45 research outputs found

    Dynamics, control, stability, diffusion and synchronization of modified chaotic colpitts oscillator with triangular wave non-linearity

    Get PDF
    The purpose of this paper is to introduce a new chaotic oscillator. Although different chaotic systems have been formulated by earlier researchers, only a few chaotic systems exhibit chaotic behaviour. In this work, a new chaotic system with chaotic attractor is introduced for triangular wave non-linearity. It is worth noting that this striking phenomenon rarely occurs in respect of chaotic systems. The system proposed in this paper has been realized with numerical simulation. The results emanating from the numerical simulation indicate the feasibility of the proposed chaotic system. More over, chaos control, stability, diffusion and synchronization of such a system have been dealt with.Publisher's Versio

    Design and simulation of high frequency colpitts oscillator based on BJT amplifier

    Get PDF
    Frequency oscillator is one of the basic devices that can be used in most electrical, electronics and communications circuits and systems. There are many types of oscillators depending on frequency range used in an application such as audio, radio and microwave. The needed was appeared to use high and very high frequencies to make the rapid development of advanced technology Colpitts oscillator is one of the most common types of oscillator, it can be used for radio frequency (RF), that its output signal is often utilized at the basic of a wireless communication system in most application. In this research, a Colpitts oscillator is comprised from a bipolar junction transistor (BJT) amplifier with LC tank. This design is carrying out with a known Barkhausen criterion for oscillation. Firstly, is carried out using theoretical calculation. The secondary is carried out using simulation (Multisim 13). All the obtained result from the above two approaches are 10 MHz and 9.745 MHz respectively. This result is seen to be very encouraging

    Design LC oscillator for MF, HF& VHF using both ideal and practical operation amplifier

    Get PDF
    In general, the oscillator is a device that used in most circuits and system of electronics, electrical, and telecommunications. There are several kinds of oscillator contingent on frequency band use in a submission such as microwave, audio, and radio frequency. LC oscillator is one of the greatest mutual categories of oscillators, the applications of this oscillator was seemed to be increasing in modern devices, for actual high and very high frequencies to meet the speedy growth of progressive knowledge. That can be secondhand for radio frequency (RF), its productivity signal is frequently applied at the basis of radio communication classification in furthermost applications. In this paper, a designed Colpitts oscillator is covered from voltage amplifier with LC container. This strategy is done by two approaches. Primarily, is approved out exploitation hypothetical scheming. The subordinate is supported out exploitation imitation (Multisim 13). There are two proposal types of circuits the first for generate signal frequencies 0.5MHz,1MHZ,10MHz,20MHz,50MHz &100MHz, the second for generate signal frequencies 4.963MHZ, 5.031MHZ, and 5.756MHz respectively. The consequence is realized to be very hopeful

    Dynamical properties of a modified chaotic Colpitts oscillator with triangular wave non-linearity

    Get PDF
    The purpose of this paper is to introduce a new chaotic oscillator. Although different chaotic systems have been formulated by earlier researchers, only a few chaotic systems exhibit chaotic behaviour. In this work, a new chaotic system with chaotic attractor is introduced for triangular wave non-linearity. It is worth noting that this striking phenomenon rarely occurs in respect of chaotic systems. The system proposed in this paper has been realized with numerical simulation. The results emanating from the numerical simulation indicate the feasibility of the proposed chaotic system. More over, chaos control, stability, diffusion and synchronization of such a system have been dealt with

    A Solution for the Generalized Synchronization of a Class of Chaotic Systems Based on Output Feedback

    Get PDF
    A solution to the output-feedback generalized synchronization problem for two chaotic systems, namely, the master and the slave, is presented. The solution assumes that the slave is controlled by a single input, and the states of each system are partially known. To this end, both systems are expressed in their corresponding observable generalized canonical form, through their differential primitive element. The nonavailable state variables of both systems are recovered using a suitable Luenberger observer. The convergence analysis was carried out using the linear control approach in conjunction with the Lyapunov method. Convincing numerical simulations are presented to assess the effectiveness of the obtained solution

    An Eight-Term Novel Four-Scroll Chaotic System with Cubic Nonlinearity and its Circuit Simulation

    Get PDF
    This research work proposes an eight-term novel four-scroll chaotic system with cubic nonlinearity and analyses its fundamental properties such as dissipativity, equilibria, symmetry and invariance, Lyapunov exponents and KaplanYorke dimension. The phase portraits of the novel chaotic system, which are obtained in this work by using MATLAB, depict the four-scroll attractor of the system. For the parameter values and initial conditions chosen in this work, the Lyapunov exponents of the novel four-scroll chaotic system are obtained as L1 = 0.75335, L2 = 0 and L3 = −22.43304. Also, the Kaplan-Yorke dimension of the novel four-scroll chaotic system is obtained as DKY = 2.0336. Finally, an electronic circuit realization of the novel four-scroll chaotic system is presented by using SPICE to confirm the feasibility of the theoretical model

    Synchronization of Monostatic Radar Using a Time-Delayed Chaos-Based FM Waveform

    Get PDF
    There is no doubt that chaotic systems are still attractive issues in various radar applications and communication systems. In this paper, we present a new 0.3 GHz mono-static microwave chaotic radar. It includes a chaotic system based on a time-delay to generate and process frequency modulated (FM) waveforms. Such a radar is designed to extract high-resolution information from the targets. To generate a continuous FM signal, the chaotic signal is first modulated using the voltage control oscillator (VCO). Next, the correct value for the loop gain (G) is carefully set when utilizing the Phase-Locked Loop (PLL) at the receiver, so that the instantaneous frequency that reflects a chaotic state variable can be reliably recovered. In this system, the PLL synchronization and radar correlation are enough to recover the echo signal and detect the target. The finding indicates that the system can be implemented with no need to use the complete self-synchronization or complex projective synchronization schemes as compared to the existing chaotic radar systems. The simulation results show that the short-time cross-correlation of the transmitted and reconstructed waveforms is good and satisfactory to detect the target under various signal-to-noise ratio (SNR) levels and with less complexity in the design
    corecore