26 research outputs found

    AN INVESTIGATION OF DIFFERENT VIDEO WATERMARKING TECHNIQUES

    Get PDF
    Watermarking is an advanced technology that identifies to solve the problem of illegal manipulation and distribution of digital data. It is the art of hiding the copyright information into host such that the embedded data is imperceptible. The covers in the forms of digital multimedia object, namely image, audio and video. The extensive literature collected related to the performance improvement of video watermarking techniques is critically reviewed and presented in this paper. Also, comprehensive review of the literature on the evolution of various video watermarking techniques to achieve robustness and to maintain the quality of watermarked video sequences

    Audio watermarking using transformation techniques

    Get PDF
    Watermarking is a technique, which is used in protecting digital information like images, videos and audio as it provides copyrights and ownership. Audio watermarking is more challenging than image watermarking due to the dynamic supremacy of hearing capacity over the visual field. This thesis attempts to solve the quantization based audio watermarking technique based on both the Discrete Cosine Transform (DCT) and Discrete Wavelet Transform (DWT). The underlying system involves the statistical characteristics of the signal. This study considers different wavelet filters and quantization techniques. A comparison is performed on diverge algorithms and audio signals to help examine the performance of the proposed method. The embedded watermark is a binary image and different encryption techniques such as Arnold Transform and Linear Feedback Shift Register (LFSR) are considered. The watermark is distributed uniformly in the areas of low frequencies i.e., high energy, which increases the robustness of the watermark. Further, spreading of watermark throughout the audio signal makes the technique robust against desynchronized attacks. Experimental results show that the signals generated by the proposed algorithm are inaudible and robust against signal processing techniques such as quantization, compression and resampling. We use Matlab (version 2009b) to implement the algorithms discussed in this thesis. Audio transformation techniques for compression in Linux (Ubuntu 9.10) are applied on the signal to simulate the attacks such as re-sampling, re-quantization, and mp3 compression; whereas, Matlab program for de-synchronized attacks like jittering and cropping. We envision that the proposed algorithm may work as a tool for securing intellectual properties of the musicians and audio distribution companies because of its high robustness and imperceptibility

    Localization of Copy-Move Forgery in speech signals through watermarking using DCT-QIM

    Get PDF
    Digital speech copyright protection and forgery identification are the prevalent issues in our advancing digital world. In speech forgery, voiced part of the speech signal is copied and pasted to a specific location which alters the meaning of the speech signal. Watermarking can be used to safe guard the copyrights of the owner. To detect copy-move forgeries a transform domain watermarking method is proposed. In the proposed method, watermarking is achieved through Discrete Cosine Transform (DCT) and Quantization Index Modulation (QIM) rule. Hash bits are also inserted in watermarked voice segments to detect Copy-Move Forgery (CMF) in speech signals. Proposed method is evaluated on two databases and achieved good imperceptibility. It exhibits robustness in detecting the watermark and forgeries against signal processing attacks such as resample, low-pass filtering, jittering, compression and cropping. The proposed work contributes for forensics analysis in speech signals. This proposed work also compared with the some of the state-of-art methods

    Localization of Copy-Move Forgery in speech signals through watermarking using DCT-QIM

    Get PDF
    Digital speech copyright protection and forgery identification are the prevalent issues in our advancing digital world. In speech forgery, voiced part of the speech signal is copied and pasted to a specific location which alters the meaning of the speech signal. Watermarking can be used to safe guard the copyrights of the owner. To detect copy-move forgeries a transform domain watermarking method is proposed. In the proposed method, watermarking is achieved through Discrete Cosine Transform (DCT) and Quantization Index Modulation (QIM) rule. Hash bits are also inserted in watermarked voice segments to detect Copy-Move Forgery (CMF) in speech signals. Proposed method is evaluated on two databases and achieved good imperceptibility. It exhibits robustness in detecting the watermark and forgeries against signal processing attacks such as resample, low-pass filtering, jittering, compression and cropping. The proposed work contributes for forensics analysis in speech signals. This proposed work also compared with the some of the state-of-art methods

    AN INVESTIGATION OF DIFFERENT VIDEO WATERMARKING TECHNIQUES

    Get PDF

    Modified DCT-based Audio Watermarking Optimization using Genetics Algorithm

    Get PDF
    Ease process digital data information exchange impact on the increase in cases of copyright infringement. Audio watermarking is one solution in providing protection for the owner of the work. This research aims to optimize the insertion parameters on Modified Discrete Cosine Transform (M-DCT) based audio watermarking using a genetic algorithm, to produce better audio resistance. MDCT is applied after reading host audio, then embedding in MDCT domain is applied by Quantization Index Modulation (QIM) technique. Insertion within the MDCT domain is capable of generating a high imperceptible watermarked audio due to its overlapping frame system. The system is optimized using genetic algorithms to improve the value of imperceptibility and robustness in audio watermarking. In this research, the average SNR reaches 20 dB, and ODG reaches -0.062. The subjective quality testing on the system obtains an average MOS of 4.22 out of five songs tested. In addition, the system is able to withstand several attacks. The use of M-DCT in audio watermaking is capable of producing excellent imperceptibility and better watermark robustness

    Semi fragile audio crypto-watermarking based on sparse sampling with partially decomposed Haar matrix structure

    Get PDF
    In the recent era the growth of technology is tremendous and at the same time, the misuse of technology is also increasing with an equal scale. Thus the owners have to protect the multimedia data from the malicious and piracy. This has led the researchers to the new era of cryptography and watermarking. In the traditional security algorithm for the audio, the algorithm is implemented on the digital data after the traditional analog to digital conversion. But in this article, we propose the crypto – watermarking algorithm based on sparse sampling to be implemented during the analog to digital conversion process only. The watermark is generated by exploiting the structure of HAAR transform. The performance of the algorithm is tested on various audio signals and the obtained SNR is greater than 30dB and the algorithm results in good robustness against various signal attacks such as echo addition, noise addition, reverberation etc

    Frame-synchronous Blind Audio Watermarking for Tamper Proofing and Self-Recovery

    Get PDF
    This paper presents a lifting wavelet transform (LWT)-based blind audio watermarking scheme designed for tampering detection and self-recovery. Following 3-level LWT decomposition of a host audio, the coefficients in selected subbands are first partitioned into frames for watermarking. To suit different purposes of the watermarking applications, binary information is packed into two groups: frame-related data are embedded in the approximation subband using rational dither modulation; the source-channel coded bit sequence of the host audio is hidden inside the 2nd and 3rd -detail subbands using 2N-ary adaptive quantization index modulation. The frame-related data consists of a synchronization code used for frame alignment and a composite message gathered from four adjacent frames for content authentication. To endow the proposed watermarking scheme with a self-recovering capability, we resort to hashing comparison to identify tampered frames and adopt a Reed–Solomon code to correct symbol errors. The experiment results indicate that the proposed watermarking scheme can accurately locate and recover the tampered regions of the audio signal. The incorporation of the frame synchronization mechanism enables the proposed scheme to resist against cropping and replacement attacks, all of which were unsolvable by previous watermarking schemes. Furthermore, as revealed by the perceptual evaluation of audio quality measures, the quality degradation caused by watermark embedding is merely minor. With all the aforementioned merits, the proposed scheme can find various applications for ownership protection and content authentication

    Framework for privacy-aware content distribution in peer-to- peer networks with copyright protection

    Get PDF
    The use of peer-to-peer (P2P) networks for multimedia distribution has spread out globally in recent years. This mass popularity is primarily driven by the efficient distribution of content, also giving rise to piracy and copyright infringement as well as privacy concerns. An end user (buyer) of a P2P content distribution system does not want to reveal his/her identity during a transaction with a content owner (merchant), whereas the merchant does not want the buyer to further redistribute the content illegally. Therefore, there is a strong need for content distribution mechanisms over P2P networks that do not pose security and privacy threats to copyright holders and end users, respectively. However, the current systems being developed to provide copyright and privacy protection to merchants and end users employ cryptographic mechanisms, which incur high computational and communication costs, making these systems impractical for the distribution of big files, such as music albums or movies.El uso de soluciones de igual a igual (peer-to-peer, P2P) para la distribución multimedia se ha extendido mundialmente en los últimos años. La amplia popularidad de este paradigma se debe, principalmente, a la distribución eficiente de los contenidos, pero también da lugar a la piratería, a la violación del copyright y a problemas de privacidad. Un usuario final (comprador) de un sistema de distribución de contenidos P2P no quiere revelar su identidad durante una transacción con un propietario de contenidos (comerciante), mientras que el comerciante no quiere que el comprador pueda redistribuir ilegalmente el contenido más adelante. Por lo tanto, existe una fuerte necesidad de mecanismos de distribución de contenidos por medio de redes P2P que no supongan un riesgo de seguridad y privacidad a los titulares de derechos y los usuarios finales, respectivamente. Sin embargo, los sistemas actuales que se desarrollan con el propósito de proteger el copyright y la privacidad de los comerciantes y los usuarios finales emplean mecanismos de cifrado que implican unas cargas computacionales y de comunicaciones muy elevadas que convierten a estos sistemas en poco prácticos para distribuir archivos de gran tamaño, tales como álbumes de música o películas.L'ús de solucions d'igual a igual (peer-to-peer, P2P) per a la distribució multimèdia s'ha estès mundialment els darrers anys. L'àmplia popularitat d'aquest paradigma es deu, principalment, a la distribució eficient dels continguts, però també dóna lloc a la pirateria, a la violació del copyright i a problemes de privadesa. Un usuari final (comprador) d'un sistema de distribució de continguts P2P no vol revelar la seva identitat durant una transacció amb un propietari de continguts (comerciant), mentre que el comerciant no vol que el comprador pugui redistribuir il·legalment el contingut més endavant. Per tant, hi ha una gran necessitat de mecanismes de distribució de continguts per mitjà de xarxes P2P que no comportin un risc de seguretat i privadesa als titulars de drets i els usuaris finals, respectivament. Tanmateix, els sistemes actuals que es desenvolupen amb el propòsit de protegir el copyright i la privadesa dels comerciants i els usuaris finals fan servir mecanismes d'encriptació que impliquen unes càrregues computacionals i de comunicacions molt elevades que fan aquests sistemes poc pràctics per a distribuir arxius de grans dimensions, com ara àlbums de música o pel·lícules

    Markov bidirectional transfer matrix for detecting LSB speech steganography with low embedding rates

    Get PDF
    Steganalysis with low embedding rates is still a challenge in the field of information hiding. Speech signals are typically processed by wavelet packet decomposition, which is capable of depicting the details of signals with high accuracy. A steganography detection algorithm based on the Markov bidirectional transition matrix (MBTM) of the wavelet packet coefficient (WPC) of the second-order derivative-based speech signal is proposed. On basis of the MBTM feature, which can better express the correlation of WPC, a Support Vector Machine (SVM) classifier is trained by a large number of Least Significant Bit (LSB) hidden data with embedding rates of 1%, 3%, 5%, 8%,10%, 30%, 50%, and 80%. LSB matching steganalysis of speech signals with low embedding rates is achieved. The experimental results show that the proposed method has obvious superiorities in steganalysis with low embedding rates compared with the classic method using histogram moment features in the frequency domain (HMIFD) of the second-order derivative-based WPC and the second-order derivative-based Mel-frequency cepstral coefficients (MFCC). Especially when the embedding rate is only 3%, the accuracy rate improves by 17.8%, reaching 68.5%, in comparison with the method using HMIFD features of the second derivative WPC. The detection accuracy improves as the embedding rate increases
    corecore