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Abstract 

 

The work presented concerns the improvement in mechanical to thermal signal of a 

microcantilever fluid probe for monitoring patient prothrombin time (PT) and 

international normalized ratio (INR) based on the physical measurement of the clotting 

cascade.  The current device overcomes hydrodynamic damping limitations by 

providing an internal thermal actuation force and is realised as a disposable sensor using 

an integrated piezoresistive deflection measurement.  Unfortunately, the piezoresistor is 

sensitive to thermal changes and in the current design the signal is saturated by the 

thermal actuation.  Overcoming this problem is critical for demonstrating a blood 

coagulometer and in the wider field as a microsensor capable of simultaneously 

monitoring rheological and thermal measurements of micro-litre samples.  Thermal, 

electrical, and mechanical testing of a new design indicates a significant reduction in the 

thermal crosstalk and has led to a breakthrough in distinguishing the mechanical signal 

when operated in moderately viscous fluids (2-3 cP).  

 

A clinical evaluation has been conducted at The Royal London Hospital to measure the 

accuracy and precision of the improved microcantilever fluid probe.  The correlation 

against the standard laboratory analyser INR, from a wide range of patient clotting times 

(INR 0.9-6.08) is equal to 0.987 (n=87) and precision of the device measured as the 

percentage coefficient of variation, excluding patient samples tested < 3 times, is equal 

to 4.00% (n=64).  The accuracy and precision is comparable to that of currently 

available point-of-care PT/INR devices.  The response of the fluid probe in glycerol 

solutions indicates the potential for simultaneous measurement of rheological and 

thermal properties though further work is required to establish the accuracy and range of 

the device as a MEMS based viscometer.   
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Glossary of Terms 

Actuation Efficiency 

Describes the microcantilever tip deflection induced during thermal actuation, measured 

against the power dissipated in the device (µm.mW-1).  In combination with the 

conversion efficiency (µm.oC-1) the temperature increase measured against the power 

dissipated can also be quantified (oC.mW-1). 

 

Conversion Efficiency 

Describes the microcantilever tip deflection induced during thermal actuation, measured 

against the change in temperature in the device (µm.oC-1).  For multilayer 

microcantilevers with integrated heaters the temperature is measured from the change in 

resistance of the metal heater converted using the temperature coefficient of resistance 

of the metal film.  For integrated heaters the temperature is measured as an average 

increase as a temperature gradient is expected on the beam. 

 

Mechanical Sensitivity 

Describes the percentage change in resistance of the integrated piezoresistive sensor, 

presented as parts per million, for a mechanical deflection (∆R/R.µm-1) applied at the tip 

of the beam.  The mechanical sensitivity is related to the piezoresistor Gauge factor, a 

material constant that describes the proportional change in material resistance for 

induced strain. 

 

Thermal Crosstalk 

Describes the percentage change in resistance of the integrated piezoresistive sensor, 

presented as parts per million, for a change in temperature induced by powering the 

thermal actuation of the device (∆R/R.mW-1).  The magnitude of the change in 

resistance is dependent on a material constant called the temperature coefficient of 

resistance (TCR).  

 

Neutral Axis 

The neutral axis is defined as the plane in which the resultant axial force acting on the 

cantilever cross section is zero and is taken as the line at which the curvature of the 

beam is measured. 



 
 

Flexural Rigidity 

The flexural rigidity of a cantilever beam describes the resistance to bending through 

the cross section by compression or tension.  Mathematically this is defined as the force 

required to bend the structure by unit curvature.  This is related to the moment of area of 

an element located a distance from the neutral axis and the elasticity of this element.  

The flexural rigidity of the fluid probe is an important parameter as this governs the 

power which is needed to actuate the device and the restoring force to pull the beam 

back through the fluid. 

 

Gauge Factor 

The piezoresistor Gauge factor is a non-dimensional material constant that describes the 

proportional change in material resistance to induced strain in the material.  For the 

fluid probe the integrated piezoresistor is realised through metal thin film deposition.  

For such films the Gauge factor is based on geometric changes in the film and has a 

value typically < 4.   

 

Temperature Coefficient of Resistance (TCR) 

Describes the percentage change in resistance of metal films under a change in 

temperature.  The change in resistance is given by TRR ∆=∆ α  where α  is a material 

constant called the temperature coefficient of resistance (TCR).  This factor is important 

in decreasing the thermal crosstalk signal of the piezoresistor, and also signal drift due 

to changes in temperature in the environment.   

 

Prothrombin Time (PT) 

Patients with thrombotic disorders have an increased risk of forming life threatening 

clots and are medicated with anticoagulants to suppress the clotting cascade.  To remain 

in a healthy therapeutic range patients receiving oral anticoagulant medication are 

closely monitored using a Prothrombin Time (PT) diagnostic test.  This test measures 

the time for a clot to be detected based on the instrument used and reagent sensitivity.  

For clinical relevance the PT is converted to a recognised standard called the 

International Normalized Ratio (INR) through calibration of the International 

Sensitivity Index (ISI) and Mean Normal Prothrombin Time (MNPT) against the gold 

standard laboratory analyser. 

 



 
 

International Normalized Ratio (INR) 

The International Normalized Ratio is a World Health Organization recommended basis 

for evaluating the results of Prothrombin time tests.  The INR is a standardized result 

that eliminates the variability in PT measured for different combinations or 

thromboplastin reagent and detection platform and method.  To convert PT to an INR 

result each platform is calibrated against the gold standard laboratory analyzer to 

evaluate the International Sensitivity Index (ISI) and Mean Normal Prothrombin Time 

(MNPT) of the reagent/platform combination.  Essentially, patient INR measured on the 

gold standard should be consistent with any platform and reagent. 

 

International Sensitivity Index (ISI) 

The International Sensitivity Index specifies the sensitivity of the thromboplastin 

reagent to a internationally standardised sample.  The ISI is measured through 

calibration against the gold standard method, and used to convert PT measurements to 

clinically relevant INR values.  An ISI of 1.0 would be a sensitivity equal to the 

international standard.  An ISI lower than 1.0 would effectively prolong the clotting 

time and measured PT. 

 

Mean Normal Prothrombin Time (MNPT) 

The Mean Normal Prothrombin Time is calculated from a range of normal PT times 

from non medicated patients; essentially this is the PT time for a sample INR of unity.  

The MNPT is used in the conversion of PT measurements to clinically relevant INR 

values. 

 

Percentage Coefficient of Variation (%CV) 

The percentage coefficient of variation is a measure of the interpatient result variability 

calculated as the standard deviation divided by the mean as a percentage value. This 

value is recommended by the Clinical and Laboratory Standards Institute to measure the 

overall imprecision of the instrument, and is a basis for FDA approval. 
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Chapter 1 - Introduction 

 

1.1 Research Motivation 

Microsystem technology has the potential for future commercialisation over a broad 

range of scientific fields and as an enabling platform for nanoscience.  Exploitation of 

this technology has several inherent advantages, including the capacity to fabricate high 

density arrays for increased throughput of parallel information.  Microcantilever sensors 

and actuators form essential components of microsystem technology, allowing 

controlled mechanical interaction and response within an environment.  The application 

of microcantilevers cover a wide scope of activities with key areas in biological, 

chemical, and environmental sensors identified as high growth markets.  A small 

number of examples include; label free detection of proteins for cancer screening [1-3]; 

detection of foreign aerosols and explosive compounds for homeland security [4-5]; gas 

sensors and detection of pollutants for environmental monitoring [6-7]; proximity and 

motion sensors for seismic detection, accelerometers, and biometrics [8]; and possible 

electromagnetic field and charged particle detectors [9].  

 

The Bioscience MNT group at the Rutherford Appleton Laboratory (RAL) has a strong 

focus on polymer microcantilevers with integrated sensors and actuators.  This 

technology is of central importance to several projects undertaken by the group and 

remains a major programme within the Micro and Nanotechnology Centre (MNTC).  

Microcantilevers continually prove to be an enabling technology in new scientific fields 

and have already shown the potential for complementing the Science and Technology 

Facilities Council (STFC) strategies in bioscience and detector technology.  In the 

technical context of the wider scientific field, polymer microcantilevers have gained a 

growing interest.  It has recently been shown that the sensitivity of polymer surface 

stress sensors can match and in some cases surpass the performance of conventional 

silicon microcantilevers due to the combined integration of high gauge piezoresistive 

sensor elements with a low stiffness structural material [10-11].  Polymers also have the 

advantage that they can be processed quickly using simple and low cost “spin-on” 

methods, there is a wide choice of materials with different mechanical, electrical and 

thermal characteristics to choose from, and polymers are not limited to processing on 

conventional silicon substrates.  
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Thermally actuated bimorph microcantilevers are desirable for a range of sensor and 

actuator applications that require large deflection in the micro domain compared to 

conventional techniques (e.g. electrostatic, piezoelectric).  Thermal Bimorph Actuators 

(TBA) based on Gold and Polyimide (PI2562, Dupont) structural materials with 

integrated heaters and piezoresistive sensors have previously been designed and 

fabricated at the MNTC [12-14].  The motivation of the research presented here is to 

make improvements in current devices to demonstrate a biomedical fluid probe for 

measuring blood coagulation.  This requires improvements in the actuation efficiency of 

TBA to reduce power dissipation into the device and to overcome issues with thermal 

saturation of the integrated piezoresistor signal due to internal heating.  The principal 

scientific steps to achieve these improvements include mathematical and simulated 

performance of new microcantilever designs, and the development of testing and 

characterisation capabilities at MNTC for optimisation of fabricated devices.  The 

improvements allow the demonstration of the technology as a platform for new 

scientific applications, specifically in the field of biological and chemical analysis. 

 

     
(a)                                                                   (b) 

Figure 1-1 Microcantilevers previously fabricated by Djakov and Huq [12, 13] at the 

MNTC (1997-2002). (a) SEM image of a bimorph cantilever matrix for providing 

ciliary motion. (b) SEM image of a Π-shaped bimorph cantilever with optically 

reflective membrane. 

 

1.1.1 Current  Microcantilever Technology at RAL  

TBA, shown in Figure 1-1, were originally developed at the RAL for a novel MEMS 

based walking “micropede” (1997-2001) [12], and later investigated to provide large 

deflection of optical membranes (2002) [13].  These initial studies were based on gold 

and polyimide (PI2566, Dupont) bimorph structures with large difference in coefficient 
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of thermal expansion (CTE), and aluminium microheaters.  Bimorph microcantilevers 

were surface micromachined and released from the substrate using an etching process 

that exploits the weak adhesion of gold to the substrate.  Upon release the residual stress 

in the structural layers from the fabrication process force the bimorph to curl-up and 

assume an initial out-of-plane position.  Part of the initial studies at RAL involved 

fabrication of devices with varying thickness ratio to optimise the initial displacement 

of cantilever structures; this established an optimum range for the thickness of the 

material layers.   

 

In 2003 the MNTC worked with the Central Laboratory Innovation and Knowledge 

Transfer (CLIK) group to exploit intellectual property and research for commercial 

opportunities.  This collaboration resulted in a spinout company, Microvisk Ltd, whose 

core technology is to use TBA to provide rheological measurements of fluids.  The first 

product being developed is a medical diagnostic device for measuring blood coagulation 

aimed at patients on anti-coagulant drug therapy.  Proof of concept devices were based 

on original optical masks for TBA with gold-polyimide structural architecture that had 

previously been fabricated at the MNTC.  Initial devices incorporated no sensor on the 

cantilever and thin film heaters were not encapsulated.  The intention of these devices 

was to use the same thin film as a heater and strain gauge.  Subsequent devices for 

initial proof of concept based on single cantilever beams had encapsulated gold heaters 

and sensors on the same deposition layer.  These previous sets of probes were 

unsuitable for fluid applications as high actuation temperature within the structure 

created a significant thermal crosstalk on the mode of sensing resulting in an 

indistinguishable mechanical response [14].  The response also included high electrical, 

thermal, and vibrational noise in the sensor as no referencing or electronic balancing 

was used.  This drives the motivation for a microcantilever fluid probe design which is 

both highly efficient and produces low thermal crosstalk.   

 

The first original design for Microvisk, hereafter referred to as MV1 (Figure 1-2), was 

designed by Dr Vladislav Djakov and fabricated at the MNTC during 2005 by the 

author as part of this thesis.  The microcantilever device was based on gold-polyimide 

(PI2562) structural layers with separate gold heater and sensor track sandwiched in the 

polyimide layer.   
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Figure 1-2 Left: Side image of the microfabricated MV1 Fluid Probe Design. Right: Top 

image focused on the microcantilever tip. 

 

The MV1 microcantilever fluid probe has been operated in silicone standards and as a 

blood coagulometer by the author and Vladislav Djakov.  Figure 1-3 shows the similar 

piezoresistor sensor response in 10 cP and 100 cP silicone viscosity standards during 

thermal actuation, using approximately 90 mW input power.  The MV1 device has also 

been operated as a blood coagulometer with no successful confirmation of detecting the 

clot onset.  The poor operation of the device can be explained by the mechanical and 

thermal sensitivity of the measured gold piezoresistor (presented in Chapter 3).  The 

mechanical sensitivity of the microcantilever gold piezoresistor is 20.8 ∆R/R x10-6.µm-1 

and the temperature coefficient of resistance of the gold film is 1130 ∆R/R x10-6.oC-1.   

 

If the sensor response shown in Figure 1-3 is dominated by the mechanical signal the 

deflection would be of the order of several hundred microns within a few ms.  This is 

not observed, and is beyond the limit of the microcantilever.  As will be presented in 

Chapter 3 it is estimated that the deflection in fluids (1-3 cP) is of the order 0.5 - 1µm.  

If the sensor response was dominated by the thermal crosstalk from the heater during 

actuation then the signal would account for an increase in the sensor temperature by a 

few degrees within a few ms.  This is a reasonable assumption noting the proximity of 

the sensor to the heater, and the high power applied to the device.  Figure 1-3 also 

supports that the thermal signal is dominating the sensor response of the MV1 device.  

The temperature in the beam is related to the loss of heat from the structure and 

therefore the thermal conductivity and heat capacity of the surrounding environment.  

Though the fluids have an order of magnitude difference in viscosity, the thermal 

conductivity and heat capacity are comparable.  The dominance of the thermal crosstalk 

signal also explains the poor operation of the device as a blood coagulometer to 
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physically measure the clot onset. Though the MV1 device shows poor rheological 

discrimination of fluids and use as a blood coagulometer it serves well in this thesis as a 

benchmark to which new designs can be compared with and improvements shown. 

 

 
Figure 1-3 MV1 Piezoresistor sensor response in 10 cP (open diamond) and 100 cP 

(filled triangle) silicone viscosity standards.  The actuation pulse to the heaters has a 

peak power of approximately 90 mW (3.5V). 

 

The Bioscience MNT group has continued to focus activities on the development of 

polymer microcantilever devices and is currently operating a number of academic and 

European projects, with a combined budget of £1.5 million (2004-2008).  Major 

activities based on microcantilevers include the fabrication of microcantilever surface 

stress sensors for the detection of specific protein binding for disease indicators, 

tunnelling spectroscopy using modified photoplastic microcantilevers, and polymer 

microcantilever arrays for life science and bio-sensing - Tools and Technologies for the 

Analysis and Synthesis of Nanostructures (TASNANO).   

 

In April 2005 the group began work on a five year European Framework 6 project 

“Technology for the Production of Massively Parallel Intelligent Cantilever Probe 

Platforms for Nanoscale Analysis and Synthesis” (PRONANO).  The role of the MNTC 

in the project is to develop scanning proximity probes (SPP) using alternative 
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architecture based on multilayer polymer microcantilevers as a platform for analysis and 

manipulation as illustrated in Figure 1-4.  This technology offers an alternative to 

silicon based scanning probes using low power, large deflection capabilities to realise 

two-dimensional arrays, and a simple low cost route of manufacturing.  The ultimate 

aim of the project is to realise a packaged massively parallel chip incorporating 4x16 

proximal probes, each fully addressable with control and readout.   

 

The project has synergies with the microcantilever fluid probe research as the critical 

task for the group is to produce very low power microcantilever devices and to resolve 

issues with thermal crosstalk from the actuation on the piezoresistive sensor.  The 

design, realisation, and demonstration of polymer microcantilevers for surface 

metrology have also been undertaken within the EngD portfolio.  The polymer scanning 

probes have been shown to be capable of resolving 30-40 nm step resolution using an 

integrated piezoresistor sensor and can be deflected over 100 µm.  The work is now 

focused towards achieving below 10 nm resolution and enhanced tip sharpness to meet 

the needs of critical dimension (CD) metrology in the semiconductor and nano-

manufacturing industries.  A background and summary of work by the author is 

presented as supporting material in Chapter 6.   

 

The scanning probe work is interlinked with the fluid probe design and characterisation.  

The design of efficient multi-layer polymer actuators for the fluid probe presented in 

chapter 2 can be used towards efficient DC offset positioning for levelling cantilever 

arrays.  The optical characterisation of beam curvature presented in chapter 3 has been 

used to show irregular shape and twisting deflection, and the mechanical 

characterisation has led to the choice of low thermal sensitivity nichrome piezoresistors.  

The scanning probe work also provides confirmation of the estimation in mechanical 

deflection of the fluid probe in chapter 4 by measuring the noise level of the scanning 

probe during mechanically driven deflection against a sample. 
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Figure 1-4 Microcantilever platforms for nanoscience designed by the author. Left: 

1x32 microcantilever array with integrated heater and sensor. Right: 20x64 passive 

microcantilever array with 100% release yield. 

 

A major part of the undertaking of these projects is to develop analytical tools and 

characterisation of microcantilevers for optimisation of devices.  Previous to this project 

the group had limited electrical interrogation of devices and analysis was based on 

theoretical studies of two layer beams with uniform temperature distribution.  Though 

current devices under development include an integrated piezoresistor for sensing 

cantilever deflection, the metal thin film tracks are susceptible to thermal crosstalk from 

the integrated actuation and therefore an external optical technique is desirable to 

confirm deflection amplitudes.   

 

Standard optical techniques are difficult to implement on highly curved surfaces as a 

small angle approximation is no longer valid.  Common techniques that have been 

reported include extracting dimensions from SEM images [15-16] and using optical 

microscopes to determine x and y coordinates [17-18].  Further to these techniques, Dr 

Mohamad Al Aioubi, a previous member of the Bioscience MNT group, mounted 

micromirrors on the cantilever and analytically retrieved tip deflection [18].  While 

these techniques extract the required information they can be slow and based on the 

individual’s discretion.  The techniques are also difficult to implement for dynamic 

measurements.  Without the capabilities to make predictions and perform measurements 

it is difficult to approach new projects with an understanding of how the devices 

perform.  This has driven the motivation to implement a better understanding of the 

analytical framework and design new characterisation tests to extend the current 

capabilities of the group. 
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1.1.2 Oral Anticoagulation Drug Therapy 

The coagulation cascade is a complex process which results in clot formation and is 

crucial for stopping blood loss from damaged vessels.  Patients with thrombotic 

disorders, including atrial fibrillation, mechanical heart valves, deep vein thrombosis, 

and pulmonary embolism, have an increased risk of forming life threatening clots and 

are medicated with anti-coagulants to suppress the clotting cascade.  To remain in a 

healthy therapeutic range patients receiving oral anticoagulant medication are closely 

monitored using a Prothrombin Time (PT) diagnostic test.  This test gives an indication 

of how long the clotting process is taking and whether the course of anti-coagulants 

needs to be adjusted.  As the therapeutic window is narrow and a number of external 

influences, such as diet, illness, alcohol, and drugs can adjust the patients PT, regular 

testing is essential.   

 

Previous estimates of patients on anti-coagulation drug therapy are 7 million worldwide 

[19], with each patient requiring multiple tests per year.  The largest market for 

diagnostics is in the United States, where Doctors can claim reimbursements for each 

test carried out.  This financial incentive allows commercial viability presenting an 

attractive market where only few competitors are currently operating.  The market for 

handheld PT devices has few competitors; The Coaguchek System (Roche), INRatio 

(Hemosense), and ProTime Microcoagulation System (Thoratec Corp), are currently the 

only companies operating with handheld PT Devices.  A clear indication of the 

opportunity in this market is the recent acquisition of Hemosense by Inverness Medical 

Innovations for a reported $243 million in November 2007.   

 

Technologically, the latest Coaguchek XS device measures the PT as an electrochemical 

signal based on generation of phenylenediamine when thrombin cleaves a peptide 

electrocyme TH.  This is an indicative measurement of the clot onset as thrombin 

generation is a level before the fibrin clot formation in the coagulation cascade [20].  

The previous CoaguChek S device used a rheological method based on the damped 

motion of ferric oxide particles in an alternating magnetic field as the fibrinous clot is 

formed.  The INRatio device uses an electrical measurement of blood coagulation by 

measuring the global impedance of the sample and identifying the changes in 

conductivity associated with clot formation.  The ProTime device uses a rheological 

method based on detecting the motion of blood as it is pumped back and forth through a 

channel.  The technique presented in this thesis uses a mechanical and physical measure 
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of the clot formation and therefore measures the true onset of the cross-linked fibrin 

clot. 

 

1.2 Brief Introduction to Microcantilevers 

Microcantilevers form an essential component of many microsystem devices.  They can 

be used to mechanically manipulate device elements, measure environment properties, 

or even provide robotic locomotion.  For each application the mode of operation, 

method of actuation, and feedback mechanism for detecting microcantilever deflection 

must be consided.  For the Microcantilever Blood Coagulometer presented in this thesis 

the choice of actuation and detection has been implemented previously, though 

alternative and state of the art techniques are considered in the following section.  The 

section is not intended to provide a detailed discussion of each technology, as this is 

provided in text books [21-22], but to highlight any possible competing technologies 

and future consideration to alternative or enhanced operation.   

 

Microcantilever sensors are highly sensitive to changes in mechanical properties 

induced by physical and environmental conditions, such as added mass, attractive and 

repulsive forces, energy imparted on the beam, or induced surface stress.  The response 

to changes can be measured directly by passive deflection, or indirectly using 

techniques such as resonance.  For example, Ilic et al have demonstrated femtogram 

single cell detection of E.Coli [23] and attogram sensitivity of added mass [24] to short 

silicon cantilever structures by measuring a shift in natural frequency (Figure 1-5a).  If 

the E.Coli cell was measured as a passive mass deflection the deflection of the beam 

would be approximately 0.005 nanometres; beyond the resolving power of conventional 

techniques.  An enhanced passive technique is based on the induced surface stress from 

an attached monolayer of a specific binding of chemical or biomolecular species.  For 

example, Wu et al [1] have demonstrated label-free detection of two forms of prostate 

specific antigen using silicon microcantilevers functionalised with target antibodies, and 

Arntz et al [2] have demonstrated the detection of two cardiac biomarker proteins 

allowing the early and rapid diagnosis of acute myocardial infarction (Figure 1-5b).   

 

The detection of a cross-linked fibrin clot by principle suggests a dynamic technique 

whereby the microcantilever motion is damped by the progressing clot formation.  

Though resonance is a potential choice for this application it has been shown that fluid 

damping in only moderately viscous fluids significantly reduces the Q-factor of the 
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measurement [14].  This suggests using a large forced deflection through the fluid with 

an appropriate actuation mechanism as discussed below.  For future development, if the 

dynamics of the clot are such that the volume draws or pulls on the beam, a passive 

detection may be desirable as this would reduce the need for any actuation mechanism.   

 

   
(a)                                                                  (b) 

Figure 1-5 (a) Single E.Coli cell weighing approximately 665 femtograms on a silicon 

microcantilever giving a shift in natural frequency of 730 Hz [23]. (b) IBM “artificial 

nose” functionalised with antibodies for label-free detection of prostate specific antigens 

[24]. 

 

Common mechanisms of microcantilever actuation include electrostatic, piezoelectric, 

magnetic, shape memory alloys, and thermal.  Hydraulic [25], light driven [26] and 

some exotic electrochemical [27] actuation methods also exist but are less common and 

have yet to mature and therefore these methods are not considered for the application.  

Shape memory alloys may also be rejected as the critical temperature at which the shape 

transition occurs is typically unsuitable for biological applications.  Electrostatic and 

Piezoelectric actuation is appropriate for high-speed small precision deflection rather 

than large scanning applications, though this can be enhanced by overlapping several 

electrostatic actuators or stacking piezoelectric structural layers.  Magnetic actuation 

may be realised in several forms though it is undesirable to integrate coils and moving 

magnets into a point-of-care instrument.  Enhanced thermal actuation, either by using a 

two-arm flexural actuator [28] or multiple layers with different CTE [16], can provide 

large deflections though both techniques consume more power than other actuation 

techniques and have limited bandwidth dependent on thermal time constants.  Therefore 

it is desirable to use a technique such as thermal actuation but produce a very efficient 

device that works at low power and temperature.  Magnetic actuation may be of 
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consideration for future applications in high viscosity where large thermal powering 

would otherwise overheat or saturate an integrated sensor. 

 

Optical detection techniques for microcantilever deflection include the optical lever 

method [29], interferrometry [30-34], and diffraction [35].  Electrical techniques include 

electron tunnelling [36-37], capacitive [38], piezoelectric [39], and piezoresistive [40].  

Though optical methods can achieve angstrom sensitivity the alignment of an optical 

system in a handheld or desktop device for a microcantilever fluid probe presents a 

significant issue for packaging, high throughput, and ease of use.  Optical techniques 

also limit fluid applications to suitably transparent fluids and require a reflective or 

diffraction layer to be incorporated into the microcantilever structure.  For some 

applications, using an optical method is desirable as the detection will not be limited by 

thermal crosstalk during actuation; in this case the response is limited at low frequency 

by thermal mechanical vibrations and at high frequency by shot noise [41]. 

 

Electron tunnelling places high specification on the fabricated device and is therefore 

not considered as a detection mechanism for the fluid probe.  Capacitive, piezoelectric 

and piezoresistive offer similar capabilities in sensitivity, though piezoresistance is 

described further below as the most suitable detection method due to the simplicity of 

integration.  The piezoresistive effect is based on the induced change in resistance due 

to changes in geometry and material resistivity.  Though metal films have a much lower 

gauge factor – product of strain and proportional change in material resistance – 

compared to semiconductor materials, the signal is enhanced using flexible substrates 

and larger deflection.  Compensation for thermal mechanical vibrations, thermal and 

electrical drifts, and other environmental changes in the resistance can be made using a 

suitable Wheatstone bridge arrangement with reference arms [40].  In this arrangement 

an actuated microcantilever piezoresistor is used in a positive arm of the bridge and a 

second reference microcantilever piezoresistor is used in a negative arm of the bridge 

such that environmental thermal drift and mechanical vibration are compensated.  A 

Wheatstone bridge arrangement also allows a balanced zero output voltage such that 

small changes can be amplified significantly.  In a bridge arrangement the sensitivity is 

generally limited by Johnson noise given by fluctuations in electrical current due to 

thermal excitation.  Metal films, such as gold and platinum, can also have a large 

thermal dependency, or temperature coefficient of resistance (TCR), measured as the 

percentage change in resistance due to changes in temperature.  For example, a 100 nm 
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deflection of a microcantilever using gold sensors with 0.3 ppm.nm-1 mechanical 

sensitivity [10] is equivalent to a change in temperature of the sensor of 0.008 oC.  

Certain alloys, such as constantan (CuNi) and manganin (CuMNi) can have virtually 

zero TCR and are desirable for very low sensitivity to thermal crosstalk and 

environmental temperature drifts. 

 

1.3 Previous Work and State of the Art 

Thermally actuated microcantilevers are becoming increasingly important in a number 

of MEMS applications that require large out-of-plane deflections.  This has been 

exploited in several areas, including, Microgrippers [42-44], Microrobotics [45] (Figure 

1-6a), Optical Scanners [46-47], and Smart Surfaces [48, 15].  These applications are 

predominantly based on actuation, though a number of recent applications in the field 

use bimorphs as microsensors, including, Uncooled Infrared Detectors [49-51] and 

Calorimeter sensors [52-54] (Figure 1-6b).  The improvement in efficiency and 

operation of bimorph actuators is predominantly driven by biological and chemical 

applications that require operation in liquids for manipulation, imaging, and sensing.  

Biological applications also place limitations on the maximum operating temperature of 

these devices.  This section highlights previous work and state of the art in the field of 

thermal bimorph actuators and the use of microcantilevers as a rheological sensor. 

 

    
(a)                                                                   (b) 

Figure 1-6 (a) Silicon chip with eight microcantilever legs to provide robotic 

locomotion [48]. (b) Piezoresistive microcantilever calorimeter array with a resistive 

thin film microheater [54]. 
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1.3.1 Thermal Bimorph Actuators (TBA) 

In 1988 Riethmüller and Benecke [16] proposed the first thermal microactuator devices 

based on the bimetal effect using boron doped silicon and gold structural layers with 

integrated poly-silicon heaters.  The devices curled out of plane after sacrificial release 

and achieved a 100 µm deflection for 200 mW of power dissipation; considerably more 

than conventional electrostatic or piezoelectric actuators.  Benecke [55] suggested the 

use of such devices for electrically controlled switches, microvalves, microshutters, 

optical components for mirrors and displays, surface manipulation, and micromotors.  

Larger actuation efficiency (µm.mW-1) was noted by the group when changing the 

thickness ratio of the bimorph and further improved using a thin Silicon Oxynitride 

layer and meandering gold metal layer which functioned as a structural and heater layer 

[56].  

 

The theory presented by Riethmüller and Benecke for estimating initial and thermal 

deflection is shown to be incomplete by Chu et al [57] and has been further derived 

based on small deflections and constant beam temperature.  Read et al [17] have 

extended the theory for a generalised multilayer structure.  From theory, Lammel et al 

[58] have noted the importance of the thickness ratio for bimorph structures in 

optimisation of initial deflection and actuation efficiency.  This parameter is further 

discussed in the context of the thesis in Chapter 2.  Peng et al [59] have performed a 

similar numerical analysis to show the dependence of deflection on material thickness 

in a two layer system. 

 

Read et al [17] have developed TBA based on the Orbit 2 µm double polysilicon CMOS 

process as a route for quick, low cost devices using commercially available foundry 

processes.  The disadvantage of the process is that materials are limited and layer 

thickness is fixed.  Microcantilevers were based on silicon dioxide and aluminium 

structural materials with an integrated polysilicon heater.  For a 300 µm long cantilever 

a tip displacement of approximately 38 µm is reported for 27 mW input power 

indicating an improvement on previous work in the field.  Later work [65] by the same 

group using the Multi-users MEMS Process (MUMPS) achieved 2.5 µm with 40 mW 

input of a 100 µm long gold – silicon dioxide microcantilever.  Schweizer et al [46, 47 

and 58] also fabricated TBA based on silicon dioxide and a thin film metal layer for 

application as optical microscanners in projection displays.  Schweizer reported that a 
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mirror mounted to the tip of the cantilever had an initial angle of 135 degrees and when 

driven at resonance achieved 30 degrees deflection for 1 mW average power 

consumption. 

 

Ataka et al [61] designed the first polymer based bimorph structures, noting that 

improved conversion of heat to displacement is achieved due to higher thermal 

expansion and lower Young’s modulus in polymer films compared to metal.  The group 

fabricated an array of polymer-polymer bimorph actuators with integrated metal heater 

for a ciliary motion system, achieving a reported tip deflection of 150 µm with 33 mW 

dissipated power.  Suh et al [15, 61, 62, 63] have fabricated a similar ciliary motion 

system for object manipulation based on dual polyimide structural layers with integrated 

TiW heaters and an aluminium layer for low power electrostatic pull-down (Figure 1-

7a).  Similar enhancements in thermal actuation efficiency are noted, with the addition 

of electrostatic pull down allowing low power holding once the beam has deflected a 

sufficient amount.  

 

Low stiffness polymer based bimorphs have previously been suggested for use in 

biological fluid systems due to operation at lower power and temperature.  Lin et al [42] 

fabricated a low stiffness gold-polyimide thermal actuator (0.06 N.m-1) for handling 

living cells with the gold layer functioning as a heater and electrostatic layer.  A full 

deflection in air from a fully curled position is reported for a power dissipation of 36 

mW, though the cantilever became overheated when operated in water.   

 

     
(a)                                                                   (b) 

Figure 1-7 (a) Smart surface for micromanipulation [15]. (b) Normally closed 

microcage based on diamond-like carbon and nickel bimorph cantilevers [44]. 
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Gold-polyimide thermal actuators have also been fabricated by Djakov and Huq at the 

MNTC for optical scanners [13] with heaters integrated as metalised tracks 

encapsulated in the polyimide layer.  Al Aioubi [18] has characterised identical 

cantilevers with chrome heaters and reported an actuation efficiency of 1.45 µm.mW-1; 

lower than that of Lin et al though devices had much higher stiffness (~1.00 N.m-1).  

Chan and Li [64] and Zhou et al [43] have developed an on-chip micro-robotic gripper 

that can manipulate and isolate cells to conduct localised cell probing and measurement.  

The gripper, based on thin polymer (Parylene C) layers with an encapsulated platinum 

heater, has been demonstrated in DI water with a reported tip deflection of 90 degrees 

with power dissipation of 100 mW.  The cantilever beam was relatively long (2 mm), 

and only 600 nm thick, resulting in a very low stiffness at the tip of ~8 µN.m-1.  Luo et 

al [44] have also fabricated very thin (240 nm) thermal actuators based on a highly 

stressed diamond-like carbon and nickel bimorph to form microcages (Figure 1-7b).  

Using the nickel layer as a structural and heater layer a maximum tip deflection in air of 

60-90 degrees is reported for power dissipation < 20 mW.   

 

Though these results indicate the high actuation efficiency of low stiffness TBA no 

mention is made of the low restoring force of the beam to pull back through the fluid.  

This restoring force is crucial for a microcantilever fluid probe operated at low 

frequency to pull the beam back through the fluid and therefore a very low stiffness 

beam is not suitable for the application.  Table 1-1 gives a summary of above work 

where the thermal actuation capabilities have been reported.  This includes the 

dimensions and materials of the microcantilever device and how actuation is integrated 

into the structure. 
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1.3.2 Rheological Measurements Using Microcantilevers 

Rheology is fundamental to many industries such as food technology, automotive, 

printing, polymer processing, chemistry and biology.  Traditional techniques for 

measuring rheological parameters often involve large mechanical apparatus and require 

relatively large sample volumes.  The miniaturisation of such systems has many 

advantages including nano-litre sample volumes, portability, greater selectivity, and 

reduced setup and analysis time using disposable batch fabricated sensors.   

 

It has been previously shown that when immersed in a fluid, the response of an AFM 

cantilever [6, 67, 70, 72, 81], rectangular beam [66, 78, 79, 82, 83], or composite 

cantilever beam [77], when excited to resonance by an internal or external force, is 

dependent on the properties of the medium, namely the viscosity and density of the 

fluid.  The performance of a resonant sensor relies on many factors including materials, 

fabrication, type of resonator, mode of vibration, the quality of resonance, temperature 

sensitivity and method of excitation and detection [84].   

 

Early work presented by Inaba et al [66] and Oden et al [67] using rectangular 

microcantilever beams indicated that fluid viscosity is manifested as a variation in the 

resonance frequency, quality factor and response amplitude.  Inaba used a 

photothermally vibrated stainless steel cantilever immersed in ethanol, water, and a 

concentration of NaCl in water (viscosity range from 1 cP to 2.2 cP).  The vibration 

amplitude of the cantilever was typically 200 nm in fluids indicating the small 

deflection amplitudes expected using a resonance method.  Measurements of peak 

frequency response and the Q-factor were compared with a theoretical model by Ito and 

Nakazawa et al [68] considering reaction forces in fluids.  It was shown that the sensing 

of both liquid density and viscosity was possible, though the accuracy is mainly 

determined by the Q-factor which is reduced as viscosity increases. 

 

Oden et al [67] demonstrated viscosity measurements using a rectangular AFM silicon 

microcantilever monitored during ambient and driven excitation.  The peak response 

frequency was measured in air, de-ionised water, and varying concentrations of water 

and glycerol ranging from pure water (0.89 cP) to 90% glycerol (1499 cP).  Figure 1-8 

shows the measured peak resonance and Q-factor versus viscosity for different 

concentrations of glycerol in water.  Theoretical estimates were made using a 1-

dimensional damped harmonic oscillator model from the drag force of an induced mass 
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on the cantilever [69].  The induced mass is due to a fixed determinable volume of fluid 

mass being carried along with the cantilever; this effectively lowers the resonance 

frequency and decreases the Q-factor.   
 

 
Figure 1-8 Experimentally measured peak resonance (filled circle) and Q-factor (open 

square) of a silicon microcantilever in a range of viscosity solutions adapted from Oden 

et al [67].  Theoretical estimates of the microcantilever peak resonance (cross) from a 

damped harmonic oscillator model are given for comparison. 
 

Using the same theoretical model as Oden et al, Ahmed et al [70] have reported 

measurements of resonance frequency and Q-factor of a V-shaped AFM probe with low 

spring constant (60 mN.m-1) when immersed in solutions of glycerol (0.89 cP – 8.82 

cP), sucrose (1.00 cP – 5.98 cP), and a protein solution (1.00 cP – 1.75 cP).  Ahmed et 

al also presented the use of the AFM probe to monitor a biochemical reaction attributed 

to DNase I hydrolysis of Herring Sperm DNA.  During this reaction the resonance 

frequency of the probe increased from 2.9 to 3.5 kHz reflecting a change in viscosity of 

1.5 cP, though no indication of thermal or mass loading contribution was reported. 

 

In work by Sader et al [71, 72, 73, 6] excellent results have been demonstrated for 

measuring the rheological properties of a range of fluids with AFM cantilevers.  The 

foundation of this work is an analytical model proposed by Sader [71] that can be used 

to simultaneously estimate the viscosity and density of a fluid based on the flexural 

resonance frequency and Q-factor of immersed cantilever beams.  The basis of this 

model is a mathematically derived hydrodynamic function that describes the flow 

around rectangular cantilever beams.  A model has also been proposed by Sader and 
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Green [73] for estimating torsional modes of vibration of rectangular cantilevers 

immersed in viscous fluids, and response of a cantilever beam in a fluid near solid 

surfaces [74-75].  A further paper on the dynamic response of a cantilever near a solid 

wall may also be found by Naik et al [76].  A validation of the flexural model is given 

in [72] using a series of single crystal silicon rectangular beams in known fluids.   The 

experimentally measured resonance frequency for cantilever beams in acetone, water, l-

butanol and carbon tetrachloride (CCl4) show good agreement with the model.   

 

A full demonstration of estimating the viscosity and density of several gases and liquids 

using Sader’s model is given by Boskovic et al [6].  The paper sets out a rigorous step-

by-step method for initially calibrating cantilevers in a known fluid, such as air, and 

then estimating the viscosity and density when immersed in another fluid.  The 

calibration allows an explicit calculation of the cantilever linear mass density and 

natural vacuum frequency which is used in the estimation of rheological parameters.  

From the known viscosity and density of air, and measured resonance frequency and Q-

factor, the calibrated vacuum frequency for a single crystal silicon microcantilever was 

17.48 kHz and density 2325 kg.m-3.  This agrees with literature values of 2328 kg.m-3 

for single crystal silicon.  The expected resonance frequency and Q-factor extracted 

from the model of Sader [71] using the calibrated values of the silicon cantilever has 

been compared against the measured experimental values.  For gases the theoretical 

estimate and measured resonance characteristics show excellent agreement showing the 

capabilities of the device as a sensitive gas sensor (Figure 1-9). 

 
Figure 1-9 Frequency response of a microcantilever probe showing the ability to 

distinguish each gas using the Q-factor. From Boskovic et al [6]. 
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A critical limitation of the resonating beam technique is that resonance peaks may not 

be distinguished accurately where the viscous damping on the beam by the fluid is large 

and the measured Q-factor drops below unity.  In Boskovic’s measurements the Q-

factor approaches unity for only moderately viscous fluids (e.g. l-butanol Q=1.2 η=2.8 

cP, ρ=810 kg.m-3).  It is noted that the Q-factor may be enhanced by changing the 

geometry and material of the cantilever; though a MathCAD algorithm derived from the 

mathematical model indicated that even with substantial changes in the cantilever 

geometry the Q-factor may still only increase by a small amount.  This means the 

current resonant technique may be unsuitable for measuring the rheological parameters 

of moderately viscous liquids, for example, particular foods, motor oils, lubricants, inks 

and paints, and biological fluids. 

 

Bergaud and Nicu [77] have extended the use of Sader’s model to investigate 

resonances of SiO2-Au composite beams.  Resonance frequency measurements were 

carried out in air, deionised water, ultra pure ethanol, and silicone oil.  A peak 

frequency response for silicone oil (50 cP) was not found suggesting the possibility that 

the damping affect on the cantilever was too large and the Q-factor had fallen below 

unity.  Bergaud and Nicu compared the experimental frequency measurements with 

theoretical values from Sader’s model [71] showing good agreement for cantilevers 

immersed in air and water.   

 

Shih et al [78] have presented an alternative theoretical method for simultaneous 

measurement of viscosity and density and validated this experimentally using a 

piezoelectric unimorph cantilever (PbO-ZrO2-TiO2 on Stainless steel).  Though this 

cantilever has some dimensions in the micro-domain (100 µm thickness) it should be 

noted that this cantilever was approximately 4 cm long and 6 mm wide.  Wilson et al 

[79] have re-evaluated the above work with cantilevers of similar dimensions and 

reported further results for glycerol.  An alternative method for calculating the effect of 

fluids on resonating beams has been presented by Bhiladvala and Wang [80].  In this 

work, the resonance frequency and Q-factor are determined by considering fluid 

damping and flow properties of the medium.  A detailed theoretical framework is given 

but no validation of the model has been provided. 

 

Recent work by Papi [81] and McLoughlin [82] present simultaneous measurement of 

viscosity and density using uncalibrated AFM and rectangular microcantilevers though 
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it should be noted that the cantilever effective mass and natural frequency is found from 

operation in a known fluid, e.g. air or pure water, in a similar approach to Sader’s 

method.  Vančura [83] has also recently demonstrated viscosity measurements of 

electromagnetically driven rectangular cantilevers with integrated piezoresistive 

measurement in water and glycerol solutions.  Technologically it should be noted that 

all previous work has used an optical measurement technique except for that of Vančura 

[83] and this adds a level of complexity to the instrument as discussed previously.   

 

1.4 Thesis Outline 

The work presented in this thesis aims to improve the actuation efficiency and 

mechanical signal of thermally actuated bimorph microcantilevers to demonstrate a 

whole blood coagulometer.  A major part of the undertaking of this project was to 

develop new analytical tools and characterisation methods, specifically for measuring 

the deflection of large curvature cantilevers.  These methods allow improvements to be 

quantified and compared with the benchmark first generation device.  The outline of the 

thesis is as follows: 

 

In chapter 2, analytical and simulation work is presented to support and aid the design 

of multilayer thermal microcantilever devices.  This includes improvements in the 

current bimorph model to move away from the generally used thickness ratio and 

optimise structures based on constant stiffness.  For complex structures a thermo-

electro-mechanical simulation is used with extension to measuring thermal crosstalk in 

single probes.  In this work a number of new designs in materials and footprint are 

presented for improvement of mechanical signal and reduction in thermal crosstalk. 

 

In chapter 3, testing and characterisation of microcantilever devices is presented with 

comparison of performance in previous and new designs.  A new optical technique for 

measuring tip deflection based on autofocus algorithms is presented with application to 

actuation efficiency and curvature.  Piezoresistor mechanical and thermal sensitivity and 

the sensor and heater response during actuation are presented allowing an estimation of 

device mechanical signal and a lower limit on the improvement in the device.  A 

summary of simulation and testing work is given at the end of the chapter to indicate the 

selection of devices for fluid tests. 
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Chapter 4 is dedicated to the application and considerations of the technology as a fluid 

probe and reports the results of a clinical evaluation at The Royal London Hospital to 

measure the performance of the microcantilever blood coagulometer against a 

laboratory standard Sysmex analyser.  Work in known rheological fluids aims to extract 

the range and accuracy of the device and estimate the mechanical and thermal response 

using short pulse actuation.  The final clinical evaluation results are compared with 

point-of-care instruments currently in the market.  

 

Chapter 5 draws together the main results and conclusions of the microcantilever fluid 

probe work, and suggestions are made for possible future directions.   

 

Chapter 6 presents the additional work on the Engineering Doctorate by the author on 

the European Pronano Project.  The aim of the work is to develop polymer based 

scanning probe arrays with self-actuation and self-sensing.  The chapter provides a 

background, thermal self-oscillation results for multilayer polymer based 

microcantilever, and the first demonstration of polymer scanning probes for surface 

imaging. 
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Chapter 2 - Microcantilever Fluid Probe Design 

 
2.1 Introduction 

The use of numerical analysis and finite-element simulation of multilayered thermal 

actuators is important in establishing initial concepts and design rules for the 

microcantilever fluid probe.  The aim of such analysis is to reduce the number of 

iterations needed in fabrication to achieve a working device, therefore reducing the 

overall time and cost in developing the fluid probe and future devices.  The objective of 

the work presented is to aid improvements in the actuation efficiency, mechanical 

sensitivity, and thermal crosstalk compared to the benchmark device (MV1).   

 

The current analytical framework of multilayered thermal actuators is based on Euler-

Bernoulli small deflection beam theory using two principal structural layers presented 

here as the static bimorph equation [58]. 
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where, initialr1  is the initial curvature of the microcantilever measured along the neutral 

axis, 1E  and 1t  are the Young’s modulus and thickness of the top layer, 2E  and 2t  are 

the Young’s modulus and thickness of the bottom layer, and 1ε  and 2ε  are the mean 

strain in the structural layers due to residual stress after processing.  Read et al [17] and 

Han et al [85] have further derived a generalised formula for multimorph structures.  

The significance of equation 2.1 for optimising the deflection of bimorph 

microcantilevers has been recognised [13, 58, 59], noting the importance of the 

thickness-ratio term 2
22

2
11 tEtE =  [58]1.  The standard use of the thickness ratio term is 

limited to a two layer structure and uses beam thickness – varying stiffness - as a design 

parameter.  The work presented in this chapter optimises deflection based on the 

position of the neutral axis of multilayered beams, with a fixed stiffness, as a means to 

maximise the ratio of bending moment to flexural rigidity.   

 

                                                
1 Note that in reference [58] the optimised thickness ratio has been incorrectly stated typographically as 

2211 tEtE =  
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The dynamic bimorph equation is based on the induced linear strain difference due to a 

mismatch in thermal expansion of structural layers under heating noted previously in 

early work by Riethmüller and Benecke [16] and Chu [57], and derived in [58]. 
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where, thermalr1  is the change in curvature due to thermal heating, 1α  and 2α  are the 

coefficients of thermal expansion of layer one and two, and T∆  is the difference in 

temperature between the initial and final state assuming a uniform beam temperature. 

 

To understand the transient behaviour during pulsed operation, theory and experimental 

results are presented based on joule heating and one dimensional heat conduction.  This 

has implications for the optimisation of actuation and assists in describing unpredictable 

bending which has been seen in cantilever operation and is presented in chapter 3.  For 

complex shaped structures with non-uniform cross section the use of steady state finite 

element simulation is presented with a technique to estimate the thermal crosstalk on the 

integrated sensor.  Finally, the work is applied to the design and fabrication of a new 

microcantilever fluid probe (MV2). 

 

2.2 Bending Solution of Multilayer Beams Based on Neutral Axis Analysis  

To analyse the stationary position of the microcantilever beam the problem is assumed 

to be statically determinant with one end of the beam fixed and the other free.  The 

materials are assumed to behave elastically and the dimensions of the cross section are 

small compared to the length of the beam.  It can be shown that the shape of a released 

multilayer beam along the neutral axis is given by the Euler-Bernoulli equation 
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where dxdy /  is the slope and 22 / dxyd  is the curvature at a point on the beam, 

),,( 11 ii tEtEM K  is the net bending moment acting on the beam due to residual 
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material stress, and ),,( 11 ii tEtEEI K  is the composite flexural rigidity of the beam 

based on the Young’s modulus and second moment of area of each layer.  Equation 2.3 

requires a complex solution [86-88] to preserve large deflections though this is not 

important in this work as the aim is to optimise the ratio of bending moment and 

flexural rigidity of the beam and therefore a small angle approximation can be used.   

 

Neutral axis 

The neutral axis is defined as the plane in which the resultant axial force acting on the 

cross section is zero and is taken as the line at which the curvature of the beam is 

measured.  The second moment of area and bending moments for each material cross 

sectional area are calculated in relation to the distance from this axis, therefore it is 

important that the position of the neutral axis is first derived.  For a beam with constant 

curvature it can be shown that the distance from the surface of the microcantilever to the 

neutral axis of a multilayer stack is equal to [Appendix A]. 

 

∑

∑ ∑ ∑

=

= =

−

=







+
= n

i
iii

n

i

n

i

i

m
miii

i
ii

twE

ttwE
t

wE
h

1

1 2

1

1

2

2
                                                                 (2.4) 

 

where the layer width iw  has been introduced for completeness. 

 

Flexural Rigidity 

The flexural rigidity of a cantilever beam describes the resistance to bending through 

the cross section by compression or tension.  Mathematically this is defined as the force 

required for bending the structure by unit curvature.  This is related to the moment of 

area of an element located a distance from the neutral axis and the elasticity of this 

element.  For a composite rectangular structure with n  stacked layers the flexural 

rigidity can be written as 
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where the parallel axis theory is used to find the second moment of area iI  around an 

arbitrary axis, taken in this case as the neutral axis of the beam.  For a multilayer stack it 
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is advisable to solve for the neutral axis position first and then solve numerically using 

the perpendicular distance iŷ  between the neutral axis and area centroid. 

  
Initial Bending Moment 

When the cantilever is released from the substrate a net bending moment due to residual 

stress in the structural layers causes the cantilever to bend out of plane and adopt an 

initial curved position.  The residual stress in multilayer microcantilevers is 

predominantly due to the processing stress between thin films with different coefficient 

of thermal expansion (CTE).  As the layers are stacked and become heated and cooled, 

the interface between the materials is fixed and becomes pulled.  For example, if a high 

CTE polymer is used as the top layer of the bimorph and a low CTE polymer as the 

bottom layer, upon cooling from a curing temperature of approximately 300 oC the top 

layer will want to contract more than the bottom but this can not happen if the layers 

have already formed a good bond with each other.  This induces stress between the 

films which when patterned as a cantilever and released will adopt an out-of-plane 

position such that all moments acting on the beam become zero.  The total moment 

acting on a beam is given by summation of the stress acting over area elements a 

distance iŷ  from the neutral axis of the beam [58]. 
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where iε  is the mean strain due to process conditions, ε∆ is the strain variation when 

the beam is released, and ryiˆ−  is the strain due to the curvature r  of the cantilever 

[58].  The initial boundary condition is that the cantilever is flat and therefore the initial 

non-zero value of the moment is provided by the mean strain in the layers.  As the 

cantilever bends, such that the total moment acting on the beam tends to zero and the 

cantilever comes to a statically determinant position, the curvature term balances the 

residual stress in the layers.  
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Optimisation of a bimorph structure 

Using the equation for bending moment (2.6) and flexural rigidity (2.5) the full form of 

the bimorph equation has been derived by the author [Appendix B] 
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where the above is reduced to equation 2.1 for a beam with constant width.  It has been 

stated in previous literature that the bimorph equation is maximised when 

1221 // EEtt = , given constant width, and this has been termed the optimum thickness 

ratio.  Though this optimisation is correct the ratio is limited to a two layer structure and 

indicates that the thickness of the device must be used as the main design characteristic.   

 

For sensor applications it is desirable to control the stiffness of the microcantilever, 

such that the beam is either responsive to forced deflections, or in resonance mode the 

beam has a high natural frequency and Q-factor.  For the fluid probe the stiffness of the 

microcantilever must be carefully considered.  If the cantilever is very stiff it will be 

difficult to overcome the restoring force and move the cantilever through the fluid.  If 

the cantilever is very flexible it might be possible to move through the fluid using lower 

actuation forces but the restoring force could be too weak to pull the cantilever back 

through the fluid.  For the polymer scanning probe, presented in chapter 6, the stiffness 

must also be carefully considered.  It is desirable to have relatively high stiffness to 

produce a high resonance frequency for high operational speed in tapping mode and to 

resist a static pull to the sample.  If the scanning probe is too stiff the DC actuation 

becomes less efficient for levelling arrays which in turn produces more heat which can 

cause signal drift and a higher noise level. 

 

If the full form of the bimorph equation (2.7) is considered the true optimisation being 

performed is to maximise the ratio of the initial bending moment to the flexural rigidity 

of the cantilever.  For fixed overall thickness, a changing ratio of 1t  and 2t  leads to the 

initial moment and flexural rigidity having a maximum and inflection point 
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respectively.  If 12 ttt −=  the change in moment and flexural rigidity can be expressed 

as 
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where the maximum initial moment and inflection of flexural rigidity is when the 

neutral axis is located at the interface of the bimorph layers ( 1th = ).  This is equivalent 

to solving equation 2.4 using the optimum thickness ratio equation 1221 // EEtt = .  It 

should be noted that although the initial curvature of the beam is maximised the value 

must make sense, for example, for a cantilever of length L, if the curvature is greater 

than a quarter circle this would suggest the cantilever would start to curl back on itself 

or even form a complete circle.  As a small angle approximation is also used the tip is 

mathematically located at a position x = L so it would not describe the shape of a highly 

curved surface. 

 

Constant Stiffness 

For small displacement of a microcantilever under an end load the restoring force of the 

beam is analogous to a spring restoring force and it has been shown that the stiffness k  

at the tip of the microcantilever is equivalent to 33 LEI [37].  For optimised deflection 

( 1th = ) the flexural rigidity of the bimorph reduces to 
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Rearranging for the ideal thickness of layer one, where 221112 wEwEtt =  is a 

solution of equation 2.4 when the neutral axis is located at the bimorph interface gives 
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This solution, derived by the author, allows the thickness of bimorph materials to be 

calculated based simply on the Young’s modulus of materials, width, length, and 

required stiffness.  Finding the ideal thickness of the layers and optimising the neutral 

axis is not the only way to achieve the largest out-of-plane deflection.  The bending 

moment is proportional to the linear strain difference between the layers which can be 

changed during the processing conditions.  For example, the polyimide retains stress 

due to the final curing process; to increase the stress in the layer the film can be cured at 

a higher temperature or a much steeper ramp and cooling rate can be induced. 

 

Multilayer structures  

Microcantilever structures fabricated at the MNTC, including the microcantilever fluid 

probe, generally have several layers including integrated layers for heaters and sensors.  

By example a 3-layer microcantilever structure is presented where the neutral axis is 

initially kept in the reduced form of h .  For a 3 layer structure the flexural rigidity and 

initial bending moment of the beam can be written as 
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and 
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Where the neutral axis h  is equal to 
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It has been found that the structure is optimised for bending when the neutral axis is 

located at the interface of structural layers.  For example, for a 3 layer structure 2 zero 

crossing differential solutions exist at 1th =  and 21 tth +=  where one of these solutions 

will provide the optimum performance.  
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The solutions for multilayer cantilever beams show the suitability of using the neutral 

axis over the optimum bimorph thickness ratio.  These solutions can also be applied to 

preserve constant beam stiffness in the generalised flexural rigidity equation though 

with several layers the ideal thickness of one layer is dependent on changing thickness 

of other layers.  Therefore it is desirable to fix the thickness of subsequent layers or 

work through the solution numerically through trial and error.  

 

2.3 Optimised Piezoresistive Sensor and Microheater 

The sensitivity of an integrated metal piezoresistor track on a microcantilever for small 

deflections has been derived in previous work by Thayson [89] 
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where RR∆  is the percentage change in resistance of the piezoresistor, K  is the 

materials gauge factor, λ  is the length of the piezoresistor along the beam, sŷ  is the 

distance of the piezoresistor to the neutral axis, and z  is the tip displacement of the 

microcantilever.  Enhancement of sensitivity can also be made by choosing a material 

with high gauge factor and by placing the sensor far from the neutral axis, for example, 

on the microcantilever surface.  The temperature coefficient of resistance (TCR) of the 

sensor material must also be considered as this will account for drifts due to thermal 

changes; materials such as nickel-chromium and constantan can have very low 

sensitivity to temperature.  For applications in fluids the immersed sensor must be 

encapsulated and therefore it can not be placed on the surface.  In such circumstances it 

is desirable to place the sensor close to the surface using a very thin encapsulation layer.  

Equation 2.15 is used in chapter 3 to measure the gauge factor of thin metal films on 

fabricated microcantilevers. 

 

Integrated Microheater 

Thermal actuation of a bimorph structure has previously been described by equation 

2.2, indicating that the induced bending moment is provided by the difference in 

thermal expansion of structural layers assuming a uniform heating of the beam.  In 

general, heating from an integrated metal heater or through one of the bimorph layers 

will generate a time dependent thermal gradient along the length and cross section of the 

beam.  In this case it is desirable to consider the localised thermal bending moment of 
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each area element a distance from the neutral axis ( dAyTM iii ˆ∆= α ) where the time 

dependent deflection is given by the difference of thermal expansion above and below 

the neutral axis.  Understandably, describing the time dependent temperature at each 

position on the microcantilever is not a trivial matter and in such cases finite element 

simulation is a more suitable approach, though an analytical account of joule heating 

and thermal conduction will be presented here to show how performance of the fluid 

probe may be enhanced.  Important considerations for integrated microheaters include: 

- How quickly does the temperature increase? 

- How quickly does heat transfer into the microcantilever structure? 

- At what timescale does the heat influence the piezoresistor signal? 

- How can thermal conversion to mechanical deflection be enhanced? 

 

Aştefãnoaei et al [90-91] have derived the time dependent temperature distribution in 

joule heated microwires analogous to embedded tracks in microcantilevers.  The 

solution for the initial time dependent temperature of the microheater is given by [90] 
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where ),( trT  is the radius and time dependent temperature of the heater, 0T  is the initial 

temperature, )(rTss  is the steady state temperature, α  is the temperature coefficient of 

resistance (TCR), 0ρ  is the heater resistivity, I  is the driving current, c  is the specific 

heat capacity, mρ  is the heater mass density, and A  is the cross sectional area of the 

wire.  Equation 2.16 is simplified by noting that the temperature at the outer radius (r) 

of the metallic core is approximately equal to the central temperature and therefore 

T(r,t) can be treated simply as T(t).  The derivation by Aştefãnoaei et al for heat 

transport in the cladding material to establish the steady state temperature of the heater 

(Tss) is unsuitable for application to the microcantilever as only radiation heat loss is 

assumed.  This will overestimate the temperature of the heater as heat conduction 

through the microactuator base into the silicon die is significant.   

 

For the microcantilever the average temperature of the heater can be estimated 

experimentally through measurement of the heater element resistance during actuation. 

The resistance can be converted to an average temperature using the measured TCR for 
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the material.  Figure 2-1 shows experimental data of the measured gold MV1 

microcantilever heater resistance during a 1V actuation pulse.  The data has been fitted 

with an equation in the form of equation 2.16 where residuals to the curve have been 

minimised.  The dashed line is the analytical solution to equation 2.16 for the 

microcantilever heater where the heater radius has been taken as the thickness 200 nm.  

Boundaries for a 20% uncertainty in the exponential value of equation 2.16 have been 

added to the analytical fit showing the sensitivity.  The error will be dominated by the 

unknown values of heat capacity and density of the microwire.  A small source of error 

is also in the driving current.  In practice, the microcantilever fluid probe is driven with 

constant voltage and therefore as the resistance increases due to temperature the current 

must proportionally decrease and the dissipated power is reduced over time.  For the 

increase of resistance in gold microheaters the reduction in dissipated power is < 1%. 

 

 
Figure 2-1 Response of the MV1 microheater during 1 V actuation (crosses) and the 

best fit (solid line) using an equation of the form 2.16.  The dotted line represents 

equation 2.16 (no heat loss) where the heater radius is taken as 200 nm which is the 

approximate heater thickness.  Error representing a 20% uncertainty in the exponential 

value in equation 2.16 is shown as solid lines against the analytical fit (dotted line). 

 

The difference in experimental and analytical fits in figure 2.1 for the time dependent 

temperature of the microheater account for thermal conduction losses from the heater to 

the surrounding cladding.  The thermal loss is dependent on the: 
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- Thermal diffusivity of the cladding materials and fluid. 

- The conducting surface area of the heater. 

- The conducting cross-section allowing heat to flow back through the heater to 

the base of the device. 

- The volume that the heat is dissipated into. 

- The heat convection coefficient from the surface of the microcantilever. 

- The thermal gradient into the surrounding cladding and fluid. 

 

This is an area of future interest to measure the efficiency of microheaters in 

microcantilevers.  This has led to consideration of a multi-layer polyimide structure that 

allows high temperature activation for very short timescales due to lower heat loss to 

the surrounding material.  From the analysis suitable microheater materials include 

gold, aluminum, and platinum being fully encased in an insulating cladding material.  

The concept of fast thermal actuation has also led to the modification of the heater 

shape by the author to be presented section 2.4.2. 

 

Thermal conduction from the microheater into a high CTE encapsulating polyimide 

suggests enhanced deflection through increased local bending moments above the 

neutral axis.  The heat transport between the microheater and sensor also creates 

crosstalk and therefore it is important to establish the transient heat profile in the 

polyimide over short time scales (< 50 ms).  This is estimated using 1-dimensional heat 

conduction into a single thick material with constant temperature boundary condition 

[92]. 
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where x  is the distance into the polyimide, t  is the time, D  is the thermal diffusivity 

constant of the polyimide equal to the thermal conduction divided by heat capacity and 

mass density, and ()erf  is the Gaussian error function which returns a tabulated value 

for the argument.  Figure 2.2 shows the temperature, as a percentage of the boundary 

temperature, across the polyimide at several instantaneous times.  From characterisation 

of heater response, to be presented in section 3.3, the average temperature in the heater 

can increase by more than 10 οC at several microseconds with high peak power (250 

mW).  If the sensors are close to the heaters then a fraction of a degree change in 
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temperature can be equivalent to several microns of mechanical response of the 

piezoresistor.  The MV1 probe heater and sensor are separated by 4 microns of 

polyimide, indicating a thermal crosstalk on short timescales (0.01 ms).   

 

 
Figure 2-2 Thermal profile from the heater into the encapsulating Polyimide (PI2562) as 

a percentage of the boundary temperature.  Each curve represents a snap shot in time 

(ms) as indicated. 

 

The crucial design step for the improved probe is to separate the heaters and sensors 

geometrically and implement barriers (holes, conduction moats).  Figure 2-2 indicates 

that for very short actuation pulses (< 2 ms) a geometric separation of at least 50 

microns is ideal.  In chapter 3 the signal response from the microcantilever fluid probe 

indicates that for a separation of 80 microns the thermal crosstalk is still significant on 

timescales less than that indicated by figure 2-2.  This suggests the possibility of a 

second conduction path possibly through the silicon, or underestimated heat conduction 

in this simplified analytical approach.  It is also desirable to design a device with a high 

heat generation and a low loss parameter to create a large deflection quickly before heat 

transport can saturate the signal.  This may be achieved through choice of materials in 

the bimorph and placement / shape of the heaters.  A higher bending moment may also 

be achieved by placing the heaters further from the neutral axis, though this would have 

the effect of opposing initial deflection. 
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Figure 2-2 would also indicate that heat in the cross section reaches the surface of the 

cantilever (few microns) and the substrate very quickly - in less than 10 microseconds.  

This suggests that the rate of heating in the beam, and therefore also the rate of 

deflection and the thermal crosstalk on the sensor, is dependent on the medium thermal 

properties as well as rheological parameters. 

  

2.4 Finite Element Simulations 

Finite element simulations allow an insight into the relative performance of complex 

multilayer thermal actuators with non-uniform cross section.  The technique is 

presented with application to the benchmark fluid probe and a number of improvements 

by the author and Dr Vladislav Djakov including substitution of gold with a low CTE 

polyimide, an Epsilon shaped beam to geometrically separate heaters and sensors, and 

non-uniform gold heaters.  Numerical output is given for microcantilever 

characterisation but should be viewed as a relative and not absolute measurement.  

 

The finite element package used for microcantilever simulation is Intellisuite 

ThermoElectroMechanical (TEM) modelling for MEMS (Intellisense).  This module is 

part of a wider package which includes design tools (3D Builder, Intellimask) for 

constructing the finite model.  In practise, the simulation can give variable results 

relating to the definition of the finite model mesh though this is often a balance against 

the solver time.  For example, a multilayered structure with approximately 20,000 nodes 

can take over an hour to analyse and each design requires several iterations at various 

actuation voltages. 

 

Though the analysis module allows a dynamic solution of an actuated microcantilever, 

the full result is displayed as a final steady-state and the transient thermal distribution 

can only be viewed as a single node history plot against time.  As the mechanical and 

thermal actuation may be on the order of micro- to milliseconds the time increment and 

iterations needed results in massive computation time.  The software is further limited 

by a small angle approximation of deformed mechanical structures, for example, the x-

coordinate of the microcantilever tip will remain constant and effectively stretch the 

beam.  A consequence of the small angle approximation is that the initial deflection may 

be overestimated resulting in a lower stress being implied in material layers.  
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Figure 2-3 3D Build of the MV1 fluid probe device allowing control of thickness, 

entities, and mesh.  This model is then exported to the TEM analysis. 

 

The first step for TEM modelling is to build a solid 3D model of the device and mesh 

the structure to allow analysis of each finite element.  The Intellisuite package includes 

3D builder, a CAD program that allows a top down mask layout tool to define each 

layer of the model.  Within the program the thickness of each layer can be controlled 

and elements are defined using the element entity colour (Figure 2-3).  This allows 

alterations to the 3D model without the need to re-mesh.  The final step is to apply a 

mesh to the 3D model.  3D Builder has an automated meshing tool which applies a 

mesh based on user input of mesh size.  This tends to distort the model – smaller 

elements such as the sensor tracks can enlarge to the mesh size - and also provides no 

distinction between the areas of more importance.  An alternative tool is a manual 

refinement of the mesh.  This allows finer meshing in areas of interest such as on the 

microcantilever and a rougher meshing over areas of less importance such as the silicon 

substrate or on the die far from the device. 

 

2.4.1 TEM analysis of Benchmark Fluid Probe Device (MV1) 

To present the process of TEM analysis and set the benchmark for making 

microcantilever improvements the first generation TBA design has been simulated.  The 

design is based on gold-polyimide (PI2562) structural layers and interdigited Π- shaped 

beams.  These devices have been designed by Dr Vladislav Djakov and fabricated using 
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surface micro-machining techniques at the MNTC by the author.  The fabrication of 

gold-polyimide bimorph actuators has been reported previously [13] and is outlined 

below.  Some details have been omitted for commercial confidentiality. 

 

 
Figure 2-4 Microfabrication cross section of the MV1 microcantilever fluid probe. (a) 

Chrome / Gold evaporation. (b) Wet etching release areas. (c) Structural layer 

deposition. (d) Deposition and patterning of heaters, sensors, and contacts. (e) 

Encapsulation layer. (f) Dry Etching of polyimide to reveal contacts. (g) Dry Etching of 

polyimide to define microcantilever. (h) Wet etching of gold. (i) Release of structure. 

 

In the first fabrication step a thin adhesion layer of chrome is plasma sputtered onto an 

oxidised silicon substrate.  This is immediately followed by a layer of gold to prevent 

oxidation of the chrome upon exposure to air (Figure 2-4a).  These layers are then 

patterned using standard optical lithography and chemical etching to define the bare 

SiO2 areas where final bimorph structures will be released (Figure 2-4b).  An important 

step in the fabrication process is the final release of cantilever structures for initial out-

of-plane positioning.  This process is accomplished using a sacrificial gold layer which 

exploits the weak adhesion of gold to the substrate.  A final etch release step of the 

sacrificial layer forces each cantilever structure to delaminate from the substrate due to 

the residual stresses induced during the fabrication processes. 
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The next step is to deposit the structural layers of the bimorph (Figure 2-4c).  The first 

layer is a thick plasma sputtered gold layer.  The thickness has been established 

previously to offer good actuator results [13].  This is followed by a spin-coated 

polyimide (PI-2562) layer which is subsequently soft baked.  By varying the spin speed 

the thickness of polyimide can be adjusted to achieve an optimum thickness ratio with 

the gold.  After soft baking the wafer is hard baked to drive off solvent and stabilise the 

polyimide.  In the next step a thin chrome adhesion layer and gold layer are plasma 

sputtered and patterned using standard lithography and wet etching techniques to define 

heater tracks, contact pads, and signal lines (Figure 2-4d).  The signal lines are then 

encapsulated by a second spin-coated polyimide (PI2562) layer which is hard baked 

(Figure 2-4e). 

 

To reveal contact pads for electrical connection standard lithography is carried out using 

a thick positive photoresist.  This image is used as a hard mask for subsequent reactive 

ion etching (RIE) of the polyimide layer (Figure 2-4f).  The resist is stripped and 

reapplied for subsequent RIE etching of polyimide to define cantilever structures and 

expose the gold structural layer (Figure 2-4g).  The polyimide is etched in two stages 

otherwise pads would be exposed during the wet release of gold. 

 

The final step is to release bimorph structures using a wet chemical gold etch using the 

previous photoresist as a masking layer (Figure 2-4h).  Due to the residual stress in the 

structure the bimorphs naturally curl-up when the gold film contact with the beam is 

cleared, and therefore requires no special out-of-plane positioning (Figure 2-4i).  Final 

Π-shaped bimorph structures are essentially two single bimorph beams measuring 600 

µm long, 80 µm wide, separated by a 60 µm gap and connected around the end.  Gold 

heaters are 30 µm wide passing down the centre of each beam and connected along the 

tip.  Double meander gold piezoresistive sensors placed on each leg are 4 µm wide and 

extend from the base of the cantilever 125 µm into the beam.  As sensors are 

implemented on the same layer as heaters and separated 4 µm it is expected that the 

thermal actuation may have a significant impact on saturation of the microcantilever 

response.  Using the analytical work presented in section 2.2, the previously established 

ideal thickness of bimorph layers positions the neutral axis very close to the bimorph 

interface.  Each beam has a calculated stiffness at the tip of 0.12 N.m-1 and the 

metalised heater / sensor layer is located approximately 2 µm above the neutral axis 

allowing good conversion to / from bending moments. 
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The 3D meshed model based on a single Π-shaped microcantilever is shown in Figure 

2-3.  The model includes the silicon die (Level 0) and signal lines to provide a realistic 

representation of the device as this is the main conduction path for heat transport.  The 

sacrificial layer (Level 1) is represented as a single gold layer allowing the cantilever to 

bend free from the substrate layer.  A mesh size of 10 x 25 µm is applied on the 

cantilever beam, this has been found to provide enough detail whilst limiting the 

computation time.  The TEM analysis requires a number of mechanical, electrical and 

thermal boundary conditions to operate.   

 

There is also a need to establish unknown values of material stress in the polyimide and 

electrical resistance of the heater and sensor tracks.  The mechanical boundary condition 

is a fixed device except the free-end of the microcantilever to allow deflections.  The 

electrical boundary conditions for the heater are a zero and non-zero voltage applied to 

each contact.  The sensor has only one contact set to an applied voltage of zero and the 

other is set to an applied current, this allows a potential solution which when combined 

with the current gives a measure of the sensor resistance.  The thermal boundary 

condition is a reference room temperature applied to the base of the silicon die and a 

convection coefficient applied to the top polyimide surface of 5 W.m-2 [43].  When 

electrically actuated the base temperature remains fixed at the ambient temperature. 

This should be a valid assumption as the silicon acts as a large heatsink and is unlikely 

to increase the temperature of the surrounding carrier at low energy.  The simulation 

settings are based on a static TEM, with the result presented as the steady state.  

Displacements are set to large and “no piezo material” is selected.  

 

Ideally it is desirable to find the sensor piezo signal when the cantilever is deflected, 

unfortunately the capabilities of the analysis is limited to materials with piezo tensor 

elements, such as silicon.  Setting the material to non-piezo allows investigation of the 

thermal crosstalk in the device measured as a change in resistance only due to 

temperature.  Material properties used in the simulation are given in Table 2-1. 
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 Units Gold Silicon PI2562 PI2610 
Density g cm-3 19.28 2.3 1.44 1.44 
CTE x10-7 K-1 142 30 600 30 
Resistivity Ohm.cm 2.2x10-6 0.1 1x1015 1x1015 
Thermal Conductivity W.cm-1.K-1 3.2 1.48 0.00146 0.00105 
Specific Heat J.g-1.K-1 0.128 0.7 1.17 1.13 
Young’s Modulus GPa 78 165 1.72 8.5 
Possion’s Ratio  0.42 0.27 0.36 0.36 
Dielectric Constant  6.3 12 3.4 2.9 
TCR x10-3.K-1 3.4 n/a n/a n/a 

 

Table 2-1 Material constants used in the TEM simulation [93-96].   

 

Establishing mechanical and electrical properties 

 
Figure 2-5 Result of the TEM simulation for the bimorph microcantilever tip deflection 

as the polyimide (PI2562) stress is varied. 

 

The polyimide and gold film stress is not known but can be estimated using the TEM 

simulation with no applied heating to find the stress which gives an initial deflection 

estimate of 150 µm.  The intrinsic stress in the metalised gold layer is assumed to be 

near-zero after long curing of the polyimide at high temperature by annealing of the 

film.  The intrinsic stress accounts for the initial deflection only and it is the linear strain 

difference due to a difference in thermal expansion when heating that characterises the 
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deflection capabilities.  It is anticipated that the polyimide film stress will be 

underestimated as the small angle approximation will overestimate vertical deflection.  

Figure 2-5 shows the linear dependency of initial deflection on film stress in the 

polyimide from which a value of 15 MPa can be estimated2.  Using the TEM simulation 

it is also possible to estimate the mechanical stiffness of the cantilever by applying a 

force perpendicular to the surface of the beam on a node at the very tip.  Using several 

forces in the range 0 to 25 µN the linear regression gives a stiffness of 0.20 N.m-1 at the 

tip which is close to the analytically calculated value of the individual arms as 0.12 

N.m-1. 

 

 
Figure 2-6 Electrical potential result of the sensor entity when a small sensing current is 

applied to the end contacts. 

 

It is important to establish the initial resistance of the simulated heater and sensor tracks 

to establish the power input being applied to the microcantilever and the increase in 

resistance due to thermal crosstalk on the sensor.  It is also important to establish the 

effect of self heating of the metal heater during actuation and the resulting change in 

power dissipation.  To estimate the resistance of an entity, one side of the contact is set 

at zero volts and a current is applied through the entity by setting a non-zero current 

density to the contact area.  After running the TEM analysis the resultant electrical 

result gives a potential of zero at the fixed electrode and a non-zero maximum value at 

the variable electrode, as shown in figure 2-6.  As the applied current is known and the 

                                                
2 Film stress measurements during fabrication of MV3 indicates a stress in the range 22 – 59 MPa 
depending on processing conditions [97]. 
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resultant voltage is measured the final resistance of the track can be calculated using 

Ohms law.  As the sensing current approaches zero the calculated resistance tends to the 

nominal value as shown in figure 2-7.  A final current density of 1 µA.m-2 is selected 

resulting in power dissipation of 0.1 µW in the sensor track, and a resistance of 45.640 

Ohms.  In practice a much higher sensing current is used as the output of the 

Wheatstone bridge is proportional to the input potential.  The heater resistance is 

determined to be 11.759 Ohms using the same method.  The actual measured value of 

resistance for fabricated microcantilevers is approximately 196 Ohms for sensors and 55 

Ohms for heaters, though this includes a contact resistance from wire bonding and the 

chip carrier3.  In the TEM simulation the heater resistor is fixed such that there is no self 

heating and power remains constant.  In practise the heater resistance increases with 

fixed supply voltage and overall power dissipation decreases.  Allowing the heater 

resistance to change in the TEM simulation the variation in power input in the range 0 

to 10 mW is less than 2.5 %.  From experimental measurements of the heater resistance, 

as in figure 2-1, the variation in power is approximately two orders of magnitude less, 

for example, at 5 mW input power the variation is 0.014 %. 

 

 
Figure 2-7 Measured sensor resistance from the TEM simulation potential result with 

variation in applied current.  The variation in resistance is due to the self heating effect. 

 

                                                
3 Measured resistance probed directly on gold film and after bonding indicates an increase < 1% of the 
nominal resistance. 
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Using the mechanical and electrical results from the initial simulation it is possible to 

calculate a voltage to apply to the non-zero electrode of the heater for a given power 

dissipation.  The objective of the full TEM analysis is to vary the power input of the 

heaters and to monitor the deflection of the device against power; the maximum 

temperature on the beam against power; and the change in sensor resistance due to heat 

dissipation.  These measurements allow us to characterise the design and compare the 

result with changes to materials, dimensions, and layout.  Figure 2-8 shows an example 

of an actuated device.   

 

 
Figure 2-8 Example of steady state deflection and thermal distribution in the Π-shaped 

microcantilever with 20 mW actuation power. 

 

The maximum temperature and deflection can be directly taken from the result, the 

sensor resistance is found by separating the entity and viewing the resultant potential as 

shown previously in figure 2-6.  Figure 2-9 shows the deflection, temperature and 

sensor resistance results of the TEM simulation for the MV1 fluid probe with varying 

input power.  From the simulation data the calculated actuation efficiency is 1.92 

µm.mW-1, the increase in maximum temperature on the beam is 2.50 οC.mW-1, the 

conversion factor is approximately 0.77 µm. οC-1, and the resistance change due to 

thermal crosstalk is 8.11x10-4 ∆Rtherm/R.mW-1.  The mechanical-to-thermal signal at 

steady state can be estimated by using the gauge factor for gold piezoresistor [10] and 

equation 2.13, and the thermal crosstalk directly extracted from the simulation result.  

Using a calculated deflection sensitivity of 65 ∆R/R.ppm.µm-1 and the equivalent 

thermal crosstalk 423 ∆Rtherm/R.ppm.µm-1 at the required input power, the mechanical 
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signal as a proportion of the total signal is equal to 13.3%.  This low value is not 

unexpected as at steady state it is expected that the sensor will be saturated by the heat 

dissipation.  In practice the thermal crosstalk is variable; at very short times the thermal 

dissipation is limited to the heaters.  As the heat transfers outwards the surrounding 

polymer increases in temperature but the heat has yet to reach the sensor.  At these 

timescales the microcantilever will start to actuate and produce a mechanical signal on 

the sensor but the thermal crosstalk has yet to saturate the sensor.  As the heat transfers 

to the sensor the signal becomes dominated by thermal crosstalk until at steady state the 

sensor is thermally saturated.  Therefore, it is the very short timescales that are of 

interest in the operation of the fluid probe device. 

 

 
Figure 2-9 Deflection (triangle), maximum temperature (diamond) and sensor resistance 

(circle) results from the TEM simulation for the MV1 fluid probe. 

 

2.4.2 TEM analysis of Fluid Probe Design (MV2) 

Characterisation of the benchmark fluid probe device (MV1), to be presented in chapter 

3, shows a high thermal signal during actuation on the sensor.  This is referred to as 

thermal crosstalk on the sensor and is separate from the thermal influence of the 

environment, and Johnson noise.  The crucial aspect of this design is the proximity of 

the heaters to the sensors.  By spatially separating the heater and sensor it is assumed 

that the heat transport to the sensor takes longer, giving a larger window for 

measurement before the sensor is saturated.  It is assumed that if barriers are placed 

between the heater and sensor, such as a highly insulating material, this will also 
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increase our measurement window and lower the thermal crosstalk.  This concept has 

led to a second generation design (MV2) by the Author and Dr. Vladislav Djakov based 

on a three-beam “Epsilon” shaped layout.  In this design the outer heater arms provide 

the actuation and pull on the central sensor arm.  As the heat is concentrated on the 

outer beams the thermal gradient towards the sensor is reduced.  The thermal crosstalk 

should also be reduced by the air gaps in the structure which limit the conduction across 

the beam.  Figure 2-10 shows the meshed 3D build of the Epsilon design; the solid 

design has air gaps filled. 

 

 
Figure 2-10 3D Build model of the Epsilon shaped fluid probe. 

 

In the model there are a number of refinements that can be applied to size and shape – 

width of beam, width of air gaps, size of paddle – and heater and sensor placement, 

though this presents a large package of work.  The aim here is to consider the relative 

impact on operation by the design rather than the refinements.  For the current model 

the overall structure has a length of 600 µm, and width of 210 µm.  Outer arms of the 

structure have a width of 75 µm and the central beam has a width of 40 µm.  The air 

gaps have a width of 10 µm and extend 500 µm into the structure.  The thickness and 

choice of materials have been set to the same configuration as the first set of simulations 

on the benchmark device to provide the most realistic comparison of performance.  

Each heater is confined to a single arm of the device, though it would also be possible to 

use a single path that connects across the end of the paddle.  Heater width is 30 µm, and 

passes 495 µm microns into the beam.  The sensor has a width of 4 µm, has 2 meanders, 

and passes 300 µm into the beam.  The size of meshing along the structure is limited to 

25 µm segments.  The heater resistance is found as before and each has a nominal value 
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of 9.015 Ohms and the sensor resistance is found to be 47.073 Ohms.  In practice the 

two heaters are connected in series and therefore the total dissipated power in the 

simulation is the sum of both.   

 

The TEM simulation result for a gold-polymer Epsilon and Solid configuration is 

presented in Table 2-2.  The simulation results imply that both designs have a similar 

deflection efficiency and thermal conversion factor; this suggests that these factors are 

more dependent on the material configuration than the shape.  As these simulations are 

in steady state and a thermally conductive material is used as one of the layers, the heat 

is likely to be distributed evenly so this suggests a similar deflection capability. 

   

Parameter Units Π-Shape 
Au-PI (MV1) 

Epsilon  
Au- PI (MV2) 

Solid  
Au-PI (MV2) 

Initial Deflection µm 149.9 115.4 130.5 
Actuation Efficiency µm.mW-1 1.92 1.07 1.05 
Maximum 
Temperature 

oC.mW-1 2.50 1.51 1.35 

Conversion 
Efficiency µm.oC-1 0.77 0.71 0.78 

Thermal Crosstalk 
x10-4 

∆R/R.mW-1 8.11 9.59 15.0 

Mechanical 
Sensitivity 

∆R/R. 
ppm.µm-1 65 55 53 

Equivalent Thermal 
Crosstalk 

∆R/R. 
ppm.µm-1 

423 896 1427 

Mechanical Signal / 
Total Signal  13.3 % 5.8 % 3.6 % 

 

Table 2-2 Comparison of simulated Epsilon and Solid MV2 Design. 

 

The new design initially shows reduced mechanical to thermal signal compared to 

MV1.  This is not unexpected as the MV1 sensor is placed near the base of the device 

where the steady state temperature is low due to conduction to the die.  As the new 

sensors extend 300 µm into the beam they are placed in a higher temperature gradient of 

the beam and therefore thermal crosstalk is much higher.  The Epsilon shape has a lower 

initial deflection than the Solid shape.  This is also expected as the stress is being 

relieved in the layers that provide the initial bending moment by removing material.  

The important feature to note between the Epsilon and Solid design is the reduction in 
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thermal crosstalk by 37 % on the Epsilon design sensor due to a difference in thermal 

gradient as shown in Figure 2-11.   

 

The author and Vladislav Djakov have suggested a further modification to change 

bimorph structural architecture from gold-polyimide to polyimide-polyimide layers.  

The modification is intended to improve actuation efficiency by selection of materials 

with a wider difference in the coefficient of thermal expansion and lower Young’s 

modulus.  The modification may also lower thermal crosstalk and increase localised 

heating due to lower thermal conductivity of the structural layers.  The principal 

disadvantage of using two polymer layers is that the structure will have a slow 

relaxation after actuation due to slow thermal time constants.  This places limitations on 

the maximum operating frequency of the microcantilever. 

 

 
Figure 2-11 Comparison of steady state thermal distribution in gold-polymer MV2 

Epsilon and Solid design under 12 mW total actuation power. 
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A second disadvantage of using a polymer layer is the consistency of thickness and 

stress in layers as the processing of the polymer is less controllable than the deposition 

of a metalised layer.  The simulation material properties of the low thermal expansion 

polyimide (PI2610) have previously been given in Table 2-1.  The TEM simulation is 

performed on the previous meshed structure though it should be noted that the distance 

of the heaters and sensor to the neutral axis of the beam is reduced and therefore thermal 

bending moments are not as large as before and the deflection sensitivity will fall.  In 

the actual device the polyimide thickness can be chosen to optimise the neutral axis 

position to produce higher bending moments for a given flexural rigidity.  For a Solid 

polymer-polymer structure with the same dimensions of the Epsilon structure the 

estimated stiffness at the tip is 0.15 N.m-1.   

 

Table 2-3 presents the deflection, temperature, and thermal cross talk results for the 

polymer-polymer Epsilon and Solid structure.  The results immediately suggest 

polymer-polymer bimorph structures have significantly improved deflection efficiency 

over gold-polymer structures - approximately 1 µm.mW-1 to 12 µm.mW-1.  This 

improvement derives from the ability of the structure to retain the heat due to very low 

thermal conduction of the structural layers, and therefore increase in temperature 

substantially.  At closer inspection the conversion factor has only improved slightly 

over gold-polymer structures.  This suggests that improvements in actuation efficiency 

due to changes in materials will not lead to reduced thermal crosstalk as the mechanical 

signal is always driven by temperature in the beam.  In practice the change in material 

should give improvements as the combination of fast heating and low conduction 

should produce more deflection and lower noise at very short timescales.  As previous, 

the polyimide-polyimide Solid and Epsilon designs both have similar deflection 

capabilities, and the Epsilon design has a reduced initial deflection.  The significant 

improvement of this configuration is the reduction in thermal crosstalk of >95% from 

Solid to Epsilon using the polymer-polymer architecture.  This suggests the low thermal 

conductivity of the polymer layers is concentrating the power dissipation in the outer 

heater arms of the Epsilon structure and the air gaps are restricting the flow of heat 

around the structure. 
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Parameter Units 
Π-Shape

Au-PI 
(MV1) 

Epsilon 
Au- PI 
(MV2) 

Solid  
Au-PI 
(MV2) 

Epsilon 
Design 
PI- PI 
(MV2) 

Solid 
Design 
PI-PI 

(MV2) 
Initial 
Deflection µm 149.9 115.4 130.5 85.8 99.6 

Actuation 
Efficiency µm.mW-1 1.92 1.07 1.05 12.14 13.47 

Temperature oC.mW-1 2.50 1.51 1.35 13.33 12.36 
Conversion 
Factor µm.oC-1 0.77 0.71 0.78 0.91 1.09 

Thermal 
Crosstalk 

x10-4 

∆R/R.mW-1 8.11 9.59 15.0 6.6 131.4 

Deflection 
Sensitivity 

∆R/R 
ppm.µm-1 

65 55 53 24 21 

Equivalent 
Thermal 
Crosstalk 

∆R/R 
ppm.µm-1 423 896 1427 54 976 

Mechanical 
Signal / Total 
Signal 

 13.3 % 5.8 % 3.6 % 30.1 % 21.1 % 

 

Table 2-3.  Comparison of simulated polymer-polymer Epsilon and Solid MV2 design. 

Previous simulation results for gold-polymer designs have also been included to allow 

direct comparison 

 

   

 
Figure 2-12 3D Models for heater comparison. Top Left – Concentrated Heater. Top 

Right – Tapered Heaters. Bottom – Pinched Heaters. 
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Further improvements to the device can be made from changes to heater configuration.  

This can involve changing the cross section of the heater to focus joule heating in 

specific areas, limit the heat conduction back through the metalised tracks, and allow 

easier bending due to the reduction of rigid material in the beam.  For comparison to 

standard fixed width heaters, three configurations have been chosen.  These include a 

concentrated heater and a varied width or tapered heater suggested by the author, and a 

pinched heater suggested by Vladislav Djakov.  Each configuration can be seen in 

Figure 2-12.  The concentrated heater is applied to focus the joule heating towards the 

end of the beam.  This may result in higher actuation efficiency but the bending may not 

affect the sensor which is towards the base.  The gradient heater may create a more 

uniform temperature gradient along the beam rather than a hot tip and cold base which 

is seen in Figure 2-8.  The reduction in metalisation at the base of the structure may also 

improve initial and actuated bending.  The pinched heater is effectively another form of 

concentrating heat to an area of the beam, it is anticipated that the pinch will generate 

more heat further down the beam, and the small cross section will also limit heat 

conduction passing from further along the beam back to the base.  The reduction in 

metalisation in this area may also create an artificial bending axis.  Table 2-4 presents 

the results for the different heater configurations as applied to the Epsilon design. 

 

Parameter Units Standard Concentrated Tapered Pinched 
Initial Defection µm 85.8 88.5 130.9 93.4 
Actuation 
Efficiency µm.mW-1 12.14 21.62 40.40 17.32 

Temperature oC.mW-1 13.33 30.24 33.13 18.92 

Conversion Factor µm.oC-1 0.91 0.71 1.22 0.92 

Thermal Crosstalk 
x10-4 

∆R/R.mW-1 6.6 14.0 15.8 9.1 

Deflection 
Sensitivity 

∆R/R 
ppm.µm-1 24 24 24 24 

Equivalent 
Thermal Crosstalk 

∆R/R 
ppm.µm-1 

54 65 39 53 

Mechanical Signal 
/ Total Signal  30.8 % 27.0 % 38.1 % 31.2 % 

 

Table 2-4 Comparison of simulated heaters applied on the PI-PI Epsilon design. 
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The results suggest that making changes to the heater shape can have a significant 

impact on the deflection capabilities and thermal crosstalk.  Concentrated heaters have 

the poorest conversion factor and high thermal crosstalk.  From direct observations of 

the simulation the large thermal change for the concentrated heater are focused at the 

end of the structure.  This has the effect of giving a high equivalent thermal crosstalk 

and poor deflection and therefore is not suitable to improve the device.  The tapered 

configuration shows very good improvement in deflection capabilities and a 

significantly improved initial deflection. This may compensate for the reduction in 

initial deflection when the Epsilon design is used.  Though the structure is heated 

substantially, the conversion to deflection is excellent and the overall improvement 

from standard heaters is an increase in the mechanical proportion of the total signal by 

approximately 24%.  This implies similar deflection can be attained at lower power and 

lower temperature.  The pinched heater configuration only provides a small 

improvement to deflection capabilities of the device, though is of interest as the pinch 

effectively creates an artificial bending point such that the structure deflects around the 

midpoint of the beam and the bend is also inline with the sensor placement. 

 

2.4.3 Realisation of MV2 Fluid Probe Design 

The mathematical and finite element simulations support a number of design changes 

on the original fluid probe device to improve the actuation efficiency and reduce 

thermal crosstalk of the integrated sensor.  This includes: 

 

1) Realisation of a new design based on an Epsilon shaped configuration 

2) Replacing the gold structural layer with a low thermal expansion polyimide 

3) Replacing the gold piezoresistor with a low TCR material such as NiCr or CuNi 

4) Increasing the distance of heaters and sensors to the neutral axis possibly by 

 using a thin final encapsulation layer 

5) Realisation of tapered gold heaters 

 

A final design consideration not mentioned in the analysis is the referencing of the 

device with a passive microcantilever in a half or full bridge configuration.  This has 

been suggested previous to the development of the original probe and allows for 

compensation of drift and environmental temperature.  Ideally the passive probe would 

also be actuated and the thermal crosstalk on the beam compensated but this is difficult 

without also compensating the mechanical signal.   
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The MV2 probe layout has been designed by Microvisk Ltd and the technology has 

been successfully transferred to a UK based microfabrication foundry.  The realised 

probes are based on Solid and Epsilon polymer bimorphs with gold microheaters and 

NiCr sensors (Figure 2-13a).  A number of probes have also been implemented with 

tapered heaters for comparison to standard heater layout.  For characterisation of 

performance presented in Chapter 3, a small sample of probes from the 28 original 

designs has been chosen by the author; G is a Solid design with standard heaters; H is a 

Solid Design with tapered heaters; W is an Epsilon design with standard heaters; and X 

is an Epsilon design with tapered heaters.  This sample allows a comparison to the 

previous MV1 design and a direct comparison between the Solid and Epsilon design, 

and the standard and tapered heater’s.   

 

   
(a)                                                                   (b) 

Figure 2-13 (a) Microfabricated Polymer-Polymer Epsilon design (MV2). The Solid 

design is without etched holes. (b) Pre-production design (MV3) device with active and 

reference microcantilever based on Polymer-Polymer Epsilon footprint. 

 

The fabrication route of the fluid probe has been modified under the technology transfer 

with changes to the mechanism of release, patterning of integrated metal layers, and the 

substitution of gold with a low thermal expansion polyimide.  Cantilever release by 

weak adhesion of gold has been replaced with a sacrificial aluminium layer which can 

be wet etched in a fast electrochemical reaction.  The gold layer has been replaced with 

a low CTE polyimide (PI2610) that can be soft baked before application of the first high 

CTE polyimide layer and then hard baked for curing.  The metalised heaters are then 

sandwiched in the structure with another polyimide layer and NiCr sensors are 

deposited and patterned using lift-off in a separate layer before a final encapsulation 

layer is added.   

 



 

53 
 

Final multilayer structures chosen for comparison are 800 µm long and 300 µm wide.  

Epsilon shapes have two 30 µm wide air gaps extending 650 µm into the structure with 

outer arms being 90 µm wide and the central sensor arm 60 µm wide.  Standard heater 

width is 15 µm and sensor track width is 4 um extending from 200 to 600 µm into the 

structure.  Tapered heaters are 15 µm at the maximum point and 5 µm at the minimum.  

Using section 2.2 the position of the neutral axis in the Solid structure is approximately 

1 µm from the heater layer and 3.2 µm from the sensor layer.  The estimated stiffness at 

the tip is approximately 0.3 N.m-1 which is slightly higher than the MV1 probe.  For an 

Epsilon design there are effectively two beam structures, one with heaters and one with 

sensors.  The neutral axis is located approximately 2.5 µm below the sensor in the 

middle arm and 1.2 µm below the heater in the outer arms.  The calculated stiffness is 

approximately 0.1 N.m-1 in each arm. 

 

Beyond this thesis a third pre-production device (MV3) has been designed by the author 

and Vladislav Djakov based on characterisation and fluid results from MV2.  Device 

layout has been implemented in CAD by the author and has been fabricated at a MEMS 

foundry.  The device incorporates referencing and realisation of two sensor 

configurations with platinum and constantan metalisation (Figure 2-13b).  The MV3 

design includes a pinched heater above the tapering and the overall thickness has been 

reduced with the final encapsulation layer reduced from 1.0 to 0.3 µm.  Though this 

reduces the distance of the sensor to the neutral axis to 2 µm, the overall beam stiffness 

is reduced by around 50% and therefore the restoring force that opposes the actuation 

force is also reduced by the same amount.  For the pre-production probe design Dr. 

Vladislav Djakov has designed a serpentine sensor that has equal resistance and location 

to the active probe whilst having a reduced mechanical response such that the reference 

device compensates more of the thermal crosstalk component of the response.  This 

implementation has shown a further improvement in observation of the mechanical 

signal in fluids over the thermal crosstalk.  The platinum and constantan piezoresistor 

testing is included in chapter 3 and an indication of the device response is given in the 

closing chapter to demonstrate the possible future operation. 
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Chapter 3 - ThermoElectroMechanical Characterisation of 

Microcantilever Fluid Probes 
 

3.1 Introduction 

In the previous chapter analytical and finite element simulations provided a foundation 

for design improvements to microcantilever fluid probe devices.  These improvements 

aim to improve the mechanical signal and lower thermal crosstalk of the integrated 

piezoresistor for operation in fluids.  This can be achieved by improving deflection 

efficiency (µm.mW-1) and piezoresistor mechanical sensitivity (∆Rmech/R.µm-1), and 

reducing the thermal cross talk (∆Rthermal/R.mW-1) and piezoresistor thermal sensitivity 

(∆Rthermal/R.K-1).  These improvements also provide a foundation for the design of 

polymer scanning probes presented in Chapter 6.  The author’s contribution to design 

changes from the benchmark fluid probe (MV1) include implementing an Epsilon 

shaped microcantilever, tapering of metal heaters towards the cantilever base, suggested 

material changes from a gold base layer to a polyimide, and high TCR sensor to a low 

TCR material.  In the new design metalisation for heaters and sensors has also been 

separated by an additional layer of polyimide. 

 

The work presented in this chapter uses developed mechanical, thermal, and electrical 

tests to characterise the performance of the above changes against the benchmark fluid 

probe.  This information provides a validation of the new probe design and acceptable 

limits of quality control.   

  

Section 3.2 presents experimental results for the mechanical and thermal sensitivity of 

metal thin films as a basis for quantifying absolute resistance of the heater and sensor 

during actuation.  Section 3.3 presents electro-mechanical testing based on a newly 

developed optical autofocusing technique for measurement of large curvature 

microcantilever tip deflection.  The technique is used to measure deflection efficiency, 

initial deflection, and fully reconstruct the curvature of the beam.  Electrical 

measurements of the heater during actuation also allow an estimation of the beam 

temperature and rate of temperature increase.  Section 3.4 presents the thermal crosstalk 

and self heating of the microcantilever device with electrical measurements and thermal 

imaging. 
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3.2 Mechanical and Thermal Characterisation of Metal Thin Films 

The microcantilever fluid probe has integrated metal films for sensing mechanical 

deflection by the piezoresistive effect – this has been discussed previously in chapters 1 

and 2.  The MV2 (2006) and pre-production MV3 design (2008) have separate 

metalisation for heaters and sensors.  This is an advantage as although gold is suitable 

for heaters – high thermal conduction, low thermal heat capacity, and relatively high 

thermal expansion – it has a high temperature coefficient of resistance (TCR) and is 

therefore susceptible to large changes in resistance due to temperature.  For example, a 

100 nm deflection of a microcantilever using gold sensors with 0.3 ppm.nm-1 sensitivity 

[10] is equivalent to a change in temperature of the sensor of 0.008 oC.  Therefore it is 

desirable to find a sensor material with high gauge factor and low TCR.  A second 

advantage is that the sensor can be placed close to the microcantilever surface, further 

from the neutral axis using a very low thickness encapsulation layer.  A third generation 

pre-production device (MV3) has been fabricated by an external foundry using platinum 

(high Gauge factor and high TCR) and constantan (low Gauge factor and low TCR) 

sensors.  These devices are also included in mechanical and thermal testing for 

comparison of a larger range of materials. 

 

3.2.1 Mechanical Sensitivity 

The mechanical sensitivity (∆Rsignal/R.µm-1) of the microcantilever fluid probes has 

been established using a computer controlled contact probe to deflect the 

microcantilever tip4.  The setup consists of a linear XY stage for control of the probe-

cantilever position, a high magnification telescope with CCD camera (Infinity 2-1, 

Lumenera) for viewing the measurement via PC, a computer controlled translation stage 

(VT-60, Micos) with fixed vertical probe, and Wheatstone Bridge electronics close to 

the device in half bridge arrangement using a second on-chip microcantilever.  The 

electronics is connected via a BNC router (NI BNC-2110, National Instruments) to a PC 

data acquisition card (NI PCI-6221, National Instruments) running LabView (LabView 

7.0, National Instruments).  The change in resistance of the microcantilever can also be 

directly measured using a high precision DMM (2100 6 ½ Digit USB Digital 

Multimeter, Keithley).   

 

                                                
4 The probe station and measurement, including electronics and software, has been performed by Robert 
Ibbotson 
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The change in resistance for a known tip deflection allows a direct measure of the 

mechanical sensitivity.  To compare piezoresistive films equation 2.15 is used, where 

the length of the microcantilever and the controlled tip deflection is known and the 

neutral axis of the microcantilever cross section can be estimated, to find the gauge 

factor.   

 

There are a number of errors in the final measurement to minimise.  Firstly the contact 

probe should always be at the tip of the cantilever; this is not always the case as the 

probe slips along the beam due to a large difference between the initial and final 

horizontal position.  As the probe slips along the beam the tip is effectively moving 

further than the controlled deflection and therefore the change in resistance appears to 

increase.  This error can be minimised by only taking the first increments after the probe 

has been aligned.  The second error exists in the conversion of voltage output to 

resistance which derives from inaccurate measurement or drift in nominal bridge 

resistors, supply voltage (1V), and amplifier gain.  The variation in voltage to the bridge 

and amplifier is significantly smaller than the drift in bridge resistors.  As the signal 

drift – due to resistor drift - can be monitored through LabView this can also be 

controlled and through accurate measurement of the bridge resistors with a 6 ½ digit 

DMM (2100 6 ½ Digit USB Digital Multimeter, Keithley) the conversion error is not 

significant.  The largest error in the measurement is based on the estimation of the 

neutral axis in the multilayer structure using data sheet material properties for Young’s 

modulus and the target thickness.  For example, the actual film thickness measured 

during fabrication of polymer-polymer devices for the scanning probe project at the 

same facility deviated in some cases by up to 10% from the target value and had an 

average difference of 6% from the target thickness.   

 

As the measurement is partly destructive due to damage by the tip slipping along the 

beam, and chip supply is limited for characterisation tests, only single tests on each 

device have been performed.  The method used is consistent for each measurement and 

is indicative of the relative deflection efficiency between each design.  Table 3-1 gives 

the mechanical sensitivity and calculated gauge factor of the metal films.  The error in 

Gauge factor, from equation 2.13, is dominated by the error in the distance of the sensor 

from the neutral axis.  Using the variation in film thickness measured above the Gauge 

factor error for MV1, MV2 and MV3 is 8.5%, 7.4%, and 8.6% respectively.  The results 

of mechanical testing indicate that platinum has the highest gauge factor and constantan 
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the lowest.  The unexpected result is a low gauge factor in gold, equal to 1.3, which is 

below that of published values [10] and other internal testing5.  This could be due to the 

chrome adhesion layer such that the heater is explicitly a composite structure; issues 

have also been seen previously with chromium migrating into the gold at high curing 

temperatures. 

 

Measurement Sensor 
Material 

Mechanical Sensitivity
(∆Rmech/R.µm-1) 

Calculated Gauge 
Factor 

MV1 – Π-Shape Gold 20.8 ppm 1.3 +/- 0.1 

MV2 – Solid NiCr 16.0 ppm 1.3 +/- 0.1 

MV2 – Solid NiCr 16.1 ppm 1.4 +/- 0.1 

MV2 - Solid NiCr 16.6 ppm 1.5 +/- 0.1 

MV3 - Epsilon CuNi 9.0 ppm 1.1 +/- 0.1 

MV3 - Epsilon Platinum 29.0 ppm 3.4 +/- 0.3 
 

Table 3-1 Experimental results for mechanical sensitivity and calculated gauge factor of 

microcantilever piezoresistive sensors.  

 

3.2.2 Temperature Coefficient of Resistance 

The resistance of the sensor piezoresistor is susceptible to large changes and drift due to 

changes in temperature from thermal crosstalk and the environment.  The change in 

resistance is given by TRR ∆=∆ α  where α  is a material constant called the 

temperature coefficient of resistance (TCR).  The measurement is conducted in a 

temperature controlled incubator environment with 0.1 oC stability (Digital Block 

Heater QBT2, Grant).  Each device has been mounted and bonded to a ceramic DIL 

carrier; this adds a small error in the resistance measurement as the gold bonding wires 

and gold carrier has been found to account for <1% of the thin film value – this error is 

systematic through measurement of each metal film.   

 

To established best practice for the measurement a MV1 microcantilever is placed in a 

ZIF socket inside a machined aluminium block heater.  To encapsulate the 

microcantilever to reduce any potential air flow over the device an aluminium lid with 

                                                
5 Robert Ibbotson has fabricated polyimide surface stress sensor with gold piezoresistor with K = 4 



 

58 
 

two small access holes is placed on top of the block heaters.  The resistance is 

monitored in real-time using a 6 ½ digit DMM (2100 6 ½ Digit USB Digital 

Multimeter, Keithley) connected through the block heater.  The block heater is set to a 

temperature of 60oC and the resistance of the microcantilever is monitored until it 

reaches a thermal equilibrium. After 30 minutes the resistance settles and the 

measurement of resistance can be confidently taken.  To measure the impact of the 

block heater lid, and whether measurements should be taken directly with a DMM, a 

gold sensor resistance is continuously measured while probed.  Figure 3-1 indicates the 

effect of removing the measurement chamber lid to take a reading; the effect of 

removing the chamber lid and using standard DMM probes in contact with the device 

carrier to take a reading; and the effect of interrogating a low TCR Constantan wire that 

is directly connected through the lid into the ZIF socket.   
 

 
Figure 3-1 Real time monitoring of the proportional change in gold sensor resistance 

when the block heater lid is removed (solid line), metal DMM probes are placed on chip 

in the heater (dotted line) and DMM probes are connected to external constantan wires 

(dashed line).  In each case the measurement is taken after 60 seconds. 

 

The TCR measurement is repeated 10 times on gold, nickel-chromium, platinum, and 

constantan films across a low range of temperatures (30 – 90 οC) that are expected 

during thermal actuation of the probe.  From the previous measurement the resistance is 

probed using a 6 ½ digit DMM connected to Constantan wires connected through the 

block heater lid.  Figure 3-2a shows the time dependent resistance of a gold thin film 
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when the incubator is increased from 30 οC to 50 οC. The steady state, where the 

average is taken, requires approximately 30 minutes, making the measurements time 

consuming for each set.  Figure 3-2 shows an example of the gold sensor resistance 

versus temperature, giving a linear relationship that allows determination of the material 

TCR.  The material resistance at steady state typically varies by less than 0.1%.  Using a 

large sample at the steady state temperature further minimises the error in the 

measurement.   

 

 
Figure 3-2 Top: Example of gold sensor resistance measured continuously from 30 οC 

to 50 οC.  Bottom: Resistance versus temperature for a gold thin film.  The resistance 

measurement varies < 0.1% at steady state. 
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For gold and platinum films the resistance change is large and therefore easily 

determined, whereas for nickel-chromium and constantan the resistance change is small 

and it is good practice to choose tracks with larger nominal resistance e.g. choosing a 

multiple turn piezoresistor rather than a single turn.  Table 3-2 shows the results of the 

repeated thermal tests where a linear relationship is applied to the resistance versus 

temperature measurements to derive a TCR for each metal film. 

 

 Bulk TCR Value 
(∆R/R.οC-1 x10-3) 

Measured TCR  
(∆R/R.οC-1 x10-3) 

Standard Deviation
(∆R/R.οC-1 x10-3) 

Platinum 3.92 1.79 0.04 

Gold 3.4 1.13 0.06 

NiCr 0.4 0.10 0.02 

CuNi +/- 0.02 0.04 0.01 

Table 3-2 Measured TCR value of the sensor thin film compared to the bulk value [98-

99]. 

 

The thermal change in sensor resistance, presented in Table 3-2, represents three 

separate elements and a size effect.  The three elements are; a change in resistivity due 

to temperature (TCR), a thermal strain due to thermal expansion [100], and a difference 

in thermal expansion between the film and substrate [101].  Warkusz [102] also notes a 

size effect as film resistivity is not equal to a bulk resistivity.  The film resistivity 

relation to bulk resistivity is based on the Fuchs-Sondheimer function [103-104] which 

is dependent on the ratio of film thickness to electron mean free path, and the fraction of 

electrons specularly scattered at the external surface.  Warkusz also noted that the size 

effect due to material grain size becomes important when considering thin films [105].  

As each of these elements represents noise in the sensor the comparison of material 

TCR remains valid without further separation of the different parts.  The size effect 

noted by Warkusz due to film thickness and grain size should be considered as further 

work to improve the piezoresistive sensor.  The measurement may be improved by 

considering a 3-wire bridge arrangement.  In this arrangement one lead – including the 

carrier and wire bond - is placed in the positive arm of the bridge and the second is 

placed in the negative arm to compensate.  The third lead is effectively part of both 

arms and therefore does not contribute to the measurement.  A 3-wire measurement has 

not been made in this work as the third wire must be wire bonded prior to testing. 
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3.3 Characterisation of Microcantilever Deflection 

Measurement of microcantilever tip deflection is a crucial parameter for optimising 

initial and actuated deflection for exploitation of sensors and actuators.  For the fluid 

probe application it is desirable to achieve a large initial deflection of the multilayer 

structures otherwise adhesion to the substrate can be an issue in release and 

performance.  The maximum initial deflection is limited by the proposed height of the 

microfluidic channel that will feed to the device and therefore the initial tip deflection 

should be less than 300 µm.  For the scanning probe application it is desirable to 

achieve a deflection with the in-plane tip that provides a good contact angle with the 

sample to be imaged.  Deflection efficiency is important in the fluid probe device as 

both the thermal crosstalk and fluid environment are influenced by the dissipated power, 

therefore it is desirable to have a high deflection at very small input power and 

temperature. 

 

Standard measurement techniques of microcantilever deflection include optical lever 

method [29], interferometry [30-34], diffraction [35], electron tunnelling [36-37], 

capacitive [38], piezoelectric [39], and piezoresistive [40].  Though current devices 

under development include integrated piezoresistors for sensing microcantilever 

deflection, the metal thin film tracks are susceptible to thermal crosstalk from the 

integrated actuation and therefore an external optical technique is desirable to confirm 

electrical measurements.  Standard optical techniques are difficult to implement on 

highly curved surfaces as a small angle approximation is not valid and therefore a 

parallel reflecting surface is not present.  Common techniques that have been reported 

include extracting dimensions from SEM images [15-16] and using optical microscopes 

to determine x and y coordinates [17-18].  Further to these techniques, Dr Mohamad Al 

Aioubi, a previous member of the Bioscience MNT group, mounted micro-mirrors on 

the microcantilever and analytically retrieved tip deflection [18].  While these 

techniques extract the required information they can be slow and based on the 

individual’s discretion.  Evaporating a conducting layer for SEM and mounted mirrors 

also directly change the mechanical properties of the cantilever under investigation.  

 

A new technique for measuring deflection of highly curved microcantilevers is 

proposed by the author based on standard optical microscopy with contrast and 

resolution based autofocus algorithms.  Retrospectively, it has been found that Miao et 

al [106] have proposed the same method for measurement of tri-layer polymer 



 

62 
 

microcantilevers reported by Chan et al [64].  In this work Miao uses the same three 

focus measures for static and actuated microcantilevers.  The work presented here goes 

beyond Miao’s work to extract the full curvature of the microcantilever in static and 

actuated states.  Using an automated computer based autofocus technique offers a 

consistent method between testing and characterisation, and comparison of 

microcantilever structures.  The work presented here uses contrast and resolution based 

autofocus algorithms [107-110] to establish the most repeatable and accurate method for 

determining the tip deflection.  The technique can also be used to extract the full 

curvature information of the beam, rather than deriving the deflected shape analytically, 

from applying several image sections along the microcantilever length.  The 

microcantilever curvature has important implications on bending, heater performance, 

and in appreciating the fluid shear rate on the moving parts of the beam.  It is considered 

that the technique may also be extended to low frequency (< 10 Hz) dynamic 

measurements with an increased frame rate of the image capture device.  This would 

allow critical analysis of the time dependent deflection and curvature of the beam to 

extract real shear rate information. 

 

An optimal focus position can be achieved by analysing image content at several 

vertical positions and maximising, or minimising, the value of a chosen focus function.  

Image content focus functions are based on the assumption that as the focus improves, 

the contrast and resolution of the image increases, and that these characteristics can be 

quantified.  Mathematically, from Fourier optics, the resolution can be measured by 

analysing the frequency content of an image.  When the image is focused the detail 

improves (edge sharpness) giving high frequency content.  The analysis can be further 

improved by isolating these high frequencies using a high pass or gradient filter.  Image 

contrast can be described mathematically by the change in intensity standard deviation 

or variance across the image.  The analysis can be further improved by normalising the 

output to compensate for lighting conditions.  Conventionally, a sample is automatically 

scanned through focus at discrete steps and returned to the level where the focus 

function is optimised.  For measuring the tip deflection or curvature of a 

microcantilever a discrete operating level is not required, only the extrapolated position 

of the maximum from the focus function curve.  As the focus curve is parabolic around 

the focal plane a higher precision than the discrete stepping can be achieved by 

quadratic interpolation around the detected optimum.  Referencing of the technique is 
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provided by imaging two separate sections of the image in the field of view to 

extrapolate the position of the tip and the position of the surface.  

 

Several autofocus functions have previously been presented and compared in literature 

for bright field microscopy [107-109].  The criteria for comparison suggested by Groen 

et al [107] includes (1) Unimodal focus function, i.e. only a single maximum or 

minimum; (2) Accuracy, the optimum is detected when the image is in focus; (3) 

Reproducibility, a sharp extremum is measured consistently; (4) Range, the vertical 

scan distance over which the function will return the correct focus; (5) General 

applicability, or the ability to be used on different types of image; (6) Insensitivity to 

other parameters; (7) Video signal compatibility; and (8) Implementation, or a function 

which is quick and easy to implement.  For measurement of tip deflection the critical 

criteria are unimodal, accuracy, and reproducibility.  On the basis of these criteria three 

focus functions have been chosen based on both resolution (Squared Gradient, One 

Dimensional Laplacian) and contrast (Normalised variance) algorithms.  These 

functions have been shown to perform best in comparison tests and are each applied to 

the work here to experimentally find the most suitable function.  

 

The Squared Gradient function [111-114] is mathematically the summation of the 

square of the first derivative of the image intensity.  This is effectively a band pass filter 

that enhances higher spatial frequencies (edge sharpness) close to the highest value.  

The square of the derivative further increases the difference between low and high 

spatial frequencies.  From Groen et al [107] the equation of the function is given by 
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where g(x,y) is the pixel grey value at position (x,y), θ is an arbitrary threshold value 

which in this work is set as zero, and the first-order derivative can be approximated as 
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where (i,j) is the pixel coordinates at row i and column j. 
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The One Dimensional Laplacian function [112-114] is mathematically the summation 

of the square of the second derivative of the image intensity.  Spectrally, the higher 

spatial frequencies are enhanced more by this second order difference filter than the first 

order gradient filter.  It has been previously noted that higher order functions do not 

perform as well as the first and second order due to an increase in noise effects.  From 

Groen et al [107] the equation of the function is given by 
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where the second-order derivative can be approximated as 
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The Normalised Variance contrast function gives a measure of the space varying 

intensity of an image.  As power can be divided into a DC and AC components, where 

DC power is the mean squared value and AC power is the time varying component, an 

image can be defined in a similar manner.  
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where P is the power, Gij is the pixel grey value at row i and column j, N is the total 

number of pixels in the image, and E is the expected value operator.  The DC 

component is equivalent to (E{G})2 and the space varying AC component is given by 

E{G2}-(E{G})2.  As the image is focused the DC component does not significantly 

change, but the AC component increases with image sharpness.  The AC component of 

an image can be directly measured as the variance of the image pixels.  A normalisation 

of the variance to compensate for image brightness can be implemented by dividing by 

the squared mean of the image.  From Groen et al [107] the equation of the function is 

given by 
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where g  is the mean grey value over the image and 2g  is the squared mean of the 

image. 

 

3.3.1 Experimental Validation of the Autofocus Method 

Figure 3-3a shows an optical image of the test structures used for initial and actuated tip 

deflection measurements.  The structure is a Π-shaped Gold-Polyimide (PI2562) 

thermal bimorph actuator (MV1), 600 µm long, with 80 µm wide arms separated by a 

60 µm gap, and an overall thickness of 5 µm.  Metalised gold tracks for heaters and 

piezoresistive sensors are positioned at the centre of the polyimide layer to provide 

electrical insulation.   

 

The deflection and load characteristics of previously fabricated Π-shaped gold-

polyimide (PI2566) microcantilevers with larger overall thickness has been previously 

measured [18] using reflecting mirrors and initial out-of-plane displacements up to 250 

µm are reported.  The microcantilever device to be tested has been fixed and bonded 

into a ceramic DIL package.  The chip is mounted on a custom electronics board and 

fixed to a 3-axis piezo-controlled stage (Thorlabs NanoMax) with a manual differential 

adjuster to provide a minimum stage adjustment of 500 nm fine resolution, and a travel 

range of 400 µm.  The stage can accommodate modular drives with up to 5 nm 

resolution with closed loop feedback piezoactuators, though this is significantly higher 

than the resolution required (approximately 1 micron).   
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(a)                                                                  (b) 

Figure 3-3 (a) Optical image of interdigited Π-shaped Gold-Polyimide (PI2562) thermal 

bimorph actuators with integrated heaters and piezoresistive sensors.  (b)  Optical image 

of focused wafer detail and focused cantilever tip showing an example of the analysis 

window. 

 

For tip measurement the stage is mounted under a Nikon Metaphot bright field 

microscope with 40x magnification lens and 0.65 numerical aperture.  This lens 

provides a large enough field of view to provide focus information on the cantilever tip 

and wafer surface providing a differential method to measure tip deflection.  For 

curvature measurements of microcantilevers a 20x magnification and 0.4 numerical 

aperture lens is used to provide a larger field of view.  The ceramic package limits 

higher magnification and numerical aperture to reduce the depth of field as the silicon 

die is recessed from the carrier edge.  Images are remotely captured at each stage height 

using a Digital Camera (Canon Powershot S5 IS) mounted to the phototube of the 

microscope using a suitable conversion lens (LA-DC58E) and microscope adaptor 

(Martin Microscopes, MM99-58).  The measurement setup and image processing is 

computer controlled using a custom LabView (LabView 8.20, National Instruments) 

program.  LabView controls the electronics and sensor feedback using a data acquisition 

card (M-Series, NI PCI-6221) routed through a shielded BNC connector block (NI 

BNC-2110).  Actuation voltage is provided by an arbitrary waveform generator 

(Agilent, 33220A) controlled over USB from within the LabView program.   

 

Images are captured and stored in the remote capture software and automatically 

analysed by LabView to provide the focus score of each autofocus function on a 

selected analysis window.  The analysis window is applied to each image to extract the 

focused position of the chosen area.  It has been found that using two analysis windows 

separated for the tip position and wafer position provides increased resolution than a 
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single window covering both details.  This is because a unimodal focus function would 

not exist, but rather two peaks which must be resolved.  A single analysis window 

would also contain extra pixels between the two areas with no important information.  

Figure 3-3b shows an example of the two analysis windows applied to a real image to 

capture the focus of the substrate detail (a) and the deflected tip (b).  The stage is 

initially positioned below the focus of the substrate detail to allow the image to be taken 

through focus of the substrate and past the focus of the microcantilever tip.  This 

provides enough lead-in and lead-out to apply a quadratic curve fit to the focus score 

and extrapolate the position of best focus.   

 

For the current validation the focus score is a single discrete output value from the 

function applied to the image window.  If an image was taken several times at a specific 

stage height the variation of pixel intensity in the analysis window would allow an 

averaged focus score and measure of standard deviation.  The source of this variation is 

due to movement in the image due to camera shake and mechanical stability of the 

stage, and the imaging source and lighting which will change each pixel intensity.  For 

the work presented here, the focusing routine is repeated 4 times on the same 

microcantilever device (MV1) to consider the reproducibility and accuracy of each 

function.  Within each set of images the analysis window is reapplied to look at the 

variability with placement of the window.  The best method is then applied to compare 

old and new microcantilever designs.   

 

Preliminary testing indicates the application of a narrow and concentrated analysis 

window is preferential to a large window as this produces a sharper focus function.  

Figure 3-4 shows the focus score of the normalised variance function for a large, small, 

and single line analysis window as the microcantilever is taken through focus.  As the 

focus function outputs a single discrete value for each image capture height no error 

bars are shown.  For a single focus scan of initial and actuated deflection and for 

curvature measurements a small narrow window is chosen to analyse the data.   
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Figure 3-4 Normalised Variance focus score for analysis of the microcantilever tip when 

a single line (filled triangle), small window (square), and large window (cross) is 

applied. 

 

Figures 3-5, 3-6, 3-7 show the focus score from the Normalised Variance, Squared 

Gradient, and One-Dimensional Laplacian functions on a single set of image data from 

the MV1 device.  The stage has been taken through a distance of 200 microns at 2 

micron steps and images have been analysed for substrate detail (window 1 – circle) and 

microcantilever tip detail (window 2 – triangle).   

 

For each function the maximum focus score is identified by LabView and a quadratic 

function is fitted to the data within 8 µm.  The maximum position is then determined by 

finding the position for which the differentiation of the quadratic equation is equal to 

zero.  For comparison, the position of maximum score over several iterations is also 

considered as a simple alternative to extrapolating the position - though in practice a 

single scan would only give an accuracy of twice the stage increments.  The results of 

the focus function comparison based on the initial deflection of the benchmark 

microcantilever device are given in Table 3-3. 
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Figure 3-5 Normalised Variance focus function score of substrate (circle) and MV1 

microcantilever (triangle) analysis window. 

 

 
Figure 3-6 Squared Gradient focus score of substrate (circle) and MV1 microcantilever 

(triangle) analysis window 
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Figure 3-7 One Dimensional Laplacian focus score of substrate (circle) and MV1 

microcantilever (triangle) analysis window 

 

 Quadratic Method Max Value Method 

Autofocus Function 
Mean 
(µm) 

Standard 
Deviation 

(µm) 

Mean 
(µm) 

Standard 
Deviation 

(µm) 

Normalised Variance 92.4 1.2 92.2 1.4 

Squared Gradient 92.7 1.3 92.7 1.7 

One Dimensional Laplacian 92.1 2.4 92.8 3.4 

Table 3-3 Comparison of the Normalised Variance, Squared Gradient, and One 

Dimensional Laplacian autofocus functions for measurement of microcantilever (MV1) 

tip deflection. 

 

The preliminary results show the validity of the autofocus method for tip deflection 

measurements of large curvature microcantilevers.  The resolution of the technique is 

approximately 1-2 microns over several measurements, and though this is much lower 

than optical lever or interferometric measurements, for large deflections in the range 

100 to 200 microns this is sufficient.  The Normalised Variance contrast function 

performed best in tests and is ideal for microcantilever measurements as the basis of the 

focus score is not based on the orientation of the analysis window.  The Squared 

Gradient and One Dimensional Laplacian resolution functions give a sharper focus 
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score response but increased noise levels introduce more uncertainty.  The method of 

simply finding the maximum focus score stage height produces a result consistent with 

the fitted quadratic method, though for single scans the result will be limited by the 

stage height increment.  For comparison of actuation efficiency only the Normalised 

Variance function is used. 

 

3.3.2 Comparison of Microcantilever Actuation Efficiency 

To measure actuation efficiency the tip deflection is measured at zero input power and 

at several increased increments of power.  Currently the technique can only measure the 

steady state deflection of the cantilever as the frame rate of the image capture device is 

too low to capture motion; the steady state deflection still provides useful information 

on the microcantilever efficiency.  Actuation is connected directly from the function 

generator (Agilent, 33220A) output, having a 50 Ohm series resistance.  As previously 

noted the error in applied power to the microcantilever due to self heating and 

accounting for the unknown resistance due to bonding and carrier is approximately 1 %.  

Figure 3-8 shows the Normalised Variance focus score for the microcantilever tip 

(MV1) in the range 0 to 15 mW where values are normalised (maximum = 1) and 

shifted on the x-axis according to the maximum score in the substrate analysis (x = 0).   

 

The established substrate and tip position at each power gives an approximately linear 

relationship of 8.2 µm.mW-1 away from the substrate; the direction has been confirmed 

visually under the microscope.  At large deflections the efficiency tends to become non-

linear as the tip deflects upwards beyond a quarter circle.  Comparing with published 

results for thermal bimorph actuation efficiency (Table 1-1) shows that the benchmark 

microcantilever fluid probe (MV1) has improved over the previous device fabricated at 

MNTC [18].  It should be noted that the device has a lower restoring force, and that the 

deflection is away from the substrate.  Assuming thermal actuation is analogous to a 

uniform force and extrapolating the length of all devices for comparison the 

microcantilever fluid probe (MV1) is comparable to previously published work on 

polymer-polymer devices [15, 60] but lower than devices where the actuation is 

integrated as one of the structural layers [42, 44].   
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Figure 3-8  Normalised focus score for analysis of the MV1 microcantilever tip using 

the Normalised Variance function at a power input of 0 mW (circle), 5 mW (diamond), 

10 mW (triangle), and 15 mW (square).  The data has been shifted to the maximum of 

the substrate position to allow comparison. 

 

The tip actuation has also been measured for MV2 Epsilon (W) and Solid (G) design 

with standard heaters, and the Epsilon (X) and Solid (H) design with tapered heaters in 

the range 0 to 20 mW.  Both G and H microcantilever designs have a steady state 

deflection in the power range that remains within the error of the measurement 

technique (1.8 µm).  As these results cannot confidently give useful actuation efficiency 

the results are omitted from below.  In W and X microcantilever designs a linear 

relationship cannot be established as in each case the deflection is initially away from 

the substrate (0 to 10 mW) before deflecting towards the substrate (10 to 20 mW).  The 

direction has again been confirmed with visual inspection.  Figure 3-9 shows the tip 

measurements of the MV2 W and X device for the range of power tested.   
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Figure 3-9 Measured tip deflection under DC actuation for MV2 Epsilon design with 

standard heaters (W) (filled triangle) and tapered heaters (X) (filled diamond).  

 

The negative deflection results for both generations of design indicate that multilayer 

thermal actuators with integrated metal heaters are not simply described as a classical 

bimaterial strip.  In conventional analysis the heating of a bimaterial strip will cause a 

linear deflection governed by the higher thermal expansion layer pushing towards the 

lower thermal expansion layer.  Considering the multilayer cross-section and neutral 

axis position, the volume expansion below the axis must dominate for a negative 

deflection.   

 

An explanation is that the expansion in the upper section is restricted by the metalised 

heater and sensor tracks.  For the MV1 device the fill factor of gold heaters and sensors 

is high and chrome has been used to improve adhesion.  Chrome and gold have low 

thermal expansion (4.9 ppm.K-1 and 14.2 ppm.K-1 respectively) compared to the 

surrounding polyimide (60 ppm.K-1) and therefore may limit expansion.  The MV2 

devices only show negative deflection at low temperature.  In MV2 the fill factor of 

metalisation in the device is lower than MV1 and the lower structural polyimide has a 

very low thermal expansion (3 ppm.K-1).  A section of the high CTE polyimide is also 

estimated as being below the neutral axis.  Considering the differential heating, it is 

possible that at higher temperatures the very low thermal expansion of the bottom layer 

is simply overcome and that the higher heat gradient moves to less metalised areas of 
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the beam which are not restricted to expand.  Certainly this is an area of interest to 

develop further understanding if, for example, the microcantilever was to be used as an 

optical reflector, gripper, or valve.  For future deflection measurements using the 

autofocus method it is of interest to reduce the resolution of the camera as it is likely the 

image is being over sampled which may increase noise and increases the processing 

time. 

 

3.3.3 Curvature Measurements of Static and Actuated Microcantilevers 

During measurement of initial and actuated deflection the curvature along the cantilever 

can also be extracted.  The first step is to convert pixel number in to a lateral x-position 

(µm) using a known distance in the image window.  A second method for converting 

pixels to position is to first reconstruct the curvature of the microcantilever and use the 

known beam length to match the summation of all segments along the beam. 

 

 
Figure 3-10 (a) Analysis windows placed along the length of the microcantilever to 

reconstruct the curvature of the MV1 device. (b) A window is placed to give the zero 

position at the base. (c) A window is placed to give the tip position 

 

A single analysis window is applied perpendicular to the microcantilever length at 20 

micron increments along the beam, as shown in Figure 3-10.  The vertical height of the 

stage is then taken through a focused position below the microcantilever base past the 

tip of the device with images captured at every 2 micron step.  In this series of captured 

images the Normalised Variance focus function is applied to each analysis window.  

The extrapolated maximum of the focus function in each analysis window provides a 
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height that intersects the focused edge of the microcantilever.  To complete the analysis 

a horizontal analysis window across the polyimide edge on the wafer (Figure 3-10b), 

and the tip of the microcantilever (Figure 3-10c) is applied to give the zero position of 

the y-axis and the tip deflection.   

 

Figure 3-11 shows the reconstruction along the MV1 microcantilever device at 0 and 15 

mW input power.  The dashed and solid lines represent constant microcantilever 

curvature given the tip deflection, taken from the analytical model of a circle as used in 

[13].  Error bars are based on the standard deviation of the Normalised Variance focus 

function method taken from Table 3-3. 

 

 
Figure 3-11 Reconstruction of the MV1 microcantilever devices along the length of the 

beam at 0 mW (triangle) and 15 mW (circle) input power.  The dotted and solid line is 

an approximation of the beam shape using a constant radius of curvature [13] based on 

the tip deflection for 0 mW and 15 mW respectively.  Standard deviation in the 

measured Y-position using the Normalized Variance technique is approximately 1.2 

microns. 

 

The result indicates that it is not appropriate to estimate the microcantilever shape as 

having a constant radius of curvature. It is also not appropriate to use a small angle 

approximation given the tip x-position is significantly less than the length of the beam 

(L = 600 µm).  
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The curvature reconstruction has been applied to second generation devices (Figure 3-

12) though as in the case of measuring the tip deflection the steady state deflection is 

comparable to the error in the measurement.  As a single result the curvature appears 

inconclusive, but several devices have shown similar deflection including those 

fabricated for the scanning probe project.  The results imply a twisting in the 

microcantilever during actuation.  This is to say that towards the base of the device the 

microcantilever deflects away from the substrate and at the tip the beam moves towards 

the substrate.  This leads to a non-linear deflection where at low temperature the 

upwards deflection can dominate but at higher temperature the deflection at the tip gives 

a downwards deflection.  The negative deflection appears to only occur in areas of 

sensor metalisation extending into the beam.   

 

 
Figure 3-12 Left: Reconstruction of the MV2 G device at 0 mW (triangle) and 10 mW 

(circle) input power.  Right: Reconstruction of the MV2 G device at 10 mW (circle) and 

20 mW (diamond) input power.  Standard deviation in the measured Y-position using 

the Normalized Variance technique is approximately 1.2 microns. 

 

Certainly the reconstruction of the microcantilever curvature produces a more rigorous 

treatment of the deflection and creates a number of questions that are interesting for 

future measurements. With controllable x- and y- axis on the nanomax stage a higher 

magnification and smaller depth of field can be achieved by imaging a centered window 

and then moving the stage to a new position along the beam.   
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3.3.4 Short Pulse Characterisation 

Under visual observation the MV1 microcantilever device initially deflects towards the 

substrate and then move back to a steady state position behind the static equilibrium, 

giving the negative deflection as seen in the previous section.  Similarly, the MV2 

microcantilever devices initially deflect towards the substrate and then pull back close 

to a position around the static equilibrium. 

 

This can be explained by a time dependent differential heating whereby the heaters 

above the neutral axis initially force the microcantilever downwards but as heat 

expansion occurs below the neutral axis and the upper expansion is restricted the 

microcantilever is pushed back.  It is the forced downward motion which can be 

exploited for the fluid probe device and therefore it is appropriate to also try and 

characterise the microcantilever using short pulses. 

 

The previously presented autofocus method is unable to measure short pulse deflection 

due to the low frame rate of the imaging camera.  The same measurement is possible to 

achieve manually using low frequency pulses (5 Hz and 100 ms pulse width) by 

focusing on the extreme deflections of the cantilever which appear as dark in-focus 

lines.  The device does not operate in high frequency, whereby the imaging device 

would see a blurred motion between two extremes, as the devices demonstrate a very 

low cut off frequency i.e. the heat does not have enough time between pulses to 

dissipate and therefore creates an artificial start and end point.  It is desirable to also 

compare the microcantilever deflection for very short pulses (< 1 ms) with very high 

peak power (> 200 mW).  This cannot be resolved by eye and therefore an 

interferometric setup is desirable.  This has not been achieved in this work and is 

discussed as a future investigation in the closing chapter.   

 

The microcantilever device is connected directly to a function generator (Agilent, 

33220A) and tip deflection is measured over several input powers to derive a linear 

relationship.  At each power input the measurement of each microcantilever actuation is 

repeated at least 3 times to resolve difficult measurements more accurately.  Figure 3-13 

shows the measurement for MV1 where error bars represent the limitation of the 

measurement.  For the measurement a comparison of 8 for each MV2 design and 7 of 

the MV1 design is made.  Table 3-5 shows the deflection results for 100-ms pulse 

activation. 
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Figure 3-13 Estimated tip deflection versus actuation input power for the MV1 

microcantilever using a manual focusing method.  

 

Microcantilever Device 
Mean 

Deflection 
(µm.mW-1) 

Standard 
Deviation 

(µm.mW-1) 

MV1 – Benchmark 1.2 0.2 

MV2 – Solid Design (G) 5.7 1.2 

MV2 – Epsilon Design (W) 5.2 0.3 

MV2 – Solid & Tapered 
Heaters (H) 4.2 0.5 

MV2 – Epsilon & Tapered 
Heaters (X) 4.3 0.2 

Table 3-5 Deflection Efficiency of the benchmark and second generation 

microcantilever fluid probe device based on a 100 ms pulse. 

 

Short pulse and DC actuation characterisation give two different perspectives of the 

microcantilever devices.  DC actuation indicates that the thermal expansion is limited 

by the metalised tracks through the device.  For short pulse operation the thermal 

expansion is significant above the microcantilever neutral axis giving an enhanced 

deflection greater than that seen in DC powering.  It is also possible to significantly 

increase the input power due to the short duty cycle of the pulse.   
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Polymer-polymer devices that have a low thermal conduction show an improvement in 

deflection over the benchmark device though it should be noted that the beam length is 

different. Taking this into consideration the improvement in actuation efficiency is 

approximately 50%.  Devices with tapered heaters (X and H) show a lower deflection 

than standard heaters; this is most likely due to the increased proportion of power 

dissipated at the base being conducted into the substrate and also the heat being in an 

area with restrictive motion from the metalised tracks. Devices with standard heaters (W 

and G) are expected to have a more uniform dissipation along the microcantilever and 

importantly give heat to the free end of the beam. 

 

3.3.5 Response of Heaters during Pulsed Heating  

During actuation the gold heater resistance increases due to temperature and therefore 

provides a measure of the rate of heating and the average increase in temperature.  It is 

desirable for the rate of heating to be as fast as possible and the conversion factor to be 

high. This allows the actuation pulse to be shorter and lower, reducing the thermal 

crosstalk on the sensor.   

 

Using a fixed voltage supply from a function generator (Agilent, 33220A) a potential 

divider arrangement is used to measure the potential drop across the microcantilever 

heater.  The heater resistance of each test device is measured during long pulses (100 

ms) and short pulses (1 ms) to allow investigation of approximate steady state and high 

peak power respectively.  The heater resistance change over the nominal resistance is 

converted to average temperature using the previously measured temperature coefficient 

of resistance.  Figure 3-14 shows a comparison of microcantilever heaters for 100 ms 

pulses at 10 mW input power.  Measurements have been averaged over 10 identical 

actuation cycles.  The pulse response is very repeatable and errors < 1% can be attained 

after only a few averaged pulses.  

 

The thermal steady state of the heater in polymer-polymer devices follows the 

deflection measurements in Table 3-5. This reinforces the statement that it is the 

increase in temperature that is driving the deflection.  The steady state temperature 

indicates the power loss in each device, for example, in the MV1 device the gold 

structural layer provides a conduction path for heat transport whereas the highly 

insulating polymer devices retain heat and gives higher deflection.  The tapered design 

is expected to generate more heat dissipation in the thinner section due to higher current 
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density.  This design shows higher heat loss possibly as this area is close to the main 

conduction path into the silicon substrate. 

 

 
Figure 3-14 Response of the microcantilever heater during long pulse (100 ms) 

actuation at 10 mW power dissipation. The plot shows the MV2 G (red), MV2 W 

(green), MV2 X (blue), MV2 H (orange), and MV1 (purple) measurements. 

 

The results in Figure 3-14 indicate more heat loss in the Epsilon device (W) compared 

to Solid (G) but this is difficult to understand as both the volume and surface area have 

been reduced.  One possible explanation is the thermal diffusivity – the thermal 

conductivity divided by the heat capacity and mass density – of polyimide compared to 

air.  For the same volume the low density and mass of air gives a higher thermal 

diffusion.  A second possibility is that the air flow through the structure in the Epsilon 

device increases heat loss from the microcantilever during deflection.   

 

Short actuation pulses (1 ms) allows the peak power to be increased beyond 30 mW, 

such power would otherwise cause the device to melt using long or DC actuation.  It has 

been found that the increase in average temperature of the heater during a 1 ms 

actuation pulse is proportional to the power input of the device.  Figure 3-15 shows the 

estimated increase in average temperature, in air, during a 1 ms actuation pulse with 250 

mW peak power.  Measurements have been averaged over 10 identical actuation cycles.  
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The rate of temperature increase, previously noted as an important characteristic in 

section 2.2, is higher in the polymer-polymer devices, specifically the tapered heater 

design.  This can be explained by the variable current density in the track.  In 

comparison to standard heaters the tapered device gives a higher current density in the 

thin section of the track and a lower current density in the standard part of the track.  

The area of higher current density increases the rate of joule heating above that of the 

standard heater.  Using constant thin heaters with high nominal resistance has found to 

give a very high change in temperature but the conversion factor is poor at steady state 

[115].  It is possible that the lower surface area of the heater lowers the conduction into 

the surrounding polyimide, limiting the actuation with thin heaters.  In practice, the 

voltage supply is also limited and therefore higher nominal resistance from thin tracks 

limits the current, and therefore power, that can be applied in a short pulse. 

 

 
Figure 3-15 Response of the microcantilever heater during short pulse (1 ms) actuation 

using 250 mW peak power. The plot shows the MV2 G (red), MV2 W (green), MV2 X 

(blue), MV2 H (orange), and MV1 (purple) measurements. 

 

From this characterisation it is shown that the tapered heaters give a higher rate of 

change in temperature over small time scales and the second generation devices benefit 

from the dual polyimide structure by lower heat loss.  This is very important for the 

microcantilever fluid probe as if the thermal dissipation and conversion to mechanical 

deflection is slow in fluids, the device will not generate a high force to push through the 
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fluid and give an observable mechanical deflection.  For future work it is recommended 

that the characterisation of heat generation is performed on devices to show the 

performance of the heaters. 

 

3.4 Thermal Crosstalk  

The principal aim of the work is to improve the observation of mechanical signal from 

the microcantilever sensor by improvements in mechanical actuation and reduction in 

thermal crosstalk.  The mechanical signal is difficult to measure directly as the 

piezoresistor output of the sensor contains unknown mechanical and thermal signals.  

The mechanical signal can be estimated using the known actuation efficiency (Table 3-

5) at 100 ms pulse width and the mechanical sensitivity (Table 3-1).  The presentation 

of sensor electrical measurements in this section is supported by a comparative 

investigation of the Solid and Epsilon design using IR Thermography. 

 

3.4.1 Measurement of Sensor Resistance during Actuation Pulse 

The aim of the experiment is to measure the increase in resistance on the integrated 

piezoresistor sensor during 100 ms actuation pulses. This allows an estimation of the 

thermal signal using the known deflection and mechanical sensitivity.  To make this 

estimation an assumption is made that the beam deflection is analogous to the probe 

deflection experiments (section 3.2.1) to measure mechanical sensitivity. 

 

All experiments are conducted on calibrated electronics interfaces developed by 

Microsystem Ltd, Bulgaria.  The electronics is based on ¼ bridge completion circuit 

with digitally controlled gain (x39, x390, x3900, x39000) and null-balancing of two 

digital potentiometers using an SPI interface.  The bridge balancing, to give an initial 

zero output uses two daisy-chained 256-step 20 KOhm digital potentiometers with 

inverse logic for a ‘rough’ and ‘fine’ balance.  The adapted Wheatstone bridge circuit is 

shown in Figure 3-16.  The circuit has been calibrated using a known shunt-resistor to 

simulate resistance measurements.  This allows direct conversion at the chosen gain of 

bridge output voltage to absolute changes in sensor resistance.  To minimise error in the 

conversion factor a shunt resistor has been chosen that produces a change in output 

voltage over the full measurement range (0 – 10V).   

 

The unknown fixed reference resistor (Rref) has been calibrated using several known 

high precision nominal resistors in the position of Rs.  The calibration gives a fixed 
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reference resistance arm equal to 4423 Ohms.  This is suitable for the full range of MV2 

microcantilever devices (3000 – 9000 Ohm).  An identical circuit using a fixed 

reference resistor equal to 1000 Ohms was also calibrated for application to MV1 

devices which have a much lower sensor resistance (250 Ohm) 

 

 

Figure 3-16 Wheatstone quarter-bridge circuit for sensor measurement. 

 

All control and readout of the electronics has been implemented in LabView by the 

author.  LabView controls the electronics and sensor feedback using a PC data 

acquisition card (M-Series, NI PCI-6221) routed through a shielded BNC connector 

block (NI BNC-2110).  The electronics gain (x390) and the bridge supply voltage (1 

Volt) used in calibration is implemented for the microcantilever measurement. 

 

For long pulse measurements (100 ms) and short pulse measurements (1 ms) the full 

change in bridge output voltage is measured in the range 2-10 mW peak power for MV2 

devices, and 5-25 mW peak power for MV1 devices.  Measurements have been repeated 

several times and a final conversion averaged 0RR∆ has been made.  The variation 

between the piezoresistor sensor output in each pulse is < 0.2%.  Several 

microcantilever devices have been measured over the power range for each design.  It 

has been found that the 0RR∆ output has a linear response to power (mW) for short 

pulses.  For 100 ms pulse width, the total sensor signal ( 1
0 . −∆ mWRRtotal ) is measured 
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from the linear response and the mechanical signal ( 1
0 . −∆ mWRRmech ) is estimated.  

The thermal signal ( 1
0 . −∆ mWRRtherm ) is assumed to be the remaining component of 

the total sensor signal.  For 1 ms pulse width only the total sensor signal 

( 1
0 . −∆ mWRRtotal ) is measured as the mechanical deflection is unknown.   

 

Figure 3-17 shows a comparison of each microcantilever device actuated with a single 1 

ms pulse width, 6 mW input power.  The response shows the signal overshoot and a 

capacitive charging/discharging effect.  The capacitive effect is isolated and discussed 

further in Chapter 4 when deconstructing the signal in a liquid.  
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Figure 3-18 Relative change in the sensor resistance during and after actuation for a 

pulse width of 1 ms and power dissipation of 6 mW. The bottom plot shows a closer 

view of the initial overshoot.  The plot shows the MV2 G (red), MV2 W (green), MV2 

X (blue), MV2 H (orange), MV1 (purple) measurements, and MV3 Epsilon design 

(brown) having a constantan sensor. 
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Table 3-6 gives the measured total percentage change in resistance per mW for 100 and 

1 ms pulse width, and the estimated mechanical and thermal components for 100 ms 

pulse width.   

 

Chip Designation MV1 MV2-G MV2-H MV2-W MV2-X 

Layout Π Solid Solid Epsilon Epsilon 

Sensor Material Gold NiCr NiCr NiCr NiCr 

Heater Configuration Standard Standard Tapered Standard Tapered 

100 ms Pulse Width 
Total Signal 

1
0 . −∆ mWRRtotal  (x10-4) 27.6 10.5 6.2 8.6 5.5 

Mechanical Signal 
1

0 . −∆ mWRRmech  (x10-4) 0.25 0.92 0.68 0.84 0.70 

Thermal Signal 
1

0 . −∆ mWRRtherm (x10-4) 27.3 9.55 5.52 7.75 4.79 

Mechanical Signal / Total 
Signal 0.9 % 8.8 % 11.0 % 9.8 % 12.7 % 

1 ms Pulse Width 

Total Signal 
1

0 . −∆ mWRRtotal  (x10-4) 2.15 0.46 0.27 0.41 0.28 

 

Table 3-6 Relative change in resistance of the integrated sensor for the benchmark and 

second generation devices per mW using a 100 ms pulse.  

 

Characterisation and experimental results presented in Table 3-6 allow a comparison 

and discussion of design modifications.  This includes changes in material of the 

structure and sensor, implementation of an Epsilon footprint and tapered heaters, and 

enhancements in short pulse operation. 

 

Comparison of Gold- and NiCr-Sensor Design (100 ms Pulse Width) 

Results from 100 ms pulse width actuation indicate an improvement between the 

benchmark design (MV1) and the new standard design (G) through a significant 

reduction in thermal signal on the microcantilever sensor.  To understand this, if the 

benchmark device is actuated (4.75 mW) to give the same mechanical deflection as 

design G (1 mW), the thermal signal is 13.6 times higher.  This improvement is 
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dominated by the 11.3 times reduction in sensor thermal sensitivity (TCR) by replacing 

Gold with NiCr metalisation.   

 

Comparison of Gold-Polymer and Polymer-Polymer Design (100 ms Pulse Width) 

Using the previous logic, the changes in structural design and geometric separation of 

heater and sensor between the benchmark design and the new standard design (G) also 

provide a further improvement in the observed mechanical signal.  Again, if it is 

assumed the MV1 device is powered to the same deflection as G, and that gold sensors 

have been replaced by NiCr, the further reduction in thermal signal is approximately 

18%.  This reduction could be a mechanical enhancement from higher conversion 

efficiency, or a reduction in thermal crosstalk.   

 

Comparison of Solid and Epsilon Design (100 ms Pulse Width) 

The Solid design with standard heaters (G) can be directly compared against the Epsilon 

design with standard heaters (W), and the Solid design with tapered heaters (H) against 

the Epsilon design with tapered heaters (X).  In both cases the Epsilon design improves 

the mechanical signal as a proportion of the total signal, approximately 11% between G 

and W, and 15% between H and X.  Given that the expected conversion efficiency is 

similar between second generation designs, and this is supported by the measurement of 

the heater resistance during actuation, the improvement derives from the reduction in 

thermal crosstalk. 

 

Comparison of Standard and Tapered Heater Designs (100 ms Pulse Width) 

The Solid design with standard heaters (G) can be directly compared against the Solid 

design with tapered heaters (H), and the Epsilon design with standard heaters (W) 

against the Epsilon design with tapered heaters (X).  In both cases the tapered heater 

design improves the mechanical signal as a proportion of the total signal, approximately 

25% between G and H, and 30% between W and X.   

 

Enhancements in short pulse (1 ms) operation. 

It is expected that short pulse operation will enhance the mechanical signal as a 

proportion of the total signal in new designs through reduced heat transfer.  As the 

mechanical deflection for 1 ms pulse width is unknown it is only possible to use the 

total signal response to extract limits for improvement.  For example, the reduction in 

total sensor response for the two experimental pulse widths is approximately 80 % 
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higher in design G compared to the benchmark design.  Working through the limits of 

mechanical and thermal signal this indicates a lower limit improvement of 

approximately 30% in reduced thermal signal either through improved conversion 

efficiency or reduced thermal crosstalk.   

 

The Solid design with standard heaters (G) can be directly compared against the Epsilon 

design with standard heaters (W), and the Solid design with tapered heaters (H) against 

the Epsilon design with tapered heaters (X).  In this case the total signal is comparative 

between designs.  This is perhaps an indication that at short time scales the Epsilon 

design is not advantageous as thermal conduction is already limited.  Comparison of 

tapered heaters to standard heaters shows lower overall signal.  If an assumption is 

made that the mechanical signal is reduced linearly with pulse width for all designs, this 

is again indicative that the tapered heater is an improvement over standard heaters. 

 

3.4.2 IR Thermal Imaging of Microcantilever Fluid Probe 

An investigation of microcantilever temperature distribution during actuation has been 

conducted with Dr. Martin Kuball at the University of Bristol, recently founded as the 

Center for Device Thermography and Reliability (CDTR).  The principal objective was 

to qualitatively note any differences between the Solid design with standard heaters (G) 

and the Epsilon design with tapered heaters (X).  The experiments were set out by the 

author and Dr Vladislav Djakov (STFC), and experiments were conducted by Dr. 

Andrei Sarua (Bristol University) with documenting support from Microvisk.   

 

The temperature mapping has been conducted using a QFI Infrared thermal imaging 

system (Quantum Focus Instruments Infrascope).  The Infrascope detects thermal 

radiation using an InSb 256 x 256 pixel array detector, cooled with liquid nitrogen.  The 

detector is mounted onto a Leica microscope with adapted optics for focusing IR 

wavelengths, including a custom x15 Si/Ge objective lens with high numerical aperture 

of 0.5.  The detector provides approximately 1.6 µm per pixel resolution with a field of 

view of roughly 400 x 400 µm and working distance of 15 mm.  The depth of field is 

approximately 40 µm and therefore only the thermal mapping from the central focused 

section of the beam should be taken with confidence.   

 

Firstly the measurement is compensated for the emissivity of each material - a measure 

of how efficiently the material emits photons.  This is made by a pixel by pixel 
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calibration of the material emission over a range of temperatures using a Peltier stage 

underneath the sample.  The measurement requires approximately 2 minutes for the 

stage to come to temperature and several minutes for the sample to reach equilibrium.  

The sample, in this case the microcantilever, is then imaged with no power to confirm 

the emissivity correction and then with the sensor connected and actuation of the heaters 

using a function generator (Agilent, 33220A).  The microcantilever is imaged in the 

steady state as the camera does not have the time resolution to view µs to ms heat 

transport.  With no power the image shows an emissivity contrast and therefore the 

calibration was not ideal, this is probably because from later TCR measurements it takes 

20-30 minutes for the chip to reach a steady state temperature in a heated environment.  

Figure 3-19 shows the temperature mapping images of Design G at 3.3 mW input power 

and Design X at 9 mW, the rectangle represents focused areas of interest on the beam. 

 

 
Figure 3-19. Thermal images of Design G (3.3 mW) and Design X (9.0 mW) using the 

QFI Intrascope IR imaging system.  The two rectangular boxes represent focused areas 

of interest; the lower box indicates the connecting tracks out from the device and the 

upper box represents a cross section through the heaters and sensor. 

 

Thermal imaging supports the experimental measurements presented in Table 3-6 for 

reduction in thermal crosstalk from Solid design G to Epsilon design X for steady state 

pulses as 49.8%.  In figure 3-19, the thermal image of the Solid design (G) indicates a 

sensor temperature during actuation that is approximately equal to the heater 
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temperature.  For the case of the Epsilon design (X) the sensor temperature (~36oC) is 

approximately half of the heater temperature (~68oC).   

 

A second observation is that in the standard heater configuration (Figure 3-19 - left 

image) the metal tracks out of the microcantilever are equal in temperature to the heater 

on the device; this is not seen in the tapered configuration (right image).  This is 

possibly due to the variation in current density in the tapered heater which has 

approximately twice the resistance of the standard heater.  This would half the current 

needed to achieve the same power and therefore in the tapered design the power 

dissipated in the standard part of the track is reduced by a factor of 4. 

 

3.5 Summary and Discussion of Design Simulation and Characterisation 

The aim of characterisation is to validate the design modifications made through 

analytical and simulation work, and to select devices for the clinical evaluation.  The 

main results of characterisation are: 

 

• NiCr piezoresistive sensors have a comparable mechanical sensitivity to Gold 

piezoresistive sensors and significantly lower thermal sensitivity (TCR) leading 

to a reduction in the thermal crosstalk signal by 11.3 times. 

• Reduction in thermal signal at 100 ms pulse width by 18% between the 

benchmark gold-polymer design (MV1) and the standard polymer-polymer 

design (G) through higher conversion efficiency and a reduction in thermal 

crosstalk. 

• Improvement in mechanical signal as a proportion of the total signal for 100 ms 

pulse width by 11-15% between Epsilon and Solid design through reduction in 

thermal crosstalk. 

• Improvement in mechanical signal as a proportion of the total signal for 100 ms 

pulse width by 25-30% between tapered and standard heater design through 

reduction in thermal crosstalk. 

• Enhancement in operation at very short pulse width (1 ms) with a lower limit 

improvement of approximately 30% in reduced thermal signal either through 

improved conversion efficiency and/or reduced thermal crosstalk. 

• Non-linear negative and twisting deflections in multi-layered microcantilevers 

with integrated heaters and sensor. 
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Simulation and characterisation indicates that all design modifications have improved 

the microcantilever fluid probe device, and in combination will produce a total response 

with a minimum mechanical component of 12-17%; a significant improvement on the 

benchmark MV1 device of 1%.  From this work the Epsilon design X and W have been 

selected as a priority for post-processing for the clinical evaluation. 

 

Simulation of design modifications in chapter 2 supported improvements in the 

microsensor operation, including an Epsilon shaped beam, tapered heater, and changing 

the gold structural layer for a second polyimide.  These improvements are validated by 

experimental work, though comparison with simulations shows a number of 

inconsistencies.  

 

Comparison of simulated Epsilon and Solid designs (Table 2-3) indicates the Polymer-

Polymer Epsilon design has 95% less thermal crosstalk than the Polymer-Polymer Solid 

Design.  The experimental results (Table 3-6) support only an 11-15% difference.  Also, 

the simulated MV1 design has a lower thermal crosstalk than the standard polymer-

polymer solid design.  This indicates an issue with the simulated thermal profile along 

the beam.  Visually the temperature at the base of the microcantilever in simulations is 

very low due to thermal conduction into the silicon (Figure 2-8 and Figure 2-11), this is 

not seen in the IR thermography (Figure 3-19).  In this situation the MV1 sensor, 

concentrated at the base, has a low thermal response, and the MV2 sensor that extends 

along the beam has a high thermal response.   

 

The second inconsistency between simulation and experiments is the mechanical 

deflection of polymer-polymer microcantilevers and tapered heaters in the simulation.  

In simulations all devices are predicted to have a linear deflection towards the substrate 

and for polymer-polymer devices the deflection is greatly overstated.  Presented in 

characterisation of microcantilever deflection (section 3.3), the steady-state deflection 

of MV1 is away from the substrate and the deflection of MV2 devices is a twisting that 

gives non-linear deflection.  In simulations the tapered heaters give a significant 

increase in deflection of the device related to power and temperature conversion.  From 

experiments, the deflection of devices with tapered heaters (Table 3-5) and temperature 

of the heater response (Figure 3-14) is lower than that of standard heaters.  In the 

characterisation it is the decrease in thermal crosstalk of the tapered design that 

improves the overall operation over the standard heaters.   
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Joule heating in tapered heaters dissipates three times more heat at the base of the 

microcantilever than the tip, compared to constant dissipation in the standard width 

heater.  For equal power applied to both types of heater, the tapered design dissipates 

effectively half the energy in the top half of the heater compared to the standard width 

heater.  This leads to the fabricated sensor, concentrated between 200 and 600 microns 

along the beam, being in a lower thermal gradient for tapered heaters. 

 

An issue in the simulation could be that a chrome adhesion layer has not been included 

for the metal heater in the simulation which the author believes will restrict the 

expansion of the volume above the neutral axis.  Chrome has a low thermal expansion 

(4.9 ppm.K-1) compared to the surrounding polyimide (60 ppm.K-1).  In analysing the 

cross-section both gold heaters and NiCr sensors are above the neutral axis.  Upon 

heating the volume below the neutral axis is free to expand, and above the axis is 

potentially limited. It is also possible that although our mesh in-plane to the 

microcantilever is sufficient, the detail needed to calculate the localised thermal bending 

moments in the z-plane is limited.  If the simulation is to become a fair indication of the 

design for new devices these two aspects must be taken into account in future 

simulation.   

 

One consistent remark is that although the actuation efficiency of devices changes with 

the modifications the conversion factor, which is the driving force, remains similar 

across all devices.  This is reflected in the characterisation where the estimated heater 

response during actuation (Figure 3-14) closely follows the deflection capabilities of the 

devices, again reinforcing that it is the temperature in the beam that drives the device. 

 

Further simulation and characterisation by the author has not been attempted beyond the 

clinical evaluation, as the devices work successfully and fabrication has moved to a pre-

production design incorporating the polymer-polymer Epsilon design with tapered 

heaters.   
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Chapter 4 – Microcantilever Fluid Probe Demonstration and Clinical 

Evaluation  
 

4.1 Introduction 

In the previous chapter the original microcantilever fluid probe (MV1) has been tested 

against second generation designs (MV2), and a number of improvements have been 

made in actuation and thermal crosstalk.  The aim of improving the device sensor 

response is to confirm a distinguishable mechanical signal in standard known fluids and 

then study the formation of a clot in plasma and whole blood.  Chapter 4 presents the 

piezoresistor response from actuation in known glycerol solutions, and attempts to 

deconstruct the response into mechanical, thermal, and electrical components using 

polymerisation.  The work leads to the operation, data capture, and analysis of clotting 

response in plasma and whole blood and the evaluation of the technology in a clinical 

trial at The Royal London Hospital.  Results are presented with comparison to the 

laboratory standard analyser, and the final accuracy and precision of the measurement is 

compared with other commercial point of care devices. 

 

4.2 Microcantilever Fluid Probe in Glycerol  

Previous characterisation tests indicated that in air the thermal component of the 

microcantilever response exceeds the mechanical component even with improvements 

made in the second generation design.  The aim is to deconstruct the microcantilever 

response into thermal, mechanical, and electrical components and therefore allow the 

signal-to-noise to be estimated.  From the analysis of thermal transport in chapter 2 it is 

anticipated that the response is dependent on rheological and thermal properties of the 

medium, namely the thermal conduction and heat capacity.  For example, the heat 

convection coefficient from the surface of the microcantilever to air is approximately 40 

times less than water [43] and therefore heat is sustained in the microcantilever giving 

higher temperatures and a greater overall response in terms of thermal crosstalk and 

mechanical deflection.  Testing in glycerol solutions with known rheological and 

thermal properties allows the microcantilever mechanical and thermal response to be 

studied against best operation.  The operation and response analysis is then suitable for 

application to clotting events in plasma and whole blood.  Table 4-1 gives the 

rheological properties and thermal conductivity of air and standard glycerol solutions at 

20 οC [72, 116-117].  The specific heat capacity of air is 1.01 J.g-1.K-1 [118] and the 
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range of heat capacity of water-glycerol solutions is 4.18-12.14 J.g-1.K-1 [118, 119] at 

20 οC with pure water having the lower value. 

 

Fluid Viscosity 
(cP) 

Density 
(g.cm-3) 

Thermal 
Conductivity 
(W.m-1.K-1) 

Air 0.019 0.00008 0.025 

0% Glycerol 1.005 0.99823 0.591 

30% Glycerol  2.50 1.07270 0.482 

70% Glycerol 22.5 1.18125 0.352 

80% Glycerol 60.1 1.20850 0.327 

99% Glycerol 1150 1.25850 0.284 

Table 4-1 Rheological and Thermal Properties of Air and Glycerol Solutions at 20 οC 

[72, 116-119].  Glycerol solutions are measured as percentage weight with respect to 

pure water. 

 

The actuation and sensor measurement is performed using the previously calibrated 

electronics interface (Section 3.4.1) developed by Microsystems Ltd, Bulgaria.  The 

actuation heat pulse is controlled from the function generator and connected through the 

electronics.  In the initial fluid measurements the electronics (SPI interface and digital 

gain / channel selector) is controlled through software provided by Microsystems Ltd, 

and the sensor response is recorded through a LabView program that provides triggered 

data acquisition of a single analog channel.  The bridge output is routed through a 

shielded BNC connector block (NI BNC-2110) connected to a PC data acquisition card 

(M-Series, NI PCI-6221).  The M-Series card has a resolution of 16-bit and an 

adjustable range ( ±  0.1, 1, 5, 10 Volts).  This range is set during each measurement to 

maximise the accuracy.  The data acquisition card has a maximum sampling rate of 250 

KS/s, though this creates a high load on the PC when recording continuous data.  For 

the current measurements the sampling rate is set at 100 KS/s giving 10 µs resolution.  

Preliminary testing has found that operating frequencies up to 10 Hz and a pulse width 

of 0.5 ms provides good operation across all devices; this provides 99.5 ms for cooling 

of the device between pulses.  The voltage of each actuation pulse is set to achieve a 

dissipated energy of 150 µJ and peak power of 300 mW6.  For Glycerol testing the 

frequency has been set to 1 Hz, measurement limits are ±  1V, gain is equal to x390, 

                                                
6 This has been established by Microvisk as the optimum pulse [120]. 
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and the total number of samples is 5000.  Each sample is saved as a 6 decimal place 

double precision integer in a LabView measurement file (.lvm) with time information, 

where each actuation event is saved to a new file for easier access.  In practice the 

balanced Wheatstone bridge output is not zero but slightly offset.  When this is 

amplified the baseline voltage can be a few mV above zero, also the baseline can drift 

over time when using a quarter bridge circuit.  This baseline does not affect the absolute 

change in voltage signal due to a change in resistance and therefore each actuation event 

can be shifted to zero to allow a comparison between microcantilever devices.  Before 

each measurement the chip type, reference number, and resistance of the 

microcantilever heater and sensor is recorded and a measurement across the Wheatstone 

bridge supply is made.  Each device has been potted with a silicone sealant around the 

microcantilevers by Dr Vladislav Djakov to stop the fluid moving onto electrical 

contact pads.  Figure 4-1 shows averaged microcantilever response (n=10) in pure water 

for W, G, X, and H devices conducted in the period 5th-24th May 20077.  All devices 

show a mechanical oscillation and therefore could all potentially be used to monitor 

mechanical damping due to rheological properties.  Error bars of the microcantilever 

response in pure water are < 1% and have not been shown. 

 
Figure 4-1 Single microcantilever response of MV2 W (green), MV2 G (red), MV2 X 

(blue), and MV2 H (orange) in pure water using a short (0.5 ms) actuation pulse.  The 

power and energy of the actuation pulse is 300 mW (150µJ) for MV2 W, 270 mW 

(135µJ) for G, 181 mW (90µJ) for X, and 179 mW (90µJ) for H. 
                                                
7 X and H performed by V. Djakov, J. Booth, and the Author. W and G performed by V. Djakov. 
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Unfortunately the results in Figure 4-1 do not provide a reliable comparison between all 

devices as the pulse optimisation has been measured incorrectly [120].  Returning to the 

pulse optimisation in August 2008 the Microsystems Ltd. electronics actuation driver 

was characterised using a known input voltage (Agilent, 33220A).  The actual voltage 

across the device was then measured directly using a 6.5 digit voltmeter (Keighley 

2100).  Whilst the input voltage has a maximum limit of 10 Volts the Microsystems Ltd 

electronics output saturates at approximately 6 Volts (Figure 4-2).  For the earlier 

characterisation on standard heaters this corresponded with the resistance as giving an 

energy pulse of 150 µJ for a 0.5 ms pulse width.  As the X and H device both have 

higher heater resistance, due to tapering, the same energy can not be generated as the 

input voltage is clipped to 6 V.  The corrected power and energy of pulses used for the 

glycerol testing is 300 mW (150 µJ) for the W device, 270 mW (135 µJ) for the G 

device, 181 mW (90 µJ) for the X device, and 179 mW (90 µJ) for the H device.  The 

corrected power is noted in further experiments and the clinical evaluation. 
 

 
Figure 4-2 Applied and measured voltage across the microcantilever device when the 

actuation pulse is routed through the Microsystems Ltd electronics. 

 

The X and H devices from the glycerol testing can be compared directly due to almost 

identical actuation power.  The Epsilon device X has the most prominent first peak, and 

the Solid device H clearer oscillations.  The W and G device follow this trend with the 

first peak pushed higher relative to the second peak in the Epsilon device and the 
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oscillations clearer in the solid design.  Mechanically, the Epsilon design should 

decrease the opposing fluid drag force, allowing the device to reach a higher velocity 

and therefore deflection with a fixed pulse of energy.  Under this further displacement 

the restoring force pulling the microcantilever back through the fluid could be distorting 

the ringing of the beam.  If the difference was a thermal effect it is expected that the 

whole signal response would increase.  As seen in figure 4-1, the signal after 6 ms is 

identical in both X and H devices. In this preliminary evaluation in fluids towards the 

clinical work, time and resources were not available to conduct simulation work of 

devices operating in fluids.  

 

These results lead to an indication of the applicability of designs to different sensing 

applications.  For looking at relative changes in the viscosity and density during a 

reaction the enhanced first peak of the Epsilon design provides a more distinct 

parameter to monitor.  Also for moving to fluids with very high damping the reduction 

in area decreases the effective forces acting on the motion of the beam.  On the other 

hand the Solid design provides distinctive secondary mechanical oscillations in the 

fluid.  To measure both viscosity and density simultaneously several parameters will be 

needed.  The Solid design could provide this through the position and amplitude of 

several peaks.  Normalising the response of each device the tapered designs X and H 

improve the resolution of the mechanical oscillations though it is difficult to establish 

whether this is due to overpowering the W and G design or if this is due to the heater 

design. 

 

Figure 4-3 shows the response of a single X microcantilever device in 0 to 99 

percentage weight glycerol with respect to water solutions.  The actuation pulse has a 1 

Hz frequency and a corrected energy of 90 µJ (0.5 ms pulse width and peak power of 

180 mW).  The device is chemically treated and dried between tests though it is unclear 

how such treatment may affect the following tests.  The response of the microcantilever 

in the lowest viscosity solution (0 wt%) shows an overshoot and second oscillation 

which is believed to be a mechanical artifact.  In the next solution (30 wt%) the 

oscillation is damped and the peaks move to the right.  This is expected if the response 

is a mechanical artifact as the microcantilever will move less through the fluid and at a 

slower rate.  The peak height is also expected to be reduced though this is not initially 

measured.  As the response also has a thermal artifact the lower thermal conductivity of 

the 30 wt% glycerol means more heat is retained in the microcantilever inducing a 
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higher thermal crosstalk on the sensor.  Measurements in higher wt% glycerol solutions 

have no distinguishable oscillation and the peak height falls although thermal 

conduction continues to decrease.  This trend is likely due to the rheological properties 

increasing substantially (viscosity increases from 2.5 cP to 1150 cP) from 30 wt% to 99 

wt% glycerol while thermal conduction – that would otherwise make the peak height 

increase - falls by approximately half.  As the measurements are not purely mechanical 

it is difficult to place an accuracy and range on the device as a viscometer or density 

meter.  Certainly there is potential for the device as a simultaneous rheological and 

thermal fluid sensor; this is discussed further in the conclusion. 

 

The response during the actuation pulse has been analysed and shows no significant 

differences between viscosity standards.  This is due to the time resolution and limited 

mechanical sensitivity of the integrated piezoresistor that make the response 

indistinguishable at very short times.  

 

 
Figure 4-3 Microcantilever response of the second generation MV2 X device in several 

glycerol by percentage weight solutions using a short (0.5 ms) 90 µJ actuation pulse.  

The plot shows measurements at 0% (red), 30% (blue), 70% (green), 80% (orange), and 

99% (purple), concentrations.  Error bars of the microcantilever response in pure water 

are < 1% and have not been shown. 

 

 



 

99 
 

4.3 Deconstruction of Signal from Microcantilever Fluid Probe 

The glycerol results presented in the previous section indicate a capacitive effect during 

the pulse and an overshoot in the microcantilever response after the actuation pulse.  

The significant result is the damped signal oscillation after the overshoot which is 

further damped towards higher viscosity/density.  Though the total signal contains a 

thermal component it is expected that this artifact is mechanical.  The aim of 

deconstructing the signal is to estimate the absolute level of mechanical signal against 

the thermal and capacitive signal.   

 

To extract the mechanical signal it is desirable to measure the deflection of the 

microcantilever in liquids using an optical technique and compare with the electrical 

response.  As the microcantilever actuation is low frequency, and deflection is expected 

to be in the order of a few microns, an interferometer or optical image capture is 

possible if a stroboscopic technique is used.  This allows synchronisation between the 

actuation pulse and the optical image capture.  On each actuation pulse the image 

capture has a fixed delay, effectively capturing the position of the microcantilever at 

each time.  A high-speed line scan camera has also been considered, where the camera 

is aligned along the microcantilever.  Optical measurements before the clinical 

evaluation have not conducted but present an area for future work to derive a more 

robust rheological fluid probe. 

 

A second possibility is to make the assumption that the microcantilever will have zero 

or near zero deflection in very high viscosity solutions and therefore the signal is all 

thermal; this is possible but it is a difficult assumption to make without an optical 

measurement to confirm there is no deflection.  A third possibility is to measure the 

response in a fluid which initially allows a mechanical deflection but then becomes 

solid such that the microcantilever becomes fixed and only a thermal component is 

measured.  In previous experimentation by the author, superglue was dispensed on 

microcantilevers, and monitored as the glue hardened [14].  Unfortunately as the glue 

hardened the device became twisted and electrical connections broke.  In the same 

work, testing fixed unreleased microcantilevers does not provide a realistic thermal 

component as the heat is lost instantly into the substrate giving a “top-hat” response.   

 

Mr. Joe Booth (Microvisk) has suggested the use of an acrylamide/bis-acylamide 

solution (Sigma Aldrich A9926) where polymerisation is initiated on the device to 
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create a solid casing around the microcantilever.  A tris(hydroxyamino)methane 

(TRIZA base, Sigma Aldrich T6066) base solution is mixed with acrylamide and water 

and is activated with a second solution of Tetramethylthylenediamine (TEMED, Sigma 

Aldrich T9281) and Ammonium Persulphate.  The test has been conducted with a MV2 

Device (H) and a corrected actuation pulse of 96 µJ (0.5 ms pulse width and 192 mW 

peak power) through Microsystems Ltd calibrated electronics.  The response has been 

measured continuously at 1 Hz in air and from application of the solution (24 seconds) 

to solidification, the sampling rate is 100 KS/s and measurement limits are set at ±  1 

volt and gain is equal to x390.  During polymerisation the solution temperature 

increases by a maximum of 9 oC after the first minute and then cools as the material 

reaches the final gelling stage.  The fluid temperature will affect the base line resistance 

of the microcantilever probe though it is expected that the thermal conductivity and 

rheological properties are dominated by the cross linking and increase in molecular 

weight rather than the temperature dependency.   

 

Hansen and Ho [121] have shown that the thermal conductivity is proportional to the 

square-root of molecular weight and therefore it is expected that the thermal 

conductivity during polymerisation will increase.  This is supported in Figure 4-4 which 

shows the general curve falling.  If the thermal conductivity of the solution was 

decreasing the microcantilever would heat up further and produce a larger thermal 

crosstalk.  Venkateshan and Johari [122] have measured the thermal conductivity during 

polymerisation of cross-linked network structures and note that the thermal conductivity 

initially increases with the molecular weight and density, and at longer time decreases to 

a value close to the initial value upon structural relaxation.  The increase in thermal 

conductivity gives an upper limit to the estimated mechanical response of the 

microcantilever.  Figure 4-4 shows the microcantilever sensor response at 28, 35, 40 

and 180 seconds.  The final time is averaged from 175 to 185 seconds as the variation in 

signal response increases as it becomes lower.  The first result given is 4 seconds after 

application of the acrylamide solution as the measurement requires a settling time. 
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Figure 4-4 Piezoresistor response of a single MV2 H device in a 5% Polyacrylamide gel 

(PAG) at 28 seconds (red), 35 seconds (blue), 40 seconds (green), and 180 seconds 

(orange). 

 

To extract the electrical component of the 28 second response, the data up to 0.25 ms 

after the rising and falling pulse edge is rejected.  The remaining data during the pulse is 

shifted upwards and fitted with data between 0.75 and 1.4 ms using a third order 

polynomial with minimised residuals.  The 180 second response does not reduce in the 

same manner; in this case a trend is fitted during the pulse for data between 0.3 and 0.5 

ms, is extrapolated back to the axis and shifted up by the intercept value.  This data and 

the data between 0.75 and 1.25 ms are fitted with a third order polynomial to complete 

the missing section just after the pulse.  Figure 4-5 shows the estimated electrical 

component at 28 and 180 seconds, believed to be a capacitive charging effect between 

the heater, substrate and sensor. 
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Figure 4-5 Extracted electrical artifact in the microcantilever response at 28 seconds 

(triangle) and 180 seconds (circle). 

 

After deducting the capacitive component from the original signal the 28 second and 

180 second response is shown in Figure 4-6.  If an assumption is made that the initial 

response has mechanical and thermal signals, and the final response is only the thermal 

signal after the device has become fixed it is possible to estimate the upper limit of the 

mechanical signal in the response, change in temperature on the sensor, and mechanical 

deflection.  As the fluid is evolving it is difficult to establish statistical variation at a 

given pulse time.  By analogy with previous measurements of several microcantilever 

devices in glycerol solutions the error in the response is consistently below 1%, with a 

standard deviation of approximately 2 – 3 %. 

 

At the mechanical overshoot of the beam the maximum mechanical signal is 48% with 

an enhanced signal-to-noise over the general trend.  The maximum thermal response in 

the polymerised state is 14.0 x 10-6 ∆R/R giving an internal increase in average sensor 

temperature of 0.14 οC using the measured TCR value in chapter 3.  The maximum 

value of the mechanical response is 12.1 x 10–6 ∆R/R giving a maximum deflection of 

0.75 microns using the mechanical sensitivity value.  The amplitude of the oscillation is 

approximately 240 nm and the width of the line representing the noise corresponds to a 

measurement limit of 40 nm.  It has been found in later studies that the noise limit when 
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probing NiCr sensors is approximately 30-40 nm, therefore validating the approximate 

microcantilever deflection. 
 

 
Figure 4-6 Thermo-Mechanical response (top) of the microcantilever fluid probe (H) 

when first immersed in the polyacrylamide gel and thermal response (bottom) when the 

gel has set and the microcantilever is unable to move. 

 

The rheological properties of the initial polyacrylamide solution are unknown, though 

glycerol testing on a calibrated H device shows a similar mechanical oscillation period 

comparable to 30% glycerol.  Unfortunately there is not enough information to 

deconstruct the glycerol measurements due to the changing thermal and rheological 

properties and therefore it is difficult to establish a range and accuracy for the 

microcantilever fluid probe.  The result from the PAG work is the enhancement in 

mechanical signal when the probe is operated in fluid with short pulses due to a 

mechanical overshoot of the beam.  The work also indicates the ability to measure the 

evolving rheological and thermal properties of a solution over time analogous to the 

intended use as a coagulometer. 

 

4.4 Improvements to Drift in Signal Response 

In many strain gauge applications it is more suitable to use a half-bridge with a 

reference resistor.  This reference should be subjected to the same environment as the 

active resistor and therefore compensate for thermal, and environmental fluctuations.  
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This arrangement has not been used in the previous measurements as the focus was on 

the thermal crosstalk within the cantilever and if two devices were connected as a half 

bridge and both actuated the mechanical signal would also be compensated.  It has been 

shown by the author that it is still desirable to use a half bridge arrangement for 

environmental referencing as presented below.   

 

In previous measurements the baseline voltage of the response can significantly go out 

of balance and drift over time.  This is due to the dissimilar temperature of the fluid that 

is dispensed onto the microcantilever and a re-establishment of a thermal equilibrium 

over time.  If the signal goes out of range of the selected data acquisition limits the 

signal is lost and the experiment has to be stopped.  The drift in signal also means that 

larger limits have to be used ( ±  1 Volt) and therefore the resolution is reduced.  With a 

more stable signal the limits can be set lower ( ±  0.1 Volt) and resolution increased.  

The drift can also influence the shape of the response, for example, if the response was 

on the sharp rise of the baseline signal then the response will be stretched and an 

artificially high Zero-to-Peak value is measured.  Figure 4-7 shows the unreferenced 

signal baseline and the effect of using the second microcantilever as a passive reference 

during application of a 10 cP silicone oil.  The measurement is conducted at room 

temperature, the microcantilever device is actuated at 1 Hz with a 5 Volt peak and 0.5 

ms width pulse.  The signal baseline is effectively the first value measured in every 

actuation pulse.  The result shows the long settling time when the device is 

unreferenced.  This is undesirable as the clotting mechanism could be masked by this 

artifact. 
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Figure 4-7 First value of the microcantilever response, indicative of the baseline 

temperature, measured at 1 Hz before and after 10 cP Silicone Oil is dispensed (dashed 

line) in a quarter bridge (solid line) and half bridge (dotted line) configuration. 

 

A second improvement in signal drift is to apply a multilevel actuation for clotting 

measurements.  In practice the actuation and data acquisition is started when the plasma 

or whole blood is mixed with the reagent.  This occurs externally 4-6 seconds before 

being dispensed on the microcantilevers.  During this initial period the microcantilevers 

are actuated at 10 Hz in air with a very high level.  As it has already been noted, in air 

the heat is retained in the device and the active device warms up very quickly.  The drift 

in signal base line is nearly 2 Volts before the level settles, with approximately 1 Volt 

drift within the first 5 seconds.  One solution is to rebalance the device at this new level 

though in the standard electronics the actuation is disabled before balancing and this can 

take 10-20 seconds to complete.   

 

A Wheatstone bridge balancing LabView program has been written by the author which 

allows balancing while pulsing by using the first value of each measurement rather than 

the DC level output.  Unfortunately this retains the artificial temperature of the active 

cantilever and when the sample is dispensed onto the device a large drift is noted as the 

active device cools.  The solution is a two stage actuation; on sample mixing the data 

acquisition and actuation is started at a low voltage level and on dispensing the fluid the 

actuation level is increased.  It is important to have some level of actuation in air as this 
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might be used for calibration in future analysis.  The low level of actuation in air limits 

the drift to below 0.1 Volt and therefore in future measurements the lower limits and 

higher accuracy can be used. 

 

4.5 Microcantilever Fluid Probe Testing in Plasma and Whole Blood 

The previous measurements in known glycerol solutions indicate that a mechanical 

signal can be extracted from the response, and in higher viscosity/density solutions the 

mechanical response is damped.  For standardisation the measurement of plasma and 

whole blood prothrombin time are performed in an incubator at 37 οC (Grant, QBT1).  

This is important as rheological parameters can change with the temperature of the 

fluid.  The measurement is first performed on blood plasma which is largely composed 

of water (~90%) and a variety of proteins, minerals, and trace elements.  Working with 

whole blood is more complex as the fluid has several non-Newtonian characteristics.  

The percentage red cells, or haematocrit, in the fluid create more damping on the 

microcantilever and also have an elastic component that changes with shear flow rates, 

for example, at low shear flow the cells tend to clump and at high shear flow the cells 

elongate and can form stratified layers in the plasma [123].   

 

In previous studies [124] the viscosity of plasma and whole blood at 37 οC for normal 

patients is 1.22 cP and 3.63 cP respectively which is comparable to the work with low 

concentration glycerol solutions.  There are several further points that would make an 

absolute measurement of the plasma and whole blood viscosity difficult.  Squeeze film 

damping or elastic effects may arise due to the proximity of the microcantilever to the 

substrate as the beam is displaced.  There is also the possibility that particles could 

become trapped at the anchorage under the device or in the Epsilon holes thereby 

limiting movement.  Finally, the microcantilever’s curved shape and velocity profile 

would make shear rate calculations difficult, and as previously mentioned the 

mechanical and thermal properties of the microcantilever and environment can both be 

variable over time and temperature.  These are not critical for the clotting measurements 

as the change is simply a relative increase in the damping and therefore no calibration or 

absolute measurement is required. 

 

Plasma and whole blood clotting (PT) measurements have been conducted with citrated 

samples.  These are samples mixed with sodium citrate or citric acid that prevent the 

blood from coagulating during storage.  To re-activate coagulation the citrated sample is 
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recalcified with a reagent containing Ca2+ and thromboplastin (Factor III).  

Thromboplastin is used as the prothrombin time measurement represents the extrinsic 

pathway of the clotting cascade, where the tissue clotting factors in the circulatory 

system contact thromboplastin when damage occurs.  Samples have been stored at 4 οC 

and are heated to 37 οC before testing.  To confirm a clot during the microcantilever 

measurement the tilt tube method is conducted in parallel.  Handling of the biological 

samples and manual detection of the clot has been performed by Mr Joe Booth 

(Microvisk), the setup and measurement is performed by Dr Vladislav Djakov and the 

author, and data analysis is performed by the author.  The measurements are conducted 

using the previous actuation and sensor settings used in glycerol testing.   Data is 

recorded using the continuously triggered data acquisition program previously used for 

glycerol testing.  The data acquisition and a stop watch are started upon mixing of the 

citrated sample and reagent in a pipette to provide a zero time.  The mixed sample is 

pipetted onto the microcantilever device and data is recorded for a further 90-120 

seconds.  During this testing period the microcantilever devices are re-used due to the 

high individual cost associated with packaging and wire bonding.  A cleaning protocol 

is performed on each device to remove the clot and in further tests the relative 

measurement does not degrade.   

 
Figure 4-8 First confirmation of mechanical damping in whole blood before (solid line) 

and after (dotted line) clotting, measured with MV2 X device on 11/05/2007.  The 

heater resistance is 180.7 Ohms giving a modified actuation pulse of 100 µJ. 
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Recording continuous data at 100 KS/s for approximately 2 minutes creates a large 

amount of information to analyse, where each actuation event must be selected in excel.  

In initial measurements, data is selected from several files representing a response 

before and after clotting, as shown in Figure 4-8.  This processing is slow and does not 

indicate a true real time measurement of the clot formation.  To process all information 

faster a LabView analysis program has been written by the author.  In the first version 

the program allows the user to select a portion of the sensor response curve to analyse 

as an averaged value and gradient, and then reads in every data event and plots the 

factor over time.   

 

In this preliminary analysis Dr Vladislav Djakov and the author looked at the response 

both during and after the actuation pulse.  No discernable difference was noted during 

the actuation pulse time (0.5 ms) for unclotted and clotted samples but a measurable 

difference was found in the peak value, peak position, and the rate of the rising edge on 

the overshoot of the signal.  The expected damped oscillator peak response as 

rheological properties increase is a decrease in amplitude, increase in broadness, and a 

shift in position to longer times.  For whole blood presented in Figure 4-8 the damping 

of the mechanical oscillations, shift to longer times, and broadness of the peak is seen, 

but the overall peak height increases.  This is similar to the effect seen in glycerol 

solution tests where the increase was attributed to a decrease in the thermal diffusion to 

the solution that creates more heating in the microcantilever.   

 

To characterise these factors for analysis of the clot formation a second version of the 

software has been made that detects (1) the zero-to-peak value, or peak height of the 

measurement, (2) the peak position, and (3) the half-width at percentage maximum of 

the response hereafter referred to as the width measurement.  The third parameter is 

taken as a percentage drop from the peak and towards the rising edge of the response.  

This is because the response tails off slowly due to the thermal cooling and therefore a 

full width would not be indicative of the mechanical response.  The percentage drop is 

limited to a maximum of 40% for current devices otherwise the width measurement 

passes into the actuation region of the response which contains the electrical capacitive 

effect and therefore a high level of uncertainty.   

 

The analysis program routine has been built into the data acquisition program for 

clinical measurements and is presented in the next section and can be found in [125].  
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The analysis works using the following steps.  To find a rough first peak position the 

curve is smoothed using a binned average of samples, this reduces the identification of 

artifact peaks due to random noise and reduces the identification of the second peak as 

the first.  A LabView peak finder routine is used and the first peak is selected.  For the 

current data 50 points are taken around the rough peak location and a third order 

polynomial is fitted.  This value produces optimum results otherwise the first valley and 

second peak create a poor curve fit.  A third order polynomial is used to take account of 

the skew of the peak response.  The polynomial is then differentiated and the zero 

crossing values of the equation are found.  The zero crossing closest to the peak 

estimate is found to give our second measure, the peak position.  The peak position is 

then placed back into the fitted polynomial equation to give the peak value.  As the peak 

value is relative to the baseline of the measurement the peak-to-zero value, or peak 

height, is found using the first value.  To find the width a third order polynomial is fitted 

between the data after the actuation turns off and the capacitive discharge occurs to just 

after the peak position.  A peak position is found again to check the curve fit and is 

generally only found to differ by 0.01%.  A percentage reduction in the peak-to-zero 

value is made and a limiting pass filter is used to find the “x” position where “y” is 

greater than the reduced value “y0”.  The width is solved in this manner as finding 

solutions in DCxBxAxy +++= 23  is difficult and time consuming to achieve.  In the 

pass filter solution the third order polynomial is replotted with interpolated data at 0.5 

µs deviations to find a more accurate pass.  The data which passes the equality y > y0 is 

given a zero value and data y < y0 is given a unity value.  By knowing the total data 

points and the proportion of passed data points, the peak position minus the position on 

the rising edge can be deduced to give the width measurement. 

 

A discussion of combining the factors or multiplication by a function has been made but 

it should be noted that each factor contains an error and combining factors or 

multiplying combines or increases the error, and therefore in the first case the 

measurement should be based on using the factors which have the highest change in 

mechanical signal.  It should also be considered that the routine must be implemented in 

a final handheld device and therefore a simple measured factor is desirable. 

 

Figure 4-9 and 4-10 shows the peak height, peak position, and width analysis of the 

microcantilever (W) response from each actuation pulse (10 Hz) in citrated plasma and 

whole blood.  The width of the actuation pulse has been increased to 0.6 ms and the 
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energy when the microcantilever is immersed in the fluid has been maintained at 150 

µJ.  This reduces the peak power dissipation in the measurement from 300 mW to 250 

mW.  To limit the signal drift in the measurement the initial actuation in air is limited 

(1.0 V) and the second microcantilever is used in half-bridge configuration as an 

environmental temperature reference.  The electronics DC response of the 

microcantilever is synchronised with the rising edge of the function generator trigger 

and writes 500 samples at a sampling rate of 100 KS/s.  The electronics is set to x3900 

gain and measurement limits of the DAQ card are ±  5 V.   
 

 
Figure 4-9 Analysis of microcantilever MV2 W response in citrated plasma sample 

actuated at 10 Hz with a peak pulse power of 250 mW and pulse width of 0.6 ms.  The 

dashed line represents application of the mixed sample. 
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Figure 4.10 Analysis of microcantilever MV2 W response in citrated whole blood 

sample actuated at 10 Hz with a peak pulse power of 250 mW and pulse width  

of 0.6 ms.  The dashed line represents application of the mixed sample 

 

The plasma result (Figure 4-9) shows how the peak position, width, and peak height 

change at the clot onset (approximately 19 seconds).  When normalised, the peak 

position and width change by an almost identical amount and increase at the same rate 

where as the peak height change is more subtle.  Beyond the crest of the response the 

data becomes noisy indicated by the scatter of data points; it is believed that at this point 

the deflection of the microcantilever is minimal and the dominant thermal response 

gives more fluctuation.  The peak height is not a good measure of the mechanical 

response in current devices, as shown in the glycerol testing, due to the association of 

thermal properties of the fluid and retained temperature on the sensor.  For whole blood 

(Figure 4-10) measurements the initial mechanical deflection is further damped due to 

the haematocrit, or percentage of red blood cells, of the sample.  From the initial 

baseline measurement the peak position and width change is again almost identical 

though the absolute change is almost half of that compared to plasma measurements.  

The peak height measurement shows a large drift over the first part of the experiment 

and a minimal change at the clot onset.  The drift in both fluids could signify either the 

beam moving more freely in the mixture, for example, the polymer becomes more 
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pliant, or the fluid has less thermal diffusivity which could be a consequence of the fluid 

kinetics.  

 

4.6 Clinical Evaluation at The Royal London Hospital 

A clinical evaluation was conducted at The Royal London Hospital Haemostasis 

Laboratory during the period 2nd – 5th of July 2007 to evaluate and calibrate the 

performance of the microcantilever coagulometer and biochemistry against a standard 

laboratory analyser (Sysmex CA7000).  For evaluation of the microcantilever sensors 

an estimate of the prothrombin time (PT) and the World Health Organization 

recommended International Normalized Ratio (INR) is made from patient whole blood 

and plasma with a wide range of clotting times.  This required collection of raw data 

and development of an automated reduction and analysis method to provide a single PT 

and INR value from each sample.  The calibration of PT for the microcantilever sensor 

and thromboplastin combination is made against the laboratory analyser to give the 

International Sensitivity Index (ISI) and Mean Normal Prothrombin Time (MNPT).  

This calibration is required due to the variability of clot formation and detection 

technique for different combinations of analyser and reagents.  The ISI value specifies 

the sensitivity of the reagent to an internationally standardised sample and the MNPT is 

calculated from a range of normal PT times from non medicated patients; essentially 

this is the PT time for a sample INR of unity.  The ISI and MNPT normalise the 

combination of reagent and detection method and return the measured PT as INR values 

which are then clinically relevant for monitoring oral anticoagulant therapy. 

 

4.6.1 Preceding the Clinical Evaluation 

The work preceding the trial, including the microcantilever testing presented in Chapter 

3, has identified the Epsilon design and tapered heaters as the preferential 

microcantilever choice for the clinical trial.  To increase the number of devices available 

for the trial the X and W design is complemented by the S design which is identical to 

W (Epsilon and standard heaters) but the sensor only has 1 meander rather than 3.  This 

should not influence the sensitivity ∆R/R, but the absolute change in resistance ∆R will 

be lower.  In preparation Dr Vladislav Djakov has applied a non-corrosive silicone 

rubber (RS, part #RS494-118) surrounding the active microcantilevers to prevent 

contact of fluid samples with the electrical contacts.  Prior to the clinical evaluation the 

author has significantly improved the data acquisition and analysis software to make 

efficient use of the limited time available on the trial.  The aim of the software was to 
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provide a complete and easy to use interface for senior clinical scientist Mr Joe Booth 

(Microvisk) as the author and Dr Vladislav Djakov were not present during the 

evaluation.  Figure 4-11 shows the front panel interface of the LabView software and 

data flow diagram.  The full programming can be found in [125] and a brief description 

is given below.  The data collection and analysis processing system has been solely 

developed by the author. 
 

 

 
 

Figure 4-11 LabView program front panel used during the clinical evaluation and data 

flow diagram.  (a) Data entry sections. (b) Device lookup resistance. (c) Null offset 

compensation of Wheatstone bridge. (d) Start and stop program – LED indicates 

whether the measurement can be started. (e) Plot of raw microcantilever response and 

the peak position as the measurement is taken. 
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The programming has been divided into four sections; a program initialisation; data 

entry and device setup; data acquisition; and data analysis and report generation.  The 

first section reads in the default program settings from a text file allowing updates on 

best operation to be exchanged between Microvisk locations.  The default program 

settings include the data acquisition settings (analog input channel, input voltage limits, 

data sampling rate, samples to read, and data trigger), function generator settings (pulse 

type, nominal voltage and load, pulse width or duty cycle) and now includes control of 

the third party electronics (input channel select, gain setting, and null offset circuitry).  

The channel and gain select are controlled using two sets of direct digital lines that 

allow an address of 00, 01, 10, and 11 to be used for selectable channel (Ch1 – Half 

Bridge, Ch2 – Half Bridge, Ch3 - Unused, Ch4 - Unused) and gain (x39, x390, x3900, 

x39000).   

 

The null offsetting is controlled using an SPI interface (Clock, Sync, and Data digital 

lines) that is daisy chained to a rough and fine balance digital potentiometer for each 

channel.  When Synced the negative edge of the Clock signal shifts each Data bit into 

the data-in pin.  The first bit is the address, either ‘0’ for the rough potentiometer or ‘1’ 

for the fine potentiometer, followed by an 8-bit word (0-255) to set the resistance.  As 

the potentiometers are daisy chained the code is loaded in sequence from channel 4 to 1 

such that in total a 36 digit code is sent.  The SPI interface uses inverse logic so every 

data bit is also inversed e.g. the address of the rough potentiometer becomes ‘0’.  The 

second part of the initialisation loads in text data for device designation, fluid list, and 

the measurement I/O channels.  All information is loaded from a text document which 

allows simple changes to be made outside the program and future proofs against 

introduction of further microcantilever devices.  The measurement channels can be set 

using a separate VI which allows a new setup on a different computer to be 

reconfigured.  The VI is used to set the USB channel for VISA communication; digital 

lines for selection of gain, channel, and SPI interface to the digital potentiometers; and 

analog input channels from the electronics including a Wheatstone bridge excitation 

measurement channel and trigger input.   

 

The second part of the program is for data entry and measurement setup.  This is to 

document every test and allow further analysis between devices beyond the clinical 

trial.  The device and fluid data entry (Figure 4-11a) works on a number of populated 

drop-down menus that allow quick selection.  The incubator temperature, patient sample 
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number, calibrated Sysmex INR value for the sample, and where available the 

haematocrit are also recorded.  Any further details can be recorded in the notes section.  

A further module has been built into the software called “get resistance”; this is linked 

to a spreadsheet document which contains the heater and sensor resistance values of 

every prepared device.  When a device is chosen the module gets the resistance from the 

spreadsheet and also calculates the actuation based on this figure (Figure 4-11b).  The 

device setup includes balancing the Wheatstone bridge for null offset compensation 

using the SPI interface.  On the front panel the balance button initiates a number of 

SubVI’s to firstly balance the rough potentiometer and then the fine potentiometer 

(Figure 4-11c).  This is done by starting at the central resistance of the digital 

potentiometer and taking a DC reading, the digital code then moves to minimise the DC 

output as close to zero as possible.  If the balanced bridge output voltage is greater than 

±  0.2 Volts an error message is displayed to the user acting as a first level of quality 

control.  The experiment can only be started when all the data has been entered and the 

chip has been satisfactorily balanced, otherwise a message is sent back to the user 

directing them to complete a number of tasks first. 

 

The third part of the program is the data acquisition.  When the Pulse button (figure 4-

11d) is first pressed a Wheatstone bridge excitation measurement is made, the saved 

data location is set, and the lower actuation voltage (1V) is sent to the function 

generator.  The file destination is constructed from the design prefix, cantilever subset, 

and chip reference (e.g. MV2-W-103).  This allows a user to search specifically in one 

design or subset, and on one specific chip or fluid.  If a folder already exists for a device 

in the same fluid the folder is given an integer value, this way the old data is not 

rewritten or deleted.  An information file is also created to accompany the data files and 

create the final reports. The time/date and experiment details are recorded along with 

the data acquisition parameters, electronics, and function generator settings.  This 

allows specific information to be extracted when the data files are analysed.  The 

microcantilever response is recorded on the rising edge of a trigger signal synced with 

the function generator actuation pulse and records for a limited number of samples.  

This reduces the volume of data that is written to each file limiting issues with hard 

drive writing speed and minimising extra data analysis steps.  Each sample is written as 

a 6 decimal place double precision integer and recorded with sample time to a LabView 

Measurement file.  Each file contains 10 pulses of data to limit the computer creating 

new measurement files on each pulse.  The time recorded in the file is based on the 
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operating system internal clock which can give inaccurate readings for the start of the 

pulse, though this is much smaller than the time between pulses (100 ms).  An 

assumption of 10 Hz operation can be a problem if the PC hangs and the trigger is 

missed due to interrupt requests from programs which have not been closed down (e.g. 

virus checkers, disk clean tools, wireless network tools).  When the user dispenses the 

fluid onto the device a second Pulse button press initiates the higher actuation voltage to 

achieve 150 µJ pulse energy.  During the data acquisition the raw sensor response is 

displayed in the top window and the estimated peak position, using position of 

maximum value, is shown in the bottom window (Figure 4-11e).  This allows the user to 

monitor whether the cantilever is working and estimate whether the curve is changing.  

When the user is satisfied that the experiment is finished the stop button initiates the 

final part of the program. 

 

The fourth part of the program initiates the analysis of the response automatically.  This 

analysis has been described in chapter 4.5.  The analysis extracts the first value of each 

pulse (to monitor the thermal drift), the peak position, peak value, and width 

measurement.  These measurements are shown to the user allowing an immediate 

feedback on the progress of the clinical evaluation.  The final part of the program 

creates an automatic report with the experiment information and plotted variables.  

Unfortunately during the trial, though the trend of the curves could be seen the time axis 

was skewed due to the program mishandling of the time array.  This required the data to 

be replotted from the recorded raw data after the clinical evaluation. 

 

Prior to the clinical tests at The Royal London Hospital, ethical approval has been 

sought by Professor John Pasi and Microvisk for testing of patient samples on the 

microcantilever blood coagulometer.  The initial stage is an agreement between 

Microvisk and the clinical partner to perform the tests and a trial protocol document.  

The protocol documents the testing, including; the purpose of the project; how the 

results might be applied; the method/design of the study; inclusion and exclusion of 

subjects to the study; what data is to be collected and what is to be measured; how the 

data is processed and analysed.  The protocol also contains patient information sheets 

and consent forms though in the Microvisk evaluation the blood samples were destined 

for destruction (samples had already been tested elsewhere) and were consented by the 

patients.  Once the protocol is accepted by the Trust R&D committee an IRAS 

(Integrated Research Application System) application must be submitted.  This is a 
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document where everything about the clinical testing is described.  Once complete it is 

submitted to an ethics committee.  The ethics committee questions the study and passes 

a decision to reject or approve the tests.  Once ethics approval is granted the IRAS 

application passes back to the Trust R&D committee for final approval and the study 

can start. 

 

4.6.2 During the Clinical Evaluation  

The clinical evaluation has been conducted onsite by Mr Joe Booth (Microvisk Senior 

Clinical Scientist) and Prof. Gareth Jones (Microvisk Consultant) with support from 

Prof. John Pasi (Professor of Haemostasis and Thrombosis), Ms. Kathryn Langley 

(Chief Biomedical Scientist), Mr. Chris Dale (Senior Specialist Biomedical Scientist), 

and Mr. Shaun Bevan (Trainee Clinical Scientist) at The Royal London Hospital.  The 

original PC, monitor and internal PCI data acquisition card has been replaced with a 

laptop and PCMCIA data acquisition card (E-Series, NI-6036E).  The National 

Instruments E-Series card has 16-bit resolution and a maximum sampling rate of 200 

KS/s.  The absolute accuracy in the recorded data is 152 µV which corresponds to an 

unamplified signal of 40 nV.  Figure 4-12 illustrates the experimental setup used in the 

clinical evaluation and a close-up of the machined block heater and test device. 

 

Mr Joe Booth has prepared the incubator and liquid handling for the evaluation 

including the treatment of the device to minimise bubbles and sample preparation.  A 

Grant QBT2 Block Heater has been machined to hold the microsystems microcantilever 

electronics, four Gilson D200 pipette tips and four Eppendorf tubes.  Compressed 

aluminium foil is used to fill the void space in the heater block around the electronics 

ZIF socket and a removable lid has been implemented to retain heat.  A temperature 

probe (-50 to 200 οC) is inserted into the ZIF and monitored and recorded using a digital 

thermometer (Tenma 72-2060).  The heater is switched on at the beginning of each day 

of the trial to reach a stable temperature of 37 οC.   
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Figure 4-12 Experimental setup used in the clinical evaluation. 

 

Each patient citrated blood sample has been previously tested on one of three calibrated 

laboratory Sysmex CA-7000 coagulometers.  The Sysmex CA-7000 is an automated 

coagulation analyser that uses an optical detection of fibrin formation in a cuvette.  The 

same thromboplastin reagent used in the analyser has been used with the 

microcantilever measurement device.  The reagent was prepared on the first day of the 

trial and stored at 2-8 οC over night.  Patient blood samples for the trial ranged from 0.9 

to 6.08 INR on the Sysmex analyser and recorded haematocrit levels between 27% and 

52.5%.  For each test the Sysmex INR and haematocrit is recorded with the patient 

number and sex of the patient.  To prepare for each test the chosen patient sample tube 

is inverted a number of times to ensure resuspension of the red cells and 100 µl is 

pipetted into an Eppendorf tube in the block heater.  The reagent is also pipetted into an 

Eppendorf tube and placed in the block heater to warm up. 

 

For the clinical evaluation the energy of the actuation pulse when the microcantilever is 

immersed in the fluid has been set at 150 µJ, the width of the pulse is set to 0.6 ms, and 

the actuation frequency is 10 Hz, as in pre-trial whole blood and plasma testing.  The 

chosen pulse corresponds to a peak power dissipation of 250 mW though this can not be 

achieved in higher resistance tapered heaters due to the limited electronics driver as 
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shown in section 4.2.  For X devices used in the trial this clipping reduces the pulse 

energy to 100 - 140 µJ (170 - 230 mW) for the range of resistance measured.  The initial 

actuation in air is 1.0 V and the second microcantilever is used as an environmental 

temperature reference to limit signal drift.  The DC response of the microcantilever is 

synchronised with the rising edge of the function generator trigger and writes 500 

samples at a sampling rate of 100 KS/s.  The electronics is set to x3900 gain and 

measurement limits of the DAQ card are ±  5 V. 

 

For each test a microcantilever device and patient sample was selected and recorded in 

the LabView software.  When ready the Wheatstone bridge is balanced through the 

software and the reagent, air gap, and blood sample is drawn into a pipette (Gilson 

Concept C100 programmable pipette).  The sample mix in the pipette is initiated and the 

operator signals the activation of the LabView program to start recording data in air.  

After a 4-6 second delay the reagent / sample mix is pipetted on the active area of the 

microcantilever and the operator signals the activation of the higher actuation pulses.  

Microcantilever response and position of maximum is monitored throughout the test to 

confirm expected operation and judge the end of the measurement.  After each test, the 

microcantilever device is removed and a cleaning protocol is used to remove the clot, 

wash, and dry the device.  After the cleaning protocol the device is inspected under a 

microscope and the surface is treated again to minimise bubbles. 

 

In total, 154 tests were attempted over a four day period yielding 96 whole blood 

clotting results and 3 plasma results.  The testing strategy was to allow a measurement 

of the accuracy and regression of the device against the calibrated Sysmex analyser, and 

therefore to conduct tests across the range of INR samples available, and to measure the 

reproducibility on a single device using the same sample.  31 tests were rejected before 

dispensing the sample when the Wheatstone bridge rough balance code was less than 

125 or greater than 131 as the sensor output would fall out of range ( ±  5V) during the 

test.  The digital potentiometer has an 8-bit code between 0 and 255, if the cantilever 

active and reference resistance is perfectly equal the balance will be in the centre.  7 

tests were rejected due to operator error either in liquid handling, software operation, or 

in one case testing of a sample without a Sysmex INR value.  17 tests were rejected due 

to being insensitive to the post analysis method predominantly due to very high noise in 

the measurement.  This included 5 tests identified as very noisy response during the test, 

5 tests where a second higher peak is observed and the width measurement fails, and 7 
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tests where no appreciable change occurs or the analysis identifies a residual artefact as 

the clotting point – this occurred once and the test was performed again.   

 

4.6.3 Data Reduction and Analysis 

The aim of the microcantilever response analysis is to provide a consistent and 

automated method for converting each test into a single clotting time result.  Data 

reduction and analysis has been performed by the author (data reduction), Prof. Gareth 

Jones (data filtering), and Mr Joseph Booth (regression solver).  The blood response has 

been shown in section 4.4 and has been quantified by the author using the half width at 

40% maximum, here in refered to as “width” measurement.  The width measurement 

yields a curve response against time and though visually a clot onset “elbow” can be 

seen in the data this must be identified using a more consistent scientific approach.  

Figure 4-13 shows the width against time for two tests, indicating typical good data and 

bad data.  All sets of good and bad data are included in the post-analysis; measurements 

are only rejected if they fail the analysis as described in the previous section.  Ideally it 

is desirable that the response is completely flat and produces a sharp angle at the clot 

onset point, but there are thermal artifacts in the data that cause the data to drift and also 

to initially find a baseline steady state.   

 

 
Figure 4-13 Typical good output (bottom) of analysed response for a whole blood clot 

(Chip W106 CWB5) and bad output (top) of analysed response (W103 CWB5). 
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The bad data shows oscillations in the data at various frequencies though this is not 

unexpected as the device is at a breadboard stage and not fully shielded.  It is 

anticipated the electrical, electromagnetic, and mechanical vibrations may all affect the 

response at this stage.  Prof Gareth Jones has implemented a Fourier filtering routine 

using a cosine function rather than a sharp cut-off or pass filter to smooth the transition 

data of the clot onset.  The central data is filtered in frequency space using an extended 

time centered Hann window of the form 
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where s is a single adjustable parameter giving the narrowness of the function (S = 1 is 

the original von Hann filter), n equal to frequency in the frequency domain, and N is the 

total number of data points used in a centered data set (typically an integer power of 2).  

For the central filtering s =200 and N= 2048.  A Hann window was also used to add 

wings to the data 6.4 seconds at the beginning (s = 0.5) and for the last 12.8 seconds (s 

= 1) to ensure the data started and ended with a zero value and had a smooth transition 

into the data.  Figure 4-14 shows the data before and after the filtering 
 

 
Figure 4-14 Bad data indicated in Figure 4-12 (W103 CWB5) before (circle) filtering 

and the response after Fourier filtering with a cosine function (solid line). 
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The filtered data is passed on to a slope fitting routine to identify the “elbow” of the clot 

onset.  The simplest description of the elbow is to find the intersection of two best fit 

straight lines fitted before and after the clot onset.  Data before blood is dispensed and 

the top 20% of the remaining normalised data is rejected.  Data long after the clot 

should be treated as very low signal to noise as it is expected that upon clotting the 

mechanical motion of the microcantilever is damped to near zero and the residual signal 

is fluctuating thermal measurements.  The analysis routine firstly establishes a rough 

find on the Fourier filtered width data with an initial estimate of the intersection at the 

centre of the data window.  Excel solver moves the intersection point to minimise the 

sum of the square of the residuals for slope, intercept, and the intersection.  The rough 

intersection estimate is used to extract a narrower data window 15 seconds either side 

from the raw width data.  The top 20% of the normalised data is again removed.  Excel 

solver again returns an intersection value from minimisation of the sum of the squares 

of the residuals for slope, intercept, and intersection.  The measured intersection point is 

recorded as the sample clot time.  Figure 4-15 shows the regression fit to the raw width 

data of a single whole blood test where the intersection is taken as the clotting time. 
 

 
Figure 4-15 Plot of the intersection position of two straight lines fitted to the raw width 

data where residuals of the slope and intercept are minimised.  The intersection position 

found in the raw data is deemed to be the prothrombin time. 
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4.6.4 Prothrombin Time (PT) Results and Discussion 

Figure 4-16 shows the combined microcantilever PT clotting results for W and X 

devices against the Sysmex PT analyser results for 87 tests.  Nine tests from the S 

design are not included as the data analysis was not consistent and subsequently the 

device was dropped from the trial.  The combined and individual PT results show 

excellent correlation (r>0.98), to the standard Sysmex analysers.  To quantify clinical 

variation in the measurement the mean percentage coefficient of variation (%CV) has 

been calculated as 5.91%.  The %CV is equal to the average of standard deviation 

divided by the mean where replicates of a known sample were tested at least 3 times 

(n=64).  The Microvisk team regards these figures as excellent for a device at this stage 

of development.  The gradient of the individual device and combined linear regression 

is 1.87, indicating a possible under activity of thromboplastin in the microcantilever 

trial chemistry.  This is most likely due to testing with whole blood samples whereas the 

Sysmex analyser tests plasma samples [126].  
 

 
Figure 4-16 Combined PT clotting results for W (cross) and X (triangle) 

microcantilever devices against the Sysmex analyser sample results.  The dashed line 

represents the position where the Sysmex and Microcantilever PT would be equal. 
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The Sysmex analyser always tests with plasma to thromboplastin ratio of 1:2 but for the 

same whole blood volume the plasma is reduced by the fraction of red cells, for 

example, a haematocrit of 40% would give a ratio of 0.6:2.  This is confirmed in the 

whole blood and plasma results of a single patient sample from the trial.  The average 

PT measured on a W device in four whole blood replicates is 23.8 seconds and in two 

plasma replicates is 17.9, compared to the Sysmex analyser result of 18.5 seconds.  It is 

important to note that the PT correlation remains excellent in the microcantilever whole 

blood testing, indicating valuable use in the haematocrit range tested (27%-52.5%).  The 

device and combined regression has a negative intercept indicating a technique bias and 

possible systematic error in the measurement.  This would suggest that the 

microcantilever device is unable to measure a clot below the ‘x’ axis intercept – a 

Sysmex PT of 7.5 seconds.  Using equation 4.2 and the International Sensitivity Index 

(ISI) and Mean Normal Prothrombin Time (MNPT) supplied by the laboratory for the 

Sysmex analyser this accounts for an INR < 0.7.  This result is unlikely to occur and in 

such cases where INR < 0.75 the result is deemed to be ‘activated’ by the laboratory and 

the sample is retested using the tilt tube method. 

 

A technique bias exists between different analysers and the determination of the PT 

result from the clotting curve.  The microcantilever device measures the physical onset 

of the clot whereas the Sysmex might identify a point later in the clotting curve, for 

example, as a percentage increase above the baseline or the end point of the clot.  As the 

regression has high correlation a possible fixed systematic error may also be present in 

the measuring system that is giving artificially low results.  One error identified was a 

short fixed delay (<1s) in the pulse activation due to LabView preparing the file 

structures and directories, this would give a missing time at the beginning of the test.  It 

is also possible that in the chemical handling the thromboplastin taken into the pipette 

before the air gap lines the pipette tube and the blood sample starts to react with the 

thromboplastin left at the tip.  More variation in the results might be expected if this was 

the case as the time from taking up the blood sample to the mix stage is not fixed.  It is 

unclear how the surface activation and cleaning of devices may affect the coagulation 

reagents, particularly the plasma membranes in which the thromboplastin is embedded 

[127].  The final aspect is the unknown temperature on the microcantilever surface and 

local environment; this may give a higher steady state temperature in the sample and 

increase the activity, therefore shortening the clotting time. 
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4.6.5 ISI and MNPT Calibration Results and Discussion 

Technique and chemistry variation discussed in the previous section confirm the need 

for calibration and standardisation as set out by the World Health Organisation (WHO) 

specification [128].  The basis of the calibration is to provide a common scale, known as 

the International Normalized Ratio (INR), for combinations of thromboplastin and 

coagulometer.  This provides consistency in adjusting oral anti-coagulant medication for 

patients.  To adjust Microcantilever PT measurements into clinically relevant INR 

measurements the International Sensitivity Index (ISI) and Mean Normal Prothrombin 

Time (MNPT) for the microcantilever coagulometer is calibrated against the known 

Sysmex Analyser results using the equation 
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The microcantilever technique ISI and MNPT were calibrated by orthogonal regression 

against the Sysmex analyser INR values using the natural logarithm of PT versus the 

natural logarithm of INR (equation 4.3) 
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The microcantilever technique ISI is equal to the inverse of the gradient and the MNPT 

is equal to the inverse natural logarithm of the intercept.  For statistical evaluation of the 

microcantilever technique ISI and MNPT the WHO specification states “INRs outside 

the 1.5 – 4.5 range shall be excluded” and “Any samples with a perpendicular distance 

greater than 3 residual standard deviations from the regression line should be 

excluded”.  From the 87 experimental results, 21 samples are excluded outside the INR 

range, and 8 samples are excluded outside 3 residual standard deviations from the 

regression line.  The samples are only excluded for the calibration and not from the final 

INR measurements.  The exclusion of these samples does not affect the clinical use 

outside of the 1.5 – 4.5 INR range. 

 

The combined microcantilever PT results calibrated against the known Sysmex INR 

give an ISI equal to 0.673 and a MNPT of 8.08.  The ISI of the combined and individual 

device result is lower than the target thromboplastin ISI of 1.00 though this is expected 
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due to the high gradient of the PT results and the reasons described above.  The ISI and 

MNPT constants are applied to the microcantilever PT times to give an INR result for 

each patient sample tested using equation 4.2.   

 

4.6.6 INR Results and Discussion 

Figure 4-17 shows the combined INR results for the microcantilever coagulation test 

against the Sysmex Analyser INR results.  The Sysmex INR values have been 

calculated using the ISI and MNPT specific to each analyser therefore reducing the 

inter-analyser variability in PT values and increasing the correlation to the 

microcantilever test.  As the microcantilever coagulometer INR is calibrated against the 

Sysmex INR the correlation is expected to have a low offset and a gradient close to 

unity.   

 
Figure 4-17 Combined INR results for W (cross) and X (triangle) microcantilever 

devices against the Sysmex analyser results. 

 

The accuracy of the Microcantilever fluid probe device measured as the correlation of 

the linear regression against the reference INR is equal to 0.987 (n=87 sample tests).   

The precision of the device measured as the percentage coefficient of variation (%CV), 

excluding patient samples tested < 3 times, is equal to 4.00% (n=64).  The fall in %CV 

for INR from the PT results is expected with the calibrated ISI.  The %CV of the INR 

results should approximate to the %CV of the PT results multiplied by the ISI [129], for 
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example, PT %CV (5.91%) x ISI (0.673) = 3.98%.  The final result is excellent 

compared to currently available point-of-care PT/INR testing.   

 

The Roche Coaguchek XS has a published accuracy of 0.974 against a reference of 

Innovin thromboplastin on a Sysmex analyser, and a %CV of 5.19 [130].  The 

Hemosense INRatio has a published accuracy of 0.93 against a reference of Innovin on 

a MLA Electra 900c analyser, and a %CV of 10 [131].  The ITC Protime 3 has a 

published accuracy of 0.93 against a reference of Innovin on a MLA Electra 900 

analyser, and a %CV of 10 [132].  

 

In independent testing by the NHS Department of Health Evaluation Centre against a 

Sysmex CA-7000 analyser with Innovin thromboplastin the measured accuracy of the 

instruments is 0.97 for the Coaguchek XS [133], 0.94 for the INratio [134] and 0.69 for 

the Protime 3 [135].  INR Measurements > 0.5 and > 1.0 against the reference result 

respectively were 10% and 0% for the Coaguchek XS [133], 16.1% and 1.6% for the 

INratio [134], and 33% and 6% for the ProTime 3 [135].  By comparison the Microvisk 

INR results > 0.5 INR from the Sysmex CA-7000 result in this study is only 2.3%, and 

those > 1.0 INR is 0%.  It was also noted in the reports that the failure rate of the 

INratio device was quite high (20%) as was the ProTime 3 (10%), The Coaguchek was 

very low (1%).  The Microcantilever device failure rate during the trial was quite high 

(18%) though this is at a pre-development stage and predominantly was the failure of 

the analysis to cope with noise in the measurement setup. 

 

Coagulometer Accuracy 
Measured INR 

> 0.5 from 
correct value 

Measured INR 
> 1.0 from 

correct value 
Failure Rate 

Roche 
Coaguchek XS 

0.97 10% 0% 1% 

Hemosense 
INRatio 

0.94 16.1% 1.6% 20% 

ITC 
Protime 3 

0.69 33% 6% 10% 

Microvisk 
Microcantilever 

0.99 2.3% 0% 18% 

 

Table 4-3 Summary of PT/INR coagulometer evaluation by the NHS Department of 

Health Evaluation Centre and the Microvisk MEMS based coagulometer in this study. 
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Repetition of 8 tests on a single device (W103) using the same patient sample (Sysmex 

INR = 2.3) gave good reproducibility with a measured INR in the range 2.2 to 2.4, a 

mean of 2.29 and standard deviation of 0.06 (%CV of 2.8).  For 17 tests on the same 

patient sample (Sysmex INR = 2.3) across different devices the measured INR was in 

the range 2.0 to 2.4, with a mean of 2.26 and standard deviation of 0.09 (%CV of 4.1).  

These individual results are very promising at the current development stage.  Tighter 

quality control in the final device is likely to further reduce the chip variation.  It is also 

important to note that the target INR will be in a therapeutic range and dosing will be 

discrete.  For example, for warfarin therapy the target INR range might be 2.0 – 3.0 and 

to achieve this, the dose will be given as multiples of 1 mg tablets.  Certainly the results 

from the clinical evaluation show that the microcantilever fluid probe device is more 

than capable to be used in this therapy. 
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Chapter 5 – Conclusions and Future Work 

 
The clinical evaluation conducted at The Royal London Hospital to measure the 

accuracy and precision of prothrombin time (PT) and international normalized ratio 

(INR) measurements using the microcantilever fluid probe has shown excellent results.  

The correlation against the standard laboratory analyser INR, from a wide range of 

patient clotting times (INR 0.9-6.08) is equal to 0.987 (n=87) and precision of the 

device measured as the percentage coefficient of variation, excluding patient samples 

tested < 3 times, is equal to 4.00% (n=64).  These results are excellent when compared 

to currently available point-of-care PT/INR devices from Roche (Coaguchek XS 

accuracy 0.974 and %CV 5.19 [130]), Hemosense (INRatio accuracy 0.93 and %CV of 

10 [131]), and ITC (ProTime 3 accuracy of 0.93 and %CV of 10 [132].   

 

The repeatability for a single patient sample (INR = 2.3) tested 17 times over 4 devices 

under identical conditions and procedure was also excellent with a mean INR of 2.26 

and standard deviation of 0.09.  The reproducibility on a single device using the same 

sample 8 times also gave excellent INR results in the range 2.2 to 2.4 with a mean of 

2.29 and standard deviation of 0.06.  These results are very promising considering the 

device was largely unoptimised, for example, the Wheatstone bridge supply voltage had 

not been investigated, an incorrect optimisation of the actuation pulse has been used, no 

electrical or vibrational shielding was applied to the interface, and the electronics had 

been designed to operate over a broad number of devices.  Certainly an area to improve 

is the current device failure rate, though the devices have always been intended to be 

disposable after one test and not repeatedly handled and cleaned as in the evaluation.  

The key significance of the result is that a physical mechanical measure of the clot, 

rather than an indicative chemical measurement, looks to be very reproducible and 

accurate. 

 

Professor John Pasi at The Royal London Hospital regards the results as “very 

promising, robust and equally provides us with the opportunity to look forward for 

other significant applications within coagulation, to produce novel systems and more 

rapid ways of assessing coagulation based on this unique technology”.  The support 

letter from Professor John Pasi is included in Appendix C. 
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The excellent clinical evaluation outcome has resulted from the significant improvement 

in operation of the microcantilever fluid probe through a reduction in thermal crosstalk.  

This has been accomplished by using a low temperature coefficient of resistance sensor 

material, geometric separation of heaters and sensors, structural change from gold-

polymer to polymer-polymer to limit heat conduction, tapering of metal heaters, and 

shortening of the actuation pulse width.  The individual improvements are: 

 

• NiCr piezoresistive sensors have a comparable mechanical sensitivity to Gold 

piezoresistive sensors and significantly lower thermal sensitivity (TCR) leading 

to a reduction in the thermal crosstalk signal by 11.3 times. 

• Improvement in mechanical signal as a proportion of the total signal for 100 ms 

pulse width by 11-15% between Epsilon and Solid design through reduction in 

thermal crosstalk. 

• Improvement in mechanical signal as a proportion of the total signal for 100 ms 

pulse width by 25-30% between tapered and standard heater design through 

reduction in thermal crosstalk. 

• Enhancement in operation at very short pulse width (1 ms) with a lower limit 

improvement of approximately 30% in reduced thermal signal either through 

improved conversion efficiency and/or reduced thermal crosstalk. 

 

The results indicate that all design and operation modifications have improved the 

microcantilever fluid probe, and will produce a response with an estimated 12-17% 

mechanical signal as a proportion of total signal for operation in air with 100 ms pulse 

width.  A further enhancement has been measured when operated in moderately viscous 

fluids, comparable to plasma and whole blood samples, with very short actuation pulses 

and high peak power.  The measured upper limit of mechanical signal is approximately 

48%, achieved due to mechanical overshoot of the microcantilever; this makes the 

measurements of the first peak ideal to track the clotting cascade.  

 

An important result from the characterisation experiments is that non-uniform 

multilayer microcantilevers cannot simply be described as a classical bimetallic strip 

and treated as such, in for example, the finite element simulations in chapter 2.  The 

localised thermal bending moment and neutral axis along the beam must be considered 

as both variable and complex.  The actuation results and curvature measurements in 

section 3.3.3 both show the non-linear bending along the beam where movement is 
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restricted, or negative, in areas with metalisation, and free in areas without.  The 

curvature measurements also show that the bending along the beam does not have a 

constant radius.  The author believes that the expansion in the upper sections of the 

beam is being restricted by the metalised heater and sensor tracks, especially when a 

stiff and low thermal expansion metal, such as chrome, is used as an adhesion layer.  If 

the actuation is also predominantly from the expansion of the gold heater in very short 

pulses and not the polyimide as first thought, the adhesion layer is considerably limiting 

expansion.  The suggestion for future devices would be to try different adhesion layers, 

for example titanium (8.6 ppm.K-1) or an electrically conductive polymer, and to limit 

the cross section of the heater to reduce stiffness through the beam.  Unfortunately the 

trade off is that thermal conduction into the polyimide, which may assist bending, is 

limited and therefore an optimised solution will exist.   

 

The realisation of a fluid microsensor based on a thermally driven microcantilever with 

integrated piezoresistive sensor is a challenging task.  To the author’s knowledge, the 

architecture and operation of the microsensor presented in this thesis and developed by 

the team at STFC and Microvisk is unique and shows the potential for simultaneous 

environmental measurement of mechanical, thermal, and electrical properties.  Several 

groups have published work on simultaneous viscosity and density measurements using 

the natural frequency and Q-factor of microcantilever’s.  The resonance technique 

requires the measurement of vibrational amplitude over a frequency range, and is 

generally performed with an optical technique requiring alignment, calibration, and 

suitably transparent fluids.  Though the goal of the work was to achieve a relative 

measurement of rheological changes in whole blood and plasma the technique shows 

future potential for absolute measurement of viscosity and density (section 4-2 and 4-3).   

 

The results on viscosity standard glycerol solutions (Figure 4-1 and Figure 4-3) and the 

analysis of the microcantilever response in a Polyacrylamide Gel (Figure 4-4) allow a 

discussion of the sensor ability to measure viscosity and density, and impact on the 

Reynolds number.  The Reynolds number is a dimensionless constant equal to the ratio 

of inertial forces to viscous forces that describes the flow conditions in the system.  As 

the sensor device is scaled to the micro domain the viscous forces per unit volume 

increase more than the inertial forces per unit volume.  This is due to a squared 

dependency on the length scale for inertial forces and only a linear dependency for 

viscous forces.  Therefore, at the microscale the viscous forces dominate and the 
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Reynolds number is characteristically low (Re < 1).  This suggests that the flow will be 

laminar and as a result no mixing will tend to occur.  Given the viscosity dominates it is 

expected that the mechanical damping measured in Glycerol and PAG is almost solely 

dependent on the viscosity.  Certainly, use of the damped mechanical oscillations can be 

used analogous to a vibrational viscometer.  This leads to the question of whether 

density can be measured by the use of microcantilevers at low Reynolds numbers.  

Previous literature suggests that simultaneous measurement of viscosity and density is 

possible [6, 78, 79, and 82] and that the acceleration of material swept up by the 

microcantilever leads to a shift in the resonance frequency of microcantilever probes.  

The ability of the microcantilever to feel the inertial forces of the fluid are dependent on 

the width of the device and the velocity.  As the velocity of the probe increases the 

inertial forces increase by the square of the velocity while viscous forces increase by a 

linear dependency.  For the polymer microcantilever fluid probe the velocity can be 

estimated from Figure 4-4.  From the analysis a deflection of 0.75 microns and peak 

position at 1.25 ms, gives a velocity of 0.6 mm.sec-1 in low viscosity (1 - 2.5 cP).  This 

would suggest that by increasing the size of the microcantilever or the speed of 

actuation – for example by optimising heaters (Figure 3-15) – inertial effects can be 

increased and measured.  An interesting visual result of the coagulometer work in clear 

plasma samples (Chapter 4-5) was that a recorded video at 15 Hz showed turbulent 

flows around the sides of the microcantilever.  If the Reynolds number was low, and 

viscous forces dominate this is not expected.  An explanation could be natural 

convection, or the squeezed fluid between the cantilever and substrate which has to push 

outwards. 

 

Absolute measurement of viscosity and density needs to be approached carefully in 

future work.  Firstly, the device is not a simple drag flow viscometer.  Such devices 

have a parallel surface operated at a constant rotational velocity, therefore removing 

inertial acceleration that describes the density.  The viscosity is measured by varying the 

velocity (shear strain) and measuring the shear stress – usually as torque – on the 

rotator.  The viscosity is equal to the slope of the shear stress versus shear strain plot.  

Unlike previously published work that use a flat microcantilever the work presented in 

this thesis uses a curled beam with non-linear curvature; the thermal gradient created in 

the beam is also non-linear resulting in variations of velocity along the surface and it is 

difficult to relate the actuation to a range of shear rates.  The pulsed nature of the 

operation gives a fluid acceleration and deceleration which introduces the density as an 
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effective volume and mass swept up by the microcantilever.  Firstly the movement of 

the microcantilever needs to be studied to see if the actuated part of the beam can be 

estimated as a flat moving surface, and how the velocity (shear strain) of the probe 

changes with input power.  To extract the viscosity and density from the response it is 

likely that two parameters will have to be measured, as for example the natural 

frequency and Q-factor is measured in resonating beams.  It is therefore important to 

achieve the mechanical oscillations as first seen in Figure 4-1 to describe the decay or 

damping coefficient of the oscillations and period.  This may limit the current probes 

use in thicker fluids. 

 

A second issue is that the thermal properties of the medium are coupled to the 

measurement, even if the piezoresistive sensor had zero thermal noise.  This is because 

the thermal actuation pulse, and therefore mechanical deflection, is dependent on the 

thermal conduction of the fluid.  For example, in a lower thermal conduction fluid the 

heat is retained on the actuation arms allowing a higher temperature to create a larger, 

more forced, deflection.  This is not a negative point; in fact, it allows the simultaneous 

measurement of rheological and thermal properties of the fluid, namely the thermal 

conductivity and heat capacity.  Though the response is complex with several variable 

dependencies, a rigorous experimental evaluation in several fluid standards with known 

parameters will allow the response to be further understood.  For example, in short 

actuation pulses the peak response width and position, and damping of mechanical 

oscillations provides rheological data, whereas longer actuation analogous to standard 

thermal conductivity measurements can provide thermal data from the rise-to and level 

of the steady state equilibrium.   

 

A further effect given the thermal actuation is coupled to the medium could be the 

influence of the thermal actuation on the rheological parameters in the localised 

measured fluid.  Certainly the measurements indicate conduction to the fluid and this 

cannot be ignored.  In relative measurements of whole blood and plasma clotting (such 

as Figure 4-9 and Figure 4-10) the lowest pulse energy that has been used is 90 µJ.  

Using an energy balance equation for heat generation and transfer, as by Zhou et al [43], 

including the conduction path back through the metalised tracks the prediction is that 

approximately 10% of dissipated heat goes into the fluid at steady state.  For the typical 

fluid volume placed on the device (20 µL) the energy dissipated into water from this 

pulse gives a rise in temperature of 0.0001 οC.  The heat balance equation is only a 



 

134 
 

simple analytical tool and the energy dissipated into the fluid could be more or less; it is 

also the author’s belief that the current devices are being overpowered and therefore the 

energy input can be further reduced.  For example, Figure 4-1 show no loss in definition 

of mechanical oscillation when accidentally using a lower energy pulse, in fact the 

oscillation become more smoothed out in the W (150 µJ) and G device (135 µJ).   

 

Temperature also has several other effects in the device; the heater resistance changes 

which varies the current and therefore power over the actuation pulse; the strain 

sensitivity is known to be dependent on temperature as is the structures material 

properties; and the rheological properties of the fluid are sensitive to thermal changes.  

The internal material properties and dimensions of the device can also vary across a 

wafer, for example it was noted in chapter 3 that the thickness of layers can vary up to 

10%.  The thermal coefficient of expansion, Young’s modulus, heat capacity, thermal 

conductivity, residual stress, is all unknown and variable.  These variations are expected 

and a calibration could be performed in a known fluid, such as air, before the actual 

measurement to provide a reference response.   

 

The final point is non-linear fluid effects that might be exaggerated by the device.  The 

Epsilon shape is complex and contains two gaps that fluid could pass through.  It is 

unknown if particles could block these gaps and the likely effect on the response.  The 

microcantilever is also surface mounted, that is to say that the microcantilever does not 

extend from the body of the device as in bulk silicon microcantilevers.  These present 

two possible issues, the first is at the base of the device and accounts for particles that 

may get trapped and cause a grinding, the second is the opposing wall or gap between 

the beam and substrate and how this affects the flow.  The second point may again be 

beneficial as it may introduce a compression, and therefore measurement of elasticity of 

the fluid.  Certainly this is not a simple task, but with consistent experimental work 

using fluids with known rheology and thermal properties it is the author’s belief that a 

sensitive platform can be realised. 

 

The main result of the analytical work in chapter 2 is the understanding of the full 

bimorph equation (equation 2.7) and optimisation of deflection beyond the use of the 

standard thickness ratio.  Based on an optimisation of the initial bending moment and 

flexural rigidity through the position of the beam neutral axis, it has been found that the 

maximum is achieved when the axis is located at the structural interface.  This 
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relationship has allowed the optimisation for a two layer structure with constant 

stiffness to be achieved (equation 2.10).  Beyond a two layer structure it has been found 

that the solution for the maximum deflection exists where the neutral axis is at a layer 

interface though numerically this becomes more complex to solve where each layer 

thickness can be changed.   

 

Analytical work on the performance of the microheater indicated that for short pulse 

operation a fast heat generation and low heat loss due to conduction into the 

surrounding medium is desirable (equation 2.16).  Characterisation in chapter 3 on the 

response of heaters during pulsed heating (section 3.3.5) supports the use of lower cross 

section tapered heaters for higher temperature increase (Figure 3-15) and the reduction 

in heat loss from a change in structural material from gold to polyimide (Figure 3-14).  

Though tapered heaters produce the fastest temperature increase in the metal heater the 

steady state level is less than that of standard heaters (Figure 3-14) indicating there is 

significant heat loss from the tapering at the base of the device.  Equation 2.16 further 

suggests a metal heater with low heat capacity and mass density, and it is also indicative 

that the fast actuation is from the thermal expansion of the heater material.  Therefore it 

is suggested that the gold metal heater is replaced with aluminium in future work.  Heat 

conduction across the device has been greatly underestimated in analytical work 

compared to characterisation (Figure 3-18) of the sensor during actuation.  The work in 

chapter 4 has shown that the conduction and convection into the fluid has an effect on 

the transient thermal profile, as does the conduction into the substrate shown in the heat 

loss from tapered heaters.  In addition the testing of MV2 devices in a polyacrylamide 

gel shows the sensor thermal response is instantaneous to the heater actuation even 

though the two are geometrically separated.  This indicates the possibility of a separate 

conduction path off the beam.  For future work it would be of interest to try a non-

silicon substrate to see if the substrate conduction path is a major influence. 

 

The microcantilever fluid probe has now been realised in a third design that is based on 

the Epsilon polymer-polymer microcantilever with gold microheater and using a 

constantan piezoresistor.  The aim of the design is not to improve the clinical results but 

to move towards a pre-production prototype with an external MEMS facility.  The 

tapering of the heater has been kept but a new “pinch” has been placed further along the 

beam; this has yet to be tested and therefore is unclear whether this is an improvement.  

The device also uses larger electrical contact pads implemented by the author located 
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away from the active area which allows the use of spring loaded probes which are a 

quicker and cheaper alternative to wire bonded packages [136].  Dr Vladislav Djakov 

has also utilised a serpentine reference sensor on a second microcantilever with nominal 

resistance close to the active microcantilever.  A similar sensor design has previously 

been utilised on silicon [137] but only to compensate environmental noise and not, as in 

this design, to compensate a thermal actuation crosstalk.  In this configuration both 

microcantilevers are actuated, theoretically compensating the thermal crosstalk and 

environmental changes.  In practice it is difficult to attain a full compensation due to 

differences in resistance and the second device will also cancel some of the mechanical 

sensitivity.  The mechanical sensitivity of the active beam has been measured as 9 

ppm.µm-1 and the reference beam is 0.5 ppm.µm-1 [138] therefore the mechanical 

response is reduced approximately 6% in a half bridge configuration.  It is envisaged 

that the reduction in thermal crosstalk will be greater than this decrease and therefore 

overall will increase the mechanical proportion of the total signal of the device.  The 

thermal sensitivity has also been measured and shows a reduction from 100 ppm.K-1 in 

NiCr to 40 ppm.K-1 in constantan.  Certainly as a rheological sensor constantan is an 

excellent choice and in future work could be optimised further.  For example a better 

matching thermal expansion in the substrate or adhesion material [101], and optimised 

deposition conditions for thickness and grain size [102, 105].   

 

Taking into account the reduction in thermal and mechanical sensitivity for constantan 

and assuming that the actuation efficiency is comparable to MV2 devices in air, the 

mechanical component of the response is increased to approximately 30%.  The 

enhancement in fluids by mechanical overshoot of the response gives an estimated 

upper limit of the mechanical signal to total signal as 69% using constantan sensors.  An 

exciting result from the latest device is a visible oscillation in air when the active and 

reference microcantilever is actuated with 70 µJ energy – 0.5 ms pulse width – and the 

measurement is based on the AC coupled signal (Figure 5-1).  This would allow such a 

device to potentially be used as a gas sensor. 

 

Further changes have been made in the fabrication of the device including, changing the 

electrochemical sacrificial release with a dry release implemented by Dr Vladislav 

Djakov, and thinner polyimide encapsulation layers as suggested by the author.  The 

electronics has also been modified to increase the range of gain and digital control of 

pass filters.  The author has modified LabView software by using temporary paths for 
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data acquisition, thereby eliminating the short delay in measurements, and has 

implemented new controls for the modified electronics.  

 

 
Figure 5-1 LabView Screenshot of the AC coupled response of third generation 

microcantilever fluid probe in air using a constantan sensor and active reference 

microcantilever. 

 

A number of the characterisation experiments have developed over the course of the 

project each time making the measurement more accurate.  There are still a number of 

improvements that can be made for future experiments including larger sample sizes.  

For the mechanical sensitivity testing a finer precision stage and controllable probe 

orientation would allow more steps to be taken and therefore a better statistical average 

of the change in response.  The current thermal sensitivity measurements include a 

contribution in lead wires resistance, and this has been taken into account by using 

constantan wires.  It would be ideal to compare this with a 3-wire bridge that 

compensates for any resistance changes in lead wires by having opposing leads in 

opposite arms of the bridge.  The measurement is also very slow and therefore it would 

be easier to make several measurements on a number of devices at the same time.  This 

is currently being incorporated into a new microscope stage that will be heated from 

below and allow not only TCR measurements but a deflection measurement to be taken 

while uniformly heated.  A thermocouple close to the device would allow a more 

definitive measurement of the chip temperature to confirm the displayed incubator 
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temperature.  This is a difficult task as the size of a standard thermocouple is much 

larger than the small area of the sensor, and it cannot be placed directly on the 

microcantilever.  For future deflection measurements an optical lever technique or 

interferometer is critical as it is simply unfeasible to make reasonable measurements at 

time scales less than 50 ms.  Based on the interpretation of results from the work 

presented, the deflection of the microcantilever is not as large as has been previously 

thought and therefore the small deflections should allow these types of measurement.  

The setup would be especially useful for confirming deflections in fluids with no 

associated thermal noise.  For example, a laser vibrometer would be useful for 

measuring the mechanical oscillations after the actuation pulse.  

 

The potential of this technology to be applied across many research and commercial 

applications is very exciting and the future is not necessarily to be focused on 

incremental improvements to the device.  The current generation allows a platform for 

rheological and thermal measurement of nano-litre samples and therefore new uses can 

already be considered not only in medical and health care, but industrial automation, 

food production, automotive, inks and paints, chemical processing, and environmental 

monitoring, amongst others.  Hopefully this will become a disruptive MEMS 

technology that contributes to the economic competitiveness of the United Kingdom in 

nanoscience and can improve the quality of life for its people and others worldwide. 
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Chapter 6 - Supporting EngD Material: PRONANO - Background and 

Demonstration of Surface Imaging 
 

The previous thesis chapters have provided a foundation for design and characterisation 

of multi-layer polymer microcantilevers with integrated actuator and sensor. The 

concepts and results are exploitable for other application including the demonstration of 

polymer based scanning probes.  The design or bi-layer probes with constant stiffness 

governed by equation 2.11 in chapter 2 has been used in the Pronano project to show 

that the merger of silicon and polymer to improve actuation efficiency  is not desirable.  

This is because the optimised structure would require several microns of polymer, 

thereby reducing the resonance performance.  The results from characterisation of metal 

thin film heaters and sensors in chapter 3 has led to the decision to choose gold heaters 

and low thermal sensitivity nichrome piezoresistors.  The optical characterisation 

technique also presented in chapter 3 has been applied to polymer scanning probes to 

show a non-linear bending profile and twisting in deflection when a DC actuation is 

applied.   

  

The development of polymer scanning probes in parallel operation also provides a 

foundation for exploiting multiple biological measurements using the previously 

presented microcantilever fluid probe.  It is highly desirable to perform multiple tests in 

a single device from analysis of complex diseases to time critical intervention in 

emergency situations.  Multiple testing also provides business viability through a 

premium placed on the device.  The knowledge that can be exploited includes the 

hardware and software setup for controlling and readout of multiple channels, how to 

fan out electrical connections and contact pads, and thermal crosstalk between adjacent 

probes. 

 

The following chapter provides supporting material undertaken on the Engineering 

Doctorate towards the European FP6 project PRONANO. I have designed the 

fabrication route and lithographic masks for technology transfer and post-processed 

devices in the STFC cleanroom; characterised the performance of microcantilevers 

including electrical sensing during thermal self-oscillation; and developed a platform for 

scanning measurements of single and parallel microcantilevers. 
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Current surface metrology tools and advanced detection systems using microcantilevers 

are in general based on single probes, resulting in limited processing capability.  

According to the International Technology Roadmap for Semiconductors (ITRS) a 

major problem for the electronic industry is the real-time line width measurement below 

10 nm.  Of the techniques currently available scanning proximity probes are the most 

appropriate in terms of accuracy and application for these dimensions.  However, real-

time in-line measurements require a solution capable of high speed and high throughput 

beyond the capacity of single probes.  The development of massively parallel arrays 

yields superior speed and information, having the potential to overcome future 

limitations in industrial metrology for nanoelectronics manufacturing. 

 

Microcantilever arrays are also a promising platform technology for nanoscience.  For 

example, IBM has developed a passive array of 8 microcantilevers that can be 

differentially coated with specific receptors for biological and chemical identification 

[2, 139].  The ability to measure several biological disease markers in a single sample at 

point of care will have significant impact in medical diagnostics, from time-critical 

intervention to resource poor environments.  UK economic impact throughout the NHS 

would result from reduced infrastructure (equipment and training) needs, reduced 

patient pathways and morbidity by early intervention, and improved life-long care 

through point of care monitoring. 

 

The development of polymer based microcantilever arrays with self actuation and 

piezoresistive sensing is under investigation by STFC-MNTC within the framework of 

the European FP6 project PRONANO: Technology for the Production of Massively 

Parallel Intelligent Cantilever - Probe Platforms for Nanoscale Analysis and Synthesis 

Project (IP 515739-2 PRONANO).  PRONANO is a 5-year project with 16 partners 

from academia and industry and a combined budget of €14.2 million.  The aim of the 

project is to manufacture and demonstrate a massively parallel microcantilever chip 

with 128 x 128 proximal probes, each with fully addressable control and read-out based 

on through wafer electrical interconnects.   

 

Current state of the art scanning-probe arrays have been developed by the Quate Group 

at Stanford University [140], IBM Research Laboratory [141], and LG Electronics 

Institute of Technology [142].  The Quate Group has demonstrated a linear 1 x 50 

silicon array with integrated ZnO piezoelectric actuation and piezoresistive silicon 
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sensor for parallel AFM.  The group have also demonstrated a 2-D array (2x7) utilising 

through wafer electrical connections [143].  IBM Research Laboratory has 

demonstrated a 64 x 64 silicon array with integrated thermal actuation and thermal 

feedback for parallel data storage with terabyte per square inch density.  LG Electronics 

Institute has also fabricated a mechanical data storage device based on a 128 x 128 

silicon array with integrated thermal actuation and piezoelectric position feedback.  

Though large arrays have been realised for data storage applications the devices are 

specific to thermo-mechanical data storage and LG have yet to demonstrate multiple-

probe operation. 

 

The core technology proposed in PRONANO is based on silicon micromachined 

cantilever sensors using standard CMOS processing [144].  Each silicon cantilever has 

integrated sensing based on implanted piezoresistors in a full Wheatstone bridge 

arrangement [137] and thermally driven actuation.  The integration of electrical sensing 

on individual cantilevers overcomes the read-out limitation of laser-based optical 

detection which requires precise alignment between a laser and position sensitive 

detector for each cantilever in the array.  Integrated actuation offers advantages over 

piezotube z-actuators for scaling to massive arrays.  Firstly, the feedback speed of the 

microcantilever is improved through higher flexural resonance frequency as the 

vibrating mass is reduced to a single addressable probe compared to the non-discreet 

actuator stage in commercial AFM systems.  Also, for thermal actuation the excitation 

can be realised as an alternating current that drives resonance with a direct current 

component that controls the deflection offset of the microcantilever.  This has 

advantages in alignment/orientation of the 2D array and for maintaining tip-sample 

distance.  To enhance the actuation efficiency of silicon microcantilevers an aluminium 

nitride layer is deposited prior to release to create a bimorph. 

 

The major challenges faced by the consortium in realisation of large parallel scanning 

probe arrays include; Very large scale integration (VSLI) in micro- nano- 

manufacturing of vertical interconnections for electrical connection; Multichannel ASIC 

design for control and read-out of sensor and actuation; High speed data acquisition; 

Packaging; and thermal, electrical, and mechanical crosstalk between cantilevers. 

 

Polymer microcantilevers with integrated thermal actuation and metal piezoresistors are 

under investigation by STFC-MNTC within the PRONANO project as an alternative 
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architecture to silicon cantilevers.  Polymers can be processed using simple spin-on 

methods and are available with a wide range of thermal, electrical, and mechanical 

properties.  For wider exploitation, polymer microcantilevers are not limited to 

fabrication on silicon substrates allowing larger area volume production on polymer or 

glass substrates and lower device cost.  For exploitation of microcantilever arrays in 

chemical and biological sensing, high volume and low cost will be critical, for example, 

commercially available single AFM silicon probes have a retail cost c.a. £10 and 

therefore could be prohibitively expensive when scaled to larger arrays.   

 

Though polymers are unlikely to match the imaging resolution of silicon based scanning 

probes with ultra-sharp tips, such platforms offer alternative application.  For example, 

polymers are inherently soft and flexible, permitting imaging of soft matter, for example 

biological cells, and large surface features beyond several tens of microns.  MNTC 

propose the fabrication of stressed polymer bimorph cantilevers with large difference in 

coefficient of thermal expansion (CTE) to realise truly out-of-plane structures over two-

dimensional surfaces.  Bimorph cantilevers also provide enhanced deflection when 

thermally actuated allowing low power consumption for very large arrays.   

 

The disadvantages of integrated polymer microcantilevers for scanning probe arrays 

include reduced tip sharpness and low sensitivity in metal piezoresistors.  Poor tip 

sharpness compared to silicon probes is due to polymer devices being realised by 

surface micromachining as apposed to bulk micromachining.  Whereas silicon tips can 

be formed by etching along selective crystal planes, polymer tips are formed by 

moulding in pre-etched pits.  Metal piezoresistors have a significantly lower Gauge 

factor than silicon based piezoresistors (~ factor of 20) and therefore can be limited in 

resolution against electrical noise and drift.   

 

Previous work on polymer scanning probes in the field is limited to single probes and 

optical readout.  Pechmann et al [145] have fabricated photoresist scanning probes with 

electron beam deposited tips and demonstrated contact mode imaging.  IBM Research 

Group and collaborators have fabricated photo-plastic (SU-8) scanning probes [146, 

147] with integrated tips for demonstration in tapping mode on DNA samples.  Gaitas et 

al have fabricated polyimide bimorph scanning probes with integrated gold heaters and 

demonstrated in contact mode [148] and tapping mode [149] though excitation 

frequency was less than 100 Hz.  Gaitas et al note oscillation amplitudes < 10 nm for 
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polyimide bimorphs which is below the resolution of metal piezoresistors.  All authors 

note the use of polymer scanning probes for low spring constants and imaging of soft 

matter including biological material. 

 

6.1 Design and Characterisation 

Polyimide based scanning probes have been designed by the author and fabricated 

through technology transfer to facilities at INEX UK, and internally at STFC-MNTC. 

The concept is based on using stressed bimorph cantilevers with in-plane tips to provide 

a “stylus” probe.  This concept has been realised to aid alignment of 2-dimensional 

arrays and bring probes away from the substrate given they are not truly suspended 

from a holder as in practical AFM probes.  Using a bimorph to stress the beam out of 

plane also allows enhanced thermal actuation by choosing materials with a suitably 

large difference in coefficient of thermal expansion.  The in-plane tip is effectively 

formed by pattern transfer and dry etching during the lithographic process to define 

cantilever shapes.  Stressed probes based on NiZr metal layers have been realised for 

high topography AFM imaging by researchers at PARC [150-151].  These probes also 

use an in-plane tip but have no integrated sensor and heater and are based on single 

probes.   

 

The design and fabrication of polyimide based probes has been realised with two 

combinations of materials; low CTE Polyimide (PI-2610) and high CTE Polyimide (PI-

2562); and Gold and high CTE Polyimide (PI-2562).  The decision by the author for 

using gold as one route is to improve thermal response by introducing higher thermal 

conductivity elements.  For Gold-Polyimide bimorphs the integrated gold heater (150 

nm thickness) is sandwiched in the polyimide layer as it must be electrically isolated 

from the metal structural layer.  In the Polyimide-Polyimide bimorph the heater is 

sandwiched at the interface of the structural layers.  In both designs a NiCr piezoresistor 

element is located on the surface of the cantilever to yield the largest distance to the 

beam neutral axis and therefore maximum stress.  NiCr has been chosen for the similar 

gauge factor to other metallic films but lower temperature coefficient of resistance.  As 

the thermal actuation of polymer structures is expected to be slow a number of arrays 

have been designed that only have a piezoresistive sensor.  This allows contact probing 

and potential use as a platform for passive chemical and biological measurements.  

Figure 6-1 shows final polyimide bimorph scanning probes. 
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Previous devices fabricated at the MNTC [13] used the poor adhesion of gold to silicon 

to release cantilever devices.  This produced very good yields but the release uses a wet 

etch process which is not controllable on the undercut of the gold structural layer.  For 

the current fabrication the release layer is E-beam deposited aluminium, 0.5 µm thick.  

The step is kept to a minimum to keep subsequent films continuous.  The aluminium 

layer is subsequently patterned using photolithography and wet chemical etching to 

outline areas where microcantilevers will be released.  For Gold-Polymer devices a 75 

nm NiCr layer is sputter deposited, followed by 0.4 µm of gold.  The barrier layer is 

required to stop gold reacting with aluminium and producing intermetallic compound 

AuAl2 which is difficult to remove during the sacrificial release.  To remove the 

sacrificial layer the microcantilever device is submersed in aluminium etchant to 

provide lateral undercutting.  At room temperature and with no agitation this process 

can take approximately 21 hours.  To improve the speed of the release the aluminium 

etchant can be heated to 50-60 oC, reducing the release time to approximately 6-7 hours.  

In both cases this is a long process and in future devices a copper or chrome sacrificial 

layer will be utilised to allow faster lateral etching. 

 

      
                                  (a)                                                                   (b) 

Figure 6-1 (a) Array of Polyimide-Polyimide bimorph cantilevers with outer heaters and 

inner double meander sensors before etching of the underlying aluminium sacrificial 

layer.  Cantilevers are 225 µm in length and 80 µm in width. (b) Array of released 

Polyimide-Polyimide bimorph cantilevers with piezoresistive sensors only.  

 

Characterisation of polymer based microcantilever scanning probes provides a 

foundation for improvement to design and operation of devices.  Actuation efficiency of 

polyimide-polyimide and gold-polyimide scanning probes is presented.  This has been 

measured as set out by the methods described in Chapter 3.3.  This provides a direct 
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comparison to silicon based scanning probes developed within the PRONANO project.  

Finally, the piezoresistors response during self-oscillation frequency sweep is presented.  

Metal film gauge factor and thermal sensitivity has been reported previously in Chapter 

3.   

 

Measurement of microcantilever tip deflection is a crucial parameter for optimising 

initial and actuated deflection for exploitation of sensors and actuators.  For the 

scanning probe application it is desirable to achieve a large initial deflection of the 

multilayer structures otherwise adhesion to the substrate can be an issue in release and 

performance.  The curled deflection is also desirable to achieve surface contact using an 

in-plane tip.  High deflection efficiency is important when considering large arrays as 

low power dissipation (mW) can become considerable when scaling to thousands of 

devices.  To measure actuation efficiency the tip deflection is first measured at zero 

input power and then at several increased increments of power.  Polyimide-Polyimide 

scanning probes of 225 µm length, 90 µm width, and 3 µm thickness have an initial 

deflection of 33.8 µm and an actuation efficiency of 0.53 µm.mW-1 away from the 

substrate.  The estimated spring constant measured at the tip from the calculation of 

combined flexural rigidity is 0.96 N/m.  The stiffness is an estimate as the cantilever has 

a non-uniform cross section along the beam giving a variable flexural rigidity along the 

beam.  Gold-Polyimide scanning probes with equal length and width, and 3.4 µm 

thickness have an initial deflection of 11.8 µm and an actuation efficiency of 0.03 

µm.mW-1 towards the substrate.  The estimated spring constant measured at the tip is 

1.9 N/m. Given the deflection of Gold-Polyimide scanning probes in the measurement 

is within the error of the measurement technique it is difficult to say with confidence 

that a measurable deflection is occurring.  Silicon scanning probes fabricated in the 

PRONANO consortium with 250 µm length, 55 µm width, and 3 µm thickness, and 

having a 1 µm thick Aluminium coating to create a bimorph have achieved an actuation 

efficiency of 0.2 µm.mW-1. 

 

The results indicate that in comparison to previous gold-polyimide cantilevers 

characterised in chapter 3.3.2 (8.2 µm.mW-1) the device operation is very poor when the 

length of the beam is scaled.  The author believes this is the poor design of the 

concentrated heaters which induces focused heating only at the tip of the beam rather 

than along the device.  In comparison, silicon probes fabricated in the consortium have a 
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higher efficiency, again showing the poor actuation of polyimide probes using this 

pattern of heater.  Polyimide-Polyimide devices perform well and show the negative 

deflection that has been seen in the original microvisk cantilevers.  This could be 

exploited in scanning probes to fabricate devices that will curl-up from the substrate but 

when heated in DC will move towards the substrate rather than back to a flat position.  

 

The amplitude frequency response of polyimide based scanning probes has been 

investigated to demonstrate self-oscillation and self-sensing.  Microcantilevers are fixed 

and wire bonded to ceramic carriers and placed in the Microsystems Ltd electronics that 

has been described previously in Chapter 3.4.1.  Signal response is measured on the 

integrated NiCr piezoresistors in a ¼ Wheatstone bridge arrangement with 2.5 Volts 

bridge excitation.  Several frequency sweeps on polyimide-polyimide and gold-

polyimide have been conducted using varying actuation level, pulse shape, number of 

samples at each frequency, and frequency range and step.  No vibration isolation was 

used in the experiments.   

 

Polyimide-Polyimide microcantilevers have shown no clear amplitude peak.  In 

previous work Gaitas et al [149] also found no clear peak in polyimide bimorph AFM 

probes using thermal actuation and amplitudes below the resolution of the integrated 

NiCr sensor.  A further issue in the current MNTC-STFC probes may arise from 

thermal crosstalk between the integrated sensor and heater which saturates the signal 

response.  It is noted that improved results may arise from separation of heating and 

sensor elements either through thermal actuation with optical read-out or external 

actuation through a piezotube and integrated piezoresistors.  Peak amplitude at 27 KHz 

has been observed for Gold-Polyimide microcantilevers.  The expected resonant 

frequency using the analytical expressions of Sader [71] is 22.4 KHz.  The experimental 

response shown in Figure 6-2 has been acquired using sine excitation with 1.2 Volts 

peak-to-peak and 0.6 Volts offset on a gold microheater with 75 Ohm resistance.  The 

resistance of the NiCr piezoresistor is 4.5 KOhm.  Each data point is the average AC 

component of the piezoresistor response from 50 cycles at each frequency. 
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Figure 6-2 Integrated piezoresistor response during periodic thermal excitation of the 

integrated gold heater  

 

The highest amplitude of the probe is obtained at low frequency with a low Q peak seen 

at a half frequency of 13.5 KHz.  The expected peak frequency of 22.4 KHz is below 

the measured peak frequency in the beam (27 KHz).  The analytical estimate depends 

on the thickness of the microcantilever layers, which can have variability up to 10%, 

and on the data sheet Young’s Modulus.  The most sensitive variable is the Young’s 

Modulus of the Polyimide (PI-2562).  The data sheet value is 1.8 GPa but does not 

account for a biaxial measurement; the figure is also highly dependent on processing 

conditions.  A value between 5 – 6 GPa would increase the expected resonance to 27 

KHz. 

 

The measurement demonstrates the ability to self-oscillate the microcantilever into a 

resonance mode which has implications for sensing applications based on the amplitude 

profile.  For example, a shift in the profile has been measured when operated in water.  

For further demonstration of surface imaging STFC do not have the infrastructure for 

applying scanning probes in a high frequency mode of operation.  A route using contact 

scanning and piezoresistive sensors only (Figure 6-1b) has therefore been chosen by the 

author to demonstrate surface metrology. 
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6.2 Demonstration of Surface Imaging 

Surface metrology using single and parallel polymer scanning probes with integrated 

piezoresistors have been realised for contact imaging.  Single stylus scanning probes 

based on stressed polyimide bimorphs (Figure 6-1b) have been used to image a sample 

with high structural features (c. 8 µm).  The in-line calibration of mechanical sensitivity 

has been very successful and measured Z-height compares very well to comparison with 

KLA-Tencor profilometer (P15) results.  Parallel lines scans using 4 cantilevers in the 

polyimide probe array has been achieved but an image has not been obtained due to 

poor adhesion of electrical contacts which causes the bonding to fail within a few hours.   

 

The scanning platform is based on a 3-axis flexure stage with stepper motors (Thorlabs 

Nanomax MAX343) and controller (Thorlabs BSC103).  The stage provides large travel 

range (4 mm) that is desirable for mechanical sensitivity and deflection measurements 

of stressed bimorph microcantilevers.  The stage is limited in minimum incremental step 

(60 nm) and minimum speed (20 µm.sec-1).  To achieve scanning speed below this limit 

a step, measurement, repeat algorithm can be used though the controller requires a dwell 

time of 500 ms before the next command can be received.  Surface fabricated polyimide 

scanning probes microarrays are glued and wire bonded to a gold plated PCB carrier 

and mounted on the Nanomax scanning stage (Figure 6-3a).  In this arrangement the 

sample to be measured is mounted on a 3-axis manual stage and the final contact is 

made by computer controlled Z-height of the probes.   

 

The measurement setup is shown in Figure 6-3.  Eight piezoresistor scanning probe 

channels are connected to a National Instrument SCXI Universal Strain Gauge Module 

(SCXI-1520 and SCXI-1314) using a 3-wire quarter bridge with a passive high 

precision 22.6 KΩ completion resistor.  The SCXI-1520 module provides parallel 

measurement of up to 8-channels using track and hold circuitry.  This means that all 

channel voltage output are captured simultaneously and then multiplexed into a single 

data stream to a PC acquisition card (National Instruments, M-Series PC-6221).   
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(a) 

 
(b) 

Figure 6-3 (a) Microcantilever Array glued to a PCB and mounted on the 3-Axis 

Nanomax Stage. 8-Channels are connected using a 3-wire bridge arrangement. (b) 

Scanning setup including the Nanomax stage, manual sample mount and data 

acquisition. 
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Each channel is a full Wheatstone bridge with two 5 KΩ digital potentiometers that can 

provide automated balancing using 128 step rough potentiometer and 4096 step fine 

potentiometer analogous to the Microsystem Ltd electronics.  The module also offers 

programmable bridge excitation up to 10 V, selectable gain up to x1000, selectable low 

pass filter (10 Hz, 100 Hz, 1 KHz, 10 KHz, or bypass), and a shunt calibration circuit.  

The data capture rate of each channel is limited by the acquisition card sampling, 

channel settling time, the track time (the minimum time between the last AD conversion 

of the current scan and engaging the hold signal of the next scan), the hold time, and by 

the choice of high speed or high accuracy is required.  For multiple scanning probes the 

sampling rate of each channel is limited by the channel settling time.  As the accuracy, 

and not speed, of measurement is important at this stage the settling time is slightly 

increased reducing our maximum sampling rate to 12.5 KS/s.  The SCXI control and 

data capture and control of the 3-axis Nanomax stage have been developed in LabView 

8.6 environment by the author. A post analysis 3-dimensional plotter has also been 

written in LabView by the author to visualise the results.  A development in the 

software is to balance every channel simultaneously in the array and to incorporate a 

calibration routine where the probe is displaced by the sample and the resulting linear 

output is converted to a µV.µm-1 factor. 

 

The current setup is subject to large 50 Hz and 60 Hz electrical interference.  The 

measurement that is being conducted is step and repeat, with 2500 samples measured 

(200 ms) and then a dwell before a command can be sent to the stage controller (500 

ms).  To reduce the electrical interference a 10 Hz low pass filter has been enabled.  

Though this reduces the interference it will also have an adverse effect on the 

microcantilever response when the probe is operated at high speed – effectively 

smoothing out the data – and therefore a future aim is to control the interference at the 

source, for example, using a faraday cage. 

 

For demonstration of imaging using stressed polyimide bimorph scanning probes a 

micro fabricated sample has been chosen with large z- features (c, 8 µm) and large 

trench width (c. 50 µm).  The imaging device used is a single device in a 1x32 array of 

sensor only probes with 400 µm length, 80 µm width, and 3 µm thickness, giving an 

approximate stiffness measured at the tip  of 0.1 – 0.2 N.m-1.  The sample is fixed to a 

mechanical arm from the manual stage and adjusted towards the microcantilever with 

rough visual inspection.  The SCXI electronics is set to a bridge excitation of 2V and 
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maximum gain (x1000).  The Wheatstone bridge is balanced and z-height of the stage is 

adjusted in 250 nm steps until the microcantilever has registered contact with the 

sample.  To ensure the cantilever remains in contact during scanning across the sample 

the cantilever is displaced a further 10 microns (1.5 µN) against the sample and the 

bridge is rebalanced to give zero output.   

 

To calibrate the amplified and filtered Wheatstone bridge output voltage against 

cantilever position the microcantilever is taken through several incremental steps 

against a flat surface.  Before imaging of the sample using the polyimide bimorph 

scanning probe the calibration has been repeated 10 times at 2 minute intervals to note 

reproducibility and therefore the confidence in the voltage to height conversion.  The 

repeated calibration yields an average of 34.2 µV.µm-1 with a standard deviation of 0.2 

µV.µm-1.  This equates to a standard deviation of 5.8 nm which is below the limiting 

noise of the piezoresistor which has been measured as 30-40 nm.  The range of 

calibration from 33.9 – 34.5 µV.µm-1 equates to a range of 17.4 nm in calibration 

height.   

 

The sample has been scanned using 500 nm lateral steps controlled using the Y-position 

stage – effectively a 1 µm.sec-1 scan speed given the dwell time of the probe.  The probe 

is scanned 500 µm along the sample, lifted from the surface using the Z-control and 

returned to zero, shifted 20 µm using the X-position stage to the next scanning line and 

returned to contact where the Wheatstone bridge output is zero.  In total 19 lines have 

been measured giving a total scan area of 0.36 x 0.6 mm.  Due to the current slow 

scanning of the stage the whole image takes nearly 3 hours to form.  To limit drift in the 

mechanical sensitivity of the probes due to changing ambient temperature a calibration 

is repeated before each scanning line.   
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(a) 

 
(b) 

Figure 6-4 (a) Reconstructed image using Polyimide bimorph scanning probes. 

 (b) Reconstructed image using KLA-Tencor Stylus Profiler P15 
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Figure 6-4a shows the reconstructed 3-dimensional image from the polyimide bimorph 

scanning probe.  Each scanning line is first compensated for tilt in the image using 50 

data points (25 microns) at the start and end of the data file where the response is 

expected to be flat.  The tilt is due to the scanning probe imaging the sample at an angle; 

as the scanning stage is moved across, the microcantilever remains in contact with the 

sample but the deflection of the beam changes.  If scanning continues eventually the 

microcantilever would lose contact with the sample therefore limiting current scan area 

size.  The tilt compensated data is then converted to z-height using the calibration that 

was taken before the line measurement.   

 

For comparison, the imaged sample has been measured with a KLA Tencor P15 stylus 

profilometer with MicroHead IIsr (std).  The Tencor MicroHead IIsr uses a diamond 

stylus tip with tip radius of 2 µm and 45o cone angle.  The tip is contacted to the sample 

and maintained under a chosen force (1 mg to 50 mg) during scanning.  The tip 

displacement readout is made using a capacitive sensor and 24-bit read-out.  The step 

height repeatability is stated as 0.75 nm or 0.1% (which ever is higher).  Data has been 

recorded using a scanning speed of 5 µm.sec-1, at a sampling frequency of 100 Hz.  

Figure 6-4b shows the reconstructed 3-dimensional image from the Tencor data.  The 

Tencor data is automatically filtered to remove electrical interference and each scanning 

line is again compensated for tilt using 500 data points (25 microns) at the start and end 

of the data file where the response is expected to be flat. 

 

For direct comparison figure 6-5 shows a cross section of the image attributed to a 

single line scan using the polyimide bimorph scanning probe and the Tencor 

profilometer.  The polyimide scanning probes shows good reproducibility in height to 

the Tencor Profilometer but poor side wall reproduction.  This is due to the probe 

having poor initial deflection and therefore imaging in a flat position which cannot fall 

into the trench.  Future improvement would be to engineering near vertical tip deflection 

and extend the tip. 
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Figure 6-5 Line profile comparison between Polyimide Bimorph Scanning Probes (solid 

line) and Tencor Stylus Profilometer (dashed line). 

 

An inconsistency in the profile measurements is the polyimide probe signal when the 

cantilever is in contact with the top photoresist layer.  As the probe is scanned the signal 

increases as it approaches the first trench and decreases away from the second trench, 

whereas the Tencor produces a flat signal.  This can be seen in Figure 6-4b where the 

KLA tencor scan has a very smooth uniformity.  The difference in signal is not due to a 

thermal conductivity effect whereby the material conducts heat away from the 

cantilever induced in the sensor self heating otherwise the signal would increase on both 

sides.  The difference is also not due to a self heating effect where the change in the 

sensor resistance under a fixed voltage reduces the current and therefore power 

dissipation.  Further experimentation with the polymer probe and Tencor is required to 

understand this difference. 

 

Further imaging using several parallel polyimide bimorphs has not been possible due to 

poor yield in electrical connection to the devices.  To solve further issues with 

alignment the author and Dr Andreas Schneider (STFC) have designed suspended 

polymer scanning probes based on SU-8.  Figure 6-6 shows a 1x8 SU-8 scanning probe 

array with integrated sensors and tips fabricated by Dr. Andreas Schneider at the 

MNTC.  This architecture allows the cantilever array to be completely released from the 

substrate on a 300 µm thick SU-8 holder and for tips to be integrated through moulding 

of pyramidal pits in the substrate.   
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Figure 6-6 SEM images of SU-8 scanning probes arrays with 

 integrated piezoresistor and tips courtesy of Dr Andreas Schneider (STFC). 

 

Overall the resolution of the polyimide scanning probe is limited by the metal 

piezoresistor to 30-40 nm with additional noise generated in the large lead-in to the 

device.  The expected resistance on the microcantilever is approximately 5 KΩ  but 

each contact needs to be fanned out to electrical pads and this adds an additional 17.6 

KΩ.  In future devices it is desirable to reduce this additional load either through 

shortening of tracks or through silicon interconnects.   

 

The group are currently investigating Diamond-Like Carbon (DLC) piezoresistors as a 

potential high gauge factor material and if successful this will be incorporated into 

future devices.   

 

Current devices also have poor lateral resolution though this was expected as no attempt 

was made to sharpen or improve the in-plane tip.  A simple option is to define a sharper 

tip in the mask though this is limited by the pattern transfer in photolithography.  A 

possible direction would be to define the tip using direct write methods with sub micron 

line width though alignment is an obstacle to overcome.  It is also possible to directly 

deposit tips onto the beam but this is not desirable for high-throughput of fabricated 

devices.   

 

It is concluded that scanning probes with integrated sensors and heaters are interesting 

devices for niche applications but the majority of interest is in single AFM probes with 

optical read-out.  Future work will therefore be aimed towards single polymer probes 

with no integration.  It is important to note that the development of new piezoresistor 

materials (e.g. DLC) and operation (e.g. Self-Oscillation) have implication across the 
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portfolio of microcantilever projects, including the fluid probe, and therefore each 

element is of interest to move forward. 
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Appendix A – Neutral Axis 
The neutral axis is defined as the plane in which the resultant axial force acting on the 

cross section is zero.  For a microcantilever with n layers 
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where nσ  is the normal stress in the nth layer and A  is the layer cross sectional area.  If 

the beam is assumed to obey Hookes law the normal stress is equal to 
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where iε  is the longitudinal strain, r
1  is the beam curvature, iE  is the Young’s 

modulus, and iŷ  is the distance from the neutral axis to the centre of the layer.  

Substituting A.2 into equation A.1 
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The curvature along the beam is constant and therefore A3 can simplify to 
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The distance from the neutral axis to the centre of each layer can be written as 
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where h  is the distance from the top surface of the microcantilever to the plane of the 

neutral axis.  Substituting the form of equation A.5 into A.4 and integrating over the 

area of the layer to give the width multiplied by thickness, equation A.4 becomes 
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Identifying repeating terms for each added layer in equation A.6 and collecting  
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Rearranging for the neutral axis h  gives 
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Appendix B – Static Bimorph Equation 
 

It can be shown that for small deflections the shape of a released multilayer beam along 

the neutral axis is given by the Euler-Bernoulli equation 
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where 22 / dxyd  is the curvature at a point on the beam, ),,( 11 ii tEtEM K  is the net 

bending moment acting on the beam due to residual material stress, and 

),,( 11 ii tEtEEI K  is the composite flexural rigidity of the beam based on the Young’s 

modulus and second moment of area of each layer. 1E , 1w  and 1t  are the Young’s 

modulus, width and thickness of the top layer, 2E , 2w and 2t  are the Young’s modulus, 

width and thickness of the bottom layer. 

 

The composite flexural rigidity of the beam is equal to  
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where the parallel axis theory is used to find the second moment of area iI  around an 

arbitrary axis, taken in this case as the neutral axis of the beam.  iŷ  is the distance of the 

area centroid to the neutral axis. For a bimorph structure the flexural rigidity can be re-

written as 
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Where the distance to the neutral axis position h  is given by 

 

2/ˆ 11 thy −=  and 2/ˆ 212 tthy −−=                                                                           [B.4] 

 

From Appendix A the neutral axis of a bimorph is found using 
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Substituting equation B.4 into B.3 
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Substituting equation B.5 into B.6 
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Working through the squared factors and simplifying, the flexural rigidity can be 

written as 
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The initial moment acting on the bimorph can be written as 
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where iε  is the mean strain due to process conditions, ε∆ is the strain variation when 

the beam is released, and ryiˆ−  is the strain due to the curvature r  of the cantilever 

[58].  Substituting B.4 into B.9 and noting that the unreleased microcantilever has 

effectively infinite curvature 
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Substituting equation B.5 into B.10 
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Simplifying the initial bending moment, equation B.11 can be re-written as 
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Substituting the Moment [B.12] and flexural rigidity [B.8] into equation [B.1] 
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This simplifies to the familiar bimorph equation 
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Appendix C – Support Letter 

 
 


