# Variability analysis of engine idle vibration 

Carol Lynn Deck<br>University of Windsor

Follow this and additional works at: https://scholar.uwindsor.ca/etd

## Recommended Citation

Deck, Carol Lynn, "Variability analysis of engine idle vibration" (2008). Electronic Theses and Dissertations. 4502.
https://scholar.uwindsor.ca/etd/4502

This online database contains the full-text of PhD dissertations and Masters' theses of University of Windsor students from 1954 forward. These documents are made available for personal study and research purposes only, in accordance with the Canadian Copyright Act and the Creative Commons license-CC BY-NC-ND (Attribution, Non-Commercial, No Derivative Works). Under this license, works must always be attributed to the copyright holder (original author), cannot be used for any commercial purposes, and may not be altered. Any other use would require the permission of the copyright holder. Students may inquire about withdrawing their dissertation and/or thesis from this database. For additional inquiries, please contact the repository administrator via email (scholarship@uwindsor.ca) or by telephone at 519-253-3000ext. 3208.

# VARIABILITY ANALYSIS OF ENGINE IDLE VIBRATION 

by<br>Carol Lynn Deck

# A Thesis <br> Submitted to the Faculty of Graduate Studies through the Department of Mechanical, Automotive and Materials Engineering in Partial Fulfillment of the Requirements for the degree of Master of Applied Science at the University of Windsor 

Windsor, Ontario, Canada
2008
© 2008 Carol Lynn Deck

Library and
Archives Canada
Published Heritage Branch

395 Wellington Street Ottawa ON K1A 0N4 Canada

Bibliothèque et
Archives Canada
Direction du
Patrimoine de l'édition
395, rue Wellington Ottawa ON K1Ă 0N4
Canada

Your file Votre référence
ISBN: 978-0-494-42258-8
Our file Notre référence
ISBN: 978-0-494-42258-8

## NOTICE:

The author has granted a nonexclusive license allowing Library and Archives Canada to reproduce, publish, archive, preserve, conserve, communicate to the public by telecommunication or on the Internet, loan, distribute and sell theses worldwide, for commercial or noncommercial purposes, in microform, paper, electronic and/or any other formats.

The author retains copyright ownership and moral rights in this thesis. Neither the thesis nor substantial extracts from it may be printed or otherwise reproduced without the author's permission.

## AVIS:

L'auteur a accordé une licence non exclusive permettant à la Bibliothèque et Archives Canada de reproduire, publier, archiver, sauvegarder, conserver, transmettre au public par télécommunication ou par l'Internet, prêter, distribuer et vendre des thèses partout dans le monde, à des fins commerciales ou autres, sur support microforme, papier, électronique et/ou autres formats.

L'auteur conserve la propriété du droit d'auteur et des droits moraux qui protège cette thèse. Ni la thèse ni des extraits substantiels de celle-ci ne doivent être imprimés ou autrement reproduits sans son autorisation.

In compliance with the Canadian Privacy Act some supporting forms may have been removed from this thesis.

While these forms may be included in the document page count, their removal does not represent any loss of content from the thesis.

Conformément à la loi canadienne sur la protection de la vie privée, quelques formulaires secondaires ont été enlevés de cette thèse.

Bien que ces formulaires aient inclus dans la pagination, il n'y aura aucun contenu manquant.


#### Abstract

Vibration in motor vehicles is largely influenced by the engine and thus has become the focus of much automotive testing. Engine idle vibration is focused on since deviations in the vibration signature are prevalent at this operating condition.

The objective of this thesis was to derive a best-practice method for the analysis of engine idle vibration. Variability of the engine vibration signatures was calculated through the implementation of multiple analysis techniques. These methods included: angle domain analysis, the fast Fourier transform, the discrete cosine transform, the moving average model, and the auto-regressive moving average model. Also included in the investigation were examinations of data normalization, detrending, and filtration. The results of the analyses were then evaluated with reference to the correlation between similar engines and the identification of outliers.


It was found that the fast Fourier transform analysis technique provided the best overall results. The moving average model and the auto-regressive moving average models were also identified as methods that have great potential in vibration analysis but are limited by their computational intensity.

## DEDICATION

To my family and friends for their continuous support, understanding, patience and encouragement.

## ACKNOWLEDGEMENTS


#### Abstract

The author would like express thanks to the team members at Ford Motor Company's Powertrain Research and Development Centre at the Essex Engine plant for providing the results of their testing for analysis in this work. A special thanks goes out to the graduate students and the dynamometer technicians for their aid in conducting the experiments from which the results of this research are based.


Many thanks are given to my advisors Dr. Ahmadi and Dr. Gaspar for their continuous support and direction. Special recognition is also given to Dr. Lalman, Dr. Rankin, and Dr. Zamani for their role as committee members.

## TABLE OF CONTENTS

ABSTRACT ..... iii
DEDICATION ..... iv
ACKNOWLEDGEMENTS ..... v
LIST OF TABLES ..... X
LIST OF FIGURES ..... xiii
NOMENCLATURE ..... xvii
CHAPTER 1 - INTRODUCTION ..... 1
1.1 Background ..... 2
1.1.1 Testing ..... 2
1.1.2 Analysis ..... 3
1.2 Purpose ..... 5
1.3 Objectives ..... 5
CHAPTER 2 - LITERATURE REVIEW ..... 6
2.1 Noise, Vibration and Harshness in Internal Combustion Engines ..... 6
2.1.1 Vibration ..... 7
2.2 Acquisition of Vibration Data ..... 8
2.2.1 Operating Conditions ..... 8
2.2.1.1 Idle ..... 9
2.2.2 Transducers ..... 10
2.2.3 Cylinder Indicator ..... 11
2.2.4 Measurement Location ..... 11
2.3 Data Analysis Techniques ..... 12
2.3.1 Time Domain Analysis ..... 12
2.3.2 Angle Domain Analysis ..... 13
2.3.3 Frequency Domain Analysis ..... 14
2.3.3.1 Fast Fourier Transform ..... 14
2.3.3.2 Discrete Cosine Transform ..... 15
2.3.4 Predictive Models ..... 16
2.3.4.1 Moving Average Model ..... 16
2.3.4.2 Autoregressive Model ..... 17
2.3.4.3 Autoregressive Moving Average Model ..... 17
2.3.5 Regression Analysis ..... 19
2.3.5.1 Least Squares Regression ..... 20
CHAPTER 3 - THEORY ..... 21
3.1 Digital Signal Processing ..... 21
3.1.1 Sampling ..... 22
3.1.2 Sampling Rate ..... 23
3.1.3 Resolution and Gain ..... 24
3.1.4 Quantization and Encoding ..... 25
3.1.5 Aliasing ..... 26
3.1.6 Oversampling ..... 27
3.2 Accelerometers ..... 28
3.2.1 Piezoelectricity ..... 28
3.2.1.1 Piezoelectric Accelerometer ..... 29
3.2.2 Compression and Shear Type Accelerometers ..... 30
3.2.3 Charge Mode and Internally Amplified Accelerometers ..... 31
3.3 Internal Combustion Engines ..... 32
3.3.1 Four-Stroke Engine Cycle ..... 33
3.3.2 Spark Ignition Engine ..... 34
3.4 Vibration ..... 35
3.4.2 Classification of Vibration ..... 36
3.4.2.1 Free and Forced Vibration. ..... 36
3.4.2.2 Undamped and Damped Vibration ..... 36
3.4.3 Forced Vibration System ..... 38
3.5 Filters ..... 41
3.5.1 Lowpass and Bandpass Filters ..... 41
3.5.2 Ideal and Real Filters ..... 42
3.5.3 Butterworth Filter. ..... 43
CHAPTER 4 - EXPERIMENTAL DETAILS ..... 44
4.1 Test Engines ..... 44
4.2 Test Conditions ..... 44
4.3 Dynamometer and Test Cell ..... 45
4.3.1 Test Chamber ..... 45
4.3.2 Dynamometer, Test Cell and Engine Controls ..... 46
4.4 Sensors ..... 46
4.4.1 Accelerometer Locations ..... 46
4.4.2 Cylinder Indicator ..... 48
4.5 Data Acquisition System ..... 49
4.6 Instrumentation. ..... 50
4.6.1 Brüel \& Kjær Type 4366 Charge Accelerometer ..... 50
4.6.2 Brüel \& Kjær Type 5974 8-Channel Charge Amplifier. ..... 51
4.6.3 Brüel \& Kjær Type 2635 Charge Amplifier ..... 51
4.6.4 Brüel \& Kjær Type 4294 Calibration Exciter. ..... 52
4.6.5 Cable Assemblies ..... 52
CHAPTER 5 - DATA ANALYSIS METHODS ..... 53
5.1 Descriptive Statistics ..... 53
5.1.1 Mean ..... 53
5.1.2 Standard Deviation ..... 54
5.1.3 Coefficient of Variation ..... 54
5.2 Least Squares ..... 55
5.3 Detrend ..... 56
5.4 Variability Analysis ..... 56
5.5 Angle Domain ..... 58
5.5.1 Angle Domain Average ..... 59
5.6 Frequency Domain Analysis ..... 61
5.6.1 Fourier Analysis ..... 61
5.6.1.1 Fourier Series ..... 62
5.6.1.2 Fourier Transform ..... 63
5.6.1.3 Fourier Transform of Discrete-Time Signals ..... 64
5.6.1.4 Discrete Fourier Transform ..... 65
5.6.1.5 Fast Fourier Transform ..... 66
5.6.2 Discrete Cosine Transform ..... 67
5.6.3 Normalization ..... 69
5.6.4 Moving Average Model ..... 69
5.6.5 Autoregressive Model ..... 71
5.6.6 Autoregressive Moving Average Model ..... 73
CHAPTER 6 - RESULTS AND DISCUSSION. ..... 76
6.1 Raw Data ..... 76
6.2 Filter Data ..... 77
6.3 Angle Domain ..... 77
6.4 Cycle Average ..... 78
6.5 Fast Fourier Transform ..... 80
6.6 Discrete Cosine Transform ..... 81
6.7 Moving Average ..... 82
6.8 Autoregressive Moving Average ..... 83
6.9 Detrend ..... 84
6.10 Frequency Domain Normalization ..... 85
CHAPTER 7 - CONCLUSIONS AND RECOMMENDATIONS ..... 87
REFERENCES ..... 89
BIBLIOGRAPHY ..... 91
APPENDICES ..... 92
A. EQUIPMENT SPECIFICATIONS ..... 93
B. SINGLE ACCELEROMETER GRAPHS ..... 98
C. BASELINE RESULTS. ..... 111
D. COMPARISON GROUP RESULTS ..... 124
E. BASELINE TO COMPARISON GROUPS RESULTS ..... 130
F. SUMMARY GRAPHS ..... 135
G. SELECTION OF THE FREQUENCY RANGE OF INTEREST ..... 145
VITA AUCTORIS ..... 148

## LIST OF TABLES

A. 1 Specifications for the Prosig Data Acquisition System Model ..... 94 P5600
A. 2 Specifications for the Brüel \& Kjær Type 4366 Charge ..... 95 Accelerometer
A. 3 Specifications for the Brüel \& Kjær Type 5974 8-Channel Charge ..... 96 Amplifier
A. 4 Specifications for the Brüel \& Kjær Type 2635 Charge Amplifier ..... 97
A. 5 Specifications for the Brüel \& Kjær Type 4294 Calibration Exciter ..... 97
C. 1 Angle Domain Cycle Average - Baseline Calculation Summary ..... 112
C. 2 Angle Domain - Baseline Calculation Summary ..... 113
C. 3 Detrended Angle Domain - Baseline Calculation Summary ..... 113
C. 4 FFT - Baseline Calculation Summary ..... 114
C. 5 Normalized FFT - Baseline Calculation Summary ..... 114
C. 6 DCT - Baseline Calculation Summary ..... 115
C. 7 Normalized DCT - Baseline Calculation Summary ..... 115
C. 8 MA - Baseline Calculation Summary ..... 116
C. 9 Normalized MA - Baseline Calculation Summary ..... 116
C. 10 ARMA - Baseline Calculation Summary ..... 117
C. 11 Normalized ARMA - Baseline Calculation Summary ..... 117
C. 12 Filtered Angle Domain Cycle Average - Baseline Calculation ..... 118 Summary
C. 13 Filtered Angle Domain - Baseline Calculation Summary ..... 119
C. 14 Filtered Detrended Angle Domain - Baseline Calculation ..... 119 Summary
C. 15 Filtered FFT - Baseline Calculation Summary ..... 120
C. 16 Filtered Normalized FFT - Baseline Calculation Summary ..... 120
C. 17 Filtered DCT - Baseline Calculation Summary ..... 121
C. 18 Filtered Normalized DCT - Baseline Calculation Summary ..... 121
C. 19 Filtered MA - Baseline Calculation Summary ..... 122
C. 20 Filtered Normalized MA - Baseline Calculation Summary ..... 122
C. 21 Filtered ARMA - Baseline Calculation Summary ..... 123
C. 22 Filtered Normalized ARMA - Baseline Calculation Summary ..... 123
D. 1 Summary of the Analysis Methods of Each Engine Group ..... 125
D. 2 Angle Domain Cycle Average - Internal Calculation Summary ..... 126
D. 3 Angle Domain - Internal Calculation Summary ..... 126
D. 4 Detrended Angle Domain - Internal Calculation Summary ..... 126
D. 5 FFT - Internal Calculation Summary ..... 127
D. 6 Normalized FFT - Internal Calculation Summary ..... 127
D. 7 DCT - Internal Calculation Summary ..... 127
D. 8 Normalized DCT - Internal Calculation Summary ..... 128
D. 9 MA - Internal Calculation Summary ..... 128
D. 10 Normalized MA - Internal Calculation Summary ..... 128
D. 11 ARMA - Internal Calculation Summary ..... 129
D. 12 Normalized ARMA - Internal Calculation Summary ..... 129
E. 1 Angle Domain Cycle Average - Comparison of Engine Groups to ..... 131 the Baseline
E. 2 Angle Domain - Comparison of Engine Groups to the Baseline ..... 131
E. 3 Detrended Angle Domain - Comparison of Engine Groups to the ..... 132 Baseline
E. 4 FFT - Comparison of Engine Groups to the Baseline ..... 132
E. 5 Normalized FFT - Comparison of Engine Groups to the Baseline ..... 132
E. 6 DCT - Comparison of Engine Groups to the Baseline ..... 133
E. 7 Normalized DCT - Comparison of Engine Groups to the Baseline ..... 133
E. 8 MA - Comparison of Engine Groups to the Baseline ..... 133
E. 9 Normalized MA - Comparison of Engine Groups to the Baseline ..... 134
E. 10 ARMA - Comparison of Engine Groups to the Baseline ..... 134
E. 11 Normalized ARMA - Comparison of Engine Groups to the ..... 134 Baseline

## LIST OF FIGURES

3.1 Block Diagram of an Analog-to-Digital Converter (ADC) ..... 21
3.2 Comparison between a Continuous Signal and a Quantized ..... 25 Signal
3.3 Difference between Proper and Improper Sampling ..... 26
3.4 Two Different Sinusoids that Fit the Same Sample Data ..... 27
3.5 Principle of a Piezoelectric Accelerometer ..... 30
3.6 The Four-Stroke Operating Cycle ..... 33
3.7 Spring-Mass-Damper System ..... 38
3.8 Frequency response ..... 40
3.9 Ideal Filters ..... 41
3.10 Non Ideal Lowpass Filter Characteristics ..... 43
4.1 Accelerometer Mounting Locations ..... 47
4.2 Engine Test Setup ..... 50
5.1 Raw Time Domain Vibration Signal ..... 58
5.2 Transformed Angle Domain Vibration Signal ..... 59
5.3 Single Cycle Angle Domain Average Vibration Signal ..... 60
5.4 FFT of a Vibration Signal ..... 67
5.5 DCT of a Vibration Signal ..... 68
5.6 Block Diagram of the Moving Average Model ..... 70
5.7 Block Diagram of the Autoregressive Model ..... 72
5.8 Block Diagram of an Autoregressive Moving Average Model ..... 74
6.1 Angle Domain - Comparison of a Faulted 5.4L 3V Engine to the ..... 78 Baseline Average
6.2 Filtered Angle Domain Cycle Average - Comparison of a Faulted ..... 79 5.4L 3V Engine to the Baseline Average
6.3 Filtered FFT - Comparison of a 5.4L 3V Engine to the Baseline ..... 80 Average
6.4 DCT - Comparison of a 5.4L 3V Engine to the Baseline Average ..... 81
6.5 MA - Comparison of a Faulted 5.4L 3V Engine to the Baseline ..... 82 Average
6.6 ARMA - Comparison of a 5.4L 3V Engine to the Baseline ..... 84 Average
6.7 Two Similar Frequency Series with Significantly Different ..... 85 Maximum Amplitudes
6.8 Normalization of Two Similar Frequency Series with Significantly ..... 86 Different Maximum Amplitudes
B. 1 Angle Domain Cycle Average - Comparison of a 5.4L 3V Engine ..... 99 to the Baseline Average
B. 2 Angle Domain - Comparison of a 5.4L 3V Engine to the Baseline ..... 100 Average
B. 3 Detrended Angle Domain - Comparison of a 5.4L 3V Engine to ..... 100 the Baseline Average
B. 4 FFT - Comparison of a 5.4L 3V Engine to the Baseline Average ..... 101
B. 5 Normalized FFT - Comparison of a 5.4L 3V Engine to the ..... 101 Baseline Average
B. 6 DCT - Comparison of a 5.4L 3V Engine to the Baseline Average ..... 102
B. 7 Normalized DCT - Comparison of a 5.4L 3V Engine to the ..... 102 Baseline Average
B. 8 MA - Comparison of a 5.4L 3V Engine to the Baseline Average ..... 103
B. 9 Normalized MA - Comparison of a 5.4L 3V Engine to the ..... 103 Baseline Average
B. 10 ARMA - Comparison of a 5.4L 3V Engine to the Baseline ..... 104 Average
B. 11 Normalized ARMA - Comparison of a 5.4L 3V Engine to the ..... 104 Baseline Average
B. 12 Filtered Angle Domain Cycle Average - Comparison of a 5.4L 3V ..... 105 Engine to the Baseline Average
B. 13 Filtered Angle Domain - Comparison of a 5.4L 3V Engine to the ..... 106 Baseline Average
B. 14 Filtered Detrended Angle Domain - Comparison of a 5.4L 3V ..... 106 Engine to the Baseline Average
B. 15 Filtered FFT - Comparison of a 5.4L 3V Engine to the Baseline ..... 107 Average
B. 16 Filtered Normalized FFT - Comparison of a 5.4L 3V Engine to the ..... 107 Baseline Average
B. 17 Filtered DCT - Comparison of a 5.4L 3V Engine to the Baseline ..... 108 Average
B. 18 Filtered Normalized DCT - Comparison of a 5.4L 3V Engine to ..... 108 the Baseline Average
B. 19 Filtered MA - Comparison of a 5.4L 3V Engine to the Baseline ..... 109 Average
B. 20 Filtered Normalized MA - Comparison of a 5.4L 3V Engine to the ..... 109 Baseline Average
B. 21 Filtered ARMA - Comparison of a 5.4L 3V Engine to the Baseline ..... 110 Average
B. 22 Filtered Normalized ARMA - Comparison of a 5.4L 3V Engine to ..... 110 the Baseline Average
F. 1 Comparison of Data Analysis Methods utilizing the Baseline Data ..... 137
F. 2 Comparison of Data Analysis Methods utilizing the Filtered ..... 138 Baseline Data
F. 3 Comparison of Data Analysis Methods in the Correlation of the ..... 139
Faulted Engine Group to the Baseline Data
F. 4 Comparison of Data Analysis Methods in the Correlation of the ..... 140 Filtered Faulted Engine Group to the Baseline Data
F. 5 Comparison of Data Analysis Methods in the Correlation of the ..... 141 QOS 6.8L 3V Engine Group to the Baseline Data
F. 6 Comparison of Data Analysis Methods in the Correlation of the ..... 142 Filtered QOS 6.8L 3V Engine Group to the Baseline Data
F. 7 Comparison of Data Analysis Methods in the Correlation of the ..... 143 QOS 4.6L 2V Engine Group to the Baseline Data
F. 8 Comparison of Data Analysis Methods in the Correlation of the ..... 144 Filtered QOS 4.6L 2V Engine Group to the Baseline Data

## NOMENCLATURE

| 2 V | 2-valve |
| :---: | :---: |
| 3 V | 3 -valve |
| a | acceleration |
| $\mathrm{a}_{i}$ | ith coefficient value |
| ADC | Analog-to-Digital Converter |
| ADACS | Automated Data Acquisition and Control System |
| AR | Auto-Regressive |
| ARMA | Auto-Regressive Moving Average |
| $\beta$ | best-fit coefficient |
| $\mathrm{b}_{\mathrm{i}}$ | ith coefficient value |
| BDC | Bottom-Dead-Centre |
| c | damping coefficient |
| $\mathrm{c}_{i}$ | ith average coefficient value |
| $\mathrm{c}_{\mathrm{v}}$ | coefficient of variation |
| CAN | Controller Area Network |
| Cl | Compression Ignition |
| CID | Cylinder or Cam Indicator Signal |
| DC | Direct Current |
| DCT | Discrete Cosine Transform |
| DFT | Discrete Fourier Transform |
| $\delta_{s t}$ | static deflection |
| $\varepsilon_{i}$ | residual error |
| E | number of engines |
| ECU | Electronic Control Unit |
| f | analog frequency |
| F | objective function or digital frequency |
| FFT | Fast Fourier Transform |
| FIR | Finite Impulse Response |
| F。 | Magnitude of force |
| $\mathrm{f}_{\mathrm{m}}$ | maximum sampling frequency |
| $\mathrm{f}_{\text {s }}$ | sampling frequency |
| F(t) | continuous time force function |
| i | data index |
| ICP | Integrated Circuit Piezoelectric |
| IIR | Infinite Impulse Response |
| ISO | International Organization for Standardization |
| k | spring stiffness or multiplying factor |
| LF | Left Front |
| LR | Left Rear |
| m | mass |
| M | ratio of dynamic to static motion |
| MA | Moving Average |


| n | total number of samples, cycles, or poles |
| :---: | :---: |
| N | number of analysis points |
| NVH | Noise, Vibration \& Harshness |
| PERDC | Powertrain Engineering Research \& Development Centre |
| QOS | Quality of Service |
| $r$ | Frequency ratio or Euclidean distance |
| RF | Right Front |
| rpm | Revolutions Per Minute |
| RR | Right Rear |
| $\sigma$ | standard deviation |
| S | samples per cycle |
| SAE | Society of Automotive Engineers |
| SI | Spark Ignition |
| t | time in seconds |
| $\mathrm{T}_{\text {s }}$ | sampling interval |
| TDC | Top-Dead-Centre |
| $\mathrm{x}(\mathrm{t})$ | continuous time displacement |
| x[n] | discrete time displacement |
| $\mathrm{Xp}_{\mathrm{p}}(\mathrm{t})$ | periodic time signal |
| X | amplitude of displacement |
| X(f) | continuous frequency |
| X[k] | sampled frequency |
| $x$ | linear displacement with respect to time |
| $x$ | linear velocity with respect to time |
| " |  |
| $x$ | linear acceleration with respect to time |
| $\bar{\chi}$ | arithmetic mean |
| VXI | VME eXtensions for Instrumentation |
| $\omega$ | radian frequency |
| $\omega_{c}$ | cut-off frequency |
| $\omega_{n}$ | undamped natural frequency |
| $\hat{Y}$ | predicted value of variable |
| $Y$ | measured value of variable |
| $\zeta$ | damping ratio |
| $\theta$ | phase angle |
| $\phi$ | phase angle |

## CHAPTER 1 - INTRODUCTION

The engine is the heart of any vehicle and is the source that converts the fuel to power; this also means that it is a main source of noise and vibration. Noise, vibration and harshness (NVH) influences the perception of quality to the customer; for some the sound and feel drive a sale, while on the other end of the spectrum noise and vibration issues are often the origins of customer complaints.

While noise and vibration are separate concerns of the consumer they are often tied quite closely together. Vibration is often the source of most noise and if vibration is focused upon a twofold reduction in NVH concerns can be attained. In the course of the combustion process the engine creates vibration through combustion forces and mechanical motion. This vibration is spread throughout the vehicle due to resonance, production of further mechanical motion, and the resulting movement of the vehicle.

Part of a customer's expectation of manufactured goods is mass production repeatability. With engines this means that the presumption is that they will sound, feel and react in the same manner. NVH is a key fact in the assessment of the calibre of a product. Slight defects and deviations from the norm can contribute significantly to a vehicle's interior noise and vibration. To insure the standardization of the product a quality of service (QOS) test is often performed.

### 1.1 Background

In this study vibration data from tests performed at the Ford Powertrain Engineering Research and Development Centre (PERDC) at the Essex Engine plant is analyzed. Outlines of their testing and analysis processes are described below.

### 1.1.1 Testing

Ford Motor Company is constantly testing its product for quality and repeatability. At the PERDC in the Essex Engine plant noise and vibration quality tests are performed on a regular basis as part of the QOS evaluations. The results from this testing are used for target setting, verification, benchmarking, and databasing [1].

Data from a large sample of engines is gathered in the initial QOS test performed on each engine model. A succession of engines is collected as they come off the production line and are set aside for analysis. The original dataset consists of at least thirty engines as established by the Ford corporate standard; this amount is considered the minimum sample size to represent a normally distributed population. Results of this preliminary investigation are known as the baseline and are the benchmark for subsequent tests. Following the baseline evaluation, QOS tests are performed quarterly or semi-annually on samples of six engines. These engines are collected and tested in the same process as that of baseline.

In addition to the standard noise and vibration test each engine in the QOS check at the Essex Engine plant also undergoes a second test known as the 'Prosig Test'. This investigation examines vibration and sometimes noise at steady states and is named for the data acquisition system used. The standard test collects vibration data from eight locations on the engine; the setup and data collection methods are described in detail in Chapter 4. Additional transducers are often added to the setup to allow for further investigation of different aspects of the engine. Three different operating conditions are part of the standard test; idle, partial-load, and wide-open throttle. These specific speeds and loads are part of a typical testing procedure and are quite prevalent in normal driving activity.

The centre also evaluates and troubleshoots engines that are considered faulted. These engines are obtained from Ford engine manufacturing plants, final vehicle assembly plants, and from dealerships. An initial idle 'Prosig Test' is performed on each engine and a root cause analysis investigation is initiated. At this point repairs may be performed on the engine and another test run. This cycle is repeated until the source of the problem is determined.

### 1.1.2 Analysis

Quality of service testing is part of the ISO (International Organization for Standardization) quality management system utilized by Ford, Chrysler and General Motors. This standard is in place to help ensure the consistency of the
end products and to aid in the continual improvement process; in other words the objective of this tool is to put forth the best product every time. All of this is in place not only as a best business practice but for the benefit of the consumer.

Data acquired from the QOS evaluation compares the tested engines to their sample group and to the baseline; subsequently the results are analyzed for improvements or deterioration. Ideally over time the product should have lower variability and less noise and vibration; this is due to continual development of the engine model. In reality, while slight improvements are expected deterioration can occur when slight changes in the product are imposed. These changes can include wear and tear on a mould, change of part suppliers, and alterations in manufacturing material.

Results from the QOS runs of the 'Prosig Test' are analyzed for variance over the engine cycle. In the calculation of the variance the data is first resampled into the angle domain with reference to the crankshaft and is then broken down into thirty engine cycles. The variance is then calculated for each crankshaft angle. Analysis of the variance includes total average variance, maximum variance comparison, and overlaid engine variance plots. Faulted engines are analyzed through a visual inspection of the variance of each accelerometer. Significant amplitude variance spikes are focused on and faults are surmised from the angle of the crankshaft and the accelerometer location.

### 1.2 Purpose

Results of the 'Prosig Test' are not part of the official QOS investigation and hence most of the data has been filed away for future analysis. The purpose of this research is to propose an alternate method of analysis for the 'Prosig Test' data. In conclusion this method could be used to create a formal quality testing and analysis procedure to aid in the compliance of the ISO standard of quality.

### 1.3 Objectives

The focus of this thesis is to analyze the engine vibration data using multiple techniques and to conclude which is the best practice method. To fulfill the purpose of this study the following research objectives must be carried out:
1.) Evaluate engine idle vibration using various analysis techniques
2.) Access the feasibility and functionality of the different methods
3.) Present recommendations for future vibration analysis research and alternative analysis techniques

The following chapters delve into the research and background of the testing and analysis techniques of the study at hand and are concluded by the results and recommendations.

## CHAPTER 2 - LITERATURE REVIEW

This chapter is a review of the literature pertinent to this study. Included in this section is a discussion about engine noise and vibration, also reviewed is information pertaining to vibration testing and various data analysis techniques. Many aspects of this thesis have been investigated and assessed by the scientific and engineering community and are presented here to build a foundation for the work presented in the following chapters.

### 2.1 Noise, Vibration and Harshness in Internal Combustion Engines

 A vital tool in the evaluation of internal combustion engines is the analysis of noise, vibration, and harshness. From these observations assessments of combustion and mechanical workings can be made. All in all NVH is tied in tightly to the overall subjective view of the operation of an engine.Noise and vibration often go hand in hand. In many cases vibration is the root cause of noise and noise is frequently the only notable symptom of abnormalities. While vibration is part of the rotating machinery's operation in practice it is minimized to lessen its infringement on the system.

In essence each engine model should have the same noise and vibration signature. Deviations from this signature depending on severity denote variation
due to manufacturing processes, abnormalities of parts, and even so far as a foredoomed catastrophic failure.

### 2.1.1 Vibration

Vibration in internal combustion engines is due to mechanical motion, combustion forces, and structural resonances. Most vibration reflects poorly on an engine since it alludes to energy loss, possible defects and often brings with it undesirable noise [2]. While a minimal amount of vibration is acceptable, an increased amount can lead to mechanical failure and or unsatisfactory perception by the consumer.

Engine vibration can be broken down into deterministic and stochastic components. The characteristic vibration signature is defined by the deterministic portion of the signal which is easily masked due to random noise. To be able to separate the two components the vibration signal must be captured over multiple cycles. A steady-state signal is best used in this type of interpretation.

The combustion force causes vibration by creating mechanical motion and through the variation of in-cylinder pressure. During the firing phase of the cycle the vibration in the engine block is often at its peak amplitude. According to Chandroth et al. [3] cylinder pressure fluctuations cause the engine structure to vibrate and are the source of most engine vibration. Inconsistency in combustion
cycles can also lead to large cycle-to-cycle variations whose discrepancies can lead to unwanted vibration.

### 2.2 Acquisition of Vibration Data

In order to obtain the desired vibration data from an engine consideration must be given to the design of the experiment. The conditions under which the data is collected along with the acquisition equipment and setup of the experiment need to be determined.

### 2.2.1 Operating Conditions

Operating conditions play a large role in the vibration of the engine. The engine speed, load, oil and coolant temperature, and the environment in which it is run are all contributing factors. Engine speed can bring out different resonant frequencies. Furthermore load imparts additional stress on the system, which can change the motion of mechanical components. Vibration may occur only during a certain temperature range; this can often be attributed to the expansion and contraction of the engine's internal workings. The environment also plays a role with the temperature and pressure effecting the gases and fluids used in the system. Operating conditions should be controlled to limit variability and to allow for closer examination of distinct states.

### 2.2.1.1 Idle

In vibration analysis the idle operating condition is often focused on because noise and vibration are more noticeable and prevalent in this state. At increased speeds the distinct vibration and noise issues can be masked due to the many internal processes. Machinery is also less prone to erratic movement at higher speeds because the mechanical motion becomes streamlined with less irregular movements to cause abnormal vibration and noise.

At idle the rate of speed is close to the lowest that an engine can operate at; if the speed is dropped the rotational force due to combustion may not be strong enough to turn the crankshaft and the engine will stall. This makes it very susceptible to variability and the engine must overcompensate for slight irregularities. At low engine speeds the combustion is most prone to abnormalities due to the fact that the air density and fuel mass fed into the system are at their lowest levels. The mixture in the cylinder is hence prone to uneven distribution which causes variability in the combustion process [4]. Deviations in combustion can lead to an oscillation in engine speed which may result in a firing frequency that excites resonant vibrations of the engine structure. This variation was part of the focus of an investigation on engine idle vibration preformed at the University of Sheffield [5].

The opinion of the driver is also of key concern because the cycle-to-cycle variation is more perceptible at this speed. A rough or unsteady idle leaves a
poor impression of the vehicle and a slight knocking sound from an engine can be grating to the individuals in the automobile. Vibration is also transmitted from the engine to the vehicle frame and thus further affecting the occupants [6]. The expectation of the customer is that at idle the automobile should have little to no detectable vibration and noise.

Engine idle vibration has very deterministic characteristics intermixed with random non-stationary events [5]. This means that an idling engine will have a distinct vibration signature. The variation between the signatures of various engines and engine families is the focus of this investigation.

### 2.2.2 Transducers

Measurement of engine vibration can paint a picture of the mechanical operations within the engine. Accelerometers are the most common type of transducer used in the analysis of vibration response of rotating machinery [7]. In measuring acceleration this sensor is best suited because it directly measures the desired quantity and has a large bandwidth. The vibration signature is also easily acquired by mounting accelerometers on the engine. This transducer has usage restrictions because its internal workings limit the environmental conditions and vibration amplitude it can be exposed to.

Another type of vibration measurement tool is the laser vibrometer. This instrument measures the velocity of the surface vibration using the principle of
the Doppler effect. Unlike the accelerometer, vibration information is gathered with no physical contact and the operation is not limited by temperature and vibration amplitude. Also, with the aid of software the laser vibrometer can measure a single point or scan a predefined surface. In a study of automotive NVH Beidl et al. [8] used the laser vibrometer to view the surface vibration distribution of an engine. This type of analysis can be used for finding sources of vibration and also in the investigation of radiant noise.

### 2.2.3 Cylinder Indicator

A cylinder or cam position indicator (CID) sensor gives information to synchronize the vibration signal to the engine's events. The output of the signal can also be used as a tachometer whereby the speed of the system is calculated from the reciprocal of time between the pulses. Precision in the conversion of the time signal to the angle domain is related to the number of pulses per cycle. With a greater amount of pulses there is less smearing of data since this will better represent the actual speed of the engine by accounting for more of the inter-cyclical speed changes [9].

### 2.2.4 Measurement Location

Measurement location is a key detail in the collection of useful and effective vibration data. The position selected will receive information from many different internal sources because of the propagation of vibration through the structure. In
selecting a position it is essential to choose a point where the desired observed signal is most prominent and the vibration due to other components is minimized.

A vibration signal acquired from the cylinder head of an engine gives a strong correlation to the cylinder pressures and the motion of the piston [3]. Measurements taken at the top of cylinder head also include vibration from the valvetrain. From the analysis of the data derived from the block lug locations information about the main bearings, pins, connecting rods and other components can be obtained.

### 2.3 Data Analysis Techniques

The main objective of this research was to examine engine idle vibration variability using multiple analysis techniques. Many numerical methods were investigated and are discussed below and in the following chapters.

### 2.3.1 Time Domain Analysis

Raw time data is not often used in the analysis of engine vibration. Identifying characteristics are difficult to extract from time data and the signal in most cases is post-processed to obtain the desired information. Therefore examples of raw time data analysis of engine vibration are few and far between.

One form of time domain analysis is the root mean square which gives a statistical measure of the magnitude of the signal [2]. This simple method can be
used as a preliminary indication of variability. Another type of time domain investigation is the implementation of modeling techniques such as a trend prediction tool. Sinha [10] uses samples of time data in his modeling techniques to monitor vibration.

### 2.3.2 Angle Domain Analysis

An internal combustion engine is a rotating machine that operates within a defined cycle; hence the time data can be synchronized to the angle of rotation. The angle of the crankshaft is often the position reference of the system, with the initial point being the top-dead centre of the combustion stroke of cylinder one. Fluctuations in speed due to the angular velocity of the crankshaft vary from cycle-to-cycle and also within the cycle. To be able to align the vibration signatures of an engine to its cycle a transformation to the angle domain is necessary. This allows for comparison of events and their timing within the cycle. Angle domain analysis is quite useful in distinguishing faults in an engine since the position in the cycle can often attribute the cause to active processes. The results of this technique can also transform a non-stationary vibration signal into a stationary one.

With the aid of a reference such as the CID signal the data series is correlated to the engine cycle. Tjong [11] employed a technique whereby a wheel with 360 teeth was attached to the crankshaft. An encoder monitored the passage of the teeth and was used to trigger data sampling. This process is known as
synchronous sampling. Similar testing applications were discussed by Gade et al. [9] with vibration data collected along side an angle reference source and the data consequently being post-processed into the angle domain.

### 2.3.3 Frequency Domain Analysis

Analysis of a vibration signal in the frequency domain is an effective method for gathering characteristics of an engine. The transformation of a time signal into the frequency domain produces a signal that includes the range of frequencies contained in the time signal along with the quantity at each given frequency. Frequency content of an engine can offer much information on its operation because defects are often characterized by a distinct frequency range. Workings of individual rotating components of an engine can also be identified from the frequency spectrum [12].

### 2.3.3.1 Fast Fourier Transform

The fast Fourier transform (FFT) is the most common method used to transform time data to the frequency domain. It is a computationally efficient variation of the discrete Fourier transform (DFT) which converts a signal into the frequency domain by breaking the time signal into a summation of sinusoids and cosines.

Analysis of engine vibration using the FFT should be limited to constant speeds. Variation in speed can lead to shifting characteristics since the frequency content of a signal is tightly intertwined with the rotational speed $[3,5]$. The FFT is not
effective in the analysis of vibration that is intermittent and transient because of its non-stationary nature.

An FFT can be used on both time and angle domain signals as discussed by Blough and Gwaltney [13]. The analysis of engine vibration data with speed variation is possible if the data is first resampled into the angle domain. As a result the aspect of the rotational speed is removed and an FFT can then be performed with the data being transformed into the order domain [8, 14]. This method was not utilized in this study because the variation of speed is limited because the engines idled at a relatively constant speed. Also the frequency content due to the idle speed is an identifying attribute of an engine since each model has a distinct idle speed.

### 2.3.3.2 Discrete Cosine Transform

The discrete cosine transform (DCT) is different from the discrete Fourier transform because it is a real transform and utilizes only a summation of cosines; this also implies that it has lower computational complexity. Calculation of this method is performed by a variation of the FFT $[2,15]$ which again reduces the amount of computations required. Applications of the DCT are numerous with the most common being data compression. Makoto and his associates [16] utilized the DCT to compress large amounts of vibration data where the original signal was reconstructed with minimal loss.

Energy in the DCT is predominantly concentrated at low frequencies. With image and audio compression the original data mostly contains low-frequency features hence the higher frequencies of the DCT can be discarded without significant loss. Consequently the original object is represented by a smaller amount of coefficients in the frequency range and can be reconstructed almost perfectly rendered. This is only part of the compression process and is outside of the scope of this thesis and will not be given further consideration.

Widespread deployment of this technique has been attained with it being utilized in standard audio, image and video processing methods. Some notable applications of the DCT and its variants are common digital file formats such as; JPEG, MPEG-2, MPEG-4, MP3 and WMA.

### 2.3.4 Predictive Models

A predictive model is a mathematical representation or a process that can forecast future behaviour. This type of model is often employed in economics and weather to report future expectations. The modelling process utilizes a mathematical formula whereby the coefficients can be used to compare datasets.

### 2.3.4.1 Moving Average Model

A moving average (MA) model creates a representation of the observed data by a weighted summation of its current and past input values. Implementations of
this technique are commonly used for smoothing of data and for forecasting results.

This model is characterized by a finite length impulse response sequence [17]. It offers stability with a simple implementation; its downfall is that it requires more coefficients to represent the data than other similar methods. The model is only based on a limited amount of past values so transient errors or random noise do not effect the whole data series. A limited memory is an attribute that needs to be taken into account. Other techniques in contrast to the MA model consider all past values and an isolated random event is never forgotten.

### 2.3.4.2 Autoregressive Model

An autoregressive (AR) model is another linear prediction formula which creates an estimation of a data series through a summation of the current value and past values of the output of the model. This type of model is also known as a maximum entropy or all poles model. In many cases it is used as a smoothing function. This modeling technique has a wide variety of applications ranging from astronomy to urban planning.

### 2.3.4.3 Autoregressive Moving Average Model

The autoregressive moving average (ARMA) model combines the MA and AR models. Analysis of vibration data using an ARMA model was implemented by Sinha [10]. This model is useful not only in identifying characteristics through the
coefficients but can also be used in trend prediction. Implementation of the ARMA model can be completed in both the time and frequency domain. The time domain method is more tedious since the stability of the model is difficult to achieve. A unique method for deriving the coefficients in the time-domain was implemented by Box and Jenkins [2]. It is a tool that is widely used in the field of econometrics. When implementing the ARMA model in the frequency domain the phase of the system is lost and hence the time signal cannot to be accurately rebuilt. In many cases this is not of concern since the correlation of the parameters is the focus of the study and vibration data is often only analyzed in the frequency domain.

Coefficients of the AR portion of the ARMA model can lead to instability and difficulty in achieving parameter values that reproduce the original data. This problem was discussed in an SAE paper written by Ippili and his associates [18]. In this thesis research stability was also an issue and was resolved by analyzing the data in the frequency domain and controlling the AR parameters.

The ARMA model is a general model for a linear system as discussed by Nishizawa et al. [19] and Nise [20]. An approximate model can be realized even if the system is slightly non-linear by increasing the order. Selection of the order of the model is discussed by Nishizawa et al. [19] and Leser et al. [21]. The order of a system should increase with the number of samples but this also leads to greater computational time. In this research the order of the model selected
took into account the calculation time, the correlation of the coefficients between engines, and the representation of the study's data.

### 2.3.5 Regression Analysis

In dealing with multiple variables it is often found that the change of one of these terms is associated with a variation in other variables. In many cases a mathematical relationship can be determined that relates these changes. Regression analysis is a statistical technique used to determine the best mathematical expression that quantifies the relationship between variables.

Data from the series is fed into the mathematical equation with the output being very close to original input. The difference or error is known as the residual and the goal of regression is for it to be minimized. This derived relationship is often used in future prediction where the mathematical model is based on past input values.

There are two main types of regression analysis; linear and non-linear. A linear regression is characterized by coefficients of regression that are multipliers of the terms of the mathematical expression. In non-linear regression the coefficients are included in a function of the equation; for example the coefficient could be part of an exponential term. Non-linear regression is also used when a best fit of the linear regression is not possible. Additionally this process is used when the
data of the system is multidimensional; where multiple inputs combine to form a distinct output.

Many different methods can be used in regression analysis such as; least squares, maximum likelihood, robust and Bayesian methods [2]. In this study the linear least-squares analysis method is used.

### 2.3.5.1 Least Squares Regression

The least squares regression method approximates an over-determined system of equations. Coefficients of the mathematical equation are determined by minimizing the difference between the actual data and the output of the model. This difference or error term is called the residual. As a result of multiple iterations the sum of residuals is minimized and hence the model will approximate the system of equations.

In the calculation of the coefficients of the MA and ARMA models the leastsquares regression is most commonly used [10, 18, 22, 23]. These models utilize the least squares method to fit a curve to the data. As discussed by Moler [24] the curve fitting problem is one that is most often solved by this regression method.

## CHAPTER 3 - THEORY

The theoretical aspects related to engine vibration testing and the analysis of the resulting data are described in this section. Topics covered in this chapter include important aspects of: digital signal processing in connection with the acquisition of analog data, properties of accelerometers, introductory internal engine combustion theory, fundamentals of vibration, and basics of electronic filters.

### 3.1 Digital Signal Processing

In order to store an analog signal on a computer the signal must be transformed into a digital signal. This process is called analog-to-digital conversion and is performed by devices called analog-to-digital converters (ADC). The electronic device digitizes an input analog voltage or current signal; a summary of the innerworkings of the ADC can be seen in below in Figure 3.1.


Figure 3.1: Block Diagram of an Analog-to-Digital Converter (ADC)

Sampling takes a continuous signal and captures the analog data at regular intervals. A series of discrete values which represent the range of the input
signal is then compared against each sample. In a process called quantization, the separate samples are converted into numbers by selecting the closest value from the discrete series. The result of this conversion process is a digital representation of the analog signal.

### 3.1.1 Sampling

An analog signal is continuous in time and must be converted to a constant flow of digital values. This translation into discrete-time is achieved by taking samples of the input signal at isolated instants. Sampling can be regarded as the product of the analog signal and a unity amplitude impulse train. The time interval between samples can be uniform or variable and is dependant on the sampling technique used.

A uniform or periodic sampling is achieved by taking samples at equal time intervals of length $T_{s}$. The time interval between samples is known as the sampling period or sampling interval and the inverse is called the sampling rate or frequency.

$$
\begin{equation*}
f_{s}=\frac{1}{T_{s}} \tag{3.1}
\end{equation*}
$$

Variable or synchronous sampling has many different implementations, which include removing superfluous data and event analysis. In this discussion variable sampling is taken at constant intervals with reference to the angle of the crankshaft.

Both techniques have their pros and cons. Uniform sampling establishes a relationship between time variables of continuous-time and discrete-time signals. It also gives a more accurate representation of the vibration signal. The variable sampling method is often superior if the event is proportional to the rotational speed. This can ease the analysis of events in comparison to each other and help identify where in the cycle the event is occurring.

### 3.1.2 Sampling Rate

There are two main types of sampling; uniform and variable. With uniform sampling the rate is measured in samples per second, often expressed as Hertz or bytes per sec. In this study the variable sampling rate is tracked according to the revolution of the cam with reference to the position of the crankshaft; the measurement unit is expressed as samples per degree.

The sampling process can lead to the potential loss of information; with a shorter sampling interval, there is a reduction in the amount of information loss. Ultimately in sampling there will always be some loss in information no matter how short the interval used. It is important to consider the frequency content of the incoming signal in selecting a sampling rate.

Using the Nyquist-Sharron sampling theorem, the appropriate sampling rate can be selected from the maximum frequency of interest, $f_{m}[2]$. The theorem states that a measurement signal can be sampled without loss of frequency information
or aliasing if the sampling rate is more than double the highest frequency of interest.

$$
\begin{equation*}
f_{s}>2 f_{m} \tag{3.2}
\end{equation*}
$$

Where: $\quad f_{m}=$ the maximum frequency of interest

$$
\frac{f_{s}}{2}=\text { the Nyquist frequency or critical frequency }
$$

In practical application frequencies close to the Nyquist frequency may still be distorted in the sampling and reconstruction process, therefore the bandwidth should be kept below the Nyquist frequency by some margin. The loss in information from undersampling or sampling close to the Nyquist frequency is caused by spectral overlap and aliasing.

### 3.1.3 Resolution and Gain

Resolution in digital to analog conversion denotes the number of discrete values that can be produced over the dynamic range of the analog input. The resolution is expressed in bits and thus the number of discrete values is most often a power of two. In this study the resolution of the data acquisition system was 16 bit; this means that the analog data can be converted to one of 65536 or $2^{16}$ different levels. More discrete values or levels and a greater sampling rate will result in a finer resolution and an increased accuracy of the reproduction.

The dynamic range is the span between the maximum and minimum amount of input that an acquisition device can measure. A gain factor is a magnification of data within this range. Amplification of the resolution is achieved from an
increase in the gain factor. By focusing on a smaller range a more detailed representation of the data is obtained. The highest gain factor which encompasses the input signal's range without clipping (occurs when the analog signal amplitude exceeds the range that can be recognized by the ADC converter) should be selected. This narrowed range will ensure that the data is acquired at its maximum resolution.

### 3.1.4 Quantization and Encoding

The process of approximating a continuous signal using a finite number of amplitude levels is known as quantization. In this procedure the analog input signal is quantized by rounding each sample to the nearest quantization level.

Each quantized sample is represented by series of zeros and ones (bits) with the series length being in this case being 16 bits.


Figure 3.2: Comparison between a Continuous Signal and a Quantized Signal

Quantization error or quantization noise is known as the difference between the original sample amplitude and the quantized level. The magnitude of the instantaneous error from the truncation can vary from zero to half of the difference between levels. As can be seen in the Figure 3.2, the maximum quantization error is 0.1 .

The quantization of analog signals will always lead to some loss of information no matter how fine the quantization levels. Oversampling can be used to offset this loss in accuracy by distributing the quantization noise over a larger number of samples.

### 3.1.5 Aliasing

Aliasing refers to the effect that causes different continuous signals to become indistinguishable from each other when reconstructed. This happens when frequencies greater than the $f_{m}$ fold back over the maximum frequency. Thus, frequencies greater than $f_{m}$ appear as lower frequencies as can be observed in Figure 3.3.


Figure 3.3: Difference between Proper and Improper Sampling

Depicted in Figure 3.4 is an example of the aliasing phenomenon. In the figure the black circles denote the sample rate of the analog signal. The red curve is the actual analog signal and the blue curve represents the reconstructed curve from the sampled data. It can be seen that this higher frequency data because of the sampling rate appears to be at a lower frequency. Thus the unique identification from reconstruction becomes impossible because the legitimate and aliased components are indistinguishable.


Figure 3.4: Two Different Sinusoids that Fit the Same Sample Data [2]

To alleviate this problem an anti-aliasing filter is employed in the ADC system. Most anti-aliasing filters are low-pass filters that attenuate frequencies above the Nyquist frequency of the sampling rate. The anti-aliasing filter will in practical application remove most aliasing but because the filter is not ideal some roll-off will occur. Oversampling at a rate greater than 2.56 times the maximum frequency of interest ( $2.56 f_{m}$ ) will also help minimize the remaining effects.

### 3.1.6 Oversampling

Sampling data at a rate greater than the twice the maximum frequency is a practice known as oversampling. This will give a better representation of the input signal because of the larger amount of samples. While this procedure can reduce errors it also can impose an added computation burden.

Oversampling can eliminate aliasing in the frequency range of interest by increasing the bandwidth of the acquired signal. In post-processing the extra frequency range can be filtered out along with left over remnants of aliasing from the roll-off of the anti-alias filter. Also the oversampling process can reduce noise from the input signal and that caused by quantization. This is done though averaging and distribution of the noise power over a larger frequency range.

### 3.2 Accelerometers

An accelerometer is an electromechanical device used to measure acceleration. Depending on the transducer it can measure static acceleration such as gravity or more commonly the dynamic acceleration caused by vibration or motion. There are a wide range of applications for these devices from measuring vibration in cars and buildings to monitoring seismic activity. Many electronic devices incorporate accelerometers, some examples include; changing the display orientation on an interface screen on a hand held device and measuring speed and distance in a portable fitness monitor.

### 3.2.1 Piezoelectricity

Piezoelectricity is a property of materials which become polarized in response to mechanical stress [25]. When the material is strained by an applied force it produces opposing surface charges and hence generates a voltage difference between the surfaces. The piezoelectric effect is also reversible whereby the material will exhibit stress or strain when in an electric field.

A unique attribute of piezoelectricity occurs in crystals that have a unit cell which is noncentrosymmetric; this means that the structure of the crystal has no centre of symmetry. The structure when unstressed has a central point of mass shared by both the positive and negative charges. This crystalline structure is altered when stressed and the central point of mass becomes different for the positive and negative charges causing polarization.

Materials that exhibit the piezoelectric effect include quartz crystals and ceramics. Many of these materials occur naturally but man-made variations are often utilized. A wide range of applications employ piezoelectric materials, these include; accelerometers, microphones, speakers, filters, spark generators, and clocks.

### 3.2.1.1 Piezoelectric Accelerometer

In an accelerometer the piezoelectric material measures the applied acceleration. Inside the accelerometer the piezoelectric material is attached on one side to a rigid base, while the other is fastened to a seismic mass as can be seen in Figure 3.5. Force from the mass acts directly upon the piezoelectric material when the transducer is subjected to acceleration. This force in accordance with Newton's second law of motion is equal to the product of the acceleration and the mass.

$$
\begin{equation*}
F=m a \tag{3.3}
\end{equation*}
$$

The piezoelectric material reacts to this applied force by generating a proportional voltage difference between its surfaces. Electrodes connected to
either side of the piezoelectric material transmit the signal out of the accelerometer.


Fig 3.5: Principle of a Piezoelectric Accelerometer Most accelerometers used in vibration measurements are piezoelectric. These sensors have many beneficial characteristics such as; a wide frequency and dynamic range, and are quite robust and have high stability. Additionally, the units are generally very compact and low in weight. Furthermore, this transducer has no moving parts to wear out and is self generating; therefore it does not require external power to operate.

### 3.2.2 Compression and Shear Type Accelerometers

Accelerometer designs include a multitude of mechanical configurations and measurements types. Historically most accelerometers were compression type with its simple construction. The mass exerts a compressive force on the piezoelectric material in this formation much like that seen in Figure 3.5. These transducers are very stable with high rigidity but are sensitive to environmental influences such as base strain and temperature fluctuations. In addition this type
of accelerometer is often the largest and heaviest of its family since it requires a greater mass due to its sensitivity-to-mass ratio.

Shear mode accelerometer designs have the piezoelectric elements arranged between a central post and a seismic mass. A compression ring encompasses the assembly and applies a slight force to ensure rigidity. When accelerated, a mass wields a shear stress on the piezoelectric elements and a proportional charge is hence produced. This type of transducer has a very high sensitivity-tomass ratio and is less susceptible to environmental influences. The unit can be quite compact which minimizes its overall mass. In testing sensor mass is very important since extra mass can affect the structure through additional loading.

### 3.2.3 Charge Mode and Internally Amplified Accelerometers

The output signal from the piezoelectric accelerometer requires some conditioning before it can be read by analysis and acquisition equipment. Charge mode accelerometers contain only the sensing element with no extra electronics in their housing. Output from this transducer is a high impedance electrical charge. The electrical signal travels through a cable to a charge amplifier which converts the charge input and outputs a proportional low impedance voltage. This type of accelerometer can withstand greater environmental changes as well as high temperatures and amplitudes. The downfall is the sensitivity of the sensor's output signal to corruption; to mitigate this issue low noise cabling should always be utilized.

Internally amplified accelerometers contain built-in signal conditioning microelectronics. The output signal of the sensor is a low impedance voltage which is less sensitive to signal degradation. However, due to the internal circuitry the accelerometer is limited to the temperature range capability of the built-in electronics. This transducer also has high amplitude limitations since a large acceleration could create an electronic charge that is large enough to overload the internal circuitry. Additionally these accelerometers require a constant voltage to operate.

### 3.3 Internal Combustion Engines

In studying engine vibration signatures it is essential to have a basic understanding of the workings of internal combustion engines. These engines derive power from the expansion produced by the combustion of fuel and an oxidizer within the engine. The work is done when the expanding hot gases move parts such as pistons and rotors in a transformation of thermal energy into mechanical energy.

Internal combustion engines are generally used for propulsion but can also be used in mechanical drive applications such as pumps and compressors. Engine types include reciprocating and rotary engines and turbines along with a variety of combustion strategies and cycles with applications ranging from airplanes down to lawn-mowers. The focus of this discussion will be on the reciprocating four-stroke engine cycle used to power automobiles.

### 3.3.1 Four-Stroke Engine Cycle

The majority of motor vehicles today have engines which operate on a fourstroke cycle. These four strokes are known as intake, compression, expansion, and exhaust and occur over two rotations of the crankshaft. Both spark ignition and compression ignition engines employ this cycle. A simple depiction of the four-stroke cycle can be seen below and a brief description of its operation follows; this is referenced from Heywood [26] and other sources [2, 27].


Figure 3.6: The Four-Stroke Operating Cycle [2]

The intake or induction stroke starts with the piston at top dead centre (TDC) when the cylinder volume is at its minimum. At this point in the cycle the piston starts its descent with the intake valve open and the exhaust valve closed. As the volume of the cylinder increases it creates a vacuum and draws in air. Fuel also enters the cylinder at this time either through direct injection or from the intake as an air-fuel mixture. As the piston falls the air and fuel continue to mix. The stroke ends with the piston at bottom dead centre (BDC) and the intake valve closing.

In this cycle the second stroke is known as the compression stroke. It begins with the piston ascending and thus compressing the air-fuel mixture to a fraction of its original volume. Shortly before the piston reaches TDC combustion is initiated. The ignition is either instigated by a spark plug firing in spark ignition (SI) engines or from autoignition where the fuel spontaneously ignites due to compression in Diesel cycle or compression ignition (CI) engines.

Next the expansion or power stroke occurs following combustion with the piston at TDC. The heat and pressure increase due to combustion results in the expansion of gases in the cylinder. This pushes the piston to descend as the volume of the cylinder is forced to increase. As the piston reaches BDC it is filled with the end products of combustion; at this time the exhaust valve opens.

Finally the four-stroke cycle is concluded with the exhaust stroke. At this stage the intake valve remains closed and the exhaust valve is open. The piston ascends purging the cylinder of the spent combustion gases through the exhaust valve. As the piston reaches TDC the intake valve opens, the exhaust valve closes, and the cycle is complete.

### 3.3.2 Spark Ignition Engine

Spark ignition engine refers to an internal combustion engine whose ignition is prompted by a spark. The four-stroke spark ignition cycle is often referred to as the Otto cycle after its inventor Niklaus Otto [28]. Another identifying attribute is
the location of the air and fuel mixing; in SI engines typically the air and fuel are combined in a chamber before they are drawn into the cylinder. Gasoline is the fuel generally used by this type of engine.

### 3.4 Vibration

Oscillation of a body about a reference position or state of equilibrium is known as vibration. The number of waves of this oscillation over a period of one second is defined as the frequency and the maximum displacement is called the amplitude of the vibration. Vibration of a system is said to be forced if it is caused by some mechanical excitation. In the case of engine vibration the source is from both the internal combustion and the mechanical motion. The frequency content of the vibration is directly related to the mechanical workings and the rotational speed and loading of the engine.

Analytical analysis of the vibration response of an engine is quite complicated and can be theoretically realized by computer modeling software. The complex system can be broken down into a sum of spring-mass-damper models.

Consequently the fundamentals of vibration can be understood through a study of the simple spring-mass-damper model.

The vibration system entails the transfer back and forth of potential energy to kinetic energy and visa versa. Potential energy is represented by the spring; a device which stores mechanical energy. Next the kinetic energy is encompassed
by the mass which gains or loses energy in relation to its change in velocity. The final piece is the damper which dissipates the energy of the system [29].

In this brief overview some of the fundamentals of vibration will be described along with the basics of a single-degree of freedom system with damped forced vibration.

### 3.4.2 Classification of Vibration

Vibration can be classified in many different ways. In this section the cause and limiting factor of vibration will be explained.

### 3.4.2.1 Free and Forced Vibration

Free vibration refers to the resulting vibration from an initial event. The motion of the system after the initialization incident is maintained only by the internal transfer of forces within the system. Alternatively forced vibration occurs when an external force is applied to the system. Often this exciting force is periodic in nature and the resulting vibration of the system is equivalent to the forcing frequency.

### 3.4.2.2 Undamped and Damped Vibration

A system where the resultant energy from the initial conditions is conserved is known as undamped vibration. The energy of the system is continuously exchanged between potential and kinetic energy and the vibration will continue
indefinitely. This is an idealized case because almost all systems are actually damped to some degree.

When a vibration system loses energy due to friction or some other type of resistance it is described as damped. The amount of damping is relative to the time it takes for the motion to stop or the energy of the system to be dissipated. A system's damping may be large enough to prevent the initial vibration from occurring or it may be small and oscillation of the system will continue for a period of time.

The amount of damping is described by the damping ratio $(\zeta)$. In a spring-mass-damper system it is characterized by

$$
\begin{align*}
& \quad \zeta=\frac{c}{2 m \omega_{n}}  \tag{3.4}\\
& \text { Where: } \quad \begin{array}{l}
c=\text { damping coefficient } \\
\\
\\
\\
\omega_{n}=\text { mass } \\
\end{array} \\
&
\end{align*}
$$

This ratio defines the type of system damping; if it is greater than one it is overdamped, equal to 1 it is critically damped, and less than one it is under-damped. In an over-damped system there is no oscillation of the system and it has a slow aperiodic decay as it returns to the equilibrium point but an under-damped system has oscillations that diminish over time. The critically-damped system is the borderline point between these two cases.

Damping can be caused by different types of friction such as: dry friction, fluid friction, and internal friction. A special case of fluid friction where the frictional force is directly proportional to the speed of the moving body is called viscous damping [30]. This type is the most commonly used damping mechanism and will be used in the spring-mass-damper system described in the following section.

### 3.4.3 Forced Vibration System

The vibrations that arise from an internal combustion engine are classified as forced vibration. Combustion in the engine and the ensuing mechanical impacts are the excitation force of the vibration. Depicted in Figure 3.7 is a basic spring-mass-damper model with a single degree of freedom. An overview of the governing equations will be presented.


Figure 3.7: Spring-Mass-Damper System [2]

A system with a mass of weight $m$, a damping coefficient $c$, and a stiffness of $k$ is subjected to a periodic force $F(t)$ with magnitude $F_{o}$ and its governing equation of motion is

$$
\begin{equation*}
m \ddot{x}+c \dot{x}+k x=F_{o} \cos (\omega t)=F(t) \tag{3.5}
\end{equation*}
$$

Where: $\quad x=$ linear displacement with respect to time
$\dot{x}=$ linear velocity with respect to time
$\cdot$
$x=$ linear acceleration with respect to time $\omega=$ radian frequency

The motion of the mass like the forcing function is also harmonic and is described as

$$
\begin{equation*}
x(t)=X \cos (\omega t-\phi) \tag{3.6}
\end{equation*}
$$

Where $X$ is the amplitude and $\phi$ represents the phase angle of the vibration response. Substituting Eq. (3.6) into Eq. (3.5) we arrive at

$$
\begin{equation*}
-X m \cos (\omega t-\phi)-c \sin (\omega t-\phi)+k \cos (\omega t-\phi)=F_{o} \cos (\omega t) \tag{3.7}
\end{equation*}
$$

Using trigonometric relations and manipulating the above equation the solution gives

$$
\begin{equation*}
X=\frac{F_{o}}{\sqrt{\left(k-m \omega^{2}\right)^{2}+(c \omega)^{2}}} \tag{3.8}
\end{equation*}
$$

and

$$
\begin{equation*}
\phi=\tan ^{-1}\left(\frac{c \omega}{k-m \omega^{2}}\right) \tag{3.9}
\end{equation*}
$$

This provides the amplitude and phase shift of the resulting vibration. Next dividing both the numerator and denominator of Eq. (3.8) by $k$ and substituting Eq. (3.8) and Eq. (3.9) with the following

$$
\begin{equation*}
\omega_{n}=\sqrt{\frac{k}{m}}, \zeta=\frac{c}{2 m \omega_{n}}, \delta_{s t}=\frac{F_{o}}{k}, r=\frac{\omega}{\omega_{n}} \tag{3.10}
\end{equation*}
$$

Where: $\quad \delta_{s t}=$ static deflection
$r=$ frequency ratio
the subsequent equations are obtained

$$
\begin{equation*}
M=\frac{X}{\delta_{s t}}=\frac{1}{\sqrt{\left(1-r^{2}\right)^{2}+(2 \zeta r)^{2}}} \tag{3.11}
\end{equation*}
$$

and

$$
\begin{equation*}
\phi=\tan ^{-1}\left(\frac{2 \zeta r}{1-r^{2}}\right) \tag{3.12}
\end{equation*}
$$

Where $M$ is the magnification factor, which is the ratio of the dynamic to the static motion.

Expressed in Eq. (3.9) is the phase difference between the forcing function and the steady-state response of the system. The frequency response of this system with different frequency ratios can be found in Figure 3.8. From this plot it can be noted that greater damping is required near the resonant frequency. In most systems the resonant frequency is avoided by keeping the natural frequency and the forcing frequency far apart.


Figure 3.8: Frequency response [2]

### 3.5 Filters

A filter is a device which obstructs the passage of something, while allowing other portions to penetrate through. In this study it is an electronic circuit or its digital realization that remove undesired frequency components from an input signal [31].

Filters can be classified by family and passband. The family outlines the design criteria, while the passband denotes the transmitted frequencies. There are four fundamental passbands; lowpass, highpass, bandpass and bandstop. These filters are depicted in Figure 3.9. Another passband is the allpass filter which permits all frequencies to pass but modifies the phase of the output. Some common filter families are Butterworth, Chebyshev, Elliptic and Bessel. Each possesses distinct specifications in the definition of their transfer function (filtered output versus original input).


Figure 3.9: Ideal Filters

### 3.5.1 Lowpass and Bandpass Filters

Two filter types used in this research are lowpass and bandpass filters. A lowpass filter attenuates high frequencies, while allowing lower frequencies to pass through. Utilization of lowpass filters can be found in such applications as subwoofers which project low frequency sounds. They are also implemented in
radio transmitters where harmonics are removed from the outgoing signal. A lowpass filter is called an anti-aliasing filter when it is used to remove high frequencies to prevent noise and distortion in a digital signal.

The bandpass filter only retains frequencies within a certain range; filtering out higher and lower frequencies. This filter can also be realized by combining a lowpass with a highpass filter. These filters are often used in wireless transmitters and receivers because of their limited bandwidth.

### 3.5.2 Ideal and Real Filters

Filters depicted in Figure 3.9 are ideal; this means that the filter has a constant gain with full transmission in the passband, complete attenuation in the stopband, and no transition band. Ultimately it is impossible to build an ideal filter but by creating a high order filter it is possible to approach the desired result. The fallout from this is that as the order rises the filter becomes more expensive and time delays can be introduced. In the digital realization the downfall is that it requires more computational time and can lead to issues such as instability.

Illustrated in Figure 3.10 is a real lowpass filter. In the design of a filter there are different types of criteria to consider; this includes the ripple in the pass and stopbands and the slope of the transition band.


Figure 3.10: Non Ideal Lowpass Filter Characteristics

### 3.5.3 Butterworth Filter

A Butterworth filter also known as a maximally flat filter is one of the basic electronic filters [32,33]. The passband of this filter has a mostly flat response with no ripples and a minimal deviation from unit gain. This filter's downfall is the slow roll-off to the stopband. The steepness of the decline to the stopband can be increased by a higher order implementation but this quickly complicates the circuit. To analyze the filter the Laplace transform is used; this tool transforms the time data into complex angular frequency data in the s-domain. Poles of the filter in the s-domain are equally spaced in the negative half plane. They are located $\pi / n$ radians apart on a half circle of radius $\omega_{c}$; where $n$ is the number of poles and $\omega_{c}$ is the cut-off frequency of the filter. The Butterworth filter is used in this study as an anti-aliasing filter in the data acquisition system and is digitally realized in the processing of time data.

## CHAPTER 4 - EXPERIMENTAL DETAILS

This chapter delineates the experimental setup, test procedures and equipment used for the acquisition of data in this research study. Data was acquired as part of ongoing testing at the Ford PERDC in the Essex Engine plant.

### 4.1 Test Engines

The engines surveyed in this investigation consisted of a baseline of 30 engines and 3 comparison sets of 6 engines. The baseline engines are 5.4L 3-valve Triton engines; these are production engines used in QOS studies. This engine model has been in production for over five years with more than 2.5 million engines built. Due to the scale of production a large amount of data was available for this research.

Two of the comparison groups, the 4.6L 2-valve and the 6.8 L 3 -valve Triton are also from QOS production engine studies. The final comparison set consists of faulted 5.4L 3-valve Triton engines. These engines were either returned from dealerships or from the assembly plant. The severity of the faults varies from severe to mild.

### 4.2 Test Conditions

Engines were warmed up to normal in-vehicle operating conditions and were idled in neutral; a no load condition. This idle speed was generally 600 rpm but
varied between engine families with speeds up to 700 rpm . The engine oil temperature was controlled by the cooling water to approximately $180^{\circ} \mathrm{C}$ and the test cell temperature was also regulated to $20^{\circ} \mathrm{C}$. Data from the constant-rpm idle conditions was collected in three measurement runs on each engine.

### 4.3 Dynamometer and Test Cell

The engines were setup on a dynamometer test stand using the same transmission and mounting brackets that are used in the vehicle. This setup allowed for a close representation of the function of the engine without requiring the whole vehicle to be tested. Reproduction of in-vehicle conditions and repeatability between tests was further aided by the controlled environment of the test cell.

An alternating current dynamometer was used to provide speed and load on the engine. In this test the dynamometer was not engaged in the neutral idle condition hence other than its relation to the controls of the cell its effect was negligible.

### 4.3.1 Test Chamber

Experiments were performed in a semi-anechoic chamber. This type of environment allowed for a reduction of noise and vibration from external sources and minimization of reverberation. A T-slotted bed plate was used to securely mount the engine test stand. The bed plate was attached and levelled to a
foundation isolated from the rest of the building structure. This provided rigidity and minimized the infiltration of external vibration to the test setup.

### 4.3.2 Dynamometer, Test Cell and Engine Controls

The dynamometer was linked to a controls desk where a Hewlett Packard UNIX work station was running Automated Data Acquisition and Control System (ADACS) software. This computer system was also connected to the engine via a VXI chassis. Together the arrangement controlied and monitored the test cell equipment and enabled automated and manual testing for powertrain development and examination. A second system running ATI Vision controled the powertrain calibration and modified variables of the ECU (electronic control unit). This communication utilized a CAN network to interface with the ECU.

### 4.4 Sensors

In this experiment only two types of sensors were used in the acquisition of the engine data. A collection of eight accelerometers were installed at various locations about the engine for vibration measurement. Also the built in CID sensor from the engine was utilized to synchronize the vibration data to the engine cycle.

### 4.4.1 Accelerometer Locations

Accelerometer locations were selected to give the best overall view of the vibration signature of the engine. Consideration was given to the transmission
path of vibration from the valvetrain assembly, piston assembly, and cylinder head and bore along with the ease of setup. The positions selected are as follows: front and rear cylinder head tabs and block lugs on both left and right sides of the engines. In the figure below the transducer locations can be seen.


Figure 4.1: Accelerometer Mounting Locations

The mounting surfaces on the engine were smoothed where necessary using fine grit sand paper and were cleaned with LPS Electric Contact Cleaner before being instrumented. This was done to ensure the uni-directionality and repeatability of measurements.

Two different mounting methods were used on the accelerometers; adhesive and magnetic. These methods were chosen to balance ease of installation and removal, damage to the engine, and loss of frequency range.

Transducers were affixed to the engine using the adhesive method on all of the head tabs and non-ferrous block lugs. A cylindrical brass base ( 9 mm in diameter and 5 mm thick) fitted with a set screw was adhered to the engine lugs using Loctite 404 Quick Set Instant Adhesive. Finally, the accelerometers were threaded onto the bases and hand tightened.

The magnetic mounting method was used only on the blocks that were fabricated of cast iron. This is a fast and easy method of mounting but also slightly diminishes the dynamic range of the accelerometer due to the force of the magnet.

Surfaces of the installation sites were flat and smooth so as to not affect the frequency response. In both mounting methods the bases of the sensors have such a nominal mass in comparison to the overall engine that the loss in frequency range is considered to be negligible. Also, the rate of acceleration in this type of testing is low; with high rates of acceleration these mounting methods would suffer from a diminished frequency range.

### 4.4.2 Cylinder Indicator

The output signal of the CID sensor was obtained to allow for subsequent angle domain analysis. Connected to the camshaft this sensor was used to identify when cylinder one was approaching top dead centre (TDC) of the power stroke. Acquisition of this signal was also useful in the monitoring of engine speed. The
output of this signal was either a sinusoidal type wave or a square wave dependant on the engine family being tested.

In most engines the CID sensor is located on the front of the cylinder head as can be seen in Figure 4.1. The 3-valve engines contain two CID sensors; in this experiment the signal was collected only from the sensor on the odd/right bank of the engine. The other engines in this study have only a single sensor. Output from the CID was acquired by splitting the signal between the engine wiring harness and the data acquisition system.

### 4.5 Data Acquisition System

Analog signals originating from the accelerometers on the engine and the CID sensor were converted to a digital signal by the Prosig 5600 data acquisition unit. The digital output of the system was connected to a laptop where the incoming data was monitored and stored upon acquisition.

This data acquisition unit features 16 input channels with the ability to expand to 64 channels. It has an input range of $\pm 10 \mathrm{~V}$, a sampling rate of up to 100 kHz per channel, and 16-bit ADC resolution. A Windows based laptop computer was used for controlling the setup and acquisition of the data and communicated with the acquisition unit through the parallel port connection. Further specifications of this system can be found in Appendix A. This system was chosen for its portability, ease of setup, minimal processing time and other previously
discussed system attributes. A complete test setup including the acquisition system can be seen in Figure 4.2.


Figure 4.2: Engine Test Setup

### 4.6 Instrumentation

The engine vibration data for this study was collected using accelerometers and their accessories. In the following section an overview of each component will be discussed. Specifications for this equipment can be found in Appendix A.

### 4.6.1 Brüel \& Kjær Type 4366 Charge Accelerometer

This is a piezoelectric, charge mode, DeltaShear accelerometer. A charge amplifier is required to extract the output signal from the transducer. It is relatively insensitive to temperature, highly receptive, and very durable. Due to a high impedance output it requires the use of low noise cables. The DeltaShear is comprised of three piezoelectric elements in the formation of a triangle which are
surrounded by three masses. This arrangement is held together by a clamping ring. The masses convey the incoming vibration from the base through to the piezoelectric elements outputting a high impedance electric charge proportional to the input force. This type of accelerometer was used because of its ability to withstand the high temperatures near the exhaust manifold.

### 4.6.2 Brüel \& Kjær Type 5974 8-Channel Charge Amplifier

The piezoelectric charge mode accelerometers feed their signal into the charge amplifier. Subsequently the charge amplifier converts the charge from the transducer to an output voltage. The system works as an inverting amplifier with the use of a high gain operational amplifier. This low noise amplifier has individual settings for transducer sensitivity and has a wide frequency range. In this study the low-pass filter was turned off, the high-pass filter set to 0.3 , and the input sensitivity adjusted to $10 \mathrm{pC} / \mathrm{m} / \mathrm{s}^{2}$.

### 4.6.3 Brüel \& Kjær Type 2635 Charge Amplifier

This charge amplifier was used in the same manner as the type 5974. It is intended for use in vibration measurement with piezoelectric accelerometers. As an extra system it was only used if additional input channels were required and it also served as a backup when channels failed on the type 5974 charge amplifier.

### 4.6.4 Brüel \& Kjær Type 4294 Calibration Exciter

In the verification of accelerometers this instrument provided a reference vibration level. A controlled oscillation of 159.15 Hz at $10 \mathrm{~m} / \mathrm{s}^{2}$ was supplied by this compact battery operated vibration source. Each accelerometer was threaded onto the calibrator with a 10-32 UNF stud and a quick check of the output function in comparison to the calibration was performed.

### 4.6.5 Cable Assemblies

The cables used with the accelerometers were low-noise 10-32 coaxial cables.
Standard BNC cables were used to connect the charge amplifier and the CID to the data acquisition system. Cable lengths were minimized with the accelerometer and CID cables being 10 ft in length and the remaining BNC cables having a length of 3 ft . This minimization was employed to diminish and when possible eliminate effects on the frequency response and the introduction of noise and distortion into the signal.

## CHAPTER 5 - DATA ANALYSIS METHODS

After the engine vibration data is collected it must subsequently be analyzed. In this study the focus is on the variability between engines. A multitude of techniques are available to aid in the investigation of variability. The domain of the analysis and the mode of transformation between domains is another factor for consideration. With engine vibration data it is quite common to transform the acquired time domain data into the angle or frequency domain. This chapter describes the mathematical computation methods used in this research.

### 5.1 Descriptive Statistics

Descriptive statistics refers to the basic statistical procedures used to summarize and simplify data [2]. In general, these measures are used in the presentation of data through graphs, figures and tables. Mathematical implementations of these methods are included as part of the calculation of other measurement techniques.

### 5.1.1 Mean

The arithmetic mean or standard average is a common statistical analysis tool which is used through out this study. A mathematical average of a set of data is known as the mean. It is found by summing all the numbers in a set and dividing by the size of the array ( $n$ ).

$$
\begin{equation*}
\bar{x}=\frac{1}{n} \sum_{i=1}^{n} x_{i}=\frac{1}{n}\left(x_{i}+\cdots+x_{n}\right) \tag{5.1}
\end{equation*}
$$

In the indication of central tendency this is the most common method used. This approach is not to be used if the data has skewed or uneven distribution or if it contains outliers; since these can lead to false interpretation of results.

### 5.1.2 Standard Deviation

A statistical measure of dispersion or variation of a data set from its mean is measured by the standard deviation. It is derived by taking the square root of the variance; where the variance measures the average squared difference between the mean and the data point. The calculation of standard deviation $(\sigma)$ is as follows

$$
\begin{equation*}
\sigma=\sqrt{\frac{1}{n} \sum_{i=1}^{n}\left(x_{i}-\bar{x}\right)^{2}} \tag{5.2}
\end{equation*}
$$

The standard deviation is a measure of the scatter of values in a data set and its units are the same as the mean and that of the data set. A large value indicates that data points are fairly removed from the mean whereas a small standard deviation denotes that the data points are clustered together. In this study the standard deviation was used to measure the variation of the modeling results.

### 5.1.3 Coefficient of Variation

From the coefficient of variation a measure of repeatability of a sample can be attained. This measure of dispersion is the ratio of the standard deviation to mean of the sample set.

$$
\begin{equation*}
c_{v}=\frac{\sigma}{\bar{x}} \tag{5.3}
\end{equation*}
$$

In this study it was used to measure the degree of variation between processing methods.

### 5.2 Least Squares

The least squares method is a mathematical optimization technique used to obtain the best estimates of unknown coefficients. Through the minimization of the sum of the square residuals this linear regression procedure determines the estimated value of the coefficients. The calculated residual or error $\varepsilon_{i}$ is the difference between the observed value and the value predicted by the model.

$$
\begin{equation*}
\varepsilon_{i}=\hat{Y}_{i}-Y_{i} \tag{5.4}
\end{equation*}
$$

Minimization of the sum of the squared deviations between the data and the model estimates is found through the evaluation of the following equation.

$$
\begin{equation*}
F=\min \sum_{i=1}^{n}\left(\hat{Y}_{i}-Y_{i}\right)^{2} \tag{5.5}
\end{equation*}
$$

Regression of the system is used to evaluate the relationship between multiple variables to produce a single equation. The least-squared analysis is considered to be a linear regression method because it is a linear function of its parameters. A linear model is defined by a series of equations which are simultaneously solved to estimate the best fitted coefficients as in the following matrix equation.

$$
\left[\begin{array}{c}
y_{1}  \tag{5.6}\\
y_{2} \\
\vdots \\
y_{n}
\end{array}\right]=\left[\begin{array}{ccccc}
1 & x_{21} & x_{31} & \cdots & x_{p 1} \\
1 & x_{22} & x_{32} & \cdots & x_{p 2} \\
\vdots & \vdots & \vdots & \vdots & \vdots \\
1 & x_{2 n} & x_{3 n} & \cdots & x_{p n}
\end{array}\right]\left[\begin{array}{c}
\beta_{1} \\
\beta_{2} \\
\vdots \\
\beta_{n}
\end{array}\right]+\left[\begin{array}{c}
\varepsilon_{1} \\
\varepsilon_{2} \\
\vdots \\
\varepsilon_{n}
\end{array}\right]
$$

One of the most commonly used regression methods for solving overdetermined equations is the least squares method. The results of this method are considered to be a maximum-likelihood estimate of the coefficients. It is often used in curve fitting for interpolation, extrapolation, and smoothing of data.

### 5.3 Detrend

The dc-offset of the system is the offset of the signal from zero and is generally undesirable. To reduce a steady-state time series to a zero-mean the series average is subtracted from each sample. In other words the constant offset or linear trend is removed, which results in a time-series centered about zero. The formal equation for this detrending technique is

$$
\begin{equation*}
y_{\mathrm{det}}[n]=y[n]-\bar{y} \tag{5.7}
\end{equation*}
$$

This technique also removes discrepancies in the frequency domain, most prominently the asymmetry at 0 Hz .

### 5.4 Variability Analysis

Variability analysis is a tool used to measure statistical dispersion or correlation.
In this study it was used to find how similar the vibration signature was from engine to engine. The analysis of variability in this study began with finding the average value for each coefficient or analysis point. This is done as follows

$$
\begin{equation*}
c_{0}=\frac{1}{E} \sum_{q=1}^{E} a_{0}^{q} \tag{5.8}
\end{equation*}
$$

With E being the number of engines utilized in the study. Summing the analysis points from each set of engine data and dividing by the number of engines
determines the average value $\mathrm{c}_{0}$. The number of coefficients is dependant on the method being utilized with some methods comparing each data point, while others simply compare calculated coefficients. A matrix multiplication is used as a straightforward method to find the average values as in the following equation.

$$
\left[\begin{array}{cccc}
a_{0}^{1} & a_{0}^{2} & \cdots & a_{0}^{E}  \tag{5.9}\\
a_{1}^{1} & a_{1}^{2} & \cdots & a_{1}^{E} \\
\vdots & \vdots & \vdots & \vdots \\
a_{N}^{1} & a_{N}^{2} & \cdots & a_{N}^{E}
\end{array}\right]\left[\begin{array}{c}
\frac{1}{E} \\
\frac{1}{E} \\
\vdots \\
\frac{1}{E}
\end{array}\right]=\left[\begin{array}{llll}
c_{0} & c_{1} & \cdots & c_{N}
\end{array}\right]
$$

The difference between the average value and the analysis point is the subsequent area of scrutiny. A radius or Euclidean distance is calculated for each as

$$
\begin{equation*}
r^{1}=\sqrt{\left(\mathrm{a}_{0}^{1}-c_{0}\right)^{2}+\left(\mathrm{a}_{1}^{1}-c_{1}\right)^{2}+\cdots+\left(\mathrm{a}_{\mathrm{N}}^{1}-c_{N}\right)^{2}} \tag{5.10}
\end{equation*}
$$

This radius gives the shortest distance in Euclidean space, $\Re^{n}$ with the dimension of the space defined by the number of analysis points, $N$.

The above calculations are only good for a single accelerometer. If the entire range of 8 accelerometers is to be analyzed each of the corresponding coefficients must be grouped together.

$$
\left[\begin{array}{cccc}
a_{0,1}^{1} & a_{0,1}^{2} & \cdots & a_{0,1}^{E}  \tag{5.11}\\
a_{1,1}^{1} & a_{1,1}^{2} & \cdots & a_{1,1}^{E} \\
\vdots & \vdots & \vdots & \vdots \\
a_{N, 8}^{1} & a_{N, 8}^{2} & \cdots & a_{N, 8}^{E}
\end{array}\right]\left[\begin{array}{c}
\frac{1}{E} \\
\frac{1}{E} \\
\vdots \\
\frac{1}{E}
\end{array}\right]=\left[\begin{array}{llll}
c_{0,1} & c_{1,1} & \cdots & c_{N, 8}
\end{array}\right]
$$

Next the radius is calculated for each:

$$
\begin{equation*}
r^{1}=\sqrt{\left(\mathrm{a}_{0,1}^{1}-c_{0,1}\right)^{2}+\left(\mathrm{a}_{1,1}^{1}-c_{1,1}\right)^{2}+\cdots+\left(\mathrm{a}_{\mathrm{N}, 8}^{1}-c_{N, 8}\right)^{2}} \tag{5.12}
\end{equation*}
$$

The determined radii of each engine results in a real number; the larger the number the further the data is from the mean, while a lower number denotes greater similarity to the average.

### 5.5 Angle Domain

This analysis method involves transforming a time domain series into the angle domain. In this study this was easily done because the measurement was collected from a rotating machine; an SI engine. An example of the time domain vibration signal and its transform into the angle domain can be seen in Figures 5.1 and 5.2.


Figure 5.1: Raw Time Domain Vibration Signal


Figure 5.2: Transformed Angle Domain Vibration Signal

The vibration signal is directly related to the engine parts and hence if the speed of the engine varies the vibration signal will also vary correspondingly. At idle the engine may seem to be at a constant speed but slight variations in speed are a frequent occurrence. By tracking the CID signal the angle of the crankshaft can be discerned. Combining this information with the time data series the information is resampled into the angle domain.

### 5.5.1 Angle Domain Average

Finding the angle domain average or cycle average is accomplished through the determination of the mean of respective points from each cycle. Angle domain data is separated into cycles and each corresponding term is averaged. This
results in a single cycle which is a general representation of the overall data series.

$$
\begin{equation*}
\bar{x}_{p}=\frac{1}{N} \sum_{k=1}^{N} x_{k p}, p=1,2,3, \ldots S \tag{5.13}
\end{equation*}
$$

Where $\quad p=$ Sample Index
$K=$ Cycle Index
$S=$ Samples per Cycle
$N=$ Number of cycles
$\bar{x}_{p}=p_{\text {th }}$ average value.
An example of the angle domain average can be seen below; this single cycle series is calculated from the same data used in Figures 5.1 and 5.2.


Figure 5.3: Single Cycle Angle Domain Average Vibration Signal

This method of analysis is an effective way of monitoring cyclical or periodic events. Furthermore a transient or random event and noise are generally
eliminated due to the averaging over the cycles. In this study 30 cycles are averaged to produce the single cycle angle domain average vibration signal.

### 5.6 Frequency Domain Analysis

Time domain data can only give a limited view of vibration. The frequency domain provides a description of periodicity and frequency content of the time domain signal. Many methods are best suited to analysis in the frequency domain and the frequency characteristics key to vibration analysis can only be found in this realm. The methods used in this research's time to frequency domain transformations and the analysis techniques utilizing the frequency data are discussed in this section.

### 5.6.1 Fourier Analysis

Frequency domain analysis is based on Fourier methods and tools. Fourier analysis is based on the concept that every signal can be decomposed into a sum of sinusoids. This tool is widely used and its applications range throughout the scientific community. In vibration monitoring and diagnosis of rotating machinery it is an invaluable tool. An expected frequency content and amplitude of an engine can be found with deviations denoting a possible problem in the engine. Fourier analysis is used in the majority of the analysis techniques used in this study.

### 5.6.1.1 Fourier Series

The Fourier series is used to decompose a periodic signal into its periodic components. It is a linear combination of harmonics of the fundamental frequency $f_{o}$ of the periodic signal $x_{p}(t)$ and its multiples $k f_{o}$. The coefficients of this series are the least squares fit to original signal. There are three key forms of the Fourier series: trigonometric, polar, and exponential.

The trigonometric form of the Fourier series is the sum of the sines and cosines at multiples of the fundamental frequency with the dc offset represented by $a_{0}$.

$$
\begin{equation*}
x_{p}(t)=a_{o}+\sum_{k=1}^{\infty} a_{k} \cos \left(2 \pi k f_{o} t\right)+b_{k} \sin \left(2 \pi k f_{o} t\right) \tag{5.14}
\end{equation*}
$$

In the polar form of the series the trigonometric series combines coefficients into magnitude and phase.

$$
\begin{gather*}
c_{k} \angle \theta_{k}=a_{k}-j b_{k}  \tag{5.15}\\
x_{p}(t)=c_{o}+\sum_{k=1}^{\infty} c_{k} \cos \left(2 \pi k f_{o} t+\theta_{k}\right) \tag{5.16}
\end{gather*}
$$

From this evaluation form it is apparent that the periodic signal is made up of multiple sinusoidal components each with their own amplitude, phase difference, and frequency.

Using complex conjugates of the sine and cosine pairs the exponential form of the Fourier series is found.

$$
\begin{equation*}
X[k]=\left|c_{k}\right| e^{i \theta_{k}} \tag{5.17}
\end{equation*}
$$

$$
\begin{align*}
& X[-k]=\left|c_{k}\right| e^{-j \theta_{k}}  \tag{5.18}\\
& x_{p}(t)=\sum_{k=-\infty}^{\infty} X[k] e^{j 2 \pi k f_{o} t} \tag{5.19}
\end{align*}
$$

Fourier series coefficients can be established over a single period since each period is identical. A frequency spectrum or amplitude spectrum of $X[k]$ is a series of discrete values at harmonics of the fundamental frequency. The exponential Fourier series coefficients $X[k]$ are related to the periodic signal by the following expression

$$
\begin{equation*}
X[k]=\frac{1}{T} \int_{-T / 2}^{T / 2} x_{p}(t) e^{-j 2 \pi f_{o} t} d t \tag{5.20}
\end{equation*}
$$

These three equivalent forms of the Fourier series only describe completely periodic signals. However, the Fourier series is the building block in the relationship between the periodic and aperiodic signals.

### 5.6.1.2 Fourier Transform

The Fourier transform is a mathematical formula that provides a frequency domain description of a continuous time domain signal. A frequency domain transform depicts both the frequency amplitude and the phase of the time signal.

In the representation of a periodic signal evaluation limits are generally one period in length. To encompass aperiodic signals the length of the period is infinitely increased. By increasing the period the harmonic spacing approaches zero and the frequency spectrum becomes continuous. The Fourier transform is as follows

$$
\begin{equation*}
X(f)=\int_{-\infty}^{\infty} x(t) e^{-j 2 \pi f t} d t \tag{5.21}
\end{equation*}
$$

Where the inverse Fourier transform is

$$
\begin{equation*}
x(t)=\int_{-\infty}^{\infty} X(f) e^{j 2 \pi f t} d f \tag{5.22}
\end{equation*}
$$

This transform pair describes the relationship between the frequency domain and time domain representation of any continuous-time signal.

### 5.6.1.3 Fourier Transform of Discrete-Time Signals

A discrete time signal arises from the sampling of a continuous signal. The sampled or discrete signal, while still related to its parent signal becomes an ordered sequence of quantities equally spaced in frequency. When transformed into the frequency domain the sampled signal becomes continuous and periodic. The transform pair of the discrete-time signal is given by

$$
\begin{equation*}
X_{p}(F)=\sum_{n=-\infty}^{\infty} x[n] e^{-2 m i F} \tag{5.23}
\end{equation*}
$$

and

$$
\begin{equation*}
x[n]=\int_{-1 / 2}^{1 / 2} X_{p}(F) e^{j 2 \pi u F} d F \tag{5.24}
\end{equation*}
$$

A relationship between periodicity in one domain and sampling in the other is held by the Fourier series and the discrete Fourier transform. This implies that if a signal is discrete and periodic in one domain than it should also be discrete and periodic in the other domain [32].

The transformation in this case of Fourier analysis requires an infinite number of iterations to synthesize a signal if it is aperiodic. Since computers can only process information that is discrete and finite computation of this algorithm in digital signal processing is impossible.

### 5.6.1.4 Discrete Fourier Transform

The data in this study was of finite duration. Another kind of Fourier analysis is required to analyze this type of data which is called the discrete Fourier transform. An input signal and the resulting transform are sampled in both the time and frequency domain with an $N$ point time domain signal transforming into an $N$ point frequency domain signal. The DFT and its inverse are written as

$$
\begin{equation*}
X[k]=\sum_{n=0}^{N-1} x[n] e^{-\frac{j 2 m k}{N}}, k=0,1,2, \ldots, N-1 \tag{5.25}
\end{equation*}
$$

and

$$
\begin{equation*}
x[n]=\frac{1}{N} \sum_{k=0}^{N-1} X[k] e^{-\frac{j 2 m k}{N}}, n=0,1,2, \ldots, N-1 \tag{5.26}
\end{equation*}
$$

Results of the DFT give a set of $N$ equations for each data sample or $N^{2}$ arithmetical operations. Where data has both periodic and aperiodic parts the number of samples required to encapsulate the significant values demands a prolonged duration of the captured signal. The number of samples is therefore quite substantial and the calculation of the transformation computationally intensive. For this reason algorithms have been formulated to reduce the number of multiplications.

### 5.6.1.5 Fast Fourier Transform

Computationally efficient algorithms to obtain the DFT are known as the fast Fourier transform. These methods use far less calculations thus reducing the computation time. The algorithm reduces the DFT into many smaller-sized DFTs. There are two types of methods: decimation in time and decimation in frequency.

The FFT was discovered more than a century ago but for practical purposes was never used. With the dawning of the age of the computer the tool required to realize the algorithm arrived. Today the FFT is one of the most common algorithms used in digital signal processing and can reduce more than a hundredfold the computation time of the DFT.

An example of the reduction of computation can be seen in the total number of multiplications: the DFT requires $N^{2}$ and the FFT entails only $0.5 N \log _{2} N$. From this it can be seen that with a short duration of samples the computational difference is minimal but as the number increases the FFT becomes computationally superior.


Figure 5.4: FFT of a Vibration Signal

### 5.6.2 Discrete Cosine Transform

The discrete cosine transform is similar to the discrete Fourier transform but uses only real numbers. A Fourier transform uses a summation of sine and cosine waves to represent a signal whereas the discrete cosine transform only uses cosine waves. The DCT transforms a finite sequence by creating a periodic and symmetric sequence from which the original data can easily be recovered.

There are multiple ways to do this hence there are multiple variations of the discrete cosine transform. Different methods of calculating the DCT are defined by the symmetry about its endpoints and half sample points. The version known as DCT-II (or just DCT) is the most common and is the one used in this study. Outlined in Eq. (5.27) is the calculation for the transform of the DCT.

$$
\begin{equation*}
X_{D C T-I I}[k]=\sum_{n=1}^{N-1} x[n] \cos \left(\frac{\pi k}{N}\left(n+\frac{1}{2}\right)\right), k=0, \ldots, N-1 \tag{5.27}
\end{equation*}
$$

It has even symmetry about the half sample points and at $k=0$ and is odd when $k=N-1$. The resulting transform is a real and even sequence with only half the terms of its DFT counterpart. Another difference from the DFT is that the DCT's power is concentrated in its lower frequencies.

The inverse DCT is

$$
\begin{gather*}
x[n]=\frac{1}{N} \sum_{k=0}^{N-1} \beta[k] X_{D C T-I I}[k] \cos \left(\frac{\pi k}{N}\left(n+\frac{1}{2}\right)\right), n=0, \ldots, N-1  \tag{5.28}\\
\beta[k]=\left\{\begin{array}{lc}
\frac{1}{2}, & k=0 \\
1, & k=1, \ldots, N-1
\end{array}\right. \tag{5.29}
\end{gather*}
$$



Figure 5.5: DCT of a Vibration Signal

### 5.6.3 Normalization

The purpose of normalization is to create a non-dimensional ratio. This allows for easy comparison of data sets by removing variability and hence allowing the characteristics of the system to be compared. The normalization of data in this study is calculated by

$$
\begin{equation*}
y_{n o r m}[n]=\frac{x[n]}{x_{\max }} \tag{5.30}
\end{equation*}
$$

In the frequency domain the normalization should be implemented because the FFT is dependant upon not only the input amplitude but also the length of the series. It was not necessary in this research to use normalization since the data sets under study were of equal length and sampling frequency.

### 5.6.4 Moving Average Model

A MA model is a feedforward or non-recursive model. To calculate the output of the system a weighted sum of the current and past input values is utilized. A discrete time representation of a moving average is

$$
\begin{equation*}
y[n]=\sum_{k=0}^{N} a_{k} x[n-k] \tag{5.31}
\end{equation*}
$$

The name of the model is derived from its defining equation; the output of the model is directly related to the weighted sum or moving average of the input terms. Coefficients of the MA are $a_{k}$ and the order or length of the system is given by $N$. Model order indicates the number of concurrent input terms that are incorporated in the system.

To build the model a z-transform is implemented. The resulting transfer function of the moving average is

$$
\begin{equation*}
H(z)=\sum_{k=0}^{N} a_{k} z^{-k}=a_{0}+a_{1} z^{-1}+a_{2} z^{-2}+\ldots+a_{N} z^{-N} \tag{5.32}
\end{equation*}
$$

A block diagram of this system is illustrated below.


Figure 5.6: Block Diagram of the Moving Average Model

This model is quite stable because the poles are all located at the origin. Further to this the model contains only zeros and is hence defined as a finite impulse response (FIR). This means an impulse inputted into the system will result in a response of finite duration. In other words the output of the system is dependant only on the current input and a limited number of the preceding input samples.

To compare the data to the proposed model we must use a Fourier representation of the transfer function. The discrete time Fourier transform can be found by evaluating $z$ on the unit circle.

$$
\begin{equation*}
z=e^{j \omega} \tag{5.33}
\end{equation*}
$$

From the substitution of Eq. (5.33) into Eq. (5.32) the following transfer function is obtained

$$
\begin{equation*}
H\left(e^{j \omega}\right)=\sum_{k=0}^{N} a_{k} e^{-j \omega k T}=a_{0}+a_{1} e^{-j \omega T}+a_{2} e^{-j \omega 2 T}+\ldots+a_{N} e^{-j \omega N T} \tag{5.34}
\end{equation*}
$$

Up to this point the MA model has been depicted as ideal, where the output of the system is accurately represented by the moving average coefficients. In this study the coefficients are optimized to produce an output that is as close as possible to the input sequence. The error or difference between the input and output is minimized through the use of the least-squares regression of the MA coefficients.

### 5.6.5 Autoregressive Model

An autoregressive model is a type of feedback or recursive filter which is used as a linear prediction formula. The system has a memory of its past output values along with the present value of the input. This model depicts a time series as a linear function of its past values.

$$
\begin{equation*}
y[n]=x[n]+\sum_{p=1}^{M} b_{p} y[n-p] \tag{5.35}
\end{equation*}
$$

Coefficients of autoregression are $b_{p}$ and the order or length of the system is denoted by $M$. The order of the model denotes how many lagged past values
are included in the model. An estimation of the current term is formulated from a weighted sum of previous terms; these weights are the coefficients of the model.

To realize the model a z-transform is utilized. The resulting transfer function is:

$$
\begin{equation*}
H(z)=\sum_{p=0}^{M} \frac{1}{b_{p} z^{-p}}=\frac{1}{b_{0}+b_{1} z^{-1}+b_{2} z^{-2}+\ldots+b_{M} z^{-M}} \tag{5.36}
\end{equation*}
$$

Where $b_{0}=1$.

The block diagram of this system is illustrated below.


Figure 5.7: Block Diagram of the Autoregressive Model

This model has only poles and no zeros, which makes it a type of infinite impulse response filter (IIR). As a result if the incoming data consists of a single impulse the response will carry forward for an infinite duration. This portends that every sample of input data will affect all the proceeding output samples.

For analysis purposes the z-transform of the sequence is converted to the Fourier transform as follows

$$
\begin{equation*}
H\left(e^{j \omega}\right)=\sum_{p=0}^{M} \frac{1}{b_{p} e^{-j \omega p T}}=\frac{1}{b_{0}+b_{1} e^{-j \omega T}+b_{2} e^{-j \omega 2 T}+\ldots+b_{M} e^{-j \omega M T}} \tag{5.37}
\end{equation*}
$$

To ensure stability of the system the poles of the model are limited to the real half of the unit circle.

The equations above portray the AR Model in an idealized situation where the input is perfectly denoted by the autoregressive coefficients. These equations in most cases include an error or residual term. In finding the optimized coefficients of the model this residual term is minimized. To estimate the coefficients in this research the least-squares regression was implemented.

### 5.6.6 Autoregressive Moving Average Model

The autoregressive moving average (ARMA) model combines both the AR and MA models. This system amalgamates the weighted sum of the past and present input values and its own past output values to formulate the current output of the model. The time domain difference equation of the ARMA model is described by:

$$
\begin{equation*}
y[n]=-b_{1} y[n-1]-\cdots-b_{M} y[n-M]+a_{0} x[n]+a_{1} x[n-1]+\cdots+a_{N} x[n-N] \tag{5.38}
\end{equation*}
$$

or

$$
\begin{equation*}
\sum_{p=0}^{M} b_{p} y[n-p]=\sum_{k=0}^{N} a_{k} x[n-k] \tag{5.39}
\end{equation*}
$$

Where the order of the AR part is $M$ with coefficients $b_{p}$ and the order of the MA part is $N$ with coefficients $a_{k}$.

Again the model is transformed into the z-domain which generates the subsequent transfer function

$$
\begin{equation*}
H(z)=\frac{\sum_{k=0}^{N} a_{k} z^{-k}}{\sum_{p=0}^{M} b_{p} z^{-p}}=\frac{a_{0}+a_{1} z^{-1}+a_{2} z^{-2}+\ldots+a_{N} z^{-N}}{b_{0}+b_{1} z^{-1}+b_{2} z^{-2}+\ldots+b_{M} z^{-M}} \tag{5.40}
\end{equation*}
$$

The corresponding block diagram of the system is depicted in the following figure.


Figure 5.8: Block Diagram of an Autoregressive Moving Average Model

This model contains both recursive and non-recursive parts and is considered to be an IIR filter. There are both poles and zeros included in the system hence lagging terms from both the input data and the output data are integrated because of the amalgamation of the AR and MA models.

The Fourier transform representation of z-domain equation is required for computation of the parameters and is defined as:

$$
\begin{equation*}
H\left(e^{j \omega}\right)=\frac{\sum_{k=0}^{N} a_{k} e^{-j \omega k T}}{\sum_{p=0}^{M} b_{p} e^{-j \omega p T}}=\frac{a_{0}+a_{1} e^{-j \omega T}+a_{2} e^{-j \omega 2 T}+\ldots+a_{N} e^{-j \omega N T}}{b_{0}+b_{1} e^{-j \omega T}+b_{2} e^{-j \omega 2 T}+\ldots+b_{M} e^{-j \omega M T}} \tag{5.41}
\end{equation*}
$$

This model exhibits a greater versatility than both the AR and MA models alone. It requires the least number of coefficients and hence less computation and time. The same rules apply to ensure stability of the system where the poles of the model are limited to the real half of the unit circle as in the AR model. To find a best fit of the coefficients to the model the least-squares regression is again used to minimize the error term.

## CHAPTER 6 - RESULTS AND DISCUSSION

Results of the data analysis are presented and discussed in this chapter. Eleven separate methods were used in the investigation of raw and filtered data. The groups of engines examined were the 30 baseline QOS 5.4L 3 V engines and the three comparison groups: faulted $5.4 \mathrm{~L} 3 \mathrm{~V}, \mathrm{QOS} 4.6 \mathrm{~L} 2 \mathrm{~V}$ and QOS 6.8L 3 V engines. Variability in the four groups was studied along with the correlations between the comparison groups and the baseline. The findings presented in this section are only a selected portion gathered from this experiment. A complete set of results can be found in the appendices along with graphs depicting each analysis method.

### 6.1 Raw Data

The original data was used as part of the analysis process. Like the current Ford post-processing procedure the results of the experiment were not filtered. This meant that the data could include aliasing and vital information may perhaps be lost as was discussed in Chapter 3. Another issue was that the measurement transducer's amplitude response frequency limitations were well below that of the sampling rate. All of this considered the losses were judged to be a null point since each test was prone to the same issues.

### 6.2 Filter Data

The analysis methods were also carried out using filtered data from the original series. This filtration process provided results which included only the 3 to 6000 Hz range. A description of the grounds behind the selection of the range of interest can be found in Appendix G.

Two different techniques were employed in the filtering of the data. In the frequency domain analysis an elimination process was utilized whereby all but the frequency range of interest was discarded. A significantly smaller data series than the original was created from the data; these results provided a reasonable rate of compression for ease of storage. The second method of filtration was applied in the angle domain analysis methods. In the Ford Processing and Resampling Utility a built-in $6^{\text {th }}$ order Butterworth filter rendered the filtered data results.

### 6.3 Angle Domain

Transforming the time domain data into the angle domain provided a method whereby the data could be synchronized to the cycle of the engine. This approach also supplied a means of identifying outliers. In Figure 6.1 the comparison of the baseline average to a faulted engine is depicted. This visually displays how the deviations from the norm can be identified.


Figure 6.1: Angle Domain - Comparison of a Faulted 5.4L 3V Engine to the Baseline Average

From the computation a slight reduction in data was obtained but the decrease was considered too minimal to be useful. On the whole this method was an effective tool in the vibration analysis process but other techniques in this study provided superior results.

### 6.4 Cycle Average

The cycle average was used in the current 'Prosig Test' analysis procedure. Results of the cycle average provided a significant reduction in the size of the data, in most cases the data experienced at least a thirty-to-one compression ratio. Since this is an averaging process transient problems are often minimized and not apparent in the end results. A study of the variance in this case would
be a viable alternative. The cycle average process was able to identify major defects but without filtering was prone to slight irregularities.


Figure 6.2: Filtered Angle Domain Cycle Average - Comparison of a Faulted 5.4L 3V Engine to the Baseline Average

From this analysis a significant reduction in data was obtained; the data was stored in this form to alleviate the extra calculation due to the time to angle domain conversion and the averaging process. The current Ford analysis process utilizes the cycle average data and the computation time from the raw data is significant enough to necessitate the extra storage of data. Overall this method was improved by the filtering process.

### 6.5 Fast Fourier Transform

A glimpse of the frequency content of the vibration signature was provided by the fast Fourier transform. In this study the best overall results were obtained from this technique. The trend of the frequency signature of the baseline engines was captured by way of this analysis process. From Figure 6.3 it is quite evident that the baseline average is a good representation of the frequency content of the 5.4L 3 V engine. A notable deviation from this average will cause faulted or outlying engines to easily standout. The filtered version of this method does not present these qualities and can only recognize major outliers.


Figure 6.3: Filtered FFT - Comparison of a 5.4L 3V Engine to the Baseline Average

### 6.6 Discrete Cosine Transform

Findings derived from the discrete cosine transform were similar to that of the FFT. These methods are closely related hence parallel results were expected. In this study the analysis technique was only second to the FFT by a small margin. An example of the DCT of a series and its comparison to the baseline average is found in Figure 6.4.


Figure 6.4: DCT - Comparison of a 5.4L 3V Engine to the Baseline Average

Drawbacks of the DCT implementation were the same as the FFT when the 3 to 6000 Hz filter is implemented. Due to the nature of the DCT the majority of the energy is concentrated at the lower frequencies. Filtering of the data using a wider filtered range could provide enhanced results.

### 6.7 Moving Average

The moving average model presented some of the best results for variability analysis and fault detection. This method compressed the data into 20 coefficients that represented the whole frequency signature. An example of the results can be found in Figure 6.5. The FFT of the vibration signature is overlaid with $Y[F]$ which is the modeled output of the FFT, this is compared with $Y_{\text {avg }}[F]$ of the baseline average model. A basic outline of the FFT is depicted by the model with surprising accuracy. As the number of coefficients rises the precision of the replication will be intensified.


Figure 6.5: MA - Comparison of a Faulted 5.4L 3V Engine to the Baseline Average

This analysis method does not provide as accurate results as the FFT but this could be improved with a greater amount of coefficients. The downfall of this tool is the computation time involved. In comparison to the other techniques the
predictive models duration of analysis was more than a hundredfold times that of the others evaluated in this study. The simple calculation of the 20 coefficients for the baseline engine took days in contrast to the minutes the other techniques required. Further details on the duration of computation time in comparison to the results can be found in Appendix $F$.

### 6.8 Autoregressive Moving Average

Results similar to that of the moving average were achieved by the autoregressive moving average. This method was limited in accuracy due to the fact that only 10 coefficients were used; 5 from both the MA and AR portions. The deficiency was apparent when the data was plotted as seen in Figure 6.6. Here the model output $Y[F]$ is close to the outline of the FFT but the baseline average $\mathrm{Y}_{\text {avg }}[F]$ does not provide any useful data other than to depict the locations of the expected peak amplitudes. The computation time of this method was also similar to that of the MA with the analysis taking place over many days.


Figure 6.6: ARMA - Comparison of a 5.4L 3V Engine to the Baseline Average

### 6.9 Detrend

In the detrending process the dc offset was removed. The outcome of this process provided slightly improved results in the angle domain analysis of the original data although no change was found when it was used with the filtered results. In this study the data had a limited amount of dc offset but in practice it is not an uncommon occurrence. The offset can be caused by grounding problems or noise due to the equipment. At times these issues cannot be avoided and with the current Ford procedure this data cannot be used and is often discarded. By removing the dc-offset of all data more accurate results can be found with less data discarded.

### 6.10 Frequency Domain Normalization

The normalization procedure implemented in this project did not provide an accurate non-dimensional comparison ratio. Many of the scrutinized data series had extremely high amplitudes in the low frequency range. An example of two similar data series which contained isolated peak amplitudes that were significantly different can be seen in Figure 6.7 and 6.8. In this case the result of normalization does not provide viable comparison data. The filtered data supplied a more consistent normalization ratio but was often still determined by the lower frequency spikes. To provide a more suitable comparison of the data a different normalization method should be used.


Figure 6.7: Two Similar Frequency Series with Significantly Different Maximum Amplitudes


Figure 6.8: Normalization of Two Similar Frequency Series with Significantly Different Maximum Amplitudes

When looking at the maximum amplitude in the 2 to 15 kHz range it was found that even when comparing an average engine to that of the worst faulted engine the maximum amplitudes were only two-fold apart. This detail leads to a question of the necessity of normalization of this type of data.

## CHAPTER 7 - CONCLUSIONS AND RECOMMENDATIONS

The following conclusions were reached on the basis of the analyses performed on this study's engine idle vibration data.

1. The FFT analysis technique provided the best overall results in the analysis of variability between engines and identification of outliers. It had a coefficient of variance of 0.1 and was able to distinguish major and minor deviations from the baseline.
2. On the whole the DCT and the angle domain analysis offered adequate results in the study of variation and recognition of faults.
3. The MA and ARMA models gave an excellent representation of the data with a limited number of coefficients. This technique however was computationally too intense to provide a beneficial solution.
4. In the angle domain improved results can be obtained by detrending the data to remove the dc-offset. This process removes noise from the system and provides a more accurate representation of the vibration signature.
5. The normalization process in this study gave erratic results. Due to the similarity of frequency amplitudes this extra step was deemed unnecessary.

The following recommendations are provided for the Ford PERDC team and those wishing to further investigate the analysis techniques examined in this thesis.

1. Expanding on the Ford's current investigation process using the cycle variance with the processes used in this study could provide a viable QOS procedure.
2. Including microphones as part of the testing procedure will present a better overview since the vibration sensors are limited to their mounted locations. The microphones would supply a comparison of the audible deviations which are of vital importance.
3. Additional accelerometers on the main bearings and on each side of the cylinder head would improve analysis of the engine's internal workings.
4. Further research should be done on the MA and ARMA models.

These methods have the potential to provide extremely compressed data that accurately represents the vibration signature.

## REFERENCES

1. Ford Motor Company. Powerplant Mount Vibration Test Procedure. Corporate Engineering Test Procedure 03.00-L-451.
2. Wikipedia Contributors (2007) Wikipedia, The Free Encyclopaedia [online] Wikimedia Foundation. http://en.wikipedia.org [2007, September 17]
3. Chandroth, G., A. Sharkey, and N. Sharkey (1999) Cylinder Pressures and Vibration in Internal Combustion Engine Condition Monitoring. Proceedings of Comadem 1999. Sunderland, UK.
4. Gani, E. and C. Manzie (2004) Intelligent Computing Methods for Indicated Torque Reconstruction. Proceedings of Intelligent Sensors, Sensor Networks and Information Processing Conference, (pp. 259-264). Melbourne, Australia: Australian Research Council, Canberra, Australia.
5. Ajovalasit, M. and J. Giacomin (2003) Analysis of Vibrations in Diesel Engine Idle Vibration. Proceedings of the Institution of Mechanical Engineers, Part D: Journal of Automobile Engineers, Volume 217, (pp 921-933). Institution of Mechanical Engineers, Westminster, London.
6. Alashe, W. and J. Bedi (1994) Engine Idle Quality Improvement using a Fuzzy Logic Controller. Proceedings of the 37 th Midwest Symposium on Circuits and Systems. Volume 2, (pp 1511-1514). Institute of Electrical and Electronics Engineers, New York, New York.
7. Norton, R., R. Stene, J. Westbrook, and D. Eovaldi (1998) Analyzing Vibrations in an IC Engine Valve Train. SAE Paper 980570.
8. Beidl, C., A. Rust, and M. Rasser (1999) Key Steps and Methods in the Design and Development of Low Noise Engines. SAE Paper 1999-011745.
9. Gade, S., H. Herlufsen, H. Konstantin-Hansen, and N. Wismer(1995) Order Tracking Analysis. Denmark: Brüel \& Kjær A/S.
10. Sinha, B. (2002) Trend Prediction from Steam Turbine Responses of Vibration and Eccentricity. Proceedings of the Institution of Mechanical Engineers, Part A: Journal of Power and Energy, Volume 216, (pp 97104). Institution of Mechanical Engineers, Westminster, London.
11. Tjong, J. (1992) Engine Dynamic Signal Monitoring and Diagnostics. Doctorate Dissertation, University of Windsor, Windsor, Ontario.
12. Brüel \& Kjær (1998) Vibration Measurement and Analysis - Lecture Notes. Brüel \& Kjær Sound and Vibration Measurement A/S.
13. Blough, J. and G. Gwaltney (1999) Summary and Characteristics of Rotating Machinery Digital Signal Processing Methods. SAE Paper 1999-01-2818.
14. Idehara, S., U. Miranda, A. Mesquita, and M. Dias (2003) Instantaneous Rotational Speed Identification Using The Directional Wigner Distribution and its Application to Order Analysis. SAE Paper 2003-01-3732.
15. Khayam, S. (2003) The Discrete Cosine Transform (DCT): Theory and Application. East Lansing, Michigan: Michigan State University.
16. Tanaka, M., M. Sakawa, K. Kato, and M. Abe (1998) Application of Wavelet Transforms to Compression of Mechanical Vibration Data. Electronics and Communications in Japan - Part III Fundamental Electronic Science. Vol. 81, Issue 10 (pp. 16-25) Scripta Technica.
17. Mignolet, M. (1987) ARMA Simulation of Multivariate and Multidimensional Random Processes. Doctorate Dissertation, Rice University, Houston, Texas.
18. Ippili, R., P. Davies, and A. Bajaj (2003) System Identification of Quasistatic Foam Behaviour and its Application in H-Point Prediction. SAE Paper 2003-01-2207.
19. Nishizawa, S., M. Ikeda, H. Enomoto, N. Sato, J. Oyama, and T. Hamano (2001) NC Control Point Estimator for Shape-Controlled Coil Spring. SAE Paper 2001-01-0495.
20. Nise, N. (1995) Control Systems Engineering (4th Ed.). California: Addison-Wesley Publishing Company
21. Leser, C., L. Juneja, S. Thangjitham, and N. Dowling (1998) On Mult-axial Random Fatigue Load Modeling. SAE Paper 980696.
22. Valdero, E. (2002) Linear Least Squares Estimation of the First Order Moving Average Parameter. Barcelona, Spain: University of Barcelona.
23. Fox, John (2002) An R and S-PLUS Companion to Applied Regression. California: Sage Publications.
24. Moler, C. (2005) Numerical Computing with MATLAB. Philadelphia, Society for Industrial and Applied Mathematics.
25. Kasap, S.O. (1997) Principles of Electrical Engineering Materials and Devices. Massachusetts: McGraw Hill Companies, Inc.
26. Heywood, J.B. (1988) Internal Combustion Engine Fundamentals. New York: McGraw-Hill, Inc.
27. Çengel, Y.A. and M.A. Boles (1998) Thermodynamics: An Engineering Approach. New York: WCB/McGraw-Hill.
28. Borman, G. L. and K. W. Ragland (1998) Combustion Engineering. New York: WCB/McGraw-Hill.
29. Rao, S.S. (1995) Mechanical Vibrations ( $3^{\text {rd }}$ Edition). Massachusetts: Addison-Wesley Publishing Company, Inc.
30. Johnston, E. and F. Beer (1990) Vector Mechanics for Engineers Dynamics (2 ${ }^{\text {nd }}$ S.I. Metric Edition). Singapore: McGraw-Hill Book Co.
31. Roden, M.S. (1996) Analog and Digital Communication Systems ( $4^{\text {th }}$ Ed.). New Jersey: Prentice Hall Inc.
32. Ambardar, A. (1999) Analog and Digital Signal Processing (2 ${ }^{\text {nd }}$ Ed.). California: Brooks/Cole Publishing Company.
33. Proakis, J.G. and D.G. Manolakis (1988) Introduction to Digital Signal Processing. New York: Macmillan Publishing Company.
34. Brüel \& Kjær (1998) Vibration Transducers and Signal Conditioning Lecture Notes. Brüel \& Kjær Sound and Vibration Measurement A/S.

## BIBLIOGRAPHY

1. Daws, M.C. (2002) Assessment of the Impact of Camshaft Machining Inputs on Valve Train Sound Quality Using Vibration Analysis. Master's Thesis, University of Windsor, Windsor, Ontario.
2. Glover, I.A. and P.M. Grant (2000) Digital Communications. London, England: Prentice-Hall Europe.
3. Kojovic, N (2005) Vehicle Interior Sound and Vibration Numerical Estimation Method Based on Engine Radiated Sound and Mount Vibration. Master's Thesis, University of Windsor, Windsor, Ontario.
4. Leitzinger, E.R. (2002) Development of In-Process Engine Defect Detection Methods using NVH Indicators. Master's Thesis, University of Windsor, Windsor, Ontario.
5. Oppenheim, A. V. (1999) Discrete-Time Signal Processing (2 ${ }^{\text {nd }}$ Ed.). New Jersey: Prentice-Hall, Inc.
6. PCB Piezotronics Vibration Division (2003) Product Catalog: Sensors For Acceleration, Shock, Vibration, and Acoustic Measurements. New York: PCB Group, Inc.
7. Rowe, A. (1999) Engine Defect Source Identification by Enhanced Signature Analysis. Master's Thesis, University of Windsor, Windsor, Ontario.
8. Sauvé, K. (2005) Reducing Valvetrain NVH Through the Experimentation of Vibration Dynamics in a Camshaft Phaser System. Master's Thesis, University of Windsor, Windsor, Ontario.
9. Strang, G. (1999) The Discrete Cosine Transform. SIAM Review, Volume 41, No 1, (pp 135-147). Society for Industrial and Applied Mathematics, Philadelphia, Pennsylvania.

## APPENDICES

## A. EQUIPMENT SPECIFICATIONS

Table A.1: Specifications for the Prosig Data Acquisition System Model P5600

| Prosig <br> Model P5600 |  |  |
| :--- | :--- | :--- |
| Specifications | Unit | Value |
| Analog Inputs | Channels | 8 |
| Sampling Rate | kHz per Channel | Up to 100 |
| Internal Storage Capacity | Samples per Channel | $10^{6}$ |
| Resolution | bit | 16 |
| Overall Accuracy (at gain < 1000) |  | $\pm 10 \%$ |
| Sensitivity (gain = 1) | $\mu \mathrm{V}$ | $\pm 300$ |
| Sensitivity (gain = 1000) | V | $\pm 0.3$ |
| Input Voltage Range | $\mathrm{M} \Omega$ | $\pm 10$ to $\pm 0.00125$ |
| Input Impedance |  | 10 |
| Communications |  | High Speed Serial |
| Signal Inputs | $\mathrm{dB} / \mathrm{octave}$ | Direct Voltage and |
| Gain | bit per Channel | 1 to 8000 |
| Anti-Alias Filter (Butterworth low pass) | Vdc | 48 |
| ADC | mA | Up to 10 |
| Excitation Voltage | Vdc | 30 |
| Excitation Amperage | ${ }^{\circ} \mathrm{C}$ | 24 |
| ICP (4mA) | RH | 0 to + 40 |
| Operating Temperature | kg | $80 \%$ |
| Humidity |  | 3 |
| Weight |  | Mouse and Keyboard |
| Control (from PC) |  |  |

Table A.2: Specifications for the Brüel \& Kjær Type 4366 Charge Accelerometer

| Brüel \& Kjær <br> Type 4366 Charge Accelerometer |  |  |
| :--- | :--- | :--- |
| Specifications | Unit | Value |
| Charge Sensitivity | $\mathrm{pC} / \mathrm{ms}^{-2}$ | $5 \pm 2 \%$ |
|  | $\mathrm{pC} / \mathrm{g}$ | $50 \pm 2 \%$ |
| Voltage Sensitivity | $\mathrm{mV} / \mathrm{ms}^{-2}$ | $4 \pm 2 \%$ |
|  | $\mathrm{mV} / \mathrm{g}$ | $40 \pm 2 \%$ |
| Mounted Resonance | kHz | 16 |
| Frequency Range - 10\% | Hz | $0.1-8000$ |
| Capacitance | pF | 1100 |
| Max. Transverse Sensitivity | $\%$ | $<2 \%$ |
| Piezoelectric Material |  | $\mathrm{PZ23}$ |
| Construction |  | Delta Shear |
| Temperature Transient Sensitivity | $\mathrm{ms}^{-2 /{ }^{\circ}}$ | 0.02 |
| Magnetic Sensitivity (50Hz to 0.03T) | $\mathrm{ms}^{-2} / \mathrm{tesla}$ | 1 |
| Acoustic Sensitivity (154 dB SPL) | $\mathrm{ms}^{-2}$ | 0.001 |
| Minimum Leakage Resistance at 20 ${ }^{\circ} \mathrm{C}$ | $\mathrm{G} \Omega^{2}$ | 20 |
| Ambient Temperature Range | ${ }^{\circ} \mathrm{C}$ | -74 to 250 |
| Maximum Operational Shock (Peak) | ${\mathrm{km} / \mathrm{s}^{2}}_{ \pm 20}$ |  |
| Maximum Continuous Sinusoidal Acceleration | $\mathrm{kms}^{-2}$ | $\pm 20$ |
| Maximum Acceleration with Mounting Magnet | $\mathrm{kms}^{-2}$ | 20 |
| Weight | G | 50 |
| Case Material |  | 28 |

Table A.3: Specifications for the Brüel \& Kjær Type 5974 8-Channel Charge Amplifier

| Brüel \& Kjær <br> Type 5974 8-Channel Charge Amplifier |  |  |
| :---: | :---: | :---: |
| Specifications | Unit | Value |
| Charge Input |  | TNC |
| Maximum Input | VRMS | 7 |
| Input Type |  | Grounded or Floating |
| CMRR | dB | $>40$ |
| Input Sensitivity ( $\pm 0.2 \mathrm{~dB}$ ) | $\mathrm{pC} / \mathrm{ms}^{-2}$ ( 30 dB gain) | 0.316 |
|  | $\mathrm{pC} / \mathrm{ms}^{-2}$ ( 20 dB gain) | 1.00 |
|  | $\mathrm{pC} / \mathrm{ms}^{-2}(10 \mathrm{~dB}$ gain) | 3.16 |
|  | $\mathrm{pC} / \mathrm{ms}^{-2}$ (0 dB gain) | 10.00 |
| High-pass Filters (-1 dB) | Hz | $0.3,1,3$, or 10 |
| Low-pass Filters (-1 dB) | kHz | 1,5,10, or off (40) |
| Integrator Gain - Velocity for 0 dB | Hz | 16 |
| Integrator Gain - Displacement for 0 dB | Hz | 4 |
| Integrator Lower Limiting Frequency | Hz | 1 |
| Fixed Out Calibration | $\mathrm{mV} / \mathrm{ms}^{-2}$ | 10 |
| Output Impedance | $\Omega$ | 50 |
| Output Impedance with semi-floating output | $\Omega$ | 100 |
| Maximum Output Level | V RMS | 7 |
| Overload Level | $V$ peak | 10.5 |
| Channel Separation at 10 kHz | dB | $>80$ |
| Output Noise ( 0.3 Hz to 22 kHz ) | $\mu \mathrm{V}$ (0 dB gain) | <10 |
|  | $\mu \mathrm{V}(+10 \mathrm{~dB}$ gain) | $<30$ |
|  | $\mu \mathrm{V}(+20 \mathrm{~dB}$ gain) | <60 |
|  | $\mu \mathrm{V}$ (+30 dB gain) | <170 |
| Operating Temperature Range | ${ }^{\circ} \mathrm{C}$ | 0 to 50 |
| Signal Output |  | BNC |

Table A. 4 Specifications for the Brüel \& Kjær Type 2635 Charge Amplifier

| Brüel \& Kjær <br> Type 2635 Charge Amplifier |  |  |
| :--- | :--- | :--- |
| Specifications | Unit | Value |
| Charge Input |  | TNC |
| Maximum Input | pC | $10^{5}$ |
| Sensitivity Conditioning | $\mathrm{mV} / \mathrm{pC}$ | 0.1 to 10.99 |
| Amplifier Sensitivity | $\mathrm{mV} / \mathrm{ms}^{-2}$ | 0.1 to 10000 |
| Acceleration | $\mathrm{V} / \mathrm{ms}^{-1}$ | 0.1 to 1000 |
| Velocity | $\mathrm{mV} / \mathrm{mm}^{2}$ | 0.01 to 100 |
| Displacement |  | 0.1 to 10000 |
| Signal Output | V | BNC |
| Maximum Output Voltage | mA | 8 |
| Maximum Output Current | $\Omega$ | 8 |
| Output Impedance | mV | $<1$ |
| DC Offset | Hz | $< \pm 50$ |
| Frequency Range Acceleration | Hz | 0.2 or 2 to $10^{5}$ |
| Frequency Range Velocity | Hz | 1 or 10 to 10000 |
| Frequency Range Displacement | kHz | 1 or 10 to 1000 |
| Low-Pass Filter - Switchable | pC | $0.1,1,3,10,30$, and |
| Inherent Noise | $\mathrm{V} / \mu \mathrm{s}$ | $5 \times 10^{-3}$ |
| Rise Time | ${ }^{\circ} \mathrm{C}$ | 2.5 |
| Operating Temperature Range |  | -10 to 55 |

Table A. 5 Specifications for the Brüel \& Kjær Type 4294 Calibration Exciter

| Brüel \& Kiær <br> Type 4294 Calibration Exciter |  |  |
| :--- | :--- | :--- |
| Specifications | Unit | Value |
| Frequency | Hz | $159.15 \pm 0.02 \%$ |
|  | $\mathrm{rads}^{-1}$ | 1000 |
| Acceleration ( $\pm 3 \%)$ | $\mathrm{ms}^{-2}(\mathrm{RMS})$ | 10 |
| Velocity ( $\pm 3 \%)$ | $\mathrm{mms}^{-1}(\mathrm{RMS})$ | 10 |
| Displacement $( \pm 3 \%)$ | $\mu \mathrm{m}$ (RMS) | 10 |
| Transverse Amplitude | $\%$ of amplitude | 5 |
| Maximum Mounting Torque for Accelerometer | Nm | 0.5 |
| Signal Duration | sec | 100 |
| Maximum Load | grams | 70 |
| Mounting Thread |  | $10-32$ UNF |
| Temperature Range $( \pm 3 \%)$ | 10 to 40 |  |
| Temperature Range $( \pm 5 \%)$ | -10 to +55 |  |
| Power Source (battery) | ${ }^{\circ} \mathrm{C}$ | 9 |
| Weight | ${ }^{\circ} \mathrm{C}$ | 500 |
|  | V |  |

B. SINGLE ACCELEROMETER GRAPHS

The plots in this appendix are examples of the implementation of different analysis methods on a single accelerometer. Results are overlaid with the average baseline data from the same accelerometer location. The single accelerometer data was gathered from Engine 19 of the baseline and is compared with the baseline data that was summarized from the thirty QOS 5.4L 3V engines. Data was acquired from the right front cylinder head (Head RF) position.

In the plots of the modeled data the FFT was first plotted and was then overlaid by both the model output of the single accelerometer and the baseline average model.


Figure B.1: Angle Domain Cycle Average - Comparison of a 5.4L 3V Engine to the Baseline Average


Figure B.2: Angle Domain - Comparison of a 5.4L 3V Engine to the Baseline Average


Figure B.3: Detrended Angle Domain - Comparison of a 5.4L 3V Engine to the Baseline Average


Figure B.4: FFT - Comparison of a 5.4L 3V Engine to the Baseline Average


Figure B.5: Normalized FFT - Comparison of a 5.4L 3V Engine to the Baseline Average


Figure B.6: DCT - Comparison of a 5.4L 3V Engine to the Baseline Average


Figure B.7: Normalized DCT - Comparison of a 5.4L 3V Engine to the Baseline Average


Figure B.8: MA - Comparison of a 5.4L 3V Engine to the Baseline Average


Figure B.9: Normalized MA - Comparison of a 5.4L 3V Engine to the Baseline Average


Figure B.10: ARMA - Comparison of a 5.4L 3V Engine to the Baseline Average


Figure B.11: Normalized ARMA - Comparison of a 5.4L 3V Engine to the Baseline Average


Figure B.12: Filtered Angle Domain Cycle Average - Comparison of a 5.4L 3V Engine to the Baseline Average


Figure B.13: Filtered Angle Domain -- Comparison of a 5.4L 3V Engine to the Baseline Average


Figure B.14: Filtered Detrended Angle Domain - Comparison of a 5.4L 3V Engine to the Baseline Average


Figure B.15: Filtered FFT - Comparison of a 5.4L 3V Engine to the Baseline Average


Figure B.16: Filtered Normalized FFT - Comparison of a 5.4L 3V Engine to the Baseline Average


Figure B.17: Filtered DCT - Comparison of a 5.4L 3V Engine to the Baseline Average


Figure B.18: Filtered Normalized DCT - Comparison of a 5.4L 3V Engine to the Baseline Average


Figure B.19: Filtered MA - Comparison of a 5.4L 3V Engine to the Baseline Average


Figure B.20: Filtered Normalized MA - Comparison of a 5.4L 3V Engine to the Baseline Average


Figure B.21: Filtered ARMA - Comparison of a 5.4L 3V Engine to the Baseline Average


Figure B.22: Filtered Normalized ARMA - Comparison of a 5.4L 3V Engine to the Baseline Average
C. BASELINE RESULTS

The data summarized in this appendix is the baseline data which consists of
thirty QOS 5.4L 3V engines. Each table provides the radius of variability of each accelerometer from the average using the different analysis methods. Both raw and filtered data were examined using the multiple investigational techniques. A bandpass filter was used to focus the frequency range to between 3 Hz and 6000 Hz in the filtered data.

The coefficient of variation was calculated from the average and standard deviation derived from the thirty engines. This number is unitless and allows the different data methods to be compared on an equal plane.

Table C.1: Angle Domain Cycle Average - Baseline Calculation Summary

|  | Overall | Accel 1 | Accel 2 | Accel 3 | Accel 4 | Accel 5 | Accel 6 | Accel 7 | Accel 8 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Engine1 | 58.3673 | 6.1825 | 7.3895 | 5.1485 | 5.9919 | 41.6457 | 33.8495 | 13.3029 | 13.9419 |
| Engine2 | 33.1260 | 7.2667 | 8.0420 | 6.4852 | 7.0689 | 14.7260 | 15.6091 | 17.4631 | 11.0618 |
| Engine3 | 24.4627 | 6.0041 | 6.8377 | 5.2045 | 5.0563 | 9.9284 | 12.0208 | 11.4989 | 9.3632 |
| Engine4 | 26.4311 | 6.8174 | 5.7988 | 4.8410 | 5.4146 | 10.8773 | 13.0927 | 13.6906 | 9.4118 |
| Engine5 | 25.9434 | 6.0504 | 6.2506 | 5.6422 | 6.2606 | 10.5870 | 14.8959 | 11.2083 | 8.1705 |
| Engine6 | 28.2003 | 7.1592 | 6.7876 | 5.4802 | 5.0488 | 9.6120 | 14.8614 | 15.4607 | 9.4932 |
| Engine7 | 37.5444 | 6.5845 | 14.1812 | 6.1594 | 5.7343 | 22.2824 | 13.341 | 18.891 | 7.9315 |
| Engine8 | 28.6644 | 7.5645 | 7.3462 | 6.2390 | 6.0201 | 10.3263 | 12.7433 | 16.1275 | 10.3042 |
| Engine9 | 28.8025 | 5.6750 | 9.7589 | 5.8376 | 5.3552 | 9.3343 | 12.9507 | 16.945 | 9.8679 |
| Engine10 | 25.1149 | 6.1674 | 6.2661 | 5.3521 | 5.1352 | 8.3927 | 9.8996 | 16.3572 | 7.9022 |
| Engine11 | 31.6351 | 6.0711 | 8.7449 | 6.3756 | 5.8970 | 10.1894 | 16.0113 | 18.0715 | 11.1920 |
| Engine12 | 29.3648 | 9.1247 | 9.0369 | 6.1264 | 6.5971 | 9.5579 | 13.3530 | 14.9461 | 11.1025 |
| Engine13 | 26.9270 | 7.1220 | 6.3680 | 5.2943 | 5.5891 | 9.7157 | 12.5099 | 14.2603 | 10.9670 |
| Engine14 | 26.9332 | 6.7583 | 7.7269 | 6.0960 | 5.8455 | 8.7646 | 11.7772 | 15.8186 | 9.1071 |
| Engine15 | 33.3706 | 9.4968 | 8.5665 | 6.6416 | 7.3023 | 11.2339 | 14.9127 | 18.8539 | 12.1872 |
| Engine16 | 30.7496 | 7.484 | 8.6797 | 6.0739 | 6.3020 | 11.2648 | 15.1532 | 16.5408 | 10.3667 |
| Engine17 | 24.0618 | 5.9757 | 5.5798 | 5.2573 | 5.2256 | 9.6396 | 11.3612 | 12.0760 | 9.4525 |
| Engine18 | 33.3849 | 6.4920 | 6.0542 | 6.0830 | 5.6209 | 21.648 | 11.7753 | 15.4625 | 10.9883 |
| Engine19 | 27.2636 | 6.4523 | 7.1531 | 6.9128 | 6.5424 | 9.533 | 11.4941 | 15.5107 | 9.8146 |
| Engine20 | 26.5263 | 6.5649 | 5.9568 | 5.7074 | 5.6750 | 8.9943 | 11.5019 | 16.762 | 8.1318 |
| Engine21 | 38.0453 | 6.5732 | 8.2396 | 5.5500 | 6.5217 | 21.7908 | 15.1910 | 21.1156 | 10.5613 |
| Engine22 | 27.8829 | 6.0377 | 6.2879 | 5.9962 | 6.9840 | 9.5458 | 14.8048 | 14.1396 | 10.3196 |
| Engine23 | 29.1755 | 7.0392 | 7.4666 | 5.9416 | 5.9658 | 10.3997 | 13.4657 | 17.0467 | 9.7439 |
| Engine24 | 27.7434 | 6.1247 | 7.958 | 5.5594 | 5.7332 | 10.7947 | 11.9071 | 15.5327 | 10.2716 |
| Engine25 | 32.9792 | 10.5745 | 7.6806 | 6.5366 | 6.9917 | 11.0577 | 14.6249 | 20.3936 | 8.5524 |
| Engine26 | 30.9472 | 7.0935 | 7.6301 | 6.3095 | 7.3914 | 11.4281 | 13.8153 | 18.7979 | 8.9402 |
| Engine27 | 28.8545 | 6.0621 | 9.9620 | 6.1772 | 7.6254 | 10.7493 | 11.1074 | 16.7276 | 9.0307 |
| Engine28 | 29.0587 | 7.3369 | 6.8943 | 7.5048 | 6.8124 | 10.882 | 10.2885 | 17.989 | 9.6135 |
| Engine29 | 40.4348 | 2.32 | 6.0733 | 6.1605 | 5.4673 | 12.1700 | 28.4476 | 21.040 | 11.1697 |
| Engine30 | 32.1983 | 7.501 | 5.9738 | 6.1878 | 5.5519 | 11.3772 | 13.8061 | 21.5582 | 9.5316 |
| Average | 30.8065 | 6.7895 | 7.5564 | 5.9627 | 6.0909 | 12.6150 | 14.3524 | 16.4530 | 9.9497 |
| Std Dev | 6.5465 | 1.3866 | 1.7223 | 0.5730 | 0.7392 | 6.6099 | 4.8968 | 2.7150 | 1.3167 |
| Coef Var | 0.2125 | 0.2042 | 0.2279 | 0.0961 | 0.1214 | 0.5240 | 0.3412 | 0.1650 | 0.1323 |

Table C.2: Angle Domain - Baseline Calculation Summary

|  | Overall | Accel 1 | Accel 2 | Accel 3 | Accel 4 | Accel 5 | Accel 6 | Accel 7 | Accel 8 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Engine 1 | 564.2272 | 139.6780 | 128.6226 | 127.9891 | 137.0990 | 318.3876 | 278.9184 | 188.4164 | 180.1510 |
| Engine2 | 596.5422 | 140.7519 | 128.831 | 163.6358 | 126.1353 | 326.3486 | 223.2639 | 225.3416 | 263.8906 |
| Engine3 | 455.2317 | 125.6153 | 111.4365 | 129.6984 | 114.2377 | 214.2932 | 175.1823 | 165.4506 | 212.5615 |
| Engine 4 | 467.0296 | 142.6216 | 94.6895 | 118.5892 | 134.6221 | 227.7959 | 185.0075 | 190.3703 | 185.1039 |
| Engine5 | 481.2459 | 135.6910 | 121.5469 | 138.046 | 132.9110 | 207.9517 | 207.0887 | 171.6853 | 214.6723 |
| Engine6 | 460.501 | 146.186 | 153.9 | 136.573 | 08 | 14 | . 19 | 7.32 | 21 |
| Engine7 | 460.2 | 131 | 140.394 | 134.9946 | 98.0 | 183.8302 | 189.92 | 205.857 |  |
| Engine8 | 411.798 | 130.1 | 124.101 | 101.2718 | 90 | 147.570 | 186 | 193.3214 | 157.4323 |
| Engine9 | 424.9585 | 132.6493 | 116.8572 | 103.9527 | 87.0185 | 131.7889 | 182.2478 | 199.0753 | 201.8574 |
| Engine10 | 403.3 | 137.209 | 106.9785 | 117.9135 | 90.6120 | 129.496 | 148.7902 | 206.571 | 169.5509 |
| Engine11 | 542.3158 | 135.9419 | 135.5519 | 112.455 | 111.5211 | 183.428 | 262.6014 | 250.7696 | 258,2203 |
| Engine12 | 516.7 | 157.6140 | 132.5543 | 127.217 | 120.7151 | 225.07 | 224.5619 | 187.594 | 239.8862 |
| Engine13 | 557.33 | 174.5939 | 135.3684 | 141.165 | 129.921 | 200.0789 | 247.2270 | 222.659 | 272.5304 |
| Engine14 | 477.875 | 145.7239 | 98.9005 | 129.972 | 106.8148 | 169.701 | 201.9198 | 239.2567 | 205.5048 |
| Engine15 | 538.2363 | 163.7535 | 175.8207 | 141.9710 | 136.9468 | 182.138 | 218.4401 | 235.901 | 237.7398 |
| Engine16 | 507.9063 | 159.3569 | 132.3287 | 124.7970 | 107.8672 | 202.3105 | 223.0439 | 223.2308 | 217.5858 |
| Engine17 | 461.6905 | 136.283 | 121.7150 | 121.6269 | 120.2966 | 159.3425 | 203.691 | 177.804 | 228.0607 |
| Engine18 | 457.2640 | 133.9073 | 91.3613 | 124.5523 | 114.712 | 192.5049 | 189.566 | 186 | 215.1912 |
| Engine19 | 437.6904 | 115.061 | 120.6230 | 129.960 | 97.3606 | 152.4431 | 157.051 | 215.104 | 207.9455 |
| Engine20 | 448.3781 | 149.012 | 108.1960 | 119.9615 | 111.1583 | 155.6697 | 182.0659 | 211.070 | 196.0942 |
| Engine21 | 551.5179 | 170.4360 | 129.6842 | 137.468 | 107.713 | 228.469 | 263.54 | 237.571 | 222.9644 |
| Engine22 | 496.5560 | 148.631 | 120.2048 | 135.563 | 119.821 | 160.692 | 214.258 | 214.862 | 243.7171 |
| Engine23 | 472.2426 | 145.595 | 121.1793 | 135.5500 | 105.409 | 152.48 | 181.612 | 224.676 | 225.6817 |
| Engine24 | 462.6816 | 125.0618 | 126.444 | 128.073 | 113.7 | 158.295 | 174.2415 | 208.831 | 232.5493 |
| Engine25 | 527.1545 | 146.319 | 138.4150 | 143.240 | 121.246 | 179.6201 | 245.0143 | 281.813 | 174.3305 |
| Engine26 | 499.207 | 134.9018 | 116.6322 | 142.975 | 133.3506 | 173.747 | 217.5725 | 251.2907 | 196.2377 |
| Engine27 | 483.1333 | 104.349 | 166.0948 | 145.2189 | 98.2570 | 172.2158 | 197.9428 | 242.036 | 191.7748 |
| Engine28 | 521.1819 | 121.3 | 125.1378 | 176.042 | 136.432 | 188.7889 | 191.4593 | 263.1489 | 223.8345 |
| Engine29 | 514.6563 | 30.3441 | 121.6594 | 130.3017 | 106.8785 | 193.7921 | 276.1183 | 243.5468 | 218.2570 |
| Engine30 | 475.069 | 142.1712 | 112.266 | 142.385 | 116.862 | 163.7341 | 213.456 | 237.1370 | 174.1776 |
| Average | 489.1315 | 136.7620 | 125.2512 | 132.1055 | 114.0690 | 187.7312 | 208.4532 | 216.279 | 212.2245 |
| Std Dev | 46.8240 | 25.1891 | 18.3998 | 15.1959 | 15.0622 | 45.2709 | 33.4039 | 28.4714 | 28.3254 |
| Coef Var | 0.095 | 0.1842 | 0.146 | 0.1150 | 0.1320 | 0.24 | 0.1602 | 0.1316 | 0.1335 |

Table C.3: Detrended Angle Domain - Baseline Calculation Summary

|  | Overall | Accel 1 | Accel 2 | Accel 3 | Âccel 4 | Accel 5 | Accel 6 | Accel 7 | 18 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Engine1 | 480.3177 | 138.8262 | 126.8818 | 127.2907 | 136.0589 | 219.6619 | 220.9923 | 187.8544 | 168.0482 |
| Engine2 | 592.8742 | 139.46 | 126.1051 | 163.4890 | 126.1088 | 326.0333 | 217.1130 | 224.7078 | 263.7881 |
| Engine3 | 452.8390 | 125.08 | 109.4840 | 129.69 | 113.944 | 214.19 | 171. | 165.0064 | 212 |
| Engine4 | 463.7548 | 142.04 | 92 | 118.400 | 134.015 | 227.4117 | 179.5991 | 189.940 | 185 |
| Engine5 | 478.7278 | 135.624 | 121.256 | 137.744 | 131.3300 | 207.9137 | 202.7812 | 171.5614 | 214.66 |
| Engine6 | 459.5 | 146.1459 | 153.9254 | 136.5093 | 09 | 14 | 19 | 186.421 | 21 |
| Engine7 | 441.5424 | 131.8481 | 140.2372 | 134.3495 | 98.058 | 142.2957 | 189.770 | 198.612 | 185.8 |
| Engine8 | 410.5540 | 130.066 | 124.0 | 101.1256 | 0.42 | 145.4517 | 186.515 | 192.657 | 157 |
| Engine9 | 422.2563 | 130.050 | 116.752 | 103.3968 | 86.796 | 128.6310 | 182.004 | 198.001 | 201.6320 |
| Engine10 | 402.4054 | 137.12 | 106.960 | 117.732 | 90.3049 | 127.577 | 148.732 | 206.23 | 16 |
| Engine11 | 541.7028 | 135.923 | 135.523 | 112.17 | 111.195 | 182.331 | 2 | 250.6104 | 258.1614 |
| Engine12 | 514.696 | 157.516 | 132.4839 | 126.967 | 120.408 | 221.8225 | 224.4274 | 186.738 | 239.7615 |
| Engine13 | 555.3587 | 172.911 | 135.228 | 140.9104 | 129.628 | 198.1107 | 247.009 | 221.706 | 272.3301 |
| Engine14 | 477.161 | 145.244 | 98.467 | 129.9450 | 105.739 | 169.1584 | 201.918 | 239.247 | 205.4265 |
| Engine15 | 53 | 163.703 | 175.7 | 141.8652 | 136.794 | 179.6614 | 217.9615 | 235.7288 | 237.5115 |
| Engine16 | 505 | 15 | 132 | 124.3516 | 107 | 19 | 222.444 | 222.510 | 217.1385 |
| Engine17 | 460.2619 | 136.232 | 121.7048 | 121.5180 | 120.1193 | 156.6283 | 203.4948 | 177.038 | 228.0115 |
| Engine18 | 440.5772 | 133.8455 | 91.3345 | 124.4496 | 114.520 | 156.9670 | 189.5361 | 180.045 | 215.1046 |
| Engine19 | 436.8426 | 114.8237 | 120.5424 | 129.6945 | 96.9459 | 151.0775 | 157.046 | 214.927 | 207.8836 |
| Engine20 | 447.6577 | 148.9615 | 108.1593 | 119.8898 | 111.0675 | 154.3530 | 181.9924 | 210.7406 | 196.0669 |
| Engine21 | 538.239 | 170.3 | 129.6603 | 137.3778 | 107.5343 | 199.2793 | 263.5393 | 233.568 | 222.9339 |
| Engine22 | 495.4453 | 148.472 | 120.064 | 135.2801 | 119.4244 | 158.9221 | 214.1618 | 214.352 | 243.6704 |
| Engine23 | 471.1420 | 145.551 | 121.1632 | 135.4388 | 105.1915 | 150.3896 | 181.537 | 224.086 | 225.6383 |
| Engine24 | 459.765 | 124.45 | 125.6462 | 127.6130 | 113.3462 | 152.6168 | 173.5092 | 208.658 | 232.4671 |
| Engine25 | 522.938 | 145.268 | 137.0059 | 142.264 | 120.163 | 174.6010 | 243.57 | 280.870 | 173.8135 |
| Engine26 | 495.0534 | 134.005 | 115.226 | 142.2336 | 132.764 | 167.9372 | 216.1543 | 250.3247 | 195.9554 |
| Engine27 | 479.9800 | 103.6706 | 165.4900 | 144.7818 | 97.8380 | 167.2963 | 196.8431 | 241.3371 | 191.6597 |
| Engine28 | 517.0019 | 119.913 | 123.885 | 175.220 | 135.697 | 184.2589 | 190.4052 | 261.3234 | 223.5007 |
| Engine29 | 489.8178 | 28. | 121.000 | 129.893 | 106.5608 | 189.8836 | 236.3627 | 238.217 | 218.1242 |
| Engine30 | 471.8418 | 141.7300 | 111.3872 | 141.9782 | 116.608 | 158.313 | 212.347 | 236.549 | 173.9960 |
| Average | 482.0958 | 136.2133 | 124.6777 | 131.7859 | 113.6412 | 178.6948 | 204.2311 | 214.9859 | 211.6883 |
| Std Dev | 44.2800 | 25.4473 | 18.5175 | 15.1195 | 14.9286 | 39.2001 | 28.5374 | 28.5030 | 28.8819 |
| Coef Var | 0.0918 | 0.1868 | 0.1485 | 0.1147 | 0.1314 | 0.2194 | 0.1397 | 0.1326 | 0.1364 |

Table C.4: FFT - Baseline Calculation Summary

|  | Overall | Accel 1 | Accel 2 | Accel 3 | Accel 4 | Accel 5 | Accel 6 | Accel 7 | Accel 8 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Engine1 | 132825 | 38040 | 33611 | 33532 | 38260 | 57630 | 66960 | 48691 | 47977 |
| Engine2 | 170983 | 36421 | 40476 | 44787 | 44310 | 102790 | 64251 | 56243 | 66664 |
| Engine3 | 120362 | 32911 | 33382 | 33648 | 31055 | 54877 | 51702 | 42747 | 51778 |
| Engine4 | 126806 | 37613 | 25733 | 27300 | 37995 | 60515 | 49136 | 46582 | 59730 |
| Engine5 | 124936 | 34760 | 33286 | 36847 | 42015 | 54929 | 48738 | 47021 | 50659 |
| Engine6 | 130661 | 39000 | 57305 | 50655 | 26705 | 36326 | 49480 | 49264 | 52855 |
| Engine7 | 122577 | 37889 | 55145 | 34340 | 24093 | 40263 | 47761 | 53948 | 44455 |
| Engine8 | 117921 | 32288 | 33363 | 35636 | 28656 | 37564 | 47647 | 55467 | 53860 |
| Engine9 | 119354 | 37820 | 33201 | 30068 | 26354 | 41217 | 45805 | 62046 | 49673 |
| Engine10 | 106782 | 36358 | 28266 | 28431 | 24672 | 35784 | 42422 | 54304 | 42843 |
| Engine11 | 136950 | 37036 | 36243 | 30307 | 28038 | 41945 | 69376 | 60855 | 63950 |
| Engine12 | 141204 | 45213 | 37122 | 31509 | 35507 | 73153 | 57132 | 45588 | 59743 |
| Engine13 | 143896 | 55069 | 35396 | 36057 | 33982 | 48564 | 64329 | 52027 | 69009 |
| Engine14 | 121501 | 39287 | 28770 | 29421 | 27333 | 39017 | 50859 | 66049 | 48033 |
| Engine15 | 145571 | 50133 | 57206 | 34192 | 38587 | 42906 | 56449 | 65848 | 58170 |
| Engine16 | 137467 | 44601 | 38266 | 34211 | 29748 | 49579 | 53425 | 72292 | 53384 |
| Engine17 | 115491 | 33884 | 32271 | 29836 | 31116 | 40422 | 48479 | 43187 | 58659 |
| Engine18 | 123607 | 34768 | 32175 | 29172 | 33689 | 43498 | 49610 | 56676 | 59019 |
| Engine19 | 117847 | 37329 | 31202 | 32667 | 28439 | 37781 | 42643 | 62418 | 50030 |
| Engine20 | 113597 | 46220 | 27841 | 28497 | 28104 | 38742 | 47935 | 50631 | 45042 |
| Engine21 | 143681 | 48908 | 35717 | 33489 | 32290 | 49433 | 75233 | 58640 | 57185 |
| Engine22 | 127951 | 39384 | 30635 | 36128 | 36946 | 37009 | 58838 | 52307 | 60365 |
| Engine23 | 120460 | 38138 | 32827 | 34664 | 26945 | 39567 | 49861 | 55578 | 53946 |
| Engine24 | 117407 | 29746 | 35594 | 30946 | 30617 | 39403 | 45261 | 52078 | 58519 |
| Engine25 | 146133 | 48787 | 36679 | 37365 | 32382 | 43126 | 73443 | 75675 | 46948 |
| Engine26 | 133740 | 35186 | 33653 | 38922 | 34985 | 44939 | 58049 | 71062 | 48353 |
| Engine27 | 138714 | 42794 | 59732 | 37798 | 41223 | 44918 | 46419 | 64352 | 48999 |
| Engine28 | 136993 | 36439 | 34309 | 48331 | 38228 | 44134 | 44944 | 73857 | 55155 |
| Engine29 | 134552 | 46929 | 34142 | 39414 | 29225 | 45973 | 59805 | 60975 | 54041 |
| Engine30 | 126948 | 42715 | 35841 | 35173 | 31950 | 39363 | 54195 | 61685 | 49570 |
| Average | 129897 | 39856 | 36646 | 34778 | 32448 | 46846 | 54006 | 57270 | 53954 |
| Std Dev | 13059 | 6003 | 8846 | 5560 | 5367 | 13465 | 9003 | 9061 | 6522 |
| Coef Var | 0.1005 | 0.1506 | 0.2414 | 0.1599 | 0.1654 | 0.2874 | 0.1667 | 0.1582 | 0.1209 |

Table C.5: Normalized FFT - Baseline Calculation Summary

|  | Overall | Accel 1 | Accel 2 | Accel 3 | Accel 4 | Accel 5 | Accel 6 | Accel 7 | Accel 8 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Engine1 | 50.2381 | 18.6249 | 16.7940 | 19.2334 | 17.3843 | 24.1959 | 16.5993 | 12.0959 | 14.6805 |
| Engine2 | 48.4741 | 20.6322 | 19.8746 | 20.0194 | 20.3376 | 11.8966 | 14.1704 | 13.3383 | 13.9432 |
| Engine3 | 61.9867 | 25.1262 | 28.7482 | 28.8756 | 15.7549 | 23.2291 | 15.9691 | 14.5367 | 17.2228 |
| Engine4 | 46.5796 | 15.8867 | 16.8610 | 16.8592 | 15.7440 | 22.2381 | 14.9229 | 13.9402 | 13.7593 |
| Engine5 | 83.8875 | 38.6337 | 33.3036 | 37.4585 | 46.2661 | 18.4007 | 13.2108 | 13.0316 | 14.4497 |
| Engine6 | 94.9975 | 43.4625 | 54.3572 | 47.9820 | 33.7224 | 11.1259 | 14.1534 | 13.2870 | 15.5147 |
| Engine7 | 64.2693 | 35.9535 | 20.8150 | 18.0034 | 40.5433 | 10.7628 | 9.8710 | 10.5812 | 10.5592 |
| Engine8 | 39.0537 | 14.2410 | 13.7968 | 16.5416 | 15.2393 | 10.3480 | 12.1123 | 13.3699 | 13.9150 |
| Engine9 | 47.4100 | 21.2772 | 17.8452 | 20.6739 | 19.3431 | 13.9755 | 11.6436 | 13.1326 | 13.1004 |
| Engine10 | 35.1132 | 13.4777 | 14.0015 | 14.3274 | 14.8429 | 9.6834 | 10.1055 | 10.6930 | 10.9285 |
| Engine 11 | 44.0275 | 14.6006 | 13.9181 | 14.0474 | 13.0871 | 14.6666 | 11.7993 | 17.5364 | 22.3846 |
| Engine12 | 41.4645 | 15.3232 | 14.2612 | 13.7685 | 15.1648 | 16.9855 | 15.7714 | 9.6322 | 15.2170 |
| Engine13 | 45.3942 | 21.4247 | 17.5758 | 19.4914 | 18.2195 | 12.4829 | 11.3515 | 12.0872 | 12.2503 |
| Engine14 | 36.9475 | 14.4378 | 15.5415 | 13.5105 | 14.4944 | 9.5260 | 12.1575 | 12.4410 | 11.3657 |
| Engine15 | 46.2520 | 19.7042 | 17.1515 | 19.6073 | 18.5589 | 13.4227 | 11.2699 | 15.0885 | 13.8959 |
| Engine16 | 48.3072 | 19.9406 | 18.8446 | 20.8929 | 19.8042 | 13.4428 | 12.4807 | 14.1900 | 14.6384 |
| Engine17 | 96.4267 | 34.2501 | 46.7500 | 44.8474 | 37.4307 | 22.3110 | 25.9054 | 18.9804 | 31.5914 |
| Engine 18 | 90.4045 | 56.2935 | 26.3082 | 36.6300 | 47.3413 | 12.0906 | 12.2521 | 13.6063 | 15.7327 |
| Engine19 | 71.4624 | 28.2758 | 39.1888 | 33.8868 | 30.7399 | 10.5263 | 10.1724 | 16.1034 | 14.3085 |
| Engine20 | 41.6013 | 16.1952 | 13.1847 | 13.3831 | 12.9628 | 13.9611 | 15.2735 | 15.9470 | 16.2760 |
| Engine 21 | 61.4636 | 32.5311 | 19.3241 | 20.0048 | 17.4241 | 19.2880 | 25.7256 | 12.7676 | 21.1055 |
| Engine 22 | 45.9442 | 20.7692 | 12.3067 | 17.9887 | 15.6965 | 11.8442 | 12.8819 | 15.9888 | 19.9051 |
| Engine23 | 75.4028 | 35.0337 | 41.8585 | 25.0593 | 38.5716 | 10.4422 | 11.5747 | 12.9769 | 13.3767 |
| Engine24 | 59.3175 | 24.2823 | 27.0706 | 25.4882 | 22.1807 | 13.8675 | 14.387 | 16.5169 | 19.5547 |
| Engine25 | 48.1244 | 20.8672 | 18.1613 | 20.0815 | 19.2237 | 15.1253 | 12.9935 | 11.8003 | 15.5246 |
| Engine26 | 48.0064 | 20.2075 | 19.1017 | 20.3074 | 18.7731 | 14.3032 | 12.9688 | 12.9912 | 15.0015 |
| Engine27 | 75.7410 | 32.0672 | 20.1084 | 39.3330 | 32.6941 | 20.3339 | 19.9166 | 20.8261 | 21.0760 |
| Engine 28 | 98.7909 | 39.0488 | 63.1728 | 36.8233 | 39.2088 | 16.2020 | 14.4017 | 22.9920 | 18.7672 |
| Engine29 | 79.5654 | 20.5417 | 36.7736 | 44.2731 | 37.4238 | 17.2018 | 19.0371 | 15.9310 | 16.8414 |
| Engine30 | 69.2776 | 32.9954 | 24.0914 | 27.0219 | 35.8349 | 13.8151 | 19.8404 | 17.7705 | 14.6860 |
| Average | 59.8644 | 25.5368 | 24.7030 | 24.8807 | 24.8004 | 14.9232 | 14.4973 | 14.4727 | 16.0524 |
| Std Dev | 19.2766 | 10.3775 | 12.9974 | 10.3629 | 10.9640 | 4.2546 | 4.0547 | 2.9888 | 4.1949 |
| Coef Var | 0.3220 | 0.4064 | 0.5261 | 0.4165 | 0.4421 | 0.2851 | 0.2797 | 0.2065 | 0.2613 |

Table C.6: DCT - Baseline Calculation Summary

|  | Overall | Accel 1 | Accel 2 | Accel 3 | Accel 4 | Accel 5 | Accel 6 | 7 | Accel 8 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Engine1 | 340.8256 | 98.2319 | 88.2621 | 88.6204 | 98.1019 | 150.4153 | 165.8515 | 128.3261 | 121.01 |
| Engine2 | 428.5934 | 94.6667 | 97.8229 | 114.2116 | 103.6455 | 249.9804 | 160.0064 | 149.3610 | 175.9931 |
| Engine3 | 313.5251 | 85.8661 | 82.3379 | 88.2963 | 79.9446 | 145.0765 | 128.3290 | 113.3940 | 139. |
| Engine4 | 325.5778 | 97.5086 | 65.5024 | 75.1672 | 95.8631 | 156.8791 | 126.3515 | 126.2008 | 144.4304 |
| Engine5 | 327.2718 | 91.6840 | 85.1426 | 95.4281 | 101.5718 | 143.279 | 132.1753 | 121.124 | 139 |
| Engine6 | 330.3922 | 101.0694 | 132.787 | 117.4342 | 67.3181 | 97.9061 | 129.8314 | 128.384 | 141.6500 |
| Engine7 | 313.3161 | 95. | 126.1100 | 91.0665 | 64.5986 | 102.4525 | 127.2758 | 138.6763 | 1215318 |
| Engine8 | 296.6417 | 86.0382 | 85.9919 | 83.6931 | 69.2177 | 98.7305 | 125.9835 | 139.4995 | 127.7648 |
| Engine9 | 302.7855 | 94.5676 | 84.0323 | 75.7398 | 65.2568 | 100.0055 | 121.7591 | 151.5340 | 133.7563 |
| Engine10 | 278.0076 | 94.5556 | 73.773 | 76.7519 | 63.3143 | 91.4208 | 107.469 | 141.917 | 113.82 |
| Engine 11 | 363.127 | 95.0628 | 93.2573 | 77.8657 | 74.2419 | 115.9055 | 180.6344 | 164.1700 | 171.8674 |
| Engine12 | 362.377 | 113.9406 | 94.2803 | 84.2460 | 88.7910 | 175.0391 | 151.4747 | 124.1402 |  |
| Engine13 | 378.557 | 133.8658 | 92.8302 | 95.6420 | 89.2654 | 131.3348 | 168.0381 | 143.486 | 183 |
| Engine14 | 321.0409 | 100.6588 | 71.8455 | 82.1439 | 71.9391 | 108.2921 | 135.2720 | 168.6641 | 131.8224 |
| Engine15 | 374.2068 | 123.0749 | 137.7140 | 92.0468 | 97.4597 | 116.6750 | 147.7999 | 167.583 | 156.2206 |
| Engine16 | 35 | 112.756 | 95.2088 | 87.0410 | 75.167 | 131.7485 | 144.456 | 174.212 | 143.4666 |
| Engine17 | 307 | 90.6134 | 83.9906 | 80.1951 | 81.749 | 106.212 | 131.871 | 117.1254 | 15 |
| Engine18 | 314.3955 | 91.0314 | 75.7294 | 80.1578 | 84.2092 | 111.0279 | 129.9209 | 138.696 | 151.2054 |
| Engine19 | 304.566 | 90.0775 | 81.8046 | 86.7180 | 71.0440 | 100.789 | 110.3987 | 156.943 | 13 |
| Engine20 | 299.9593 | 112.9588 | 73.0668 | 77.6308 | 74.4730 | 103.088 | 124.7977 | 136.669 | 124.1 |
| Engine21 | 372.3909 | 123.0934 | 91.0843 | 89.9781 | 79.7271 | 132.4538 | 190.2189 | 156.2393 | 150.453 |
| Engine22 | 335.7476 | 102.3372 | 80.2782 | 93.4243 | 90.4767 | 101.9041 | 150.4176 | 140.470 | 161.7187 |
| Engine23 | 318.173 | 99.578 | 84.652 | 91.1057 | 70.9378 | 103.5806 | 127.9162 | 148.986 | 146.7362 |
| Engine24 | 309.9438 | 80.7299 | 89.931 | 83.3119 | 78.8708 | 103.674 | 118.9975 | 138.47 | 155 |
| Engine25 | 370.9503 | 116.026 | 94.517 | 96.969 | 83.0040 | 115.894 | 181.551 | 194.74 | 120.8 |
| Engine26 | 343.8217 | 91.5467 | 83.6794 | 99.5030 | 90.7564 | 116.0104 | 150.0325 | 178.9808 | 129. |
| Engine27 | 348.4691 | 96.8593 | 139.5960 | 98.5727 | 92.7845 | 116.2544 | 127.3107 | 166.5972 | 129.455 |
| Engine 28 | 356.3 | 90.0542 | 87.3664 | 123.3418 | 96.8713 | 120.0579 | 123.6517 | 187.173 | 148.0366 |
| Engine29 | 344.7210 | 94.1638 | 86.5565 | 97.2634 | 74.8826 | 124.4093 | 158.8772 | 160.6693 | 144.4710 |
| Engine30 | 327.477 | 105.5821 | 86.8029 | 93.9837 | 82.0296 | 105.3628 | 143.0671 | 160.6850 | 124.932 |
| Average | 335.4429 | 100.1199 | 91.5318 | 90.5850 | 81.9171 | 122.5287 | 140.7246 | 148.7712 | 142.7465 |
| Std Dev | 31.5739 | 12.4449 | 18.6282 | 11.8854 | 11.7751 | 31.2440 | 21.2336 | 20.7780 | 17.2852 |
| Coef Var | 0.094 | 0.1243 | 0.2035 | 0.1312 | 0.1437 | 0.2550 | 0.1509 | 0.1397 | 0.12 |

Table C.7: Normalized DCT - Baseline Calculation Summary

|  | Overall | Accel 1 | Accel 2 | Accel 3 | Accel 4 | Āccel 5 | Accel 6 | ccel 7 | Accel 8 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Engine | 37.4399 | 12.9024 | 12.4090 | 13.4932 | 13.0099 | 16.6321 | 15.6901 | 8.6915 | 11 |
| Engine2 | 34.0961 | 13.6041 | 14.0877 | 13.4597 | 14.4026 | 9.1153 | 10.7709 | 9.4280 | 10.12 |
| Engine3 | 53.0212 | 22.271 | 25.3061 | 29.2514 | 17.6827 | 13.4519 | 10.6611 | 9.3963 | 11.1187 |
| Engine4 | 40.2976 | 11.0226 | 11.8286 | 11.0911 | 11.1920 | 24.0588 | 16.513 | 12.1144 | 10.7675 |
| Engine5 | 66.3958 | 25.2119 | 28.7823 | 28.808 | 38.695 | 14.743 | 11.226 | 10.941 | 12.4055 |
| Engine6 | 83.730 | 33.64 | 47 | 39.89 | 29.56 | 14.128 | 17.143 | 15.9603 | 19.4 |
| Engine7 | 55.4531 | 33.025 | 15.41 | 12.587 | 35.348 | . 923 | 9.045 | 9.416 | 9.42 |
| Engine 8 | 33.27 | 12.38 | 1.87 | 12.7 | 12.1048 | . 67 | 11.167 | 11.939 | 11.962 |
| Engine9 | 33.8493 | 14. | 12 | 14.18 | 13.9544 | 10.312 | 9.333 | 9.4099 | 10.169 |
| Engine10 | 29.250 | 10.9936 | 10.986 | 10.9077 | 11.4629 | 8.5041 | 9.366 | 10.384 | 9.78 |
| Engine11 | 32.0826 | 12. | 12 | 11.2157 | 10.6183 | 9.089 | 11.558 | 11.081 | 12. |
| Engine12 | 32.5 | 11.808 | 11.3549 | 10.7930 | 11.9347 | 12.0893 | 12.222 | 8.2819 | 13.0166 |
| Engine13 | 31.7949 | 4.08 | 12.340 | 13.1 | 12.9137 | . 11 | 8.966 | 8.3949 | 9.37 |
| Engine14 | 30.36 | 11.342 | 11.64 | 10. | 11.2 |  | 10.851 | 10.87 | 10.4716 |
| Engine15 | 33.2 | 12.95 | 12.15 | 13.03 | 13.129 | 9.5 | . 251 | 13.0206 | 10.1083 |
| Engine16 | 33. | 13.1 | 13.0659 | 13. | 13.8 | 9.4 | 9.234 | 9.65 | 10. |
| Engine17 | 90.29 | 29.6 | 40.6 | 37.3 | 30.83 | 26.44 | 25.584 | 18.8229 | 39.6267 |
| Engine18 | 72.3 | 36.381 | 27.952 | 28.9283 | 41.308 | 10.9958 | 11.2918 | 11.9397 | 14.012 |
| Engine19 | 60.32 | 25.475 | 33.22 | 26.665 | 27.01 | 8.991 | 8.90 | 12.2677 | 11.5996 |
| Engine20 | 37.5 | 12.24 | 11.25 | 11.904 | 11.412 | 14.142 | 14.910 | 13.213 | 16.280 |
| Engine21 | 48.6 | 20.5 | 14.3 | 13.7 | 12.9 | 19.0 | 21.1725 | 12.46 | 20.4649 |
| Engine22 | 41.039 | 17.85 | 10.8 | 15.343 | 12.6 | 11.1438 | 15.0715 | 14.2538 | 17.2682 |
| Engine23 | 65.1 | 32.81 | 28.9 | 23.04 | 34.115 | 10.242 | 11.138 | 14.092 | 14.1741 |
| Engine24 | 49.382 | 20.392 | 21.6 | 19.71 | 17.438 | 12.869 | 12.828 | 12.894 | 19.1104 |
| Engine25 | 33.6 | 13.75 | 12.4 | 13.2 | 13.3 | 12.54 | 9.84 | . 133 | 10.7330 |
| Engine26 | 33.5447 | 13.34 | 13.42 | 13.70 | 13.33 | 10.27 | 9.79 | 9.06 | 10. |
| Engine27 | 65.1712 | 26.9 | 18. | 36.1301 | 26.7 | 16.673 | 16.463 | 17.427 | 17.7929 |
| Engine28 | 82,42 | 30.10 | 45.00 | 31.2 | 33.64 | 21.32 | 19.31 | 19.195 | 23.596 |
| Engine29 | 68.005 | 13.7 | 35.0 | 34.6 | 30.00 | 16.9 | 18.01 | 14.80 | 16.6058 |
| Engine30 | 55.767 | 25.320 | 19.12 | 18.97 | 30.11 | 12.610 | 17.06 | 14.69 | 13.0225 |
| Average | 48.781 | 19.454 | 19.871 | 19.45 | 20.204 | 13.0631 | 13.14 | 12.0754 | 14.2427 |
| Std Dev | 18.2436 | 8.25 | 11.0317 | 9.4209 | 10,0021 | 4.6935 | 4.2 | 3.0567 | 6.0928 |
| Coef Var | 0.374 | 0.4242 | 0.555 | 0.484 | 0.49 | 0.3593 | 0.3212 | 0.2531 | 0.4278 |

Table C.8: MA - Baseline Calculation Summary

|  | Overall | Accel 1 | Accel 2 | Accel 3 | Accel 4 | Accel 5 | Accel 6 | Accel 7 | Accel 8 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Engine1 | 377.0963 | 98.6278 | 106.8771 | 155.9280 | 104.1244 | 145.3223 | 169.8076 | 162.3492 | 97.9057 |
| Engine2 | 464.9311 | 117.7412 | 107.9572 | 110.9803 | 110.2915 | 231.4742 | 209.7959 | 162.1224 | 205.6307 |
| Engine3 | 356.1586 | 94.1926 | 68.0415 | 100.3170 | 121.6358 | 144.7557 | 140.3253 | 132.3346 | 174.1565 |
| Engine4 | 364.2730 | 120.1413 | 69.5361 | 58.8786 | 121.7102 | 168.6535 | 155.1340 | 168.1899 | 119.7794 |
| Engine5 | 385.5082 | 95.9656 | 105.1950 | 109.6836 | 112.0014 | 205.9316 | 135.6478 | 133.3582 | 158.6627 |
| Engine6 | 376.5221 | 107.3318 | 144.6666 | 123.4084 | 69.2510 | 72.1209 | 147.9176 | 156.2498 | 194.4222 |
| Engine7 | 330.8342 | 110.6851 | 116.2176 | 86.4881 | 73.6844 | 63.4217 | 124.0524 | 161.3180 | 159.2141 |
| Engine8 | 346.2748 | 97.3004 | 97.3232 | 107.6964 | 67.5714 | 149.1211 | 160.7423 | 167.3511 | 93.3869 |
| Engine9 | 299.5307 | 91.2003 | 58.8373 | 68.8311 | 82.5371 | 75.0930 | 126.8871 | 144.4570 | 154.2144 |
| Engine10 | 293.0639 | 109.5092 | 78.4434 | 54.6628 | 63.9099 | 51.1488 | 124.4637 | 154.6918 | 136.4966 |
| Engine11 | 452.2280 | 140.5493 | 88.2990 | 76.2139 | 97.9387 | 172.8811 | 231.4583 | 199.1126 | 196.0922 |
| Engine12 | 347.1853 | 106.2281 | 75.7523 | 100.9211 | 99.6786 | 98.0175 | 175.6899 | 136.5418 | 155.8071 |
| Engine13 | 404.6422 | 114.2591 | 107.5009 | 90.4857 | 90.3797 | 149.7906 | 170.1515 | 184.7898 | 192.9547 |
| Engine14 | 353.6303 | 130.2226 | 54.8075 | 93.0084 | 71.8672 | 85.9909 | 160.9550 | 184.1797 | 155.0937 |
| Engine15 | 379.4826 | 125.7420 | 145.4042 | 86.9050 | 120.4487 | 86.6707 | 147.0680 | 177.2670 | 156.2975 |
| Engine16 | 415.7363 | 137.7781 | 112.0292 | 144.0265 | 84.0870 | 115.2924 | 201.5819 | 187.8514 | 155.7989 |
| Engine17 | 374.7741 | 108.0947 | 101.5569 | 76.0439 | 86.6479 | 113.7086 | 187.3684 | 151.8922 | 184.5510 |
| Engine18 | 340.4476 | 115.1714 | 84.9107 | 74.2190 | 103.8006 | 122.3379 | 143.0531 | 155.9590 | 139.2599 |
| Engine19 | 312.1612 | 98.0877 | 88.8992 | 93.1815 | 65.8508 | 95.4225 | 125.6168 | 175.8813 | 105.2710 |
| Engine20 | 312.0541 | 132.1172 | 68.7447 | 73.4921 | 82.5463 | 83.1047 | 117.3704 | 171.3926 | 113.6852 |
| Engine21 | 408.7764 | 126.1234 | 78.7087 | 90.0022 | 84.6056 | 154.3017 | 216.4952 | 180.7877 | 162.4010 |
| Engine22 | 357.2075 | 113.9020 | 81.3626 | 86.2477 | 88.6811 | 108.0284 | 156.8984 | 168.6766 | 167.2173 |
| Engine23 | 365.1916 | 107.1407 | 100.0788 | 110.0481 | 84.1372 | 141.2020 | 136.9842 | 189.8639 | 133.9005 |
| Engine24 | 348.7512 | 90.7906 | 83.4861 | 147.8152 | 80.1069 | 142.5302 | 132.6741 | 156.3673 | 125.6188 |
| Engine25 | 379.3317 | 105.8238 | 95.9324 | 86.6973 | 83.5462 | 95.0041 | 208.6261 | 222.6607 | 82.8615 |
| Engine26 | 345.3334 | 107.6179 | 66.9855 | 89.4677 | 88.0090 | 115.0575 | 179.8168 | 179.6984 | 97.8398 |
| Engine27 | 369.0112 | 87.2041 | 104.3012 | 117.9361 | 101.3747 | 117.6585 | 154.5762 | 210.0603 | 107.8776 |
| Engine28 | 401.6733 | 103.7590 | 95.1234 | 139.0721 | 95.5882 | 182.8787 | 151.9670 | 208.2812 | 114.5828 |
| Engine29 | 419.0393 | 50.6342 | 99.8469 | 107.2946 | 75.9573 | 202.4934 | 170.7102 | 208.4795 | 179.3594 |
| Engine 30 | 334.0827 | 115.9056 | 82.3505 | 83.5895 | 92.9623 | 70.2271 | 152.0006 | 197.3593 | 93.6999 |
| Average | 367.1644 | 108.6616 | 92.3059 | 98.1181 | 90.1644 | 125.3214 | 160.5279 | 172.9841 | 143.8013 |
| Std Dev | 40.8436 | 17.6718 | 21.6787 | 25.3815 | 16.5054 | 45.6056 | 30.0949 | 23.4604 | 35.2404 |
| Coef Var | 0.1112 | 0.1626 | 0.2349 | 0.258 | 0.1831 | 0.3 | 0.1875 | 0.1356 | 0.2451 |

Table C.9: Normalized MA - Baseline Calculation Summary

|  | Overall | Accel 1 | Accel 2 | Accel 3 | Accel 4 | Accel 5 | Accel 6 | Accel 7 | Accel 8 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Engine1 | 0.1045 | 0.0236 | 0.0247 | 0.0330 | 0.0293 | 0.0699 | 0.0315 | 0.0189 | 0.0395 |
| Engine2 | 0.0649 | 0.0221 | 0.0277 | 0.0284 | 0.0252 | 0.0212 | 0.0188 | 0.0095 | 0.0251 |
| Engine3 | 0.1753 | 0.0749 | 0.0718 | 0.0712 | 0.0737 | 0.0623 | 0.0292 | 0.0512 | 0.0461 |
| Engine4 | 0.1129 | 0.0346 | 0.0226 | 0.0296 | 0.0192 | 0.0621 | 0.0351 | 0.0501 | 0.0469 |
| Engine5 | 0.1990 | 0.0869 | 0.0841 | 0.0902 | 0.1061 | 0.0521 | 0.0202 | 0.0433 | 0.0246 |
| Engine6 | 0.2192 | 0.1010 | 0.1218 | 0.1090 | 0.0801 | 0.0345 | 0.0295 | 0.0429 | 0.0282 |
| Engine7 | 0.1451 | 0.0886 | 0.0495 | 0.0224 | 0.0940 | 0.0227 | 0.0095 | 0.0246 | 0.0143 |
| Engine8 | 0.1089 | 0.0289 | 0.0404 | 0.0439 | 0.0368 | 0.0397 | 0.0209 | 0.0447 | 0.0458 |
| Engine9 | 0.0604 | 0.0247 | 0.0200 | 0.0243 | 0.0251 | 0.0216 | 0.0185 | 0.0133 | 0.0207 |
| Engine10 | 0.0872 | 0.0297 | 0.0206 | 0.0277 | 0.0182 | 0.0223 | 0.0518 | 0.0276 | 0.0355 |
| Engine11 | 0.1108 | 0.0514 | 0.0274 | 0.0165 | 0.0219 | 0.0585 | 0.0300 | 0.0492 | 0.0375 |
| Engine12 | 0.0668 | 0.0252 | 0.0217 | 0.0221 | 0.0275 | 0.0172 | 0.0250 | 0.0253 | 0.0236 |
| Engine13 | 0.0618 | 0.0290 | 0.0217 | 0.0273 | 0.0232 | 0.0175 | 0.0138 | 0.0182 | 0.0200 |
| Engine14 | 0.0849 | 0.0451 | 0.0315 | 0.0288 | 0.0236 | 0.0341 | 0.0175 | 0.0329 | 0.0155 |
| Engine15 | 0.0740 | 0.0276 | 0.0242 | 0.0233 | 0.0210 | 0.0132 | 0.0118 | 0.0467 | 0.0256 |
| Engine16 | 0.0669 | 0.0310 | 0.0250 | 0.0321 | 0.0255 | 0.0169 | 0.0154 | 0.0107 | 0.0238 |
| Engine17 | 0.2451 | 0.0974 | 0.1160 | 0.0999 | 0.0958 | 0.0636 | 0.0890 | 0.0520 | 0.0573 |
| Engine18 | 0.2131 | 0.1289 | 0.0721 | 0.0877 | 0.1102 | 0.0324 | 0.0177 | 0.0407 | 0.0272 |
| Engine19 | 0.1770 | 0.0732 | 0.0947 | 0.0748 | 0.0832 | 0.0352 | 0.0203 | 0.0497 | 0.0188 |
| Engine20 | 0.1029 | 0.0300 | 0.0341 | 0.0486 | 0.0335 | 0.0418 | 0.0251 | 0.0439 | 0.0273 |
| Engine21 | 0.1573 | 0.0851 | 0.0503 | 0.0589 | 0.0444 | 0.0611 | 0.0518 | 0.0376 | 0.0412 |
| Engine22 | 0.1261 | 0.0654 | 0.0308 | 0.0583 | 0.0301 | 0.0421 | 0.0308 | 0.0467 | 0.0383 |
| Engine23 | 0.1891 | 0.0832 | 0.0951 | 0.0754 | 0.1012 | 0.0295 | 0.0332 | 0.0392 | 0.0191 |
| Engine24 | 0.1755 | 0.0852 | 0.0657 | 0.0987 | 0.0653 | 0.0398 | 0.0236 | 0.0459 | 0.0309 |
| Engine25 | 0.0864 | 0.0294 | 0.0238 | 0.0301 | 0.0205 | 0.0483 | 0.0330 | 0.0134 | 0.0333 |
| Engine26 | 0.0588 | 0.0278 | 0.0221 | 0.0242 | 0.0191 | 0.0130 | 0.0165 | 0.0094 | 0.0266 |
| Engine27 | 0.1766 | 0.0755 | 0.0368 | 0.0911 | 0.0776 | 0.0562 | 0.0454 | 0.0526 | 0.0429 |
| Engine 28 | 0.2282 | 0.0893 | 0.1434 | 0.0864 | 0.0898 | 0.0524 | 0.0258 | 0.0575 | 0.0359 |
| Engine29 | 0.1950 | 0.0227 | 0.0935 | 0.1100 | 0.0922 | 0.0518 | 0.0362 | 0.0538 | 0.0357 |
| Engine30 | 0.1799 | 0.0847 | 0.0575 | 0.0641 | 0.0952 | 0.0411 | 0.0401 | 0.0543 | 0.0498 |
| Average | 0.1351 | 0.0567 | 0.0524 | 0.0546 | 0.0536 | 0.0391 | 0.0289 | 0.0369 | 0.0319 |
| Std Dev | 0.0586 | 0.0312 | 0.0353 | 0.0308 | 0.0335 | 0.0172 | 0.0157 | 0.0156 | 0.0110 |
| Coef Var | 0.4337 | 0.5492 | 0.6747 | 0.5640 | 0.6244 | 0.4388 | 0.5442 | 0.4221 | 0.3447 |

Table C.10: ARMA - Baseline Calculation Summary

|  | Overall | Accel 1 | Accel 2 | Accel 3 | Accel 4 | Accel 5 | Accel 6 | Accel 7 | Accel 8 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Engine 1 | 52.6516 | 32.3940 | 8.7384 | 24.8503 | 9.9608 | 25.9226 | 6.4788 | 3.6615 | 14.2250 |
| Engine2 | 50.2788 | 8.2373 | 16.0485 | 12.1667 | 3.5630 | 36.4419 | 6.3371 | 5.4403 | 25.3784 |
| Engine3 | 39.3286 | 17.4053 | 15.9551 | 14.6989 | 10.2284 | 13.6158 | 9.5367 | 4.2463 | 19.3437 |
| Engine4 | 62.4462 | 35.7176 | 24.6959 | 20.2077 | 21.5079 | 25.1963 | 15.8220 | 4.1910 | 15.4985 |
| Engine5 | 42.5100 | 23.9591 | 17.2255 | 17.5982 | 6.9354 | 14.3349 | 9.7913 | 11.4967 | 12.0422 |
| Engine6 | 55.2721 | 14.0033 | 22.5724 | 22.2635 | 16.5127 | 5.6268 | 10.5339 | 3.5708 | 37.7583 |
| Engine7 | 53.8074 | 14.8483 | 11.1999 | 13.9891 | 27.3634 | 30.4198 | 20.8013 | 5.3729 | 14.7633 |
| Engine8 | 54.9633 | 20.6601 | 31.0544 | 15.9000 | 9.1103 | 11.6999 | 32.7405 | 2.6411 | 8.8396 |
| Engine9 | 66.6483 | 19.4749 | 19.6582 | 23.6183 | 20.5679 | 16.0016 | 8.2976 | 44.8495 | 18.9484 |
| Engine10 | 39.9297 | 11.6118 | 16.0054 | 17.9320 | 12.6320 | 11.5853 | 8.4596 | 9.6218 | 20.5886 |
| Engine11 | 45.1981 | 24.4146 | 9.2992 | 4.4190 | 15.4213 | 11.2607 | 26.1333 | 5.4664 | 16.2277 |
| Engine12 | 58.7865 | 23.3072 | 37.0290 | 14.8437 | 19.6404 | 9.4282 | 4.0992 | 10.2063 | 26.9358 |
| Engine13 | 68.4717 | 25.1484 | 39.0007 | 21.3710 | 9.7889 | 28.0999 | 30.1840 | 5.0973 | 15.9901 |
| Engine14 | 50.3154 | 33.2727 | 8.3864 | 11.0447 | 12.5170 | 17.9041 | 14.1129 | 18.7860 | 14.2452 |
| Engine15 | 58.2663 | 14.6007 | 46.7750 | 9.0648 | 9.6736 | 12.3568 | 18.9753 | 6.5429 | 16.2040 |
| Engine16 | 50.7963 | 25.2310 | 23.6386 | 27.0159 | 10.8685 | 15.9515 | 10.9868 | 3.5222 | 12.2201 |
| Engine17 | 44.8075 | 17.2114 | 18.4564 | 16.6096 | 12.8479 | 7.7240 | 9.8734 | 5.9394 | 27.1564 |
| Engine18 | 43.3269 | 18.4043 | 12.5767 | 16.0660 | 11.0580 | 14.5332 | 8.6111 | 3.7734 | 26.4638 |
| Engine19 | 53.1835 | 23.1829 | 19.0279 | 28.4775 | 15.6840 | 21.5211 | 9.9511 | 6.3788 | 16.4058 |
| Engine20 | 95.0560 | 18.1172 | 13.5333 | 4.8386 | 35.8139 | 9.3820 | 18.1445 | 3.4907 | 82.3940 |
| Engine21 | 38.8524 | 10.3462 | 11.9154 | 18.4363 | 22.9522 | 11.2031 | 10.8576 | 4.0079 | 11.5899 |
| Engine22 | 41.5182 | 17.8226 | 11.2072 | 16.8378 | 9.7705 | 9.8476 | 9.1563 | 3.8072 | 26.5751 |
| Engine23 | 70.7091 | 5.9394 | 13.0705 | 17.8576 | 18.2386 | 12.8119 | 13.3347 | 7.1285 | 61.2320 |
| Engine24 | 80.9783 | 2.9315 | 11.3718 | 14.6754 | 9.2256 | 36.3812 | 9.9938 | 6.0447 | 68.2575 |
| Engine25 | 52.1642 | 13.1590 | 22.5701 | 22.1909 | 12.6587 | 10.8871 | 13.7717 | 7.8282 | 31.8808 |
| Engine26 | 51.6703 | 16.3017 | 10.6985 | 7.3263 | 27.9864 | 10.5698 | 18.4368 | 6.3627 | 30.9933 |
| Engine27 | 52.0411 | 19.0305 | 11.6992 | 19.0396 | 7.8826 | 35.1184 | 18.6152 | 4.6332 | 13.5390 |
| Engine28 | 74.8042 | 10.4686 | 44.4359 | 42.9322 | 11.9442 | 27.1559 | 3.4481 | 4.5250 | 27.4933 |
| Engine29 | 54.5329 | 15.7273 | 16.2657 | 11.6227 | 38.2214 | 3.8974 | 11.9227 | 6.8532 | 25.7225 |
| Engine30 | 58.2395 | 41.9959 | 18.5344 | 22.0574 | 6.9198 | 8.8805 | 14.9462 | 11.2563 | 17.9246 |
| Average | 55.3852 | 19.1642 | 19.4215 | 17.6651 | 15.2498 | 16.8586 | 13.4785 | 7.5581 | 25.2279 |
| Std Dev | 12.9052 | 8.7670 | 10.4585 | 7.6376 | 8.3837 | 9.3658 | 7.0682 | 7.7804 | 17.1407 |
| Coef Var | 0.2330 | 0.4575 | 0.5385 | 0.4324 | 0.5498 | 0.5555 | 0.5244 | 1.0294 | 0.6794 |

Table C.11: Normalized ARMA - Baseline Calculation Summary

|  | Overall | Accel 1 | Accel 2 | Accel 3 | Accel 4 | Accel 5 | Accel 6 | Accel 7 | Accel 8 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Engine1 | 1.8065 | 0.5344 | 1.0901 | 0.4407 | 0.7507 | 0.5048 | 0.4294 | 0.6526 | 0.4079 |
| Engine2 | 2.3136 | 0.8446 | 0.9482 | 0.7657 | 1.0549 | 0.8031 | 0.7550 | 0.6996 | 0.5802 |
| Engine3 | 1.9724 | 0.5312 | 0.8214 | 0.9469 | 0.8556 | 0.4421 | 0.5671 | 0.7468 | 0.4796 |
| Engine4 | 2.4045 | 0.4641 | 0.5166 | 0.7624 | 1.1041 | 1.1431 | 0.7488 | 0.7828 | 1.0094 |
| Engine5 | 2.2490 | 1.0418 | 1.0074 | 0.9339 | 0.7680 | 0.6171 | 0.7914 | 0.4949 | 0.4939 |
| Engine6 | 2.1090 | 0.6776 | 0.9100 | 0.7862 | 0.8570 | 0.5424 | 0.8041 | 0.7665 | 0.5291 |
| Engine7 | 2.3541 | 0.8960 | 0.8909 | 0.9366 | 1.0274 | 0.7706 | 0.7595 | 0.6252 | 0.6714 |
| Engine8 | 1.9659 | 0.6105 | 0.7241 | 0.7683 | 0.4997 | 0.4295 | 0.7080 | 0.9268 | 0.7634 |
| Engine9 | 2.0183 | 0.6588 | 0.8474 | 0.9078 | 0.5236 | 0.6868 | 0.7974 | 0.7244 | 0.4369 |
| Engine10 | 1.8052 | 0.8690 | 0.5630 | 0.7081 | 0.4930 | 0.5145 | 0.5842 | 0.7572 | 0.5127 |
| Engine11 | 2.0663 | 0.5162 | 0.8173 | 0.6177 | 0.5960 | 0.8886 | 0.8616 | 0.8288 | 0.6160 |
| Engine12 | 2.1893 | 0.8821 | 0.9853 | 0.9460 | 0.5551 | 0.6876 | 0.8525 | 0.5023 | 0.6240 |
| Engine13 | 2.1007 | 0.8637 | 0.6467 | 0.4901 | 1.1373 | 0.7001 | 0.7053 | 0.5980 | 0.6082 |
| Engine14 | 2.1996 | 0.6243 | 0.8747 | 0.9215 | 0.7213 | 0.8579 | 0.8341 | 0.4257 | 0.8372 |
| Engine15 | 2.0713 | 0.8210 | 1.0099 | 0.7747 | 0.4890 | 0.5707 | 0.7282 | 0.4235 | 0.8496 |
| Engine16 | 2.1349 | 0.5558 | 0.6690 | 0.5269 | 0.9843 | 0.6860 | 0.7504 | 0.8180 | 0.9232 |
| Engine17 | 1.9908 | 0.5398 | 0.8005 | 0.6018 | 0.6958 | 0.6665 | 0.7393 | 0.7486 | 0.7958 |
| Engine18 | 2.0500 | 0.7839 | 0.7216 | 0.6798 | 0.8730 | 0.6973 | 0.6561 | 0.7781 | 0.5666 |
| Engine19 | 1.9944 | 0.8956 | 0.6315 | 0.6775 | 0.7284 | 0.5539 | 0.6799 | 0.6480 | 0.7734 |
| Engine20 | 2.1851 | 0.7813 | 0.5620 | 0.6471 | 0.6408 | 1.2873 | 0.8003 | 0.7559 | 0.3871 |
| Engine21 | 2.5642 | 1.0779 | 0.7670 | 0.8587 | 0.9342 | 0.5847 | 1.0563 | 0.7624 | 1.0844 |
| Engine22 | 2.0094 | 0.7940 | 0.7228 | 0.6395 | 0.6610 | 0.6984 | 0.6381 | 0.7224 | 0.7888 |
| Engine23 | 2.2295 | 0.9115 | 0.8947 | 0.7992 | 0.7465 | 0.4826 | 0.7566 | 0.7966 | 0.8387 |
| Engine24 | 2.0106 | 0.7312 | 0.5252 | 1.0218 | 0.8409 | 0.6157 | 0.7158 | 0.8090 | 0.4809 |
| Engine25 | 2.2407 | 0.8107 | 0.7519 | 0.6981 | 1.1787 | 0.4589 | 0.7992 | 0.7852 | 0.6752 |
| Engine26 | 1.9924 | 0.8136 | 0.5465 | 0.6902 | 0.6804 | 0.5402 | 0.6723 | 0.7297 | 0.8906 |
| Engine27 | 2.4056 | 1.1440 | 1.1353 | 0.8186 | 0.5616 | 0.7598 | 0.7838 | 0.8569 | 0.5271 |
| Engine28 | 2.5500 | 0.9876 | 0.9758 | 0.9965 | 1.1578 | 0.4775 | 0.6864 | 0.8467 | 0.9085 |
| Engine29 | 2.0743 | 0.9763 | 0.8502 | 0.6438 | 0.5267 | 0.8186 | 0.6765 | 0.7628 | 0.4746 |
| Engine30 | 2.2235 | 1.0439 | 0.9584 | 0.9842 | 0.7248 | 0.4542 | 0.6719 | 0.6375 | 0.6144 |
| Average | 2.1427 | 0.7894 | 0.8055 | 0.7663 | 0.7723 | 0.6647 | 0.7336 | 0.7138 | 0.6716 |
| Std Dev | 0.1885 | 0.1853 | 0.1721 | 0.1562 | 0.2153 | 0.1985 | 0.1092 | 0.1241 | 0.1889 |
| Coef Var | 0.0880 | 0.2348 | 0.2136 | 0.2039 | 0.2788 | 0.2986 | 0.1489 | 0.1739 | 0.2812 |

Table C.12: Filtered Angle Domain Cycle Average - Baseline Calculation Summary

|  | Overall | Accel 1 | Accel 2 | Accel 3 | Accel 4 | Accel 5 | Accel 6 | Accel 7 | Accel 8 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Engine 1 | 25.2058 | 3.8425 | 5.9297 | 3.8698 | 3.6666 | 9.4096 | 15.7844 | 12.7586 | 7.5177 |
| Engine2 | 26.9983 | 5.4197 | 6.2877 | 3.5440 | 6.8096 | 10.2717 | 11.7648 | 16.7514 | 8.7489 |
| Engine3 | 20.0114 | 4.1760 | 5.2465 | 3.0575 | 3.4349 | 8.1040 | 9.2968 | 10.7853 | 8.1191 |
| Engine4 | 21.9531 | 4.9276 | 4.5757 | 3.1965 | 3.2423 | 8.9017 | 9.5380 | 13.0871 | 8.6318 |
| Engine5 | 21.2926 | 4.2360 | 4.9936 | 2.9222 | 3.2498 | 8.8245 | 12.3497 | 10.7836 | 6.6874 |
| Engine6 | 25.0483 | 5.4413 | 4.5928 | 3.1875 | 3.9599 | 8.1093 | 14.3489 | 14.7788 | 7.7981 |
| Engine7 | 27.9427 | 3.5847 | 13.9201 | 3.5449 | 4.4538 | 8.8056 | 12.6898 | 16.1684 | 6.4643 |
| Engine8 | 26.0153 | 6.0463 | 6.0177 | 5.4362 | 5.3239 | 8.4105 | 11.8690 | 15.5428 | 9.6406 |
| Engine9 | 26.1645 | 3.2851 | 9.4117 | 4.8762 | 4.7961 | 7.3313 | 12.2513 | 16.1948 | 8.5038 |
| Engine10 | 22.5798 | 3.5438 | 5.7292 | 3.6589 | 4.1645 | 6.8271 | 9.3607 | 15.9177 | 6.7915 |
| Engine11 | 28.5835 | 4.4963 | 8.3342 | 5.2571 | 4.5873 | 8.3894 | 14.6913 | 17.3787 | 9.5092 |
| Engine12 | 25.9525 | 7.8671 | 8.4547 | 3.4654 | 5.7981 | 7.9463 | 12.1873 | 14.2250 | 8.9726 |
| Engine13 | 22.8696 | 6.0995 | 5.5861 | 3.6113 | 4.4563 | 7.3313 | 11.0313 | 13.3490 | 8.2509 |
| Engine14 | 23.2763 | 4.3982 | 7.1801 | 3.4145 | 3.8306 | 7.1552 | 10.6726 | 15.0258 | 7.3267 |
| Engine15 | 29.3125 | 8.5130 | 5.7100 | 4.2880 | 5.4971 | 8.9002 | 13.8453 | 18.1930 | 10.1811 |
| Engine16 | 27.3806 | 5.5687 | 8.2315 | 4.7416 | 5.6696 | 8.4487 | 14.0135 | 15.8544 | 8.7852 |
| Engine17 | 20.0150 | 4.1354 | 4.5344 | 3.5406 | 3.6696 | 7.2273 | 10.1407 | 11.3271 | 7.3189 |
| Engine18 | 22.6994 | 3.6849 | 5.1245 | 3.6250 | 3.8336 | 8.9576 | 10.9481 | 12.3692 | 9.7206 |
| Engine19 | 24.4298 | 5.2003 | 5.9759 | 4.8063 | 5.8122 | 7.9762 | 11.0395 | 14.9776 | 8.2070 |
| Engine20 | 23.5839 | 3.2827 | 5.2109 | 4.1317 | 4.3435 | 7.3864 | 10.8018 | 16.3366 | 6.6492 |
| Engine21 | 29.0352 | 3.7512 | 7.7871 | 3.5111 | 6.0342 | 8.5020 | 13.6830 | 19.4547 | 9.0331 |
| Engine22 | 25.0653 | 4.3172 | 5.6301 | 4.5522 | 6.4439 | 7.8401 | 14.0725 | 13.4929 | 8.6099 |
| Engine23 | 25.8245 | 4.1452 | 6.2625 | 3.6803 | 4.8052 | 8.5223 | 12.8033 | 16.4682 | 8.1311 |
| Engine24 | 23.9552 | 4.4883 | 7.0252 | 2.9498 | 4.3667 | 6.8071 | 11.1330 | 15.0851 | 8.8739 |
| Engine25 | 29.1295 | 9.8383 | 6.6085 | 4.6219 | 5.9479 | 7.0143 | 12.8065 | 19.5458 | 7.4887 |
| Engine26 | 26.5783 | 5.0910 | 6.3713 | 4.0951 | 6.2335 | 7.4385 | 12.3237 | 17.8969 | 7.5341 |
| Engine27 | 25.3128 | 5.4110 | 9.4066 | 4.2594 | 7.3219 | 6.7854 | 9.5031 | 15.9171 | 7.8435 |
| Engine28 | 23.4660 | 5.7486 | 4.9643 | 3.2961 | 5.0523 | 6.7346 | 8.4998 | 16.5580 | 8.0501 |
| Engine29 | 27.6432 | 1.0982 | 4.3431 | 5.0150 | 4.6866 | 8.9931 | 12.8707 | 18.7326 | 9.9764 |
| Engine30 | 28.8184 | 6.5100 | 4.4250 | 3.6433 | 4.1315 | 7.8883 | 12.3881 | 21.0526 | 8.9047 |
| Average | 25.2048 | 4.9383 | 6.4624 | 3.9266 | 4.8541 | 8.0413 | 11.9569 | 15.5336 | 8.2757 |
| Std Dev | 2.6731 | 1.7006 | 2.0189 | 0.7059 | 1.0968 | 0.8868 | 1.7993 | 2.5731 | 1.0053 |
| Coef Var | 0.1061 | 0.3444 | 0.3124 | 0.1798 | 0.2260 | 0.1103 | 0.1505 | 0.1656 | 0.1215 |


| Table C.13: Filtered Angle Domain - Baseline Calculation Summary |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | Overall | Accel 1 | Accel 2 | Accal 3 | Accel 4 | Accel 5 | Accel 6 | Accel 7 | Accel 8 |
| Engine1 | 340.3494 | 68.0240 | 90.5301 | 77.4991 | 51.7438 | 132.3390 | 187.2575 | 153.3376 | 135.0548 |
| Engine2 | 392.5863 | 86.2192 | 102.9527 | 56.9147 | 106.2371 | 187.1432 | 154.0528 | 189.1731 | 164.3901 |
| Engine3 | 296.9018 | 67.3901 | 89.3246 | 45.1306 | 47.9531 | 129.1137 | 117.8463 | 136.3623 | 148.7995 |
| Engine4 | 319.4448 | 89.4057 | 73.6207 | 56.5871 | 47.9420 | 142.9462 | 119.4173 | 164.2489 | 146.4897 |
| Engine5 | 309.3633 | 68.3326 | 82.5847 | 46.3439 | 43.9366 | 114.8298 | 154.4827 | 146.9261 | 146.6282 |
| Engine6 | 303.0214 | 83.0992 | 54.4046 | 35.0110 | 42.7607 | 103.8612 | 146.8775 | 163.4486 | 140.8076 |
| Engine7 | 319.9046 | 44.5499 | 130.7000 | 50.5850 | 53.8509 | 114.3129 | 140.7282 | 174.9236 | 119.7617 |
| Engine8 | 312.8295 | 76.1960 | 82.9691 | 77.4195 | 73.4761 | 101.5730 | 136.8969 | 170.1243 | 125.6184 |
| Engine9 | 313.1001 | 45.0741 | 99.2725 | 63.5104 | 65.0518 | 95.7258 | 131.1269 | 173.1445 | 146.775 |
| Engine10 | 295.7377 | 56.3932 | 85.4020 | 57.1862 | 58.9997 | 89.6167 | 112.5444 | 189.0161 | 117.5218 |
| Engine11 | 392.9775 | 80.3077 | 117.9844 | 73.1876 | 56.4918 | 123.9000 | 180.2051 | 214.1879 | 178.3602 |
| Engine12 | 351.7568 | 115.8473 | 112.3581 | 45.5411 | 99.2365 | 113.8618 | 151.1107 | 160.3681 | 155.7214 |
| Engine13 | 371.2946 | 109.0391 | 92.2077 | 72.2377 | 73.8643 | 137.5754 | 159.5029 | 185.7088 | 167.1459 |
| Engine14 | 315.7411 | 76.7582 | 81.9327 | 52.1387 | 55.1790 | 112.7473 | 132.6332 | 183.7221 | 131.4046 |
| Engine15 | 351.6758 | 126.9162 | 71.8451 | 54.3190 | 62.3210 | 115.6719 | 147.1774 | 199.0242 | 144.6380 |
| Engine16 | 349.3314 | 83.1936 | 107.5865 | 77.1428 | 75.2800 | 126.8911 | 150.0084 | 181.9932 | 142.1020 |
| Engine17 | 317.7532 | 4.6723 | 78.5937 | 66.4177 | 61.4282 | 112.286 | 145.789 | 158.0995 | 148.8999 |
| Engine18 | 295.7775 | 51.8075 | 50.7987 | 55.3816 | 43.8915 | 118.2950 | 137.8028 | 151.7708 | 145.6313 |
| Engine19 | 320.1234 | 73.5920 | 86.6245 | 71.8854 | 78.165 | 107.4019 | 124.959 | 179.6131 | 137.3721 |
| Engine20 | 316.2241 | 43.2377 | 81.2720 | 67.3389 | 63.0607 | 104.9339 | 136.7835 | 191.1670 | 129.4072 |
| Engine21 | 373.3197 | 67.9845 | 103.5716 | 61.4157 | 91.6185 | 123.0395 | 171.2216 | 210.8489 | 151.4595 |
| Engine22 | 368.6568 | 85.3054 | 87.1997 | 80.6534 | 102.2750 | 107.5399 | 167.7881 | 188.6355 | 169.5902 |
| Engine23 | 329,0443 | 63.4068 | 77.9539 | 57.8702 | 68.3747 | 104.0673 | 138.6012 | 193.5844 | 150.4450 |
| Engine24 | 331.9685 | 75.8446 | 94.5605 | 49.8892 | 57.0384 | 103.6249 | 136.4114 | 184.2882 | 162.6603 |
| Engine 25 | 378.4373 | 116.1885 | 107.2819 | 81.5774 | 81.5970 | 112.6172 | 160.6678 | 228.6864 | 118.7368 |
| Engine26 | 352.986 | 81.4252 | 83.8895 | 71.3990 | 88.2099 | 101.4233 | 155.9124 | 217.1799 | 127.6355 |
| Engine27 | 375.5023 | 93.0080 | 155.7197 | 81.0726 | 93.287 | 105.086 | 135.801 | 213.6313 | 133.0569 |
| Engine28 | 359.4310 | 86.4748 | 72.3811 | 58.3123 | 71.6666 | 113.7698 | 122.0995 | 229.6854 | 165.3180 |
| Engine29 | 359.2199 | 17.1492 | 68.2161 | 94.2427 | 83.4316 | 129.9899 | 156.4497 | 211.5845 | 148.6843 |
| Engine30 | 358.7020 | 114.5647 | 56.8128 | 59.3454 | 54.4864 | 111.2428 | 161.3401 | 218.2129 | 140.7169 |
| Average | 339.1054 | 77.3802 | 89.3517 | 63.2519 | 68.4285 | 116.5809 | 145.7832 | 185.4232 | 144.6944 |
| Std Dev | 29.6057 | 24.2945 | 22.1320 | 13.6250 | 18.3126 | 18.1406 | 18.1459 | 24.9771 | 15.6194 |
| Coef Var | 0.0873 | 0.3140 | 0.2477 | 0.2154 | 0.2676 | 0.1556 | 0.1245 | 0.1347 | 0.1079 |

Table C.14: Filtered Detrended Angle Domain - Baseline Calculation Summary

|  | Overall | Accel 1 | Accel 2 | Accel 3 | Accel 4 | Accel 5 | Accel 6 | Accel 7 | Accel 8 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Engine1 | 340.3480 | 68.0240 | 90.5299 | 77.4990 | 51.7438 | 132.3372 | 187.2566 | 153.3375 | 135.0547 |
| Engine2 | 392.5860 | 86.2192 | 102.9527 | 56.9146 | 106.2371 | 187.1429 | 154.0527 | 189.1730 | 164.3899 |
| Engine3 | 296.9017 | 67.3899 | 89.3246 | 45.1306 | 47.9531 | 129.1137 | 117.8463 | 136.3623 | 148.7994 |
| Engine4 | 319.4443 | 89.4056 | 73.6205 | 56.5870 | 47.9420 | 142.9462 | 119.4171 | 164.2488 | 146.4892 |
| Engine5 | 309.3632 | 68.3326 | 82.5847 | 46.3439 | 43.9366 | 114.8298 | 154.4827 | 146.9261 | 146.6281 |
| Engine6 | 303.0213 | 83.0991 | 54.4045 | 35.0110 | 42.7606 | 103.8612 | 146.8775 | 163.4485 | 1408075 |
| Engine7 | 319.9040 | 44.5499 | 130.6991 | 50.5850 | 53.8509 | 114.3127 | 140.7281 | 174.9235 | 119.761 |
| Engine8 | 312.8293 | 76.1959 | 82.9687 | 77.4195 | 73.4760 | 101.5730 | 136.8969 | 170.124 | 125.6183 |
| Engine9 | 313.0993 | 45.0693 | 99.2725 | 63.5104 | 65.0517 | 95.7258 | 131.1268 | 173.1445 | 146775 |
| Engine10 | 295.7376 | 56.3931 | 85.4018 | 57.1862 | 58.9997 | 89.6167 | 112.5444 | 189.0161 | 117.5218 |
| Engine11 | 392.9774 | 80.3077 | 117.9843 | 73.1875 | 56.4918 | 123.9000 | 180.2050 | 214.1878 | 178.3602 |
| Engine12 | 351.7556 | 115.8473 | 112.3580 | 45.5411 | 99.2362 | 113.8594 | 151.1104 | 160.3679 | 155.7212 |
| Engine13 | 371.2944 | 109.0390 | 92.2076 | 72.2375 | 73.8642 | 137.5754 | 159.5029 | 185.7088 | 167.1457 |
| Engine14 | 315.7410 | 76.7 | 1.932 | 52.1387 | 55.1789 | 112.7470 | 132.6332 | 183.7221 | 131.4046 |
| Engine15 | 351.675 | 126.9159 | 71.8449 | 54.3188 | 62.3210 | 115.6719 | 147.1774 | 199.0241 | 144.6380 |
| Engine16 | 349.3310 | 83. | 107.5865 | 77.1427 | 75.2796 | 126.8909 | 150.0083 | 181.9931 | 142.1017 |
| Engine17 | 317.7530 | 74.6721 | 78.5936 | 66.4177 | 61.4282 | 112.2865 | 145.7892 | 158.0994 | 148.8998 |
| Engine18 | 295.7767 | 51.8075 | 50.7986 | 55.3811 | 43.8915 | 118.294 | 137.8028 | 151.7707 | 145.6309 |
| Engine19 | 320.1233 | 73.5920 | 86.6245 | 71.8854 | 78.1652 | 107.4019 | 124.9597 | 179.6130 | 137.3721 |
| Engine20 | 316.2238 | 43.2377 | 81.2720 | 67.3388 | 63.0607 | 104.9339 | 136.7835 | 191.1666 | 129.4072 |
| Engine21 | 373.3195 | 67.9842 | 103.5715 | 61.4157 | 91.6185 | 123.0395 | 171.2216 | 210.8487 | 151.4594 |
| Engine22 | 368.6564 | 85.3051 | 87.1996 | 80.6533 | 102.2748 | 107.5399 | 167.7881 | 188.6351 | 169.5902 |
| Engine23 | 329.044 | 63.4068 | 77.9539 | 57.8702 | 68.3746 | 104.067 | 138.6010 | 193.5843 | 150.4449 |
| Engine24 | 331.9684 | 75.8445 | 94.5605 | 49.8892 | 57.0384 | 103.6248 | 136.4114 | 184.2882 | 162.6602 |
| Engine25 | 378.4362 | 116.1884 | 107.2819 | 81.5774 | 81.5970 | 112.6171 | 160.6672 | 228.6852 | 118.7367 |
| Engine26 | 352.9858 | 81.4247 | 83.8892 | 71.3985 | 88.2096 | 101.4227 | 155.912 | 217.1795 | 127.6354 |
| Engine27 | 375.5019 | 93.0080 | 155.7193 | 81.0726 | 93.2871 | 105.086 | 135.8013 | 213.6311 | 133.0568 |
| Engine28 | 359.430 | 86.4747 | 72.3811 | 58.3123 | 71.6665 | 113.769 | 122.0995 | 229.6849 | 165.3180 |
| Engine29 | 359.2198 | 17.1492 | 68.2160 | 94.2427 | 83.4316 | 129.9898 | 156.4497 | 211.5843 | 148.6843 |
| Engine30 | 358.7017 | 114.5646 | 56.8127 | 59.3453 | 54.4864 | 111.2427 | 161.3400 | 218.2127 | 140.7168 |
| Average | 339.1050 | 77.3800 | 89.3516 | 63.2518 | 68.4284 | 116.5807 | 145.7831 | 185.4231 | 144.6943 |
| Std Dev | 29.6056 | 24.2947 | 22.1319 | 13.6250 | 18.3125 | 18.1405 | 18.1458 | 24.9769 | 15.6193 |
| Coef Var | 0.0873 | 0.3140 | 0.2477 | 0.2154 | 0.2676 | 0.1556 | 0.1245 | 0.1347 | 0.1079 |

Table C. 15: Filtered FFT - Baseline Calculation Summary

|  | Overall | Accel 1 | Accel 2 | Accel 3 | Accel 4 | Accel 5 | Accel 6 | Accel 7 | Accel 8 |
| :--- | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| Engine1 | 67430 | 10624 | 16912 | 15405 | 9193 | 23268 | 42379 | 29101 | 25335 |
| Engine2 | 80908 | 15727 | 23225 | 8207 | 25307 | 41269 | 36712 | 32673 | 30549 |
| Engine3 | 57966 | 9933 | 19346 | 8268 | 9120 | 22097 | 28985 | 25458 | 27552 |
| Engine4 | 61370 | 17646 | 13274 | 7735 | 9326 | 24230 | 22356 | 28531 | 35084 |
| Engine5 | 58126 | 10644 | 17805 | 8684 | 9573 | 21775 | 27479 | 29024 | 26639 |
| Engine6 | 58567 | 13502 | 15213 | 9988 | 10282 | 17465 | 28576 | 31077 | 26898 |
| Engine7 | 65967 | 11900 | 35529 | 9605 | 9419 | 20098 | 26441 | 34553 | 21675 |
| Engine8 | 64327 | 13327 | 16531 | 16364 | 13140 | 18651 | 26895 | 35729 | 29981 |
| Engine9 | 64462 | 11121 | 20164 | 12415 | 11060 | 20581 | 23583 | 39989 | 27742 |
| Engine10 | 55043 | 10546 | 16238 | 8112 | 9622 | 16918 | 22167 | 35334 | 21687 |
| Engine11 | 70865 | 12732 | 22853 | 13734 | 9994 | 20839 | 33844 | 36609 | 33617 |
| Engine12 | 67264 | 25947 | 22934 | 7882 | 21875 | 19852 | 29172 | 27951 | 27536 |
| Engine13 | 65935 | 23247 | 17052 | 8956 | 10421 | 24762 | 29702 | 30311 | 30221 |
| Engine14 | 57027 | 11530 | 15465 | 7711 | 8954 | 18582 | 25394 | 34723 | 23333 |
| Engine15 | 69029 | 29432 | 12685 | 8569 | 11728 | 20005 | 29415 | 40366 | 25142 |
| Engine16 | 67098 | 14438 | 22866 | 13177 | 13974 | 22880 | 25954 | 39468 | 25437 |
| Engine17 | 55162 | 11673 | 14375 | 10624 | 9345 | 19398 | 25169 | 26331 | 28224 |
| Engine18 | 65369 | 10509 | 17027 | 7765 | 9709 | 23478 | 27582 | 36647 | 32608 |
| Engine19 | 60824 | 15730 | 16353 | 11754 | 14753 | 18868 | 22411 | 37026 | 24490 |
| Engine20 | 56547 | 12138 | 14018 | 11991 | 11197 | 18914 | 26268 | 32461 | 21981 |
| Engine21 | 69462 | 9678 | 20880 | 7785 | 18415 | 21145 | 33830 | 38109 | 29183 |
| Engine22 | 68483 | 13009 | 15669 | 13304 | 22678 | 17385 | 34903 | 32690 | 31541 |
| Engine23 | 58981 | 9776 | 13986 | 8527 | 11137 | 18507 | 27897 | 33952 | 26784 |
| Engine24 | 60533 | 12092 | 19404 | 7728 | 10234 | 18674 | 24998 | 33029 | 30209 |
| Engine25 | 74308 | 26946 | 20131 | 13621 | 15567 | 17791 | 37461 | 41457 | 22891 |
| Engine26 | 70437 | 15623 | 18050 | 9687 | 17093 | 20190 | 32450 | 44986 | 22829 |
| Engine27 | 78701 | 21076 | 39490 | 15745 | 23210 | 22209 | 23275 | 41601 | 25259 |
| Engine28 | 68088 | 16114 | 12299 | 8375 | 12585 | 18317 | 21494 | 47605 | 30541 |
| Engine29 | 69428 | 18183 | 13196 | 21453 | 15975 | 21653 | 28237 | 39084 | 28395 |
| Engine30 | 67092 | 25133 | 12960 | 8361 | 9818 | 18446 | 29925 | 39856 | 26669 |
| Average | 65160 | 15333 | 18531 | 10718 | 13155 | 20942 | 28498 | 35191 | 27334 |
| Std Dev | 6556 | 5673 | 6126 | 3384 | 4792 | 4389 | 5010 | 5460 | 3571 |
| Coef Var | 0.1006 | 0.3700 | 0.3306 | 0.3157 | 0.3643 | 0.2096 | 0.1758 | 0.1551 | 0.1306 |

Table C. 16: Filtered Normalized FFT - Baseline Calculation Summary

|  | Overall | Accel 1 | Accel 2 | Accel 3 | Accel 4 | Accel 5 | Accel 6 | Accel 7 | Accel 8 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Engine1 | 23.6325 | 7.6486 | 8.0182 | 5.3690 | 7.9378 | 9.5921 | 10.6625 | 7.5881 | 8.9773 |
| Engine2 | 21.1846 | 7.5531 | 9.2446 | 6.6097 | 7.6602 | 5.6493 | 7.3735 | 8.1401 | 7.1669 |
| Engine3 | 27.0354 | 6.5470 | 18.0308 | 5.0720 | 4.6604 | 9.2335 | 8.7596 | 8.2615 | 9.2333 |
| Engine4 | 20.7329 | 5.5341 | 7.2819 | 5.4087 | 7.5420 | 8.9410 | 6.6676 | 8.6128 | 7.8412 |
| Engine5 | 27.2892 | 11.1171 | 17.2192 | 6.4510 | 7.5530 | 6.7077 | 7.5496 | 8.0621 | 7.6783 |
| Engine6 | 26.9790 | 16.3197 | 10.4314 | 6.3091 | 8.6671 | 5.7276 | 8.3486 | 8.4892 | 7.9515 |
| Engine7 | 23.2749 | 5.3707 | 11.7116 | 6.2884 | 14.5545 | 4.6283 | 5.2222 | 6.7747 | 5.4544 |
| Engine 8 | 19.0862 | 5.8154 | 6.7509 | 6.3766 | 5.4159 | 5.1840 | 6.8683 | 8.6577 | 8.1174 |
| Engine9 | 20.2233 | 8.5960 | 7.9574 | 6.2271 | 7.3221 | 6.2619 | 5.7343 | 8.2026 | 6.3249 |
| Engine10 | 16.1054 | 6.0473 | 6.4325 | 4.5587 | 5.6505 | 4.5565 | 5.4478 | 6.7980 | 5.6635 |
| Engine11 | 21.4933 | 5.2139 | 6.6983 | 4.9146 | 5.6213 | 7.3482 | 5.7796 | 10.5177 | 11.6679 |
| Engine12 | 18.6232 | 6.7485 | 6.2366 | 4.8782 | 5.5383 | 7.8923 | 7.8721 | 5.9024 | 6.9871 |
| Engine13 | 19.7470 | 7.8450 | 8.3663 | 6.1117 | 7.6877 | 5.4860 | 5.9331 | 7.4204 | 6.4492 |
| Engine14 | 16.4818 | 5.6379 | 6.5059 | 4.8617 | 6.4468 | 4.4668 | 5.9915 | 6.6747 | 5.6514 |
| Engine15 | 21.1949 | 6.5221 | 9.2989 | 6.5803 | 8.0058 | 6.2393 | 5.9815 | 9.2163 | 7.2920 |
| Engine16 | 20.9672 | 7.4714 | 8.7524 | 6.0337 | 7.8054 | 6.2620 | 6.3708 | 8.6131 | 7.4752 |
| Engine17 | 40.3803 | 11.7030 | 20.1591 | 17.4593 | 10.2905 | 12.0038 | 13.4248 | 12.1770 | 14.2795 |
| Engine18 | 24.4983 | 10.3384 | 9.7262 | 8.0774 | 9.5655 | 6.7441 | 6.8080 | 8.7660 | 8.5596 |
| Engine19 | 37.2014 | 13.9542 | 21.1077 | 13.3146 | 19.1500 | 5.4889 | 5.6437 | 9.4720 | 6.9275 |
| Engine20 | 20.9412 | 7.3194 | 5.9430 | 5.3854 | 5.3532 | 7.0453 | 8.5736 | 10.4173 | 7.7664 |
| Engine21 | 25.3339 | 5.1721 | 11.2352 | 4.2313 | 9.6550 | 8.1061 | 11.4729 | 8.3269 | 10.5371 |
| Engine22 | 21.6635 | 6.9804 | 5.6262 | 6.6314 | 6.6865 | 5.6967 | 7.6032 | 10.0831 | 10.4072 |
| Engine23 | 29,3066 | 6.4234 | 17.8641 | 6.1314 | 16.9037 | 4.9436 | 6.5572 | 7.9626 | 6.6578 |
| Engine24 | 27.4180 | 10.5564 | 15.2105 | 4.9764 | 6.7897 | 7.0973 | 8.5410 | 10.5411 | 10.1810 |
| Engine25 | 20.4353 | 7.2166 | 8.3088 | 6.0057 | 7.7852 | 6.1319 | 6.9501 | 7.2809 | 7.8033 |
| Engine26 | 21.1375 | 7.3922 | 8.9963 | 6.4359 | 7.5983 | 6.7655 | 6.6409 | 8.0212 | 7.6058 |
| Engine27 | 41.9679 | 20.4616 | 11.3608 | 16.7114 | 21.5319 | 9.0182 | 9.6794 | 13.4209 | 10.7486 |
| Engine28 | 40.3662 | 21.4957 | 23.9795 | 5.1873 | 12.4307 | 6.5077 | 6.4867 | 14.6896 | 10.5217 |
| Engine29 | 42.0197 | 7.3634 | 12.9328 | 26.6473 | 22.5452 | 8.2461 | 8.7812 | 10.2459 | 8.7024 |
| Engine30 | 31.2317 | 21.2252 | 6.3390 | 5.5897 | 8.2606 | 6.8104 | 11.1235 | 11.7402 | 8.7919 |
| Average | 25.5984 | 9.2530 | 10.9242 | 7.4945 | 9.4205 | 6.8261 | 7.6283 | 9.0359 | 8.3140 |
| Sta Dev | 7.6271 | 4.7723 | 5.0901 | 4.8348 | 4.7716 | 1.7175 | 2.0033 | 2.0123 | 1.9761 |
| Coef Var | 0.2980 | 0.5158 | 0.4659 | 0.6451 | 0.5065 | 0.2516 | 0.2626 | 0.2227 | 0.2377 |

Table C.17: Filtered DCT - Baseline Calculation Summary

|  | Overall | Accel 1 | Accel 2 | Accel 3 | Accel 4 | Accel 5 | Accel 6 | Accel 7 | Accel 8 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Engine1 | 181.4495 | 19.1336 | 20.1259 | 15.1093 | 18.7182 | 60.9538 | 131.7111 | 89.1268 | 50.6688 |
| Engine2 | 183.4857 | 20.1308 | 44.2669 | 16.6072 | 40.7030 | 71.5554 | 104.9269 | 107.6256 | 40.7010 |
| Engine3 | 137.4323 | 16.7794 | 20.4423 | 15.4718 | 17.7055 | 45.6786 | 81.7677 | 79.1743 | 50.9339 |
| Engine4 | 143.0068 | 19.2764 | 21.1078 | 14.9057 | 17.4671 | 54.0404 | 61.4677 | 95.0340 | 58.1071 |
| Engine5 | 142.6136 | 19.5641 | 24.3471 | 15.4095 | 18.5414 | 56.2895 | 82.6231 | 86.2254 | 36.7689 |
| Engine6 | 143.4530 | 18.6485 | 20.1009 | 15.4535 | 18.9190 | 39.1661 | 88.7468 | 93.0590 | 34.0629 |
| Engine7 | 172.5795 | 15.0537 | 101.1225 | 25.8665 | 19.4568 | 46.7807 | 71.3389 | 99.2683 | 33.9382 |
| Engine8 | 160,9882 | 28.1489 | 22.0623 | 19.1204 | 19.6066 | 48.1567 | 84.0529 | 111.2904 | 46.0282 |
| Engine9 | 146.4677 | 15.0132 | 49.5578 | 26.0993 | 18.2754 | 36.4703 | 67.3096 | 102.9624 | 35.9769 |
| Engine10 | 139.7556 | 14.9257 | 19.8527 | 15.1938 | 18.1940 | 38.3332 | 61.2419 | 109.0617 | 35.1907 |
| Engine 11 | 162.6362 | 16.0967 | 40.9512 | 26.7948 | 22.2789 | 43.4478 | 91.9832 | 106.0025 | 41.4122 |
| Engine12 | 146.3920 | 21.4111 | 24.7793 | 14.8174 | 20.4353 | 52.2857 | 90.9188 | 84.8978 | 38.9020 |
| Engine13 | 150.8745 | 50.7638 | 29.7918 | 15.5503 | 23.1242 | 42.4405 | 81.4558 | 93.9639 | 35.4486 |
| Engine14 | 141.5037 | 15.2900 | 34.2929 | 14.0917 | 17.4143 | 37.5578 | 67.8848 | 104.2126 | 35.1067 |
| Engine15 | 176.4478 | 23.5560 | 23.1022 | 18.2585 | 29.0732 | 48.5777 | 90.6872 | 129.2933 | 39.5712 |
| Engine16 | 150.6292 | 17.9764 | 22.0883 | 17.5892 | 26.0257 | 40.4384 | 77.0131 | 110.2658 | 34.1551 |
| Engine17 | 133.7891 | 17.9091 | 28.3188 | 14.4907 | 19.3044 | 42.7103 | 72.3157 | 84.3548 | 44.9969 |
| Engine18 | 134.7519 | 15.4573 | 28.5577 | 14.4605 | 17.6637 | 49.0499 | 61.7101 | 85.7297 | 54.9444 |
| Engine19 | 143.2375 | 19.6068 | 21.3217 | 19.5311 | 22.8217 | 41.6199 | 66.7531 | 106.3620 | 35.7012 |
| Engine20 | 149.8712 | 15.0412 | 22.1901 | 15.8575 | 22.5535 | 47.8498 | 74.0980 | 109.0969 | 36.0605 |
| Engine21 | 181.4446 | 15.8025 | 47.0292 | 14.6453 | 33.7482 | 50.3811 | 100.1833 | 122.9050 | 37.7713 |
| Engine22 | 170.1347 | 16.2389 | 33.4133 | 24.4145 | 44.9795 | 41.6166 | 108.0415 | 97.1339 | 45.8972 |
| Engine23 | 143.5338 | 15.2301 | 29.7587 | 14.7281 | 18.0307 | 39.5606 | 77.4771 | 98.0737 | 41.9070 |
| Engine24 | 144.3317 | 17.0741 | 31.3742 | 13.5694 | 24.9222 | 36.1406 | 70.3080 | 104.3140 | 40.2464 |
| Engine25 | 193.7995 | 60.0991 | 25.3093 | 16.5258 | 34.4393 | 39.0411 | 105.6251 | 132.2940 | 40.7928 |
| Engine26 | 169.3498 | 17.2255 | 39.8615 | 18.9286 | 33.5082 | 50.2453 | 82.5655 | 119.4277 | 41.3279 |
| Engine27 | 153.8615 | 24.6659 | 23.4412 | 18.3711 | 50.5053 | 39.2269 | 59.8017 | 110.3064 | 48.4221 |
| Engine28 | 156.1337 | 29.6541 | 20.4065 | 14.7857 | 31.8825 | 37.6053 | 55.9010 | 118.7128 | 56.7012 |
| Engine29 | 167.1928 | 20.5926 | 21.4507 | 15.7801 | 18.1371 | 51.3608 | 74.5266 | 116.7738 | 68.2862 |
| Engine30 | 165.6088 | 21.0293 | 22.2197 | 15.4635 | 20.6169 | 40.4097 | 64.3161 | 129.2736 | 57.8358 |
| Average | 156.2252 | 21.2465 | 30.4215 | 17.2630 | 24.6351 | 45.6330 | 80.2917 | 104.5407 | 43.2621 |
| Std Dev | 16.4414 | 10.0960 | 15.8784 | 3.7515 | 8.8590 | 8.0408 | 17.3083 | 14.2595 | 8.8649 |
| Coef Var | 0.1052 | 0.4752 | 0.5219 | 0.2173 | 0.3596 | 0.1762 | 0.2156 | 0.1364 | 0.2049 |

Table C.18: Filtered Normalized DCT - Baseline Calculation Summary

|  | Overall | Accel 1 | Accel 2 | Accel 3 | Accel 4 | Accel 5 | Accel 6 | Accel 7 | Accel 8 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Engine1 | 17.9137 | 2.9785 | 4.0898 | 2.6502 | 4.2544 | 6.6051 | 12.6727 | 6.2690 | 5.1628 |
| Engine2 | 12.3076 | 2.9984 | 4.2599 | 2.7077 | 4.0992 | 3.6206 | 5.9227 | 6.4616 | 3.2037 |
| Engine3 | 14.6386 | 4.2982 | 5.5895 | 5.2487 | 3.5829 | 4.1897 | 6.8368 | 6.6123 | 4.0209 |
| Engine 4 | 16.3789 | 2.3420 | 3.6063 | 2.1299 | 3.7550 | 8.0109 | 8.2131 | 9.3828 | 3.3875 |
| Engine5 | 17.5864 | 5.3074 | 7.9184 | 4.8260 | 6.5171 | 5.7390 | 7.0397 | 7.6970 | 3.3032 |
| Engine6 | 22.7420 | 6.3583 | 6.5782 | 5.9424 | 8.3825 | 5.8178 | 12.2119 | 11.3067 | 4.1355 |
| Engine 7 | 18.0180 | 4.4123 | 9.7558 | 2.6353 | 10.3222 | 3.8060 | 5.1032 | 6.8951 | 2.9056 |
| Engine8 | 15.3325 | 3.8921 | 3.2199 | 2.5868 | 3.0747 | 4.7789 | 7.5009 | 9.5864 | 4.7352 |
| Engine9 | 11.7837 | 3.2550 | 3.6517 | 2.5650 | 4.2028 | 3.6825 | 4.8000 | 6.6285 | 3.1853 |
| Engine10 | 12.1779 | 2.4008 | 3.4092 | 2.0764 | 3.4617 | 3.5256 | 5.3877 | 7.9848 | 3.0669 |
| Engine11 | 12.4325 | 2.3054 | 4.4797 | 3.0329 | 3.2195 | 3.5684 | 5.9566 | 7.1632 | 3.1771 |
| Engine12 | 12.1590 | 2.3351 | 3.1749 | 2.1441 | 3.4398 | 4.4858 | 7.2931 | 5.6843 | 3.2026 |
| Engine13 | 11.3027 | 2.9293 | 3.9268 | 2.6019 | 4.0067 | 3.5362 | 4.9432 | 5.9017 | 3.0259 |
| Engine14 | 11.4374 | 2.4196 | 3.4605 | 2.1264 | 3.6255 | 3.1748 | 5.4815 | 6.8119 | 2.9647 |
| Engine15 | 14.0132 | 2.7205 | 4.1832 | 2.5982 | 4.0855 | 3.6443 | 4.9328 | 10.0390 | 3.1036 |
| Engine16 | 11.9951 | 2.9966 | 4.1328 | 2.6384 | 4.1795 | 3.8173 | 4.9632 | 6.6458 | 3.1658 |
| Engine17 | 31.3206 | 5.3822 | 14.1210 | 6.7945 | 7.1094 | 11.2649 | 14.1608 | 14.0957 | 11.3921 |
| Engine18 | 20.2599 | 5.3192 | 12.5316 | 4.8887 | 8.5288 | 4.9692 | 5.2959 | 7.0154 | 5.1510 |
| Engine19 | 18.0643 | 5.9232 | 6.6496 | 6.2479 | 9.4128 | 3.6974 | 5.2473 | 8.2835 | 3.0915 |
| Engine20 | 17.3551 | 2.4742 | 3.2860 | 2.3742 | 3.5281 | 7.0649 | 8.8460 | 10.8340 | 4.5450 |
| Engine21 | 19.5547 | 2.5638 | 7.1257 | 2.2190 | 4.7942 | 7.1085 | 11.0962 | 9.8901 | 5.0657 |
| Engine22 | 18.0755 | 2.7631 | 4.1601 | 3.9627 | 4.9305 | 4.6998 | 10.9957 | 9.7652 | 4.8389 |
| Engine23 | 19.1882 | 4.4518 | 10.7104 | 3.6318 | 7.5292 | 4.0243 | 6.8310 | 9.2059 | 4.0214 |
| Engine24 | 17.7071 | 4.0885 | 7.7206 | 3.0174 | 5.6771 | 4.4668 | 7.7063 | 9.7594 | 4.6152 |
| Engine25 | 11.7809 | 2.6326 | 3.9819 | 2.6546 | 4.0363 | 4.2050 | 5.7968 | 5.6338 | 3.1051 |
| Engine26 | 12.1348 | 2.9968 | 4.1447 | 2.6719 | 4.2420 | 3.9252 | 5.2528 | 6.5460 | 3.1799 |
| Engine27 | 26.6413 | 9.1071 | 3.1868 | 6.7862 | 17.2810 | 5.7114 | 7.3142 | 11.6639 | 7.0576 |
| Engine28 | 25.9217 | 11.0755 | 10.0856 | 3.4997 | 10.9926 | 5.9420 | 7.5990 | 12.0329 | 8.7533 |
| Engine29 | 20.3462 | 3.1975 | 6.2592 | 6.0953 | 5.8599 | 7.0270 | 8.1156 | 10.8181 | 7.7975 |
| Engine30 | 19.5430 | 5.3348 | 4.6599 | 3.0373 | 7.3686 | 4.9194 | 7.4326 | 12.0643 | 6.5760 |
| Average | 17.0037 | 4.0420 | 5.8020 | 3.5464 | 5.8500 | 5.0343 | 7.3650 | 8.6226 | 4.4979 |
| Std Dev | 5.0142 | 2.0532 | 2.9797 | 1.5266 | 3.1186 | 1.7623 | 2.5309 | 2.2851 | 2.0113 |
| Coef Var | 0.2949 | 0.5080 | 0.5136 | 0.4305 | 0.5331 | 0.3501 | 0.3436 | 0.2650 | 0.4472 |

Table C. 19: Filtered MA - Baseline Calculation Summary

|  | Overall | Accel 1 | Accel 2 | Accel 3 | Accel 4 | Accel 5 | Accel 6 | Accel 7 | Accel 8 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Engine1 | 6047.77 | 1065.00 | 1143.54 | 346.15 | 871.02 | 3574.62 | 4301.21 | 804.31 | 1153.21 |
| Engine2 | 5018.55 | 480.82 | 4025.05 | 163.79 | 748.58 | 2367.13 | 1012.44 | 485.33 | 1141.29 |
| Engine3 | 1929.72 | 539.69 | 801.63 | 98.42 | 503.39 | 480.46 | 783.16 | 312.98 | 1258.86 |
| Engine4 | 3379.67 | 929.98 | 1815.75 | 304.48 | 1012.96 | 1485.39 | 1082.28 | 414.83 | 1609.89 |
| Engine5 | 3450.95 | 1302.25 | 643.32 | 66.92 | 547.39 | 2277.97 | 644.74 | 754.95 | 1822.21 |
| Engine6 | 2540.46 | 813.02 | 1469.10 | 98.27 | 562.83 | 323.67 | 794.12 | 745.66 | 1420.17 |
| Engine7 | 3069.29 | 409.77 | 877.87 | 753.43 | 504.92 | 2496.09 | 684.80 | 816.65 | 541.33 |
| Engine8 | 4150.92 | 488.22 | 2514.58 | 711.01 | 867.15 | 954.82 | 1431.59 | 2126.79 | 1388.10 |
| Engine9 | 3868.06 | 1739.25 | 404.29 | 548.79 | 1599.93 | 503.57 | 1031.55 | 645.38 | 2679.24 |
| Engine10 | 5868.25 | 750.98 | 3159.90 | 84.35 | 1652.48 | 3423.69 | 2952.39 | 708.08 | 458.13 |
| Engine11 | 4568.63 | 1205.70 | 1813.62 | 400.80 | 556.39 | 2869.06 | 1101.73 | 797.88 | 2361.62 |
| Engine12 | 6697.46 | 1550.48 | 4174.10 | 160.32 | 1106.92 | 418.72 | 1281.76 | 1096.95 | 4555.92 |
| Engine13 | 4787.85 | 274.85 | 484.70 | 193.00 | 1240.55 | 3803.40 | 1804.14 | 636.66 | 1706.10 |
| Engine14 | 4804.17 | 928.26 | 857.02 | 186.49 | 1065.29 | 3085.28 | 1260.02 | 314.70 | 3018.05 |
| Engine15 | 5082.45 | 1365.11 | 576.02 | 679.77 | 868.12 | 1967.55 | 1560.22 | 1072.16 | 3868.48 |
| Engine16 | 10078.56 | 228.39 | 606.71 | 415.51 | 2190.11 | 5334.02 | 840.43 | 4842.61 | 6601.43 |
| Engine17 | 5529.16 | 3446.43 | 2095.77 | 142.55 | 1039.75 | 533.72 | 1081.83 | 465.94 | 3395.25 |
| Engine18 | 4252.04 | 290.62 | 436.02 | 68.05 | 1056.90 | 1576.76 | 1661.01 | 3070.90 | 1417.04 |
| Engine19 | 6088.22 | 537.15 | 450.66 | 362.79 | 1455.18 | 834.65 | 1541.79 | 5475.28 | 1128.36 |
| Engine20 | 4310.30 | 954.64 | 3462.38 | 154.12 | 1325.71 | 372.79 | 1775.94 | 191.77 | 753.83 |
| Engine21 | 5972.96 | 236.63 | 538.17 | 79.78 | 1383.55 | 2650.02 | 2879.84 | 731.36 | 4190.35 |
| Engine22 | 8045.50 | 2150.58 | 442.42 | 1213.52 | 666.73 | 1321.15 | 1104.62 | 601.01 | 7393.60 |
| Engine23 | 2273.55 | 179.98 | 518.67 | 71.60 | 1146.62 | 1097.82 | 867.05 | 585.23 | 1117.26 |
| Engine24 | 3536.89 | 1414.55 | 1383.15 | 627.70 | 1086.83 | 1016.64 | 1316.12 | 1682.33 | 1193.48 |
| Engine25 | 4826.15 | 775.15 | 635.15 | 980.14 | 3604.74 | 2405.03 | 939.84 | 611.11 | 1136.53 |
| Engine26 | 6036.89 | 373.49 | 2974.95 | 464.45 | 1465.08 | 2532.41 | 3160.69 | 1174.77 | 2703.50 |
| Engine27 | 7742,81 | 1378.39 | 1890.37 | 259.48 | 611.38 | 7128.36 | 1179.65 | 916.10 | 996.07 |
| Engine28 | 6510.12 | 1385.85 | 352.65 | 306.84 | 3020.23 | 3001.93 | 610.13 | 4226.83 | 1967.47 |
| Engine29 | 3542.05 | 652.49 | 869.76 | 613.35 | 2850.30 | 517.44 | 851.78 | 672.99 | 1190.48 |
| Engine30 | 6498.25 | 922.30 | 502.91 | 501.63 | 1769.24 | 681.81 | 4303.53 | 662.90 | 4279.86 |
| Average | 5016.92 | 959.00 | 1397.34 | 368.58 | 1279.34 | 2034.53 | 1528.01 | 1254.81 | 2281.57 |
| Std Dev | 1806.10 | 687.51 | 1151.75 | 292.80 | 765.37 | 1588.03 | 996.40 | 1354.14 | 1721.64 |
| Coef Var | 0.3600 | 0.7169 | 0.8242 | 0.7944 | 0.5983 | 0.7805 | 0.6521 | 1.0792 | 0.7546 |

Table C.20: Filtered Normalized MA - Baseline Calculation Summary

|  | Overall | Accel 1 | Accel 2 | Accel 3 | Accel 4 | Accel 5 | Accel 6 | Accel 7 | Accel 8 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Engine1 | 1.8662 | 0.1033 | 0.4369 | 0.0515 | 0.4078 | 1.2660 | 1.0139 | 0.1349 | 0.6807 |
| Engine2 | 0.7686 | 0.1063 | 0.4255 | 0.0854 | 0.2320 | 0.0819 | 0.3625 | 0.1881 | 0.4048 |
| Engine3 | 1.7987 | 0.4163 | 0.9384 | 0.1317 | 0.2760 | 0.1911 | 0.8047 | 0.9843 | 0.6596 |
| Engine4 | 0.8999 | 0.0848 | 0.3291 | 0.0963 | 0.1672 | 0.3771 | 0.5274 | 0.2976 | 0.3849 |
| Engine5 | 3.7671 | 1.0676 | 2.5313 | 0.1219 | 2.3096 | 0.7528 | 0.2176 | 0.5537 | 0.6117 |
| Engine6 | 1.7838 | 0.7283 | 1.1641 | 0.1376 | 0.4218 | 0.1285 | 0.2436 | 0.9152 | 0.4317 |
| Engine7 | 1.1983 | 0.1077 | 0.5746 | 0.1090 | 0.5914 | 0.6608 | 0.1981 | 0.4552 | 0.2222 |
| Engine8 | 1.6780 | 1.0334 | 0.4035 | 0.2528 | 0.8169 | 0.2316 | 0.5987 | 0.4799 | 0.4595 |
| Engine9 | 0.7671 | 0.0571 | 0.3843 | 0.2469 | 0.2252 | 0.1001 | 0.4063 | 0.2572 | 0.2909 |
| Engine10 | 1.6283 | 0.0821 | 0.8668 | 0.0594 | 0.8108 | 0.9060 | 0.5623 | 0.0424 | 0.3057 |
| Engine11 | 1.2888 | 0.3710 | 0.6030 | 0.1759 | 0.5368 | 0.5139 | 0.1553 | 0.2101 | 0.7130 |
| Engine12 | 1.5163 | 0.4145 | 0.5965 | 0.0910 | 0.3576 | 0.0649 | 0.3072 | 0.1669 | 1.2284 |
| Engine13 | 0.8404 | 0.0839 | 0.3823 | 0.0798 | 0.2163 | 0.3715 | 0.3837 | 0.1803 | 0.4267 |
| Engine14 | 1.3284 | 0.1356 | 0.7599 | 0.0945 | 0.3035 | 0.7025 | 0.3618 | 0.1792 | 0.6412 |
| Engine15 | 0.7435 | 0.0864 | 0.4375 | 0.0821 | 0.1475 | 0.3079 | 0.2770 | 0.3688 | 0.1335 |
| Engine16 | 1.1766 | 0.0873 | 0.3920 | 0.0703 | 0.4670 | 0.4208 | 0.2733 | 0.8457 | 0.1819 |
| Engine17 | 2.8658 | 0.9725 | 1.7635 | 0.9519 | 0.6834 | 0.3951 | 0.2817 | 0.4954 | 1.5176 |
| Engine18 | 2.4062 | 1.0632 | 0.5888 | 0.3041 | 1.6306 | 0.3906 | 0.6866 | 0.8998 | 0.3573 |
| Engine19 | 3.7985 | 1.7577 | 0.6304 | 0.8473 | 2.7931 | 0.4784 | 0.3240 | 1.4066 | 0.3320 |
| Engine20 | 1.7540 | 0.0888 | 1.4462 | 0.0783 | 0.6366 | 0.2614 | 0.6060 | 0.2155 | 0.2894 |
| Engine21 | 1.9933 | 0.3169 | 0.5859 | 0.0649 | 0.6719 | 0.8810 | 0.8201 | 0.0635 | 1.2732 |
| Engine22 | 2.5971 | 0.8842 | 0.4759 | 0.5447 | 0.2319 | 0.5002 | 0.2503 | 0.1617 | 2.2465 |
| Engine23 | 3.8630 | 0.3146 | 2.4200 | 0.0649 | 0.8891 | 0.2532 | 0.9931 | 0.0736 | 2.6678 |
| Engine24 | 1.6960 | 0.7286 | 0.9305 | 0.2214 | 0.6707 | 0.5696 | 0.3033 | 0.6372 | 0.3980 |
| Engine25 | 1.0072 | 0.1241 | 0.2825 | 0.0997 | 0.1241 | 0.7723 | 0.3496 | 0.1670 | 0.3838 |
| Engine26 | 0.9646 | 0.0876 | 0.3094 | 0.2068 | 0.2151 | 0.1037 | 0.4307 | 0.6533 | 0.3390 |
| Engine27 | 4.9614 | 1.2158 | 0.4608 | 0.8289 | 0.6235 | 1.5541 | 3.9230 | 1.5998 | 1.2184 |
| Engine28 | 3.1587 | 0.6015 | 0.4884 | 0.1956 | 1.4657 | 1.4178 | 0.4366 | 2.0737 | 0.8304 |
| Engine29 | 3.1427 | 0.6482 | 1.0456 | 0.8099 | 2.6699 | 0.4090 | 0.2204 | 0.2814 | 0.5322 |
| Engine30 | 2.7579 | 0.6035 | 0.3462 | 0.3189 | 1.2409 | 0.2390 | 1.6968 | 0.8223 | 1.3667 |
| Average | 2.0005 | 0.4791 | 0.7667 | 0.2474 | 0.7611 | 0.5101 | 0.6005 | 0.5270 | 0.7176 |
| Std Dev | 1.1038 | 0.4456 | 0.5798 | 0.2660 | 0.7269 | 0.3867 | 0.7059 | 0.4916 | 0.6039 |
| Coef Var | 0.5517 | 0.9302 | 0.7562 | 1.0752 | 0.9550 | 0.7581 | 1.1756 | 0.9328 | 0.8416 |

Table C.21: Filtered ARMA - Baseline Calculation Summary

|  | Overall | Accel 1 | Accel 2 | Accel 3 | Accel 4 | Accel 5 | Accel 6 | Accel 7 | Accel 8 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Engine1 | 69.2902 | 16.3746 | 16.4048 | 37.3154 | 12.0973 | 41.8291 | 13.2461 | 19.0251 | 20.9287 |
| Engine2 | 86.3107 | 13.0458 | 30.2899 | 12.6971 | 12.0740 | 72.8934 | 14.0433 | 11.4865 | 20.3042 |
| Engine3 | 53.7818 | 10.6674 | 14.9295 | 12.0633 | 14.8112 | 35.6564 | 10.5728 | 12.3742 | 25.5855 |
| Engine4 | 37.2539 | 23.6869 | 10.6510 | 10.5813 | 10.2079 | 10.2241 | 12.2116 | 12.8112 | 8.9102 |
| Engine5 | 46.6042 | 14.8130 | 19.7917 | 13.5342 | 9.9225 | 24.2740 | 8.6671 | 7.4218 | 23.6591 |
| Engine6 | 44.8918 | 13.9398 | 16.9564 | 11.1109 | 9.4624 | 14.3966 | 12.8120 | 16.6163 | 25.9410 |
| Engine7 | 48.2479 | 18.4784 | 15.3497 | 13.0159 | 14.1098 | 19.8354 | 11.2117 | 15.5407 | 24.9326 |
| Engine8 | 51.8421 | 17.7290 | 21.4634 | 27.1533 | 11.1027 | 17.3573 | 18.5502 | 16.9244 | 10.9644 |
| Engine9 | 57.4366 | 15.1712 | 16.2983 | 27.3957 | 7.0817 | 35.9895 | 7.2198 | 21.4857 | 13.9098 |
| Engine10 | 67.5940 | 9.4259 | 21.7047 | 15.8311 | 14.9824 | 10.3736 | 12.9355 | 18.1261 | 54.1333 |
| Engine11 | 75.0754 | 11.7003 | 19.4300 | 25.0565 | 7.2457 | 46.9358 | 11.7896 | 34.6700 | 29.9600 |
| Engine12 | 73.4462 | 6.0376 | 25.3527 | 12.3409 | 32.8489 | 35.0367 | 32.3943 | 16.1970 | 30.7325 |
| Engine13 | 49.9036 | 10.3188 | 15.9002 | 21.1277 | 5.5497 | 31.2436 | 7.2738 | 5.5287 | 24.3774 |
| Engine14 | 62.0449 | 24.1733 | 10.5838 | 7.2684 | 7.6220 | 16.3145 | 6.5182 | 4.7345 | 52.0694 |
| Engine15 | 39.4578 | 16.7185 | 15.9508 | 11.5417 | 8.6920 | 16.6852 | 14.1411 | 15.9524 | 9.0207 |
| Engine16 | 57.1382 | 23.2280 | 23.2699 | 20.7303 | 11.2760 | 33.7714 | 11.8510 | 17.8097 | 5.3581 |
| Engine 17 | 75.5958 | 37.1029 | 14.3863 | 11.5180 | 10.4198 | 14.0064 | 16.5261 | 13.9954 | 56.7867 |
| Engine18 | 41.9292 | 14.8760 | 14.9067 | 6.7059 | 17.7515 | 13.1382 | 15.4536 | 6.5632 | 22.3599 |
| Engine19 | 83.9547 | 59.8927 | 22.4266 | 12.8886 | 26.6648 | 37.7729 | 7.4414 | 8.0596 | 23.1095 |
| Engine20 | 62.1245 | 16.3072 | 13.3827 | 25.1309 | 10.3660 | 24.4230 | 22.7630 | 26.5857 | 29.2229 |
| Engine21 | 61.3309 | 13.8898 | 13.1204 | 14.8218 | 26.2606 | 25.2700 | 11.6153 | 9.4119 | 40.3117 |
| Engine22 | 66.8486 | 24.5583 | 29.2890 | 12.5296 | 11.3360 | 12.7935 | 11.7892 | 11.4170 | 47.8464 |
| Engine23 | 68.1668 | 22.7948 | 8.3930 | 19.3625 | 41.9077 | 26.6645 | 13.0203 | 10.0458 | 30.7257 |
| Engine24 | 54.1233 | 14.9986 | 10.8722 | 10.1327 | 9.4603 | 15.0424 | 12.3850 | 10.4660 | 43.6441 |
| Engine25 | 90.6234 | 19.6409 | 19.7250 | 25.4021 | 11.1104 | 78.5780 | 11.2367 | 15.4715 | 11.3542 |
| Engine26 | 49.0256 | 9.6997 | 16.0241 | 11.0393 | 14.9211 | 11.8823 | 11.7185 | 14.6484 | 34.8577 |
| Engine27 | 57.1652 | 27.2811 | 25.2997 | 26.7486 | 15.1303 | 19.7964 | 10.2174 | 10.4757 | 18.2505 |
| Engine28 | 65.7914 | 22.5381 | 19.1993 | 9.6942 | 18.2051 | 29.7602 | 12.2492 | 19.2256 | 40.2640 |
| Engine29 | 53.9756 | 21.1732 | 14.0534 | 33.0309 | 20.7101 | 15.0349 | 11.9158 | 11.1346 | 15.9876 |
| Engine30 | 40.1571 | 27.7570 | 14.2709 | 12.3255 | 13.6669 | 7.7314 | 11.0530 | 5.3982 | 9.4178 |
| Average | 59.7044 | 19.2673 | 17.6559 | 17.0031 | 14.5666 | 26.4904 | 12.8274 | 13.9868 | 26.8309 |
| Std Dev | 14.1187 | 10.1548 | 5.4135 | 7.9738 | 8.0653 | 17.0024 | 4.9636 | 6.4517 | 14.2175 |
| Coef Var | 0.2365 | 0.5270 | 0.3066 | 0.4690 | 0.5537 | 0.6418 | 0.3870 | 0.4613 | 0.5299 |

Table C.22: Filtered Normalized ARMA - Baseline Calculation Summary

|  | Overall | Accel 1 | Accel 2 | Accel 3 | Accel 4 | Accel 5 | Accel 6 | Accel 7 | Accel 8 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Engine1 | 2.8089 | 1.2759 | 0.9759 | 0.9509 | 0.8836 | 0.9779 | 0.7461 | 0.8772 | 1.1585 |
| Engine2 | 3.0513 | 1.3310 | 1.1571 | 0.9590 | 1.3280 | 1.0864 | 0.7567 | 0.8733 | 1.0007 |
| Engine3 | 3.3677 | 1.3982 | 1.2040 | 1.8920 | 1.1691 | 0.4668 | 0.9000 | 0.9494 | 1.0301 |
| Engine4 | 2.8050 | 1.2924 | 0.8053 | 1.1822 | 0.9982 | 0.6607 | 0.7560 | 0.8659 | 1.1821 |
| Engine5 | 3.0789 | 1.1654 | 1.0433 | 1.4347 | 1.1010 | 1.0879 | 0.4885 | 0.7092 | 1.3553 |
| Engine6 | 3.4672 | 1.7690 | 1.4307 | 1.1497 | 1.1465 | 0.9077 | 0.6905 | 1.2355 | 1.1756 |
| Engine7 | 3.1258 | 1.0281 | 1.1719 | 1.1136 | 0.8389 | 0.7998 | 1.5567 | 1.1649 | 0.9880 |
| Engine8 | 3.1770 | 1.0382 | 1.3352 | 0.7908 | 1.6048 | 0.9727 | 0.6455 | 0.8334 | 1.4053 |
| Engine9 | 3.1796 | 1.3384 | 1.0879 | 0.9551 | 1.2599 | 0.9495 | 1.1033 | 1.3145 | 0.8880 |
| Engine10 | 2.8099 | 1.0974 | 1.2369 | 0.9199 | 0.9290 | 0.8400 | 0.7059 | 0.6172 | 1.3665 |
| Engine11 | 3.0446 | 1.1410 | 1.2735 | 1.0223 | 1.1030 | 0.9507 | 0.7661 | 1.3176 | 0.9262 |
| Engine12 | 2.6964 | 1.0013 | 0.8560 | 1.2300 | 1.1873 | 0.6485 | 0.6263 | 1.0535 | 0.8306 |
| Engine13 | 2.7512 | 0.9063 | 1.1405 | 0.9391 | 0.8395 | 0.8622 | 1.0801 | 0.9858 | 0.9890 |
| Engine14 | 2.7751 | 0.9451 | 1.0995 | 0.9125 | 1.0883 | 0.6237 | 1.4610 | 0.8393 | 0.5949 |
| Engine15 | 2.7500 | 0.9184 | 1.1995 | 1.2348 | 1.0287 | 0.7276 | 0.6567 | 0.9113 | 0.9517 |
| Engine16 | 2.7528 | 0.9902 | 1.0914 | 0.8256 | 0.9590 | 0.9582 | 1.2533 | 0.9162 | 0.6904 |
| Engine17 | 4.2188 | 1.3232 | 2.3063 | 1.8713 | 1.1886 | 0.8316 | 0.8134 | 1.2130 | 1.7289 |
| Engine18 | 3.5603 | 1.2799 | 1.3062 | 1.3188 | 1.2973 | 1.1397 | 0.8315 | 1.2645 | 1.5232 |
| Engine19 | 3.6248 | 0.9079 | 1.3242 | 0.8913 | 2.4247 | 0.5731 | 1.2456 | 0.8766 | 1.1130 |
| Engine20 | 2.5334 | 1.1922 | 1.1048 | 1.0311 | 0.6446 | 0.5222 | 0.7241 | 0.8711 | 0.8613 |
| Engine21 | 2.9956 | 0.9282 | 1.2072 | 0.8566 | 0.8635 | 1.1332 | 0.7084 | 0.8386 | 1.6389 |
| Engine22 | 2.6083 | 1.0481 | 0.9577 | 1.0091 | 0.7737 | 0.5667 | 0.7297 | 1.1705 | 0.9731 |
| Engine23 | 3.2902 | 1.2139 | 1.2373 | 0.9578 | 1.6663 | 1.2102 | 0.7314 | 1.2192 | 0.8010 |
| Engine24 | 3.4855 | 1.2082 | 1.9233 | 0.9376 | 1.0531 | 1.2004 | 0.7210 | 1.4194 | 1.0132 |
| Engine25 | 3.0459 | 0.9863 | 1.1862 | 1.3337 | 1.2405 | 1.2296 | 0.8052 | 0.7589 | 0.9190 |
| Engine26 | 3.3509 | 0.9769 | 1.1449 | 1.3635 | 1.2235 | 1.1153 | 1.2115 | 1.2700 | 1.1327 |
| Engine27 | 4.5722 | 2.0668 | 1.3855 | 2.1678 | 1.4361 | 1.6258 | 1.6396 | 1.3571 | 0.8825 |
| Engine28 | 4.5309 | 2.1578 | 2.6499 | 0.9774 | 1.1337 | 1.2816 | 1.1589 | 1.5129 | 1.1557 |
| Engine29 | 3.5132 | 1.1459 | 1.0914 | 1.1842 | 2.0343 | 0.7480 | 1.6163 | 0.7678 | 0.7321 |
| Engine30 | 4.0885 | 2.1771 | 1.2629 | 1.3778 | 1.3332 | 1.1579 | 1.8841 | 0.8973 | 1.0049 |
| Average | 3.2353 | 1.2416 | 1.2732 | 1.1597 | 1.1926 | 0.9285 | 0.9671 | 1.0300 | 1.0671 |
| Std Dev | 0.5411 | 0.3559 | 0.3853 | 0.3311 | 0.3671 | 0.2675 | 0.3635 | 0.2365 | 0.2697 |
| Coef Var | 0.1672 | 0.2866 | 0.3026 | 0.2855 | 0.3078 | 0.2881 | 0.3759 | 0.2296 | 0.2527 |

## D. COMPARISON GROUP RESULTS

The tables in this appendix summarize the variability in the three comparison
sets. In each group the six engines are analyzed and the average found in the same process as the baseline evaluation.

In Table D. 1 a comparison of variability of each of the groups is displayed. The coefficient of variation of the overall results was used here as a comparison term.

Table D.1: Summary of the Analysis Methods of Each Engine Group

| Analysis Method | Raw Data |  |  |  | Filtered Data - 3 Hz to 6000 Hz |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | $\begin{array}{\|l\|} \hline \text { Baseline } \\ \hline 5.4 \mathrm{~L} 3 \mathrm{~V} \\ \hline \end{array}$ | Compare Internal |  |  | $\begin{array}{\|l\|} \hline \text { Baseline } \\ \hline 5.4 \mathrm{~L} 3 \mathrm{~V} \\ \hline \end{array}$ | Compare Internal |  |  |
|  |  | Faulted | 6.8L 3V | 4.6L 2V |  | Faulted | 6.8 L 3 V | 4.6 L 2 V |
| Cycle Average | 0.2125 | 0.2440 | 0.0610 | 0.4605 | 0.1061 | 0.1938 | 0.0641 | 0.0840 |
| Angle Domain | 0.0957 | 0.2738 | 0.0708 | 0.1389 | 0.0873 | 0.3680 | 0.0544 | 0.0816 |
| Detrended Angle Dome | 0.0918 | 0.2699 | 0.0708 | 0.0812 | 0.0873 | 0.3680 | 0.0544 | 0.0816 |
| FFT | 0.1005 | 0.4008 | 0.0672 | 0.0911 | 0.1006 | 0.5141 | 0.0608 | 0.0940 |
| Normalized FFT | 0.3220 | 0.0904 | 0.2385 | 0.0542 | 0.2980 | 0.1636 | 0.2541 | 0.0984 |
| DCT | 0.0941 | 0.3565 | 0.0692 | 0.0854 | 0.1052 | 0.4552 | 0.0591 | 0.1253 |
| Normalized DCT | 0.3740 | 0.0960 | 0.2647 | 0.1175 | 0.2949 | 0.0873 | 0.2670 | 0.0679 |
| MA | 0.1112 | 0.2283 | 0.1387 | 0.0809 | 0.3600 | 0.5192 | 0.1164 | 0.2368 |
| Normalized MA | 0.4337 | 0.0760 | 0.3609 | 0.2146 | 0.5517 | 0.3984 | 0.4938 | 0.3946 |
| ARMA | 0.2330 | 0.3075 | 0.2201 | 0.2527 | 0.2365 | 0.1061 | 0.1679 | 0.0840 |
| Normalized ARMA | 0.0880 | 0.1018 | 0.0267 | 0.0984 | 0.1672 | 0.0636 | 0.0654 | 0.1256 |

Results from each of the comparison group's engines and the overall results are compiled in the following tables. The overall radius of variability of each engine is listed along with its average, standard deviation and coefficient of variation.

Table D.2: Angle Domain Cycle Average - Internal Calculation Summary

|  | Raw Data |  |  | Filtered Data |  |  |  |
| :--- | ---: | ---: | ---: | ---: | ---: | ---: | :---: |
|  | Faulted | 6.8 L 3V | 4.6 L 2V | Faulted | 6.8 L 3V | 4.6L 2V |  |
| Engine1 | 45.3365 | 20.6932 | 15.1183 | 34.0840 | 17.1526 | 9.3148 |  |
| Engine2 | 31.0245 | 19.2659 | 39.3020 | 26.0549 | 15.8088 | 9.4461 |  |
| Engine3 | 27.1120 | 18.9414 | 15.4008 | 21.9669 | 15.7254 | 9.5534 |  |
| Engine4 | 26.3308 | 19.2567 | 15.5175 | 20.8895 | 16.4589 | 9.7831 |  |
| Engine5 | 25.4246 | 17.9593 | 21.8840 | 22.1826 | 14.5010 | 11.2642 |  |
| Engine6 | 28.4855 | 17.3843 | 16.5139 | 25.0376 | 14.7254 | 10.9847 |  |
| Average | 30.6190 | 18.9168 | 20.6227 | 25.0359 | 15.7287 | 10.0577 |  |
| Std Dev | 7.4698 | 1.1540 | 9.4976 | 4.8510 | 1.0081 | 0.8451 |  |
| Coef Var | 0.2440 | 0.0610 | 0.4605 | 0.1938 | 0.0641 | 0.0840 |  |

Table D.3: Angle Domain - Internal Calculation Summary

|  | Raw Data |  |  | Filtered Data |  |  |  |
| :--- | ---: | ---: | ---: | ---: | ---: | ---: | :---: |
|  | Faulted | 6.8 L 3 V | 4.6 L 2 V | Faulted | 6.8 L 3 V | 4.6 L 2V |  |
| Engine1 | 895.0437 | 537.9337 | 285.5857 | 706.2039 | 379.9234 | 209.2431 |  |
| Engine2 | 523.9478 | 510.5963 | 411.0770 | 346.6518 | 365.4825 | 265.5490 |  |
| Engine3 | 559.2013 | 523.0146 | 307.6167 | 372.1265 | 382.1461 | 238.0527 |  |
| Engine4 | 496.3012 | 478.4920 | 295.1681 | 318.6416 | 353.2498 | 220.2651 |  |
| Engine5 | 485.4617 | 478.2129 | 332.6336 | 332.0421 | 334.5943 | 237.8213 |  |
| Engine6 | 502.1302 | 442.9090 | 321.2203 | 351.8173 | 342.5844 | 235.7229 |  |
| Average | 577.0143 | 495.1931 | 325.5502 | 404.5805 | 359.6634 | 234.4423 |  |
| Std Dev | 157.9748 | 35.0398 | 45.2230 | 148.8738 | 19.5504 | 19.1296 |  |
| Coef Var | 0.2738 | 0.0708 | 0.1389 | 0.3680 | 0.0544 | 0.0816 |  |

Table D.4: Detrended Angle Domain - Internal Calculation Summary

|  | Raw Data |  |  | Filtered Data |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | Faulted | 6.8L 3V | 4.6L 2V | Faulted | 6.8L 3V | 6L 2V |
| Engine1 | 885.1642 | 537.7754 | 279.1389 | 706.2032 | 379.9233 | 209.2430 |
| Engine2 | 520.4161 | 510.5277 | 350.0413 | 346.6514 | 365.4824 | 265.5487 |
| Engine3 | 557.3942 | 522.5417 | 301.5163 | 372.1261 | 382.1460 | 238.0526 |
| Engine4 | 492.9418 | 478.3787 | 288.749 | 318.6415 | 353.2498 | 220.2650 |
| Engine5 | 484.5747 | 478.1624 | 316.917 | 332.0419 | 334.5942 | 237.8209 |
| Engine6 | 500.9954 | 442.5745 | 314.7784 | 351.8170 | 342.5843 | 235.7228 |
| Average | 573.5811 | 494.9934 | 308.5236 | 404.5802 | 359.6633 | 234.4422 |
| Std Dev | 154.8329 | 35.0360 | 25.0475 | 148.8736 | 19.5504 | 19.1295 |
| Coef Var | 0.2699 | 0.0708 | 0.0812 | 0.3680 | 0.0544 | 0.0816 |

Table D.5: FFT - Internal Calculation Summary

|  | Raw Data |  |  | Filtered Data |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | Faulted | 6.8L 3V | 4.6L 2V | Faulted | 6.8L 3V | 4.6L 2V |
| Engine1 | 314318 | 137707 | 78055 | 183495 | 71001 | 40860 |
| Engine2 | 145729 | 130603 | 97000 | 69405 | 66551 | 52107 |
| Engine3 | 162846 | 130903 | 77837 | 74773 | 69571 | 43807 |
| Engine4 | 144517 | 116948 | 77823 | 69731 | 61743 | 42806 |
| Engine5 | 132870 | 123357 | 87271 | 66880 | 64430 | 49142 |
| Engine6 | 141595 | 116634 | 83901 | 73441 | 61357 | 43865 |
| Average | 173646 | 126025 | 83648 | 89621 | 65776 | 45431 |
| Std Dev | 69603 | 8472 | 7622 | 46078 | 3998 | 4271 |
| Coef Var | 0.4008 | 0.0672 | 0.0911 | 0.5141 | 0.0608 | 0.0940 |

Table D.6: Normalized FFT - Internal Calculation Summary

|  | Raw Data |  |  | Filtered Data |  |  |  |
| :--- | ---: | ---: | ---: | ---: | ---: | ---: | :---: |
|  | Faulted | 6.8 L 3V | 4.6 L 2V | Faulted | 6.8 L 3V | 4.6 L 2V |  |
| Fngine1 | 68.6240 | 44.3986 | 36.0086 | 29.4786 | 23.6799 | 17.9819 |  |
| Engine2 | 63.9980 | 58.1996 | 41.3410 | 22.6311 | 29.5956 | 22.2107 |  |
| Engine3 | 77.7054 | 56.6220 | 38.6199 | 33.1690 | 28.8311 | 22.8118 |  |
| Engine4 | 78.5150 | 88.1218 | 36.8310 | 27.5008 | 45.3580 | 19.0726 |  |
| Engine5 | 64.0707 | 72.4281 | 40.7026 | 22.4926 | 32.8938 | 22.8294 |  |
| Engine6 | 72.0482 | 75.3412 | 39.3827 | 23.5991 | 43.4769 | 21.9144 |  |
| Average | 70.8269 | 65.8519 | 38.8143 | 26.4785 | 33.9725 | 21.1368 |  |
| Std Dev | 6.4038 | 15.7050 | 2.1031 | 4.3310 | 8.6332 | 2.0805 |  |
| Coef Var | 0.0904 | 0.2385 | 0.0542 | 0.1636 | 0.2541 | 0.0984 |  |

Table D.7: DCT - Internal Calculation Summary

|  | Raw Data |  |  |  | Filtered Data |  |  |  |
| :--- | ---: | ---: | ---: | ---: | ---: | ---: | :---: | :---: |
|  | Faulted | 6.8 L 3V | 4.6L. 2V | Faulted | 6.8 L 3V | 4.6 L .2 V |  |  |
| Engine1 | 739.0219 | 363.3616 | 198.8880 | 387.2360 | 138.4293 | 95.3966 |  |  |
| Engine2 | 370.1521 | 344.8219 | 247.3831 | 165.8187 | 139.4283 | 105.7232 |  |  |
| Engine3 | 407.4625 | 349.6712 | 205.0098 | 166.4113 | 148.2992 | 94.6031 |  |  |
| Engine4 | 361.4853 | 314.4366 | 200.7841 | 157.7430 | 135.6750 | 93.1582 |  |  |
| Engine5 | 340.7384 | 323.9966 | 224.0766 | 153.6565 | 149.7588 | 126.5698 |  |  |
| Engine6 | 358.9792 | 303.1530 | 217.8501 | 175.4803 | 127.4948 | 112.3142 |  |  |
| Average | 429.6399 | 333.2401 | 215.6653 | 201.0576 | 139.8476 | 104.6275 |  |  |
| Std Dev | 153.1596 | 23.0464 | 18.4283 | 91.5224 | 8.2686 | 13.1072 |  |  |
| Coef Var | 0.3565 | 0.0692 | 0.0854 | 0.4552 | 0.0591 | 0.1253 |  |  |

Table D.8: Normalized DCT - Internal Calculation Summary

|  | Raw Data |  |  | Filtered Data |  |  |  |
| :--- | ---: | ---: | ---: | ---: | ---: | ---: | :---: |
|  | Faulted | 6.8 L 3V | 4.6 L 2V | Faulted | 6.8 L 3V | 4.6 L 2V |  |
| Engine1 | 56.8434 | 38.1929 | 32.9782 | 19.4251 | 14.0518 | 15.1256 |  |
| Engine2 | 57.0987 | 42.8667 | 38.3418 | 17.2193 | 15.7470 | 16.1830 |  |
| Engine3 | 58.8793 | 40.9066 | 42.9649 | 20.9391 | 15.3206 | 16.3233 |  |
| Engine4 | 71.2145 | 71.4511 | 37.1900 | 20.5687 | 26.0806 | 15.0678 |  |
| Engine5 | 58.7395 | 62.1526 | 34.0598 | 16.9999 | 24.1162 | 15.1764 |  |
| Engine6 | 55.7569 | 62.6527 | 31.3187 | 19.7265 | 23.1768 | 13.4400 |  |
| Average | 59.7554 | 53.0371 | 36.1422 | 19.1464 | 19.7488 | 15.2193 |  |
| Std Dev | 5.7382 | 14.0397 | 4.2449 | 1.6717 | 5.2725 | 1.0341 |  |
| Coef Var | 0.0960 | 0.2647 | 0.1175 | 0.0873 | 0.2670 | 0.0679 |  |

Table D.9: MA - Internal Calculation Summary

|  | Raw Data |  |  |  | Filtered Data |  |  |  |  |
| :--- | ---: | ---: | ---: | ---: | ---: | ---: | :---: | :---: | :---: |
|  | Faulted | 6.8 L 3 V | 4.6 L 2 V | Faulted | 6.8 L 3V | 4.6L 2V |  |  |  |
| Engine1 | 644.02 | 362.98 | 223.84 | 11859.80 | 6244.98 | 5768.01 |  |  |  |
| Engine2 | 451.44 | 308.90 | 280.78 | 6892.04 | 4633.98 | 5619.48 |  |  |  |
| Engine3 | 427.90 | 445.13 | 233.82 | 9749.06 | 5819.86 | 5073.08 |  |  |  |
| Engine4 | 425.60 | 378.17 | 235.72 | 4773.95 | 6284.42 | 2617.17 |  |  |  |
| Engine5 | 348.00 | 347.52 | 247.29 | 3512.85 | 5101.68 | 5148.10 |  |  |  |
| Engine6 | 392.90 | 314.32 | 241.73 | 3426.72 | 5503.26 | 4801.53 |  |  |  |
| Average | 448.31 | 359.50 | 243.86 | 6702.40 | 5598.03 | 4837.89 |  |  |  |
| Std DeV | 102.35 | 49.88 | 19.74 | 3479.63 | 651.71 | 1145.47 |  |  |  |
| Coef Var | 0.2283 | 0.1387 | 0.0809 | 0.5192 | 0.1164 | 0.2368 |  |  |  |

Table D.10: Normalized MA - Internal Calculation Summary

|  | Raw Data |  |  | Filtered Data |  |  |  |
| :--- | ---: | ---: | ---: | ---: | ---: | ---: | :---: |
|  | Faulted | 6.8 L 3 V | 4.6 L 2V | Faulted | 6.8 L 3V | 4.6L 2V |  |
| Engine1 | 0.1953 | 0.0991 | 0.0955 | 3.8467 | 2.3768 | 1.7431 |  |
| Engine2 | 0.1680 | 0.0951 | 0.1062 | 1.7937 | 1.7902 | 2.2010 |  |
| Engine3 | 0.1954 | 0.0928 | 0.1311 | 4.9380 | 1.7688 | 3.0701 |  |
| Engine4 | 0.1992 | 0.1929 | 0.1027 | 2.5555 | 5.6388 | 2.9738 |  |
| Engine5 | 0.1681 | 0.1740 | 0.1133 | 3.1520 | 3.0247 | 1.4217 |  |
| Engine6 | 0.1846 | 0.1968 | 0.0649 | 1.9205 | 4.4817 | 1.0672 |  |
| Average | 0.1851 | 0.1418 | 0.1023 | 3.0344 | 3.1802 | 2.0795 |  |
| Std DeV | 0.0141 | 0.0512 | 0.0219 | 1.2089 | 1.5705 | 0.8205 |  |
| Coef Var | 0.0760 | 0.3609 | 0.2146 | 0.3984 | 0.4938 | 0.3946 |  |

Table D.11: ARMA - Internal Calculation Summary

|  | Raw Data |  |  | Filtered Data |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | Faulted | 6.8L 3V | 4.6L 2V | Faulted | 6.8L 3V | 4.6L 2V |
| Engine1 | 81.5315 | 49.3162 | 30.8310 | 59.1263 | 64.2127 | 40.8792 |
| Engine2 | 40.3279 | 49.1178 | 48.2716 | 51.8109 | 77.7873 | 48.0163 |
| Engine3 | 42.2193 | 35.7513 | 26.3216 | 60.1891 | 76.8479 | 48.5124 |
| Engine4 | 67.0888 | 26.6385 | 35.0798 | 60.4747 | 47.5611 | 45.5763 |
| Engine5 | 42.1760 | 36.6774 | 24.9335 | 50.3824 | 66.6537 | 39.4171 |
| Engine6 | 52.6883 | 43.8004 | 33.8691 | 47.0009 | 74.5478 | 43.5349 |
| Average | 54.3386 | 40.2169 | 33.2178 | 54.8307 | 67.9351 | 44.3227 |
| Std Dev | 16.7084 | 8.8511 | 8.3951 | 5.8178 | 11.4090 | 3.7232 |
| Coef Var | 0.3075 | 0.2201 | 0.2527 | 0.1061 | 0.1679 | 0.0840 |

Table D.12: Normalized ARMA - Internal Calculation Summary

|  | Raw Data |  |  | Filtered Data |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | Faulted | 6.8L 3V | 4.6L 2 V | Faulted | 6.8 L 3 V | 4.6L 2V |
| Engine1 | 2.3603 | 2.0800 | 2.3510 | 3.2781 | 2.9003 | 2.9100 |
| Engine2 | 2.0193 | 2.1327 | 1.8547 | 2.9223 | 2.7229 | 2.3081 |
| Engine3 | 2.0776 | 2.0340 | 2.2717 | 3.3205 | 2.7072 | 3.0676 |
| Engine4 | 2.3136 | 2.1014 | 1.9215 | 3.2340 | 3.1882 | 2.501 |
| Engine5 | 1.8259 | 1.9895 | 2.0161 | 2.9653 | 2.9434 | 3.2233 |
| Engine6 | 1.9233 | 2.0145 | 1.9480 | 2.8847 | 3.0809 | 3.0256 |
| Average | 2.0867 | 2.0587 | 2.0605 | 3.1008 | 2.9238 | 2.8393 |
| Std Dev | 0.2125 | 0.0550 | 0.2027 | 0.1972 | 0.1912 | 0.3565 |
| Coef Var | 0.1018 | 0.0267 | 0.0984 | 0.0636 | 0.0654 | 0.1256 |

E. BASELINE TO COMPARISON GROUPS RESULTS

The tables included in this appendix convey the correlations between the baseline and the comparison groups. In each comparison group the six engines were analyzed and compared to the baseline average. The overall radius of variability of each engine from the baseline is listed in these tables along with its average, standard deviation and coefficient of variation.

Table E.1: Angle Domain Cycle Average - Comparison of Engine Groups to the Baseline

|  | Raw Data |  |  | Filtered Data |  |  |  |
| :--- | ---: | ---: | ---: | ---: | ---: | ---: | :---: |
|  | Faulted | 6.8 L 3V | 4.6 L 2V | Faulted | 6.8 L 3V | 4.6 L 2V |  |
| Engine1 | 54.8708 | 26.7171 | 15.7268 | 40.3037 | 20.5256 | 11.8671 |  |
| Engine2 | 32.6260 | 26.1003 | 51.4937 | 28.2148 | 20.5307 | 11.7740 |  |
| Engine3 | 32.7173 | 24.8484 | 15.1729 | 24.8048 | 19.8090 | 11.6874 |  |
| Engine4 | 27.3943 | 25.0619 | 16.2539 | 22.2638 | 20.2884 | 12.1291 |  |
| Engine5 | 26.9538 | 23.8720 | 32.0188 | 23.0731 | 18.3567 | 14.1211 |  |
| Engine6 | 32.5764 | 22.7852 | 17.2097 | 28.3843 | 19.2990 | 13.9160 |  |
| Average | 34.5231 | 24.8975 | 24.6459 | 27.8408 | 19.8016 | 12.5825 |  |
| Std Dev | 10.3227 | 1.4353 | 14.6299 | 6.6153 | 0.8524 | 1.1241 |  |
| Coef Var | 0.2990 | 0.0576 | 0.5936 | 0.2376 | 0.0430 | 0.0893 |  |

Table E.2: Angle Domain - Comparison of Engine Groups to the Baseline

|  | Raw Data |  |  |  | Filtered Data |  |  |  |
| :--- | ---: | ---: | ---: | ---: | ---: | ---: | :---: | :---: |
|  | Faulted | 6.8 L 3V | 4.6 L 2V | Faulted | 6.8 L 3V | 4.6 L 2V |  |  |
| Engine1 | 1053.9649 | 612.2663 | 314.4641 | 836.6098 | 426.8289 | 231.3005 |  |  |
| Engine2 | 556.6849 | 577.5677 | 493.4941 | 357.4629 | 411.4547 | 305.5497 |  |  |
| Engine3 | 615.2654 | 589.1410 | 342.8023 | 398.9746 | 431.5403 | 269.4102 |  |  |
| Engine4 | 520.7391 | 532.2671 | 327.5988 | 319.9223 | 393.0359 | 246.3460 |  |  |
| Engine5 | 505.6413 | 530.9232 | 395.2690 | 335.5612 | 366.8368 | 270.0569 |  |  |
| Engine6 | 533.1018 | 481.5188 | 359.9316 | 369.2472 | 378.1467 | 267.6082 |  |  |
| Average | 630.8996 | 553.9474 | 372.2600 | 436.2963 | 401.3072 | 265.0452 |  |  |
| Std Dev | 210.7728 | 47.8407 | 65.6991 | 198.0124 | 26.3112 | 25.2179 |  |  |
| Coef Var | 0.3341 | 0.0864 | 0.1765 | 0.4538 | 0.0656 | 0.0951 |  |  |

Table E.3: Detrended Angle Domain - Comparison of Engine Groups to the Baseline

|  | Raw Data |  |  |  |  |  |  |  | Filtered Data |  |  |  |  |  |
| :--- | ---: | ---: | ---: | ---: | ---: | ---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | Faulted | 6.8 L 3V | $4.6 L$ 2V | Faulted | 6.8 L 3V | 4.6 L 2V |  |  |  |  |  |  |  |  |
| Engine1 | 1039.7557 | 608.7941 | 311.0378 | 836.6091 | 426.8288 | 231.3004 |  |  |  |  |  |  |  |  |
| Engine2 | 554.7951 | 574.4862 | 403.4405 | 357.4626 | 411.4547 | 305.5494 |  |  |  |  |  |  |  |  |
| Engine3 | 609.4272 | 586.0426 | 340.3732 | 398.9744 | 431.5402 | 269.4101 |  |  |  |  |  |  |  |  |
| Engine4 | 518.2338 | 529.3330 | 323.8533 | 319.9222 | 393.0359 | 246.3459 |  |  |  |  |  |  |  |  |
| Engine5 | 503.9659 | 528.0637 | 361.8327 | 335.5610 | 366.8367 | 270.0563 |  |  |  |  |  |  |  |  |
| Engine6 | 530.5738 | 479.5299 | 356.9827 | 369.2470 | 378.1466 | 267.6081 |  |  |  |  |  |  |  |  |
| Average | 626.1252 | 551.0416 | 349.5867 | 436.2960 | 401.3071 | 265.0450 |  |  |  |  |  |  |  |  |
| Std Dev | 205.9857 | 47.3777 | 32.6742 | 198.0122 | 26.3112 | 25.2179 |  |  |  |  |  |  |  |  |
| Coef Var | 0.3290 | 0.0860 | 0.0935 | 0.4538 | 0.0656 | 0.0951 |  |  |  |  |  |  |  |  |

Table E.4: FFT - Comparison of Engine Groups to the Baseline

|  | Raw Data |  |  | Filtered Data |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | Faulted | 6.8 L 3V | 4.6L 2V | Faulted | 6.8L 3V | 4.6L 2V |
| Engine1 | 386325 | 170750 | 139573 | 223661 | 88638 | 76469 |
| Engine2 | 156750 | 153539 | 153874 | 70911 | 81133 | 85572 |
| Engine3 | 181656 | 161713 | 145362 | 82018 | 86355 | 81699 |
| Engine4 | 146364 | 144275 | 139226 | 61740 | 78206 | 78494 |
| Engine5 | 135140 | 143025 | 143937 | 61688 | 74424 | 80929 |
| Engine6 | 150651 | 133713 | 145230 | 74116 | 75128 | 82767 |
| Average | 192814 | 151169 | 144534 | 95689 | 80647 | 80988 |
| Std Dev | 96055 | 13556 | 5321 | 63169 | 5862 | 3204 |
| Coef Var | 0.4982 | 0.0897 | 0.0368 | 0.6601 | 0.0727 | 0.0396 |

Table E.5: Normalized FFT - Comparison of Engine Groups to the Baseline

|  | Raw Data |  |  | Filtered Data |  |  |  |
| :--- | ---: | ---: | ---: | ---: | ---: | ---: | :---: |
|  | Faulted | 6.8 L 3V | 4.6 L 2V | Faulted | 6.8 L 3V | 4.6 L 2V |  |
| Engine1 | 76.9963 | 42.5995 | 52.0905 | 35.6004 | 19.8968 | 28.8916 |  |
| Engine2 | 79.4408 | 42.8190 | 55.5656 | 26.2021 | 18.6993 | 30.1025 |  |
| Engine3 | 88.6063 | 43.4991 | 56.1914 | 42.3234 | 18.2874 | 33.0409 |  |
| Engine4 | 102.9163 | 110.0428 | 52.4211 | 32.8481 | 57.8638 | 30.0160 |  |
| Engine5 | 81.9317 | 93.0595 | 55.7650 | 25.5449 | 42.9477 | 32.1152 |  |
| Engine6 | 92.1972 | 97.4524 | 49.2610 | 26.4676 | 55.6687 | 21.9431 |  |
| Average | 87.0148 | 71.5787 | 53.5491 | 31.4977 | 35.5606 | 29.3515 |  |
| Std Dev | 9.6522 | 31.8300 | 2.7476 | 6.7027 | 18.8911 | 3.9332 |  |
| Coef Var | 0.1109 | 0.4447 | 0.0513 | 0.2128 | 0.5312 | 0.1340 |  |

Table E.6: DCT - Comparison of Engine Groups to the Baseline

|  | Raw Data |  |  | Filtered Data |  |  |  |  |
| :--- | ---: | ---: | ---: | ---: | ---: | ---: | :---: | :---: |
|  | Faulted | 6.8 L 3V | 4.6 L 2V | Faulted | 6.8 L 3V | 4.6 L 2V |  |  |
| Engine1 | 896.8781 | 433.4854 | 310.4303 | 460.8652 | 165.2153 | 171.3681 |  |  |
| Engine2 | 397.1084 | 395.8179 | 354.4331 | 164.3058 | 161.6152 | 174.4111 |  |  |
| Engine3 | 451.0884 | 413.9290 | 326.4286 | 173.3764 | 169.3697 | 173.7996 |  |  |
| Engine4 | 371.0945 | 370.1162 | 312.0247 | 145.9087 | 164.2971 | 170.3338 |  |  |
| Engine5 | 350.0905 | 367.8295 | 328.1724 | 149.7082 | 184.1841 | 191.3592 |  |  |
| Engine6 | 381.0407 | 339.7298 | 330.4047 | 193.5213 | 152.7393 | 192.1207 |  |  |
| Average | 474.5501 | 386.8180 | 326.9823 | 214.6143 | 166.2368 | 178.8988 |  |  |
| Std Dev | 209.6883 | 34.2072 | 15.9040 | 121.8599 | 10.3949 | 10.0627 |  |  |
| Coef Var | 0.4419 | 0.0884 | 0.0486 | 0.5678 | 0.0625 | 0.0562 |  |  |

Table E.7: Normalized DCT - Comparison of Engine Groups to the Baseline

|  | Raw Data |  |  | Filtered Data |  |  |  |
| :--- | ---: | ---: | ---: | ---: | ---: | ---: | :---: |
|  | Faulted | 6.8 L 3V | 4.6 L 2V | Faulted | 6.8 L 3V | 4.6 L 2V |  |
| Engine1 | 62.9391 | 40.1615 | 43.0150 | 21.8140 | 14.3010 | 23.1397 |  |
| Engine2 | 68.9534 | 31.3284 | 47.2974 | 19.3073 | 11.5822 | 21.0785 |  |
| Engine3 | 64.4246 | 31.5459 | 54.4410 | 23.6888 | 11.2308 | 24.1032 |  |
| Engine4 | 88.6148 | 87.1222 | 47.0555 | 24.1115 | 32.2440 | 22.8043 |  |
| Engine5 | 71.6454 | 77.1283 | 43.8579 | 19.1942 | 30.4899 | 22.0869 |  |
| Engine6 | 64.7617 | 77.7195 | 35.5405 | 23.2345 | 28.6568 | 13.6678 |  |
| Average | 70.2231 | 57.5010 | 45.2012 | 21.8917 | 21.4174 | 21.1467 |  |
| Std Dev | 9.5749 | 25.8100 | 6.2148 | 2.1873 | 10.0307 | 3.8022 |  |
| Coef Var | 0.1363 | 0.4489 | 0.1375 | 0.0999 | 0.4683 | 0.1798 |  |

Table E.8: MA - Comparison of Engine Groups to the Baseline

|  | Raw Data |  |  | Filtered Data |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | Faulted | 6.8L 3V | 4.6L 2V | Faulted | 6.8L 3V | 4.6L 2 V |
| Engine1 | 778.54 | 444.99 | 243.97 | 14120.91 | 7392.65 | 7192.25 |
| Engine2 | 464.56 | 391.80 | 329.16 | 5567.30 | 5723.53 | 7189.95 |
| Engine3 | 461.55 | 491.00 | 308.06 | 11944.17 | 7178.85 | 6840.91 |
| Engine4 | 420.86 | 380.13 | 316.95 | 2909.52 | 7540.73 | 4841.67 |
| Engine5 | 385.11 | 411.46 | 280.05 | 3645.02 | 5015.47 | 5199.09 |
| Engine6 | 397.15 | 329.41 | 318.10 | 2794.75 | 5933.04 | 4874.21 |
| Average | 484.63 | 408.13 | 299.38 | 6830.28 | 6464.04 | 6023.01 |
| Std Dev | 147.61 | 55.65 | 31.83 | 4953.87 | 1045.10 | 1165.50 |
| Coef Var | 0.3046 | 0.1364 | 0.1063 | 0.7253 | 0.1617 | 0.1935 |

Table E.9: Normalized MA - Comparison of Engine Groups to the Baseline

|  | Raw Data |  |  | Filtered Data |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | Faulted | 6.8L 3V | 4.6L 2V | Faulted | 6.8L 3V | 4.6L 2V |
| Engine1 | 0.1914 | 0.0890 | 0.1151 | 4.4093 | 2.4267 | 2.7285 |
| Engine2 | 0.1986 | 0.0572 | 0.1388 | 1.6750 | 0.7101 | 2.3330 |
| Engine3 | 0.2034 | 0.0649 | 0.1408 | 5.2092 | 0.9539 | 2.9445 |
| Engine4 | 0.2460 | 0.2551 | 0.1387 | 2.6731 | 6.5602 | 3.8931 |
| Engine5 | 0.2000 | 0.2268 | 0.1298 | 3.1609 | 3.1321 | 1.7873 |
| Engine6 | 0.2184 | 0.2223 | 0.0744 | 1.7168 | 5.0905 | 1.0249 |
| Average | 0.2096 | 0.1525 | 0.1229 | 3.1407 | 3.1456 | 2.4519 |
| Std Dev | 0.0199 | 0.0913 | 0.0256 | 1.4341 | 2.3106 | 0.9888 |
| Coef Var | 0.0951 | 0.5986 | 0.2086 | 0.4566 | 0.7346 | 0.4033 |

Table E.10: ARMA - Comparison of Engine Groups to the Baseline

|  | Raw Data |  |  | Filtered Data |  |  |  |
| :--- | ---: | ---: | ---: | ---: | ---: | ---: | :---: |
|  | Raulted | $6.8 L$ 3V | 4.6 L 2V | Faulted | 6.8 L 3V | 4.6 L 2V |  |
| Engine1 | 98.3188 | 57.6440 | 44.2606 | 57.5221 | 59.6080 | 48.0296 |  |
| Engine2 | 36.1790 | 58.2218 | 61.1343 | 57.8930 | 104.5030 | 62.6163 |  |
| Engine3 | 61.2337 | 44.4883 | 30.2729 | 62.7748 | 92.7004 | 65.3700 |  |
| Engine4 | 78.6032 | 36.7846 | 50.7710 | 71.2808 | 76.7517 | 57.5901 |  |
| Engine5 | 41.4805 | 45.7762 | 30.9104 | 50.3101 | 68.0703 | 53.7582 |  |
| Engine6 | 58.0107 | 45.8344 | 43.8443 | 54.8041 | 70.9336 | 58.4574 |  |
| Average | 62.3043 | 48.1249 | 43.5322 | 59.0975 | 78.7612 | 57.6369 |  |
| Std Dev | 23.2312 | 8.3085 | 11.8151 | 7.2324 | 16.7535 | 6.2067 |  |
| Coef Var | 0.3729 | 0.1726 | 0.2714 | 0.1224 | 0.2127 | 0.1077 |  |

Table E.11: Normalized ARMA - Comparison of Engine Groups to the Baseline

|  | Raw Data |  |  | Filtered Data |  |  |  |  |
| :--- | ---: | ---: | ---: | ---: | ---: | ---: | :---: | :---: |
|  | Faulted | 6.8 L 3V | 4.6 L 2V | Faulted | 6.8 L 3V | 4.6 L 2V |  |  |
| Engine1 | 2.4871 | 2.3749 | 2.7705 | 3.4969 | 3.2364 | 4.0056 |  |  |
| Engine2 | 2.4552 | 2.4063 | 2.4863 | 3.0567 | 3.3689 | 3.8818 |  |  |
| Engine3 | 2.2198 | 2.5555 | 2.6668 | 4.4145 | 3.3020 | 4.0487 |  |  |
| Engine4 | 2.6372 | 2.1254 | 2.3232 | 4.0076 | 3.6870 | 4.0341 |  |  |
| Engine5 | 2.2724 | 2.2887 | 1.8926 | 3.6106 | 2.9411 | 4.0071 |  |  |
| Engine6 | 2.1717 | 2.7826 | 2.3976 | 3.1631 | 3.8613 | 3.6506 |  |  |
| Average | 2.3739 | 2.4222 | 2.4228 | 3.6249 | 3.3995 | 3.9380 |  |  |
| Std Dev | 0.1809 | 0.2263 | 0.3086 | 0.5143 | 0.3296 | 0.1527 |  |  |
| Coef Var | 0.0762 | 0.0934 | 0.1274 | 0.1419 | 0.0970 | 0.0388 |  |  |

F. SUMMARY GRAPHS

The graphs in this appendix are a summary of the baseline analysis and of the correlation between the baseline and the comparison groups. To clarify the contents a brief outline regarding each plot is included.

In Figure F. 1 the coefficient of variation of each analysis method is displayed; this is derived from the comparison of the standard deviation to the average of each technique. A dimensionless value is provided by the coefficient of variation to relate the outcome of each method. Results from the investigation of the 30 engine 5.4 L 3 V baseline is the source of the presented findings. The original data from the engines was collected at a sampling rate of 33.3 kHz , which is the limiting factor of the frequency content. To provide a deeper understanding of the analysis involved the computation time of each method is also displayed. The length of the computation time is the additional time required above and beyond the current testing procedure and includes the analysis of 30 engines.

## Analysis Method Comparison



Figure F.1: Comparison of Data Analysis Methods utilizing the Baseline Data

A comparison of the coefficient of variation and calculation time of the filtered baseline data is displayed in Figure F.2. The band of the frequencies of interest was filtered from the original data before the further calculations were performed. The computation was carried out in the same manner as the results of Figure F.1. A range of 3 to 6000 Hz was focused upon to reflect the limitations of the equipment and to concentrate on the pertinent engine noise and vibration information.


Figure F.2: Comparison of Data Analysis Methods utilizing the Filtered Baseline Data

Figure F. 3 depicts the correlation between the baseline and each of the engines in the faulted engine comparison group. Engines from the faulted set were considered to be acceptable at the time of production and later were found to be defective. The engines are listed in the order of severity of defects; the first three engines have significant faults and final three possess minor defects. A coefficient of variation for each engine was calculated by finding ratio of the baseline average to the difference between the results of the baseline average and the faulted engine. The plot compares the baseline coefficient of variation to the individual engines of the faulted group.

Comparison of Faulted Engines to Baseline


Figure F.3: Comparison of Data Analysis Methods in the Correlation of the Faulted Engine Group to the Baseline Data

Results of the correlation between the filtered data from the baseline and each of the engines in the faulted engine comparison group are given in Figure F.4. The data from both the faulted engine group and the baseline was filtered to include only the 3 to 6000 Hz frequency range. From this point the data was processed in the same manner as that of Figure F.3.


Figure F.4: Comparison of Data Analysis Methods in the Correlation of the Filtered Faulted Engine Group to the Baseline Data

In Figure F. 5 the correlation between the baseline data and each of the engines in the QOS 6.8L 3 V engine comparison group is displayed. Engines in the comparison set along with the baseline engines were part of a quality of service test and are considered a representative sample of the production engines. This plot depicts the similarities of the engine signatures when evaluated using the different analysis techniques.

Comparison of 6.8L 3V Engines to Baseline


Figure F.5: Comparison of Data Analysis Methods in the Correlation of the QOS 6.8L 3V Engine Group to the Baseline Data

The correlation between the filtered data from the baseline and each of the engines in the QOS 6.8L 3V engine comparison group is illustrated in Figure F.6. The data from both the comparison group and the baseline was filtered to include only the 3 to 6000 Hz frequency range. Following the filtration data was analyzed in the same method as that of Figure F.5.

Comparison of 6.8L 3V Engines to Baseline - Filtered 3 Hz to 6000 Hz


Figure F.6: Comparison of Data Analysis Methods in the Correlation of the Filtered QOS 6.8L 3V Engine Group to the Baseline Data

Depicted in Figure F. 7 is the correlation between the baseline data and each of the engines in the QOS 4.6L 2 V engine comparison group. These 4.6 L 2 V engines are a sample set utilized in the quality of service testing. The following graph illustrates the measure of variation of the engine signatures between the sample group and the baseline.


Figure F.7: Comparison of Data Analysis Methods in the Correlation of the QOS 4.6L 2V Engine Group to the Baseline Data

Figure F. 8 depicts the correlation between the filtered data from the baseline and each of the engines in the QOS 4.6L 2 V engine comparison group. The data from both the comparison group and the baseline was filtered to include only the 3 to 6000 Hz frequency range. After the original data was filtered the results were obtained though the same method as that of Figure F.7.

Comparison of 4.6L 2V Engines to Baseline - Filtered 3 Hz to $\mathbf{6 0 0 0 H z}$


Figure F.8: Comparison of Data Analysis Methods in the Correlation of the Filtered QOS 4.6L 2V Engine Group to the Baseline Data
G. SELECTION OF THE FREQUENCY RANGE OF INTEREST

The filtered frequency range utilized spans from 3 Hz to 6000 Hz . Many different factors influenced the selection of this range and will be discussed in detail.

The frequency range of the Brüel \& Kjær type 4366 charge accelerometer was the most limiting factor. Per the specifications found in Appendix A, the resonant frequency is 16 kHz and the range of five percent error in amplitude response had a maximum limit of 5 kHz . The actual calibration charts denoted that the real mounted frequency in all of the utilized accelerometers was greater than 20 kHz . Further the amplitude response in the selected frequency range was generally flat with some the accelerometer's error starting to increase just before 6000 Hz . The maximum observed error at 6000 Hz was only $3.5 \%$ which was well within acceptable limits. Also suggestions from the manufacturer noted that the upper limiting frequency should not be greater than a third of the mounted resonance frequency [34].

The lower frequency limit was selected to include half order vibration. Subharmonics are generally not of interest but a half order disturbance in an engine denotes a problem that occurs once every engine cycle. Such events can indicate a misfire or camshaft issue. The idle speed of the engines under study is approximately 600 rpm ; this means that the half order frequency is 5 Hz .

Combustion and structure borne vibration are the areas of key concern. In the engine the frequency spectrum of interest of combustion vibration ranges from
the half order up to the twentieth order frequency. Audible noise due to structure borne vibration is focused between 1 kHz and 5 kHz . This is because the human ear is most sensitive in this range. In this experiment extending the upper end of this selected scope is to ensure the audible noise range is encompassed.

## VITA AUCTORIS

Carol Lynn Deck was born on December 24, 1978 in Windsor, Ontario, Canada. She graduated from St. Thomas of Villanova Secondary School in 1996 and also achieved a French Immersion diploma. She went on to complete her Ontario Academic Credits and gained entrance into the University of Windsor engineering program. During her first year of University she selected Electrical Engineering as her program of study and graduated from the undergraduate program in the summer of 2001. After working in the automotive industry she decided to return to university to pursue her Master's. While she continued her education she also worked for prominent automotive companies in the field of noise and vibration. She is currently a candidate for the Master's of Applied Science degree in Mechanical Engineering at the University of Windsor.

