1,960 research outputs found

    Automated Posture Positioning for High Precision 3D Scanning of a Freeform Design using Bayesian Optimization

    Get PDF
    Three-dimensional scanning is widely used for the dimension measurements of physical objects with freeform designs. The output point cloud is flexible enough to provide a detailed geometric description for these objects. However, geometric accuracy and precision are still debatable for this scanning process. Uncertainties are ubiquitous in geometric measurement due to many physical factors. One potential factor is the object’s posture in the scanning region. The posture of target positioning on the scanning platform could influence the normal of the scanning points, which could further affect the measurement variances. This paper first investigates the geometric and spatial factors that could potentially influence scanning variance. This functional relationship is modeled as a Bayesian extreme learning model, which is later utilized to find the object’s optimal posture for variance reduction. A Bayesian optimization approach is proposed to solve this minimization problem. Case studies are presented to validate the proposed methodology

    Volumetric Data Analysis for Reverse Engineering and Solid Additive Manufacturing: A Framework for Geometric Metrological Analysis

    Get PDF
    Poor geometric quality is one of the main constraints that hinders the wide adoption of reverse engineering (RE) and additive manufacturing (AM). RE models from a single scan will most likely generate inaccurate representations of the original design due to the uncertainties existing in individual parts and scanning procedures. On the other hand, metrological methodologies for AM significantly differ from those for the traditional manufacturing processes. Conventional statistical methodologies overlook these three-dimensional (3D) feature-independent processing techniques. In this dissertation, we develop a novel statistical data analysis framework---volumetric data analysis (VDA)---to deal with the uniqueness of both technologies. In general, this framework also addresses the rising analytical needs of 3D geometric data. Through VDA, we can simultaneously analyze the measured points on the outer surfaces and their relationships to acquire manufacturing knowledge. The main goal of this dissertation is to apply the proposed framework in multiple RE and AM applications related to their geometric quality characteristics. First, we demonstrate a novel estimator to increase the precision of RE-generated models. We built a Bayesian model with prior domain knowledge to model the landmarks’ uncertainty. We also proposed a bi-objective optimization model to answer the RE process-planning questions, e.g., how many scans and parts are required to achieve the precision requirements. The second major contribution is a study of tolerance estimation procedure for the re-manufacturing of legacy parts. We propose a systematic geometric inspection methodology for the RE and AM systems. Moreover, based on the domain knowledge in production-process design and planning, we developed methods to estimate empirical tolerances from a small batch of legacy parts. The third major contribution of this dissertation is to design an automated variance modeling algorithm for 3D scanners. The algorithm utilizes a physical object’s local geometric descriptors and Bayesian extreme learning machines to predict the landmarks’ variances. Lastly, we introduce the VDA framework to AM-oriented experimental analysis. Specifically, we propose a high-dimensional hypothesis testing procedure to statistically compare the geometric production accuracy under two AM process settings. We present new visualization tools for deviation diagnostics to aid in interpreting and comparing the process outputs

    Optimization with artificial intelligence in additive manufacturing: a systematic review

    Get PDF
    In situations requiring high levels of customization and limited production volumes, additive manufacturing (AM) is a frequently utilized technique with several benefits. To properly configure all the parameters required to produce final goods of the utmost quality, AM calls for qualified designers and experienced operators. This research demonstrates how, in this scenario, artificial intelligence (AI) could significantly enable designers and operators to enhance additive manufacturing. Thus, 48 papers have been selected from the comprehensive collection of research using a systematic literature review to assess the possibilities that AI may bring to AM. This review aims to better understand the current state of AI methodologies that can be applied to optimize AM technologies and the potential future developments and applications of AI algorithms in AM. Through a detailed discussion, it emerges that AI might increase the efficiency of the procedures associated with AM, from simulation optimization to in-process monitoring

    AI-enabled modeling and monitoring of data-rich advanced manufacturing systems

    Get PDF
    The infrastructure of cyber-physical systems (CPS) is based on a meta-concept of cybermanufacturing systems (CMS) that synchronizes the Industrial Internet of Things (IIoTs), Cloud Computing, Industrial Control Systems (ICSs), and Big Data analytics in manufacturing operations. Artificial Intelligence (AI) can be incorporated to make intelligent decisions in the day-to-day operations of CMS. Cyberattack spaces in AI-based cybermanufacturing operations pose significant challenges, including unauthorized modification of systems, loss of historical data, destructive malware, software malfunctioning, etc. However, a cybersecurity framework can be implemented to prevent unauthorized access, theft, damage, or other harmful attacks on electronic equipment, networks, and sensitive data. The five main cybersecurity framework steps are divided into procedures and countermeasure efforts, including identifying, protecting, detecting, responding, and recovering. Given the major challenges in AI-enabled cybermanufacturing systems, three research objectives are proposed in this dissertation by incorporating cybersecurity frameworks. The first research aims to detect the in-situ additive manufacturing (AM) process authentication problem using high-volume video streaming data. A side-channel monitoring approach based on an in-situ optical imaging system is established, and a tensor-based layer-wise texture descriptor is constructed to describe the observed printing path. Subsequently, multilinear principal component analysis (MPCA) is leveraged to reduce the dimension of the tensor-based texture descriptor, and low-dimensional features can be extracted for detecting attack-induced alterations. The second research work seeks to address the high-volume data stream problems in multi-channel sensor fusion for diverse bearing fault diagnosis. This second approach proposes a new multi-channel sensor fusion method by integrating acoustics and vibration signals with different sampling rates and limited training data. The frequency-domain tensor is decomposed by MPCA, resulting in low-dimensional process features for diverse bearing fault diagnosis by incorporating a Neural Network classifier. By linking the second proposed method, the third research endeavor is aligned to recovery systems of multi-channel sensing signals when a substantial amount of missing data exists due to sensor malfunction or transmission issues. This study has leveraged a fully Bayesian CANDECOMP/PARAFAC (FBCP) factorization method that enables to capture of multi-linear interaction (channels Ă— signals) among latent factors of sensor signals and imputes missing entries based on observed signals

    Application of Artificial Intelligence for Surface Roughness Prediction of Additively Manufactured Components

    Get PDF
    Additive manufacturing has gained significant popularity from a manufacturing perspective due to its potential for improving production efficiency. However, ensuring consistent product quality within predetermined equipment, cost, and time constraints remains a persistent challenge. Surface roughness, a crucial quality parameter, presents difficulties in meeting the required standards, posing significant challenges in industries such as automotive, aerospace, medical devices, energy, optics, and electronics manufacturing, where surface quality directly impacts performance and functionality. As a result, researchers have given great attention to improving the quality of manufactured parts, particularly by predicting surface roughness using different parameters related to the manufactured parts. Artificial intelligence (AI) is one of the methods used by researchers to predict the surface quality of additively fabricated parts. Numerous research studies have developed models utilizing AI methods, including recent deep learning and machine learning approaches, which are effective in cost reduction and saving time, and are emerging as a promising technique. This paper presents the recent advancements in machine learning and AI deep learning techniques employed by researchers. Additionally, the paper discusses the limitations, challenges, and future directions for applying AI in surface roughness prediction for additively manufactured components. Through this review paper, it becomes evident that integrating AI methodologies holds great potential to improve the productivity and competitiveness of the additive manufacturing process. This integration minimizes the need for re-processing machined components and ensures compliance with technical specifications. By leveraging AI, the industry can enhance efficiency and overcome the challenges associated with achieving consistent product quality in additive manufacturing.publishedVersio
    • …
    corecore