutes to

answer each task. An example is What is the main role of the gene MMS2? Name 3 genes

related to it in literature (PubMed); and What other genes are related to Shh in literature?

Name 3 of them (GoGene). For the workshop, another PubMed task was Can you find any

conserved domain information on Rab5? and an extended GoPubMed task was Can you find

any conserved domain information on Apc11?
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B.2 Results

Recruitment of online participants The online evaluation ran from December 2008 to March 2009.

Users were recruited through advertisements and newsletter bulletins circulated to the mailing lists

of NeLI and its companion site NRIC (http://www.nric.org.uk, the National Resource for Infection

Control), and news bulletins on the sites’ home pages.

Recruitment of workshop participants (Group A1) The workshops for COHSE-NeLI and CORESE-

NeLI (Group A1) took place in London, all at City University, except for one which was hosted by the

Health Protection Agency (HPA) Centre for Infections. Recruitment was through invitations circulated

to the NeLI and NRIC mailing lists, to the HPA, to the Infection Prevention Society, and to other

organisations through the evaluators’ professional contacts. The original plan was to hold one 2-hour

workshop at a fixed date and time at City University followed by one hour for lunch and semi-structured

interviews. However, due to the constraints on clinicians’ time, acceptances were few and cancellations

many. Because of these difficulties, a workshop was planned at the HPA Centre for Infections, where

workstations were reserved in the library for staff to participate throughout the day. The event was

advertised a week in advance, using posters and internal news systems; fliers and a stand were used in

the canteen on the evaluation day. In this way, 14 participants were recruited, prompting the use of

similar strategies at the two subsequent workshops that were held at City University.

Recruitment of workshop participants (Group A2) One workshop was held for GoGene and the

extended GoPubMed (Group A2), at the Biotechnology Centre of the Technische Universität in Dresden,

where postgraduate students constituted a source of real-world users. A successful recruitment strategy

was through personal contacts of one of the evaluators, admittedly introducing some risk of bias, but

securing attendance of a higher number of real-world users.

Demographics The following section describes the results for each SWB. Table B.3 shows the number

of participants from each target and non-target audience. Groups with a majority of participants from

the target audience were the COHSE-NeLI online group, the CORESE-NeLI workshop group, and the

GoGene/extended GoPubMed workshop group. Only 2 of the CORESE-NeLI online group completed

any tasks, and one of those dropped out after the control tasks, leaving the intervention tasks untouched.

A possible explanation is that CORESE requires installation of a plugin, which may have been off-putting

to this user group.

Format All online evaluations were held in the short format of 4 tasks. For Group A1, the long

format of 10 tasks for workshops proved too time-consuming and was abandoned in favour of the short

format. For Group A2, the long format was used as planned, with 11 tasks instead of 10; 2 hours

were allowed and proved sufficient. The tasks for Group A1 were counterbalanced as planned. The tasks

for Group A2 were not counterbalanced: some tasks were answered with control only and some with the

intervention SWB only.

Objectives

O1: time taken for users to find information or perform tasks The time taken per task was

calculated from the online evaluation logs using the difference between task page and question page

loading times. In the process it was noted that some users had not completed all the tasks, and others

had completed all the tasks, but within an unrealistic timescale (e.g. more than 2 tasks completed under

60 seconds). These users were removed from the log evaluation. Additionally, logging was unavailable

for the extended GoPubMed, so O1, O2, and O3 could not be answered for this SWB and log analysis
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SWB Setting # participants Occupation # participants
COHSE-NeLI Online 39 Medical 21

Scientific 6
Other 12

Workshop 28 Medical 4
Information 10
Student 14

CORESE-NeLI Online 4 Medical 3
Researcher 1

Workshop 14 Medical 2
Biological 6
Information 3
Unspecified 3

eliminated for completing tasks unrealistically quickly 2
GoPubMed Online 141 Biology 21

Chemistry 1
Physics 2
Other 113

GoGene / extended GoPubMed Workshop 14 Other 4 (of whom 3 scientists)
Biology 8

Tab. B.3: User demographics.

GoPubMed GoGene COHSE CORESE PubMed NeLI
126 229 478 266 194 387

Tab. B.4: Average time for all tasks on each system in seconds.

of the extended GoPubMed is not included. Table B.4 shows the average times spent using each system

and the PubMed and NeLI websites. This suggests that GoPubMed tasks were the quickest in just over

2 minutes. The slowest tasks were for COHSE in just under 8 minutes.

O2: pathway taken to find information or perform tasks For the COHSE evaluation, none of

the 28 users included in the log analysis for the short format found the target documents via COHSE. For

the CORESE evaluation, 11 users were included in the log analysis, of whom 8 started with CORESE and

3 with NeLI. Table B.5 shows the number of users who viewed the target documents via the CORESE-

based SWB. This shows that there were very few users who actually found the target documents with the

CORESE- based SWB. As stated, for the GoPubMed/GoGene there were no specific target documents

for these SWBs. Logs of users’ actions were however recorded to show how much a user was interacting

with the site during the tasks. Users performed up to 40 actions whilst looking for the information and

the majority of respondents used less than 15 actions to find the information on GoPubMed and less

than 25 on GoGene. Access to the server logs for PubMed was not available for this evaluation.

O3: use of semantic links compared with non-semantic links For COHSE, an indication of the

use of semantic links is the number of times a highlighted term is clicked and the link box activated.

A further indication is the number of views of external sites via COHSE. 6 users did not click on any

highlighted terms and therefore did not use any of the semantic features. In the short format, 132 sites

external to NeLI were viewed from 97 link box activations. The largest number of link box activations

Task 1 Task 2 Task 3 Task 4
2/8 2/8 1/3 2/3

Tab. B.5: Proportion of users who viewed the target document for each task.
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per user was 15, the lowest 1; the median was 4 and the mode, 3.

Of those users who viewed external pages via COHSE-NeLI, the largest number of views per user was

42 for the short format and 192 for the long. The lowest for the short format was 1; for the long 24; the

median was 5.5 for the short format, 82.5 for the long. The mode for the short format was 1; the long

format had no mode. For CORESE-NeLI it was not possible to directly compare the use of semantic links

with non-semantic links because all of the links that a user interacts with on the CORESE-based SWB

can be classed as semantic. There were however 325 searches via the CORESE-based SWB compared

to 91 searches via NeLI, suggesting that users interacted with the CORESE-based SWB more than they

would a standard website. For GoPubMed, around 46% of users used the semantic features at least once,

but as an overall percentage of activity, semantic activity was relatively low. For GoGene, from a total

of 270 recorded actions, 73 were classed as semantic actions (27%), generated by 10 individual users (one

user was not found in the logs).

O4: user satisfaction with the ease of use of the system

Usability COHSE scored 1 point higher (on a scale of 1=worst to 5=best) than control for complexity,

the CORESE-based SWB 1 point lower, GoPubMed/GoGene the same. COHSE also scored as 2 points

(out of 5) more satisfying than the control platform. The CORESE-based SWB scored worse than control

for rigidity. GoPubMed/GoGene scored 3 points higher (on a scale of 1=hardest to 10=easiest) than

control for ease of use; there was no difference for COHSE and the CORESE- based SWB. GoPubMed

scored 1 point higher (out of 10) than control for provision of help, with no equivalent question for the

other SWBs.

Overall likeability of the system COHSE scored better than control in 1 of the 3 questions posed

(I think that I would like to use this system frequently), while the CORESE-based SWB scored worse

than control for the same question, and GoPubMed/GoGene scored 3 points higher than PubMed (out

of 10), a greater difference than the equivalent superior score for COHSE.

Overall system speed COHSE scored worse than control for speed. GoPubMed and GoGene scored

the same as control.

GoPubMed/GoGene functionality Though there are no equivalent questions for the other SWBs,

the functionality of GoPubMed and GoGene was well regarded.

O5: user attitudes to the availability of semantic links and ranking COHSE and the CORESE-

based SWB both scored better than control for absence of irrelevant results. The CORESE-based SWB

scored better than control for relevance of results, while COHSE scored the same. GoPubMed/GoGene

also scored better (by 3 points on a scale of 1=worst to 10=best) in the equivalent measures to those

in which COHSE and the CORESE-based SWB triumphed. While COHSE scored best for absence of

irrelevant results, GoPubMed/GoGene scored better than the CORESE- based SWB in this respect.

GoPubMed/GoGene had the best scores for relevance of results.

O6: user understanding of the SWB

a) Does the user think it helps him/her find information or complete tasks? The CORESE-

based SWB scored 3 points worse (out of 5) than control for ease of finding answers (Table B.7), for

which GoPubMed/GoGene scored 2 points better (out of 10) than control, and 3 points better for speed

of finding answers (Table B.8).
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Mode
Did you find the highlighting of ontology terms helpful? (Yes/No) Yes
Did you get an overview over your search results from the tree on the left? (Yes/No) Yes
Did you manage to navigate efficiently through the tree? (Yes/No) Yes
Did you find any papers you would probably have missed with PubMed? (Yes/No) Yes

Tab. B.6: Mode Scores for GoPubMed/GoGene functionality (Yes/No).

COHSE CORESE
Speed of finding answers in info returned:
Was COHSE or CORESE rated higher or
lower than NeLI?

0 0

Ease of finding answers in info returned: Was
COHSE or CORESE rated higher or lower
than NeLI?

0 -3

Tab. B.7: Findability of COHSE and the CORESE-based SWB: mode differences (scale 1 bad - 5
good).

b) Does the user understand how to use the SWB to find such information or complete

such tasks? To test intuitiveness, all of the online evaluations, and the early Group A1 workshops,

opened with minimal introduction. It quickly emerged that many users could not tell the control and

intervention systems apart, giving detailed feedback on NeLI while assuming that the COHSE link boxes

were advertisements or error messages. Consequently, introductory presentations were shown to each

user at subsequent workshops. This reduced confusion, but users still said more introduction was needed.

Even users who could tell NeLI apart from the SWBs complained of distraction by the NeLI website’s

user interface. A widely familiar control platform such as Google would have increased the contrast and

foregrounded the benefits of COHSE in particular. Users did not grasp the nature of the CORESE-

based SWB at all, assuming it to be a keyword search with a graph attached. A detailed introduction

would probably have greatly improved users’ opinions. The GoPubMed workshop opened with a 20-

minute introductory lecture, and PubMed is a widely familiar system to use as a control. The difficulties

encountered by Group A2 were noted as being generally more trivial than those found by Group A1.

Overall post-questionnaire scores In no case did GoPubMed/GoGene receive worse mode scores

than control, whereas COHSE and the CORESE-based SWB received several lesser modal scores.

Mode
Speed of finding answers in info returned:
Was GoPubMed/GoGene rated higher or
lower than PubMed?

2

Ease of finding answers in info returned: Was
GoPubMed/GoGene rated higher or lower
than PubMed?

3

Tab. B.8: Findability of GoPubMed/GoGene: mode differences (scale 1 bad - 5 good).
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B.3 List of Tasks

COHSE-NeLI evaluation tasks

Short format (4 tasks)

1. What percentage of viral encephalitis and meningitis cases in the UK are of undetermined aetiology?

2. Were there any travel restrictions to Turkey at the time when it was affected by avian influenza?

In what areas of Turkey did Europe’s first confirmed human cases of avian influenza occur?

3. What is an example of a chemical that can cause or exacerbate acne?

4. What kind of certificate should be used for documenting yellow fever vaccination? Have there been

any changes to the format in the past two years?

Long Format (10 tasks)

The long COHSE evaluation consisted of the above four questions, plus the following six.

1. Has the risk of dengue virus in Cambodia increased or decreased over the last two years?

2. Are there any infections that pose more of a threat in Latvia than they do in the UK? If so, one

would not expect malaria to be among them, but could this expectation be wrong?

3. What are three chemicals that have successfully been used for decontamination of areas affected

by anthrax?

4. How much risk of skin damage can the Mediterranean sun present to a typical redhead?

5. Which particular diseases are the focus of infection prevention efforts in prisons?

6. If a patient presented with uncomplicated dyspepsia that did not respond to lifestyle changes,

what commonly used non-invasive test would be the most likely to give you a false positive for

helicobacter pylori?

CORESE-Based SWB evaluation tasks

1. What are three disease prevention efforts in the USA to prevent and control the spread of viral

haemorrhagic fever through rodent vectors?

2. In the Netherlands in 2007, there was a cluster of infections in a care home caused by poor infection

control practices. What was the infection and what (specifically) was its most likely cause?

3. What are the recommended guidelines for hygienic cleaning of surfaces after flooding?

4. Which are the four main types of hospital unit within which outbreaks of VRE have been reported?

GoPubMed/GoGene evaluation tasks

Short format (4 tasks, PubMed vs GoPubMed)

Answered using PubMed

1. Which particular diseases are associated most often with HIV?

2. What is the role of MMS2 in cancer?
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Answered using GoPubMed

1. How does BARD1 regulate BRCA1 activity?

2. How rare/prevalent is Paget’s disease?

Long format (11 tasks, PubMed vs GoGene and PubMed vs extended GoPubMed)

Answered using PubMed

1. What is the main role of the gene MMS2? Name 3 genes related to it in literature.

2. How are MMS2 and UBC13 related to each other?

Answered using GoGene

1. Name 4 organisms that have an MMS2 gene.

2. How do mutations in “Sonic Hedgehog” genes affect developmental disorders?

3. What other genes are related to Shh in literature? Name 3 of them.

4. Are there any GO terms manually assigned to Shh? Name 3 of them.

Answered using PubMed

1. Which biological process is Rab5 involved in?

2. Can you find any conserved domain information on Rab5?

Answered using the extended GoPubMed

1. Which biological process is Apc11 involved in?

2. Can you find any conserved domain information on Apc11?

3. Which pathway are the zebrafish genes Her1, Her7 and DeltaC involved in?

B.4 Questionnaires

All the pre-questionnaires, post-task questionnaires, and post-questionnaires for both Group A1 and

Group A2 can be found under:

http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2755822/bin/1471-2105-10-S10-S14-S2.txt

B.5 Semi-structured interviews

The questions given to all the interviewers to guide the semi-structured interviews can be found under:

http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2755822/bin/1471-2105-10-S10-S14-S3.txt

127



Notes from semi-structured interviews, Group A1

Notes from all the semi-structured interviews for Group A1 can be found under:

http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2755822/bin/1471-2105-10-S10-S14-S4.txt

Notes from semi-structured interviews, Group A2

Notes from all the semi-structured interviews for Group A2 can be found under:

http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2755822/bin/1471-2105-10-S10-S14-S5.txt
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Brinckmann, A., Rüther, K., Williamson, K., Lorenz, B., Lucke, B., Nürnberg, P., Trijbels, F., Janssen, A., and Schuelke, M.

(2007). De novo double mutation in pax6 and mtdna trna(lys) associated with atypical aniridia and mitochondrial disease. J

Mol Med, 85(2), 163–8.

Brooke, J. (1996). Usability Evaluation in Industry, chapter SUS - A quick and dirty usability scale, pages 189–194. Taylor and

Francis.

Bruce, R. and Wiebe, J. (1994). Word-sense disambiguation using decomposable models. In Proceedings of the 32nd Annual

Meeting of the Association for Computational Linguistics, pages 139–145, ACL, Las Cruces, NM.

Bruce, R. and Wiebe, J. (1999). Decomposable modeling in natural language processing. Comput. Ling., 25(2), 195–207.

Budanitsky, A. and Hirst, G. (2006). Evaluating WordNet-based Measures of Lexical Semantic Relatedness. Computational

Linguistics, 32(1), 13–47.

Buscaldi, D., Rosso, P., Pla, F., Segarra, E., and Sanchis, E. (2006). Verb sense disambiguation using support vector machines:

impact of wordnet-extracted features. In Proc. Int. Conf. on Comput. Linguistics and Intelligent Text Processing, CICLing-

2006 , pages 192–195. Springer Verlag.

Camon, E., Magrane, M., Barrell, D., Lee, V., Dimmer, E., Maslen, J., Binns, D., Harte, N., Lopez, R., and Apweiler, R. (2004).

The Gene Ontology Annotation (GOA) Database: sharing knowledge in Uniprot with Gene Ontology. Nucleic Acids Res,

32(Database issue), D262–D266.

Camon, E., Barrell, D., Dimmer, E., Lee, V., Magrane, M., Maslen, J., Binns, D., and Apweiler, R. (2005). An evaluation of GO

annotation retrieval for BioCreAtIvE and GOA. BMC Bioinformatics, 6(Suppl 1), S17.

130



Camous, F., Blott, S., and Smeaton, A. F. (2007). Ontology-based medline document classification. In S. Hochreiter and R. Wagner,

editors, BIRD, volume 4414 of Lecture Notes in Computer Science, pages 439–452. Springer.

Castro, A., Rocca-Serra, P., Stevens, R., Taylor, C., Nashar, K., Ragan, M., and Sansone, S. (2006). The use of concept maps

during knowledge elicitation in ontology development processes–the nutrigenomics use case. BMC Bioinformatics, 7, 267.

Chapman, R. (1977). Roget’s International Thesaurus. New York: Harper and Row, 4th edition.

Charniak, E., Blaheta, D., Ge, N., Hall, K., Hale, J., and Johnson, M. (2000). Bllip 1987-89 WSJ corpus release 1. Technical

report, Linguistic Data Consortium, Philadelphia, PA.

Cimiano, P. and Völker, J. (2005). Text2Onto - A Framework for Ontology Learning and Data-driven Change Discovery. In
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