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Abstract 

Three-dimensional scanning is widely used for the dimension measurements of physical objects with freeform designs. The output point cloud is 
flexible enough to provide a detailed geometric description for these objects. However, geometric accuracy and precision are still debatable for 
this scanning process. Uncertainties are ubiquitous in geometric measurement due to many physical factors. One potential factor is the object’s 
posture in the scanning region. The posture of target positioning on the scanning platform could influence the normal of the scanning points, 
which could further affect the measurement variances. This paper first investigates the geometric and spatial factors that could potentially 
influence scanning variance. This functional relationship is modeled as a Bayesian extreme learning model, which is later utilized to find the 
object’s optimal posture for variance reduction. A Bayesian optimization approach is proposed to solve this minimization problem. Case studies 
are presented to validate the proposed methodology. 
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1. Introduction 

Three-dimensional (3D) scanning has attracted extensive 
research interest in the past decades. It is a technique that 
surveys geometric information of a physical object and 
translates it into the digital sphere [1]. Multiple scanning 
technologies exist and belong to two categories: contact 
methods and non-contact methods [2]. Contact methods, such 
as coordinate measuring machines (CMM),  provide high 
accuracy and precision measurements but usually consume a 
significant amount of time in the geometric information 
collection [3]. It is therefore usually used to survey the critical 
dimensions for primitive features or used for applications that 
require high-precision measurements [4]. Non-contact 
methods, on the other hand, could collect much more points in 
a short period of time [5]. Laser scanners, e.g., triangulators or 
structured light scanners, are widely used in manufacturing 

because of their relatively high measurement precision and fast 
scanning speed [6]. 

3D scanning is very useful in advanced manufacturing 
systems, especially those involving mass customization [7, 8] 
or sustainability [9]. The reverse engineering (RE) [10] and 
geometric quality inspections [11] are two major applied fields. 
RE further processes the surveyed geometric information and 
uses it to build a computer-aided design (CAD) model, which 
is the de facto language in industrial design. This CAD model 
can be utilized for multiple engineering applications, such as 
remanufacturing [12], redesign [13], reengineering [14], and 
simulation [15, 16]. The first and foremost step of an RE 
process is 3D scanning, where precision will determine the 
geometric quality for each subsequent step. 

Geometric quality inspection using 3D scanning has recently 
become critical because of the advancement of the additive 
manufacturing (AM) [17]. AM is a set of manufacturing 
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processes that share a similar fabrication characteristic⎯adding 
material layer by layer [18]. One of the major constraints that 
hinder the wide adoption of AM is the relatively low geometric 
accuracy of its produced parts [19]. Therefore, the appropriate 
metrology tools need to be selected to inspect the AM-produced 
parts and provide insights into how the process parameters 
affect the geometric accuracy. The point cloud measured by 3D 
scanning could provide a detailed description of the AM-
printed freeform objects. 

 
 

Nomenclature 

3D Three-dimensional 
RE Reverse engineering 
AM Additive manufacturing 
CAD Computer-aided design 
CCD Charge-coupled device 
BELM Bayesian extreme learning machine 

 The unknown functional relationship between local 
geometric descriptors and point variance 

 The estimated functional relationship via Bayesian 
extreme learning machine  

 The incident angle of the laser stripe 
 The variance of the scanned point  

 The logarithm of  
 The rate of the local curvature change of point  
 Rigid rotation matrix 
 Yaw ( -axis) rotation angle 
 Pitch ( -axis)rotation angle 
 Roll ( -axis) rotation angle 

 The incident angle of the laser stripe after rotation  
 The normal direction of the point ,  
 Random error term,  distributed. 
 Variance of  

 
However, the geometric precision of 3D scanning, especially 

non-contact methods, is still debatable for the above 
applications [10]. RE is often utilized in medical applications 
[20] or aerospace applications [21], requiring the final products 
with high accuracy and precision. Since 3D scanning is the first 
step of RE, the precision of the collected point clouds is critical 
for the whole process. On the other hand, the quality inspection 
also requires high-precision scanning. Its variability will 
heavily influence the following decision-making regarding 
quality and process improvement. 

Although accuracy is recognized as a critical consideration 
in 3D scanning or RE technologies, in this study we focus on 
reducing variance to get a high-precision point cloud. The 
geometric metrology hardware is assumed to be well-calibrated 
before scanning, if it is not NIST-traceable. 

To improve the quality of the 3D scanned point cloud, 
factors that have an impact on the precision and accuracy of the 
scanning process need to be identified. Then, an implicit 
functional relationship between these factors and a metric of the 
quality characteristic, e.g., precision or variance, is required to 
assist in identifying the potential solution that could improve 

the quality of the scanning process and, further, increase the 
precision of the point clouds. Next, an optimization procedure 
can help to optimize the scanning strategy with respect to the 
solution or factors identified. 

In this paper, Section 2 first reviews the geometric factors 
that could influence the geometric precision of the scanning 
process and the variance model of the point cloud using these 
factors. Within this model, a controllable factor, the points’ 
normal directions, is identified in Section 3, which could 
potentially reduce the point cloud variability. A Bayesian 
optimization model is adopted to minimize the variances with 
respect to the normal direction. Section 4 presents case studies 
with three geometrically different parts printed by AM to 
validate the proposed framework. 

2. Point Cloud Variance Modeling 

Many non-contact scanning methods are available for 
industrial applications [10]. This study focuses on utilizing a 
laser scanner for RE or quality inspection purposes since it has 
a high precision for manufacturing-related applications. 

The mechanism of a laser scanner is to project laser strips 
onto the surfaces of the target object [22]. A charge-coupled 
device (CCD) camera captures the reflected laser strips and 
records the point spatial information by the laser-projected 
location on the receiver. Therefore, the 3D-scanned point cloud 
variances are heavily influenced by the interferences that 
happen on the object’s surfaces, presented in Figure 1. Since 
the interferences of a survey point are caused by its near 
neighborhood, two critical local geometric factors are 
identified by Geng et al. [23], which are the point’s normal 
directions and local curvature change. The authors propose a 
Bayesian extreme learning machine (BELM) to model the 
functional relationship between point variances and these two 
local geometric descriptors. In this paper, we briefly review 
their model, which later can be utilized to find the best scanning 
posture. 

Many factors could influence the variance of the surveyed 
point cloud, which are presented in Figure 2; however, factors, 
such as scanner hardware or environment, are “controllable” 
factors that can be changed and set at the optimal level.  

 

Figure 1. Mechanism of a laser scanner with a single laser stripe. Here  is 
the tangent plane of the surface at the point and  indicates the normal 
direction. The incident angle  equals the reflection angle [23]. 
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Figure 2. Fishbone diagram of a sample of factors related to the measured 
objects, scanning hardware, and environments that could influence the variance 
of a laser scanner [23]. 

Many other factors, such as ambient light, the object’s color, 
and the material’s reflectance rate, could also affect the 
scanning variance. However, these factors can be seen as 
controllable factors for the scanning process that can be set at 
optimal conditions [24]. On the other hand, the geometric shape 
of the target object cannot be standardized. These 
uncontrollable factors, especially the geometric design of the 
scan target, are either fixed or cannot be directly changed in a 
scanning project. Thus, it is critical to find the relationship 
between the geometric design and the variance of the point 
cloud. Therefore, our variance model focuses on building the 
relationship between these geometric descriptors and the point 
variances.  

The mechanism of a general laser scanner is presented in 
Figure 1. The Law of Reflection states that the incident angle 

 should always equal the angle of reflection . Therefore, if 
the point’s normal direction is orthogonal to the incident laser 
strip, this point can be difficult to be captured on the CCD 
camera, which may increase the variance of this point. 
Furthermore, it is not easy to accurately measure the point in 
the high-curvature area. The reason is that the points in or near 
high curvature areas are generally located in a small region. 
These points are also difficult to capture by the laser strips 
because their tangent planes and normals are relatively more 
sensitive to noise due to high curvature. 

One unique observation from the 3D scanning process is the 
variances of the -coordinate are much higher than those of the 
rest two coordinates. Therefore, we only focus on the model 
and posture optimization with respect to the -coordinates in 
this study. The -coordinate variances can be modeled as 

             (1) 

where  is the index for the points,  is the 
outcome variable that corresponds to the logarithmic 
transformation of the variance for the -coordinate of the point 
,  is the angle between the normal direction vector of the 

point  and the vertical axis,  is the rate of the local curvature 

change of point , and the error terms  are independent  
random variables and  is the variance of .  

Since this functional relationship can be highly nonlinear, 
and the functional form between the predictors and response is 
unknown, a flexible model that could approximate this implicit 
relationship should be selected. The BELM model is adopted 
for functional approximation as it can be seen as a universal 
approximation to any functional forms [25]. This model is a 
single-layer feedforward neural network whose input weights 
are randomly assigned by a predetermined distribution. Since 
the volume of the point clouds is large (millions or even 
billions), the general flexible, nonparametric regression 
methods, such as Gaussian processes, random forests, neural 
networks, etc., can cost a huge amount of computational 
resources and a long time to fit the data to the model. BELM, 
on the other hand, can reduce the complex model training 
procedure in the neural network, such as gradient descent, to 
fitting a linear regression model, which is computationally 
efficient while flexible enough to approximate the implicit 
functional form. 

3. Posture Optimization for Variance Minimization 

This section proposes a framework based on the BELM 
variance model to seek the object’s best posture to minimize 
the variance measure. In the variance model presented in 
Section 2, two local geometric descriptors are selected as 
inputs: the point’s local curvature change and normal direction. 
The first one is a constant with respect to the object. Since the 
mechanical parts are treated as rigid objects, their physical form 
is fixed. Thus, the local curvature change measures are 
invariable to the measured points. Even though the scanner 
could avoid these high curvature areas to reduce the variance, 
these areas usually play critical functional roles, which calls for 
much denser measurement. 

 

Figure 3. Proposed strategies to reduce the scanning variability: (a) the target 
object is placed on a rotatable scanning table, which provides the scanner with 
the target at the optimal scanning posture, and (b) the target object is attached 
to a predesigned wedge, whose shape is designed via the proposed Bayesian 
optimization model, on a fixed scanning table. 

The normal direction is controllable by rotating the scanning 
table (Figure 3 (a)) or by providing a specialized fixture design 
(Figure 3 (b)). Let the standardized normal direction of the 
point  be , , and the general rigid rotation 
matrix  can be written as 

       (2) 
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where , ,  are yaw ( -axis), pitch ( -axis), and roll ( -axis) 
rotation angles. Therefore, the new normal direction of any 
point  on the object is . Notice that, in the BELM model,  
is the angle between  and the vertical axis, so , 
where . After rotation, the cosine value of the new 
angle becomes , which can be written as 

        (3) 

One insight from this formula is that the yaw rotation angle 
—or rotation angle about -axis—will not influence the 

points’ variances. This is intuitive since the rotation about -
axis is the same as the translation on the scanning table, which 
is not considered as an influencing factor (Figure 2). 

Therefore, our optimization model can be written as follows, 

                                      (4) 

where  is the BELM model trained by the proposed 
method in[23]. Since the objective function is the fitted BELM 
model, a “black-box” model, a Bayesian optimization 
technique is utilized to solve this minimization problem. 
Bayesian optimization is a class of optimization methods that 
utilize a surrogate model in place of the expensive black-box 
derivative-free objective function. A Gaussian process 
regression model is usually adopted as the surrogate, and an 
acquisition function is implemented to explore the parameter 
space and find the global optimum [26]. In this study, we 
reformulate the original constrained-minimax problem as a 
minimization model of an expensive function with a rectangle 
parameter space, which can be written as 

             (5) 

where . This problem can be solved 
by a Bayesian optimization algorithm with the expected 
improvement as the acquisition function. One trivial but critical 
point is that, while the Bayesian optimization algorithm could 
solve this “black-box” model, the maximization function over 

 is not a continuous, smooth function, which, 
technically, cannot be approximated by the Gaussian processes 
model. Therefore, we utilize the softmax function in place of 
the strict maximization to make the objective function smooth, 

          (6) 

It is well known that the softmax function is continuous 
everywhere [27] that can be approximated by Gaussian 
processes. The basic procedures of the Bayesian optimization 
are presented in Algorithm 1, which can be solved using the 
Bayesian Optimization package in Python [28]. Intuitively, 
Bayesian optimization is a sequential optimization algorithm, 
where an acquisition function helps to explore the feature space 
and find the region with the highest uncertainty. In this study, 

we utilize the expected improvement function as the 
acquisition function, and the algorithm will stop after  steps. 
 
 
 

Algorithm 1: Basic procedures for Bayesian optimization 

Adopt a Gaussian process model as prior for 
. 

Initialize the algorithm by random observing points in the parameter 
space and observe their function value. 

Set . 

while  to  do 

Train the Gaussian process model using all the available data. 

Let  be a minimizer of the current expected improvement 
function. 

Observe . 

. 

end 

Return the  with the smallest  value. 

4. Case Study 

We now apply our variance minimization model to seek the 
optimal posture of the AM-printed freeform designs. Our study 
consists of three objects shown in Figure 3: one Half-Ball and 
two freeform objects. These three parts are printed using the 
LulzBot TAZ FDM machine, based on the filament deposition 
modeling process, with a gold metallic 2.85 mm polymer. Each 
part is scanned 30 times independently using a FARO Platinum 
8’ Arm Laser Scanner to train the BELM model. For each 
scanning trial, the optimal posture is also calculated utilizing 
the proposed Bayesian optimization procedure and a scan 
follows for the optimized scanning posture. We adopt the 
residual-BELM structure proposed in [23] as the model to fit 
the training data. Each of the residual-BELM had 20 layers for 
each of the 5 stack-up BELM models. 
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Figure 3. AM-printed parts that are considered in our case study 

Our proposed Bayesian optimization model with softmax 
approximation and expected improvement function is applied 
to each scan to compare the performances between the original 
flat position and the optimal posture. The results are presented 
in Figure 4, which are the deviations between the scanned point 
clouds and the point clouds collected from Renishaw’s 
coordinate measuring machine, which is both high accuracy 
and high precision. From these results, the optimized posture 
has much smaller deviations than the flat position for any scan 
of each object. However, the deviation reductions are not 
uniform for the subjects. This is because the distributions of the 
normal direction are different among the three objects. The 
Half-Ball has normal directions orthogonal to the vertical 
direction at its bottom area, while the bottom areas of the rest 
two are flatter than that of the Half-Ball. According to the 
scanning mechanism presented in Figure 2, if the normal 
direction is orthogonal to the laser projection direction, then the 
points around this area can be hard to survey since it is difficult 
to collect the reflection laser stripe. Therefore, rotating the 
Half-Ball object could significantly reduce the area that has a 
point normal orthogonal to the laser projection direction; while 
the other two objects, whose shapes are mostly flat, may not 
have significant improvement as the Half-Ball. 

 

Figure 4. Maximum variances of the original position and optimized posture of 
each experimental object: (a) Hall-Ball; (b) Freeform 1; and (c) Freeform 2 

5. Conclusion 

This paper presents a framework to reduce and minimize the 
variability of the 3D scanning process. We build a functional 
relationship between the measured-point variances and the 
local geometric descriptor based on the basic mechanism of a 
laser scanner. Under this relationship, we find one controllable 
factor, the point’s normal direction, that could potentially 
reduce the scanning variability. We propose an optimization 
model to minimize the points’ variances based on the variance 
model in the form of a BELM using Bayesian optimization. 
The proposed variance modeling technique is versatile in that 
it learns the scanner’s behavior and utilizes this knowledge to 
increase the scanning performance. 

One potential issue that was not addressed in our current 
study is the effect of rotation on the variance changes of the - 
and -coordinates. Even though the -coordinate has more 
variability than the other two, the coordinate system may 
change after rotating the object. In our future work, all the 
coordinates will be considered simultaneously in the 
optimization model. A multi-objective Bayesian optimization 
technique will be investigated for such a problem to further 
reduce the scanning variance. 
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