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ABSTRACT 

The infrastructure of cyber-physical systems (CPS) is based on a meta-concept of 

cybermanufacturing systems (CMS) that synchronizes the Industrial Internet of Things (IIoTs), 

Cloud Computing, Industrial Control Systems (ICSs), and Big Data analytics in manufacturing 

operations. Artificial Intelligence (AI) can be incorporated to make intelligent decisions in the day-

to-day operations of CMS. Cyberattack spaces in AI-based cybermanufacturing operations pose 

significant challenges, including unauthorized modification of systems, loss of historical data, 

destructive malware, software malfunctioning, etc. However, a cybersecurity framework can be 

implemented to prevent unauthorized access, theft, damage, or other harmful attacks on electronic 

equipment, networks, and sensitive data. The five main cybersecurity framework steps are divided 

into procedures and countermeasure efforts, including identifying, protecting, detecting, 

responding, and recovering. Given the major challenges in AI-enabled cybermanufacturing 

systems, three research objectives are proposed in this dissertation by incorporating cybersecurity 

frameworks. The first research aims to detect the in-situ additive manufacturing (AM) process 

authentication problem using high-volume video streaming data. A side-channel monitoring 



 

 

approach based on an in-situ optical imaging system is established, and a tensor-based layer-wise 

texture descriptor is constructed to describe the observed printing path. Subsequently, multilinear 

principal component analysis (MPCA) is leveraged to reduce the dimension of the tensor-based 

texture descriptor, and low-dimensional features can be extracted for detecting attack-induced 

alterations. The second research work seeks to address the high-volume data stream problems in 

multi-channel sensor fusion for diverse bearing fault diagnosis. This second approach proposes a 

new multi-channel sensor fusion method by integrating acoustics and vibration signals with 

different sampling rates and limited training data. The frequency-domain tensor is decomposed by 

MPCA, resulting in low-dimensional process features for diverse bearing fault diagnosis by 

incorporating a Neural Network classifier. By linking the second proposed method, the third 

research endeavor is aligned to recovery systems of multi-channel sensing signals when a 

substantial amount of missing data exists due to sensor malfunction or transmission issues. This 

study has leveraged a fully Bayesian CANDECOMP/PARAFAC (FBCP) factorization method 

that enables to capture of multi-linear interaction (channels × signals) among latent factors of 

sensor signals and imputes missing entries based on observed signals.   
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CHAPTER I 

INTRODUCTION 

1.1 Motivation 

Nowadays, manufacturing organizations are embracing manufacturing operations with 

information and communication technology systems to extend connectivity and remote access for 

better manufacturing operations and competencies. Advanced electronic technologies have been 

integrated with multifaceted systems that can be coupled with the cyber (digital) world and 

physical world, which are known as cyber-physical systems (CPS) [1]–[4]. The adoption of CSP 

is based on a meta-concept of cybermanufacturing systems (CMS) that synchronizes the Industrial 

Internet of Things (IIoTs), cloud computing, industrial control systems (ICSs), and big data 

analytics in manufacturing operations [2], [5]–[7]. In CMS settings, IIoTs devices can be used to 

collect real-time data from various stages of the manufacturing process, such as raw material 

inventory, production equipment, and product quality control. Additionally, ICS consists of a 

combination of hardware and software components that work together to manage and optimize 

manufacturing operations [8]–[10]. 

Leveraging the massive data available, Artificial Intelligence (AI) can be incorporated to make 

smart decisions in the day-to-day operations of cybermanufacturing systems.  Figure 1.1 

demonstrates the workflow in an AI-enabled factory that integrates both physical and cyber 

domains. In the physical domain, heterogenous signals are collected from the manufacturing 

machinery and merged through the data-fusion process, followed by decision-fusion for 
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manufacturing operations. Process monitoring & prognostics is followed by process control & 

optimization.  Finally, the process control and optimization decisions will be sent to the 

manufacturing machinery, subsequently, making a closed-loop system in the cybermanufacturing 

systems [11]. Therefore, various manufacturing domain knowledge needs to be appropriately 

incorporated in the modelling, monitoring, and optimization in the data-rich manufacturing 

systems. 

 

Figure 1.1 The overview of an AI-enabled cybermanufacturing systems. 

1.2 Challenges 

Even though AI has achieved significant success in modelling and monitoring, manufacturing 

operations pose inherent challenges, including: 1) potential cyber-physical attacks; 2) large 

volumes of data streams available; 3) ill-structured data, such as missing data. Collectively, these 

major challenges hinder modelling and monitoring-based decision-making activities in 
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cybermanufacturing systems. The above mentioned three challenges and their significances are 

briefly described in the following three sub-sections. 

1.2.1 Potential cyberattacks 

Cybermanufacturing systems have brought the global industrial operations to the easily 

accessible platforms while cyber-physical security has raised a serious concern for operational 

safety and product quality assurance [12]. In the cyber-physical systems, a malicious cyberattack 

may manipulate the machine operations and/or controls on various different levels, including 

altering machine setup parameters, changing product design, and injecting false sensing data [12], 

[13]. These will lead to compromised product, uncertified manufacturing procedure, and even 

machine or facility shutdowns. What is worse, conventional quality control (QC) systems are not 

effective in detecting those cyberattack induced changes in the manufacturing systems, because 

those attacked processes may still be “statistically in control” [12], [14]. To tackle these challenges, 

cybersecurity capabilities should be thoroughly investigated and practiced among small and 

medium manufacturing organizations, stakeholders, and third-parties [15]. Therefore, there is an 

urgent need to identify potential cybersecurity risks and manage identified risks in CSP [1], [2].  

1.2.2 Large volumes of data streams available 

In cybermanufacturing systems, the advanced sensing technologies provide massive essential 

data in real time collected from the manufacturing processes for quality control and machine 

diagnosis purposes. The data are recorded from different machines, workstations, and even 

production floors, generating a large volume of data streams in real time [16]. Therefore, how to 

integrate the large volume of heterogeneous manufacturing data in-process monitoring is an open 

question, given the increasingly large volume of data streams available [17], [18]. 
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1.2.3 Ill-structured data and associated missing data 

In CMS setting, the heterogeneous sensor can capture signals from manufacturing machinery. 

Signals may include noises, outliers, and missing data, leading to ill-structured data. Multi-channel 

sensor fusion can be challenging for real-time machinery fault identification and diagnosis when 

a substantial amount of missing data exists. For example, when significant missing data is present, 

the process condition and machine operating conditions may not be timely predicted. However, 

there are still substantial challenges in imputing missing data in high-dimensional sensing data 

[19]–[21]. 

1.3 Research objectives 

Given the three major challenges in the AI-enabled cybermanufacturing systems modeling and 

monitoring, the three research objectives of this dissertation are described in the following sub-

sections. 

1.3.1 Process authentication of additive manufacturing for detecting cyberattack-

induced alterations 

The first research objective aims to detect the in-situ additive manufacturing (AM) process 

authentication problem by using high-volume yet very noisy video streaming data. Most 

cyberattacks towards AM processes can be manifested as printing path alterations, and an in-situ 

optical imaging system can focus on detecting alterations in the printing path. A side-channel 

monitoring approach based on an in-situ optical imaging system is established, and a tensor-based 

layer-wise texture descriptor is constructed to describe the observed printing path. Subsequently, 

tensor decomposition is leveraged to reduce the dimension of the tensor-based texture descriptor, 

and low-dimensional features can be extracted for detecting cyberattack-induced alterations. 
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1.3.2 Fault diagnosis of rotary machinery given high volume data streams 

The second research work seeks to address the high-volume data stream problems in multi-

channel sensor fusion for bearing fault diagnosis. Multi-channel sensor fusion can be more robust 

for diagnosing diverse bearing fault scenarios. However, diverse bearing fault scenarios can pose 

significant challenges for effective fault diagnosis when dealing with high-dimensional data. The 

second approach proposes a new multi-channel sensor fusion methodology, frequency-domain 

multilinear principal component analysis (FDMPCA), integrating acoustics and vibration signals 

with different sampling rates. Subsequently, the FD tensor is decomposed by multilinear principal 

component analysis (MPCA), resulting in low-dimensional process features for diverse bearing 

fault diagnosis by incorporating a Neural Network classifier, which significantly outperforms 

compared with a benchmark.  

1.3.3 Missing signals imputation from multi-channel sensing signals by tensor 

factorization 

The third research proposes a fully Bayesian CANDECOMP/PARAFAC (FBCP) factorization 

method for missing data recovery systems of mixed-bearing fault signals. Multi-channel sensor 

fusion can be challenging for real-time machinery fault identification and diagnosis when a 

substantial amount of missing data exists. Usually, some (or even all) sensors may not function 

correctly during real-time data acquisition due to sensor malfunction or transmission issues. 

Additionally, multi-channel sensor fusion yields a large volume of data. Imputation of missing 

entries can also be challenging with a large volume of data, which can predominantly affect the 

accuracy of machinery fault diagnosis. However, how to impute a substantial amount of missing 

data for machinery fault identification is an open research question. This proposed method can 
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effectively impute a substantial portion of continuous missing data from diverse bearing fault 

scenarios. 

1.4 Dissertation outline 

This dissertation has 7 chapters. Chapter 2 provides a comprehensive state-of-the-art review 

of papers for the proposed research. Chapter 3 describes a novel part authentication methodology 

based on image texture analysis of the layer-wise in-situ videos. This paper has been published in 

the Journal of Manufacturing Systems on 6th January 2022. Chapter 4 incorporates the condition-

based maintenance of rolling element bearings. This chapter involves feature-level sensor fusion 

for in-situ anomaly detection of rolling element bearings and integrating time-frequency analysis 

and tensor decomposition under multiple mixed component faults on a Machinery Fault 

Simulator® [22]. This paper was published in the International Journal of Advanced 

Manufacturing Technology on 30th November 2022.  Chapter 5 describes missing signal 

imputation for multi-channel sensing signals on rotary machinery by factorization method. In this 

chapter, a varying percentage of continuous missing signal scenarios is generated, and missing 

signal imputation in the time-domain tensor is adopted by a fully Bayesian 

CANDECOMP/PARAFAC (FBCP) factorization method. The summary of this dissertation work 

and future directions are leveraged in chapter 6. Chapter 7 lists all the cited papers relevant to this 

dissertation proposal. Table 1.1 describes this dissertation proposal's relevant topics, titles, and 

publication status.  
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Table 1.1 Relevant topics, titles, and publication status. 

Topic # Title Publication status 

1. Quality Control and 

reliability of Additive 

Manufacturing 

Securing cyber-physical additive 

manufacturing systems by in-situ 

process authentication using streamline 

video analysis. 

Published on January 6th, 2022, on the 

Journal of Manufacturing Systems 

[23].  

2. Condition-based 

Maintenance of rolling 

element bearings 

Multi-channel sensor fusion for in-situ 

bearing fault diagnosis by frequency-

domain multilinear principal component 
analysis. 

Published on November 30th, 2022, 

on the International Journal of 

Advanced Manufacturing Technology 
[24].  

3. Missing signal 

imputation for multi-

channel sensing signals 
by factorization method 

Missing signal imputation for multi-

channel sensing signals on rotary 
machinery by tensor factorization. 

Accepted on March 8, 2023 by 

Manufacturing Letters [25].  
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CHAPTER II 

LITERATURE REVIEW 

Given the major challenges in AI-enabled cybermanufacturing systems, three research 

objectives are proposed in this dissertation work by incorporating cybersecurity frameworks. In 

this literature, sections 2.2 and 2.2 demonstrate the cybersecurity risks and how to manage 

associated cybersecurity risks in cybermanufacturing systems. Subsequently, section 2.3 is related 

to an overview of three proposed research methods by linking cybermanufacturing systems.  

Section 2.4 demonstrates state-of-the-art quality assurance methods for additive manufacturing 

related to the first proposed method.  Section 2.5 seeks literature of the second and third proposed 

methods.   

2.1 Understanding the cybersecurity risks in cybermanufacturing systems 

Cybersecurity risks in cybermanufacturing systems are widespread and can be categorized into 

four major phases: threats, vulnerability, likelihood, and impact [5], [26]. Several cybersecurity 

threats to cybermanufacturing can be included as data breaches, malware attacks, insider threats, 

supply chain attacks, and physical attacks [27]–[29]. There are several cybersecurity 

vulnerabilities that cybermanufacturing systems may encounter, including lack of authentication 

and access control, weak encryption, inadequate software security, unsecured network 

connections, lack of physical security, and unsecured third-party security [29]–[31]. The likelihood 

of a cybersecurity breach in cybermanufacturing depends on factors, including the level of security 

measures in organizations, the complexity of cybermanufacturing process, and cybersecurity best 
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practices [32]. These security risks of cybermanufacturing have led to interrogation about 

unobserved attack spaces. The impact of cybersecurity incidents in cybermanufacturing is 

widespread. According to NIST report in 2017, approximately 61 % of small businesses in the 

U.S. experienced cyberattacks, and 34 % of all documented attacks targeted manufacturers.  

Significant cyberattacks on industrial control systems include German Still Mill in 2014, Kemuri 

Water Company in 2016, New York Dam in 2013, Target Stores in 2013, Ukraine Power Grid 

Attack in 2015 and 2016, etc [2], [33]–[35]. However, the widespread adoption of cybersecurity 

has been leveraged against the rise of cyberattacks space in cybermanufacturing. Increasing 

awareness of cybersecurity issues has brought significance to smart manufacturing, transportation, 

and large-scale infrastructures (power grid, water supply, healthcare, etc.) [36]–[38]. 

2.2 Managing cybersecurity risks in cybermanufacturing systems 

Risk assessment of cybermanufacturing setting requires complement measures that fall under 

cybersecurity standards, governances, and practices. Cybersecurity framework can be 

implemented as procedures for managing cybersecurity risks of cybermanufacturing systems and 

associated manufacturing stakeholders and industry best practices [5], [8], [39], [40]. Additionally, 

cyberattack countermeasures in cybermanufacturing settings can be utilized to analyse the 

sensitivity of a cyberattack-induced environment [39], [41]. The five main cybersecurity 

framework areas are divided into particular procedures and countermeasure efforts (Table 2.1) [5], 

[8], [39], [40]. The first step of cybersecurity is to identify the risks comprising developing and 

managing cybersecurity risks to systems, people, assets, data, and capabilities. The second step is 

to protect against the impact of a likely cybersecurity incident. According to a Trust Alliance 

analysis in 2018, 95% of all cyberattacks could have been prevented using common sense 

employees, typically included in cybersecurity protection measures [42]. The third step is to follow 
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up on activities shielded by the detect function permit for real-time exposure to cybersecurity 

measures. The forth step is the response function that helps to lessen the effect of cyberattack 

incidents. The final phase of the cybersecurity framework is to recover plans that help an 

organization continue regular operations after a cyberattack incident. These steps are not a one-

time process but a continuous practice that can be embraced in cybermanufacturing settings. Much 

research has focused on identifying countermeasures for cyberattacks in cybermanufacturing and 

analysing the sensitivity of cyberattack-induced environments as countermeasures [35]. 

Table 2.1 Cybersecurity steps and countermeasures in CMS. 

Cybersecurity 

steps 

Cybersecurity procedures Countermeasures of cyberattack in CMS 

1. Identify 

• Control access to industrial 

control systems. 

• Create policies and procedures 

for cybersecurity. 

• Observer control-based denial of service (DoS) 

[43]–[48]. 

• Cyberattack identification based on Machine 

Learning framework [49]–[51]. 

2. Protect 

• Making a strong shield against 

possible cyberattacks.  

• Updating software systems. 

• Dynamic data encryption for privacy preservation 

[52]–[54]. 

• Large-scale infrastructures (power grids) protection 

against cyberattacks [55]–[57]. 

3. Detect 

• Detect unusual activities. 

• Maintain and monitor log 

activities. 

• Secure control against intrusion detection [23], [35], 

[58], [59]. 

• Self-learning-based intrusion detection systems 

[60]–[62]. 

• Fault detection for multi-source integrated 

navigation using Deep Learning [63], [64].  

• Spectrum sensing for malicious attack detection 

system [65]–[67]. 

4. Respond 

• Immediate response to the 

cyberattack.  

• Directly notify stakeholders 

about the cyberattack. 

• Automatic intrusion response systems for 

cyberattacks [35], [68]–[70]. 

• Cyberattack response in large-scale infrastructure 

(water treatment systems, power grids) [71], [72]. 

5. Recover 

• Make an alternative backup of 

the database system.  

• Improve processes, procedures, 

and technologies 

• Sensor effectiveness and system fidelity [34], [36], 

[73], [74]. 

• Cyberattack recovery schemes in smart grid 

restoration [75]. 
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2.3 An overview of three proposed methods by linking CMS 

Cybersecurity frameworks can be leveraged in a wide range of cybermanufacturing operations 

to make a robust shield against cyberattack space. Given the major challenges in AI-enabled 

cybermanufacturing systems, three research objectives are proposed in this dissertation work by 

incorporating cybersecurity frameworks (Table 2.1). The first research aims to detect the in-situ 

additive manufacturing (AM) process authentication problem using high-volume video streaming 

data (cybersecurity step 3). The second research work addresses the high-volume data stream 

problems in the multi-channel sensor fusion for diverse bearing fault diagnosis. By linking the 

second prosed method, the third research endeavour is aligned to recovery systems of multi-

channel sensing signals when a substantial amount of missing data exists due to sensor malfunction 

or transmission issues (cybersecurity step 5). Overall, section 2.4 demonstrates state-of-the-art 

quality assurance methods for additive manufacturing related to the first proposed method.  Section 

2.5 illustrates the literature of the second and third proposed methods.   

2.4 Quality assurance methods for AM authentication 

The quality assurance methods for additive manufacturing processes can be briefly categorized 

as post-process quality inspection (section 2.4.1), in-situ monitoring (section 2.4.2), and anomaly 

detection based on AM process security (section 2.4.3). 

2.4.1 Post-process quality inspection 

Generally, AM post-process quality inspection methods fall into two major categories: 

destructive and non-destructive testing (NDT) techniques. In the destructive methods, AM-built 

parts are destroyed during either testing or sample preparation for material qualification. The most 

widely practiced destructive testing of AM fabricated parts includes tensile strengths (i.e., Young’s 
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modulus, yield strength, ultimate tensile strength, and elongation), ductility test, and fatigue cycle 

performance [76]. In addition, material qualification/certification methods can be applied to 

evaluate the material properties (i.e., morphology, crystallography, and crack growth) of the AM 

parts [77], [78].  

NDT techniques include visual inspection, eddy current and electromagnetic testing, liquid 

penetrant testing, ultrasonic testing, and X-ray radiography and computed tomography (CT)[79]–

[83]. The advanced visual inspection techniques use optical metrological techniques in the 

geometry assessment of AM final parts [84], [85]. Moreover, the eddy current and electromagnetic 

techniques involved in detecting changes in dielectric and electronic properties of electrically 

conductive materials and therefore useful for detecting variations in capacitance due to the 

presence of crack, porosity, and associated defects in AM-built parts [83], [86]. Regarding material 

characterization and inspection, ultrasonic techniques are widely used for material testing and 

evaluation [82]. In addition, piezoelectric impedance-based measurements can be used as another 

NDE of AM part’s dimensional alterations, positional changes, and internal porosity [87], [88]. 

With its higher resolution and accuracy compared to the fore mentioned NDT methods, X-ray 

Computed tomography (CT) is regarded as one of the most reliable part certification methods, 

especially used in internal structure certification (i.e., porosity, crack growth, etc.) [89], [90]. 

However, several practical challenges will limit the broader application of the X-ray CT techniques 

in AM part authentication. Firstly, the size of the X-ray CT machine chamber enforces a strict 

constraint in the dimension of the inspected parts. Therefore, it becomes infeasible to assess large-

scale AM parts[87].  Secondly, X-ray CT scanning is a time-consuming procedure and the 

equipment is also rather costly, limiting its broad industrial applications [89]. Thirdly, as a post-

manufacturing quality inspection method, the X-ray CT scans only detect the alteration after the 
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entire part is completely fabricated, which will significantly extend the lead time for AM part 

delivery once a part alteration is detected.   

2.4.2 In-situ monitoring and anomaly detection 

In-situ monitoring systems can be potentially used in AM part/process authentication by fusing 

heterogeneous sensing data. ASTM technical committee (F42) approved a complete list of AM 

process terminology regarding process monitoring and quality control of AM [91]. Based on 

multiple review studies, heterogenous sensing technologies have been extensively implemented in 

real-time process monitoring and control for metal-based AM processes, including acoustic 

emission, vibration, power consumption, temperature, and images [92]–[94]. The advanced 

sensing technologies generate high volume of data with various formats, including time series 

signals/curves, images, and point clouds. Univariate/multivariate time series are usually integrated 

for AM process monitoring and anomaly detection by leveraging various data fusion techniques, 

such as physics-based regression modelling and the Bayesian Dirichlet process (DP) mixture 

model.  

Image streams include both optical and thermal image streams, which have been widely 

leveraged for in-situ defect detection. Due to the high volume and low signal-to-noise ratio in the 

image stream data, various dimension reduction methods are needed for data compression, 

including principal component analysis (PCA), multilinear PCA methods, Deep Neural Networks 

(DNNs) based feature extraction [95], and the image series modelling based feature extraction. In 

the laser-based AM process, in-situ process porosity can be detected through correlating the 

pyrometer images and porosity occurrence using a convolutional neural network (CNN) based data 

fusion technique [96]. In addition, a real-time layer-wise porosity prediction technique was also 

proposed by obtaining melt pool images, reducing the dimension of captured melt pool images 
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with tensor decomposition, and incorporating an SVM classifier for predicting the quality of melt 

pools [97]. In addition, in laser powder bed fusion (LPBF) AM, a computer vision algorithm is 

applied to detect anomalies during the powder spreading phase, and an unsupervised Machine 

Learning algorithm is used to classify those anomalies [98]. Moreover, a closed-loop proportional-

integral-derivative (PID) feedback control scheme has been integrated for printing defect 

mitigation based on image data [99]. Furthermore, Cheng et al. [100].  investigated surface patterns 

by leveraging the image intensity information, where the surface defects are categorized into 

random defects and assignable defects due to specific process parameter shifts.  

3D point clouds data characterizes the surface topology of AM parts for anomaly detection. 

For example, the deep forest Machine Learning methods have been used for in-situ layer-wise 

process shift detection [101]. A high-speed CMOS (complementary metal-oxide-semiconductor) 

camera has been used for real-time process monitoring for the layer-wise laser melting process 

[102]. Moreover, various optical sensors, including a structured-light scanner [101] and a 3D 

digital image correlation (DIC) camera, have been used to collect 3D point clouds of printed parts 

for anomaly detection [103]. In summary, state-of-the-art process monitoring and anomaly 

detection methods usually focus on detecting process changes/shifts due to unstable fabrication. 

However, malicious cyberattack-induced process alterations generally do not lead to inconsistent 

processes and thus cannot be easily detected by traditional process monitoring methods. 

2.4.3 AM process security 

Cyber-physical attacks in AM may occur in the designing, slicing, and manufacturing phases, 

and numerous studies have focused on the cyber-physical security of AM processes [104]. The 

literature on AM process security has been summarized through two aspects: 1) AM attack models; 

and 2) AM attack detection, which are introduced in subsections 2.4.3.1 and 2.4.3.2, respectively. 
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2.4.3.1 AM attack models 

There are plenty of simulated AM attack models that have been investigated in the literature. 

Bridges et al. [105]  summarizes the vulnerabilities in the entire AM process chain. Potential 

attacks to AM processes can target the digital files during all the phases in the AM processes. 

Firstly, quite a few studies attempted to alter the STL files in the design phase [13], [106], [107]. 

For example, additional features, such as internal voids, can be inserted into the STL file of the 

AM part, leading to compromised mechanical properties and catastrophic failures in the final 

product. Moreover, embedded defects can also be included by jetting a different material, leading 

to nonhomogeneous material properties in the final AM build [108]. Secondly, the slicing 

operations can be altered by AM attacks, generating an altered g-code file. The implemented 

alterations cover the whole set of slicing parameters, including printing direction, layer thickness, 

infill path and/or infill percentage [107], [109], [110]. In addition, AM attacks can also be directly 

applied to modify the g-code files. For example, Moore et al. [110] applied an attack on a firmware 

linked to the 3D printer to alter the g-codes by implementing the printing command in an altered 

order. Thirdly, AM attacks can also aim to alter AM process parameters, such as printing speed 

and fan cooling [111], extruding temperature, which can significantly affect the final part quality 

and reliability [102], [109]. 

2.4.3.2 Real-time AM attack detection 

Side-channel analysis and monitoring have been widely used to detect AM part/process 

alteration by leveraging in-situ process measurements, such as acoustic emission, vibration, power 

consumption signals, and videos [107], [109], [112]–[114]. With the help of the above-mentioned 

techniques, a baseline of the signals is firstly established by AM parts which are verified to be 

normal, and then compared with a potentially altered part for alteration detection [115]. It is worth 
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noting that even though some sensors used for side-channel analysis are also widely used in 

process anomaly detection, the purposes of using those sensors are no longer assuring process 

quality but focusing on authenticating the process to its design intent. For example, Belikovetsky 

et al. [114]. conducted a side-channel authentication procedure to detect atomic modification (e.g., 

insertion, deletion, and modification of g-code commands) by analysing the digital audio 

signatures in real time. Liu et al. [106] leveraged the autoencoder method to compress the multi-

stream acceleration signals to detect AM part/process alteration. Yu et al. [116] incorporated 

Machine Learning methods with the multi-modal side-channels for system state estimation for 

process authentication. Most of the side-channel monitoring studies are purely data-driven 

methods and thus heavily rely on a sufficiently large benchmark (or training) dataset which have 

already been verified to be unaltered.  However, the uniqueness of AM processes in producing in 

high variety and low quantity makes it challenging to collect a sufficiently large benchmark dataset 

to train the data-driven models. 

2.5 Condition monitoring of rotary machinery 

In cyber-physical systems, a manufacturing plant can be operated and monitored 

simultaneously at the physical plants with the help of remotely controlled sensors that can collect 

real-time data for process monitoring and decision-making. In general, multi-sensor fusion 

incorporates multi-channel signals collected from the rotary machinery (RM) components for real-

time condition monitoring and fault diagnosis. Different sensing technologies are being used in 

RM component’s fault diagnosis purposes. While signal missing may prevail due to various 

reasons, including sensor sensitivity malfunction, sensor hardware malfunction, and transmission 

disruptions. In light of the above scenarios, section 2.5.1 demonstrates state-of-the-art of different 

sensing technologies for RM component’s fault diagnosis. Subsequently, the state-of-the-art multi-
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sensor fusion techniques can be divided into three levels, i.e., data-level, feature-level, and 

decision-level fusion [117], [118], which are briefly discussed in sub-section of 2.5.2. Section 2.5.3 

seeks the literature of effective method for missing signal imputation for multi-channel sensing 

signals. 

2.5.1 Sensing technologies in RM fault detection and diagnosis 

Advanced sensing technologies provide new capacities for real-time fault detection and 

diagnosis of RM. Various sensors, including accelerometers, microphones, infrared imaging 

sensors, thermocouples, and power loggers, can be attached to the RM system to gather real-time 

process signals [119]–[122]. Among those sensing technologies, vibrations and acoustic emissions 

have been mostly used.  Accelerometers are designed to measure vibration signals based on the 

severity of a shock event [123], [124]. The frequency range of accelerometer data is 8 Hz–15 kHz 

[120]. Generally, accelerometers are attached to the rolling component’s surface for sensing real-

time vibration signals that can be transferred via transmission cables and stored. Vibration signals 

are fundamentally comprised of frequency and amplitude that explain how frequently and how 

much severity of shock events are observed [125]. Multi-channel sensor fusion has been 

incorporated by using vibration signals for RM fault diagnosis [22], [126], [127]. Vibration signal-

based spectrogram analysis is also useful for predicting tool wear in milling operation [128].  

Microphone probes are placed adjacent to the RM for sensing real-time acoustics signals. 

Usually, a microphone probe can capture acoustics signals up to 20kHz [120]. Acoustics signature 

is measured based on bandwidth, power level (decibels), and voltage. Acoustics signal-based 

multi-channel sensor has also been used for machinery fault diagnosis [129], [130]. A 

thermocouple sensor is used for collecting temperature signals from machinery. Recently, 

temperature signal studies have gained popularity for health condition monitoring of RM [131]–
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[133]. Usages of infrared imaging signal are also gained popularity for fault diagnosis of RM [119], 

[134], [135]. Several studies showed that a combination of vibration and acoustics signals is more 

effective than the individual signal analysis method. Moreover, vibro-acoustics based on multi-

sensor fusion has also become popular for anomaly detection of RM [120], [122], [125], [136], 

[137]. 

2.5.2 Condition monitoring based on multi-channel sensor fusion 

Multi sensor fusion incorporates multiple sensors of multi-channel signals for condition 

monitoring of RM. With regard to data managing level of abstraction, multi sensor fusion 

techniques can be divided into three levels of fusion, i.e., data-level fusion, feature-level fusion, 

and decision-level fusion [118], [119] and relevant state of the art has been discussed in the section 

2.5.2.1, 2.5.2.2, 2.5.2.3, respectively.  

2.5.2.1 Data-level sensor fusion 

In the hierarchy of three levels of fusion (data-feature-decision), the lowest level of sensor 

fusion is the data-level that unifies signals from heterogeneous sensors [117], [138]. In data-level 

fusion methods, the most widely used techniques include digital signal processing, weighted 

average, coordinate transforms, and Kalman filtering, independent component analysis (ICA), 

multi-directional imaging with wavelet transform [139], [140], wavelets and hidden Markov 

models [141]. Meanwhile, SVM classifiers can also be used in data-level senor fusion for 

condition-based maintenance (CBM) of brushless DC motor (BLDC). For example, Prasad & Das 

[142] proposes multi-sensor data fusion for condition monitoring of BLDC motors by faulty signal 

classification based on the SVM method. Moreover, Liu & Wang [143] utilized a multi-sensor 

data-level fusion strategy based on the Cascade-Correlation (CC) neural network to diagnose 
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rotating imbalance.  

However, there are some significant limitations associated with data-level fusion methods. In 

these methods, the communication load and processing complexity are usually very high [138]. 

Since the data level fusion exclusively relies on raw signal data that leads to a massive volume of 

data with increased dimensionality. Ultimately, an enormous volume of data transmission is 

required [140]. To address these limitations, an alternative approach is extracting key process 

features and then only transmitting those features for pattern recognition [138]. 

2.5.2.2 Feature-level sensor fusion 

The feature-level fusion is an intermediate level of fusion that incorporates a combination of 

features extracted from heterogeneous sensors. Features are extracted by utilizing digital signal 

processing methods from heterogeneous sensors and then extracted features are fed into Machine 

Learning classifiers for pattern recognition/classification [137]. Implementing multi-sensor fusion 

can be challenging due to the complexity of data structure and their relationship, diversified sensor 

sampling frequency, and high dimensionality of the data [144]. In feature-level sensor fusion, 

several research gaps are prevailing in the anomaly detection and fault diagnosis of the rotary 

machinery. Multi-channel sensor fusion yields a high volume of data for condition monitoring, 

which is challenging for dimension reduction and feature extraction [145].  For high-dimensional 

data handling and feature extraction from a different source of signals, some widely used methods 

include Principal Component Analysis (PCA), High-order Statistics (HOS), and Independent 

Component Analysis (ICA) [146]–[149]. Usually, PCA is restricted to 1-D and 2-D data structures, 

while multilinear-PCA (MPCA) can handle 3-D or 4-D data structure, which is opted to multi-

channel sensor fusion coupled with dimensionality reduction and feature extraction [148], [150]. 

Moreover, MPCA performs better than PCA for reducing data redundancy in high-dimensional 
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tensor space and extracting low-dimensional feature. Additionally, MPCA is essential for original 

signal features for all the tensor modes and in the meantime, it can retain as much as possible data 

variability in the original signals [150].   

In contrast, Convolutional Neural Networks (CNNs) have recently become a popular algorithm 

for anomaly detection in RM. For example, X. Wang et al. [136] incorporated a 1D-convolutional 

Neural Network (CNN) based on vibration and acoustics sensor data for feature extraction and 

classification of bearing fault signals. Hao et al. [126] fused multi-sensors for bearing fault 

diagnosis implementing 1D-convolutional LSTM network. Chen et al. [22] implemented a duplet 

classifier using 1-D CNN for diagnosing bearing and rotor fault from a machinery fault simulator. 

Augmented data-based methods are utilized for RM fault diagnosis based on 1-D CNN 

architecture. However, this proposed method is also limited to the usage of vibration signals [151]. 

While multi-channel signals can also be stacked as 2-D structures and fed into 2-D CNNs [152]. 

Practically CNN network requires data robustness and time-intensive for training, validation, and 

testing purpose [22], [136], [153]. Additionally, In CNN architecture, parameter tuning is also 

quite time-consuming. Shao et al. [154] incorporated a deep autoencoder-based feature learning 

method for RM fault diagnosis. While this proposed method was limited to using only vibration 

signals. 

2.5.2.3 Decision-level sensor fusion 

Decision-level fusion involves making assumptions from a given homogeneous or 

heterogeneous sensor signal. It uses the information already extracted to a particular level of sensor 

data or feature-level processing to create a high-level decision [137], [155]. Bayesian estimation, 

Dempster-Shafer evidence theory, fuzzy logic, and classical inference are commonly used in 

decision-level fusion [140], [156], [157]. T. Wang et al. [157] incorporated decision-level sensor 
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fusion in order to monitor changes in rotary machinery conditions. They used multi-dimensional 

time-series analysis with autoregressive-integrated-moving-average (ARIMA) to detect rotary 

machine status. H. F. Wang & Wang [158] also used a decision-level sensor fusion methodology 

based on Dempster-Shafer algorithms for fault diagnosis of a diesel machine. Several studies 

suggested that feature-level fusion performs better than decision-level fusion, especially in 

classification methods [159]. In decision-level fusion, signal processing complexity is higher than 

in feature-level fusion. Moreover, data load capability in decision-level fusion can handle a small 

amount of information at a time [160]. Meanwhile, feature-level fusion performs better than 

decision-level fusion when heterogeneous sensor signals demonstrate highly diverse sampling 

frequency and non-stationary patterns. 

2.5.3 Missing signal imputation for multi-channel sensing signals 

A systematic state-of-the-art has been conducted based on mechanisms of missing data and 

different imputation methods. Section 2.5.3.1 primarily demonstrated the mechanisms of missing 

data and types of missing data patterns. In section 2.5.3.2, missing data imputation mechanisms 

are briefly discussed.    

2.5.3.1 Missing data patterns and their generating mechanisms 

Missing data problems are widespread in various applications, including industrial, social, 

biomedical, and weather science [161]–[163]. Missing data pattern describes the structure between 

missing entries and observed datasets. Missing data mechanisms refer to probable relations 

between the given variables and missing data [161]. Usually identifying the cause of missing data 

is usually somewhat difficult, but some inferences can help detect the missing data pattern [164]. 

Missing data occurrence can be responsible for various reasons, including sensor failure, sensor 
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aging, hardware malfunction, and transmission interference [165]–[168]. Missing data mechanism 

can be explained by three mutually exclusive categories: a. missing at random (MAR); b. missing 

completely at random (MCAR); c. missing not at random (MNAR)[161], [164], [169]. MAR 

relates the systematic link between one or more calculate variables and the probability of missing 

data [161], [170]. MAR occurrence is not random and explains the systematic missing. 

Additionally, MAR also explains the tendency for missing data that are correlated with associated 

variables [170]. MAR may occur due to transmission interruption that may end up with continuous 

missing signals [165]. For example, in a global navigation satellite system, time series data can be 

missing as MAR due to receiver crashes and power failure [171]–[173]. Offshore wind farms face 

difficulties of supervisory control and data acquisition systems when signals are missing due to 

harsh weather condition that led to sensor failure [174], [175]. MAR occurrence can also be found 

in wireless sensor networks due to sensor’s node communication lost [176]. MCAR occurrence is 

completely haphazard, and the observed data can be assumed a random subsample of the complete 

data. The probability of MCAR data is unrelated of a given variable and also unrelated to other 

variables [170]. In contrast with MAR, MCAR data follow more restrictive conditions because of 

missing data is completely unrelated to the data [161], [170]. For instance, Micro-

electromechanical systems (MEMS) senor malfunctioning can also be explained by MCAR 

behaviour based on its functional level that relates to several factors such as thermomechanical 

failure, electrical failure, and environmental failure [177]. Sound signal loss is also associated with 

MCAR due to malfunctioning microphone’s electro-acoustic sensitivity [178], [179]. MNAR 

exists when the probability of missing data on a given variable is related to the value of itself. 

While other variables can also be controlled. MNAR is likely to be related to unobserved data. 

Similar to the MAR mechanism, there is no straightforward way to confirm that records are MNAR 
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without observing the entries of the missing variables [161]. 

2.5.3.2 Missing data imputation methods 

Missing value recovery can be completed by different imputation techniques, including mean 

substitution that is replace by column mean or median [180].  K- nearest neighbour (KNN) is a 

widely used popular technique for missing data imputation [181], [182]. For example, KNN-based 

missing data imputation is implemented in wireless sensor networks missing sensor data [176]. 

Studies found that KNN performs better using continuous and discrete data [183]. However, the 

KNN-based imputation approach is time intensive since it searches for similar data patterns from 

its neighbours [184]. Different regression models, including multiple linear regression, logistics 

regression, and multinomial logistics regression, are used for missing data imputation. Regression 

models establish a relation between missing and existing features, where existing features are 

defined as predictors. However, this regression shows poor performance when it cannot correlate 

missing and existing features [184], [185]. Fuzzy c-means clustering techniques applied for 

missing data imputation that seeks the related features of a missing feature, and multiple linear 

regression and support vector regression are utilized for the particular features from fuzzy cluster 

[162]. While this proposed method failed to select automatic parameter selection in the regression 

model.  In the state-of-the-art, deep learning models are widely used in the missing data imputation 

approach. Artificial neural network (ANN) is also a popular method for missing data imputation 

[163], [175]. Overfitting occurrences can be found in ANN when it shows good performance in 

the training dataset but fails to perform better in the testing dataset [175]. In the biomedical field, 

the missing data imputation approach is also popular by using recurrent neural network (RNN) 

[186], [187]. RNN showed better performance on missing pattern prediction. In [186] method, the 

proposed model was restricted to explain the correlation between missing pattern and prediction 
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task. Compressed Sensing -based on missing data imputation is utilized to condition monitoring 

of wind turbines [188]. However, Compressed Sensing-based on missing data imputation 

computational time is substantially high [189], [190].  

Tensor completion methods are also widely used for high-dimensional missing data 

imputation. Tensor completion tasks can be categorized into several approaches, including 

decomposition/factorization-based, trace-norm based, and some other probabilistic methods. 

Tensor factorization coupled with tensor completion task is aligned to underlying factors based on 

partially observed data, and incorporating a multi-linear generative model assumption with fixed 

rank enables the prediction of missing entries [20], [191], [192]. Most widely used tensor 

decomposition approach includes CANDECOMP/PARAFAC (CP) and Tucker decomposition 

[193]–[197]. Tensor factorization with missing data has been conducted with several approaches 

including weighted least square problem termed as CP weighted optimization (CPWOPT) [198], 

CP with nonlinear squares (CPNLS) [203], geometric nonlinear conjugate gradient (geomCG) 

[199]. Still, the tensor factorization shows the tendency of overfitting because of incorrect tensor 

rank approximation and estimations of underlying factors that lead to poor predictive performance. 

In contrast, significant research work has also been conducted missing data imputation based on 

low-rank tensor completion (LRTC) [20].  Musialski et al. [19] incorporated Gaussian residual-

based expectation maximization (EM) approach in Tucker decomposition with smoothing scheme 

coupled with fast low rank tensor completion (FaLRTC) and high accuracy low rank tensor 

completion (HaLRTC). Certain probabilistic CP decomposition techniques with Bayesian 

inference are also suggested for resolving missing entries estimation problem. This method is 

based on log-likelihood function that deletes the missing values from likelihood functions to deal 

with missing values and perform imputation [200]. However, tensor rank minimization based on 
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nuclear norm relies on parameter tuning approach, which performs over or under-estimating the 

true tensor rank. Tensor rank determination considers NP-complete because there is no simple 

algorithm for computer rank even with a given specific tensor [201]. Seeking the state-of-the-art 

solution, we have adopted a fully Bayesian CANDECOMP/PARAFAC (FBCP) factorization with 

low-rank determination method for missing data imputation from a machinery faults simulator 

(MFS) with diverse bearing faults signals.   
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CHAPTER III 

SECURING CYBER-PHYSICAL ADDITIVE MANUFACTUING SYSTEMS BY IN-SITU 

PROCESS AUTHENTICATION USING STRAMLINE VIDEO ANALYSIS 

3.1 Motivation and challenges 

The increased interconnectedness in CPS has greatly enhanced the automation and productivity 

for modern manufacturing systems [3], in which cyber-physical security is of utmost importance 

for both quality and safety assurance. Malicious attacks can significantly affect a manufacturing 

system, altering machine parameters and product design, ultimately resulting in compromised 

products [107]. For example, the cyber-physical attack in the German steel mill in 2014 resulted 

in loss of control for the regulation of crucial parameters, leading to a massive blast of a furnace 

and even deaths of two workers [33]. Such catastrophic incidences of cyber-physical attacks show 

an urgent need in protecting manufacturing systems, identifying cyber threats, and detecting 

cyberattacks as soon as they occur. In the area of additive manufacturing (AM), the CPS provides 

unique opportunities for cost-effective production planning and control and enables new methods 

of collaboration where [202]–[204] all the AM machines can be operated and controlled remotely 

without human operator intervention [13]. The digital threads not only facilitate effective digital 

file sharing for design iteration, but also create significant risks of malicious cyberattacks, which 

are considered as a growing concern in AM systems. Maliciously alterations in the design files 

and process parameters could significantly affect final part’s geometry, structural stability, 

mechanical performance, and functionality. What’s worse, the layer-by-layer fashion of the AM 
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processes dramatically expands the victim space for potential alteration, leading to significantly 

changed structural compromises which are very challenging to detect [106], [205]. For example, 

internal structure changes, such as infill percentage, infill pattern, and unintended void addition, 

cannot be easily detected in the traditional Geometric Dimensioning and Tolerancing (GD&T) 

framework except for using either X-ray inspection, which are very time-consuming [89].  

The AM process in a typical CPS is comprised of design (i.e., CAD design and STL file 

generation), slicing (i.e., G-codes generation), manufacturing (i.e., AM fabrication), and inspection 

[13], [112], [206]. Figure 3.1 illustrates the major steps of AM processes in a typical CPS, with 

red arrows illustrating the data/information transfer and green arrows showing the material flow. 

In general, cyberattacks may target on all the phases which involve data or information transfer, 

and typical attacks include inserting additional undesirable features in the original CAD design 

[207], altering processing parameters in generating the g-code [115], and injecting fake process 

data to mislead quality control decision making [206]. It is worth noting that most of the 

abovementioned process alterations can be manifested by the change in the printing path of the 

AM processes.  

 

Figure 3.1 Material and information flow in CPS of AM. 
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Various types of sensors, including thermal couples, infrared (IR) imaging, accelerometers, 

microphones, power meters, can be potentially used to detect printing path alteration in AM 

processes [10], [15], [16]. However, the anomaly detection results are generally difficult to 

interpret. In addition, in-situ AM process authentication can be facilitated through optical imaging 

during the AM build. For example, in Figure 3.2, the images in the top row provide the slicing 

results of a square-shaped cross-sectional layer using different infill orientation angles, and the 

images in the bottom row illustrate their corresponding distribution of the texture orientation 

angles. It is observed that the layer-wise texture geometric feature distribution is largely 

determined by the printing path of the layer, and thus can be used as an informative and 

interpretable feature to detect printing path alteration.  

 

Figure 3.2 Different geometric feature distribution due to printing path alterations. 
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The texture of each layer can be observed by an optical camera which captures streamline 

video during the printing process. The advantages of the optical cameras include their cost-

effectiveness and enhanced interpretability compared to other sensing technologies (such as 

acoustic emission and acceleration) [18], [208]. However, capturing a layer-wise image after 

fabricating each layer like the ones in the first row of Figure 3.2 may introduce significant 

interruptions in the fabrication, resulting in extended printing time. Therefore, an optical 

microscope attached to the extruder of the 3D printer can be used as an alternative solution to 

continuously capture streamline videos without any process interruptions [99]. Nevertheless, there 

are challenges in using the streamline videos captured by those optical cameras. First, the 

streamline video data are highly noisy due to the inevitable vibration of the microscope attached 

to the extruder during the printing process. Secondly, the field of view of the camera is changing 

since the camera is attached to the extruder, resulting in unstable contrast in the images over time 

and space due to dynamic light conditions. Third, the streamline videos are usually in high 

dimension and large volume. In summary, the in-situ process streamline video data are high-

volume but low-quality. Therefore, how to extract low-dimensional informative layer-wise 

features from the streamline video with low signal-to-noise ratio (SNR) is an open challenge for 

effective AM process authentication. 

3.2 Technical contribution of this work 

In this paper, a new AM process authentication method is proposed to extract critical features 

from the high-volume, low-quality streamline videos collected from the camera attached to the 

printing head. The overall framework of the proposed methodology has three major phases: 1) 

Image-level texture feature extraction, which applies adaptive image filtering to retain the 

segmented regions (SRs) that demonstrate high contrast and are relevant to the printing path; 2) 
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Layer-wise feature extraction based on the geometric feature distribution of SRs, which constructs 

the layer-wise texture descriptor tensor (LTDT)  to characterize the layer-wise texture distribution; 

and 3) Dimension reduction for the LTDTs based on multilinear principal component analysis 

(MPCA), which extracts low-dimensional features from the LTDTs to develop a Hotelling T2 

control chart for alteration detection. The effectiveness of the proposed method is evaluated by 

comparing with the benchmark method, which leverages the gray-level cooccurrence matrix 

(GLCM) to extract multivariate textural features [99] and the autoencoder technique to compress 

the high dimensional features. 

The rest of the paper is organized as follows. Section 3.3 introduces the proposed methodology 

in detail. A case study based on the fused filament fabrication (FFF) process is demonstrated and 

the effectiveness of the proposed method is validated in Section 3.4. The conclusion and future 

work are summarized in Section 3.5. 

3.3 Proposed methodology 

In this section, subsection 3.3.1 firstly introduces the layer-wise texture descriptor tensor 

(LTDT), and subsection 3.3.2 describes the procedure of constructing the LTDT using the in-situ 

layer-wise video. Subsequently, subsection 3.3.3 introduces the dimension reduction for the 

LTDTs using multilinear principal component analysis (MPCA) and real-time monitoring based 

on the Hotelling T2 control charting technique. The overall proposed methodology is illustrated in 

Figure 3.3. 
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Figure 3.3 An overview of AM process authentication based on in-situ video analysis. 

3.3.1 Layer-wise texture descriptor tensor 

In CPS, most attacks aim to change the AM parts’ internal structures, including infill pattern, 

infill percentage, and other structural features, since they are difficult to detect by traditional 

process monitoring methods. All the features of the internal structures are determined by the AM 

printing path, which can be captured by the textures observed from the in-situ videos. The layer-

wise texture distribution contains critical information for the AM printing paths, and thus can be 

extracted to authenticate AM processes. Therefore, a novel layer-wise texture descriptor tensor is 

proposed in this section to characterize the distribution of the geometric features of the segmented 

texture. 

Definition 1: Layer-wise texture descriptor tensor (LTDT). An 𝑅-th order LTDT of the 𝑙-th 

layer, denoted as 𝒵𝑙 ∈ ℕ0
𝐷1×…×𝐷𝑅 , is constructed with each mode representing the 𝑟-th geometric 

feature of the segmented textures obtained from the layer-wise imaging (𝑟 = 1, 2, … , 𝑅), where 
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ℕ0 denotes the set of non-negative integers. The LTDT contains the multivariate geometric feature 

distribution of the textures in the layer-wise image(s). It is worth noting that the LTDTs extracted 

from the same printing path design are assumed to be independently and identically distributed 

(i.i.d.) for the following reasons. First, the distribution of the LTDTs can be uniquely determined 

by the layer-wise printing path as illustrated in the Figure 3.2, and therefore, given the same 

printing path, the LTDTs should come from the same distribution. Second, the correlation between 

the consecutive layers can be regarded negligible if the microscopic camera is focused on the 

proximity of the printing nozzle. In this case, the observed printed texture in the area of interest 

will be mainly affected by the printing path of current layer, instead of its previous layer. 

Proposed procedure for LTDT construction. 

Without losing generality, this paper introduces the proposed approach for constructing LTDT 

when 𝑅 = 3. However, the proposed method can be naturally extended to cases with 𝑅 > 3. 

Image-level texture extraction and characterization. Each image frame in the video captured is 

firstly cropped to obtain the region of interest (ROI), which only retains the printed layer surface 

in the ROIs. Subsequently, adaptive image thresholding methods are used to adaptively segment 

the texture in the ROIs based on the local intensity in the neighbourhood of each pixel [208]. The 

locally adaptive algorithm automatically adjusts for varying background intensity levels due to 

spatially and temporally varying lighting conditions. As a result, it automatically discards the low 

contrast areas in the ROIs, which significantly reduces the data volume. The image pixels are 

segmented into two groups of regions: one group (labelled as “zero”) represents the background, 

and the other (labelled as “one”) represents segmented texture, which characterize the printing 

paths. 
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Definition 2: Segmented Region (SR). A segmented region is defined as a continuous region 

in the images that is labelled as “one” resulted from the adaptive image thresholding. The 𝑘-th SR 

captured from the 𝑙-th layer is denoted as 𝑆𝑅𝑘
𝑙 , where 𝑘 = 1,2, … , 𝐾𝑙 and 𝐾𝑙 denotes the number 

of SRs in the 𝑙-th layer. For 𝑆𝑅𝑘
𝑙  (𝑘 = 1,2, … , 𝐾𝑙), four geometric features are calculated by 

approximating its shape using the ellipse that has the same second moment, as listed below.  

1) The Orientation of 𝑆𝑅𝑘
𝑙  is defined as the angle between the major axis of the SR’s 

approximating ellipse and the horizontal axis, as illustrated in Figure 3.4. It approximates the 

printing path direction. The orientation of 𝑆𝑅𝑘
𝑙  is denoted as 𝑜𝑘

𝑙 , where −90° < 𝑜𝑘
𝑙 ≤ 90° (𝑘 =

1,2, … , 𝐾𝑙), where 𝐾𝑙 denotes the number of SRs in the 𝑙-th layer. 

2) The Major Axis Length of 𝑆𝑅𝑘
𝑙  is defined as the length of the major axis of the 

approximating ellipse of the SR. It approximates the observed length of the printing path. The 

major axis length of 𝑆𝑅𝑘
𝑙  is denoted as 𝑚𝑘

𝑙  (𝑘 = 1,2, … , 𝐾𝑙). The unit of 𝑚𝑘
𝑙  can be the number of 

pixels in the captured image.  

3) The Minor Axis Length of 𝑆𝑅𝑘
𝑙  describes the length of the minor axis of estimating the 

ellipse of 𝑆𝑅𝑘
𝑙 . It approximates the width of the printing path, and 𝑛𝑘

𝑙  (𝑘 = 1,2, … , 𝐾𝑙) is used to 

denote the minor axis length of 𝑆𝑅𝑘
𝑙 . The unit of 𝑛𝑘

𝑙  can be the number of pixels in the captured 

image. 

4) The Eccentricity of 𝑆𝑅𝑘
𝑙  describes the shape of 𝑆𝑅𝑘

𝑙 . It is defined as the ratio of the distance 

between the foci and major axis length of the ellipse with the same second moment as 𝑆𝑅𝑘
𝑙 , and 

denoted as 𝑒𝑐𝑘
𝑙  (𝑘 = 1,2, … , 𝐾𝑙) with 0 < 𝑒𝑐𝑘

𝑙 < 1. The smaller the  𝑒𝑐𝑘
𝑙  value gets, the closer 𝑆𝑅𝑘

𝑙  

is to a circle. It is worth noting that the texture resulted from the printing path should demonstrate 

a large eccentricity value.  
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The reason for selecting those features is that their distribution over the entire layer provides 

critical information for the printing path of various AM processes. An illustration example of the 

geometric features of an SR is shown in Figure 3.4, where one SR is included as the white 

continuous region (labelled as “one”) on the black background (labelled as “zero”), the 

approximating ellipse is denoted as the golden ellipse, and the other relevant features, i.e., 

orientation, major and minor axis length of the SR, are also illustrated.  

 

Figure 3.4 Illustrated of the extracted geometric features where the white region represents an 

SR segmented from the ROI. 

In the proposed framework, the eccentricity is used to remove the irrelevant SRs which have a 

small eccentricity value, which are probably irrelevant to the printing path. This is based on the 

premise that the printing paths related SRs are generally long segments with a large length to 

diameter (L/D) ratio. The threshold for this region filtering can be determined based on the nominal 

printing path. For example, for parts with infill patterns resulting in long printing paths like the 
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rectilinear pattern, the filtering threshold should be set higher. In general, a larger threshold value 

for eccentricity will result in fewer filtered SRs. 

3.3.2 Layer-wise geometric feature distribution characterization 

To construct the LTDT, the distribution of SRs’ geometric features is characterized using a 

rasterization algorithm. A set of regions are retained in the 𝑙-th layer after filtering, denoted as 

{(𝑜𝑘
𝑙 , 𝑚𝑘

𝑙 , 𝑛𝑘
𝑙 )|𝑒𝑐𝑘

𝑙 ≥ 𝑇𝑒𝑐}, where 𝑜𝑘
𝑙 , 𝑚𝑘

𝑙 , 𝑛𝑘
𝑙 , and 𝑒𝑐𝑘

𝑙  represents the orientation, major and minor 

axis length, and eccentricity of 𝑆𝑅𝑘
𝑙 , respectively, and 𝑇𝑒𝑐 represents the threshold value of the 

eccentricity in the region filtering. Given a predefined bin size, i.e., (𝑠𝑂, 𝑠𝑀 , 𝑠𝑁), and ranges of 

these three features, i.e., (𝑙𝑂, 𝑢𝑂), (𝑙𝑀 , 𝑢𝑀) and  (𝑙𝑁 , 𝑢𝑁), the observed number of SRs in each bin 

can be calculated, where 𝑙𝑂, 𝑙𝑀, and 𝑙𝑁 represent the lower bounds of the ranges and 𝑢𝑂, 𝑢𝑀, and 

𝑢𝑁 represent the upper bounds of the ranges, respectively. Without losing generality, The 

rasterization algorithm to generate the LTDTs is illustrated in Figure 3.5. As a result, the LTDT is 

represented as a 3rd-order tensor 𝒵𝑙 ∈ ℕ0
𝐷𝑂×𝐷𝑀×𝐷𝑁 , where 𝐷𝑂 = ⌈

𝑢𝑂−𝑙𝑂

𝑠𝑂
⌉ , 𝐷𝑀 = ⌈

𝑢𝑀−𝑙𝑀

𝑠𝑀
⌉ and 

𝐷𝑁 = ⌈
𝑢𝑁−𝑙𝑁

𝑠𝑁
⌉. In addition, each element in 𝒵𝑙 can be calculated in Eq. (3.1) 

 

∑ [(

𝑙𝑂 + (𝑜 − 1)𝑠𝑂

𝑙𝑀 + (𝑚 − 1)𝑠𝑀

𝑙𝑁 + (𝑛 − 1)𝑠𝑁

) ≤ (

𝑜𝑘
𝑙

𝑚𝑘
𝑙

𝑛𝑘
𝑙

) < (
𝑙𝑂 + 𝑜𝑠𝑂

𝑙𝑀 + 𝑚𝑠𝑀

𝑙𝑁 + 𝑛𝑠𝑁

)]

𝐾𝑙

𝑘=1

 (3.1) 

 

where [∙] refers to the Iverson bracket, i.e., 

[𝑄] = {
1, if 𝑄 is true  
0, if 𝑄 is false

 

where 1 ≤ 𝑜 ≤ 𝐷𝑂,  1 ≤ 𝑚 ≤ 𝐷𝑀 and 1 ≤ 𝑛 ≤ 𝐷𝑁, and 𝐾𝑙 represents the total number of SRs in 

the 𝑙-th layer. Due to the sparsity and high dimensionality of  𝒵𝑙, it is necessary to further extract 
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the key information from 𝒵𝑙  for monitoring. Given its effectiveness in reducing the dimensionality 

of high-dimensional tensors, MPCA is used in dimension reduction of the LTDTs for process 

alteration detection.  

 

Figure 3.5 Rasterization to generate the LTDTs. 

3.3.3 Dimension reduction from geometric feature distribution 

The LTDT, denoted as 𝒵𝑙 ∈ ℕ0
𝐷𝑂×𝐷𝑀×𝐷𝑁 , is a 3rd-order tensor with the following properties: 

1) all the elements in the tensor are non-negative integers and the distribution of those elements is 

right skewed; 2) the LTDTs are of  high dimension and the elements in the tensor are highly 

correlated; 3) The LTDTs are sparse tensors, which means there are a lot of zeros in the tensor. 

Therefore, dimension reduction methods are needed to compress the LTDTs and extract critical 
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features for effective process authentication. To avoid numerical issues in tensor decomposition, 

a log-link function is used to transfer the original elements in the LTDTs to reduce its skewness. 

In addition, to retain the same lower bound (i.e., zero) and sparsity of the tensor after 

transformation, each element in 𝒵𝑙 is shifted by 1, as illustrated in Eq. (3.2). Based on the standard 

multilinear algebra, the tensor 𝒳𝑙 can be expressed as in Eq. (3.3).  

𝒳𝑙 = log (𝒵𝑙 + 1) (3.2) 

 

𝒳𝑙 = 𝒢𝑙 ×1 𝐔𝑂 ×2 𝐔𝑀 ×3 𝐔𝑁 (3.3) 

 

where 𝒢𝑙 = 𝒳𝑙 ×1 𝐔𝑂
𝑇 ×2 𝐔𝑀

𝑇 ×3 𝐔𝑁
𝑇, and 𝐔𝑂, 𝐔𝑀 and 𝐔𝑁 are orthogonal projection matrices 

corresponding to the mode of the orientation, major and minor axis length, respectively. 𝒢𝑙 

represents the core tensor with reduced dimension 𝑑𝑂 × 𝑑𝑀 × 𝑑𝑁, where 0 < 𝑑𝑂 < 𝐷𝑂, 0 < 𝑑𝑀 <

𝐷𝑀 and 0 < 𝑑𝑁 < 𝐷𝑁, and 𝒢𝑙 can be used as the extracted features. Since the LTDTs are usually 

high-dimensional and sparse, tensor decomposition can be used to extract low dimensional features 

for alteration detection. Multilinear principal component analysis (MPCA) determines a 

multilinear projection that captures most variations in the original LTDTs. The objective of MPCA 

is to find the projection matrices, i.e., 𝐔𝑂, 𝐔𝑀 and 𝐔𝑁, which maximize the total tensor scatter in 

𝒢𝑙, denoted by ψ𝒢, as illustrated in Eq. (3.4). 

{𝐔𝑂 , 𝐔𝑀 , 𝐔𝑁 } = arg max
𝐔𝑂 ,𝐔𝑀 ,𝐔𝑁

ψ𝒢 (3.4) 
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 To solve the optimization problem in Eq. (4), the problem is decomposed into a series of 

projection subproblems, where the projection matrices are iteratively updated. Figure 3.6 

illustrates the pseudocode for implementing the MPCA algorithm, which is adapted from [197].  

 

Figure 3.6 The MPCA algorithm for projection matrix estimation. 

Given training data set with several verified healthy layers, the projection matrices can be 

estimated based on the algorithm in Figure 3.6, and low-dimensional features can be extracted to 

Input: A set of nominal layers’ geometric features distribution {𝒵𝑙 ∈ ℝ𝐷𝑂×𝐷𝑀×𝐷𝑁 , 𝑙 = 1,2, … , 𝐿𝑡𝑟} 

Output: Low dimensional features 𝒢𝑙 and projection matrices �̃�𝑂 ∈ ℝ𝐷𝑂×𝑑𝑂 , �̃�𝑀 ∈ ℝ𝐷𝑀×𝑑𝑀 and �̃�𝑁 ∈ ℝ𝐷𝑁×𝑑𝑁 

Algorithm: 

Step 1 (Element-wise Transferring and Centering): 

1.1 Transfer the original tensor as {𝒳𝑙 = log (𝒵𝑙 + 1)} 

1.2 Center the benchmark samples as {�̃�𝑙 = 𝒳𝑙 − �̅�, 𝑙 = 1,2, … , 𝐿𝑡𝑟}, where �̅� =
1

𝐿𝑡𝑟
∑ 𝒳𝑙

𝐿𝑡𝑟
𝑙=1 . 

Step 2 (Initialization): 

2.1 Calculate the eigen-decomposition of 𝚽(𝑗)∗ = ∑ �̃�𝑙(𝑗)�̃�𝑙(𝑗)
𝑇𝐿𝑡𝑟

𝑙=1  (𝑗 = 1,2,3) and set �̃�𝑂, �̃�𝑀 and �̃�𝑁 to consist of the 

eigenvectors corresponding to the most significant 𝑑𝑂, 𝑑𝑀 and 𝑑𝑁  eigenvalues, respectively. Here �̃�𝑙(𝑗) represents the 

unfolded matrix of �̃�𝑙 along the 𝑗-th mode. 

2.2 Calculate {�̃�𝑙 = �̃�𝑙 ×1 �̃�𝑂
𝑇

×2 �̃�𝑀
𝑇

×3 �̃�𝑁
𝑇
, 𝑙 = 1,2,3 … , 𝐿𝑡𝑟}, 

2.3 Calculate ψ𝒢0
= ∑ ‖�̃�𝑙‖

𝐹

2𝐿𝑡𝑟
𝑙=1  

Step 3 (Optimization): 

For 𝑝 = 1: 𝑃 

Update �̃�𝑂: Set the matrix �̃�𝑂 to consist of the 𝑑𝑂 eigenvectors of the matrix 𝚽(1) = ∑ �̃�𝑙(1) ∙ �̃�𝑂 ∙ �̃�𝑂
𝑇

∙ �̃�𝑙(1)
𝑇𝐿𝑡𝑟

𝑙=1 , 

corresponding to the largest 𝑑𝑂 eigenvalues. 

Update �̃�𝑀: Set the matrix �̃�𝑀 to consist of the 𝑑𝑀 eigenvectors of the matrix 𝚽(2) = ∑ �̃�𝑙(2) ∙ �̃�𝑀 ∙ �̃�𝑀
𝑇

∙
𝐿𝑡𝑟
𝑙=1

�̃�𝑙(2)
𝑇 , corresponding to the largest 𝑑𝑀 eigenvalues. 

Update �̃�𝑁: Set the matrix �̃�𝑁 to consist of the 𝑑𝑁 eigenvectors of the matrix 𝚽(3) = ∑ �̃�𝑙(3) ∙ �̃�𝑁 ∙ �̃�𝑁
𝑇

∙ �̃�𝑙(3)
𝑇𝐿𝑡𝑟

𝑙=1 , 
corresponding to the largest 𝑑𝑁 eigenvalues. 

Calculate {�̃�𝑙, 𝑙 = 1,2,3 … , 𝐿𝑡𝑟} and ψ𝒢𝑝
. 

If ψ𝒢𝑝
− ψ𝒢𝑝−1

< 𝜀, break and output projection matrices, �̃�𝑂, �̃�𝑀 and �̃�𝑁. 

Step 4 (Projection): For any newly collected layer, the low-dimensional features are calculated as {𝒢𝑙 =

(𝒳𝑙 − �̅�) ×1 �̃�𝑂
𝑇

×2 �̃�𝑀
𝑇

×3 �̃�𝑁
𝑇
, 𝑙 = 1,2,3 … , 𝐿𝑡𝑟}. 
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describe the major variability in the LTDTs. Subsequently, the Hotelling 𝑇2 control charting 

scheme can be applied to the extracted multivariate features [209]. Based on the features extracted 

from the training set, the covariance matrix (denoted as 𝑆𝒢) can be estimated. When a new part is 

fabricated and the streamline video data collected, the Hotelling 𝑇2 monitoring statistics of the 𝑙-

th layer is calculated in Eq. (3.5). 

𝑇𝑙
2 = vec(𝒢𝑙)

𝑇(𝑆𝒢)
−1

vec(𝒢𝑙) (3.5) 

 

where vec(∙) denotes the function to vectorize the resulting low dimensional tensor, and 𝒢𝑙 denotes 

the low-dimensional features extracted based on the projection matrices obtained from the training 

data. The upper control limit (UCL) of the control chart can be determined as the empirical 

100 × (1 − 𝛼)% quantile of the monitoring statistics based on the Phase I data, where 𝛼 is the 

pre-determined Type I error rate. Process authentication alarm rule is that whenever the monitoring 

statistic 𝑇𝑙
2 exceeds the pre-determined UCL, the printing path of the 𝑙-th layer of the tested build 

is altered, and the printing process should be terminated for further investigation.  

3.4 Case study 

This section investigates the performance of the proposed methodology based on a fused 

filament fabrication (FFF) process which is equipped with a microscope camera to capture 

streamline videos. The experimental setup and data collection are described in Section 3.4.1, and 

the results are summarized and discussed in Section 3.4.2. 

3.4.1 Experimental setup and data collection 

An FFF-based 3D printer (Prusa i3 MK3S) was used for data collection. A Teslong Portable 

MS 100 USB microscope was attached to the extruder head and focused on the nozzle tip while 
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continuously capturing streamline videos from the fabricated surface. The camera’s frame rate is 

25 Hz, and the resulting resolution of each frame is 480 × 640. Figure 3.7 (a) and (b) illustrate 

the experimental setup with the real-time video shown on the screen of the laptop. In addition, 

Figure 3.7 (c) shows five example frames captured from the fabrication of one layer with solid 

infill of the rectilinear pattern; and Figure 3.7 (d) shows example image frames captured from the 

fabrication of one layer with a square shaped hollow feature included. It can be observed that the 

image contrast varies significantly within the same image and among multiple images.   

 

Figure 3.7 Demonstration of the experimental setup (a and b) and sample images (c and d). 

This case study intends to simulate two scenarios of the cyberattacks, i.e., varying the infill 

orientation (Group B) and altering the STL files (Group C). As illustrated in Figure 3.9, both 

cyberattack scenarios considered result in changes the printing path, and thus alter the entire AM 
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chain starting from the slicing phase. Three different groups of parts were fabricated, in which 

Group A is the nominal part, and Group B and C are altered parts with printing path rotated and 

undesired feature added, respectively. Table 3.1 summarizes the part dimension and infill 

orientation of the three groups. The feedstock material used was the filament of polylactic acid 

(PLA) with a cross-sectional diameter of 1.75 mm. The printing parameters used for all the parts 

are summarized in Table 3.2, which remain the same and therefore excluded from the analysis in 

this study. Four parts in total were fabricated, among which two parts belong to Group A, and the 

other two are from Group B and C, respectively. Figure 3.8 illustrates the cross sections of the 

three printed parts which belong to Group A, B, and C, respectively. 

 

Figure 3.8 Illustration of three groups of parts. 

 

Figure 3.9 Cyberattack scenarios simulated in the case study. 
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Table 3.1 Model dimensions and infill parameters. 

Part Group 
A  

(Nominal) 

B  

(Altered) 

C 

(Altered) 

Dimensions 

(L × W × H) (mm) 
30 × 30 × 10 

Undesired feature 

(L× W × H) (mm) 
NA NA 10 × 10 × 5 

Infill orientation (degree) 45 90 45 

Build time (second) 3,761 3,812 3,550 

Table 3.2 Printing parameters shared by all the three groups. 

Parameter Value Parameter Value 

Infill (%) 100 Printing speed (mm/s) 20 

Extrusion width (mm) 0.5 Nozzle temperature (°C) 200 

First layer thickness (mm) 0.4 Bed temperature (°C) 65 

Layer thickness (mm) 0.3 Number of layers 33 

 

3.4.2 Results and discussion 

This section demonstrates results and discussion of this case study. Selection of benchmark 

method and parameter estimation for both proposed and benchmark methods discuss in section 

3.4.2.1 and 3.4.2.2, respectively.  

3.4.2.1 Benchmark method selection 

The image-based monitoring and control method for the FFF process proposed in Liu et al. 

[101] was adopted as the benchmark method for alteration detection, because it is the most recent 

study on anomaly detection by leveraging texture analysis of real-time optical images. In the 

benchmark method, a variety of textural statistics were extracted based on the gray-level co-

occurrence matrix (GLCM), and the multivariate statistics are compressed using the autoencoder 

technique [210], which has been demonstrated as an effective data compression method in [106]. 

This method is mainly focused on the defect detection and its effectiveness has been validated in 

[99] in through the comparison between the conventional Machine Learning approaches. It is 
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worth noting that the benchmark method is proposed for image-wise anomaly detection. Therefore, 

to achieve layer-wise alteration detection, the arithmetic mean of the image-wise monitoring 

statistics across each entire layer was used as the layer-wise monitoring statistic. Another potential 

benchmark method is proposed by Bui and Apley [211], which proposed a stochastic textured 

surface modelling approach for high-dimensional images. However, the method is not applicable 

to the problem in this paper, because their modelling approach requires to establish a benchmark 

textured surface for monitoring and anomaly detection. In the streamline video captured from the 

3D printing process, it will be quite cumbersome to find the unique benchmark textured surface 

for all the images due to dynamic nature of the ROIs captured. Therefore, this method is not 

adopted as a second benchmark method to compare with the proposed approach. 

3.4.2.2 Parameter estimation for both methods 

For both methods, image pre-processing was implemented. For the proposed method, the ROI 

was cropped by removing the region above the nozzle tip, resulting in the ROIs of size 315 × 637. 

For the benchmark method, the ROI cropping suggested in [99], resulting in the ROIs of size 

80 × 80. All the 33 layers of each part except for the first layer were used since the textural 

information in the first layer is not comparable with any of the subsequent layers. For both 

methods, all the layers of the first part in Group A were used as the training data set for necessary 

parameter estimation. This includes projection matrices estimation in MPCA and covariance 

matrix estimation for the 𝑇2 monitoring statistics for the proposed method, and the training of 

autoencoder for the benchmark method. Furthermore, randomly selected 75% layers of the second 

part in Group A were used as Phase I data for control limit determination. The remaining 25% 

layers of the second part of Group A and all the layers of Group B and C were used as the Phase 

II data to evaluate the performance. The random split between Phase I and Phase II data was 
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repeated for 100 times, and the average performance was summarized. It is also worth noting that, 

for the proposed method, the parameter estimation and UCL determination for the odd and even 

number of layers need to be separated, because the texture distributions of the odd and even 

number of layers in Group A are different. In Phase II, whenever the monitoring statistic exceeds 

the pre-determined UCL, the control chart will signal and that corresponding layer is detected as 

an altered layer; otherwise, the layer is regarded as unaltered. A test run example is illustrated in 

Figure 3.10. 

 

Figure 3.10 Average layer-wise computation time comparison. 

3.4.3 Results comparison and discussion 

The performance metrics used to evaluate the proposed and benchmark methods include 

recall, precision, F-score, and overall accuracy, which are defined in the Eq. (3.6), Eq. (3.7), Eq. 

(3.8) and Eq. (3.9), respectively in the below based on the elements in the confusion matrix. 
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Recall =
TP

TP + FN
 (3.6) 

 

Precision =
TP

TP + FP
 (3.7) 

 

Fscore = 2 ×
Precision × Recall

Precision + Recall
 (3.8) 

 

Accuracy =
TP + TN

TP + TN + FP + FN
 (3.9) 

 

where true positive (TP) denotes the number of altered layers which are predicted accurately as 

altered, whereas true negative (TN) represents the unaltered layers which are accurately predicted 

as unaltered. In addition, false-negative (FN) denotes inaccurate prediction of altered layers as 

unaltered, while false positive (FP) represents inaccurate prediction of the layers which are 

unaltered but predicted as altered. F − score is the harmonic mean of precision and recall, and the 

overall accuracy is the percentage of accurately classified layers within all the Phase II layers 

evaluate. To assess the feasibility for real-time analysis, the computational efficiency of the 

proposed and benchmark methods is also evaluated and compared.  

There are two tuning parameters used in the proposed method: 1) the threshold value of 

eccentricity used in the SR filtering, denoted as 𝑇𝑒𝑐; and 2) the number of MPCs retained in the 

monitoring statistics, denoted as 𝑑𝑝𝑐. To test the robustness of the proposed method, both tuning 

parameters are varied, and the performance of the proposed method is summarized in Table 3.3. It 

can be observed that the proposed method outperforms the benchmark method within the wide 

range of the tuning parameters for all the performance metrics evaluated. Even though the 

proposed method demonstrates good performance in all the combinations of tuning parameters 
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tested, some trends are still visible in Table 3.3. Based on the F-score values, the best performing 

rows within each given 𝑇𝑒𝑐 value have been bolded in Table 3.3. It can be observed that when the 

𝑇𝑒𝑐 value is small to medium (i.e., 0.85, and 0.9), the proposed method performs best using 

relatively large 𝑑𝑝𝑐 values (i.e., 10). When the 𝑇𝑒𝑐 value is medium to large (i.e., 0.95 and 0.98), 

the proposed method performs best using relatively small 𝑑𝑝𝑐 values (i.e., 5). The reason behind 

this observation is that smaller (larger) 𝑇𝑒𝑐 values, in general, lead to more SRs retained and less 

sparse LTDTs. Therefore, more (fewer) MPCs are potentially needed to capture the major 

variations in the extracted LTDTs for effective alteration detection.  

The major reason for the inferior performance of the benchmark method is that their method 

works under the underlying premise that the GLCM based features can fully characterize the 

textured surfaces captured. However, in the real-world AM fabrication, the lighting condition and 

image contrast are varying significantly over time due to the high printing speed, making the 

GLCM features limited in characterizing these complex stochastic textured surfaces. To evaluate 

the computational efficiency of the proposed method, the average computation time is summarized 

in Figure 3.10. Since the different 𝑑𝑝𝑐 values ranging from 2 to 12 do not significantly affect the 

computation time, the computation time is only compared based on different 𝑇𝑒𝑐 values (Intel® 

Core™ Processor i7-7700 CPU @ 3.60GHz). It can be observed that even though the proposed 

method is less efficient compared with the benchmark method, both are significantly shorter than 

the layer-wise build time. Within different tuning parameters used in the proposed method, it is 

also observed that when the 𝑇𝑒𝑐 value is small, the variation of computation time is higher than 

when the 𝑇𝑒𝑐 value is medium or large. Furthermore, the average computation time decreases 

slightly as the 𝑇𝑒𝑐 increases, because the number of retained SRs will decrease given a higher 

threshold value of  𝑇𝑒𝑐. In addition, it is also worth noting that given the same camera, the layer-
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wise computation time of the proposed method is determined by the size of the video, which is 

proportional to the layer-wise build time. For the proposed method, the computation time stays 

between 25.0% and 28.3% of the layer-wise build time, depending on the tuning parameter used.   

Table 3.3 Results summary of the proposed and benchmark method. 

𝑇𝑒𝑐  𝑑𝑝𝑐 Accuracy Precision Recall F-score 

0.85 

2 95.8% 95.5% 98.4% 96.9% 

5 86.1% 87.9% 91.8% 89.8% 

8 95.0% 93.1% 100.0% 96.4% 

10 97.8% 96.8% 100.0% 98.4% 

12 84.3% 91.3% 84.6% 87.8% 

0.9 

2 92.6% 93.0% 96.3% 94.6% 

5 89.4% 87.7% 97.9% 92.5% 

8 94.3% 92.2% 100.0% 95.9% 

10 96.4% 94.9% 100.0% 97.4% 

12 93.5% 91.2% 100.0% 95.4% 

0.95 

2 90.8% 87.8% 100.0% 93.5% 

5 95.0% 96.0% 96.8% 96.3% 

8 86.5% 95.4% 83.9% 89.3% 

10 82.7% 90.0% 83.4% 86.5% 

12 84.4% 90.3% 86.0% 88.0% 

0.98 

2 84.2% 96.2% 79.8% 87.1% 

5 93.0% 90.6% 100.0% 95.0% 

8 90.7% 93.7% 92.4% 93.0% 

10 88.1% 91.8% 90.4% 91.0% 

12 84.3% 91.2% 84.7% 87.8% 

Benchmark 72.5% 84.0% 62.0% 71.0% 

  

3.5 Conclusion and future work 

Cybermanufacturing systems accelerate the communication, prototyping, and sharing of 

digital files to optimize productivity in AM process. The layer-by-layer fashion of AM fabrication 

significantly makes a large variety of process/part alterations possible and therefore extensively 

enlarge the vulnerability space. Most cyberattacks focus on altering the printing path, so that the 

internal structure of the product can be changed. This will lead to deteriorated mechanical 
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properties and compromised product functionality for mission-critical structures. What’s worse, it 

may even cause catastrophic accidents for the operators for functional AM components. This paper 

proposes a new real-time process authentication method based on layer-wise streamline video data. 

By integrating adaptive image thresholding, the multivariate distribution of texture geometric 

features is extracted. In addition, a novel layer-wise AM process descriptor, i.e., the layer-wise 

texture descriptor tensor (LTDT), is constructed for process authentication. Multilinear principal 

component analysis (MPCA) is used to extract low-dimensional features from those high-

dimensional and sparse LTDTs. To evaluate the effectiveness of the proposed methodology, a case 

study based on an FFF process is used. The proposed method outperforms the benchmark method 

in terms of alteration detection accuracy, while the computational efficiency remains satisfactory 

for real-time alteration detection. 

This study can be potentially extended in the following three directions. First, the sensitivity 

of the alteration detection will be further quantified for major part alteration categories, such as 

undesired feature added and rotated printing orientation. Second, under the proposed framework, 

AM parts with diversified geometric features, including different shapes, infill patterns, and infill 

percentages, will be considered, and their performance will be evaluated. Third, a Machine 

Learning scheme can use to categorize different types of printing path alterations for fault 

diagnosis and impact assessment of the cyberattacks. 
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CHAPTER IV 

MULTI-CHANNEL SENSOR FUSION FOR REAL-TIME BEARING FAULT DIAGNOSIS 

BY FREQUENCY-DOMAIN MULTILINEAR PRINCIPAL COMPONENT ANALYSIS 

4.1 Motivation and challenges 

The health conditions of rotary machinery have a significant impact on the functionality of 

various rotary machinery (RM), including motors, gearboxes, bearings, and connecting shafts 

[212], [213]. Faults in RM can lead to disruption of daily manufacturing operations, significant 

economic loss, and even catastrophic accidents. Therefore, timely fault detection and diagnosis are 

crucial for RM. In recent years, condition monitoring of RM has drawn huge attention [214], which 

can help to assure productivity, reliability, and safety while reducing maintenance costs [213]. The 

increased computation efficiency has made it possible to perform real-time condition monitoring 

based on multi-channel signals. Multi-sensor fusion is referred to as the synchronization of data to 

predict the real-time system condition from heterogeneous sensors [139], including 

accelerometers, microphones, and power loggers, which can be attached to the RM systems to 

simultaneously gather process data in real-time [122], [123], [215]. Multi-channel sensor fusion 

usually first extracts key process features from the raw signals. Subsequently, supervised, or 

unsupervised Machine Learning algorithms can be applied to the extracted features for fault 

detection and diagnosis [216]–[218]. Moreover, vibro-acoustics based on multi-sensor fusion has 

also become popular for the anomaly detection of RM [123], [137], [138], [215]. 
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Real-time fault detection of RM rolling is a very complex problem. The complexity of the 

problem is two-folded. First, an RM is usually made up of multiple components, and any individual 

component’s failure will have a significant impact on the RM and thus affect the entire system. 

Second, each component can potentially demonstrate multiple different faults. As illustrated in 

Figure 4.1, an RM can be comprised of multiple bearings with various possible faults. All the faults 

and their combinations result in a high dimensional RM fault space, which calls for accordingly 

large training data sets to train a reliable Machine Learning model. Hence, multi-channel sensor 

fusion for RM fault diagnosis requires a high volume of data for condition monitoring tasks, and 

thus training a reliable Machine Learning model can be costly. A significant number of studies 

have been involved in handling a large volume of the dataset with limited variety of faults for 

anomaly detection and diagnosis in RM. However, most of the fault detection and diagnosis 

methods requires very large training datasets which might not be practical for real-world RM 

applications [137], [138], [157], [218]–[220]. To bridge the gap, this study has been involved in 

utilizing a mixture of bearing faults scenarios along with the multi-sensor fusion of vibration and 

acoustic signals and using a significantly less amount of training and test dataset. Multilinear 

principal component analysis (MPCA) method is proposed for low-dimensional feature exaction 

for anomaly detection whereas combination of good bearing and four different faulty bearings 

scenarios are structured Figure 4.1. Ultimately, the robustness of this work can be evaluated with 

existing research works. 
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Figure 4.1 Different fault scenarios of a rotary machinery. 

4.2 Technical contribution of this work 

In this paper, a new multi-channel sensor fusion methodology, named frequency-domain 

multilinear principal component analysis (FDMPCA), is proposed to integrate multiple channels 

of vibration and acoustics signals. The technical contribution of this study can be summarized 

below. The proposed frequency-domain multilinear principal component analysis (FDMPCA) 

method has the following technical contributions. Firstly, the integration of frequency analysis and 

MPCA significantly improves the computational efficiency. This is due to the low-dimensional 

feature extraction from high-dimensional frequency-domain tensor (e.g., reduced by 99.62% in the 

case study). In addition, the proposed method also outperformed the benchmark method (1-D CNN 

method) for the accuracy of real-time fault diagnosis. The rest of this paper is organized as follows. 

Proposed method has been discussed in section 4.3. Section 4.4 demonstrates a case study based 

on the Machine Fault Simulator®, along with the experimental setup, data collection. Section 4.5 
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explains the results comparison and discussion. Conclusion and future works are discussed in 

section 4.6. 

4.3 Proposed methodology 

In this study, a novel method is proposed for sensor data fusion by a new FDMPCA-based 

tensor decomposition for low dimensional feature extraction for real-time bearing fault diagnosis. 

In this section, frequency analysis based on Fast Fourier Transform (FFT) is firstly introduced, 

and subsequently, the frequency domain tensor structure is constructed. The resulting tensor 

structure is decomposed using the FDMPCA to extract critical features for fault diagnosis. Finally, 

the supervised learning method is leveraged for bearing fault diagnosis. The overview of the 

proposed methodology along with the data visualization at multiple key steps are shown in Figure 

4.2.  

 

Figure 4.2 Proposed methodology of real-time bearing fault diagnosis of rotary machinery 

based on sensor data fusion of vibration and acoustics signals. 
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4.3.1 Time-frequency analysis based on FFT 

After collecting the sensor-based signal data the FFT algorithm is applied for converting 

acoustics and vibration signal from time domain to frequency domain. As a fast-computational 

approach, the FFT is used for signal data compression [221]. Basically, using FFT based 

computation, the frequency responses of both vibration and acoustic signals can be generated. 

Acoustics and vibration time domain signal can be presented as 𝑎𝑙
1(𝑡), 𝑎𝑙

2(𝑡), 𝑎𝑙
3(𝑡), … , 𝑎𝑙

𝑟(𝑡) and 

𝑣𝑙
1(𝑡), 𝑣𝑙

2(𝑡), 𝑣𝑙
3(𝑡), … , 𝑣𝑙

𝑠(𝑡), where 𝑟 and 𝑠 represents the number of acoustics and vibration 

channels and 𝑙 is the observation index. The generalized FFT equation [221] for converting a time 

domain vibration or acoustic signal with 𝑛 points to frequency domain can be expressed in Eq. 

(4.1). 

 

𝑓[𝑘] =  
1

𝑀
∑ 𝑥[𝑛]

𝑀−1

𝑛= 0

𝑒
−𝑖2𝜋𝑘𝑛

𝑀  (4.1) 

 

 where, 𝑥[𝑛] is a digital time domain signal with 𝑛 time index, which can be any acoustics and 

vibration signals, i.e., 𝑎𝑙
1(𝑡), 𝑎𝑙

2(𝑡), 𝑎𝑙
3(𝑡), … , 𝑎𝑙

𝑟(𝑡) and 𝑣𝑙
1(𝑡), 𝑣𝑙

2(𝑡), 𝑣𝑙
3(𝑡), … , 𝑣𝑙

𝑠(𝑡). 𝑓[𝑘] is a 

frequency domain signal with 𝑘 frequency index, 𝑖 is an imaginary number and 𝑀 is the digitally 

stored number of data points in signal 𝑥. Using the Eq. (1), the frequency domain of acoustics and 

vibration signal can be generated as 𝑓𝑎𝑙
1(𝜐), 𝑓𝑎𝑙

2(𝜐), 𝑓𝑎𝑙
3(𝜐), … , 𝑓𝑎𝑙

𝑟(𝜐) and 

𝑓𝑣𝑙
1(𝜐), 𝑓𝑣𝑙

2(𝜐), 𝑓𝑣𝑙
3(𝜐), … , 𝑓𝑣𝑙

𝑠(𝜐), respectively. It is worth noting that in cases the frequency 

responses of different signals are of different lengths, linear interpolation can be applied to obtain 

all the frequency responses with unified length. 
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4.3.2 Frequency-domain tensor construction 

The acoustics and vibration signals in the frequency domains of unified length of 

𝑓𝑎𝑙
1(𝜐), 𝑓𝑎𝑙

2(𝜐), 𝑓𝑎𝑙
3(𝜐), … , 𝑓𝑎𝑙

𝑟(𝜐) and 𝑓𝑣𝑙
1(𝜐), 𝑓𝑣𝑙

2(𝜐), 𝑓𝑣𝑙
3(𝜐), … , 𝑓𝑣𝑙

𝑠(𝜐),  are combined to 

construct FD tensor with the dimension of 𝐷1 × (𝑟 + 𝑠). The resulting FD tensor, denoted as 

curved letter 𝒵𝑙, is represented as below in the Eq. (4.2). 

𝒵𝑙 ∈ ℝ𝐷1×(𝑟+𝑠) (4.2) 

where, 𝐷1 and (𝑟 + 𝑠)  represents the unified frequency domains of different channels and the total 

number of channels in the multi-sensor fusion, respectively. Figure 4.3 represents FD tensor with 

corresponding frequency domains of different channels and number of observations.   

 

Figure 4.3 FD tensor that comprise of frequency domains, number of channels and 

observations. 
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4.3.3 Feature extracting using MPCA 

Based on multilinear algebra, the tensor 𝒵𝑙 can be expressed in Eq. (4.3), 

𝒵𝑙 = 𝒢𝑙 ×1 𝐔(1) ×2 𝐔(2) (4.3) 

where 𝒢𝑙 = 𝒵𝑙 ×1 𝐔(1)𝑇
×2 𝐔(2)𝑇

, and   𝐔(1) and   𝐔(2)   represents the orthogonal projection 

matrices corresponding to the first and second mode of the FD tensor, as illustrated in Eq. (4.4).  

𝒢𝑙 represents the core tensor with reduced dimension 𝑑1 × 𝑑1 (0 < 𝑑1 < 𝐷1 and 0 < 𝑑2 < (𝑟 +

𝑠).  

𝒢𝑙 = 𝒵𝑙 ×1 𝐔(1)𝑇
×2 𝐔(2)𝑇

 (4.4) 

The objective of MPCA is to find those projection matrices, i.e., 𝐔(1) and 𝐔(2), which 

maximizes the total tensor scatter in 𝒢𝑙, denoted by ψ𝒢, as illustrated in Eq. (4.5). Figure 4.4 

demonstrates the tensor decomposition of the FD tensor based on MPCA analysis. Figure 4.5 

illustrates the pseudocode for implementing the MPCA algorithm, which is adapted from [197]. 

{𝐔(1), 𝐔(2) } = argmax
𝐔(1),𝐔(2)

ψ𝒢  (4.5) 

 

Figure 4.4 FD tensor decomposition based-on MPCA analysis. 
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Figure 4.5 MPCA projection matrix estimation. 

4.3.4 Real time fault detection based on supervised learning 

Supervised learning algorithms can be adopted to establish a distinction among different 

operating conditions of rotary machines based on the extracted features by leveraging a training 

data set. The Neural Network (NN) models can learn robustly non-linear and complex 

relationships. A schematic diagram of the Neural Network is illustrated in Figure 4.6, which 

comprises input, hidden, and output layers.  It's worth noting that all different Machine Learning 

methods can be used for fault detection. The NN classifier can be trained using a training data set 

with labelling information to obtain the best distinction among different classes, and the 

Input: A set of vibration and acoustics feature distribution  {𝒵𝑙 ∈ ℝ𝐷1×(𝑟+𝑠) , 𝑙 = 1,2, … , 𝐿𝑡𝑟}, where 𝐿𝑡𝑟 is training observation 

number 

Output: Low dimensional features 𝒢𝑙 

Algorithm: 

Step 1 (Element-wise Transferring and Centering): 

1.1 Centre training samples as {𝒵𝑙 = 𝒵𝑙 − �̅�, 𝑙 = 1,2, … , 𝐿𝑡𝑟}, where �̅� =
1

𝐿𝑡𝑟
∑ 𝒵𝑙

𝐿𝑡𝑟
𝑙=1 . 

Step 2 (Initialization): 

2.1 Calculate the eigen-decomposition of 𝚽(𝑗)∗ = ∑ �̃�𝑙(𝑗)�̃�𝑙(𝑗)
𝑇𝐿𝑡𝑟

𝑙=1  (𝑗 = 1,2) and set �̃�(1) and �̃�(2) to consist of the 

eigenvectors corresponding to the most significant 𝑑1, 𝑑2 eigenvalues, respectively. Here �̃�𝑙(𝑗) represents the unfolded 

matrix of 𝒵𝑙 along the 𝑗-th mode. 

2.2 Calculate {�̃�𝑙 = 𝒵𝑙 ×1 �̃�(1)𝑇
×2 �̃�(2)𝑇

 , 𝑙 = 1,2, … , 𝐿𝑡𝑟} 

2.3 Calculate ψ𝒢0
= ∑ ‖�̃�𝑙‖

𝐹

2𝐿𝑡𝑟
𝑙=1  

Step 3 (Optimization): 

For 𝑝 = 1: 𝑄 

Update �̃�(1): Set the matrix �̃�(1) to consist of the 𝑑1 eigenvectors of the matrix 𝚽(1) = ∑ �̃�𝑙(1) ∙ �̃�(1) ∙ �̃�(1)𝑇
∙ �̃�𝑙(1)

𝑇𝐿𝑡𝑟
𝑙=1 , 

corresponding to the largest 𝑑1 eigenvalues. 

Update �̃�(2): Set the matrix �̃�(2) to consist of the 𝑑2 eigenvectors of the matrix 𝚽(2) = ∑ �̃�𝑙(2) ∙ �̃�(2) ∙ �̃�(2)𝑇
∙ �̃�𝑙(2)

𝑇𝐿𝑡𝑟
𝑙=1 , 

corresponding to the largest 𝑑2 eigenvalues. 

Calculate {�̃�𝑙, 𝑙 = 1,2, … , 𝐿𝑡𝑟} and ψ𝒢𝑝
. 

If ψ𝒢𝑝
− ψ𝒢𝑝−1

< 𝜀, break and output projection matrices, �̃�(1)and �̃�(2) 

Step 4 (Projection): For training and test data, the low-dimensional features are calculated as 

{𝒢𝑙 = (𝒵𝑙 − �̅�) ×1 �̃�(1)𝑇
×2 �̃�(2)𝑇

, 𝑙 = 1,2, … , 𝐿𝑡𝑟}. 
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complexity of the model can be determined through cross validation.  In neural networks, the 

hyper-parameter selection, such as the number of hidden layers and learning rate, are significantly 

important as they directly regulate the trained model's behavior and significantly impact the 

model's performance [219], [222]. Bayesian optimization can be also used for hyperparameter 

tuning for the NN models [222].  

 

Figure 4.6 Schematic diagram of Neural Network. 

4.4 Case study 

This section evaluates the performance of proposed methodology using a machine fault 

simulator (MFS) ®, Manufactured by Spectra Quest Inc. The system is equipped with vibration 

and acoustics sensors for real-time fault detection and diagnosis. 

4.4.1 Experimental setup and data collection 

In this research work, vibration and acoustics signals are collected via accelerometers and 

microphones, respectively. Industrial ICP® 608A11 model single axis accelerometers are used for 

vibration data acquisition purposes with sensitivity performance 100 mV/g and frequency ranges 
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of 0.20 to 15 kHz. Adafruit® silicon MEMS microphones SPW 2430 with frequency response of 

100 Hz to 10 kHz are used for acoustic signal recording. Figure 4.7 demonstrates sensor allocation 

on the MFS. A total of six accelerometers are placed on two bearing housings, with three attached 

to each bearing house, respectively. These six signals were connected to a data acquisition system 

for data collection, and the sampling rate was 10,240 Hz. Furthermore, six microphones were 

attached to the inside wall of MFS chamber and connected to another DAQ to capture real-time 

acoustic emission signals at a sampling frequency of 8,000 Hz. Figure 4.8 demonstrates the real-

world MFS setup for data collection. The operating motor speed was 30 Hz. Table 4.1 

demonstrates the experimental design for five different operating conditions and their 

corresponding sample sizes.  

Table 4.1 Design of experiments for acoustics and vibration signals collection. 

Bearing House -1 Bearing House -2 Class Label 
Number of 

observations 

Good  Good  1 90 

Good  Ball fault 

Good  

2 27 

Ball fault  2 27 

Good  Inner race fault 3 27 

Inner race fault Good  3 27 

Good  Outer race fault 4 27 

Outer race fault Good  4 27 

Good  Combined fault 5 27 

Combined fault Good  5 27 

Total 306 

 

The multi-channel sensor signals were collected after the motor reached the steady state 

operation conditions, and each run took 2.13 seconds of sensing data.  
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Figure 4.7 Multi-channel sensor allocation in the Machine Fault Simulator. 

 

Figure 4.8 MFS setup for data collection with acoustics and acceleration sensors. 
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4.4.2 Benchmark method 

Basically, the application of CNN can yield competitive performance evaluation in fault 

diagnosis of RM [219]. In this study, Chen et al.’s [22]1D-CNN method was selected as the 

benchmark method to compare with the proposed method. Chen et al.’s [22] paper demonstrated 

the advantages using 1D-CNN in RM fault diagnosis, including (a) a larger number of mixed faults 

can be classified, (b) the method shows the ability to recognize and classify unknown fault classes 

as well as robustness to noise perturbation. In the benchmark method, the 1D-CNN technique was 

adopted for mixed faults diagnosis of RM. Even though only vibration signals were used in Chen 

et al.’s [22] paper, all the sensing signals, including six channels of acoustics and six channels of 

vibration signals, were utilized to develop a 1D-CNN model for a fair comparison. Moreover, for 

hyperparameter tuning the automatic search method of Bayesian optimization can find global 

optima of 1-D CNN based on a given dataset. During Bayesian optimization of hyper-parameters 

for 1-D CNN, the range of learning rate and L-2 regularization were set as [0.0001, 0.1] and 

[10−10, 10−2], respectively. 5-fold cross-validation was used for hyper-parameter tuning, and the 

number of maximum objective evaluations was set as 10. The Bayesian optimization took in a 

total of 39 hours and 31 minutes using the Intel (R) Core (TM) i7-7700 CPU @ 3.60 GHz with 

NVIDIA GeForce GT 730.  Table 4.2 shows the input factors of 1D-CNN for Bayesian 

optimization. 
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Table 4.2 1-D CNN architecture for training networks. 

Input factors in 1-D CNN Parameters 

Filter size 3 x 1 

Number of filters 
32 for 1st convolutional layer 

64 for 2nd convolutional layer 

Optimizer Adaptive Momentum Estimation (ADAM) 

Batch size 20 

Number of epochs 15 

Validation frequency 5 

Drop rate factor 0.50 

Learn rate drop period 15 

 

4.4.3 Evaluation criteria and procedure 

For a fair comparison between the proposed and benchmark method, the evaluation procedure 

is described as below. In the proposed FDMPCA method, out of the 306 observations, 12% of 

bearing class label- 1, which is equivalent to 36 observations are used as FDMPCA projection 

matrix. Subsequently, all the remaining data were mapped to the low-dimensional space, among 

which 68% of all the samples were used in training the neural networks models and the rest 20% 

were used as testing data. Regarding the benchmark method, 80% of the samples were used in 1-

D CNN for training and validation purposes, and the remaining 20% were used for testing. Figure 

4.9 represents the overall view of observations data splitting for the proposed and benchmark 

method. It is worth mentioning that the random seeds used for data splitting in the proposed and 

benchmark methods were kept the same to make each iteration directly comparable. Ten iterations 

were implemented by repeating the testing procedure above.  
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Figure 4.9 Observation data splitting for the proposed FDMPCA and benchmark method. 

The performance matrices include precision, recall, and overall accuracy are used for 

performance evaluation of both proposed and benchmark methods. The following Eq. (4.6), (4.7) 

and (4.8) represent precision, recall, and accuracy, respectively. In those equations, True positive 

(TP) denotes bearing fault classes that are predicted accurately corresponding to actual classes. 

True negative (TN) demonstrates bearing fault classes which are predicted inaccurately 

corresponding to respective classes. Additionally, false positive (FN) represents inaccurate 

prediction of bearing fault classes and false positive (FP) denotes inaccurate prediction of bearing 

fault classes, which are accurate class but predicted to inaccurate classes. 

 

Precision =  
TP

TP + FP
 (4.6) 

 

Recall =  
TP

TP + FN
 (4.7) 

 

Accuracy =
TP + TN

TP + TN + FN + FP
 (4.8) 
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4.4.4 Proposed FDMPCA-based feature extraction  

Using Eq. (4.1), the acoustics and vibration signals were converted into the frequency domain 

from the time domain. Subsequently, six channels of acoustics and six channels of vibration signals 

with unified length of frequency domain dimensions were fused together to construct the FD 

tensors. Figure 4.10 demonstrates FD tensor that has been constructed from acoustics and vibration 

time-domain raw signals. The constructed FD tensor’s dimension is 8,534 × 12, and then the 

MPCA projection matrices were estimated to extract low dimensional features. The resulting 

feature dimension varies for each iteration (summarized in Table 4.3), with the mean value as 

386.3 and the standard deviation value as 9.3. The proposed method reduces the dimension of the 

FD tensors by 99.62%, and the original data by 99.83%. 

 

Figure 4.10 Frequency-domain based tensor from original time-domain signals. 
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Table 4.3 Number of low-dimensional features extracted from 10 iterations. 

Run # 
Dimension of  

extracted features 

1 385 

2 385 

3 409 

4 389 

5 370 

6 389 

7 381 

8 385 

9 381 

10 389 

4.4.5 Neural Network training 

When training the NN classifier, the Bayesian optimization technique was adopted for 

hyperparameter tuning, where the learning rate and the number of nodes per layer were tuned.  

Basically, the algorithm reaches to the minimum loss function value that yields the best tuned 

hyper-parameters. During hyperparameter tuning the range for learning rate and number of nodes 

per layer set as [0.001, 0.1] and [1, 40], respectively. Table 4.4 shows neural network input factors 

including learning rate, number of nodes per layer, and optimizer used for network training. It is 

worth noting that 5-fold cross validation was used for parameter tuning and the number of 

maximum objective evaluation was set as 20 for tuning NN. Finally, the tuned NN model was 

applied to the independent testing samples for performance evaluation. Table 4.5 shows the 

Bayesian optimized hyper-parameters for neural networks in all the 10 iterations.  
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Table 4.4 Neural network input factors. 

Neural Network input factors Parameters 

Learning rate [0.001 −  0.1] 

Number of nodes per layer [1 −  40] 

Optimizer 
Gradient Descent Backpropagation 

 

 

Table 4.5 Bayesian optimized hyper-parameters for NN. 

Iteration 
Learning 

rate 

No. of nodes 

per layer 

1 0.099992 17 

2 0.058304 40 

3 0.055059 40 

4 0.081894 20 

5 0.039273 25 

6 0.098252 25 

7 0.099589 10 

8 0.099996 15 

9 0.061274 28 

10 0.069321 40 

 

4.5 Results comparison and discussion 

Table 4.6 shows the performance metrics of proposed and benchmark methods for each 

individual category. All the precision and recall metrics were calculated based on the ten iterations. 

Overall test accuracy for the proposed method and benchmark methods found 99.00% and 97.40%, 

respectively. Based on the performance metrics comparison, it is observed that the proposed 

methodology demonstrates universally better performance than the benchmark method for all the 

different fault scenario diagnosis. In addition, the proposed method demonstrates lower standard 

deviation values in the performance metrics over the 10 iterations, which shows that its 

performance is more robust to random data splitting in the evaluation. Moreover, the 
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computational complexity of the proposed method is significantly lower than the benchmark 

method. More specifically, the total computation time, including both FDMPCA-based feature 

extraction time and the NN testing time, is significantly shorter than the testing time of the 

benchmark method.  

Table 4.6 Results summary of the proposed and benchmark methods. 

Class label # Proposed method Benchmark method 

 Metric Avg.  Std.  Avg.  Std. 

Good bearing 
Precision 0.9909  0.02875  0.9652  0.05979 

Recall 1.0000  0.00000  0.9800  0.06325 

Ball fault  
Precision 0.9727  0.04391  0.9733  0.05838 

Recall 0.9800  0.04216  0.9500  0.09718 

Inner race 
Precision 1.0000  0.00000  1.0000  0.00000 

Recall 1.0000  0.00000  1.0000  0.00000 

Outer race 
Precision 1.0000  0.00000  0.9742  0.05717 

Recall 1.0000  0.00000  0.9700  0.04830 

Combined faults 
Precision 0.9909  0.02875  0.9742  0.05717 

Recall 0.9700  0.04830  0.9700  0.06749 

Total accuracy 99.00% 97.40% 

 

As illustrated in Figure 4.11, the computational time of the proposed method is 68.1% lower 

than the benchmark method. Therefore, the proposed model is more appropriate for real-time 

detection and fault diagnosis. This is mainly due to FDMPCA’s capacity in dimension reduction, 

where the low-dimensional features lead to simpler Machine Learning models for classification. 
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Figure 4.11 Test time comparison between proposed method and benchmark method. 

4.6 Conclusion and future work 

Real-time fault detection and diagnosis can be challenging for high dimensional data with 

relatively a small sample size. In contrast, collecting large amounts of data with all the machine 

faults can be challenging and costly. In this paper, a novel multi-channel sensor fusion 

methodology is proposed for real-time bearing fault diagnosis to integrate multiple sensing signals 

with diverse sampling rates for real-time bearing fault detection and diagnosis of a rotary machine 

with limited training data availability. Specifically, the frequency-domain multilinear principal 

component analysis (FDMPCA) leverages frequency analysis and tensor decomposition for 

feature exaction and dimension reduction, which significantly simplifies the Machine Learning 

models trained for fault diagnosis. In the case study, the machine fault simulator was used to 

validate the effectiveness of the proposed method for fault detection and diagnosis for RM. The 

proposed method demonstrated better performance in nearly all the performance metrics for 

bearing fault diagnosis than the CNN-based benchmark method. Moreover, FDMPCA-based low 

dimensional feature extraction methodology demonstrated significantly better computational 

efficiency. Therefore, in cases of real-life engineering applications, the proposed FDMPCA 
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method can be adopted to achieve satisfactory performance as a multi-sensor fusion method for 

real time condition monitoring and fault diagnosis of RM with limited training data availability. 

This study can be potentially extended in the following directions. Firstly, the extension of this 

work can be conducted by incorporating scenarios when both bearings have faults in the fault 

diagnosis. Secondly, in real-world applications, especially in the context of Industry 4.0 

perspective, it is not uncommon that some (or even all) sensor signals may be not available from 

time to time due to the sensor malfunction, or connection issue. This will lead to missing data in 

the collected multi-channel data. As a result, multi-channel sensor fusion can be challenging for 

rolling element fault identification and diagnosis when there is significant missing data. 

Furthermore, in real-world machine fault diagnosis problems, it is not practical to assume all the 

possible fault scenarios have been included in the historical data. Therefore, how to leverage 

existing data for new fault identification is another open research question, and some data 

augmentation methods, such as generative adversarial network (GAN) models can be leveraged 

for this problem. 
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CHAPTER V 

MISSING SIGNAL IMPUTATION FOR MULTI-CHANNEL SENSING SIGNALS ON 

ROTARY MACHINERY BY TENSOR FACTORIZATION 

5.1 Motivation and challenges 

In cyber-physical systems, a manufacturing plant can be operated and monitored 

simultaneously at the physical plants with the help of remotely controlled sensors that can collect 

real-time data for process monitoring and decision-making [1], [16], [223]. The emerging trend of 

multi-channel sensor fusion is ubiquitous. Industry 4.0 perspective, heterogeneous sensor fusion 

can be integrated real-time for condition monitoring of machinery [224]. Different sensors, 

including accelerometers, infrared imaging sensors, microphones, power loggers, and 

thermocouples, are widely used for collecting real-time sensing signals [119], [121]. Among those 

sensing technologies, microphones and accelerometers are extensively used for acoustic and 

vibration signals. Numerous studies showed that combining acoustics and vibration signals is more 

effective than the individual signal analysis approach [215], [225]. Advanced sensing technologies 

pose some inherent challenges in real-time data-driven decision-making in various advanced 

manufacturing industries-high dimensional data and a substantial amount of missing signals 

occurrence [223], which is demonstrated in Figure 5.1. However, signal missing may prevail due 

to various reasons, including sensor sensitivity malfunction, sensor hardware malfunction, and 

transmission disruptions[165]. The effect of signal missing data may end up with either continuous 

or random missing data [165]–[168]. Moreover, in the worst-case scenarios, for example, during 
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a blackout situation, a substantial portion of continuous missing data may also occur [55], [56], 

[226], [227] 

. 

Figure 5.1 Implication of heterogeneous sensor fusion in cybermanufacturing system. 

Ultimately, this leads to a substantial volume of missing data occurrence. While imputation of 

missing entries can also be challenging, and that can also predominantly affect the performance of 

imputation. However, the multidimensional data structure, which is defined as a tensor, provides 

an effective way to handle high-volume of data. Tensor completion task with substantially missing 

data volume effectively imputes missing entries when sensor signal missing occurrence exists. 

Additionally, tensor factorization enables to capture of multi-linear interaction (channels \times 

signals) among latent factors of sensor signals and imputes missing entries based on observed 

signals [20], [227].  

Seeking state-of-the-art, a significant number of studies have been involved in imputing 

missing entries by adopting tensor completion. This study has incorporated the 

CANDECOMP/PARAFAC (CP) tensor factorizations method that captures multi-linear structures 
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and incomplete tensor completion tasks. This study adopted a tensorial missing signal imputation 

by a fully Bayesian CANDECOMP/PARAFAC (FBCP) factorization method with low-rank 

determination [20]. The FBCP method provides several competitive advantages in dealing with 

missing signal imputation along with incomplete tensor completion. For instance, a. FBCP method 

can automatically determine CP rank, b. efficiently avoid overfitting, c. performs well in imputing 

missing entries with incomplete tensors.   

5.2 Technical contribution of this proposed method 

This proposed method was conducted on a machinery faults simulator (MFS) based on 

different bearing fault scenarios by incorporating acoustics and vibration signals. A varying 

percentage of continuous missing signal scenarios is generated among an equal number of 

acoustics and vibration channels with a unified length of signals. And then constructed time- 

domain tensor. Missing signal imputation in the time-domain tensor was adopted by a FBCP 

factorization method [20]. Figure 5.2 demonstrates continuous missing signals among different 

channels.  It is worth noting that a continuous missing entry is introduced at a random location 

with varying missing percent based on a given length of signals.  The FBCP method enables to 

capture of multi-linear interaction (channels × signals) among latent factors of sensor signals. The 

FBCP method performs missing entries imputation along with incomplete tensor completion with 

low-rank determination.  Overall, this proposed method performed well imputing a varying length 

of continuous missing entries of multi-channel sensor signals from diverse bearing fault 

conditions. 
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Figure 5.2 Continuous missing signals among different channels. 

5.3 Methodology 

In this section, the proposed method is presented to impute missing entries in the time-domain 

signals generated from acoustic and vibration sensors. A varying percentage of continuous missing 

signal scenarios is generated at a specific channel with a unified length of signals at random 

location of signals. And then constructed time-domain tensors with all channels at a time, which 

is defined as incomplete time-domain tensors. Missing signal imputation in incomplete time-

domain tensor is adopted by a FBCP factorization method [20] and computed an estimated tensor. 

Thus, the performance evaluation of FBCP method is calculated based on relative standard error 

(RSE) of estimated and actual tensors. The overview of the proposed method is depicted in Figure 

5.3, that illustrates continuous missing signal scenarios at channel 1 and constructed incomplete 

time-domain tensors with all channels. 
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Figure 5.3 The proposed framework for multi-channel missing signal imputation. 

5.3.1 Tensor formation of the time-domain signal 

Acoustics and vibration time-domain channel-wise signals are combined and expressed as 

𝑠𝑙
1(𝑡), 𝑠𝑙

2(𝑡), 𝑠𝑙
3(𝑡), … , 𝑠𝑙

𝑘(𝑡), where 𝑘 represents the total number of channels and 𝑙 denotes the 

observation index as 𝑙 = 1, 2, 3, … , 𝑚. The combined time-domain signals with 𝑙 observations are 

constructed as a time-domain tensor with the dimension of 𝐷 × 𝑘. The resulting time-domain 

tensor contains the actual acoustics and vibration signals, which is denoted as 𝒳Ω(𝑙) ∈ ℝ𝐷× 𝑘 , 

where  𝐷 represents the length of the unified time-domain signals, where channel-wise continuous 

missing signals can occur at random location. Furthermore, Ω denotes the set of indices in 𝒳Ω(𝑙), 

and (𝑖1, 𝑖2) ∈ Ω where 𝑖𝑛 = 1,2, . . . , 𝐼𝑛, 𝐼1 = 𝐷 and 𝐼2 = 𝑘. With continuous missing entries in the 

signal, the incomplete time-domain tensor can be expressed as  𝒳Ω
′ (𝑙) ∈ ℝ𝐷× 𝑘 (Figure 5.3). 

5.3.2 Bayesian-CP based tensor completion 

The FBCP algorithm can effectively correlate the latent multi-linear factors based on the 

observed data with a low-rank determination and estimates the predictive distributions among 

missing entries. In this section, for simplicity, the sample index 𝑙 of 𝒳Ω(𝑙) is omitted, since the 

tensor completion is implemented on each individual sample separately. Let 𝒳Ω
′ ∈ ℝ𝐷× 𝑘 as a 2nd-
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order tensor of dimension 𝐷 × 𝑘 with missing entries. The entries of 𝒳Ω
′ ∈ ℝ𝐷× 𝑘  can be denoted 

by  𝒳𝑖1,𝑖2

′ ,. The underlying idea of applying Bayesian-CP decomposition is to approximate the 𝒳𝑙
′, 

by generating the low-rank structure as shown in the Eq. (5.1) [228], 𝒳Ω
′  is the estimated tensor, 

where the operator o denotes the outer product of vectors, and ⟦… ⟧ is termed as the Kruskal 

operator. 

𝒳Ω
′ = ∑ 𝐱𝑟

(1)

𝑅

𝑟=1

o  𝐱𝑟
(2)

=  ⟦𝐗(1),  𝐗(2)⟧ (5.1) 

 

The CP factorization can be calculated as a sum of 𝑅 rank-one tensors, where the lowest integer 

𝑅 is determined as the CP rank [229]. {𝐗(𝑛)}𝑛=1
2  contains the set of 𝑛-th decomposed factor 

matrices, and  𝐗(𝑛)  ∈ ℝ(𝐷×𝑘)×𝑅  can be denoted as row-wise or column-wise vectors𝐗(𝑛) =

[𝐱1
(𝑛)

, . . . 𝐱𝑖𝑛

(𝑛)
, . . . , 𝐱𝐼𝑛

(𝑛)
]𝑇 = [𝐱.1

(𝑛)
, . . . 𝐱.𝑟

(𝑛)
, . . . , 𝐱.𝑅

(𝑛)
]. The calculation of Rank𝐶𝑃(𝒳Ω

′ ) = 𝑅 is 

computationally challenging and costly. The Bayesian inference process can reach automatic low-

rank approximation based on tensor factorization to avoid the overfitting problem. The CP 

generative missing entries assumption is based on observed entries of 𝒳𝑙
′  and the factorized tensor 

elements of 𝑝(𝒳Ω
′ |𝐗(𝑛)). Now, in order to enable automated rank determination, a sparsity-

inducing prior is provided across the hyperparameters, since the smallest 𝑅 is more desirable in 

low rank approximation. Specifically, the prior distribution over the latent factor can be determined 

by  𝛌 = [λ1, … … , λ𝑅], where λ𝑟 control 𝑟-th components in 𝐗(𝑛) that is expressed in the Eq.(5.2), 

where 𝚲 = diag(𝛌) represents the inverse covariance matrix, also known as the precision matrix, 

that is shared from the latent factor matrix in all modes. 

𝑝(𝐗(𝑛)|𝛌) =  ∏ 𝒩(𝐱𝑟
(𝑛)|0, 𝚲−𝟏), 𝑛 = 1,2  

𝐼𝑛

𝑖𝑛=1

 (5.2) 
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The hyperprior over 𝑝(𝛌) is a factorized dimension and characterized using a Gamma 

distribution. The latent variables and hyperparameters are collectively denoted in Eq. (5.3). The 

Bayesian computation of the full posterior distribution of all variables is demonstrated in the Eq. 

(5.4). Based on the posterior distribution of all variables in Θ, the predictive distribution of missing 

entries is estimated by the Eq. (5.5), where 𝒳\Ω
′  denotes predictive missing entries. 

Θ = {𝐗(1), 𝐗(2), 𝛌 } (5.3) 

 

𝑝(Θ|𝒳Ω
′ ) =  

𝑝(Θ, 𝒳Ω
′ )

∫ 𝑝(Θ, 𝒳Ω
′ )𝑑Θ

 (5.4) 

 

𝑝(𝒳\Ω

′ |𝒳Ω
′ ) = ∫ 𝑝(𝒳\Ω

′ |Θ)𝑝(Θ, 𝒳Ω
′ )𝑑Θ (5.5) 

The exact Bayesian inference in Eq. (5.4) and Eq. (5.5) integrate over all latent variables and 

hyperparameters, which is analytically intractable. Therefore, a deterministic approximate 

inference under variational Bayesian (VB) framework is developed to learn the probabilistic CP 

factorization model [20]. Basically, a distribution 𝑞(Θ) based on the Eq. (5.4) and Eq. (5.5), is 

incorporated to approximate true posterior distribution 𝑝(Θ|𝒳𝑙
′) by minimizing Kullback–Leibler 

(KL) divergence, which is denoted in the Eq. (5.6). The lower bound of Eq. (5.6) is solved by Eq. 

(5.7) and the maximum lower bound can be determined when KL divergence vanishes assuming 

𝑞(Θ) = 𝑝(Θ|𝒳Ω
′ ). 

 

KL(𝑞(Θ)||𝑝(Θ|𝒳Ω
′ ) ) (5.6) 

 

ℒ(𝑞) =  ∫ 𝑞(Θ)ln {
𝑝(𝒳Ω

′ , Θ)

𝑞(Θ)
} 𝑑Θ (5.7) 
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Basically, for model learning via Bayesian inference, Eq. (5.6) is further leveraged to obtain 

the posterior distribution of the factor matrices, hyperparameters and lower bound of the model 

evidence. Moreover, during Bayesian inference-based model learning, tensor rank is determined 

automatically and implicitly updating 𝛌 in each iteration [20]. Specifically, the Algorithm 1 

adopted from [20], which is leveraged in the Figure 5.4.  This algorithm can effectively correlate 

the latent multi-linear factors leveraging Bayesian inference based on the observed data with a 

low-rank determination and also estimates the predictive distributions among missing entries. To 

avoid Bayesian inference to local minima, the initial points of the hyperparameter set are to a fixed 

value. After completion of the missing entries, the evaluation of missing data imputation can be 

quantified considering actual time-domain tensor  𝒳Ω(𝑙) and estimated tensor 𝒳Ω
′ (𝑙),  where the 

evaluation metric can be defined as relative standard error (RSE) in the Eq. (5.8).  Based on the 

Algorithm 1, the tensor rank can be determined automatically and in practice 𝑅 is set manually 

for computational purpose. In this entire process 𝛌 updates in each iteration that results in a new 

prior over {𝐗(𝑛)} and then {𝐗(𝑛)} updates by using the new prior in the subsequent iteration.  

 

𝑅𝑆𝐸𝑙  =  
‖𝒳Ω

′ (𝑙) − 𝒳Ω(𝑙) ‖
𝐹

‖𝒳Ω(𝑙)‖𝐹
 (5.8) 
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Figure 5.4 Fully Bayesian CP factorization algorithm [20]. 

5.4 Case study 

The evaluation study was conducted on a testbed using a machinery faults simulator (MFS) 

manufactured by Spectra Quest Inc., which is illustrated in Figure 5.5 [24] and equipped with 

multiple vibrations (accelerometers) and acoustics (microphones) sensors for real-time sensor 

signal acquisition purpose. Figure 5.6 demonstrates accelerometers and microphone allocation in 

the MFS [24]. Sensor missing signals are generated as planned continuous missing based on the 

concept of a blackout situation. Equal channels of acoustics and vibration signals are unified, 

forming tensorial arrays, and a certain percentage of continuous missing signal scenarios is 

generated among different channels. It is worth noting that continuous missing entries is 

introduced at a random location with a varying missing percent based on a given length of signals, 

such as 1%, 3%, 5%, 10%, and 20% missing. Missing entries are imputed along with incomplete 

tensor completion by the FBCP method, which is illustrated in section 5.4.1. Finally, the 

Algorithm 1: Fully Bayesian CP Factorization for tensor completion. 

Input: A set of acoustics and vibration signals of missing entries with incomplete tensor  {𝒳𝛺
′ (𝑙) ∈ ℝ𝐷×𝑘 , 𝑙 =

1,2, … , 𝑚}, where 𝑚 is total number of observations. 

Initialization: Initialization of hyperparameters Θ set to fixed. 

Output: Estimated tensor �̃�Ω
′ (𝑙) 

Algorithm: 

Step 1 (Estimated tensor calculation): 

Repeat 

For 𝑙 =  1 ∶ 𝑚  

Calculate estimated tensor �̃�Ω
′ (𝑙) leveraging Eq. (5.1) 

end  

Reduce rank 𝑅 by eliminating components of {𝐗(𝑛)} 

Evaluate the lower bound using the Eq. (5.7) 

until maximum number of iterations 

 

Step 2 (evaluation of missing data imputation) 

Relative standard error calculation from the Eq. (5.8) 
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performance of the estimated tensor 𝒳Ω
′ (𝑙)with missing completion was evaluated comparing with 

the actual tensor 𝒳Ω(𝑙). 

 

Figure 5.5 The MFS setup for data collection with acoustics and vibration sensors. 

 

Figure 5.6 Multi-channel sensor allocation in the MFS. 

 



 

79 

5.4.1 Experimental setup and data collection 

In this study, acoustics and vibration signals were compiled by microphones and 

accelerometers, respectively. Adafruit® silicon MEMS microphones (SPW 2430 model) were 

incorporated for acoustic signal collection. Single-axis accelerometers (Industrial ICP® 608A11) 

were used for vibration signal acquisition. Sensitivity performance of accelerometer is 100 mV/g 

with the frequency ranges of 0.20 to 15 kHz. Six accelerometers were attached on the two bearing 

housings, where three accelerometers placed on each bearing house, respectively. These six 

accelerometers were connected to a data acquisition system for data collection with the sampling 

rate of 10,240 Hz. Also, six microphones were also embedded to the inside wall of the MFS 

chamber and connected to another data acquisition system to capture real-time acoustic emission 

signals at the sampling frequency of 8,000 Hz. The working motor speed was 30 Hz. Table 5.1 

demonstrates the experimental design for five different bearing fault operating conditions and their 

corresponding observation numbers. The multi-channel sensor signals were collected after the 

motor reached the steady state operation conditions. 

Table 5.1 Operation conditions performed in data collection. 

Bearing house - 1 Bearing house - 2 Class label 
Number of 

observations 

Good Good 1 12 

Good Ball fault 2 6 

Ball fault Good 2 6 

Good Inner race fault 3 6 
Inner race fault Good 3 6 

Good Outer race fault 4 6 

Outer race fault Good 4 6 

Good Combined fault 5 6 

Combined fault Good 5 6 

Total 60 
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5.4.2 Missing data imputation and performance evaluation 

In this study, planned missing signal is generated in time-domain tensor with 1%, 3%, 5%, 

10%, and 20% percentage of continuous missing among different channels by considering each 

bearing fault conditions. Missing entries with time-domain tensor size is 12 × 500 × 12, where 

12, 500, and 12 represent the total number of channels, signal length, and number of observations 

for each bearing fault conditions, respectively. Continuous missing is calculated based on the 

length of signals, where 10% continuous missing equivalent to 50 lengths of continuous missing, 

which is generated among four different channels at different location randomly. The similar 

approach is also applicable when 20% missing equivalent to 100 lengths of continuous missing. 

In the given incomplete tensor size of 12 × 500 × 12 is computed to estimated tensor using each 

observation starting from 1 to 12. Table 5.2 shows tuning parameters for FBCP-based tensor 

completion work. While each observation is iterated to 1 to 150 based on performance loss 

objective value of tolerance limit, which is set as 10−12. In this incomplete-tensor completion, CP 

rank 𝑅 =  250  is used. The performance evaluation of incomplete-tensor completion (estimated 

tensor), which is denoted by 𝒳Ω
′ (𝑙) is compared with the actual tensor 𝒳Ω(𝑙). RSE is computed 

by the Eq. (5.8). It is worth noting that, tensor completion work is computationally faster when the 

tensor size is substantially small. To evaluate the effectiveness of the FBCP method, CP weighted 

optimization (CPWOPT) method is leveraged as benchmark method [198]. In the benchmark 

method CP rank  𝑅 and number of iterations set to 15 and 150, respectively, which is similar to 

the FBCP method.  
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Table 5.2 Tuning parameter for FBCP-based tensor completion. 

Tuning parameter Value 

CP Rank R 250 

Tolerance limit 10−12 

Initial hyperparameter 

value 
10−8 

Number of iterations 150 

 

5.5 Results and discussion 

Table 5.3 shows the performance of proposed (FBCP: Pro. (A)) and benchmark (CPWOP: Pro. 

(B)) methods for the evaluation of estimated tensors based on channel-wise continuous missing 

percentages with five different bearing fault conditions and their respective RSE values. In 

different bearing conditions, channel-wise average RSE values are compared with respect to 

corresponding missing percentages at channel 1, 5, 9 and 11, where channel 1 and 5 corresponds 

to acoustics signals and channel 9 and 11 contain vibration signals. It is notable to mention that 

when a varying percentage of continuous missing signal scenarios are introduced at channel 1 then 

rest of 11 channels remained unchanged. Similar approaches are also applied in channels 5, 9 and 

11 respectively. Figure 5.7 demonstrates the performance of estimated signals at the location of 

missing occurrences (20% missing) and compares with the actual signals among acoustics and 

vibration channels. In acoustics channel-1, observations 1 and 2 show that estimated signals 

overlap the actual signals at the location of missing. Their residual plots show the effectiveness of 

the difference between estimated and actual signals. Similarly, at vibration channel 11, estimated 

signals overlap the actual at the location of a higher missing percentage (20% missing), and their 

residual plots show the effectiveness of estimated and actual signals. Figure 5.8 shows an overall 

trend of RSE value in proposed and benchmark methods with respect to different missing 

percentages among five different bearing fault conditions. In contrast, it is noticeable that the 
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proposed method performs better than the benchmark method with higher percentages of missing 

entries. 

Table 5.3 Summary results of proposed (FBCP) and benchmark (CPWOPT) methods. 

Bearing 

conditions 
Ch. # 

MP: 1 % MP: 3 % MP: 5 % MP: 10 % MP: 20 % 

Avg. RSE Avg. RSE Avg. RSE Avg. RSE Avg. RSE 

Pro. 

(A) 

Ben. 

(B) 

Pro. 

(A) 

Ben. 

(B) 

Pro. 

(A) 

Ben. 

(B) 

Pro. 

(A) 

Ben. 

(B) 

Pro. 

(A) 

Ben. 

(B) 

Good 

bearing 

Ch. 1 0.0358 0.0443 0.0406 0.0821 0.0453 0.1064 0.0500 0.1601 0.0582 0.2449 

Ch. 5 0.0357 0.0334 0.0392 0.0675 0.0467 0.0830 0.0601 0.1126 0.0825 0.1856 

Ch. 9 0.0339 0.0470 0.0350 0.0879 0.0361 0.1115 0.0383 0.1595 0.0408 0.2460 

Ch.11 0.0337 0.0331 0.0339 0.0536 0.0343 0.0739 0.0388 0.1192 0.0423 0.2137 

 Avg. 0.0348 0.0395 0.0372 0.0728 0.0406 0.0937 0.0468 0.1379 0.0560 0.2226 

Ball fault 

Ch. 1 0.0347 0.0260 0.0402 0.0450 0.0419 0.0624 0.0511 0.0889 0.0644 0.1415 

Ch. 5 0.0351 0.0215 0.0429 0.0382 0.0469 0.0476 0.0590 0.0720 0.0806 0.1159 

Ch. 9 0.0280 0.0216 0.0280 0.0441 0.0286 0.0583 0.0293 0.0860 0.0362 0.1556 

Ch.11 0.0303 0.0155 0.0302 0.0258 0.0308 0.0371 0.0310 0.0579 0.0347 0.1126 

 Avg. 0.0320 0.0212 0.0353 0.0383 0.0370 0.0514 0.0426 0.0762 0.0539 0.1314 

Inner race 

fault 

Ch. 1 0.0462 0.0175 0.0445 0.0287 0.0437 0.0358 0.0508 0.0539 0.0519 0.0834 

Ch. 5 0.0420 0.0131 0.0434 0.0220 0.0463 0.0284 0.0470 0.0443 0.0560 0.0690 

Ch. 9 0.0468 0.0196 0.0452 0.0372 0.0464 0.0502 0.0473 0.0730 0.0644 0.1407 

Ch.11 0.0397 0.0128 0.0400 0.0262 0.0425 0.0350 0.0439 0.0520 0.0500 0.1114 

 Avg. 0.0437 0.0158 0.0433 0.0285 0.0447 0.0374 0.0472 0.0558 0.0556 0.1011 

Outer race 

fault 

Ch. 1 0.0814 0.0228 0.0828 0.0379 0.0843 0.0491 0.0867 0.0729 0.0916 0.1159 

Ch. 5 0.0811 0.0192 0.0825 0.0305 0.0843 0.0391 0.0871 0.0566 0.0924 0.0866 

Ch. 9 0.0819 0.0223 0.0877 0.0430 0.0845 0.0601 0.0896 0.0803 0.0924 0.1234 

Ch.11 0.0807 0.0162 0.0814 0.0266 0.0872 0.0399 0.0831 0.0590 0.0899 0.1145 

 Avg. 0.0813 0.0201 0.0836 0.0345 0.0850 0.0471 0.0867 0.0672 0.0916 0.1101 

Combined 

fault 

Ch. 1 0.0299 0.0275 0.0343 0.0448 0.0379 0.0579 0.0461 0.0846 0.0597 0.1293 

Ch. 5 0.0322 0.0250 0.0372 0.0406 0.0424 0.0553 0.0528 0.0753 0.0604 0.1117 

Ch. 9 0.0262 0.0192 0.0265 0.0393 0.0272 0.0536 0.0288 0.0769 0.0313 0.1328 

Ch.11 0.0259 0.0116 0.0396 0.0246 0.0399 0.0350 0.0495 0.0513 0.0564 0.1122 

 Avg. 0.0285 0.0208 0.0344 0.0373 0.0368 0.0505 0.0443 0.0720 0.0519 0.1215 
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Figure 5.7 Imputation of missing signals at the location of missing occurrences in 

acoustics and vibration channels (MP: 20%) with FBCP method. 

 

Figure 5.8 Performance evaluation of proposed and benchmark methods with diverse 

bearing fault conditions. 

5.6 Conclusion and future work 

The emerging trend of multi-channel sensor fusion is ubiquitous. In the industry 4.0 

perspective, heterogeneous sensor fusion can be integrated for real-time machinery fault 

identification and diagnosis. Multi-channel sensor fusion can be challenging when a substantial 

amount of missing data occurrence prevails. However, the effectiveness of imputation of missing 
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sensor signals is also significantly important for monitoring machinery conditions.  In quest of the 

state-of-the-art, this proposed method adopted a fully Bayesian CANDECOMP/PARAFAC 

factorization (FBCP) method for missing data imputation from diverse bearing fault signals. To 

validate the effectiveness of this proposed method, a machinery fault simulator is used as a testbed 

to collect diverse bearing fault signals by integrating an equal number of acoustics (microphones) 

and vibration (accelerometers) sensors simultaneously. Acoustics and vibration signals are 

combined by forming time-domain tensors. A varying percentage of continuous missing signal 

scenarios are generated at random locations among different acoustics and vibration channels, 

constructing incomplete tensors. Then, the FBCP method is leveraged to complete the incomplete 

tensors and calculate estimated tensors.  

To evaluate the performance of continuous missing data imputation, relative standard errors 

(RSE) are computed based on the estimated and actual time-domain tensors. The CP weighted 

optimization (CPWOPT) method is incorporated as a benchmark method to evaluate the 

effectiveness of the FBCP method. Experimental results show that this proposed method can 

effectively impute a substantial portion of continuous missing data from diverse bearing fault 

scenarios. This proposed method can be extended in the following aspects. Firstly, a varying 

percentage of continuous missing signal scenarios can be introduced among different acoustics 

and vibration channels at a time. And then evaluate the effectiveness of the FBCP method. 

Secondly, the extension of this proposed method can be leveraged for bearing faults classification. 

More specifically, imputed sensor signals can be applied in the Machine Learning tools and 

evaluated the effectiveness of diverse bearing fault classification with the actual time-domain 

signals and their respective fault classification results.  
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CHAPTER VI 

DISSERTATION SUMMARY 

This chapter concludes the dissertation by outlining the research summary and enumerating 

future research plans. Given the concurrent challenges of cybermanufacturing systems, three major 

research objectives are being proposed in this dissertation work. Section 6.1 demonstrates the 

technical contribution of this dissertation relating cybermanufacturing systems. In section 6.2, 

future research directions are illustrated based on the current proposed methods. 

6.1 Technical contribution of this dissertation by linking cybermanufacturing systems 

Cybersecurity frameworks can be leveraged in a wide range of cybermanufacturing operations 

to make a robust shield against cyberattack space (Table 6.1). Although AI has achieved significant 

success in modelling and monitoring, manufacturing operations pose inherent challenges, 

including 1) potential cyber-physical attacks; 2) large volumes of data streams available; 3) ill-

structured data, such as missing data. Subsequently, these major challenges hinder effective 

modeling and monitoring for cybermanufacturing systems' decision-making. Considering the 

cybersecurity framework, the first research aims to detect the in-situ additive manufacturing (AM) 

process authentication problem using high volume video streaming data. By linking the second 

proposed method, the third research endeavour is aligned to recovery systems of multi-channel 

sensing signals when a substantial amount of missing data exists due to sensor malfunction or 

transmission issues. Table 6.1 depicts the overall technical contributions of the first and third 

proposed methods of this dissertation work based on the cybersecurity framework.  



 

86 

Table 6.1 Overall technical contributions in cybermanufacturing systems. 

Cybersecurity steps Proposed research work in cybermanufacturing  

Detection 

To detect layer-wise printing path alteration in AM due to cyberattack 

space, layer-wise texture analysis based on streamline video analysis is 

incorporated. 

Recovery 
To recover missing signals from multi-channel sensors in rotary machinery 

components, tenor factorization method is implemented.  

 

Overview of technical contributions, applications and the broader impact of this dissertation 

has been presented in Figure 6.1. These proposed methods can be implemented in a wide range of 

areas, including different AM process, prognostics and health condition monitoring of 

machineries, and large-scale sensor networks. Overall, broader impact these proposed methods 

ensure product quality and safety, cybersecurity, reduce manufacturing errors, minimize 

downtime, and enhance machinery service life. 

 

Figure 6.1 Technical contributions, and their applications areas and broader impact. 
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6.2 Future research directions 

The presented dissertation is the beginning of an emerging research trend: data-driven 

modeling and monitoring of advanced manufacturing systems. The list of future research plans is 

as follows: 

1) Diverse printing path alteration and sensitivity of cyber-physical attack space in AM 

 

A side-channel monitoring approach based on an in-situ optical imaging system is established, 

and a tensor-based layer-wise texture descriptor is constructed to describe the observed printing 

path. This proposed method can be extended in diverse printing path alteration of AM for 

sensitivity analysis of cyber-physical attack space. More elaborately speaking, AM parts with 

diversified geometric features, including different shapes, infill patterns, and infill percentages, 

will be considered, and their performance will be evaluated. 

2) The effectiveness of feature-level sensor fusion with diverse faulty RM components 

 

The second proposed method is aligned with the multi-channel sensor fusion methodology, 

named frequency-domain multilinear principal component analysis (FDMPCA), by integrating 

acoustics and vibration signals with different sampling rates for real-time bearing fault diagnosis. 

This research work can be extended by introducing diverse faulty RM components to bring the 

robustness of feature-level sensor fusion in predictive maintenance operations.  

3) The effectiveness of missing signal imputation 

 

The third proposed method is fully Bayesian CANDECOMP/PARAFAC (FBCP) factorization 

for missing data imputation of mixed bearing faults signals. The extension of this proposed method 

can be leveraged for various RM component faults classification. More specifically, imputed 

sensor signals can be applied in the Machine Learning tools and evaluate the effectiveness of 

diverse RM component faults classification with the actual time-domain signals and their 
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respective fault classification results.  
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