
 i

ACOUSTIC EMISSION MONITORING OF 

PROPULSION SYSTEMS: A LABORATORY 

STUDY ON A SMALL GAS TURBINE 

 

 

 

Mohamad Shadi Nashed 

 

Submitted for the degree of doctor of philosophy on completion of research in the 
School of Engineering and Physical Sciences, Mechanical Engineering, 

Heriot-Watt University 

November 2010 

 

 

 

 

 

 

 

This copy of the thesis has been supplied on condition that anyone who consults it is 

understood to recognise that the copyright rests with its author and that no quotation 

from the thesis and no information derived from it may be published without the prior 

written consent of the author or of the University (as may be appropriate). 



 ii

 

Abstract 
 
 
The motivation of the work is to investigate a new, non-intrusive condition monitoring 

system for gas turbines with capabilities for earlier identification of any changes and the 

possibility of locating the source of the faults. This thesis documents experimental 

research conducted on a laboratory-scale gas turbine to assess the monitoring capabilities of 

Acoustic Emission (AE). In particular it focuses on understanding the AE behaviour of 

gas turbines under various normal and faulty running conditions.  

 
A series of tests was performed with the turbine running normally, either idling or with 

load. Two abnormal running configurations were also instrumented in which the 

impeller was either prevented from rotation or removed entirely. With the help of 

demodulated resonance analysis and an ANN it was possible to identify two types of AE; a 

background broadband source which is associated with gas flow and flow resistance, 

and a set of spectral frequency peaks which are associated with reverberation in the 

exhaust and  coupling between the alternator and the turbine. 

 

A second series of experiments was carried out with an impeller which had been 

damaged by removal of the tips of some of the blades (two damaged blades and four 

damaged blades). The results show the potential capability of AE to identify gas turbine 

blade faults. The AE records showed two obvious indicators of blade faults, the first 

being that the energy in the AE signals becomes much higher and is distinctly periodic 

at higher speeds, and the second being the appearance of particular pulse patterns which 

can be characterized in the demodulated frequency domain.  
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Nomenclature  
 
a  Attenuation coefficient (dB/m) 
γ adiabatic index of gas 
r  Density (kg/m3) 
s  Standard deviation 

iA , iA1 , iA2  Amplitude of AE signal (dB or V) 

rA  Relative amplitude (dB) 
C sound speed in gas (m/sec) 
E  Energy content (V2.s) 
( )xE  Energy at distance, x (V2.s) 

oE  Energy of the source (V2.s) 
Fcrit Variance within the group 
Fvalue Variance between the group 
f the reverberating frequency (Hz). 
k  Attenuation factor or Attenuation coefficient ( 1-m ) 
Kurt  Kurtosis  
M  molar mass in kilograms per mole 
P1-P4 Sensor positions 
R molar gas constant (J·mol−1·K−1) 
rms RMS energy at each window 
Skew  Skewness  
S1-9 Turbine running speed(RPS) 
t  Time (s) 
( )tv  Amplitude of signal (V) 

Var  Variance  
x  Distance (m) 
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Abbreviations 
 
AE Acoustic emission 
ANN(s) Artificial neural network(s) 
CWT Continuous wavelet transform 
GG Gas generator turbine 
FFT Fast Fourier Transform 
FOD Foreign object damage 
FPT Free power turbine 
HCF High cycle fatigue 
ICA Independent component analysis 
LCF Low cycle fatigue 
MLP(s) Multilayer perceptron(s) 
NDT Non-destructive testing 
PNN Probabilistic neural network 
PCA Principal component analysis 
PSD Power spectrum density 
RMS, rms Root mean square 
SNR Signal to noise ratio 
SOM Self-organising mapping 
STFT Short Time Fourier Transform 
WDA Wear Debris Analysis 
WNG White noise generator 
WT Wavelet transform 
LGPA linear gas path analysis 
NLGPA non-linear gas path analysis 
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Chapter 1 Introduction 
 
This work relates to the condition monitoring of turbines using acoustic emission (AE). 

A small, laboratory-scale turbine has been instrumented using AE sensors and 

recordings made of the AE as a function of position on the machine for various normal 

operating conditions and fault conditions, as well as for some idealized conditions to 

understand the source of AE in the machine. This chapter introduces the technological 

background and significance of the work as well as presenting the motivation for the 

research. 

 

1.1. Background to condition monitoring of gas turbines 
 
The application of condition monitoring techniques to machinery allows earlier 

diagnosis and prompt repair of any malfunction and avoidance of breakdown caused by 

faulty components, which is its most critical use for process plant and machinery. 

Moreover, condition monitoring systems can be used to identify the machine condition 

in order to achieve economic performance through increased availability and reduced 

component replacement costs through predictive maintenance. Generally the main 

methods which have been developed for condition monitoring of gas turbines are 

performance analysis[1], oil analysis [2], and vibration analysis [3]. 

 
Performance analysis is widely used on rotating machines, and specifically on gas and 

steam turbines. Performance analysis is based on the idea that any deterioration in the 

machine will produce changes in the operating parameters from their ideal values [4]. 

The combination of performance analysis with other artificial intelligence techniques 

constitutes a good tool for providing information about the degradation severity of the 

machine components. One of the limitations is that measurement quality has a critical 

influence on the reliability of a performance analysis condition monitoring system, and 

most measured data are contaminated by sensor noise, disturbances, instrument 

degradation, and human error to a greater or lesser extent.  

 
Wear Debris Analysis (WDA) involves examining the debris suspended in lubricating 

oil in order to predict machine condition [5]. One drawback of this technique is that it is 

inappropriate for certain machines and/or operations, such as electrical machinery and 

switch gear, which can be monitored by acoustic emission and ultrasonic techniques. 
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Another disadvantage of WDA is the difficulty of applying it to sealed systems where 

obtaining a sample of fluid is difficult and usually not recommended. A further demerit 

is the inability to identify the precise location of the fault and several faults from 

different components can cause confusion. Finally, the necessary analysis is normally 

performed in batches in a laboratory rendering it not particularly amenable to 

continuous or on-line monitoring. The most prominent advantage of WDA is that it 

directly diagnoses wear, which is not usually achievable economically using other 

techniques.  

 
Vibration analysis [6] is one of the most widely applied condition monitoring 

techniques for rotating and reciprocating machines. Generally, vibration analysis starts 

by drawing a comparison between historical measurements and recent values using 

some kind of trending. A wide range of features are conventionally extracted from the 

recorded signals from the time domain, the frequency domain, and the quefrency 

domain [7]. Vibration signals are sensitive to low frequency environmental noise such 

as machine resonances or ancillary equipment. Aِlthough, the vibration method is 

indirect but it has the potential benefit of source location. 

 
The above techniques including performance analysis, oil analysis, and vibration 

monitoring are all indirect in that they measure the changes in some aspect of the 

machine operation from which an attempt is made to deduce condition. Furthermore, 

these approaches are generally unable to give information about the exact locations of 

changes in the turbine. Acoustic Emission (AE) sources include impacts, wear, crack 

propagation and gas flow all of which can occur in gas turbine operation. As a  non 

intrusive technique, AE has two potential advantages over other techniques;  (a) its 

ability of early identification of any changes, (b) the potential to locate the source of the 

emission [8]. Acoustic emission (AE) has been used successfully for condition 

monitoring of machinery and has proven to be a useful tool for monitoring a number of 

rotating machinery types such as gas turbines, steam turbines, and pumps. Detailed 

reported examples include the diagnosis of faults on the inner and outer races of gas 

turbine bearings [9, 10], rubbing and bearing damage in a steam turbine [11], the 

transmissibility of acoustic emission across very large-scale turbine rotors[12], and 

detecting cavitation in pumps [13]. 
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1.2. Aims and objectives:   
 
Turbine engines are extremely difficult to monitor with high operating temperatures and 

huge centrifugal speeds and loads. They are subject to a range of failure mechanisms 

which might be expected to modify the flow through the machine. AE has been used 

successfully for machinery monitoring in lower speed rotating machines, reciprocating 

engines, bearings, fuel injection and combustion, where the fundamental sources are 

similar to those expected in a gas turbine. Therefore using AE to monitor gas turbine 

engines to enable classification of the operating parameters and fault diagnosis is the 

main aim of this research. 

 

The detailed aims are therefore:  

1. To understand the fundamental mechanisms generating AE signals in gas 

turbines. 

2. To study the effect of operating conditions on AE signals and develop 

recognition approaches. 

3. To identify potential benefits of AE monitoring over conventional turbine 

monitoring approaches. 

4. To demonstrate the potential of AE technique for diagnosing gas turbine blade 

defects. 

 

To pursue these aims, the following objectives were set: 

1. Calibrate AE sensors on a standard steel block and on gas turbine rig. 

2. Study AE propagation characteristics in the gas turbine rig. 

3. Categorize the AE signatures under various normal running conditions of the gas 

turbine. 

4. Understand and explain the complex AE behavior of gas turbine during normal 

operation. 

5. Simulate various blade defects and characterize the AE signature in time and 

frequency domains. 
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1.3. Thesis outline 
This thesis is organized in 7 chapters, the contents of which are summarized as follows. 
 
 
Chapter 1: Introduction 

This chapter introduces the general background of condition monitoring of gas turbines 

and the place of AE monitoring in this context. The objectives of the research and the 

claimed contribution to knowledge are also identified. 

 
Chapter 2: Literature review 

This chapter describes the general physics of AE wave propagation including wave 

types, wave propagation speed, effects of AE wave attenuation, AE sensor calibration 

procedures, and AE analysis techniques in the time and frequency domains. The main 

part of the chapter is a critical review of condition monitoring methods on gas turbines 

and other machinery with emphasis on the advanced diagnostic methods used for fault 

monitoring of gas turbines. The AE application with advanced diagnostic methods on 

gas turbine has been reviewed in this chapter. A summary of common gas turbine faults 

is also included in this chapter.  

 
Chapter 3: Experimental apparatus and procedures 

This chapter describes the experimental apparatus, data acquisition methods, 

experimental set-up and experimental procedure for the laboratory tests of AE 

calibration on steel block, AE calibration on the gas turbine, AE propagation on the gas 

turbine, as well as monitoring the gas turbine under various operating conditions with 

and without simulated impeller faults. The results of the calibrations and attenuation 

tests are also summarized here.         

 
Chapter 4: Results: normal running tests and tests without functioning impeller 

This chapter shows the results of simple time- and frequency-domain analyses of four 

different test configurations; idling with the speed being controlled by fuel and air flow, 

or under load at fixed fuel and air flow as well as two abnormal running tests in which 

the impeller was either prevented from rotating or removed entirely. 

 
Chapter 5: Analysis and discussion of normal running tests 

This chapter extends the preliminary analysis of chapter 4 in order to explain the 

complex AE behavior in the gas turbine for the idling and load tests. Pattern recognition 
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techniques using artificial neural networks have been applied to aid the understanding of 

the characteristics of AE behaviour of gas turbine. 

 
Chapter 6: Faulty impeller condition monitoring tests 

The results of the tests conducted on with a faulty free power turbine are described in 

this chapter. These are analysed using time- and frequency-domain processing to 

indicate how pulse train analysis can be used to track blade faults in turbines.   

 
Chapter 7: Conclusions and future work 

The main findings and achievements of this research are detailed here along with 

recommendations for possible future studies. 

 

1.4. Original contribution 

The overall outcome of improved monitoring capabilities of gas turbine processes based 

upon analysis of AE signals is the specific area in which a contribution to knowledge is 

claimed. As far as the author is aware, detailed study on the complex pattern recognition 

of acoustic emission from gas turbines using artificial neural network has not previously 

been attempted. Furthermore, the study has developed and used a technique based on 

the demodulated frequency analysis to diagnose gas turbine blade faults. Some success 

is claimed also in identifying the fluid-mechanical sources of the AE in turbines which 

is of generic interest to turbine and machinery monitoring. 
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Chapter 2 Literature Review 
 

2.1. Introduction: 
 
This chapter aims at providing a summary of the state of knowledge of the areas 

relevant to the condition monitoring of gas turbines using AE. Condition monitoring is 

here considered to be any tool for providing an assessment of machinery condition 

based on collecting sensor data, and interpreting it with regard to any deterioration that 

could affect machine life. A successful monitoring system will have the potential to 

minimise the cost of maintenance, improve operational safety, and reduce the incidence 

of in-service machine failure or breakdown.  

 

The review is divided into six parts, commencing with an outline of how engineering 

AE measurements are made, followed by a critical discussion of the conventional 

analysis approaches. Next the role of other condition monitoring techniques such as 

vibration monitoring, performance analysis, and oil analysis in gas turbines is evaluated 

in preparation for a comparison of their strengths and weaknesses compared with what 

is currently known about AE monitoring of turbines. In view of its relevance to this 

work, a summary of the use of artificial neural networks in condition monitoring is 

provided. Finally in this chapter, the range of commonly-encountered gas turbine faults 

is explained with a view to identifying those which might reasonably be monitored 

using AE.   

 

2.2. Acoustic emission measurements: 
 
The term acoustic emission (AE) is normally reserved to describe high frequency stress 

waves generated on the surface or within a material. The stress wave propagates in, or 

on, the material and can be detected externally by mounting a sensor on an appropriate 

surface. The degree to which one or more sensors can be used to determine the 

characteristics of the source depends on a number of factors, such as AE wave 

propagation, AE attenuation, and AE sensor calibration, as well as a number of practical 

issues, all of which are discussed in this section. 
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2.2.1. AE sources and waves: 
 

Sources of AE can be categorized as fundamental material sources and pseudo 

sources[14]. Crack growth, slip, twinning and phase transformation  are examples of the 

first type, while pseudo sources include phenomena which give rise to the fundamental 

sources, such as leaks [15], mechanical impact [16], sliding contact, turbulent fluid 

flow, fluid cavitation [17], wear and friction[18]. Apart from crack growth, all of the 

sources of potential interest in turbines are in the latter category and this is common to 

most machinery monitoring applications.  

 

AE sources can also be categorized depending on the type of signals they produce, 

which can be either discrete or continuous. A single burst of energy produced by a 

fracture or an impact leads to a discrete signal, whereas sources occurring rapidly to the 

extent that they overlap in time and/or continuous sources lead to a continuous or quasi-

continuous signal. Examples of the latter are the AE signals associated with such 

phenomena as fluid flow, fluid leaks, some chemical processes and sleeve bearings.  

 

AE sources can further be categorised in terms of how they are stimulated, (a) structural 

testing where a load is applied for the purpose of inspection, (b) process monitoring, for 

example of machines such as engines, turbines and rotating machines, (c) materials 

testing where the AE is used as a diagnostic of material behavior. 

 

In the monitoring application, AE can be regarded as passive ultrasound, i.e. the AE 

events are self-generated and the recorded ultrasound is not the result of a pulse or wave 

injected into the component as occurs in ultrasonic non-destructive testing. One of the 

oft-cited advantages of AE is its ability to reveal faults at an early stage, giving an 

opportunity for intervention before sudden failure [19]. The reason this is essentially 

that AE is generally sensitive to the processes that cause degradation as opposed to the 

symptoms of degradation having occurred, one example being that AE can detect 

bearing wear processes as opposed to, say, acceleration monitoring which might be 

more sensitive to the looseness arising from excessive wear having occurred.  

 

When an AE signal is generated by a source, the stress waves (approximate frequency 

range of 100 kHz to 1.2 MHz) radiate and propagate to the boundaries of the structure 

where they may be dissipated or reflected back into the structure, depending on the 
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nature of the structure, particularly the material and the size and shape. At any point on 

a surface, arriving waves may have suffered refraction, scattering, and attenuation [20] 

and may have been reflected once or more from boundaries, all of which makes 

interpretation difficult. 

  

AE waves propagate in solid media in one or more of four classes: longitudinal waves, 

shear waves, Rayleigh waves and Lamb waves [21, 22]. The wave modes [23] 

constitute a complete orthogonal set of eigenfunctions, which is to say that each one 

propagates independently without losing energy to the other. Longitudinal and shear 

waves are plane waves and are the only ones which propagate in infinite media. The 

particle movement in the longitudinal wave in isotropic materials is parallel to the 

direction of wave propagation but in shear waves it is perpendicular (Figure 1.1). 

Longitudinal waves are faster than shear waves because the elastic modulus is greater 

with that kind of deformation. Rayleigh waves propagate in media considered to be 

semi-infinite and require a free surface. The velocity is a little lower than a shear wave 

and the particles move in ellipses. Lamb waves are plane waves in an infinite medium 

and the particles move in ellipses during its propagation [22]. The Lamb wave velocity 

varies with frequency, a phenomenon known as velocity dispersion [21, 22, 24]. There 

are two families of Lamb waves which are essentially coupled surface waves, 

symmetric (often called extensional waves) (s0) and asymmetric (often called flexural 

waves) (a0). Both wave modes propagate at various speeds, which are dependent on 

both frequency and plate thickness. The extensional mode has a lower amplitude than 

the flexural component and occurs as a small amplitude precursor to the larger flexural 

wave. In practical situations, the AE energy is carried in one or more mode and each 

mode can be converted to another at a boundary. It is not common to treat AE waves as 

pure modes and, for many applications (including the current one), the AE can be 

treated as a packet of mixed frequency propagating at a specific group velocity. 
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Compression Extension

Direction of wave propagation

Wavelength (l)

Direction of
particle motion

 

(a) Dilatational wave (Longitudinal wave) 

Shear deformation region

Direction of wave propagation

Wavelength (l)

Direction of
particle motion

 
(b) Distortional wave (Shear wave) 

 

Wavelength (l)

Direction of wave propagation

Direction of 
particle motion

Wavelength (l)

Direction of wave propagation

Direction of 
particle motion

 
(c) Rayleigh wave or surface wave 

 
 

Figure 2. 1: The main wave types: dilatational wave, and distortional wave and 
Rayleigh wave (or surface wave). 

 

2.2.2. Attenuation: 

 
AE waves are subject to attenuation during their propagation inside a material [14, 25, 

26], which manifests itself as a loss of amplitude as a wave propagates. There are four 

main mechanisms of attenuation: 

· Geometric spreading of the wave with constant energy whereby the amplitude of 

the wave decreases with increasing distance from the source 

· Wave dispersion, in which the shape of the pulse changes as it propagates 

· Scattering and diffraction which are manifest as a decrease in amplitude when 

waves encounter medium boundaries such as holes, slots, cavitation bubbles, 
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inclusions and cracks. Scattering occurs when the AE waves propagate through 

the finite void or inclusion, while diffraction occurs when AE waves propagate 

at edges, whereas some of the energy of the propagated wave through these 

boundaries will scatter or diffract.  

· Internal friction, which is due to the damping capacity of the material itself [27, 

28]. Internal friction dominates [22] the attenuation in the far field and can be 

described by an exponential relationship for amplitude with distance, giving 

much steeper attenuation close to the source. In plates and shells, the transition 

distance at which internal friction starts to dominate over geometric spreading is 

given by 4.34/ α, where α is a (measured) attenuation factor (dB/m) [22]. 

 

Graham and Alers [29] have measured attenuation of AE waves on various structures 

such as steel, aluminum and alumina ceramic plates, and a large pressure vessel using a 

white noise generator (WNG) as an AE source. The AE signals were acquired at various 

distances from the source then the loss in amplitude as a function of distance was 

obtained using equation 2.2. They found that attenuation on the large pressure vessel 

follows the expected form for geometrical spreading and varies with 1/ r in the near-

field zone. In the far-field zone, the attenuation of the signal is caused by absorption 

with a limited amount of dispersion. Holford and Carter [27], working with long, 

structural steel I-beams, found that the attenuation of waves was sharpest in the near-

field zone at around 10 dB over 0.5 m (20 dB/m) and lower for longer source-sensor 

distances (1 dB/m). They attributed the higher attenuation in the near-field zone to 

geometric spreading, and that in the far-field zone to absorption or conversion of AE 

wave energy into heat. Prosser [30] found that the larger effect on the flexural waves on 

a graphite/epoxy composite plate were attenuated more than extensional waves and 

attributed the greater attenuation to dispersion. McIntire [14] used a simple power law 

to describe AE attenuation in steel tubes:  

 

                                       0A A xa=                                          (2.1) 

Where A is the signal amplitude at a distance, x, from the source and A0 is the amplitude 

of the source. He found that the exponent, α, for steel tube of 150 mm diameter was for 

8.1 dB/m the near field and 1.9 dB/m for the far field. Shehadeh et al [31]  estimated 

automatically the arrival times of two AE components, a fast and a slow component, 

using an array of sensors on a steel pipe. Their technique relied upon the balance of 

high- and low-frequency components of the signal as a function of time to determine 
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arrival time. They applied three techniques i.e. cross correlation, wavelet transform, 

filtering technique, and found that the best technique was cross correlation which 

located the source with error less than 3%. 

 

2.2.3. AE sensors and sensor calibration: 
 

Acoustic emission (AE) is a passive non-destructive testing (NDT) technique that has 

been used widely since the 1970s. Generally the stress wave arrives at the sensor at a 

frequency in the approximate range of 100 kHz to 1.2 MHz with surface elevations in 

the nm range.  AE sensors [32] are mechanical-electrical transducers which convert this 

mechanical disturbance to an electrical signal, and, in this sense, the measurement is 

indirect. Furthermore, the AE signal measured at the sensor will be influenced by the 

sensor’s response to the forcing transient waves, which is, in turn, influenced by the sensor 

construction, including the piezoelectric properties of the sensing element as well as its size, 

shape and backing, which govern the amplitude sensitivity and associated self-resonance. 

As well as this, the propagation path from source to sensor and the nature of the coupling 

between the sensor and the surface will affect what is recorded.  

 

The successful use of piezoelectric AE sensors in industry over other transduction 

technologies such as capacitive, electromagnetic and laser-optical measurement comes 

from the fact that AE sensors have proven to be sufficiently sensitive and robust to be 

used in a variety of environments. The material most often used for the active element in 

piezoelectric AE sensors is lead zirconate titanate (PZT), although  it has been shown that 

other piezo-active materials such as quartz and even polymers like polyvinylidene 

diflouride (PVDF) are equally feasible [33]. Figure 2.2 shows a schematic diagram of a 

typical AE sensor. For AE sensors, there is always a compromise between bandwidth 

and sensitivity, i.e. when the bandwidth of the application is known to be narrow then a 

higher sensitivity can be achieved by adjusting the geometry of the piezoelectric element. 

However, if a broad bandwidth is needed such as for machinery monitoring, the sensitivity 

of the sensor over the range will be lower. Commercial AE sensors are sensitive to 

frequencies above 100 kHz, whereas resonant sensors in the region of 150 kHz to 300 

kHz are probably the most widely used in AE applications. The highest frequencies 

likely to be of interest to users of AE transducers are in the range of 800 kHz to 1.2 

MHz and transducers with bandwidths which extend above this range are not normally 

used. Analogue band-pass filters are essential with AE systems to ensure that electronic 
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noise outside the frequency range of interest is kept to a minimum. Another essential 

component for AE systems is pre-amplification which is provided either integrally to the 

sensor or very close to it using a separate pre-amplifier. 

 

 

 

 

 

 

 

 

 

 

 
Figure 2. 2: Schematic of an AE sensor, from Vallen [34]. 

 

The main limitation to the application of piezoelectric AE sensors is that they do not 

give an absolute measurement of stress wave amplitude, unlike capacitive or laser-based 

measurements. Although this disadvantage is somewhat unavoidable, it is tolerable, since 

these sensors present the most practical means of measuring emissions and a certain degree 

of calibration is possible, for examples against standardised sources or machine running 

conditions. Nevertheless, the lack of a universally accepted and applied method of signal 

calibration means that the direct quantitative comparison of test results obtained from 

different detection systems is highly questionable. Some “standard” sources, such as 

pencil-lead breaks, glass capillary breaks and helium gas jets [32, 35], are used to give a 

kind of calibration, although they are actually more often used to check the functioning of 

the AE detection system and to confirm the quality of sensor coupling. A further use for 

these reproducible sources is to investigate AE propagation in structures, in which case the 

acquired signals need normalization of the source energy. 

 

Calibration, as defined by international standards (BSI, 1995) is "a set of operations that 

establish, under specified conditions, the relationship between values of quantities 

indicated by a measuring instrument or measuring system, or values represented by a 

material measure or a reference material, and the corresponding values realized by 

standards". Using a large steel block with a pencil lead break source can provide a way of 

characterizing a sensor reproducibly and discriminatingly that is low cost, and provides a 
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very simple calibration [36]. Such a test can confirm the uniformity of a set of nominally 

identical sensors used in a given lab or provide a cross-calibration between different sensors 

used for the same task. If carefully specified, the test can also be used to compare AE data 

from different tests in different laboratories, using different instrumentation. 

 

2.2.4. Practical implications of AE monitoring of machinery: 
 
In general, the structures of machines such as gas turbines will consist of a number of 

parts of varying geometric complexity, some joints and other features, such as webs and 

welds. In addition, the internal surfaces may be in contact with oil or hot gases. AE 

wave propagation will therefore be much more complex than simpler plate- and block-

like structures. Some authors such as Miller and McIntire[14], Pollock [22] and Kolsky 

[37], have suggested an approach to studying the attenuation  in such complex 

structures by acquiring AE signals at different positions relative to a source. Thereafter, 

the attenuation is described by using peak amplitude and a logarithmic relative 

amplitude scale, (  Ar )  [22, 27, 29] : 
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where  Ai is the maximum signal amplitude (V) at a receiver sensor at distance  x from 

the source, and  A0 is the maximum signal amplitude (V) at the source position. 

 
The amplitudes can be measured in volts provided that the amplifiers are consistently 

calibrated. Then, wave attenuation can be determined from a plot of the relative 

amplitude versus distance and can be expressed as decibels per unit distance [14], 

determined by: 
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where  α  is attenuation coefficient (dB/m) 

 A1  is amplitude of signal at a position P1 (V) 

 A2  is amplitude of signal at a position P2 (V) and; 

x  is distance between P1 and P2 (m) 
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In this work, a similar approach is used, where the energy of the AE signal can be 

calculated simply by integrating the square of the amplitude over a fixed time, t, as 

follows: 

dttvE
t

)(
0

2ò=                       (2.4) 

where v(t) is the amplitude of the AE waveform in volts (V); t is time in seconds (s); E 

is acoustic emission energy in V2.s. 

 

In a semi-infinite medium, the acoustic emission energy can be considered to be lost as 

the wave travels according to a simple absorption law: 

kx
oeExE -=)(  (2.5) 

where  E(x) is acoustic emission energy at distance x from the source (V2.s); 

 E0 is the energy of the source (V2.s); 

 k is an attenuation factor (m-1);  

and x is the source-sensor distance (m) 
 

Figure 2.3 shows an example of the amplitude attenuation of two sensors on the turbine 

rig, where the distance between two sensors is 450 mm. 
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Figure 2. 3: Attenuation example of AE signal on turbine rig. 
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A few investigators have studied attenuation on machinery structures where interfaces 

play a more important part. Mba and Hall [12] have measured the attenuation on a large 

industrial gas turbine and suggested that AE could detect rubbing in the turbine at 

sensor positions up to 2 m from the source and AE may be detectable on the bearing 

housing. Nivesrangsan et al [38, 39] studied the attenuation and AE propagation on 

diesel engines and a number of simpler objects (Figure 2.4) and found that the 

attenuation increases with distance from the source and that more complicated 

transmission paths and geometries give higher attenuation factors. In structures of small 

extent, such as a strip of dimensions 58×483×5 mm more “reverberant” wave field 

resulted with very low attenuation. These authors used equation 2.5 and measured 

attenuation factors, k, to be typically around 8 to 12 for a small (road-going freight 

vehicle) engine block and around 2 for a very large marine engine structure (10 MW) 

used for district power generation. Finally, the attenuation of the small engine with 

water in the cooling galleries was slightly higher than without water which leads to the 

conclusion that the added water increases the losses from the structure when waves 

encounter interfaces, but that dominant transmission paths remain through the cast iron 

structure of the engine block. 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 2. 4: Examples of attenuation characteristics on various cast iron structures (from 

Nivesrangsan et al [38, 39]). 
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2.3. Acoustic emission analysis techniques: 
 
For processing purposes, it is conventional to class AE signals as of burst type or 

continuous type, although some acknowledge a mixture of the two. In the first kind, the 

signal consists of clearly defined ‘events’ characterized by amplitudes significantly larger 

than the background level, while the continuous kind occurs when burst generation is so 

rapid that the resolution of individual events is not possible. Obviously, this basic 

distinction has a fundamental bearing on the type of analysis that is used. 

 

The analysis technique used can also depend on the application itself. For some 

applications statistical time domain analysis to extract time-based features is sufficient, 

while, for other applications, frequency domain analysis is needed. In some cases 

simple time and frequency domain analysis is not adequate requiring the use of higher-

level analysis techniques such as artificial neural networks, fuzzy logic and expert 

systems. 

 

2.3.1. AE features and extraction: 
 
Extracting time features from raw AE signals is considered a first level of signal 

processing. Normally, time features are used to describe characteristics of time series 

data from random, stationary, ergodic and continuous processes. Table 2.1 summarises 

a typical set of time-based features that might be used for continuous signals.  
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Feature Summary description 
Maximum value (

maxx ) - Indicates the maximum value of discrete time 
series data 

Minimum value ( minx ) - Indicates the minimum value of discrete time 
series data 

Mean value ( x ) or the first moment of amplitude 
distribution function 
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where N  is the number of data points; 
and    

ix  is the data at each discrete point in time.  

- Measures the central distribution of discrete time 
series data. 

Root mean square (RMS) value  
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- Measures square root of mean square in discrete 
time series data. 
- Indicates energy contained in continuous AE data. 

Variance (Var ) or the second moment of the 
amplitude distribution function. 
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- Indicates the spread or dispersion or distribution 
of discrete time series data. 

Standard deviation (s ) 
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- Indicates the spread or dispersion or distribution 
of discrete time series data. 

Skewness ( Skew ) or the third moment of 
amplitude distribution function 

å
=

úû
ù

êë
é -

=
N

i

i xx
N

Skew
1

3 
1

s
 (2.10) 

- Measures the lack of symmetry of distribution of 
discrete time series data. 
- 0=Skew  represents normal distribution 
- For, 0<Skew  the left tail of distribution is 
heavier than the right tail and opposite 
for. 0>Skew  

Kurtosis ( Kurt ) or the fourth moment of 
amplitude distribution function.  
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- Measures the degree of peakedness of distribution 
of discrete time series data. 
- 0>Kurt  represents a peaked distribution. 
- 0<Kurt  represents a flat distribution. 
- 0=Kurt represents normal distribution. 

 

Table 2. 1: Summary of typical statistical parameters used for continuous signals 
 

For discontinuous (burst) signals, a specific set of features have evolved. These include:  

· the AE event count, which is the number of times that the burst signal crosses a 

preset threshold 

· the AE event rate, which is the time rate at which AE event counts occur 

· the AE count or ringdown count is the number of times the burst signal 

amplitude exceeds the preset threshold  

· the count rate, which is the number of AE counts per unit time 
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Figure 2. 5: Typical time domain features of AE signals 
 

Frequency analysis depends on decomposing the time series signal into the frequency 

domain., most commonly done using a Fast Fourier Transform (FFT) algorithm [40]. The 

FFT algorithm can be used to estimate the distribution of the signal energy in the 

frequency domain, using the Power Spectral Density (PSD) and Welch’s PSD estimate [41]. 

Frequency analysis can be used in machinery fault diagnosis as part of an approach which 

uses known repeat times to filter out effects, such as running speed, and resonance, from 

those of unknown origin for normal and faulty conditions. Furthermore, some sources of 

AE can be masked by noise and filtering can again be used to separate the noise from the 

signal, thus enhancing the signal-to-noise ratio. Dealing with non-stationary signals, such as 

AE, where frequency can vary substantially with time, techniques such as the Short Time 

Fourier Transform (STFT),which combines time and frequency analysis, can be used [42]. 

This implements the FFT algorithm at time increments throughout the signal using a sliding 

window approach. Other methods for time-frequency analysis include wavelet 

decomposition [43-46]. The wavelet transform is a powerful method that analyses the 

signal using multi-scaling where the resolution of time and frequency vary in the time-

frequency plane. Longer time intervals give more precise low frequency information 

and shorter time intervals give high frequency information. Therefore, a high resolution 

of time frequency representation can be obtained[46].  

 

One further application of the FFT of particular use for rotating machinery is called 

demodulated resonance analysis [47]. The technique involves averaging the signal to reveal 
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lower frequencies in the envelope of the signal in a similar way to AM radio, where the AE 

wave acts as a carrier frequency for the lower frequency information, Figure 2.6.  
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Figure 2. 6: Demodulation of a lower-frequency signal by taking the envelope of the 
raw AE. 

2.3.2. Pattern recognition: 
 
Pattern recognition is  "the act of taking in raw data and taking an action based on the 

category of the pattern"[48]. The sensor type(s), feature extraction mechanism, and 

classification scheme are the main components of a pattern recognition system, in that 

the sensors are normally the main source of observations and sensor data is transferred 

to the feature extraction mechanism to describe the essential elements of the data. The 

final stage depends on the classification scheme which organizes the features into 

clusters using a classification algorithm.     

 

The normal statistical approaches to AE analysis are helpful in many cases, but can 

become unwieldy for complex pattern recognition cases such as for generic or real time 

monitoring requirements involving large amounts of data and adaptability to new 

situations. Pattern recognition therefore forms the basis of machine intelligence and AE, 

with its sensitivity to a wide range of physical phenomena, can clearly play a major role 

there. 

 

Because of the high sampling rates and consequently high time resolution, AE 

monitoring normally generates a large set of data. To handle the data, it is therefore 
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helpful to use some form of data reduction to prepare the variables for further statistical 

classification and diagnostic algorithms. Principal component analysis (PCA) [49, 50], 

is one such higher-level statistical analysis technique, involving a mathematical 

procedure that transforms a number of (possibly) correlated variables into a (smaller) 

number of uncorrelated variables called principal components in order to identify new 

meaningful underlying variables and to reduce the dimensionality of the data. 

 

An extension of the PCA technique is Independent Component Analysis (ICA), which 

is also a higher statistical technique mainly used for decomposing a complex dataset 

into independent sub-parts [51, 52]. In other words, it is a signal isolation technique 

which works by assuming that the source signals are non-Gaussian, statistically 

independent and hidden under the main signal. ICA is suitable for many fields, 

including digital images, document databases, economic indicators and signal 

processing. It helps provide good representation of multivariate data for reasons of 

computational and conceptual simplicity. 

 

Fuzzy logic [53] is an approach which simulates the human capability of imprecise 

reasoning by providing a remarkably simple way to draw definite conclusions from 

vague, ambiguous or imprecise information.  It is very effective for the complex nature 

of mechanical condition monitoring systems. Fuzzy logic [54] systems usually consist 

of a fuzzifier, which maps crisp input numbers into fuzzy groups characterized by 

linguistic variables and membership functions, an inference engine which decides the 

way in which the fuzzy sets are combined, and a defuzzifier which produces a scholar 

number into the output of the fuzzy logic system. Fuzzy logic demonstrates  a good 

ability to simulate the human imprecise reasoning [55], but it involves time-consuming 

processing of the data and so is often combined with other techniques such as expert 

systems, genetic algorithms, and neural networks to achieve good monitoring and fault 

diagnostic systems. Neuro-Fuzzy networks accomplish this need by combining fuzzy 

logic system with neural networks to combine the advantages of fuzzy logic with the 

learning and adaptation capabilities of neural networks.  

 

An expert system is  a computer program, normally categorized as a type of artificial 

intelligence, which performs functions similarly to a human expert [56, 57]. Building 

any expert system needs a knowledge engineer or "knowledge base", a coding system to 

translate how human experts make decisions into a simpler computer programming 
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language, and the user interface. The declaration of a fault by the coding system is 

normally done by comparing engine component deviations with predefined thresholds 

in the knowledge base. There are many types of expert systems such as case-based, 

modal-based, and rule-based, which is considered the most popular system. Expert 

systems have been used as a diagnostic tool for many kinds of aero-engines such as the 

T53 and TF-34 jet engines, and twin engine gas turbines from a helicopter [58, 59]. 

Doel [60] concluded that expert system technologies were not going to make jet engine 

diagnostic and maintenance procedures ‘smart’, but they could add a lot of new 

capability that will make them more effective and more convenient. A recent 

development of expert systems is a hybrid version where probability theory, fuzzy 

logic, and belief functions are used to increase the diagnostic accuracy of the system 

[61]. 

 

An Artificial Neural Network (ANN) is a mathematical model that is inspired by the 

biological nervous system. Neural networks are structured in layers of interconnecting 

processing elements (neurons), with the behavior of the network being determined by 

the weights associated with each connection. These weights can be adaptively trained 

using example signals to associate a particular input pattern to an output classification. 

In other words [62] an artificial neural network is actually a massively parallel 

distributed processor made up of simple processing units (neurons), which have a 

natural propensity for storing experimental knowledge and making it available for use. 

Artificial neural networks generally can be classified into two kinds: supervised and 

unsupervised neural networks. Feed-Forward-Back-Propagation Networks  [57]  are 

considered to be the most popular type of supervised neural network where the 

information propagates from input to output while calculated errors propagate in the 

opposite direction. In supervised neural networks a set of inputs (x) and outputs (y) are 

used to build a function that matches the input with the output using iterative training. 

Next the trained network, with the weights of its neurons adjusted to recognize the 

output vector, is used to predict the value of the output for any valid new input vector. 

Normally the training is validated tested against a set of “unseen” training data. 

Unsupervised neural networks work with an input only to find patterns in data, and 

classify it into clusters. The most popular learning method for unsupervised neural 

networks is the competitive method, which consists of two phases, the first of which 

identifies the winner neurons while the second updates the connection weights of the 

winner neurons. For engine diagnostics the main unsupervised neural networks used 
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are; probabilistic neural networks PNN, self-organizing maps SOM, and learning vector 

quantization LVQ. PNNs [63] classify the training patterns to classes and, when an 

unknown pattern is input to the network, calculate the Euclidean distances between the 

stored pattern and input pattern and then convert them, depending on the density 

function, where the smallest distance has the highest probability and vice versa. PNN 

application is suitable for smooth classification problems. In an SOM [4], the network is 

like a lattice with the neurons located at its nodes. The statistical features of input 

patterns and the spatial locations of the neurons determine the tuned neurons. Then 

these neurons will form a topographic map for the input patterns. The main application 

of SOMs is for initial pattern clustering to identify similar patterns.  LVQ networks [64] 

consist of Voronoi cells, which are parts of the input space, and Voronoi vectors which 

define the point to the cells. The learning operation is done by comparing the input 

vector with the Voronoi vector and, if they do not agree, the Voronoi vector is changed. 

The application of LVQ is mainly on pattern recognition, multi-class classification and 

data compression tasks .The main benefits of artificial neural networks [65] comes 

firstly from their ability to handle a massive amount of data in a short  period of time 

which makes them very useful for real time analysis, and, secondly, their ability to learn 

and therefore generalize which confers the capability to solve complex problems. These 

characteristics make ANNs suitable for many applications such as: (a) function 

approximation, including time series prediction [66], (b) classification, including pattern 

and sequence recognition [67], (c) data processing including filtering [68], and (d) 

robotics, including computer numerical control [69]. 

 

Not all of the above-mentioned advanced techniques are likely to be suitable for and the 

particular application in hand. Because of the complexity and non-linearity of AE 

signals emanating from gas turbines, PCA and ICA are unlikely to be suitable. Fuzzy 

logic technique would be inappropriate on its own for pattern recognition, unless it is 

combined with artificial neural networks. The remaining techniques, artificial neural 

networks and expert systems, are reasonable candidates. Ideally, in this work, we seek a 

generic technique which does not only carry out straight statistical correlation of data 

against a condition, but also is informed by mechanical engineering knowledge of gas 

turbines. This dictates an analysis technique which is effectively a combination between 

an expert system and an ANN.   
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2.4. Condition monitoring and diagnostic systems: 
 
Condition monitoring as defined in International Standards as [70]  “Detection and 

collection of information and data that indicate the state of a machine”. The application 

of condition monitoring techniques allows earlier diagnosis and prompt repair of any 

malfunction and avoidance of breakdown caused by faulty components, which is at its 

most critical for process plant and machinery. Conventional monitoring and fault 

diagnosis is based on the experience and background knowledge of 

operators/technicians and is relatively time-consuming, prone to error and usually 

results in extended downtime while symptoms are investigated, thus reducing 

productivity and increasing operational cost. Condition monitoring, performance 

monitoring, and diagnostics are the key areas of development in modern automated 

systems offering continuous improvement in machinery reliability.  Modern, automated 

diagnostic systems built on artificial intelligence principles implement intrusive and 

non-intrusive sensors to provide a range of on-line information including complex time 

series signals such as accelerations acoustic emission alongside more conventional and 

less rapidly changing signals, such as temperature, pressure and speed in order to 

identify the machine condition and process or operating parameters. The main general 

methods which are established for condition monitoring are performance analysis [1], 

oil analysis [2], and vibration analysis [3]. The current work complements vibration 

analysis using AE signals to give diagnostic information over and above that which 

might be obtained from acceleration. 

 

Wear Debris Analysis (WDA) is a type of oil analysis which involves a careful check of 

any debris suspended in lubricating oil in order to predict machine condition [5]. To 

achieve reliable diagnosis of machine condition five features of the debris are usually 

measured, size, quantity, size distribution, shape, and composition. Each feature has a 

distinct machine health diagnosis capability. One of the drawbacks of this technique is 

that it cannot be applied to some machinery, for example electrical machinery and 

switchgear, although these can be monitored by acoustic emission and ultrasonic 

techniques. Another disadvantage of WDA is the difficulty of applying it to the 

monitoring of sealed systems where obtaining a sample for analysis can be difficult and 

is sometimes not recommended. A further demerit of this analysis is the inability to 

identify the precise location of the fault and the possibility that debris from several 

faults may end up in the analysis. The most significant advantage of WDA is the ability 
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to obtain information not easily gathered by other means, for example on rubbing wear, 

cutting wear, rolling fatigue, sliding wear and from combined rolling and sliding wear.  

 
Performance analysis is a condition monitoring technique widely used on rotating 

machines, specifically on gas and steam turbines. The technique is based on the idea 

that any deterioration in the machine will produce changes in the performance 

parameters, such as temperature, pressure, rotational speed, and flow rate, from their 

ideal values. The decrement in performance reflected from these measurements can then 

be used to detect, isolate, and, in some cases, accommodate faults. Performance analysis 

can be used in combination with other artificial intelligence techniques to provide 

information on the severity of any degradation of the machine or its components. One of 

the limitations of the technique is that its performance is affected substantially by the 

quality of the measurements, since any measured data can be contaminated by sensor 

noise, disturbances, instrument degradation, and human error. Initial applications of the 

technique usually assume that the relationship between the various machine measurable 

parameter deviations, such as gas path pressures and temperatures, thrust, mass flow 

rate, and so on, and immeasurable component parameter deviations, such as pressure 

ratio, flow capacity, and efficiency at each component is linear over certain operating 

conditions, such as maximum power or cruise. This approach is called the linear model 

method [71] and is simple, quick and easy to apply, and can help to isolate and quantify 

faults. On the other hand, it requires the application of several conditions that are 

difficult to satisfy such as an accurate influence coefficient matrix to describe the engine 

performance, fault- and noise-free sensors, uncorrelated measurements, and correct 

choice of measurement locations.  

 

Developments of the performance analysis technique [72], include its combination with 

genetic algorithms to allow the use of fewer machine measured parameters compared to 

unknown parameters and non-linear machine behavior. Another successful development 

of performance analysis has been its combination with artificial neural networks, both 

supervised and unsupervised. Supervised ANNs (Feed-Forward Back-Propagation) 

have, for example, been used to filter out measurement noise in order to improve input 

data quality[73], and unsupervised neural networks as a tool for fault pattern recognition 

and fault classification [63, 74]. The combination of ANNs with performance analysis 

does have some limitations, however, such as the inability to perform well when dealing 

with new data outside the range of training,, a relatively long training time, and the 
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possibility of the ANN freezing with the consequent need to retrain the network. A 

further development of performance analysis is as a troubleshooting aid in expert 

system applications [56, 57]  which makes machine diagnostic procedures not only 

sensor-based but also more effective and convenient. 

 

Vibration analysis [6] is one of the most widely used condition monitoring techniques 

especially for rotating and reciprocating machines, most commonly using piezo-electric 

accelerometers because of their wide dynamic range. Acceleration signals are 

sometimes integrated to produce velocity or even displacement values for some 

applications. Vibration signal analysis bears quite a lot of resemblance to AE analysis, 

although the frequency is generally at least an order of magnitude lower involving 

whole body motion, and techniques like demodulation are appropriate. Generally, 

vibration analysis starts by drawing a comparison between historical measurements and 

new values, normally known as trending. A range of features may be trended, including 

those from the time domain, frequency domain, and the quefrency domain [7], although, 

obviously these are not totally independent. Time domain analysis refers to the 

statistical analysis required to extract various features from accelerometer time signals, 

such as RMS, probability density moments, standard deviation, variance, skewness, and 

kurtosis. In order to remove any unwanted noise and/or concentrate on specific aspects, 

the time signal may be filtered using low, high or band pass filters. Frequency domain 

or vibration signal spectral analysis is probably the most powerful technique particularly 

for machines that use rolling element bearings where faults are often manifest at 

characteristic frequencies. The majority of frequency analysis is done using a Fast 

Fourier Transform (FFT) [40], a special case of the generalized Discrete Fourier 

Transform which converts the vibration signal from its time domain representation to its 

equivalent frequency domain representation. Frequency analysis results in frequencies 

which can reflect the behavior of certain mechanical components, certain malfunctions, 

or may point to some unexpected source frequencies which may aid the analyst to 

identify the type and location of the problem and eventually recognize the root cause. A 

further development of frequency analysis is achieved by combining both frequency and 

time domain analysis in order to deal with cases where the frequency is changing with 

time by using Short Time Fourier Transform (STFT) [42]. A recent development of 

vibration analysis has begun to use wavelet transforms to extract very weak periodic 

information for which the FFT is ineffective [46, 75]. The wavelet transform results in a 

scaled, variable resolution in both time and frequency axes. Quefrency is another enhanced 
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frequency domain technique, defined as the logarithm spectrum of the power spectrum.  

Quefrency analysis operates in a similar way to spectral analysis except that it highlights 

periodic components in the frequency domain as opposed to the time domain, i.e. it is the 

spectrum of the spectrum. Quefrency analysis finds only limited application in condition 

monitoring, however, it is more widely used for other applications such as speech 

recognition, echoes and earthquakes. 

 

Visual inspection [76], the simplest, cheapest monitoring technique if done by experienced 

people, may sometimes provide direct indication of the machine condition. Visual 

inspection can be enhanced in a number of ways, such as by using lenses, microscopes, 

endoscopes, borescopes and various dyes and magnetic particles to provide a clearer 

indication of any cracks, leaks, and/or corrosion occurring on the surface of the machine.  

 

Temperature analysis [76] is considered by some as a kind of visual inspection where the 

occurrence of any wear and the absence of lubrication will result in temperature increase 

which may be assessed by the touch of an operator. More technically, temperature analysis 

of signals from optical pyrometers, thermocouples, thermographs or resistance 

thermometers can be used in a similar way to other condition monitoring signals, although 

the relationship between the temperature and its temporal and spatial distribution tends to 

have rather less discriminatory power in fault type identification.  

 

All the previously mentioned condition monitoring techniques, i.e. performance analysis, 

oil analysis, visual inspection, borescope inspection, X-ray imaging, vibration monitoring, 

and lubricant debris monitoring, are indirect in that they measure the changes in some 

aspect of the machine operation. Furthermore, these approaches are generally unable to give 

information about the exact location of any changes in the signal. Acoustic Emission (AE) 

sources include impacts, wear, crack propagation and gas flow, all of which can occur in 

gas turbine operation and so the signal is potentially more direct in that it is the result of a 

degradation process, rather than a symptom that degradation has occurred, as might be the 

case, for example, with an increase in temperature or vibration at a particular frequency. 

The AE technique has two potential advantages over other techniques which are the earlier 

identification of any changes happening in the machine and the potential to locate the 

source of the emission and hence the location of the degradation events.  
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2.5. Acoustic emission for condition monitoring of turbines and 

machinery: 

 

Board [10] was among the first to apply AE analysis to a gas turbine  in that he mounted 

AE sensors at two different positions on a bearing housing to detect roller bearing wear 

of a large industrial gas turbine.  He observed that the AE spectrum at one position on a 

bearing housing had strong indications at 105.8 Hz which he identified as the cage 

rotational frequency of the roller bearing thus identifying a defect. Board [10] also 

examined the effect of shaft imbalance in a  gas turbine gearbox by recording AE in the 

normal condition and in two imbalance conditions where eccentric weights had been 

introduced. He observed that the addition of the imbalance weights led to a modulation 

of the normal forces between the races and the rolling elements of the bearing 

supporting the turbine gearbox at a frequency of once per revolution of the imbalanced 

shaft with the amplitude of the spectral line increasing significantly with increasing 

imbalance. Mba [9] investigated two faults on the inner and outer races of a test bearing 

using a range of AE features such as rms amplitude, energy and AE counts. The results 

showed that the maximum AE amplitude increased with increasing speed, but not with 

load or defect size. Mba showed a correlation between bearing mechanical integrity and 

AE counts, an observation also made by other authors i.e. Choudhary and Tandon [77]. 

Douglas et al [78] carried out a preliminary study in which they monitored the operating 

parameters of a gas turbine using acoustic emission. The experiment was conducted on 

the same laboratory-scale gas turbine as in the current work, operating under various 

conditions with AE sensors mounted on different positions on the rig and turbine 

surface. In all records, the blade passing frequency of the monitored compressor was 

observed, suggesting that AE is sensitive to processes going on in and around the 

turbine. Moreover, the frequency analysis of two severities of induced blade fault in the 

free-power turbine produced a deviation from the normal spectrum suggesting that AE 

may act as an indicator of individual blade malfunction. 
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Figure 2. 7: Example of AE energy of simulated damage to blades of free-power turbine 
(from Douglas et al[78]). 

 

Sato [11] was also interested in applying AE to rotating machines to detect rubbing and 

other damage in bearings. He mounted AE sensors on two turbine journal bearing 

housings in order to detect metal wipes and bearing tilts, and found a correlation 

between the AE pulse shapes and the corresponding deformation. Hall and Mba [79] 

applied acoustic emission to diagnose continuous rotor-stator rubbing on a 500 MW 

steam turbine operating at full load. They attached AE sensors to two different locations 

on the bearing and calculated the energy envelope by applying a low order smoothing 

filter to the RMS data. They found a significant amplitude difference in the AE activity 

at one position over the other and attributed a modulation of the AE to fluctuations in 

the rubbing force in response to the shaft whirl orbit. They attributed the higher AE 

activity at one sensor to the location of the continuous rubbing being extremely close to 

the sensor, and suggested that it was within 1 m of the bearing. Hall and Mba also 

studied the transmission of AE waves across such very large-scale turbine rotors [12] 

and found that it was possible to detect AE sources up to 2 m from the sensor and 

suggested that the AE technique could be viable for detecting seal and blade rubbing in 

such machines. Zuluago-Giralda and Mba [80] further investigated shaft-seal rubbing in 

a 500 MW steam turbine by monitoring the AE activity during run-up and run-down, 

again placing  sensors at two different positions on the journal bearing case. They 

measured turbine load, turbine speed, and rms AE and concluded that the rms was 
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effective in identifying the turbine's critical speed during the run-up period, but not 

during the run-down period.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2. 8: AE r.m.s. (V) activity during run-down of a  500 MW turbine (from 
Zuluago-Giralda and Mba [80]). 

 

Leahy et al [81]investigated the potential capability of the acoustic emission (AE) 

technology for the detection of seal-to-rotor rubbing in steam turbines. They simulated 

seal-to-rotor rubbing on rotor with a 4.5 ton, 2 m long, supported at each end by a 7 in 

(178 mm) hydrodynamic journal bearing. The rotor and bearings were installed within a 

fully enclosed test chamber with an externally mounted electric motor. Leahy et al 

proved the capability of AE technique to detect simulated rubs from hydrodynamic 

bearings. Armor and Frank [82] assessed AE for monitoring crack growth emission on 

the rotor of a steam turbine in a noisy background environment. Attenuation studies 

demonstrated the importance of having AE signals of fairly large amplitude in order that 

they could be detected at the bearing position. An experiment on a laboratory test 

specimen produce a large amplitude signal associated with crack growth which they 

concluded would probably be detectable at full speed operation taking into account the 

likely crack growth rate under various conditions. 

 
Wang and Huang [83] used wavelet analysis in their study of AE propagation on a 

Francis turbine runner to identify its attenuation characteristics. They used a standard 
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pencil lead break source and the Wavelet Packet Transform technique (WPT) for 

analysis. They argued that the use of wavelet packet coefficients allowed them to reduce 

the need for data storage and that the WPT is a feasible technique for monitoring the 

operating turbine runners. 

 

Many researchers have investigated AE for condition monitoring of pumps. Neill et al  

[17] conducted experiments on both laboratory and industrial scale centrifugal pumps to 

detect incipient cavitation. By applying both rms and frequency analysis, they were able 

to detect cavitation earlier than its appearance on the pump's dynamic head and proved 

the feasibility of incipient cavitation detection using AE in the face of noise from 

normal running although they did suggest that the nearer the sensor is to the cavitation 

site the better. Neill et al [13] extended their investigation on the AE monitoring of 

pumps to their rolling bearings, comparing AE-based diagnosis with acceleration 

monitoring, and concluding that AE rms and characteristics of the demodulation 

frequency of resonance are good indicators of bearing defects. On the other hand, the 

acceleration spectra showed a drawback, in that other peaks are present in the spectrum 

associated with whole body movements of the pump to which AE is not susceptible. 

Tomaž et al [84], working with 2-blade Kaplan turbine model, compared AE and video 

records in order to explain the relationship between the AE and the visual appearance of 

cavitation. By running at the minimum operating head with full turbine discharge, 

Tomaž et al initiated the most severe cavitation conditions and concluded that there was 

a correlation between the AE maximum amplitude and the cavitation number. They 

found variations in the strength of the acoustic emission as the location of the cavitation 

on the turbine blades moved around. 

 

AE application to the condition monitoring of diesel engines has attracted much 

attention due to the potentially high signal to noise ratio which limits the low frequency 

background noise. This immunity to vibration noise is associated with the high 

frequency (0.1-1.2 MHz) of AE waves so that they can act like a carrier wave [8], 

allowing lower frequency information to be extracted from a signal envelope. This has 

led to successful demonstrations of AE in diagnosing many engine faults such as head 

gasket leaks [16], injector faults [85], combustion faults [86], and liner scuffing [87], 

and the development of new processing concepts, such as engine mapping in terms of 

AE events and spatially-located time-series [88, 89]. Gill et al [86] have investigated the 

fuel delivery process in a four-stroke, high speed direct injection (HSDI) diesel engine 
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with two induced fault conditions. They concluded that the timing of the increase of fuel 

line pressure and the time at which the injector needle becomes fully open could be 

detected using AE and these times advanced while injector discharge pressure reduced. 

Shuster et al [87] carried out an experimental study of piston-ring/cylinder-liner 

scuffing using AE. The overall results indicated that the detected rms AE signal 

provided the basis for monitoring the scuffing phenomenon dividing it into three 

different levels; scuffing initiation, irreversible scuffing and severe scuffing. In 

particular, the rms AE signal was sensitive to scuffing initiation through its sensitivity 

to friction coefficient and it was shown that the first peak of spikes in the rms AE signal 

was associated with the initial iron particles transferring from cylinder liner to piston 

ring surfaces, confirmed using scanning electron microscopy (SEM). Douglas et al [90, 

91] have investigated piston ring/cylinder liner interaction on a large two-stroke, slow 

speed, marine diesel engine under normal operation using AE. The results showed that 

it was possible to detect sliding contact between the piston rings and the cylinder liner 

relating them to blow-by or exhaust valve leakage during the compression and 

expansion strokes. Nivesrangsan et al [38, 39, 88, 89] conducted a thorough investigation 

of the mapping of AE events generated within the cylinder head of a small HSDI diesel 

engine. In doing so they introduced techniques for the spatial reconstitution [39] and source 

location [88] of events using multi-sensor arrays. Good results were reported from the 

reconstitution process, thereby offering more accurate information regarding event timing 

and amplitude that could be used as the basis of a diagnostic system. 

 

2.6. Artificial neural networks in condition monitoring: 
 

This section describes how ANNs have been used in the enhancement of gas turbine 

condition monitoring to show how combining ANNs with AE might be used for 

recognizing the complex patterns of sensor information generated by a gas turbine. 

 

Stephen et al [92] employed an ANN system to detect, isolate and assess faults in some 

of the components of a single spool gas turbine. The ANN was combined with a 

hierarchical diagnostic methodology and was tested on new data which had not been 

used for training. They used six measured parameters (shaft speed, fuel flow, total gas 

pressure and the temperatures of the exhaust and the compressor) of a two-shaft aero-

derivative gas turbine with the turbine power as an input to the ANN taking into 

consideration the deviations of each parameter. They used a probabilistic neural 
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network (PNN) with an equal number of neurons in the input and output layers. They 

found that the ANN gave more accurate fault detection compared with other diagnostic 

techniques such as LGPA and NLGPA using the same input data. Fast et al [93, 94] 

used an ANN for condition monitoring and fault diagnosis of a gas turbine in a 

combined heat and power plant. The plant comprised a Siemens SGT800 gas turbine 

with a heat recovery steam generator as well as a bio-fueled boiler and its steam cycle. 

The artificial neural network models were trained with three months’ operating data 

from the components of the plant. A type of multi-layer feed-forward network, the 

multi-layer perceptron (MLP), was used consisting of an input layer, one hidden layer 

and an output layer. The input parameters were the operating mode and the ambient 

conditions, and the output parameters were the most easily measured features of the 

turbine such as the output power, compressor pressure, bleed temperature, fuel flow, 

and exhaust gas flow and temperature. The predicted performance from the ANN model 

was tested against a number of unseen data patterns to determine the prediction error. 

The accuracy of ANN modeling of the gas turbine was found to be better with proper 

training and parameter selection and the study led to a functioning on-line condition 

monitoring system. Junxia el al [95] used a NARMAX time series model, for a  gas 

turbine and analyzed it using the ANN to improve the control of the turbine. The 

existing PID controller was incapable of managing the whole operating range of the 

turbine and could not provide a satisfactory response to rapid changes in the dynamic 

behavior due to the nonlinearities of the engine. A predictive control system using a 

NARMAX model with a neural network was found to improve the PID and make it 

capable of representing the engine dynamic throughout its whole operating range. The 

model was tested in normal and disturbed conditions and continued to show good 

control performance. 

 

ANNs have also been used to elucidate complex patterns in AE data. . Wilkinson et al 

[18], employed a back-propagation neural network for cutting tool wear prediction 

using five AE features as input to classify the wear state as light, medium or heavy. The 

results showed that the ANN could recognize the heavily worn tool state whenever it 

occurred. The network occasionally misclassified the other states, although it always 

gave a more pessimistic estimation of tool wear than was actually the case.  Grabec et al 

[96] used an ANN for the purposes of identifying the location of continuous AE in one 

dimension (zone location). An initial set of experiments was used for the learning mode 

and it contained information from two AE sensors with their coordinates relative to the 
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source as training data. The cross-correlation function of the signals from the two AE 

sensors was supplied to the network to train it to the source coordinates. Application of 

the trained network to new data showed that the technique was able to estimate the zone 

from which the AE signals are coming.  

2.7. Gas turbine faults: 
 
Gas turbines contain thousands of moving and stationary components, the most critical 

of which are found in the hot environment inside the turbine where they experience high 

temperatures and pressures, and high, varying stresses resulting from centrifugal loads 

and aerodynamic forces. Such severe conditions provide some of the biggest challenges 

in modern materials development and component design. Within the timescale of 

commissioning to overhaul a number of kinds of faults can develop, including; 

compressor fouling, blade erosion, blade fatigue, blade creep, corrosion, and seal 

rubbing. 

 

Compressor fouling [97, 98] is caused by the adhesion of particles bound by oil or water 

mists to aerofoil and annulus surfaces. The result is an accretion that causes increased 

surface roughness and, to some degree, changes the shape of the aerofoil or channel and 

is most commonly encountered in gas turbine compressors. The effect of increased 

roughness is to increase friction losses although changes of shape can cause more 

serious operation inefficiencies. 

 

Blade erosion [99, 100] is the abrasive removal of material from the flow path by hard 

particles impinging on flow surfaces. Solid particle ingestion can be caused by a 

number of mechanisms, such as vortices generated during landing and take-off, sand 

storms, volcanic ash, and thrust reverser efflux at low speed which can blow ice and 

dust into the engine. Erosion damage on turbine blades can be manifested as pitting and 

chipping of the blade leading and trailing edges and an increase in the blade surface 

roughness. The overall effects of this erosion are to increase the pressure loss and 

change the blade geometry. The figure 2.9 shows the aerodynamic zones on a gas 

turbine blade and identifies the severity of wear per zone. 
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Figure 2. 9: Boundary layer replica of a gas turbine blade. 
 

Any gas turbine engine needs huge amounts of air throughout its operation, which is 

provided either by sucking it in through the compressor or by ramming due to the 

forward motion of an aircraft, or both. Foreign object damage (FOD) [101, 102] is 

caused by debris which can either be hard objects such as stones, hardware and 

pavement fragments, or soft-bodies such as ice, birds and animals. FOD is typically 

caused when the rotating blade strikes an object, and the velocity of the blade is usually 

more significant than the axial velocity of the object. The result of the impact is a 

localized damage in the form of a notch or dent (typically on, or close to, the leading 

edge). The overall result of FOD on the gas turbine is a reduction of the fine balance of 

the system and degradation of the airflow characteristics over the blade aerofoil, leading 

to aerodynamically-induced vibration or flutter, which initiates fatigue failures excited 

at rotation or blade passing frequencies. 
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Blade fatigue failures [103, 104] are most often caused by anomalies in mechanical 

behavior and/or manufacturing defects. There are two kinds of blade fatigue failure, 

high cycle fatigue (HCF) and low cycle fatigue (LCF). HCF is rare in turbine blades, 

unless some form of initiation damage is present, and/or there is excessive bending of 

the blades for example due to abnormal vibration in the engine. HCF cracks are most 

likely to be initiated at the surface in the brittle platinum aluminized coating layer and 

may spend much of the fatigue life very small, accelerating in size with time due to the 

stress intensification effect and propagating progressively across the thickness of the 

blades. Once the fatigue crack reaches a critical length it will propagate across the 

remaining section by fracture leading to other damage in the engine. LCF is related to 

the much larger stress cycles imposed by starting and stopping operations and 

constitute the design-limiting fatigue life cycles. The source of these stresses is fairly 

apparent. When stopped, the disc/blade combination is subjected to loadings mainly 

due to its self-weight, and is relatively cold. However, in operation the same 

components are subject to large, though fairly constant loadings from centrifugal forces 

imposed by the rotational speed, and are at a much higher temperature. The rate of 

change between these two states is rapid on engine start, inducing high levels of 

thermal stress, which reach a steady state during operation and then reappear, in 

reverse, during cool-down. Thus, the number of fatigue cycles is relatively low, 

although the stress range is high. 

 

Fatigue cracks can appear at a number of locations on the blades, such as; on the 

aerofoil above the blade root platform near the trailing edge on the concave side of the 

blade (Figure 2.10, red arrow), on the aerofoil above the blade root platform near the 

trailing edge on the convex side of the blade (Figure 2.10, white arrow), and on the 

aerofoil of the blade just above the fillet radius from the trailing edge, Figure 2.11. 

Fatigue cracks always initiate at the blade surface irrespective of location on the blade 

and this is because the surface changes temperature more rapidly than the interior, 

giving it the highest thermal stresses. 

 

 

 

 

 

 

 

 



 36

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

Figure 2. 10: Fracture surface of a blade with fatigue failure on the concave side near 
trailing edge (TE: trailing edge; LE: leading edge) [103]. 

 
 
 
 
 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2. 11: Fracture surface of a blade with fatigue failure on the convex side near 
trailing edge (TE: trailing edge; LE: leading edge) [103]. 
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Blade creep [105, 106] manifests itself as blade ‘‘stretch’’ in which the blade elongates 

plastically in service under the centrifugal loads. In abnormal conditions and severe 

situations, this may be sufficient for the blade tip to contact the non-rotating shroud, 

causing a ‘‘tip rub’’. Blades fail by creep when the normal operating temperatures of the 

engine are exceeded for more than brief periods or when the inspection procedures are 

not correctly followed. 

 

Hot corrosion [107, 108] is the loss of material from flow path components caused by 

chemical reactions between the component and certain contaminants, such as Na2SO4, 

NaCl, and V2O5 that combine to form molten deposits, which damage the protective 

surface oxides. There are two kinds of hot corrosion, high temperature hot corrosion 

(HTHC) and low temperature hot corrosion (LTHC).  

 

HTHC is observed mainly within the temperature range of 850 to 950°C and starts with 

the condensation of alkali metal salts on the surface of the component. The dominant 

salt in HTHC is Na2SO4 due to its high thermodynamic stability. HTHC can be divided 

into four progressive stages from initial onset to failure. In stage 1, slight roughening of 

the surface caused by some growth and localized breakdown of the oxide scale layer is 

evident. At this stage, neither chromium depletion in the substrate layer nor loss of 

mechanical integrity is observed. In stage 2, the roughness of the surface is more 

marked as the oxide layer breakdown continues. While chromium depletion 

commences at this stage, mechanical integrity is still not affected. In stage 3, oxidation 

of the base material has penetrated to a significant depth, with an obvious build-up of 

scale. At this stage, the mechanical integrity has been compromised and the blades are 

normally removed from service. Progression to stage 4 (catastrophic attack) will occur 

with or without the continued presence of sodium. In stage 4, the attack penetrates 

deeply into the blade while forming a large `blister' of scale, and failure is likely to 

occur due to loss of structural integrity. 

 

LTHC is observed mainly within the temperature range of 650 to 800°C. LTHC 

produces a characteristic type of pitting, resulting from the formation of low melting 

temperature (eutectic) mixtures of Na2SO4 and CoSO4. The initiation of LTHC is often 

attributed to failure of the protective oxide layer, which allows the molten salt direct 

access to the substrate metal. Ultimate failure may result from enhanced erosion, 
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thermal stresses, erosion-corrosion, and/or chemical reactions. LTHC develops in two 

stages, the formation of liquid sodium-cobalt sulphate on the surface and the 

propagation of attack via migration of SO3 and cobalt inward and outward, 

respectively, through the liquid salt.  

 

Hot corrosion is usually greatest at the hottest point on the pressure (concave) surface 

of the turbine blades about midway along the length of the blade, and a short distance 

back from the leading edge. It is more frequently observed in the low-pressure turbine 

(LPT) than in the high pressure turbine (HPT) due to the lower temperatures involved 

in the LPT where the corrosive contaminants are more likely to accumulate on the 

surface in significant amounts and/or for a greater percentage of time. 

 

Seal rubbing [109, 110] can occur between the static and rotating components of the 

turbine. Rubbing in the seal is a secondary phenomenon which results from a primary 

cause such as high lateral rotor vibrations and high lateral displacement of the rotor 

centre line due to misalignment. There are two main types of rubbing. The first type is 

“light partial rubbing” where the contact forces are minimal, and the rotating elements 

occasionally touch the stationary elements. The second type “continuous rubbing” is 

more serious because of its influence on the integrity of the machine. This is a full 

annular rub in which the rotor maintains contact with the seal continuously or almost 

continuously. Seal rubbing must be avoided as it will ultimately result in wear and an 

increased leakage flow between the high-pressure and the low-pressure sections which 

will reduce the efficiency of the gas turbine leading to eventual shut down.  

 

Many of these faults are associated with mechanisms of failure which will generate AE. 

Some faults produce AE directly such as contact between rotor and stator, damage in 

bearings, and rotor crack propagation. Other faults such as: abnormal dynamic loading; 

wear, accretion or corrosion of flow surfaces; misalignment, lubrication degradation, oil 

starvation, and foreign object damage produce AE indirectly. AE has been found to 

offer better performance than some other techniques for detecting faults in turbines such 

as rubbing [12, 79, 111], and damage in bearings [9, 112-114]. For example, vibration 

monitoring of the bearing pedestals has been studied using accelerometers to identify 

shaft seal rubbing in turbines and found not to be as effective as AE [115, 116] which 

can detect faults in the early stages of the rotor-stator rubbing. The high amplitude, high 

frequency (20KHz-2MHz) AE signatures associated with rubbing [117] can propagate 
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across the turbine for distances of up to 4 meters, allowing the AE technique to identify 

the onset and the location of the rubbing in the turbine. However, this success is 

considered to be dependent on fully understanding the background noise received by the 

sensor on an operational turbine unit.  

2.8. Summary of state of knowledge and thesis identification: 
 

Established condition monitoring techniques for gas turbines such as gas path analysis, 

oil analysis, and vibration analysis use such parameters as temperature, pressure, speed, 

accelerometer signals, and oil features to identify the machine condition and to achieve 

economic performance through increased availability and reduced component 

replacement costs. However, those techniques are all indirect;  they do not provide 

enough information about degradation in gas turbines at the early stages of fault 

development and many of them have limited, or no, capacity to locate the sources of 

faults. The acoustic emission technique addresses these drawbacks by its capability to 

monitor degradation processes as well as their symptoms inferring an ability to identify 

changes in the early stages, as well as the capacity to locate the source of any non-

continuous AE.  

 

However, the high temperatures in the gas flow areas of gas turbines and the low signal-

to-noise ratio has limited the application of AE on industrial machines to studies of 

bearing defects, rubbing damage, background noise determination and AE propagation 

characteristics on off-service engines.  

 

A number of the faults that can occur in turbines result in changes to the gas flow over 

the various operating surfaces and it were decided to address this area of turbine 

monitoring, as little or no work has been done on this aspect. It was expected that a 

breakthrough in the application of AE to gas turbines could be achieved by a full 

understanding of what influences the AE behavior emanating from a gas turbine at 

various running conditions and differentiating between AE sources resulting from gas 

flow through the turbine and those resulting from impact or rolling contact in the 

ancillary mechanical equipment, such as shafts and bearings. This work, therefore, 

concentrates on establishing the AE signatures of a laboratory-scale gas turbine under 

normal running conditions and with faults induced in the flow behavior through the free 

power turbine, by jamming its impeller, removing its power take-off, introducing 

defects in its blades, and removing the impeller entirely.   
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Chapter 3 Experimental apparatus and procedures 
 

3.1. Introduction: 
 

This chapter is divided into two parts the first part describes all the requirements and 

specifications of the apparatus used, and the second part explains all the procedures and 

arrangements for the research experiments, including calibration. The second part is divided 

into three sections, the first of which describes the calibration of the AE sensors using 

simulated sources on a steel block and on the turbine rig and including AE propagation tests 

on the turbine rig, The second section explains the procedure for the experiments carried out 

on the turbine under normal running conditions, with the impeller jammed, with the 

impeller absent, with load and without load. The final section describes the procedure for 

investigating the effect of impeller damage.  

3.2. Apparatus: 
 
A typical AE acquisition system and experimental set-up as used in this work are shown 

schematically in Figure 3.1. The system generally comprises a test object (here shown as 

the turbine), an array of AE sensors with their associated pre-amplifiers, a data acquisition 

card, and a computer with software for controlling the acquisition and storage of data.  

 
 

 
Figure 3.1: Schematic view of turbine rig and acoustic emission system. 

 

 
 
The following sub-sections describe each of these component parts of the set-up. 
 



 41

3.2.1. AE sensors and coupling: 
 
Two types of AE sensors were used in this work. The first type is a commercial 

broadband AE sensor of type Micro-80D (Physical Acoustics, PAC), shown in Figure 

3.2, chosen for its versatility and wide use for machinery monitoring tests. The sensor 

based on lead zirconate titanate (PZT), is omni-directional and produces a relatively flat 

but resonant frequency response from 175-1000 kHz, over an operating temperature 

range from 65-  to 177+ 0C [118]. The sensor is 10 mm in diameter and 12 mm high 

and was held onto the test object surface using an in-house designed magnetic clamp. In 

order to obtain good transmission of the AE from the test object to the sensor, the 

surface was kept smooth and clean and silicone grease was used as couplant to fill any 

gaps caused by surface roughness and to eliminate any air gaps which might otherwise 

impair AE transmission. The sensitivity of the sensor at each position was checked 

using a simulated source by breaking a pencil lead close to it, against expected signal 

amplitude of around 4-5 volts using the fixed amplifier settings. 

  
  

  
  
 

Figure 3.2: Micro-80D broad band sensor. 
  

 

The second AE sensor used was of type S9215, also from PAC and is specially 

designed for high temperature operation. This AE sensor, shown in Figure 3.3 is also 

omnidirectional and produces a resonant response from 65050 -  kHz; over an 

operating temperature range from 200-  to 540+ Co . The sensor is 20 mm in diameter 

and 20 mm high. The lower frequency resonant response required the use of a 

preamplifier with a lower high-pass filter, passing frequencies above 20 kHz [119]. This 

kind of sensor offers a good opportunity to acquire AE from positions on hot surfaces 

close to the likely sources of AE but the lower frequency response causes difficulties 

with increased noise levels and the possibility that some aspects of the signal will not be 

captured. The S9215 sensor is used in high temperature nuclear and fossil fuel utility 
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plants, to monitor leaks and cracks in pipelines and vessels, and in aerospace engine 

monitoring applications.  A high-temperature grease (UCA-HT from Ely chemical) was 

used as couplant for this sensor.  

 

 

  
 
 
 

 

Figure 3.3: S9215 narrow band, high temperature sensor[119]. 
 

3.2.2. Preamplifiers: 
 

The preamplifier (type PAC 1220A) shown in Figure 3.4 was used to amplify the AE 

signal from the Micro-80D sensor to a level that can be comfortably transmitted and 

converted by an Analogue to Digital Converter (ADC). These amplifiers have internal 

band pass filters from 0.1-1.2 MHz and a switchable gain between 40 and 60 dB. The 

preamplifier is powered by a 28+ V power supply and used a single BNC connection 

for both power and signal. 
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Figure 3.4: Preamplifier type PAC 1220A. 
 
 
A different preamplifier 0/2/4 from Physical Acoustics corporation was used with the 

S9215 sensor because of its lower signal to noise ratio. The preamplifier, had a 

switchable 0/20/40 dB gain and was provided with an internal band pass filter from 

0.02-1.2 MHz. As for the D9201A, this amplifier was powered by a +28V power supply 

and used a single BNC connection for power and signal to and from the sensor. 

3.2.3. Signal conditioning unit: 
 
Signal conditioning units were of in-house manufacture and were used to power 

( 28+ V) the AE sensors and pre-amplifier as well as amplifying signals. They could 

also be used to perform analogue RMS processing with amplification capability. 

3.2.4. Data acquisition (DAQ) system: 
 
Most of the experiments in this research focused on acquiring raw AE signals in the 

bandwidth 0.1 to 1MHz and required a high performance data acquisition system. The 

system was based on an in-house built desktop PC with a 12 bit, National Instruments 

(NI), PCI-6115 board as seen in Figure 3.5. This board can be used to acquire 

simultaneously the raw AE signal at up to 10M samples/s for up to four channels with a 

total on board memory of 32 MB. The board is a multifunction analogue, digital and 

timing device without on-board switches or jumpers so that it can be configured and 

calibrated by software. The software-programmable gain can be set to 0.2, 0.5, 1, 2, 5, 

10 or 50 and covers an input range from 200±  mV to 42±  V. The board supports only 

differential input configuration and has an over-voltage protection at 42± V. A 

LabVIEW programme was used to control a sampling frequency, a number of acquired 
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data per channel, a number of records, an input range, pre-trigger data, a trigger channel 

and a trigger level.  

 

 

 

Figure 3.5: Data acquisition system with accessories.  
 

3.2.5. Simulated source for calibration and attenuation: 
 
A commercial mechanical propelling pencil with an in-house machined guide ring was 

used to generate simulated AE sources by breaking a 2H pencil lead, the so-called Hsu-

Nielsen source. A standard guide ring (Nielsen shoe, Figure 3.6(a)) [120] is normally 

used to aid in breaking the lead consistently but its collar ring deforms very easily under 

the breaking forces and also becomes mis-shapen when used for many tests. Higo and 

Inaba [121]have suggested a modified guide ring with increased stiffness of the collar to 

improve the reproducibility of AE production, the design of which is shown in Figure 

3.6(b), and this was used in the current experiments. The ASTM standard, E976–99 

[120] recommends that the pencil lead should be the same type (0.3 or 0.5 mm 

diameter, HB or 2H pencil lead) with a length of 2-3 mm and so a 2H, 0.5 mm diameter 

lead was used here to generate simulated AE sources. The lead was broken under the 

same conditions, i.e. at the same position on the test surface, using the same angle and 

the same orientation of the pencil for all repeat tests. 
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Figure 3.6: Drawings and dimensions of standard (a) and modified (b) guide rings[120, 
121] . 

3.2.6. Gas Turbine Rig: 
 

The gas turbine used was a P.9000 gas turbine [122] unit manufactured by Cussons 

Ltd., shown schematically in Figure 3.7. The gas turbine consists of two stages. The 

first stage is gas generator which is a compressor and turbine mounted back to back on a 

short shaft supported in a journal bearing.  The second stage is the free power turbine 

which is a single stage radial turbine operating over the range 170 to 600 rps and 

developing a maximum power of approximately 4 kW. The free power turbine is 

connected with an alternator which generates electricity that could be dissipated through 

heat lamps or made available from normal plug sockets. The change in the excitation 

voltage applied to the alternator field coils allows the power loading on the alternator 

(and hence the turbine) to be easily variable over the required operating range. The 

efficiency of the converted power between free power turbine and alternator could reach 

85%.    

 

The turbine was fuelled by propane, delivered from standard gas take-off bottles. 

Consumption was approximately 3.2 g/s at full load and about 1.1 g/s idling with no 

loading. Cooling was via an oil/water heat exchanger at about 10 liters per minute and 

the oil temperature was automatically controlled by a thermostat and solenoid valve 
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which admits water to the oil cooler. The lubricating system is a continuous circulation 

one with separately driven pump, filter and heat exchanger. The capacity is 

approximately 5 liters and the oil undergoes little deterioration and is normally changed 

only if the system has to be dismantled for any reason. A high energy ignition system is 

used for starting purposes only. This system is energised from the AC supply and the 

circuit includes a pilot lamp that serves also as a ballast resistance. The starting system 

is effected by closing a valve at the normal air inlet and blowing air through the 

compressor inlet from a separate centrifugal blower unit. The manufacturer-supplied 

instrumentation consists of a manometer for measuring the inlet air flow, a flow meter 

for measuring the consumption of propane, sensitive pressure gauges for measuring fuel 

supply pressure, combustion chamber pressure and outlet pressure, pressure gauges for 

indicating gas bottle pressure and lubricating oil pressure, an oil temperature gauge, a 

sensitive jet pipe pyrometer and a tachometer.  

 

A waveguide was welded to the exhaust pipe giving a temperature at its end low enough 

for the application of the Micro-80D sensor. The temperature of the exhaust surface was 

around 400°C, so the required length of the waveguide was estimated to be 300mm. 

After careful welding of the waveguide to the turbine exhaust pipe, testing showed the 

surface temperature at the sensor-mounting platform to be less than 1770C. The 

positions of the two AE sensors used for monitoring the turbine are shown in Figure 3.8. 

The tachometer shown in Figure 3.9 was designed and manufactured to record shaft 

speed on the free power turbine. The slotted disc is composed of 34 teeth of 

circumferential extent 5° and one of 15° to obtain a characteristic pattern for every cycle 

allowing shaft speed and rotational position to be determined alongside the AE, should 

this be necessary.  

 

 



 47

 

 

 

Figure 3.7: Schematic diagram of turbine rig showing positions of temperature and 
pressure sensors. 

 

 
 
 

Figure 3.8: Photograph of turbine rig showing AE sensor positions. 
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Figure 3.9: Timing signal system 
 

3.3. Experimental procedure: 
 
Three types of experiments were done; tests with the turbine running normally with and 

without power being taken off, tests with the impeller jammed and absent and, finally, 

tests with simulated blade defects. The rationale behind these experiments is described 

below. Essentially, the objective was first to determine what the sources of AE are in a 

turbine and then to determine whether these sources might give useful diagnostic 

information under normal operating conditions and/or fault conditions. 

 

3.3.1. Turbine running tests: 
 

The purpose of this set of tests was to find the AE characteristics associated with the 

processes going on in the running turbine. To do this, the two calibrated sensors and 

positions were used, and the turbine run in a variety of conditions including normal 

running with and without load, and in two conditions where the behavior was simplified 

by jamming the impeller so that it did not rotate and with the impeller removed from the 

free power turbine. The turbine shaft speed of the gas generator was varied between 

30000 and 70000 rpm which, accordingly, changes the free power turbine speed (if the 

impeller is operating normally). Figure 3.10 shows the general arrangement for the 

turbine running tests. 
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Figure 3.10: Running test arrangement showing free power turbine with AE sensors and 

power take-off belt. 

 

3.3.1.1. Turbine running test with jammed impeller and without impeller: 

 
For this experiment, the impeller of the free power turbine was either jammed by 

connecting the turbine belt to a fully loaded alternator, or entirely removed from the 

turbine. When the impeller was removed, it was necessary to replace it with a dummy 

piece (Figure 3.11) which allowed free passage of gas through the shroud but prevented 

gas leakage from the free power turbine to the lubrication system. Three, nominally 

identical tests were run for each of the jammed impeller and absent impeller 

configurations. Each test consisted of acquiring data over a range of incrementally 

increased gas generator shaft speeds between 500-1150 RPS achieved by means of 

changing the fuel flow. At each operating condition, fuel flow, air flow, and gas 

pressure and temperature of both the compressor and turbine were recorded as these 

were not precisely reproducible between tests. At each operating condition, raw AE was 

recorded for 0.03 sec and 20 records were obtained at each operating condition.        

 
 



 50

 

 
Figure 3.11: Schematic of dummy piece used to replace the impeller. 

 
 

3.3.1.2. Turbine normal running test with and without load: 

 

In this series of experiments, AE was acquired over a range of free power turbine speeds 

while the machine was under load and not under load. For the loaded condition, the 

speed of the gas generator was kept constant, and the speed change in the free power 

turbine was achieved by changing the alternator load. For the no-load (idling) condition, 

the connecting belt between the free power turbine and the alternator was removed and 

the turbine speed changed by changing the fuel flow incrementally which, accordingly, 

resulted in changes in both the gas generator and free power turbine speeds. The speed 

of the free power turbine was measured by means of the optical sensor connected to the 

slotted disc at the end of free power turbine shaft, and other operating parameters such 

as the gas generator speed fuel flow, air flow, and gas pressure and temperature of both 

the compressor and turbine, were recorded as for the other tests.  

 

For each of the two conditions, with and without load, the speed was varied between 

120 RPS and 380 RPS and 20 records of raw AE of length 0.03 sec acquired at each 



 51

speed. Each experiment (i.e. range of speeds with or without load) was again repeated a 

total of three times to check for consistency.  

3.3.2. Damaged impeller tests: 
 
This set of tests was carried out under the same conditions as the unloaded normal 

running tests to examine the effect of a series of induced faults on the AE signature. 

Blade damage was simulated in the 10-blade free-power turbine impeller by grinding 

off about 20mm from the tips of opposing blades. The choice of damaging opposing 

blades was made primarily for safety reasons, but also because it minimises the 

introduction of radial imbalance which might otherwise have an independent effect on 

the AE signature. In the first experiments, two opposing blades were damaged and, in 

the second, four opposing blades were damaged. In the second test, the blade damage 

was deliberately not made circumferentially symmetrical. Figures 3.12 and 3.13 show 

the impeller with two and four damaged blades, respectively. As for the normal no-load 

test, the connecting belt between the free power turbine and the alternator was removed 

and the speed of the turbine was changed between 100 RPS and 400 RPS by means of 

changing the fuel flow, which was recorded along with other thermodynamic aspects of 

the turbine rig. Again, as before, 20 records of length 0.03 sec were taken at each speed 

for each of the degrees of damage and each test was repeated three times.  

 

 
 
 

Figure 3.12: Free power turbine impeller with two damaged blades. 
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Figure 3.13: Free power turbine impeller with four damaged blades. 

 

3.4. AE transmission and calibration tests: 
 
Before carrying out any experiments, it was first necessary to calibrate the AE sensors 

and assess the transmission between various parts of the turbine and the sensor 

positions. Calibration tests were carried out on a steel block and on the turbine in order 

to check the response of the AE sensors and note any changes with temperature or time. 

It was also necessary to check the degree of reproducibility that could be expected after 

removing and replacing a sensor (i.e. the reproducibility of coupling). Finally, it was 

also necessary to know the relative sensitivity of the two different sensors used.  

 

The transmission experiments were carried out to establish the characteristics of AE 

wave propagation through and over the surface of the gas turbine, including the 

waveguide. Attenuation of AE energy and changes to frequency content were measured 

for a variety of sensor source positions.   

 

All calibration and transmission experiments used a pencil lead break as the AE source and 

AE energy as the main quantitative feature of the signal. All lead breaks were recorded at 

5MHz for duration of 0.015 sec.  
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3.4.1. Calibration tests on steel block: 
 
A large cylindrical steel block of dimensions 307mm diameter and 166mm height was 

used to calibrate sensors back-to-back. Pencil leads were broken on the centre of the top 

surface of the block typically with an array of three AE sensors mounted at the same 

radial distance, 62.5 mm from the source (Figure 3.14). The aims of this calibration 

were: to provide a means of calibrating the sensors before and after each test, to assess 

the variation of recorded AE due to individual pencil lead breaks and with individual 

installations (effect of coupling variation), and to compare the sensitivity and frequency 

response of the two types of sensors used. To investigate these effects, three Micro80D 

sensors were used at four sensor positions separated circumferentially by 90°. With the 

three sensors in each position 10 pencil lead breaks were recorded and the sensors 

removed and replaced in the same positions and another 10 breaks recorded. This 

process was repeated for a total of ten times so that 100 breaks were recorded for each 

sensor at each position. Next, the sensors were moved to another position and the entire 

process repeated.  

 

 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

Figure 3.14: (a) Overall schematic and (b) plan view of sensor positions on steel 
calibration block.  

 
 

 

 (a) (b) 
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Figure 3.15 summarises the recorded AE energy for the pencil lead breaks for all 

sensors at all positions. The wave arrival was identified by the time at which the signal 

level first exceeds a threshold of 1.5 times the maximum amplitude of the noise 

recorded in the first 180 µs. The energy was calculated by integrating the square of the 

amplitude for the duration between the first and the last threshold crossing. It is clear 

from Figure 3.15 that there is some variation between sensors and positions, but also 

that there is considerable variation for a given sensor in a given position. In order to 

analyse the data more systematically, a single factor analysis of variance was carried out 

grouping the data in a range of ways.     

 

Figure 3.16 shows sensor 1 energy distribution at the four positions and the 10 removal-

replacements at each position. Grouping the individual placements at a given position, 

the variance between placements (variation in coupling) can be compared with the 

variance within a given placement (variation in pencil lead breaks). The indicator Fvalue 

is compared with Fcrit (1.98 for the degrees of freedom involved and at the 95% 

confidence level) and, as can be seen in Figure 3.16, Fvalue is always greater than Fcrit 

indicating that the effect of removal and replacement of the sensor is more important 

than the variation in pencil lead breaks at all positions. Table 3.1 shows the value of 

Fvalue for all sensors at all positions and, confirming the same findings for all sensors.  
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Figure 3.15: AE energy recorded at the three sensors on the steel block at four positions. 
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Figure 3.16: Sensor 1 energy distribution for 10 placements at four positions; (a) 

position 1, (b) position 2, (c) position 3, (d) position 4. 
 

 
 
 

 
Sensor Position F Value 

1 1 12.9696 
1 2 1.9978 
1 3 8.3188 
1 4 5.5898 
2 1 8.5964 
2 2 2.3407 
2 3 13.9594 
2 4 3.4022 
3 1 2.8630 
3 2 1.9942 
3 3 11.2764 
3 4 17.6060 

 
 

Table 3.1: Summary of Anova results comparing effects of variation in source with 
variation in coupling for each sensor at each position.  
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The data for each position for all three sensors has been grouped to analyse the variance 

between positions and within positions. This will compare the effect of position with the 

effect of lead break, sensor and coupling. Table 3.2 shows that Fvalue is always greater 

than Fcrit (3.026 for the degrees of freedom involved and at the 95% confidence level) 

which indicates that the effect of changing position is more important than the variation 

in pencil lead breaks, sensor and coupling.  Finally the data for each sensor at all four 

position has been grouped to analyse the variance between sensors with variance from 

lead break, position and coupling. The Fvalue  is again greater than Fcrit which indicates 

that the effect of changing sensor is significant and led to the use of the same sensor for 

all experiments.  

 
 
 

Position F Value 
1 27.9 
2 140.2 
3 14.6 
4 131.8 

  
 

Table 3.2: Summary of Anova results comparing effects of variation in position with 
variation in lead break, sensor and coupling at each position.  

 
 
Next, the S9215 sensor and the selected Micro-80D sensor were calibrated back-to-back 

on the steel block. The two sensors were mounted at the same radial distance, 62.5 mm 

from the source, and 100 pencil lead breaks acquired without moving or removing 

either sensor. The objective of this calibration was to identify the variation in sensitivity 

between sensors. The average AE energy of both sensors was calculated using equation 

2.4 and it was found that the Micro-80D sensor gave AE energy 80-140 times higher 

than the S9215 sensor using the same gain settings as in the experiment. Figure 3.17 

shows the raw AE spectra for both sensors on steel block, reflecting the narrow 

bandwidth of the S9215 sensor (50-250 kHz) compared with the Micro-80D sensor 

(100-400 kHz). Appendix A contains sensitivity calibration certificates for AE 

transducers S9215, and Micro-80D.  
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Figure 3.17: Frequency domain of two AE sensor on steel block (a) Micro-80D 

(exhaust) sensor, (b) S9215 (shroud) sensor. 
 
 
 
 
 

3.4.2. Calibration test on gas turbine: 
 
This calibration was carried out to identify any changes and/or deterioration in sensor 

sensitivity associated with mounting onto the turbine surface. The S9215 was mounted 

on the free power turbine shroud using an in-house manufactured clamp. A flat contact 

surface of diameter equal to that of the sensor and depth 2mm was machined onto the 

free power turbine shroud. The Micro-80D sensor was mounted onto the waveguide 

using a magnetic clamp. Figure 3.18 shows a schematic of the free power turbine with 

the sensor positions. A total of 50 pencil lead breaks with the source either mid-way 

along the exhaust or on the turbine shroud were acquired for each sensor in each of 

three conditions; before an experiment with the turbine cold, immediately after an 

experiment with the turbine hot, and some time after an experiment when the turbine 

was cold.  
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Figure 3.18: Turbine sensor calibration arrangement showing sensor and AE source 

positions. 
 
 

Figure 3.19 shows how the AE energy of pencil lead breaks as recorded by the S9215 

sensor varies before and after turbine operation and Figure 3.20 shows the same data 

plotted as histograms. Comparing the three responses using Anova gave an Fvalue  of 75 

compared with Fcrit of 3.05, and comparing the values between hot and cold 

experiments after testing, Fvalue was found to be 6.4 compared with an Fcrit  of 3.98. 

Thus, the S9215 sensor is significantly more sensitive at higher temperatures although 

the variation is significantly greater after running the turbine, even when cold.   
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Figure 3.19: AE energy calibration of S9215 sensor on turbine rig. 

 
 
 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 3.20: Histogram of AE energy for S9215 sensor calibration on turbine rig, (a) 
before turbine operation, (b) after turbine operation (hot), (c) after turbine operation 

(cold). 
 

 

Figures 3.21 and 3.22 show the AE energy and histograms for the Micro-80D sensor for 

the turbine calibration experiment. Carrying out Anova among the three conditions gave 

a value of Fvalue of 55.3 compared with Fcrit of 3.98, and comparing the hot and cold 
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values before and after testing gave Fvalue of 4.58 against an Fcrit  again of 3.98. Thus, 

the Micro-80D sensitivity goes down when the turbine is hot, even though it should be 

within its normal operating temperature range. Once the temperature returns to normal, 

the response is practically the same as it was before the test.  
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Figure 3. 21: AE energy calibration of Micro-80D sensor on turbine rig. 
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Figure 3. 22: Histogram of AE energy for Micro- 80D sensor calibration on turbine rig, 
(a) before turbine operation, (b) after turbine operation (hot), (c) after turbine operation 

(cold). 
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3.4.3. AE propagation on gas turbine: 
 
These tests were carried out to investigate the attenuation and frequency distortion of 

sources at various positions on the free power turbine as recorded by the two different 

AE sensors at the two different positions (turbine shroud and turbine waveguide). Thus, 

the effects not only of source-sensor distance, but also aspects of the geometry of the 

turbine such as discontinuities, webs and non-uniform cross section could be studied for 

potential sources resulting from gas flow through the turbine blades and exhaust, oil 

lubrication, and bearings in addition to unwanted sources such rubbing of mountings 

due to vibration. In this test three AE sensors were used, two Micro-80D sensors and 

one S9215 sensor. One Micro-80D sensor was positioned on the waveguide (as used in 

the experiments) and another on the turbine shroud adjacent to the S9215 sensor in 

order to assess the relative effects of sensor type. The source position was moved along 

the free power turbine starting at the shroud and ending at the exhaust with ten repeat 

breaks being recorded for each sensor at each position. Figure 3.23 shows the sensors 

and source positions.  

 
 

Figure 3.23: Turbine propagation test arrangement showing sensors and AE source 
positions. 
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The energy, calculated as for the calibration tests, was plotted as a function of source-sensor 

distances and the best-fit exponential decay curve, according to equation (2.4), used to 

determine an attenuation coefficient. Figures 3.24 and 3.25 show the energy plots with the 

best-fit exponential decay curves for the S9215 sensor and Micro-80D sensor, respectively, 

mounted on the turbine shroud. Both figures exhibit high variability of AE energy in the 

region close to the sensor position, i.e. on the turbine shroud. Such an effect has been 

attributed [27, 32, 123] to the complicated near-field waves compared with reflected waves. 

Both graphs also show a marked reduction in energy following major discontinuities in the 

structure, illustrated as vertical dotted lines.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 

 
 
 
 

Figure 3.24: AE energy versus source-sensor distance with best-fit exponential decay 
curve for S9215 sensor mounted on turbine shroud. 
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Figure 3.25: AE energy versus source-sensor distance with best-fit exponential decay 
curve for Micro-80D sensor mounted on turbine shroud. 

 
 
 
Figure 3.26 shows the AE energy plot with best-fit exponential decay for the Micro-80D 

sensor mounted on the waveguide, where the source-sensor distance is measured to the 

bottom of the waveguide. Compared with the other two curves, the attenuation curve is 

rather steeper and the scatter in the area close to the sensors is considerably greater. It is 

unlikely that the reason for this scatter is associated with the near field as the sensor is 

actually quite distant from the root of the waveguide, although it is quite likely that the 

amount of AE being transmitted up the waveguide is sensitive to this field.  
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Figure 3.26: AE energy versus source-sensor distance with best-fit exponential decay 
curve for Micro-80D sensor on waveguide. 

 
 

To illustrate the detectability by each of the sensors of an AE source with respect to 

source position in the turbine figure 3.27 shows the logarithmic attenuation using 

equation (2.2) [22, 27, 29] data plotted against position on the turbine. The reference 

source in this analysis was position P0 for the S9215 sensor and P7 for the Micro-80D 

sensor and the average value of the maximum amplitude of ten pencil lead breaks was 

used to produce each data point. As before, the vertical dotted lines represent 

discontinuities in the surface. Figure 3.27 demonstrates that the S9215 sensor is clearly 

sensitive to sources in the turbine and the flange, but that the Micro-80D sensor on the 

waveguide also detects such sources since the attenuation decreases as the source is 

moved towards the sensor although there is a distance between the sensor and the 

turbine. There seems to be very little attenuation for either sensor for positions along the 

exhaust. When monitoring the turbine operation it is important to note that sources in 

the turbine will be weaker ranging between 30 and 15dB as seen by the Micro 80D 

sensor and sources at the exhaust weaker by about 30dB as seen by the S9215 sensor. 
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Figure 3.27: Micro-80D & S9215 sensor attenuation characteristics for sources on the 
turbine surface. 
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Chapter 4 Results: normal running tests and tests without 

functioning impeller  

 
 
This chapter summarises the results of the tests with the turbine running normally, 

either idling with the speed being controlled by fuel and air flow, or under load at fixed 

fuel and air flow with the speed being controlled by the amount of load applied. The 

results of the two abnormal running tests are also presented here, i.e. those in which the 

impeller was either prevented from rotation or removed entirely. Together, these 

experiments provide a range of conditions of gas flow through the turbine, from the 

simplest cases with no impeller and with a stationary impeller, through idling and, 

finally, with the impeller being used to extract power from the gas. 

 

The analysis in this chapter is confined to simple time- and frequency-domain 

processing, with higher level analysis and discussion of the results being deferred to 

Chapter 5.  

4.1. Turbine operation test without impeller 
 

This configuration is the simplest of those studied for turbine operation, where the 

impeller had been removed and replaced by a non-rotating disc which essentially acts as 

a simple baffle in the free power turbine. As with all non-rotating tests, the principal 

experimental variable is the gas generator speed.  

Figures 4.1 and 4.2 show samples of normalized AE signals recorded, respectively, 

from the Micro-80D sensor on the waveguide attached to the turbine exhaust and the 

S9215 sensor mounted directly onto the turbine shroud. Each AE signal was normalized 

as a proportion of the maximum amplitude in the AE record in order to avoid distortion 

by the varying total energy. Records at nine different gas generator speeds are shown, 

both in raw form and with the associated signal envelopes, obtained by taking the RMS 

with an averaging time of 0.03 ms. The averaging time value has been chosen to make 

balance between processing time, which would high if we use shorter averaging time, 

and the expense of information loss, which would to much if use longer averaging time.  

The Micro80D (exhaust) signals exhibit some higher amplitude bursts of approximate 

duration 1ms, and these seem to be more prevalent as the gas generator speed increases. 

These bursts appear to be aperiodic in nature and are set on an apparently continuous 

background. The S9215 (turbine shroud) sensor does not show such obvious bursts and 
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the AE activity appears continuous at all gas generator speeds. Table 4.1 shows the 

running speed of gas generator turbine of without impeller test. 

 

 

 

 

 

 

 

 

 

Table 4. 1: Gas generator speed of without impeller test. 
 

 

 

 

 

 

 

 

 

 

 

Without impeller test speed Gas generator speed (RPS) 
S1 500 
S2 600 
S3 700 
S4 850 
S5 900 
S6 934 
S7 1017 
S8 1133 
S9 1167 
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Figure 4.1: Typical Micro-80D AE signatures (exhaust) for test without impeller. Gas 
generator speed increases from bottom to top, with S1 recorded at 500 RPS and S9 

recorded at 1170 RPS. 
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Figure 4.2: Typical S9215 AE signatures (shroud) for test without impeller. Gas 
generator speed increases from bottom to top, with S1 recorded at 500 RPS and S9 

recorded at 1170 RPS.  
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Figures 4.3 and 4.4 show the evolution of AE energy with gas generator speed for the 

exhaust and turbine shroud sensors, respectively. Each point represents the energy 

content of the record using equation 2.4 and all 20 values are shown at each speed for 

each of the two tests. As can be seen, the AE energy at a given speed seems consistent 

between the records (each of which accounts for typically 15-33 revolutions of the 

machine) but there is a marked variation in the level of energy between the two tests for 

the exhaust-mounted sensor, not reflected in the record for the shroud-mounted sensor. 

Given that the surface of the shroud is hot, it is possible that this variation was due to 

some degradation of the coupling between the two tests. Notwithstanding this, both 

sensors indicate an increase in AE energy with a speed of an increasing slope, fitted 

here using an exponential growth function. It might also be noted that the energy 

recorded on the shroud is a factor of 50-100 lower than that recorded at the exhaust, 

which is approximately the same as the ratio of the sensitivities of the two sensors when 

both are mounted on the turbine shroud (cold) and on the steel block.  

 

Figures 4.5 (a) and (b) show typical raw AE spectra for the nine speeds for the Micro-

80D and S9215 sensors, respectively. These spectra have been normalized across the 

relevant filter bandwidth so that the effect of the absolute energy does not mask the 

frequency content. The effect of the different analogue filters and sensor bandwidths is 

immediately apparent in the two sensor responses, with significant energy being shown 

by the S2915 sensor in the 0.05 to 0.1MHz range, just below the analogue filter cut-off 

for the Micro-80D sensor. Despite this, both the Micro-80D and S2915 sensors show a 

very strong peak at around 7.5kHz at some speeds which must be very strong indeed to 

be able to penetrate the filter. Within its bandwidth, the Micro-80D shows a general 

narrowing of the frequency content of the signal toward the bottom end of the filter 

band-pass, and this probably indicates a shift to frequencies below 0.1MHz. Conversely, 

the S9210 sensor shows a (less marked) migration of the frequency content towards a 

band between 80 and 100kHz. 
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Figure  4.3: Micro-80D (exhaust) sensor AE energy vs. gas generator speed for tests 
without impeller.  

 

400 500 600 700 800 900 1000 1100 1200
0

0.5

1

1.5

2

2.5
x 10

-11

Gas generator speed (RPS)

E
 (

V
2 .s

)

 

 

 
Test 1
Test 2
Fit 1
Fit 2

 

Figure 4.4: S9215 (shroud) sensor AE energy vs. gas generator speed for tests without 
impeller. 
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Figure 4.5:  Typical raw AE spectra for test without impeller: (a) Micro-80D sensor, (b) 

S9215 sensor. Gas generator speed increases from bottom to top, with S1 recorded at 
500 RPS and S9 recorded at 1170 RPS.  

 

Demodulated frequency analysis was also applied to the signals by RMS averaging them 

over 150 points, making an effective sampling rate of 33333 Hz. Transforming the 

resulting signals into the frequency domain shows pulsatile information at frequencies 

up to 1kHz and samples of such spectra are shown in Figures 4.6 and 4.7 (the spectra 

have been normalized). The Micro-80D sensor on the turbine exhaust shows a peak 

whose frequency increases with the gas generator speed, varying from 300 Hz at 490 

rps to 700 Hz at 1170 rps. These frequencies are absent in the records of the S9215 
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sensor mounted on the turbine shroud. Table 4.2 shows the running speed of gas 

generator turbine of without impeller test. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 4. 2: Gas generator speed of without impeller test1. 
 

 

 

 

 

 

 

Without impeller test speed Gas generator speed (RPS) 
S1 500 
S2 600 
S3 667 
S4 700 
S5 734 
S6 784 
S7 850 
S8 900 
S9 934 
S10 967 
S11 1000 
S12 1017 
S13 1034 
S14 1083 
S15 1117 
S16 1133 
S17 1167 
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Figure 4.6: Typical demodulated AE spectra for test without impeller with Micro-80D 
sensor. Gas generator speed increases from bottom to top, with S1 recorded at 500 RPS 

and S17 recorded at 1170 RPS. 
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Figure 4.7: Typical demodulated AE spectra for test without impeller with S9215 

sensor. Gas generator speed increases from bottom to top, with S1 recorded at 500 RPS 
and S17 recorded at 1170 RPS. 
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4.2. Test with jammed impeller 

Figures 4.8 and 4.9 again show samples of raw and enveloped normalized AE signals 

for the two sensors at nine speeds of the gas generator turbine. As for the test with the 

absent impeller, the signals for the sensor mounted on the exhaust show apparently 

aperiodic pulses whose occurrence becomes more frequent as the gas generator speed 

increases. In this case, however, the pulses are of rather longer duration, typically 

around 5ms. The S9215 sensor shows much shorter bursts (typically less than 1ms) and 

the occurrence of the bursts does not seem to depend on running speed. Table 4.3 shows 

the running speed of gas generator turbine of jammed impeller test. 

 

 

Jammed impeller 
test speeds 

Gas generator speed (RPS) 

S1 550 
S2 567 
S3 592 
S4 617 
S5 667 
S6 683 
S7 733 
S8 783 
S9 817 

 

Table 4. 3: Gas generator speed of jammed impeller test. 
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Figure 4.8: Typical Micro-80D AE signatures for jammed impeller test. Gas generator 
speed increases from bottom to top, with S1 recorded at 500 RPS and S9 recorded at 

850 RPS. 
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Figure 4.9: Typical S9215 AE signatures for jammed impeller test. Gas generator speed 
increases from bottom to top, with S1 recorded at 500 RPS and S9 recorded at 850 RPS. 
 
Figures 4.10 and 4.11 show the evolution of AE energy with gas generator speed for the 

two AE sensors. The two tests give repeatable results and, as for the test with the 

impeller absent, there is a monotonic increase in energy with gas generator speed. 

Unlike the test with the impeller absent, the energy recorded at the two sensors is of 



 76

approximately the same magnitude indicating a shift in the total energy of the source 

away from the exhaust towards the shroud.  
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Figure 4.10: Micro-80D (exhaust) sensor AE energy vs. gas generator speed for tests 
jammed impeller.  
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. 

Figure 4.11: S9215 (shroud) sensor AE energy vs. gas generator speed for tests jammed 
impeller. 

 
 
Figure 4.12 shows samples of the normalised raw AE spectra across the relevant filter 

bandwidth for nine speeds of the gas generator turbine for both sensors. Unlike the case 

for the absent impeller, there is a systematic shift in AE energy towards the higher end 
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of the frequency band at around 350kHz. The energy recorded by the S9215 sensor is 

focused in a narrow band around 27kHz and this does not appear to change much with 

gas generator speed.  
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Figure 4.12:  Typical raw AE spectra for test jammed impeller: (a) Micro-80D sensor, 
(b) S9215 sensor. Gas generator speed increases from bottom to top, with S1 recorded 

at 500 RPS and S9 recorded at 850 RPS.  
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The demodulated frequency analysis (Figures 4.13 and 4.14) does not show any 

particular features in the range up to 1500Hz.  

0 500 1000 1500
S1

S2

S3

S4

S5

S6

S7

S8

S9

Frequency(Hz)

N
o

rm
al

iz
ed

 v
o

lt 
(A

rb
itr

ar
y

 u
n

it
)

 
 

Figure 4.13: Typical demodulated AE spectra for test with jammed impeller with 
Micro-80D sensor. Gas generator speed increases from bottom to top, with S1 recorded 

at 500 RPS and S9 recorded at 850 RPS. 
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Figure 4.14: Typical demodulated AE spectra for test with jammed impeller with S9215 
sensor. Gas generator speed increases from bottom to top, with S1 recorded at 500 RPS 

and S9 recorded at 850 RPS. 
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4.3. Turbine operation test without load 

In this series of tests, both the gas generator turbine and the free power turbine were 

rotating, so the results are expressed here in terms of the speed of the free power 

turbine. To assist comparison with the two previous series of tests, Figure 4.15 shows 

the relationships between FPT and GGT speeds for each of the three tests. Figures 4.16 

and 4.17 again show samples of the normalized AE signals recorded by the two sensors. 

The Micro-80D sensor on the turbine exhaust again exhibits pulse-like events, although 

these are generally longer and with steeper rise than in the other two tests. Also, at 

higher speeds of the free power turbine, the individual pulses appear to coalesce so that 

the signal becomes continuous. As was the case with the jammed impeller, the S9215 

record exhibits relatively short pulse, although these, if anything,, become less frequent 

as the FPT speed increases. Figures 4.18 and 4.19 show the evolution of AE energy 

with free power turbine speed for the two sensors. For the Micro-80D sensor the general 

trend curves are similar in shape for each of the three tests and are also similar in shape 

and magnitude to the jammed impeller tests. In contrast to the jammed impeller tests the 

measurements on the shroud are about a factor of two higher than those measured at the 

exhaust. Also, for both sensors, the most striking difference in the idling tests compared 

with the jammed impeller tests is the considerable degree of increased scatter and the 

introduction of what appear to be peaks in the energy evolution with FPT speed. Table 

4.4 shows the running speed of free power turbine of idling test. 

 

 

 

Idling test speeds Free power turbine speed 
(RPS) 

S1 199 
S2 224 
S3 243 
S4 261 
S5 267 
S6 292 
S7 309 
S8 323 
S9 339 

 

Table 4. 4: Free power turbine speed of idling test. 
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Figure 4.15: Relationship between free power turbine speed and. gas generator speed for 
idling test. 
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Figure 4.16: Typical Micro-80D AE signatures (exhaust) for test without load. Free 
power turbine speed increases from bottom to top, with S1 recorded at 140 RPS and S9 

recorded at 345 RPS. 
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Figure 4.17: Typical S9215 AE signatures (shroud) for test without load. Free power 
turbine speed increases from bottom to top, with S1 recorded at 140 RPS and S9 

recorded at 345 RPS. 
.  
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Figure 4.18: Micro-80D (exhaust) sensor AE energy vs. free power turbine speed for 
tests without load. 
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Figure 4.19: S9215 (shroud) sensor AE energy vs. free power turbine speed for tests 

without load. 
 
 

Figure 4.20 shows a sample of raw AE spectra for the idling tests, with the Micro-80D 

showing a gradual shift towards lower frequencies, and the S9215 sensor again showing 

a narrow frequency range at around 35kHz with a slight tendency towards lower 

frequencies at higher FPT speeds. Records from the turbine shroud show a similar 

behavior at several points, i.e. S6, S8, and S9.  

 

 

 



 83

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

x 10
5

S1

S2

S3

S4

S5

S6

S7

S8

S9

Frequency(Hz)

N
o

rm
al

iz
ed

 v
o

lt
 (

A
rb

it
ra

ry
 u

n
it

)

A

 

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

x 10
5

S1

S2

S3

S4

S5

S6

S7

S8

S9

Frequency(Hz)

N
o

rm
al

iz
ed

 v
o

lt
 (

A
rb

it
ra

ry
 u

n
it

)

B

 
Figure 4.20:  Typical raw AE spectra for test without load: (a) Micro-80D sensor, (b) 

S9215 sensor. Free power turbine speed increases from bottom to top, with S1 recorded 
at 140 RPS and S9 recorded at 345 RPS.  

.  
Figures 4.21 and 4.22 show the demodulated spectra at a range of running speeds. Both 

sensors exhibit considerable complexity in the spectra, but share a common feature, 

which is a peak of running speed which increases with FPT running speed. However, 

the strength of this peak is not consistent, and the observed energy is obviously carried 

in a number of other frequencies as well as the running speed. 



 84

0 200 400 600 800 1000 1200 1400 1600 1800 2000
S1

S2

S3

S4

S5

S6

S7

S8

S9

Frequency(Hz)

N
o

rm
al

iz
ed

 v
o

lt 
(A

rb
itr

ar
y

 u
n

it
)

 
Figure 4.21: Typical demodulated AE spectra for test without load with Micro-80D 

sensor. Free power turbine speed increases from bottom to top, with S1 recorded at 140 
RPS and S9 recorded at 345 RPS. 
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Figure 4.22: Typical demodulated AE spectra for test without load with S9215  sensor. 
Free power turbine speed increases from bottom to top, with S1 recorded at 140 RPS 

and S9 recorded at 345 RPS. 
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4.4. Turbine operation test with load 

This test involved adding a dynamic device i.e. the alternator, to the turbine rig in order 

to study the changes in the AE behaviour when the FPT was subjected to an external 

load, increased load being reflected in a reduced speed of the FPT. In this respect, the 

signals were expected to be the most complex of the tests studied, but also those of most 

relevance to real operations. A hint of this complexity is seen in Figures 4.23 and 4.24 

where the examples of raw AE signals from two AE sensors show them all to contain 

pulses, but with little obvious pattern in time or between running speeds. Table 4.5 

shows the running speed of free power turbine of load test. 

 

  

Load test speeds Free power turbine speed (RPS) 
S1 184 
S2 206 
S3 216 
S4 231 
S5 263 
S6 275 
S7 284 
S8 301 
S9 320 

 

Table 4. 5: Free power turbine speed of load test. 
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Figure 4.23: Typical Micro-80D AE signatures (exhaust) for test with load. Free power 
turbine speed increases from bottom to top, with S1 recorded at 150 RPS and S9 

recorded at 360 RPS. 
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Figure 4.24: Typical S9215 AE signatures (shroud) for test with load. Free power 
turbine speed increases from bottom to top, with S1 recorded at 150 RPS and S9 

recorded at 360 RPS.  
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Figures 4.25 and 4.26 show the variation in AE energy with FPT speed for the two 

sensors. The most striking features of these two curves are that they are up to two orders 

of magnitude higher than the equivalent idling curves and that the curves are no longer 

monotonic, with peaks in AE energy across the range of speed studied, the speeds at 

which the peaks occur varying between the three individual tests. The energy levels 

recorded at the shroud are generally an order of magnitude lower than those recorded at 

the exhaust.  
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Figure 4.25: Micro-80D (exhaust) sensor AE energy vs. free power turbine speed for 
tests with load. 
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Figure 4.26: S9215 (shroud ) sensor AE energy vs. free power turbine speed for tests 

with load. 
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Figure 4.27 shows sample raw AE spectra, those for the exhaust again showing a 

tendency to drift towards the bottom of the analogue filter bandwidth as the speed 

increases. The S9215 spectra show one peak at around 25kHz, which slowly moves 

towards 20kHz as the speed increase with other peaks which appear and disappear with 

speed.  
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Figure 4.27:  Typical raw AE spectra for test with load: (a) Micro-80D sensor, (b) 
S9215 sensor. Free power turbine speed increases from bottom to top, with S1 recorded 

at 150 RPS and S9 recorded at 360 RPS.  
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The demodulated frequency spectra in figures 4.28 and 4.29 both show a strong series 

of peaks at the running speed frequency and its harmonics. Nevertheless, the strength of 

these is again not consistent and a number of other, sometimes equally strong, peaks are 

present.  
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Figure 4.28: Typical demodulated AE spectra for test with load with Micro-80D sensor. 
Free power turbine speed increases from bottom to top, with S1 recorded at 150 RPS 

and S9 recorded at 360 RPS. 
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Figure 4.29: Typical demodulated AE spectra for test with load with S9215 sensor. Free 
power turbine speed increases from bottom to top, with S1 recorded at 150 RPS and S9 

recorded at 360 RPS. 
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4.5. Summary 

The initial analysis of the results in this section indicate that the complexity of the AE 

signals increases with the complexity of the fluid-mechanics occurring within the free 

power turbine and its exhaust, with both sensors yielding information which changes 

with speed whilst each clearly is sensitive to different phenomena. The experiments 

with the impeller stationary are the least complex and contain the least AE energy at a 

given speed, indicating that much of the complexity and AE energy is associated with 

the rotation of the FPT impeller. The fact that the signals are not wholly continuous 

indicates a dynamic effect which potentially contains information over and above the 

mean energy level. Table 4.6 shows AE energy average for all four tests. It is clear from 

the table and the pervious energy graphs that the mean energy level is a poor indicator 

of operating conditions when the turbine is under load and this is clearly associated with 

the presence of pulses with frequencies in the range of a few tens to a few hundreds of 

Hz. In view of the complex nature of the AE patterns, the next chapter will examine the 

signals in more detail with the aid of an ANN algorithm. 
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Table 4. 6: Average AE energy for both exhaust and shroud sensors of idling and load tests. 
 
 
 
 
 
 
 
 
 
 
 
 

Idling tests Load tests 
Test1 Test2 Test3 Test2 Test2 Test3 

Energy 
(V2.S) Speed 

(RPS) 

Energy 
(V2.S) Speed 

(RPS) 

Energy 
(V2.S) Speed 

(RPS) 

Energy 
(V2.S) Speed 

(RPS) 

Energy 
(V2.S) Speed 

(RPS) 

Energy 
(V2.S) Speed 

(RPS) 
S9215 Micro-

80D S9215 Micro-
80D S9215 Micro-

80D S9215 Micro-
80D S9215 Micro-

80D S9215 Micro-
80D 

4.7E-11 1.7E-10 199 5.3E-12 4.6E-11 142 5.9E-11 6.3E-11 190 1.3E-08 1.2E-08 184 1.1E-08 1.5E-08 161 2.4E-09 2.1E-08 149 
1.5E-10 6.0E-10 224 6.1E-12 2.7E-11 170 6.5E-11 9.7E-10 206 1.0E-08 1.8E-08 206 1.3E-08 9.4E-09 186 3.2E-09 1.2E-08 160 
1.6E-10 3.4E-10 243 1.0E-11 1.2E-11 178 7.2E-11 9.0E-10 220 5.9E-08 1.7E-07 217 4.0E-08 4.3E-08 210 2.0E-09 6.0E-09 192 
2.4E-10 2.8E-10 261 3.8E-11 8.5E-11 200 8.0E-11 2.3E-10 231 2.2E-07 6.2E-07 231 8.4E-08 1.5E-07 223 8.2E-09 4.3E-08 212 
2.1E-10 5.7E-10 267 1.2E-11 4.9E-10 214 6.3E-11 2.9E-10 241 2.7E-08 1.4E-07 263 1.9E-07 5.2E-07 248 7.5E-08 3.5E-07 233 
5.2E-10 6.5E-09 292 2.7E-11 9.2E-11 238 8.1E-10 3.2E-10 250 7.3E-08 4.9E-07 276 7.2E-08 5.6E-07 270 7.3E-08 3.1E-07 248 
5.3E-10 1.7E-09 309 6.9E-11 1.4E-10 252 2.5E-09 8.7E-11 256 7.6E-08 8.4E-07 284 2.0E-07 2.3E-06 302 7.5E-08 2.7E-06 271 
4.4E-09 5.5E-09 323 9.8E-11 2.7E-10 263 3.9E-10 3.6E-10 265 2.1E-07 5.5E-07 301 3.8E-08 1.0E-06 330 1.5E-08 9.5E-07 316 
1.7E-09 5.2E-09 339 1.7E-10 1.9E-09 272 2.0E-10 3.8E-09 275 2.0E-08 1.0E-06 320 1.2E-07 4.5E-07 346 1.4E-07 1.0E-07 353 

- - - 6.4E-10 6.1E-09 285 2.2E-09 3.7E-09 284 2.4E-08 2.1E-07 358 - - - - - - 
- - - 3.3E-09 5.2E-09 301 4.8E-09 5.5E-09 294 - - - - - - - - - 
- - - 1.7E-08 2.1E-09 322 4.3E-09 3.4E-09 308 - - - - - - - - - 
- - - 8.3E-09 6.3E-09 337 7.2E-09 3.8E-09 321 - - - - - - - - - 
- - - - - - 1.5E-08 4.8E-09 333 - - - - - - - - - 
- - - - - - 1.2E-08 1.2E-08 342 - - - - - - - - - 
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Chapter 5 Analysis and discussion of normal running tests  
 
 

The foregoing chapter has shown that the evolution of AE energy with turbine running 

speed is relatively simple when the gas flow is simple, but that the energy evolutions 

become non-monotonic when the impeller is rotating and more so when the turbine is 

under load. 

 

This chapter focuses on a more detailed analysis of the two tests with a rotating 

impeller, idling and with the FPT under load. Because the AE patterns are complex, a 

pattern recognition approach has been taken based on the observations made in chapter 

4. Also, because the requirement is to understand the changing characteristics of the AE 

with normal running operating conditions the focus of the pattern recognition has been 

the turbine running speed.  

The analysis is divided into three parts, time domain processing, frequency domain 

processing and, finally, an approach that combines features from both time and 

frequency domains 

 

5.1. Time domain analysis 

As observed in chapter 4 the AE time series signals at various speeds both with and 

without load are not obviously periodic but exhibit pulses on a background continuous 

signal. Therefore a processing approach was devised, based on a categorisation of pulse 

shape, and this was applied to the idling tests. Next, a more statistical approach was 

taken, whereby a wide range of time-based features was extracted and these were tested 

using an ANN.   

5.1.1. Pulse shape categorisation 
 
Here the aim was to categorise the bursts and to describe their temporal distribution to 

examine if this was characteristic of the running conditions. To this end, AE signals 

were examined visually in the time domain and four distinct shapes of envelope were 

identified for each of the sensors/positions, Figures 5.1 and 5.2.  
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Figure 5.1: The four characteristic pulse signatures identified from Micro-80D signals. 
 
 
 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.2: The four characteristic pulse signatures identified from S9215 signals. 
 

A total of 20 examples of the positive envelope of each shape was used to train a two-

layer, log-sigmoid/log-sigmoid ANN, Figure 5.3. The first hidden layer had 40 neurons, 
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found to give consistently good training performance. The network was trained to 

produce an output structure that is a series of 4 digits containing 0 or 1, the position of 

the 1 indicating which of the four pulse types has been recognised. For example if an 

AE signature of the first kind mentioned previously is recognised, the output will be "1 

0 0 0", if the second type is recognised the output will be "0 1 0 0", and so on.  

   
 

 

 

 

 

 

 

 

Figure 5.3: Artificial neural network structure for pulse shape recognition. 
 

After training, the ANN was tested with 20 unseen signatures of each kind and figure 

5.4 shows an example of the recognition performance. Figure 5.5 shows an example 

segment of AE signal after being processed by the first ANN to give a pulse sequence 

code " 3 4 2 1", so the output code actually is describing the pattern of AE bursts at each 

speed, then the mission of next ANN is to find out whether each running condition is 

associated with a specific pulse pattern.  
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Figure 5.4: Example ANN recognition performance for AE signatures of Micro-80D 
(exhaust) for unseen signatures from idling test. 
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Figure 5.5: Sample coded signal for pulse shape recognition of Micro-80D (exhaust) 

sensor for idling test. 
 
The number of pulses in each record will change depending on the turbine speed; for 

instance, each record contains 5 pulses at a speed of 150 RPS and 8 pulses at a speed of 

300 RPS. The longer records were truncated to the first 5 pulses to build a suitable input 

to the ANN. The resulting data for both sensors for each speed of the idling test were 

divided into two equal parts, one for training and one for testing, as input to a second 

neural network whose output was the running speed. This was a feed-forward, back-

propagation ANN with two-layers. The hidden layer again used 40 neurons and a log-

sigmoid transfer function. The transfer function for the output layer was also a log-

sigmoid and the number of neurons in this layer was equal to the number of speeds to 

which the network was to be trained.  Figures 5.6 and 5.7 show the resulting 

performance, as percentage speed correct classification, for each sensor, and for the 

three individual tests and for the three tests collectively.  
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Figure 5.6: Pulse shape recognition ANN performance for Micro-80D (exhaust) data 
from idling tests. 
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Figure 5.7: Pulse shape recognition ANN performance for S9215 (shroud) data from 
idling tests. 

 

As can be seen, the performance of the pulse shape network was poor, so the input was 

improved by adding information about the time between pulses. The input codes were 

modified to include the time differences between each pulse and the network was 
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trained and tested again with the new input data. Figures 5.8 and 5.9 show that there 

was a general improvement in the performance of the updated network, but this is still 

relatively poor at around 60% correct speed classification for the individual tests and 

around 40% for the tests grouped together.  
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 Figure 5.8:  Improved pulse shape recognition ANN performance for Micro-80D 
(exhaust) data from idling tests. 
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Figure 5.9: improved pulse shape recognition ANN performance for S9215 (shroud) 

data from idling tests. 
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5.1.2. Statistical time feature classification 
 

In view of the poor performance of the pulse recognition techniques, it was decided to 

extract the maximum possible amount of information from the time domain. To this end 

a range of features; energy, maximum amplitude, counts, RMS, mean, standard 

deviation, skew, and kurtosis, were generated from the time series in the interest of 

describing the signals as fully as possible. Also, the static neural network, where the 

output is calculated directly from the input through feed-forward connections, was 

replaced with a dynamic network. The output of a dynamic network depends not only 

on the current input but also on previous inputs, outputs, or states of the network, i.e. it 

has a memory and its response at any given time depends not only on the current input 

but also on the history of the input sequence. The implementation used consisted of one 

log-sigmoid layer with 20 neurons with a feed-forward, back-propagation learning 

algorithm again with the output consisting of the running speed, one node being 

allocated to each speed used. As before, half of the data set was used to train the 

network to the measured running speed.  The network was then tested, delivering 

weights to the output nodes from which a speed classification could be obtained (most 

highly weighted output node) and an estimate of running speed (weighted mean of all 

output nodes). Figure 5.10 shows the resulting ANN performance with time domain 

features for each of the sensor records acquired on the running turbine with and without 

load. As before, the ANN was applied to the data from the three individual tests and 

again on data from the three tests mixed together. The performance figure is the 

percentage of times that a test speed is correctly classified.               
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Figure 5.10: ANN classification performance using all statistical time features: (a) 

S9215 sensor, idling tests, (b) Micro-80D sensor, idling tests, (c) S9215 sensor, load 
tests, (d) Micro-80D sensor, load tests. 

 
 
Figure 5.10 shows good performance for the individual tests, but poorer performance 

for the collected data. Figures 5.11 to 5.13 show the weighted output of the ANN 

compared with the measured turbine speed. The weighted output provides an estimate 

of the speed which takes account of the weights of each output neuron (as opposed to 

the value at maximum weight, i.e. the classification). The red points on the graphs 

represent the actual running speed whereas the blue points represent the estimated 

running speed. Presentation of the data in this form allows a number of additional 

observations, such as the generally higher level of certainty in the load tests and the 

tendency to over-estimate the actual speed when all tests are grouped.  
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Figure 5.11: ANN speed estimate error for S9215 sensor idling test. 
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Figure 5.12: ANN speed estimate error for Micro-80D sensor on idling test. 
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Figure 5.13: ANN speed estimate error for S9215 sensor on load test. 
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Figure 5.14: ANN speed estimate error for Micro-80D sensor on load test. 

 
 
Although the ANN performance for individual tests with all time features was over 

75%, the features driving that performance were not yet known. Accordingly, the ANN 
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was trained and tested with each individual time feature in order to identify the most 

efficient time features in pattern recognition. Figures 5.15 and 5.16 show the resulting 

ANN performance and show two clear groups, those with high discriminating power 

(STD, RMS, Max amp, Counts, and  Energy), and those with low discriminating power 

group (Skew, Kurtosis and Mean). 

 

Energy Counts Max Amp RMS Mean STD Skew Kurt
0

20

40

60

80

100
(a)

A
N

N
 P

er
fo

rm
an

ce
(%

)

 

 

Energy Counts Max Amp RMS Mean STD Skew Kurt
0

20

40

60

80

100
(b)

A
N

N
 P

er
fo

rm
an

ce
(%

)

 

 

Test 1
Test 2
Test 3
All test

Test 1
Test 2
Test 3
All test

 
 

Figure 5.15: ANN performance for individual time features derived from idling test: (a) 
S9215 sensor,(b) Micro-80D sensor. 

Energy Counts Max Amp RMS Mean STD Skew Kurt
0

20

40

60

80

100
(a)

A
N

N
 P

e
rf

o
rm

a
n

c
e

(%
)

 

 

Energy Counts Max Amp RMS Mean STD Skew Kurt
0

20

40

60

80

100
(b)

A
N

N
 P

e
rf

o
rm

a
n

c
e

(%
)

 

 

Test 1
Test 2
Test 3
All Test

Test 1
Test 2
Test 3
All test

 

Figure 5.16: ANN performance for individual time features derived from without load 
test: (a) S9215 sensor,(b) Micro-80D sensor. 
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Figures 5.17 and 5.18 show the cumulative effect on ANN performance of time 

features, sorted in order of strongest discriminating power for each sensor at each test. 

The features of the strongest discriminating power, i.e. STD and RMS, appear in figures 

5.17 and 5.18 as features 1 and 2. On the other hand, the features of less discriminating 

power, i.e. Max amp, Counts, or Energy appear as 3, 4 or 5 in figures 5.17 and 5.18. 

Finally, features of the least discriminating power, i.e. Skew, Kurtosis and Mean appear 

as 6, 7, or 8 in figures 5.17 and 5.18. For the individual tests, improvement is slow with 

added features, and sometimes deteriorates. For the collective tests, steady improvement 

is obtained, at least up to six features.  
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Figure 5.17:  Cumulative ANN performance for time features in idling test: (a) S9215 

sensor, (b) Micro-80D sensor. 
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Figure 5.18: Cumulative ANN performance for time features in load test: (a) S9215 

sensor, (b) Micro-80D sensor. 

5.2. Frequency domain analysis 
 

In chapter 4, it was seen that few systematic changes in raw AE frequency content could 

be discerned in the data set as a whole. Also, a number of characteristic frequencies 

(including the turbine running speed) were visible in the demodulated spectra. It was 

therefore expected that the demodulated spectra would be more likely to produce 

information indicative of operating conditions of the turbine, although the raw spectra 

were also subjected to some initial pattern-recognition analysis. 
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5.2.1. Raw frequency classification 

On the basis of an examination of figures 4.19 and 4.26, five features were extracted 

from the raw frequency domain: (a) the ratio of the energies in a low frequency band 

(100-200 kHz) to a high frequency band (300-450kHz), (b) the standard deviation of the 

spectrum, (c) the maximum amplitude of the spectrum, (d) the frequency at maximum 

amplitude, and (e) the frequency skewness. Values of these frequency features from the 

idling tests were split into two equal parts, as before, and the network trained to 

recognize the running speed, performance being measured by the proportion of correct 

classifications in the test set. Figure 5.19 shows the classification performance for both 

the Micro-80D and S9215 sensors. As expected, this shows a relatively poor 

classification for both sensors.  
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Figure 5.19: ANN performance for without load tests of frequency features (a) Micro-

80D sensor performance (b) S9215 sensor performance. 
 

5.2.2. Demodulated frequency spectra 
 

Figures 5.20 and 5.21 show all of the demodulated spectra recorded in the idling tests 

for the exhaust-mounted sensor and the shroud-mounted sensor, respectively. All 

spectra were normalised to the energy content to facilitate comparison and averaging 

and avoid the complication of including the energy or amplitude of the signal which is 

the subject of the analysis in the previous section. Each of the independent sample 

spectra are shown in blue and the averaged spectra are shown as heavy red dotted lines. 
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As can be seen, many of the averaged spectra show a clear peak at the running speed 

(arrowed in Figures 5.20 and 5.21), and, less often, the first harmonic of the running 

speed. However, the running speed is rarely the dominant peak in the spectrum and, in 

cases where its peak is weak or absent, the individual spectra which make up the 

average often contain strong peaks at a very wide range of frequencies. Many of the 

exhaust spectra contain a strong peak at around 110Hz, sometimes associated with 

peaks either side at around 40Hz and 165Hz. The 110Hz peak tends to be more strongly 

exhibited at the exhaust, whereas the running speed peaks tend to be more strongly 

exhibited at the shroud. 
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Figure 5.20: Demodulated spectra for idling test with Micro-80D sensor at 8 different 
speeds of FPT. Individual spectra shown in blue and averaged spectra shown in red. 
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Figure 5.21:Demodulated spectra for idling test with S9215 sensor at 8 different speeds 
of FPT. Individual spectra shown in blue and averaged spectra shown in red. 

 
Figures 5.22 and 5.23 show the demodulated frequency spectra for the Micro-80D 

sensor and the S2910 sensor for the load tests. As for the idling tests, the running speed 

is not always present in the spectrum, although it is generally more strongly represented 

in the load tests than in the idling tests. In the cases where the running speed cannot be 

discerned, it is possibly obscured by broad-band noise at the lower end of the spectrum 

which affects both the exhaust and the shroud sensors at the lowest and the highest 

speeds. The 100Hz peak observed in the idling tests does not seem to be present in the 
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load tests. It is also clear that the high AE energy of exhaust sensor at speeds 230, and 

263 rps “figure 4.25 test 1” is associated with more spectral peaks of running speed. The 

same observation has been noticed with shroud sensor at speeds 230, 263,286,and 300 

rps “figure 4.26 test1”. 
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Figure 5.22: Demodulated spectra for load test with Micro-80D sensor at 8 different 
speeds of FPT. Individual spectra shown in blue and averaged spectra shown in red. 
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Figure 5.23: Demodulated spectra for load test with S9215 sensor at 8 different speeds 

of FPT. Individual spectra shown in blue and averaged spectra shown in red. 
 

5.2.3. Demodulated frequency domain feature classification 
 

To provide a complementary analysis to that presented in section 5.1.2, a set of features 

were generated from the demodulated frequency analysis as input to an ANN with the 

same specification as for the analysis based on time features.  The features were 

selected to employ as much of the information seen in Figures 5.20 to 5.23 as possible 

without the computational burden of using the entire spectrum as input to the ANN. 

Across the 20 records at each speed in each experiment the ten highest amplitude 
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frequencies were first identified and the energies and the frequencies of the five 

commonest frequencies used as input to the ANN. As before, half of the data set was 

used to train the network to the measured running speed and the network was then 

tested, delivering weights to the output nodes from which a speed classification and an 

estimate of running speed could be obtained. Figure 5.24 shows the ANN classification 

performance to be superior to that using time-based features (Figure 5.10) with 

classification being better than 90% for all individual tests and over 80% for the 

grouped data. Figures 5.25 to 5.28 show the ANN speed error which, compared with the 

time-based assessment, exhibits a very high level of certainty for most of the 

classifications, the performance of the Micro-80D sensor being generally better than the 

S2910. The relatively poor performance on the grouped data for the S92105 sensor on 

the load tests can be seen to be confined to a few records where the speed estimate is 

well away from the actual. 
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Figure 5. 24: (a) S9215 without load tests, (b) Micro-80D sensor without load tests, (c) 
S9215 sensor with load tests, (d) Micro-80D sensor with load tests. 
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Figure 5.25: ANN speed estimate error for S9215 sensor on idling test. 
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Figure 5.26: ANN speed estimate error for Micro-80D sensor on idling test. 
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Figure 5.27 : ANN speed estimate error for S9215 sensor on load test. 
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Figure 5.28: ANN speed estimate error for Micro-80D sensor on load test. 
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5.3. Analysis combining time features and demodulated 

frequency features 

 

Because it relies on the energy of the signal, the statistical time-based analysis suffers 

from two potential drawbacks. Firstly, calibration of the sensors is required on every 

application as the energy will depend on many factors not related to the running 

condition, not the least of them being the source-sensor distance and the quality of the 

coupling. Secondly, the statistical time-based ANN is probably doing little more than a 

multi-point fit to curves such as in figure 4.25, and this is why it is susceptible to 

changes in the positions of peaks in the repeat tests. On the other hand, although the 

frequency-based analysis can clearly identify instabilities in the same evolutions, it is 

not able to detect the clear (albeit weaker) trends in stable regimes, such as that shown 

in figure 4.10. 

 

Therefore, this section seeks to combine the strengths of the time-based analysis with 

the frequency-based analysis to obtain a better understanding of the sources of AE in the 

tests and how these might be used to produce a model for normal running of the turbine. 

 

 

5.3.1. Pulse shape recognition combined with frequency features 
 

The pulse shape recognition network, although it shows poor performance, has the 

potential advantage over the statistical one in that it is not amplitude-dependent and the 

pulse-space approach also encodes some non-periodic frequency information. Figure 

5.29 shows the effect of combining the pulse shape recognitions with raw AE features 

and, clearly, the performance is only marginally better than the pulse shape recognition 

alone, and poorer than the raw AE feature performance. The pulse-space approach 

achieves its best performance when it is combined with demodulated frequency 

approach to perform up to 90% for both sensors (figure 5.30).  
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Figure 5.29:  Pulse shape recognition ANN performance for idling tests including raw 
frequency features (a) Micro-80D sensor performance (b) S9215 sensor performance. 
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Figure 5. 30:  Pulse shape recognition ANN performance for idling tests including 

demodulated frequency features (a) Micro-80D sensor performance (b) S9215 sensor 
performance. 
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5.3.2. Statistical time features combined with demodulated 

frequency features 

 

As can be seen from figures 5.10 and 5.24, speed classification based on statistical time 

features and demodulated frequency features both give good performance (75%-90% 

classification success) for both sensors in the idling and load tests, when the tests are 

considered separately. However, for both feature sets, the performance drops to between 

70% and 80% when the tests are grouped together, suggesting that the network is 

training to a particular curve shape rather than particular behaviour reflected in the AE 

signal. Figure 5.31 shows the ANN performance for the running turbine with and 

without load when both the statistical time features and the demodulated frequency 

features are used together. As can be seen, the success for the individual tests has 

improved to almost 100% and the success when the tests are treated as a group has risen 

to around 90%. Figures 5.32 to 5.35 show the corresponding ANN error and, again, it 

can be seen that the confidence of classification is very high and the predicted speed is 

very close to the actual speed in all records except for three in the grouped load tests for 

the S9215 sensor.   
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Figure 5.31: ANN performance with time and frequency features: (a) S9215 sensor 

without load tests, (b) Micro-80D sensor without load tests, (c) S9215 sensor with load 
tests, (d) Micro-80D sensor with load tests. 
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Figure 5.32: ANN error for S9215 sensor during without load test. 
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Figure 5.33: ANN error for Micro-80D sensor during without load test. 
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Figure 5.34: ANN error for S9215 sensor during with load test. 
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Figure 5.35: ANN error for Micro-80D sensor during with load test. 
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5.4. Discussion of AE sources in the running turbine 
 

Chapter 4 illustrated that the AE generated in a gas turbine has two components; a 

background broad band source, probably due to the turbulent gas flow through various 

parts of the turbine, plus some peaks whose speed position varies a bit between tests, 

and which are associated with peaks in the demodulated frequency spectrum.  

 

The background AE energy increases smoothly with speed and, on the basis of other 

work on flow in confined spaces in machinery, it would be expected that the energy of 

such a source would depend on the nature of the fluid, the flow rate and the size(s) of 

any orifice(s) in the flow [124, 125]. Also, it would be expected that such sources, if 

localized, would be able to be traced to certain zones within the machine [17, 126].  

 

The analysis in Chapter 5 has shown that this background energy associated with gas 

flow begins to become modulated when the impeller is rotating and, at higher speeds, 

there are a number of spectral peaks in the 20-1000Hz range. These spectral peaks 

disrupt the smooth evolution of energy vs running speed and the peaks in the energy 

curve, as well as the speed at which certain spectral peaks appear, are not precisely 

reproducible in repeat tests. However, as shown by the ANN analysis, the behavior of 

the turbine can be characterized by a combination of the energy within those spectral 

peaks bands and the overall energy. Potential sources of the spectral peaks are; the 

combustion chamber, the impeller, the exhaust, and feedback between the alternator and 

the impeller under load. For the same running speed, the AE signature for the loaded 

and idling conditions is different and, for the same test, the behaviour recorded at the 

exhaust-mounted and shroud-mounted sensors is different. This section is devoted to 

trying to understand these patterns in terms of the sources of AE within the turbine. 

 

The first stage is to separate the two components of the signal in a systematic way.  The 

“spectral peaks energy” in each record, identified as the total energy in the five highest 

peaks of the demodulated frequency spectrum (which typically accounts for 80% of 

spectral peaks energy) was subtracted from the total energy to leave the background.  

Figures 5.36 to 5.38 show the spectral peaks energy removal for each of the repeats of 

each of the tests.  In each figure, the black curves in the first three graphs show the best 

exponential fit to the energy after removing the spectral peaks energy for each repeat 



 120

and the last graph shows the best fit lines for the three tests for each sensor location with 

and without load. 

 

100 150 200 250 300 350
0

0.5

1

1.5

2
x 10

-3

FPT Speed(RPS)

E
n

er
g

y(
V

.s
)

Test 1

 

 

100 150 200 250 300 350
0

0.002

0.004

0.006

0.008

0.01

FPT Speed(RPS)

E
n

er
g

y(
V

.s
)

Test 2

 

 

100 150 200 250 300 350
0

1

2

3

4

5

6
x 10

-3

FPT Speed(RPS)

E
n

er
g

y(
V

.s
)

Test 3

 

 

100 150 200 250 300 350

2

4

6

8

10

12

x 10
-4

FPT Speed(RPS)

E
n

er
g

y(
V

.s
)

All Test

 

 
Fit 1

Fit 2
Fit 3

 

Figure 5.36: Shroud sensor spectral peaks energy removal for idling tests. (Blue points 
before removing energy and the red points after) 
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Figure 5.37: Exhaust sensor spectral peaks energy removal idling tests. (Blue points 
before removing energy and the red points after) 
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Figure 5.38: Shroud sensor spectral peaks removal load tests. (Blue points before 
removing energy and the red points after) 
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Figure 5.39: Exhaust sensor spectral peaks removal load tests. (Blue points before 
removing energy and the red points after) 

 
 

The background AE energy thus obtained from the idling test is compared with the 

background energy for the static impeller tests (jammed impeller, without impeller) in 

Figures 5.40 and 5.41, re-plotted against the combustion gas flow rate through the 

turbine. It is clear that the AE energy is mainly correlated with gas flow resistance, 

where it is lowest for the test without an impeller where the resistance to gas flow 
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through the turbine shroud is at its lowest, becomes higher for the jammed impeller tests 

where the gas has to pass through the orifices represented by the blades and vanes, and 

is at its highest when the gas flow passes through the rotating blades. It might be noted 

that, for a given gas flow rate, the differences between the AE energies associated with 

the three configurations are larger for the shroud sensor than for the exhaust sensor. 
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Figure 5. 40: Shroud sensor background AE energy for idling, jammed, without 

impeller tests.   
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Figure 5.41: Exhaust sensor background AE energy for idling, jammed, without 
impeller tests.   
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The background AE energy for the idling test is compared with the background energy 

for the load test in Figures 5.42 and 5.43, in this case plotted against free power turbine 

speed. At a given speed, the load test contains more background AE energy only for the 

exhaust sensor; for the shroud sensor the background is, if anything higher for the idling 

test. At a given FPT speed, this suggests that loading results in a reduced background 

flow noise associated with the blades, and an increased flow noise associated with the 

exhaust. 
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Figure 5.42: Shroud sensor background AE energy for idling and load tests.   
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Figure 5.43: Exhaust sensor background AE energy for idling and load tests.   
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In order to identify the energy not accounted for in Figures 5.42 and 5.43, the five 

highest energy spectral peaks frequencies were classified into five categories; the band 

from 20-100 Hz, the band from 100-200 Hz, the frequency corresponding to the running 

speed, the first harmonic of the running speed, and a frequency corresponding to 0.65-

0.7 times the gas generator running speed. Figures 5.44 to 5.46 show the fraction of the 

total spectral peaks energy in each category for the shroud sensor for the idling tests. It 

can be seen here that none of the fractions change monotonically with turbine speed and 

that the energy fraction at the running speed frequency is almost always the highest. The 

20-100 Hz and 100-200 Hz bands occupy a significant proportion of the total spectral 

energy at all turbine speeds.  

 

 

Figure 5.44: Shroud sensor energy fraction of spectral peaks frequencies for idling test1. 
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Figure 5.45: Shroud sensor energy fraction of spectral peaks frequencies of idling test2. 
 

 

Figure 5.46: Shroud sensor energy fraction of spectral peaks frequencies of idling test3. 
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Figures 5.47 to 5.49 show the energy fractions for the exhaust sensor for the idling tests. 

The running speed frequency still has the highest proportion of spectral energy at all 

turbine speeds and the 20-100 Hz and 100-200 Hz bands seem to be higher than those 

for the shroud sensor for idling tests. 0.7 GG frequency has higher proportion of energy 

at lower speed of gas turbine than that of higher turbine speeds.   

 
Figure 5.47: Exhaust sensor energy fraction of spectral peaks frequencies of idling test1. 

 
 
Figure 5.48: Exhaust sensor energy fraction of spectral peaks frequencies of idling test2. 
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Figure 5.49: Exhaust sensor energy fraction of spectral peaks frequencies of idling test3. 
 

 

 

Figure 5.50 to 5.55 show the energy fraction of spectral peaks frequencies of both 

shroud and exhaust sensors for the load tests. The observations are similar to those 

for the idling tests for both sensors with the running speed frequency having the 

highest energy proportion and the 20 -100 Hz and 100-200 Hz bands being stronger 

and higher with the exhaust sensor than the shroud sensor. In the load tests the 

running speed frequency and its harmonics are generally stronger than that in the 

idling tests for both sensors and the 0.7 GG frequency is absent amongst the five 

highest energy bands.   
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Figure 5.50: Shroud sensor energy fraction of spectral peaks frequencies for load test1. 

 

 

 

Figure 5.51: Shroud sensor energy fraction of spectral peaks frequencies for load test2. 
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Figure 5.52: Shroud sensor energy fraction of spectral peaks frequencies for load test3. 
 
 
 
 

 
Figure 5.53: Exhaust sensor energy fraction of spectral peaks frequencies for load test1. 
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Figure 5.54: Exhaust sensor energy fraction of spectral peaks frequencies for load test2. 
 
 
 
 
 
 

 
Figure 5.55: Exhaust sensor energy fraction of spectral peaks frequencies for load test3. 
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Figure 5.56: Schematic of gas turbine exhaust system. 
 

Figure 5.56 shows a schematic diagram of the turbine exhaust, which consists of two 

pipes of 100 mm and 300 mm diameter and length1.69 m and 4.15 m, respectively. The 

temperature of the exhaust gases varies between 400 and 530°C for the load and idling 

tests, respectively, and the speed of sound, c (ms-1), in each tube can be calculated from: 

 

M

RT
c

g
=                                                                          (5.1) 

where 

γ is the adiabatic index of the gas 

R is the molar gas constant (Jmol−1K−1). 

T is the absolute temperature (K) 

M is the molar mass (kgmol−1) 

 

The reverberation frequency, f (Hz), in the tube can be estimated from:  

N
L
c

f
2

=                                                                      (5.2) 

where 

N = 1,2,3,….. 

L is the length of the tube (m)  

 

From equation 5.2 the reverberation frequency in the smaller diameter pipe can be 

estimated to be between 100 and 200 Hz, and, in the larger diameter pipe between 20 
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and 100 Hz. This suggests that the energy in the 20-100 Hz and 100-200 Hz bands are 

associated with exhaust reverberations and explains why these are expressed more 

strongly in the exhaust sensor than the shroud sensor for both load and idling tests.  

 

For the idling tests, the running speed frequency and its harmonics seem to be more 

strongly expressed at specific turbine speeds and examination of these speeds has 

shown them to be coincident with the first harmonic of the reverberation frequency of 

the small diameter exhaust pipe, suggesting that the reverberation frequency is powering 

the running speed frequency in the turbine. On the other hand the higher energy 

associated with the running speed frequency and its harmonics in the load tests indicates 

that the spectral peaks here are dominated by feedback between the turbine impeller and 

alternator. Table 5.1 and table 5.2 show running speeds, exhaust temperatures, and 

reverberation frequencies of exhaust1 and exhaust 2.     

 
 

Idling test 
Turbine speed 

(RPS) 
Exhaust 

temperature(C0) 
Exhaust sound 
speed (m/s) 

Exhaust1 
frequency(HZ) 

Exhaust2 
frequency(HZ) 

190 420 521 156.0 63.5 
206 430 525 157.1 64.0 
220 435 526 157.6 64.2 
231 440 528 158.1 64.4 
241 445 530 158.6 64.6 
250 450 530 158.6 64.6 
256 455 531 159.1 64.8 
265 460 535 160.2 65.2 
275 465 535 160.2 65.2 
284 470 535 160.1 65.2 
294 475 537 160.7 65.4 
308 480 537 160.6 65.4 
321 485 538 161.2 65.6 
333 495 538 161.2 65.6 
342 505 541 162.1 66.0 

 
 

Table 5. 1: Thermo features of idling test. 
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Load test 
Turbine speed 

(RPS) 
Exhaust 

temperature(C0) 
Exhaust sound 
speed (m/s) 

Exhaust1 
frequency(HZ) 

Exhaust2 
frequency(HZ) 

184 520 555 164.1 66.8 
206 520 555 164.1 66.8 
216 520 555 164.1 66.8 
231 520 555 164.1 66.8 
263 520 555 164.1 66.8 
275 520 555 164.1 66.8 
284 520 555 164.1 66.8 
301 520 555 164.1 66.8 
320 520 555 164.1 66.8 
359 520 555 164.1 66.8 

 
 

Table 5. 2: Thermo features of load test. 
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Chapter 6: Faulty impeller condition monitoring tests 
 
 
 
This chapter describes, analyses and discusses the results of the tests carried out on the 

turbine with an impeller which had been damaged by removal of the tips of some of the 

vanes. The tests were carried out with the same sensor positioning as the load tests 

whose results were described in chapter 4 and analysed in chapter 5. The defective 

impeller tests were also carried out in the same way, i.e. the speed being varied by gas 

and air flow. 

 

The results are first described for each of the degrees of damage (two damaged blades 

and four damaged blades) in comparison with the tests with undamaged blades. Finally 

the results are analysed against the background of the findings of chapter 5 to assess 

how impeller damage in the FPT can be detected against the already complex pattern of 

AE generated in normal operation.   

 

6.1. Results of tests with two damaged blades 
 

Figures 6.1 to 6.9 show the results in a form that can be compared to figures 4.16-4.22. 

Figures 6.1 and 6.2 show samples of scaled AE signals from the two sensors at nine 

different speeds of the FPT along the corresponding signal envelopes. Compared with 

the corresponding examples in figures 4.16 and 4.17 these signals show a much higher 

density of sharp rise-time pulses, especially for the shroud-mounted sensor, indicating a 

significant effect in the FPT. The most striking difference, however, is that the signal 

recorded at the shroud becomes distinctly periodic at higher speeds.  
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Figure 6.1: Typical Micro-80D AE signatures (exhaust) for test with two damaged 
blades. Free power turbine speed increases from bottom to top, with S1 recorded at 95 

RPS and S9 recorded at 325 RPS. 
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Figure 6.2:  Typical S9215 AE signatures (shroud) for test with two damaged blades. 
Free power turbine speed increases from bottom to top, with S1 recorded at 95 RPS and 

S9 recorded at 325 RPS. 
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Figure 6.3: Micro-80D (exhaust) sensor AE energy vs. free power turbine speed for test 
with two damaged blades. 

 
Figure 6.3 shows the AE energy evolution with speed for the exhaust-mounted sensor 

compared with the corresponding evolution for the normal running condition. The AE 

energy level is around a factor of 10 times higher for the damaged impeller. 

Furthermore, the exhaust-mounted sensor records a monotonic increase in AE energy 

with speed, although the highest speed points begin to show the characteristics of 

energy variability of the signal. Figure 6.4 shows energy recorded at the shroud-mounted 

sensor to be about 100 times higher than that of the equivalent normal running test. 
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Figure 6.4: S9215 (shroud) sensor AE energy vs. free power turbine speed for test with 

two damaged blades. 
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Figure 6.5 shows raw AE spectra at nine different speeds for the impeller with two 

damaged blades. Figure 6.5 (a) shows no change in the raw AE spectrum with running 

speed for the exhaust-mounted sensor, not dissimilar to the situation for the normal 

running condition. Also, there is little apparent difference between the normal condition 

and condition with the defective impeller.  For the shroud-mounted sensor, the main 

30kHz activity reduces gradually in frequency as the speed increases, as is the case for 

the undamaged impeller (Figure 4.20). There is a distinct change in the raw AE 

spectrum at the two highest speeds, with some lower frequency (around 10-20kHz) 

activity appearing, and some activity at around 50kHz at some intermediate speeds.  

These secondary bands do not present in the normal running condition (Figure 4.20), 

although in neither case is there a clear pattern associated with these frequencies. It 

seems, therefore that the raw AE spectrum is not likely to be a strong indicator of 

impeller damage.  
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Figure 6.5: Typical raw AE spectra for test with two damaged blades: (a) Micro-80D 
sensor, (b) S9215 sensor. Free power turbine speed increases from bottom to top, with 

S1 recorded at 95 RPS and S9 recorded at 325 RPS. 
 
 
Figure 6.6 shows the demodulated frequency analysis for the exhaust-mounted sensor, 

and these clearly lack the strong spectral peaks observed at low speed for the normal 

running condition (Figure 5.20). At higher speeds, however, spectral peaks at multiples 

of half the running speed begin to appear.  
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Figure 6.6: Demodulated spectra for test with two damaged blades with Micro-80D 
sensor at 8 different speeds of FPT.  
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Figure 6.7 : Demodulated spectra for test with two damaged blades with S9215 sensor 

at 8 different speeds of FPT. 
 
Figure 6.7 shows the demodulated frequency analysis of the shroud-mounted sensor. As 

for the normal running condition (Figure 5.21), strong spectral peaks are present at the 

running speed in many instances but, unlike the normal condition, very strong 

harmonics of the running speed are present and, in some cases, harmonics at half the 

running speeds are displayed. 
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6.2. Results of tests with four damaged blades 
 
Figures 6.8, 9, 10 and 11 to 6.13 show a summary of the energy and demodulated 

frequency analyses for the test with four damaged blades and can be compared directly 

with Figures 6.3, 6.4, 6.5 and 6.7.   
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Figure 6.8: Typical Micro-80D AE signatures (exhaust) for test with four damaged 
blades. Free power turbine speed increases from bottom to top, with S1 recorded at 110 

RPS and S8 recorded at 385 RPS. 
 
Comparing figures 6.9 and 6.3 shows the AE energy recorded at the exhaust-mounted 

sensor to be about a factor of two less than that of the test with two damaged blades. 

The test with four damaged blades, however, shows variability in AE energy between 

300 and 350 rps, which is absent in the test with two damaged blades.  The shroud-

mounted sensor, on the other hand (Figure 6.10) records a rather similar level and 

evolution of energy to the tests with two damaged blades (Figure 6.4).  
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Figure 6.9: Micro-80D (exhaust) sensor AE energy vs. free power turbine speed for test 

with four damaged blades. 
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Figure 6.10: S9215 (shroud) sensor AE energy vs. free power turbine speed for test with 
four damaged blades. 
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Figure 6.11: Typical raw AE spectra for test with four damaged blades: (a) Micro-80D 
sensor, (b) S9215 sensor. Free power turbine speed increases from bottom to top, with 

S1 recorded at 110 RPS and S8 recorded at 385 RPS. 
 
Figure 6.12, like figure 6.6, exhibits a fairly broad demodulated frequency spectrum at 

most running speeds. The energy at 358 rps is associated with peaks at the running 

speed and at its harmonics, with odd harmonics (1, 3, 5) being significantly stronger 

than even ones.  This is in contrast to the patterns recorded at higher speeds on the 

exhaust with the two damaged blades where the spectrum is considerably less sharp, 

and contains harmonics at half the running speed. The shroud-mounted sensor (Figure 

6.13) shows a similar demodulated spectrum pattern to the exhaust-mounted sensor for 
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the four damaged blades (Figure 6.12) and again contrasts with the equivalent for the 

two damaged blades (Figure 6.7) in not exhibiting harmonics at half the running speed.  
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Figure 6.12:  Demodulated spectra for test with four damaged blades with Micro-80D 
sensor at 8 different speeds of FPT. 
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Figure 6.13: Demodulated spectra for test with four damaged blades with S9215 sensor 
at 8 different speeds of FPT.  
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6.3. Discussion of damaged impeller tests 
 

The previous sections confirm that damaged blades produce characteristic AE patterns 

at some speeds, visible in the demodulated frequency domain. These patterns could 

form the basis of a diagnostic system involving running the turbine through a range of 

speeds to observe whether the pattern is excited. An example of such “tuning” can be 

seen in figure 6.7, where, as the turbine speed goes towards the maximum of 320rps, the 

spectral peaks pattern approaches its full expression. The corresponding effect occurs 

over a narrower range of about 350rps for the impeller with four damaged blades. 

 

Figure 6.14 shows an AE signature recorded on the shroud during the test where the 

impeller has two damaged blades. The record has been chosen as one where the 

characteristic spectral peaks are excited and, as well as the raw signal, the RMS 

(averaging time of 0.03 ms) is shown along with the shaft encoder signal. As can be 

seen, the time series exhibits a series of pulses, one per cycle, and the intensity of these 

pulses alternates between cycles of the turbine. Figure 6.15 shows the corresponding 

demodulated frequency analysis which exhibits two harmonic series, one at the running 

speed and one at half the running speed. Such a pattern is typical of a train with two 

unequally-sized, but symmetrically distributed, pulses per cycle Thakkar et al [127] and 

the two-cycle repeat time of the pulse pair explains why a harmonic series at half the 

running speed occurs. 
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Figure 6. 14:  AE signature recorded on shroud for test with two damaged blades. 
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Figure 6.15: Demodulated frequency graph from shroud AE signature for test with two 

damaged blades. 
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Figure 6.16 shows the AE signature of the impeller with four damaged blades, again at a 

speed where the characteristic spectral peaks pattern is exhibited, but this time for the 

exhaust-mounted sensor. Like the signal with two damaged blades the signal is 

pulsatile, although this time there are two pulses per cycle and these are of 

approximately the same height within and between cycles. Furthermore, the pulses are 

unequally spaced. The pattern is also a little less clear than in figure 6.14.  Figure 6.17 

shows the corresponding demodulated frequency analysis with the dashed line tracing 

the heights of the harmonics of the running speed, which can be seen to be roughly 

sinusoidal in its shape. Again, such patterns are predictable Thakkar et al [127] and an 

appropriate spectral analysis can therefore yield information on the pulse distribution. 
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Figure 6.16:  AE signature recorded on exhaust for test with four damaged blades. 
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Figure 6.17: Demodulated frequency graph for exhaust AE signature for test with four 

damaged blades. 
 

 
 
What remains to be understood is why the particular defects yield such characteristic 

patterns, but this is not a matter that can simply be resolved with the measurements that 

have been made here. A systematic study would require a range of defects of different 

sizes and distributions to be studied. 
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Chapter 7 Conclusion and future work 
 

In this work three types of experiments have been conducted, AE propagation and 

calibration tests, AE monitoring of a healthy gas turbine under various operating 

conditions, and AE diagnosis of a gas turbine with simulated impeller faults. The AE 

propagation and calibration studies were essentially enabling tests to determine the 

characteristics of AE propagation on the experimental gas turbine although they have 

some generic value in assessing possible monitoring strategies for industrial scale 

machines. The most significant contributions come from the understanding of how AE 

is generated in gas turbines and how it might be used to monitor operating conditions 

and detect blade faults. The main conclusions of the research are listed below, followed by 

recommendations for future work. 

7.1. Conclusions: 
 

Sensor calibration: 

 

1. The remounting and the repositioning of the AE sensors result in a variation in 

the recorded AE energy for a pencil lead break source in a range of 10-45% and, 

on a simple steel block, there is no other significant source of variation. 

2. The turbine surface temperature affects the response of both AE sensors used; 

the S9215 sensor on the turbine shroud is more sensitive at higher temperatures, 

whereas the Micro-80D is less sensitive at higher temperatures. 

3. Both of these findings have practical implications for sensor placement on 

industrial turbines and, importantly, indicate that trending using amplitude-based 

features will be difficult. 

 

Propagation on gas turbine 

 

1. In many parts of the machine, AE energy can be described as decaying 

exponentially with increasing source-sensor distance. 

2. Structural details and complications such as geometrical boundaries, webs, and 

discontinuities have a considerable effect on the AE propagation causing a step 

change in transmitted AE energy, attributed to leakage and reflection. 

3. The AE energy in a field close to the source position (up to 0.04 m) has a high 

variability due to the complex nature of near-field waves. 
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4. As expected, the shroud mounted sensor monitors AE emanating from the 

turbine impeller better than the exhaust mounted sensor and vice versa.    

 

Configuration tests: 

 

1. The experiments without an impeller and with the jammed impeller 

demonstrated a smooth evolution of AE energy with GGT speed. On the other 

hand the experiments with a rotating impeller with and without load exhibited 

complex AE energy against running speed and much higher levels of AE energy. 

Thus the rotation of the turbine impeller has a significant influence on the AE 

generated. 

2. The general AE energy level increases with gas flow rate and with the 

complexity of flow in turbine shroud, being lowest when the impeller is absent 

and highest for the turbine running under load.  

3. Whereas the AE energy level increases with turbine speed and can be curve-fit 

reasonably reproducibly, this does not, in itself, provide an explanation for the 

AE sources. 

4. The AE records contain structural information such as pulses in the time series 

and information in the frequency domain, but the patterns with running speed 

are too complex to be elucidated by inspection. 

 

Identification of operating condition in normal running. 

 

1. Artificial neural networks can be used with time domain features to recognize 

the complex AE pattern associated with gas turbine running speed. Using eight 

time features the percentage of correct speed classification was 70-80%, and two 

of the time features, the RMS and the standard deviation of the raw AE gave 

performance at the 65-85% level on their own.  

2. Artificial neural network performance using only demodulated frequency 

features was better than that of the time features alone, but the combination of 

frequency features and time features results in the best ANN recognition 

performance, up to 99%. 

3. Using pulse-shape recognition features in combination with demodulated 

frequency features gave a performance of around 90%. Whereas this is not the 



 152

best performance, features of this type are not prone to shifts in calibration as 

they are not amplitude-dependent.   

4. On the basis of the analysis, two types of AE source were recognized in the gas 

turbine. The first is a continuous background associated with gas flow through 

the turbine which increased in intensity with turbine speed. The second source is 

a pattern of spectral peaks emanating from different zones in the gas turbine and 

identified as gas reverberation in the exhaust, and feedback between the impeller 

and alternator. 

  

Faulty impeller tests.   

 

1. At specific ranges of running speed, the two kinds of damaged blades have 

clearly different AE signatures and could be distinguished from normal running 

in their general energy level and the pattern of spectral peaks in the demodulated 

signal. 

2. The impeller with two damaged blades produced one pulse per revolution in the 

RMS record whose amplitude alternated between high and low in consecutive 

cycles. The impeller with four damaged blades produced two similar pulses per 

cycle. 

3. Demodulated frequency analysis of the damaged impeller tests provided some 

insight into how the two defects might be detected in practice. The demodulated 

frequency domain of the impeller with two damaged blades contains two 

harmonic series, one with FPT speed as its fundamental, the harmonics 

decreasing smoothly with frequency. The other series has half of the running 

speed as its fundamental frequency with the amplitude of the harmonics 

decreasing sharply with frequency. The spectrum for four damaged blades 

contains harmonics of the FPT speed plus some other peaks. The amplitude of 

the FPT harmonics changed with frequency in a more complex (sinusoidal) way 

than with two damaged blades. 

4. The demodulated spectra are as would be expected for the observed pulse trains, 

and so could potentially be used to identify the presence of particular pulse 

patterns in a running machine. The reasons for the particular pulse patterns are 

yet to be understood.  
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7.2. Future work: 
  

    Further work could usefully be done in the following directions. 

1. Introducing a wider range of severity of blade damage to assess the detection 

threshold. 

2. Studying the AE signature of other kinds and severity of blade damage to 

understand the cause of the pulses observed in the AE signal. 

3. Developing zone location techniques more to identify the sources of AE and 

reject noise. 

4. Application to industrial-scale turbines to assess the degree to which the findings 

of the work are generic.  
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