16,574 research outputs found

    Proceedings of the Workshop Semantic Content Acquisition and Representation (SCAR) 2007

    Get PDF
    This is the proceedings of the Workshop on Semantic Content Acquisition and Representation, held in conjunction with NODALIDA 2007, on May 24 2007 in Tartu, Estonia.</p

    Neurocognitive Informatics Manifesto.

    Get PDF
    Informatics studies all aspects of the structure of natural and artificial information systems. Theoretical and abstract approaches to information have made great advances, but human information processing is still unmatched in many areas, including information management, representation and understanding. Neurocognitive informatics is a new, emerging field that should help to improve the matching of artificial and natural systems, and inspire better computational algorithms to solve problems that are still beyond the reach of machines. In this position paper examples of neurocognitive inspirations and promising directions in this area are given

    Medical WordNet: A new methodology for the construction and validation of information resources for consumer health

    Get PDF
    A consumer health information system must be able to comprehend both expert and non-expert medical vocabulary and to map between the two. We describe an ongoing project to create a new lexical database called Medical WordNet (MWN), consisting of medically relevant terms used by and intelligible to non-expert subjects and supplemented by a corpus of natural-language sentences that is designed to provide medically validated contexts for MWN terms. The corpus derives primarily from online health information sources targeted to consumers, and involves two sub-corpora, called Medical FactNet (MFN) and Medical BeliefNet (MBN), respectively. The former consists of statements accredited as true on the basis of a rigorous process of validation, the latter of statements which non-experts believe to be true. We summarize the MWN / MFN / MBN project, and describe some of its applications

    Visual and Contextual Modeling for the Detection of Repeated Mild Traumatic Brain Injury.

    Get PDF
    Currently, there is a lack of computational methods for the evaluation of mild traumatic brain injury (mTBI) from magnetic resonance imaging (MRI). Further, the development of automated analyses has been hindered by the subtle nature of mTBI abnormalities, which appear as low contrast MR regions. This paper proposes an approach that is able to detect mTBI lesions by combining both the high-level context and low-level visual information. The contextual model estimates the progression of the disease using subject information, such as the time since injury and the knowledge about the location of mTBI. The visual model utilizes texture features in MRI along with a probabilistic support vector machine to maximize the discrimination in unimodal MR images. These two models are fused to obtain a final estimate of the locations of the mTBI lesion. The models are tested using a novel rodent model of repeated mTBI dataset. The experimental results demonstrate that the fusion of both contextual and visual textural features outperforms other state-of-the-art approaches. Clinically, our approach has the potential to benefit both clinicians by speeding diagnosis and patients by improving clinical care

    Ad hoc categories

    Get PDF
    People construct ad hoc categories to achieve goals. For example, constructing the category of ā€œthings to sell at a garage saleā€ can be instrumental to achieving the goal of selling unwanted possessions. These categories differ from common categories (e.g., ā€œfruit,ā€ ā€œfurnitureā€) in that ad hoc categories violate the correlational structure of the environment and are not well established in memory. Regarding the latter property, the category concepts, concept-to-instance associations, and instance-to-concept associations structuring ad hoc categories are shown to be much less established in memory than those of common categories. Regardless of these differences, however, ad hoc categories possess graded structures (i.e., typicality gradients) as salient as those structuring common categories. This appears to be the result of a similarity comparison process that imposes graded structure on any category regardless of type

    PhenDisco: phenotype discovery system for the database of genotypes and phenotypes.

    Get PDF
    The database of genotypes and phenotypes (dbGaP) developed by the National Center for Biotechnology Information (NCBI) is a resource that contains information on various genome-wide association studies (GWAS) and is currently available via NCBI's dbGaP Entrez interface. The database is an important resource, providing GWAS data that can be used for new exploratory research or cross-study validation by authorized users. However, finding studies relevant to a particular phenotype of interest is challenging, as phenotype information is presented in a non-standardized way. To address this issue, we developed PhenDisco (phenotype discoverer), a new information retrieval system for dbGaP. PhenDisco consists of two main components: (1) text processing tools that standardize phenotype variables and study metadata, and (2) information retrieval tools that support queries from users and return ranked results. In a preliminary comparison involving 18 search scenarios, PhenDisco showed promising performance for both unranked and ranked search comparisons with dbGaP's search engine Entrez. The system can be accessed at http://pfindr.net

    Towards new information resources for public health: From WordNet to MedicalWordNet

    Get PDF
    In the last two decades, WORDNET has evolved as the most comprehensive computational lexicon of general English. In this article, we discuss its potential for supporting the creation of an entirely new kind of information resource for public health, viz. MEDICAL WORDNET. This resource is not to be conceived merely as a lexical extension of the original WORDNET to medical terminology; indeed, there is already a considerable degree of overlap between WORDNET and the vocabulary of medicine. Instead, we propose a new type of repository, consisting of three large collections of (1) medically relevant word forms, structured along the lines of the existing Princeton WORDNET; (2) medically validated propositions, referred to here as medical facts, which will constitute what we shall call MEDICAL FACTNET; and (3) propositions reflecting laypersonsā€™ medical beliefs, which will constitute what we shall call the MEDICAL BELIEFNET. We introduce a methodology for setting up the MEDICAL WORDNET. We then turn to the discussion of research challenges that have to be met in order to build this new type of information resource

    Multiple Instance Learning: A Survey of Problem Characteristics and Applications

    Full text link
    Multiple instance learning (MIL) is a form of weakly supervised learning where training instances are arranged in sets, called bags, and a label is provided for the entire bag. This formulation is gaining interest because it naturally fits various problems and allows to leverage weakly labeled data. Consequently, it has been used in diverse application fields such as computer vision and document classification. However, learning from bags raises important challenges that are unique to MIL. This paper provides a comprehensive survey of the characteristics which define and differentiate the types of MIL problems. Until now, these problem characteristics have not been formally identified and described. As a result, the variations in performance of MIL algorithms from one data set to another are difficult to explain. In this paper, MIL problem characteristics are grouped into four broad categories: the composition of the bags, the types of data distribution, the ambiguity of instance labels, and the task to be performed. Methods specialized to address each category are reviewed. Then, the extent to which these characteristics manifest themselves in key MIL application areas are described. Finally, experiments are conducted to compare the performance of 16 state-of-the-art MIL methods on selected problem characteristics. This paper provides insight on how the problem characteristics affect MIL algorithms, recommendations for future benchmarking and promising avenues for research

    Internal representation and factional faultlines as antecedents for board performance in social enterprises

    Get PDF
    There is an increasing scholarly interest in how social enterprises manage their hybrid nature. As hybrid organizational forms, social enterprises combine mission-driven social goals and revenue generating activities in a variety of organizational constellations and in diverse institutional contexts. Acknowledging the potentially conflicting demands that institutional environments impose on social enterprises there is an increasing research interest in the existence and proliferation of these conflicting demands at the organizational level. Some researchers have pointed to the importance of particular management practices and governance characteristics ā€“ such as authority relations and internal representation ā€“ as mechanisms to deal with the conflicting demands at the organizational level. This paper adds to this stream of literature by taking into account the organizational level dynamics of internal representation and the proliferation of factional groups in the boards of directors of hybrid organizational forms and their impact on board performance, ultimately influencing the organizational performance
    • ā€¦
    corecore