633 research outputs found

    Signal Detection Techniques for Diagnostic Monitoring of Space Shuttle Main Engine Turbomachinery

    Get PDF
    An investigation to develop, implement, and evaluate signal analysis techniques for the detection and classification of incipient mechanical failures in turbomachinery is reviewed. A brief description of the Space Shuttle Main Engine (SSME) test/measurement program is presented. Signal analysis techniques available to describe dynamic measurement characteristics are reviewed. Time domain and spectral methods are described, and statistical classification in terms of moments is discussed. Several of these waveform analysis techniques have been implemented on a computer and applied to dynamc signals. A laboratory evaluation of the methods with respect to signal detection capability is described. A unique coherence function (the hyper-coherence) was developed through the course of this investigation, which appears promising as a diagnostic tool. This technique and several other non-linear methods of signal analysis are presented and illustrated by application. Software for application of these techniques has been installed on the signal processing system at the NASA/MSFC Systems Dynamics Laboratory

    Variability analysis of engine idle vibration

    Get PDF
    Vibration in motor vehicles is largely influenced by the engine and thus has become the focus of much automotive testing. Engine idle vibration is focused on since deviations in the vibration signature are prevalent at this operating condition. The objective of this thesis was to derive a best-practice method for the analysis of engine idle vibration. Variability of the engine vibration signatures was calculated through the implementation of multiple analysis techniques. These methods included: angle domain analysis, the fast Fourier transform, the discrete cosine transform, the moving average model, and the auto-regressive moving average model. Also included in the investigation were examinations of data normalization, detrending, and filtration. The results of the analyses were then evaluated with reference to the correlation between similar engines and the identification of outliers. It was found that the fast Fourier transform analysis technique provided the best overall results. The moving average model and the auto-regressive moving average models were also identified as methods that have great potential in vibration analysis but are limited by their computational intensity

    Pattern recognition for HEV engine diagnostic using an improved statistical analysis

    Get PDF
    Detecting early symptoms of engine failure is a crucial phase in an engine management system to prevent poor driving performance and experience. This paper proposes a Hybrid Electric Vehicle (HEV) engine diagnostics using a low-cost piezo-film sensor, an analysis with improved statistical method and verification by a Support Vector Machine (SVM). The current engine management system is unable to evaluate the performance of each cylinder operation. Eventually, it affects the whole hybrid vehicle system, particularly in the mode of charging and accelerating. This research aims to classify the combustion to monitor the condition of sparking activity of the engine by using the Z-freq statistical method. Piezo-film sensors were mounted on the Internal Combustion Engine (ICE) wall of each hybrid vehicle for vibration signal measurements. The engine runs at different speeds, the vibration signals were then recorded and analysed using the Z-freq technique. A machine learning tool referred to as Support Vector Machine was used to verify the classifications made by the Z-freq technique. A significant correlation was found between the voltage signal and calculated Z-freq coefficient value. Moreover, a good pattern was produced within a consistent value of the engine speed. This technique is useful for the hybrid engine to identify different stages of combustion and enable pattern categorisation of the measured parameters. These improved techniques provide strong evidence based on pattern representation and facilitate the investigator to categorise the measured parameters

    Noise-Source Separation Using Internal and Far-Field Sensors for a Full-Scale Turbofan Engine

    Get PDF
    Noise-source separation techniques for the extraction of the sub-dominant combustion noise from the total noise signatures obtained in static-engine tests are described. Three methods are applied to data from a static, full-scale engine test. Both 1/3-octave and narrow-band results are discussed. The results are used to assess the combustion-noise prediction capability of the Aircraft Noise Prediction Program (ANOPP). A new additional phase-angle-based discriminator for the three-signal method is also introduced

    Real-Time Engine Diagnostic and Control Based on Acoustic Emissions Analysis

    Get PDF
    Engine developers are putting more and more emphasis on the research of maximum thermal and mechanical efficiency in the recent years. Research advances have proven the effectiveness of downsized, turbocharged and direct injection concepts, applied to gasoline combustion systems, to reduce the overall fuel consumption while respecting exhaust emissions limits. These new technologies require more complex engine control units. The sound emitted from a mechanical system encloses many information related to its operating condition and it can be used for control and diagnostic purposes. The thesis shows how the functions carried out from different and specific sensors usually present on-board, can be executed, at the same time, using only one multifunction sensor based on low-cost microphone technology. A theoretical background about sound and signal processing is provided in chapter 1. In modern turbocharged downsized GDI engines, the achievement of maximum thermal efficiency is precluded by the occurrence of knock. Knock emits an unmistakable sound perceived by the human ear like a clink. In chapter 2, the possibility of using this characteristic sound for knock control propose, starting from first experimental assessment tests, to the implementation in a real, production-type engine control unit will be shown. Chapter 3 focus is on misfire detection. Putting emphasis on the low frequency domain of the engine sound spectrum, features related to each combustion cycle of each cylinder can be identified and isolated. An innovative approach to misfire detection, which presents the advantage of not being affected by the road and driveline conditions is introduced. A preliminary study of air path leak detection techniques based on acoustic emissions analysis has been developed, and the first experimental results are shown in chapter 4. Finally, in chapter 5, an innovative detection methodology, based on engine vibration analysis, that can provide useful information about combustion phase is reported.Negli ultimi anni, nel panorama automobilistico mondiale è stata introdotta una nuova generazione di motori, che rappresentano la ricerca della massima efficienza termica e meccanica. Numerose ricerche hanno dimostrato l'efficacia dei concetti di iniezione diretta, riduzione della cilindrata, sovralimentazione applicate a sistemi di combustione ad accensione comandata, per ridurre il consumo e rispettare i limiti di emissioni. Queste nuove tecnologie richiedono sistemi di gestione sempre più complessi. Il suono emesso da un sistema meccanico racchiude molte informazioni relative alla sua condizione operativa e attraverso una opportuna elaborazione può essere utilizzato con finalità di controllo e diagnostica. Nella tesi verrà mostrato come funzioni specifiche svolte da sensori differenti presenti in vettura, possono essere eseguite tramite un unico sensore multifunzione basato su una tecnologia microfonica a basso costo. Il primo capitolo introdurrà alcune nozioni di acustica e del trattamento dei segnali. Il capitolo 2 illustra lo sviluppo di indici di detonazione basati sull’elaborazione del segnale acustico applicati sia a motori automobilisti che motociclistici. Questa tecnica di identificazione è stata implementata in una reale centralina di produzione. Nel terzo capitolo viene analizzata la capacità di rilevamento di mancate accensioni mediante l’analisi sonora. Nel dominio delle basse frequenze sonore, è possibile individuare caratteristiche relative a ciascun ciclo di combustione di ogni cilindro. Il vantaggio presentato da questa metodologia di identificazione è di non essere influenzato dalle condizioni della linea di trasmissione e della strada, come invece accade per la tecnologia più largamente utilizzata, che è basata sull’analisi della velocità istantanea dell’albero motore. Nel capitolo 4 vengono mostrati i primi studi e risultati sperimentali nello sviluppo di una tecnica di identificazione di perdite del giro aria mediante analisi acustica. Nel capitolo 5 verrà descritta una metodologia di analisi innovativa del segnale accelerometrico in grado di fornire informazioni utili per la determinazione della fase di combustione

    Acoustic emission monitoring of propulsion systems : a laboratory study on a small gas turbine

    Get PDF
    The motivation of the work is to investigate a new, non-intrusive condition monitoring system for gas turbines with capabilities for earlier identification of any changes and the possibility of locating the source of the faults. This thesis documents experimental research conducted on a laboratory-scale gas turbine to assess the monitoring capabilities of Acoustic Emission (AE). In particular it focuses on understanding the AE behaviour of gas turbines under various normal and faulty running conditions. A series of tests was performed with the turbine running normally, either idling or with load. Two abnormal running configurations were also instrumented in which the impeller was either prevented from rotation or removed entirely. With the help of demodulated resonance analysis and an ANN it was possible to identify two types of AE; a background broadband source which is associated with gas flow and flow resistance, and a set of spectral frequency peaks which are associated with reverberation in the exhaust and coupling between the alternator and the turbine. A second series of experiments was carried out with an impeller which had been damaged by removal of the tips of some of the blades (two damaged blades and four damaged blades). The results show the potential capability of AE to identify gas turbine blade faults. The AE records showed two obvious indicators of blade faults, the first being that the energy in the AE signals becomes much higher and is distinctly periodic at higher speeds, and the second being the appearance of particular pulse patterns which can be characterized in the demodulated frequency domain

    EEMD-Based cICA method for single-channel signal separation and fault feature extraction of gearbox

    Get PDF
    This paper proposes a novel fault feature extraction method with the aim of extracting the fault feature submerged in the single-channel observation signal. The proposed method integrates the strengths of the constrained independent component analysis (cICA) extracting only the signals of interest (SOIs) with the advantage of ensemble empirical mode decomposition (EEMD) alleviating the mode mixing. The method, which is named EEMD-based cICA, not only enables gear fault feature extraction but also offers a new independent component analysis (ICA) mixing model with source noise and measured noise for the single-channel observation signal. The efficiency of the proposed method is tested on simulated as well as real-world vibration signals acquired from a multi-stage gearbox with a missing tooth and a chipped tooth, respectively
    • …
    corecore