188 research outputs found

    On the use of a liquid lens for improving iris images quality in a hyperspectral system

    Get PDF
    In this paper, we describe how using a liquid lens can improve the quality of iris images acquired by a hyperspectral system. This improvement in the image quality is especially noticeable for systems that scan the iris over a wide range of wavelengths, e.g. visible and near-infrared spectrum. We have tested this approach on the previously developed system able to acquire iris images in the spectral range 480 - 900 nm. The key novelty presented in this paper is represented by the possibility of adaptively adjusting the focus of the imaging system, allowing for chromatic aberration compensation and ensuring a constant image sharpness among all wavelengths. A fast-tunable liquid lens has been placed in front of the chromatically corrected camera objective to adaptively change the overall focus of the imaging system. The findings imply that the device can rapidly perform hyperspectral measurements of the iris over a broad wavelength range ensuring optimal focus for all images

    Benchmarking of mobile phone cameras

    Get PDF
    fi=vertaisarvioitu|en=peerReviewed

    Laplacian-based focus measure allows rapid focus estimation of annular regions in gray-scale images

    Get PDF
    Important ophthalmic imaging techniques, such as fundus camera imaging, utilize light sources that need to be focused on an annular section of an eye surface. In order to be performed dynamically, this requires real-time control of the focus plane of the illumination optics. When considering adaptive focusing in ophthalmic instruments, liquid lenses represent the best compromise in terms of tunability, tuning range, compactness, numerical aperture, and speed. In recent years, several compact eye imaging devices using liquid lenses have been described in the literature. These would benefit from low computational complexity algorithms for adaptive local auto-focus on an annular region, to allow the illumination optics to be controlled by low-cost and low-power electronics. In this paper, we propose a novel radial-focus evaluation method based on a revised version of a more traditional Laplacian-based focus estimator. This radial focus evaluation is targeted to focusing annular sections of an image, with the advantage of a drastic reduction of computational complexity

    Vedel-objektiiv abil salvestatud kaugseire piltide analüüs kasutades super-resolutsiooni meetodeid

    Get PDF
    Väitekirja elektrooniline versioon ei sisalda publikatsiooneKäesolevas doktoritöös uuriti nii riist- kui ka tarkvaralisi lahendusi piltide töötlemiseks. Riist¬varalise poole pealt pakuti lahenduseks uudset vedelläätse, milles on dielekt¬rilisest elastomeerist kihilise täituriga membraan otse optilisel teljel. Doktoritöö käigus arendati välja kaks prototüüpi kahe erineva dielektrilisest elastomeerist ki¬hilise täituriga, mille aktiivne ala oli ühel juhul 40 ja teisel 20 mm. Läätse töö vas¬tas elastomeeri deformatsiooni mehaanikale ja suhtelistele muutustele fookuskau¬guses. Muutuste demonstreerimiseks meniskis ja läätse fookuskauguse mõõtmiseks kasutati laserkiirt. Katseandmetest selgub, et muutuste tekitamiseks on vajalik pinge vahemikus 50 kuni 750 volti. Tarkvaralise poole pealt pakuti uut satelliitpiltide parandamise süsteemi. Paku¬tud süsteem jagas mürase sisendpildi DT-CWT laineteisenduse abil mitmeteks sagedusalamribadeks. Pärast müra eemaldamist LA-BSF funktsiooni abil suu¬rendati pildi resolutsiooni DWT-ga ja kõrgsagedusliku alamriba piltide interpo¬leerimisega. Interpoleerimise faktor algsele pildile oli pool sellest, mida kasutati kõrgsagedusliku alamriba piltide interpoleerimisel ning superresolutsiooniga pilt rekonst¬rueeriti IDWT abil. Käesolevas doktoritöös pakuti tarkvaraliseks lahenduseks uudset sõnastiku baasil töötavat super-resolutsiooni (SR) meetodit, milles luuakse paarid suure resolutsiooniga (HR) ja madala resolut-siooniga (LR) piltidest. Kõigepealt jagati vastava sõnastiku loomiseks HR ja LR paarid omakorda osadeks. Esialgse HR kujutise saamiseks LR sisendpildist kombineeriti HR osi. HR osad valiti sõnastikust nii, et neile vastavad LR osad oleksid võimalikult lähedased sisendiks olevale LR pil¬dile. Iga valitud HR osa heledust korrigeeriti, et vähendada kõrvuti asuvate osade heleduse erine¬vusi superresolutsiooniga pildil. Plokkide efekti vähendamiseks ar¬vutati saadud SR pildi keskmine ning bikuupinterpolatsiooni pilt. Lisaks pakuti käesolevas doktoritöös välja kernelid, mille tulemusel on võimalik saadud SR pilte teravamaks muuta. Pakutud kernelite tõhususe tõestamiseks kasutati [83] ja [50] poolt pakutud resolutsiooni parandamise meetodeid. Superreso¬lutsiooniga pilt saadi iga kerneli tehtud HR pildi kombineerimise teel alpha blen¬dingu meetodit kasutades. Pakutud meetodeid ja kerneleid võrreldi erinevate tavaliste ja kaasaegsete meetoditega. Kvantita-tiivsetest katseandmetest ja saadud piltide kvaliteedi visuaal¬sest hindamisest selgus, et pakutud meetodid on tavaliste kaasaegsete meetoditega võrreldes paremad.In this thesis, a study of both hardware and software solutions for image enhance¬ment has been done. On the hardware side, a new liquid lens design with a DESA membrane located directly in the optical path has been demonstrated. Two pro¬totypes with two different DESA, which have a 40 and 20 mm active area in diameter, were developed. The lens performance was consistent with the mechan¬ics of elastomer deformation and relative focal length changes. A laser beam was used to show the change in the meniscus and to measure the focal length of the lens. The experimental results demonstrate that voltage in the range of 50 to 750 V is required to create change in the meniscus. On the software side, a new satellite image enhancement system was proposed. The proposed technique decomposed the noisy input image into various frequency subbands by using DT-CWT. After removing the noise by applying the LA-BSF technique, its resolution was enhanced by employing DWT and interpolating the high-frequency subband images. An original image was interpolated with half of the interpolation factor used for interpolating the high-frequency subband images, and the super-resolved image was reconstructed by using IDWT. A novel single-image SR method based on a generating dictionary from pairs of HR and their corresponding LR images was proposed. Firstly, HR and LR pairs were divided into patches in order to make HR and LR dictionaries respectively. The initial HR representation of an input LR image was calculated by combining the HR patches. These HR patches are chosen from the HR dictionary corre-sponding to the LR patches that have the closest distance to the patches of the in¬put LR image. Each selected HR patch was processed further by passing through an illumination enhancement processing order to reduce the noticeable change of illumination between neighbor patches in the super-resolved image. In order to reduce the blocking effect, the average of the obtained SR image and the bicubic interpolated image was calculated. The new kernels for sampling have also been proposed. The kernels can improve the SR by resulting in a sharper image. In order to demonstrate the effectiveness of the proposed kernels, the techniques from [83] and [50] for resolution enhance¬ment were adopted. The super-resolved image was achieved by combining the HR images produced by each of the proposed kernels using the alpha blending tech-nique. The proposed techniques and kernels are compared with various conventional and state-of-the-art techniques, and the quantitative test results and visual results on the final image quality show the superiority of the proposed techniques and ker¬nels over conventional and state-of-art technique

    An Automated System for Chromosome Analysis

    Get PDF
    The design, construction, and testing of a complete system to produce karyotypes and chromosome measurement data from human blood samples, and to provide a basis for statistical analysis of quantitative chromosome measurement data are described

    Integrated microcantilever fluid sensor as a blood coagulometer

    Get PDF
    The work presented concerns the improvement in mechanical to thermal signal of a microcantilever fluid probe for monitoring patient prothrombin time (PT) and international normalized ratio (INR) based on the physical measurement of the clotting cascade. The current device overcomes hydrodynamic damping limitations by providing an internal thermal actuation force and is realised as a disposable sensor using an integrated piezoresistive deflection measurement. Unfortunately, the piezoresistor is sensitive to thermal changes and in the current design the signal is saturated by the thermal actuation. Overcoming this problem is critical for demonstrating a blood coagulometer and in the wider field as a microsensor capable of simultaneously monitoring rheological and thermal measurements of micro-litre samples. Thermal, electrical, and mechanical testing of a new design indicates a significant reduction in the thermal crosstalk and has led to a breakthrough in distinguishing the mechanical signal when operated in moderately viscous fluids (2-3 cP). A clinical evaluation has been conducted at The Royal London Hospital to measure the accuracy and precision of the improved microcantilever fluid probe. The correlation against the standard laboratory analyser INR, from a wide range of patient clotting times(INR 0.9-6.08) is equal to 0.987 (n=87) and precision of the device measured as the percentage coefficient of variation, excluding patient samples tested < 3 times, is equal to 4.00% (n=64). The accuracy and precision is comparable to that of currently available point-of-care PT/INR devices. The response of the fluid probe in glycerol solutions indicates the potential for simultaneous measurement of rheological and thermal properties though further work is required to establish the accuracy and range of the device as a MEMS based viscometer

    The PanCam Instrument for the ExoMars Rover

    Get PDF
    The scientific objectives of the ExoMars rover are designed to answer several key questions in the search for life on Mars. In particular, the unique subsurface drill will address some of these, such as the possible existence and stability of subsurface organics. PanCam will establish the surface geological and morphological context for the mission, working in collaboration with other context instruments. Here, we describe the PanCam scientific objectives in geology, atmospheric science, and 3-D vision. We discuss the design of PanCam, which includes a stereo pair of Wide Angle Cameras (WACs), each of which has an 11-position filter wheel and a High Resolution Camera (HRC) for high-resolution investigations of rock texture at a distance. The cameras and electronics are housed in an optical bench that provides the mechanical interface to the rover mast and a planetary protection barrier. The electronic interface is via the PanCam Interface Unit (PIU), and power conditioning is via a DC-DC converter. PanCam also includes a calibration target mounted on the rover deck for radiometric calibration, fiducial markers for geometric calibration, and a rover inspection mirror.publishersversionPeer reviewe

    An automated system for chromosome analysis. Volume 1: Goals, system design, and performance

    Get PDF
    The design, construction, and testing of a complete system to produce karyotypes and chromosome measurement data from human blood samples, and a basis for statistical analysis of quantitative chromosome measurement data is described. The prototype was assembled, tested, and evaluated on clinical material and thoroughly documented
    corecore