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3Faculty of Sciences, Autonomous University of Baja California, Km. 103 Carretera Tijuana-Ensenada, 22860 Ensenada, BCN,Mexico
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A solution to the output-feedback generalized synchronization problem for two chaotic systems, namely, the master and the slave, is
presented.The solution assumes that the slave is controlled by a single input, and the states of each systemare partially known. To this
end, both systems are expressed in their corresponding observable generalized canonical form, through their differential primitive
element. The nonavailable state variables of both systems are recovered using a suitable Luenberger observer. The convergence
analysis was carried out using the linear control approach in conjunction with the Lyapunov method. Convincing numerical
simulations are presented to assess the effectiveness of the obtained solution.

1. Introduction

The synchronization of strictly different chaotic systems is
a current challenge in Control Theory. In general, accom-
plishing and understanding this kind of synchronization,
referred to as generalized synchronization (GS), are a difficult
problem and are very important because its solution can be
useful to actual applications. For instance, chaotic signals
have been used in secure information transmission. In this
regard, interesting secure communication methods based
on GS can be found in the literature. In [1], a channel-
independent chaotic secure communication scheme based on
GS is proposed. A similar scheme, also based on GS, with a
remarkable stability to noise and numerically validated using
the Rössler system is developed in [2]. Two novel generalized
chaos synchronization based secure communication schemes
are introduced in [3, 4]. The first scheme is complemented
with a transposition function and is tested using the Chen
chaotic circuit; the second scheme is oriented to encrypt
images and uses a theorem introduced by the authors,

which is a generalization of GS to an array of differential
equations. From a theoretical point of view, synchronization
of strictly different chaotic systems helps to explain how
some oscillatory systems, like the intrinsic neuron model,
act cooperatively to develop tasks or solve problems [5]. This
behavior also occurs in nature and can be responsible for the
transition to low-dimensional behavior in systems withmany
degrees of freedom. A full review of GS is beyond the scope
of this study; however, we mention two seminal works. In
[6] the authors developed a method for decomposing chaotic
systems such that linear GS can be achieved. Finally, we
mentionwork [5], where the authors proposed amethod used
to detect and study generalized synchronization in drive-
response systems. The method uses an identical response
system to monitor the synchronized motions. We suggest to
the interested reader the following list of remarkable works
[7–16].

Loosely speaking the GS phenomenon occurs when the
trajectories of one system, through a functional mapping, are
equal to trajectories of another. In other words, let us suppose
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that we have two systems, Σ
𝑚
and Σ

𝑠,𝑢
, named, respectively,

master and slave, with their corresponding trajectories, x
𝑚

(𝑡)

and x
𝑠
(𝑡) [17].That is, GS is accomplished [18] if there exists a

differential primitive element that generates a mapping 𝐻
𝑚𝑠

from the trajectories x
𝑚

(𝑡) of Σ
𝑚
in the algebraic manifold 𝑀

to the trajectories 𝑥
𝑠
(𝑡) of Σ

𝑠,𝑢
in its space 𝑆, in which case

it holds that 𝐻
𝑚𝑠

(x
𝑠
(𝑡)) = x

𝑚
(𝑡). It is noteworthy that for

identical systems the functional mapping 𝐻
𝑚𝑠

corresponds
to the identity [19]. In our case, we assume that the behavior
of the slave system Σ

𝑠,𝑢
can be either chaotic or bounded

and oscillatory. Evidently, to accomplish GS there must be
a control action acting over the slave Σ

𝑠,𝑢
(for simplicity,

symbols Σ
𝑚
and Σ

𝑠,𝑢
refer to the uncontrolled master system

and the controlled slave system, resp. In the same way, x
𝑚
and

x
𝑠
, are, resp., the states of systems Σ

𝑚
and Σ

𝑠,𝑢
.)

In this work, we solve the output-feedback GS problem
for systems Σ

𝑚
and Σ

𝑠,𝑢
, when only a single output of

each system is available or measurable, and only a single
controller is used in the slave system. This restriction makes
the GS problem more challenging and interesting than the
works mentioned above. To solve it, the nonavailable state
variables of systems Σ

𝑚
and Σ

𝑠,𝑢
must be reconstructed from

the measurable outputs. To overcome this issue, we exploit
some ad hoc differential algebraic properties found in some
chaotic systems, by choosing the differentiable primitive
element [20].This primitive element allows us to express both
systems in a generalized canonical form. Thence, we solve
the GS problem as if it were an instance of the trajectory-
tracking problem. To this end, it is necessary to split the slave
controller into two parts: one devoted to feedback the output
tracking error between the master and the slave systems and
the other compensating for the underlying and nonavailable
state variables of each system.We underscore that our control
design basically consists of finding a suitable differentiable
primitive element to express the master and slave systems in
their corresponding canonical form, in conjunction with a
kind of Luenberger observer to reconstruct the nonavailable
variable states. Fortunately, there are in nature several chaotic
systems that can be expressed in this form.

The remainder of this paper is organized as follows. In
Section 2, we introduce some concepts necessary to establish
the problem statement properly. In Section 3, we solve the
output-feedback GS control problem. Numerical experi-
ments to assess the effectiveness of our solution are presented
in Section 4. The final remarks are given in Section 5.

Notation. To simplify the development of this work, we adopt
the following notation:

𝐴
𝑖
=

[
[
[
[
[
[
[
[
[
[
[

[

0 1 0 0 ⋅ ⋅ ⋅ 0

0 0 1 0 ⋅ ⋅ ⋅ 0

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.
.
.
.

0 0 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 0 1

0 0 0 0 ⋅ ⋅ ⋅ 0

]
]
]
]
]
]
]
]
]
]
]

]

∈ R
𝑖×𝑖

;

𝐵
𝑖
=

[
[
[
[
[
[

[

0

.

.

.

0

1

]
]
]
]
]
]

]

∈ R
𝑖

;

𝐶
𝑖
=

[
[
[
[
[
[

[

1

.

.

.

0

0

]
]
]
]
]
]

]

∈ R
𝑖

.

(1)

2. Preliminaries

Before proceeding, we introduce some needful concepts [20–
23]. From the theorem of differential primitive element [20]
we posit a single element 𝛿 ∈ 𝐿, which is a differential pri-
mitive element, such that 𝐿 = 𝐾(𝛿); that is, 𝐿 is differentially
generated by 𝐾 and 𝛿 (𝐾 and 𝐿 are differential fields).

Consider the following nonlinear system:

ẋ = 𝐹 (x, 𝑢) , (2)

where x ∈ R𝑛 is the system state and 𝑢 is the system
input. Also, suppose that there exists an auxiliary variable 𝑦

(differential primitive element), defined as

𝑦 = ∑

𝑖

𝛼
𝑖
𝑥
𝑖
, 𝛼
𝑖
∈ R, (3)

which allows us to write system (2) in the following form:

�̇� = 𝐴
𝑛
𝜉 + 𝐵
𝑛

(−m (𝜉) + 𝑝𝑢) , (4)

where 𝜉 = [𝜉
1
, 𝜉
2
, . . . , 𝜉

𝑛
]
𝑇 with 𝜉

𝑖
= 𝑦
(𝑖−1), for 𝑖 = {1, . . . , 𝑛},

m(⋅) is a scalar nonlinear function of their arguments and
may not be defined everywhere, and 𝑝 is the gain constant
of the single input of 𝑢. The above system representation is
well known as the generalized controller canonical form, and
variable 𝑦 is the measurable output of the system [21, 24].

2.1. Problem Statement. In this section we introduce formally
the main problem of this work, which consists of solving the
output-feedback GS problem for two chaotic systems, in a
master-slave configuration, where the states of both systems
are partially known. To this end, we propose a suitable
definition for the GS problem, based on previous works [21].
It should be noted that our definition uses the notion of
differential primitive element, already mentioned.

Let us consider the following two nonlinear systems in a
master-slave configuration, where the master system, Σ

𝑚
, is

given by

ẋ
𝑚

= 𝐹
𝑚

(x
𝑚

) ;

𝑦
𝑚

= ℎ
𝑚

(x
𝑚

) ,

(5)
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and the controlled slave system, Σ
𝑠,𝑢
, is defined by

ẋ
𝑠

= 𝐹
𝑠
(x
𝑠
, 𝑢 (x
𝑠
, x
𝑚

)) ;

𝑦
𝑠

= ℎ
𝑠
(x
𝑠
) ,

(6)

where x
𝑠

= (𝑥
1
𝑠

, . . . , 𝑥
𝑛
𝑠

) ∈ R𝑛, x
𝑚

= (𝑥
1
𝑚

, . . . , 𝑥
𝑛
𝑚

) ∈ R𝑛,
ℎ
𝑠

: R𝑛 → R, ℎ
𝑚

: R𝑛 → R, 𝑢 : R𝑛 × R𝑛 → R, 𝑦
𝑚
,

and 𝑦
𝑠

∈ R. 𝐹
𝑠
, 𝐹
𝑚
, ℎ
𝑠
, and ℎ

𝑚
are assumed to be polynomial

in their arguments. Before introducing the GS definition, we
need to introduce the following two important assumptions,
related to some structural properties ofΣ

𝑚
andΣ

𝑠,𝑢
and based

on the result found in [21].

Assumption A1. Suppose that the master system, Σ
𝑚
, given in

(5), can be written as

ż
𝑚

= 𝐴
𝑛
z
𝑚

+ 𝐵
𝑛

(−m
𝑚

(z
𝑚

)) , (7)

where z
𝑚

= [𝑧
𝑚
1

, . . . , 𝑧
𝑚
𝑛

]
𝑇

= Φ
𝑚

(x
𝑚

) is the vector of
function, with 𝑧

𝑚
𝑘

= 𝑦
(𝑘−1)

𝑚
for 𝑘 = {1, . . . , 𝑛}, 𝑦

𝑚
is a

differential primitive element for themaster system, and m
𝑚

(⋅)

is a scalar nonlinear function. Additionally, the trajectories of
free system (7) must be forward complete in some compact
set in R𝑛.

Assumption A2. Suppose that the slave system Σ
𝑠,𝑢
, given in

(6), can be written as

ż
𝑠

= 𝐴
𝑛
z
𝑠
+ 𝐵
𝑛

(−m
𝑠
(z
𝑠
) + 𝑝𝑢) , (8)

where z
𝑠

= [𝑧
𝑠
1

, . . . , 𝑧
𝑠
𝑛

]
𝑇

= Φ
𝑠
(x
𝑠
) with 𝑧

𝑠
𝑘

= 𝑦
(𝑘−1)

𝑠
, for 𝑘 =

{1, . . . , 𝑛}, 𝑦
𝑠
is a differential primitive element for the slave

system, 𝑝 is a gain constant of the single input 𝑢, and m
𝑠
(⋅) is

a scalar nonlinear function.
Notice that the functions vectors, Φ

𝑚
, Φ
𝑠

: R𝑛 →

R𝑛, are generated through the corresponding differentiable
primitive element. This construction allows us to solve
straightforwardly the GS problem. Finally, we mention that
constructions (7) and (8) are in agreement with the canonical
formpreviously introduced in [23, 25]. Nowwe can introduce
the main definition of this study, as follows.

Definition 1 (generalized synchronization). Let us consider
systems, Σ

𝑚
and Σ

𝑠,𝑢
, under Assumptions A1 and A2, with

Φ
𝑠
being invertible. The slave and master systems are said

to be in a state of GS if there exists a differential primitive
element that generates a transformation 𝐻

𝑚𝑠
: R𝑛 → R𝑛

with 𝐻
𝑚𝑠

= Φ
−1

𝑠
∘ Φ
𝑚
and there exist an algebraic manifold

𝑀 = {(𝑥
𝑠
, 𝑥
𝑚

) | 𝑥
𝑚

= 𝐻
𝑚𝑠

(𝑥
𝑠
)} and a compact set 𝐵 ⊂

R𝑛 × R𝑛 with 𝑀 ⊂ 𝐵 such that their trajectories with initial
conditions in 𝐵 approach 𝑀 as 𝑡 → ∞. This definition leads
to the following criterion:

lim
𝑡→∞

𝐻
𝑚𝑠

(𝑥
𝑠
) − 𝑥
𝑚

 = 0. (9)

Remark 2. As far as we know, theGS problemhas been solved
assuming that states (𝑥

𝑠
, 𝑥
𝑚

) are available for measurement.
In this work, we moved a step forward, by considering the

case when the states of both systems are partially known.
To this end, the proposed controller is based on output-
feedback stabilization, instead of using full-state control.
It is important, because in several actual applications the
whole state is not available or is unpractical or impossible to
measure. For instance, in the classical Duffing system only
the position is available. On the other hand, finding a general
solution of this problem is rather difficult.

As it can be seen original systems (5) and (6) are
expressed in their corresponding observable generalized
canonical form, through their corresponding differential
primitive element. It is worthy to mention that, fortunately,
several chaotic systems can be expressed in such observable
generalized canonical form. Now, if Assumptions A1 and A2
hold, there exists a full-state feedback controller, 𝑢(z

𝑚
, z
𝑠
),

such that lim
𝑡→∞

‖z
𝑚

− z
𝑠
‖ = 0 [21]. We underscore that this

result assumes that thewhole state of both systems, themaster
and the slave, is available for measurements.

Now, we can introduce the main problem of this work.

Problem Statement.Consider the uncontrolledmaster chaotic
system (7) and the controlled slave chaotic system (8),
satisfying, respectively, Assumptions A1 and A2, and the
vector function Φ

−1

𝑠
existing at least locally. The main goal

consists of proposing the slave system controller:

𝑢 (𝑦
𝑠
, 𝑦
(1)

𝑠
, . . . , 𝑦

(𝑛)

𝑠
, 𝑦
𝑚

, . . . , 𝑦
(𝑛)

𝑚
) , (10)

which solves the GS problem, where 𝑦
(𝑖) are estimations of

the unknown 𝑦
(𝑖).

As this shows, we are dealing with a more difficult
problem configuration. Contrary to several previous works
[5, 6, 26], we do not use any control action over the master
chaotic system, while the slave controller only uses one
measurable output from the slave and one from the master.
This problem instance can be considered more appealing,
because it resembles several actual implementations. On the
other hand, it is less expensive to control a system using state
estimations than using actual measurements.

To solve this problem, it is necessary to reconstruct
the nonavailable dynamics of both systems, the master and
the slave. Therefore, we introduce a suitable version of the
assumption introduced in [21].

Assumption P1. Suppose that there exists a primitive element,
𝑦
𝑚
, of the master system “Σ

𝑚
” (5) that transforms it into the

new form “Σ
𝑚
𝑇

”, given by

ż
𝑚

= 𝐴
𝑛
z
𝑚

+ 𝐵
𝑛

(𝜙
𝑚

(𝑦
𝑚

) + 𝐾
𝑇

𝑚
z
𝑚

+ 𝑓
𝑚

(z
𝑚

)) , (11)

where z
𝑚

= Φ
𝑠
(x
𝑚

), 𝜙
𝑚
is a scalar nonlinear function that

depends on the output 𝑦
𝑚
, 𝐾
𝑚
is a vector of constants, and

𝑓
𝑚

(z) is a scalar Lipschitz function in z on the open set 𝐷 ⊂

R𝑛. That is,

𝑓
𝑚

(x) − 𝑓
𝑚

(y)
 ≤ 𝛾
𝑚

x − y ; ∀x, y ∈ 𝐷. (12)
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Assumption P2. Suppose that there exists a primitive element,
𝑦
𝑠
, of the slave system “Σ

𝑠,𝑢
” (6) that transforms it into the

new form “Σ
𝑠
𝑇
,𝑢
”, given by

ż
𝑠

= 𝐴
𝑛
z
𝑠
+ 𝐵
𝑛

(𝜙
𝑠
(𝑦
𝑠
) + 𝐾
𝑇

𝑠
z
𝑠
+ 𝑓
𝑠
(z
𝑠
) + 𝑝𝑢) , (13)

where z
𝑠

= Φ
𝑠
(x
𝑠
), 𝜙
𝑠
is a scalar nonlinear function that

depends on the output 𝑦
𝑠
, 𝐾
𝑠
is a constant vector, and 𝑓

𝑠
(z
𝑠
)

is a scalar Lipschitz function in z, with its corresponding
constant 𝛾

𝑠
. Finally, 𝑝 ̸= 0 is a fixed constant and 𝑢 is the

single input of the system.

Comment 1. Assumptions A1 and A2 are needed to solve the
GS problem, when the states of both systems, the master and
the slave, are known. Assumptions P1 and P2 are needed
to solve the GS problem when only a single output of each
system can be measurable. As we can see, our goal is to move
a step forward with respect to the previous works. On the
other hand, there are many chaotic systems that admit the
representation, given by (11) and (13).

3. Solving the GS Control Problem for a Class
of Chaotic Nonlinear Systems

In this section we present a solution to the main problem of
this study. To this end, we design a Lyapunov-based observer
to recover the underlying dynamics of the master and
slave systems, Σ

𝑚
and Σ

𝑠,𝑢
. Afterwards, using the recovered

dynamics by a static feedback 𝑢, we solve the GS problem.

Reconstructing the Nonavailable Dynamic of Σ
𝑚

or Σ
𝑠,𝑢
.

Suppose that we have a nonlinear system, defined by

ż = 𝐴
𝑛
z + 𝐵
𝑛

(𝜙 (𝑦) + 𝑓 (z) + 𝐾
𝑇z + 𝑝𝑢) ,

𝑦 = 𝐶
𝑇

𝑛
z,

(14)

where𝑦 is the singlemeasurable output, z ∈ R𝑛 is the partially
known state, 𝜙(𝑦) is any scalar function, and 𝑓(z) is a scalar
Lipschitz function in z ∈ R𝑛, with 𝛾 as the Lipschitz constant,
and 𝐾 ∈ R𝑛 constant. Now, consider the observer of this
nonlinear system, defined as

̇̂z = 𝐴
𝑛
ẑ + 𝐵
𝑛

(𝜙 (𝑦
𝑚

) + 𝑓 (ẑ) + 𝐾
𝑇ẑ + 𝑝𝑢)

− 𝐿
𝑛
𝜅

(𝐶
𝑇

𝑛
ẑ − 𝑦) ,

(15)

where ẑ is an estimation of z, 𝐿
𝑛
𝜅

= [𝜅
1
, 𝜅
2
, . . . , 𝜅

𝑛
]
𝑇

∈ R𝑛

is a vector of constants, and 𝑢 is the system input. Notice
that system (14) has a similar structure to that of the systems
defined in Assumptions P1 and P2.The following proposition
provides sufficient conditions to ensure that the estimation
error z̃ = z − ẑ converges to zero, as long as 𝑡 → ∞.

Proposition 3. Consider systems (14) and (15). If the vector of
constants, 𝐿

𝑛
𝜅

, is selected, according to

𝑃
𝑛
𝜅

𝑀
𝑛
𝜅

+ 𝑀
𝑇

𝑛
𝜅

𝑃
𝑛
𝜅

= −𝐼
𝑛
, (16)

where 𝑀
𝑛
𝜅

= (𝐴
𝑛

+ 𝐵
𝑛
𝐾
𝑇

− 𝐿
𝑛
𝜅

𝐶
𝑇

𝑛
) and 𝑃

𝑛
𝜅

> 0 satisfying

2𝛾
𝑟
𝑛

 < 1, (17)

where 𝑟
𝑛

= 𝑃
𝑛
𝜅

𝐵
𝑛
(𝑟
𝑛
is in fact the last row of matrix 𝑃

𝑛
𝜅

), then,
the error z̃ = z − ẑ converges asymptotically and exponentially
to zero.

Proof. From (11) and (15), it is easy to show that the dynamic
of the error z̃ is given by

̇̃z = (𝐴
𝑛

+ 𝐵
𝑛
𝐾
𝑇

− 𝐿
𝑛
𝜅

𝐶
𝑇

𝑛
) z̃ + 𝐵

𝑛
(𝑓 (z) − 𝑓 (ẑ)) . (18)

In order to analyze the convergence of the state z̃, we propose
the Lyapunov function 𝑉(z̃) = z̃𝑇𝑃

𝑛
𝜅

z̃, where 𝑃
𝑛
𝜅

= 𝑃
𝑇

𝑛
𝜅

> 0,
whose time derivative, along of (18), is given by

�̇� (z̃) = − ‖z̃‖2 + 2z̃𝑃
𝑛
𝜅

𝐵
𝑛

(𝑓 (z) − 𝑓 (ẑ)) . (19)

Now, it is quite easy to see that the following inequality holds:

z̃𝑃
𝑛
𝜅

𝐵
𝑛

(𝑓 (z) − 𝑓 (ẑ)) ≤ 𝛾

𝑃
𝑛
𝜅

𝐵
𝑛


‖z̃‖2 . (20)

Therefore, from (19) and (20), we have that �̇� can be upper
bounded, as

�̇� (z̃) ≤ − ‖z̃‖2 (1 − 2𝛾
𝑟
𝑛

) . (21)

Evidently, �̇� < 0, for all z̃ ̸= 0, in the case that inequality (17)
is fulfilled.

The following remark allows us to propose the needed
observers for Σ

𝑚
𝑇

and Σ
𝑠
𝑇
,𝑢
.

Remark 4. Assumptions P1 and P2, in conjunction with
Proposition 3, suggest proposing the observer Σ̂

𝑚
𝑇

for the
master system Σ

𝑚
𝑇

(11) as

̇̂z
𝑚

= 𝐴
𝑛
ẑ
𝑚

+ 𝐵
𝑛

(𝜙
𝑚

(𝑦
𝑚

) + 𝐾
𝑇

𝑚
ẑ
𝑚

+ 𝑓
𝑚

(ẑ
𝑚

))

− 𝐿
𝑛𝜅
𝑚

(𝑦
𝑚

− 𝐶
𝑇

𝑛
ẑ
𝑚

) ,

(22)

where 𝑦
𝑚

= 𝑧
𝑚
1

. Similarly, observer Σ̂
𝑠
𝑇
,𝑢
for the slave system

can be proposed as
̇̂z
𝑠

= 𝐴
𝑛
ẑ
𝑠
+ 𝐵
𝑛

(𝜙
𝑠
(𝑦
𝑠
) + 𝐾
𝑇

𝑠
ẑ
𝑠
+ 𝑓
𝑠
(z
𝑠
) + 𝑝𝑢

𝑠
)

− 𝐿
𝑛𝜅
𝑠

(𝑦
𝑠
− 𝐶
𝑇

𝑛
z
𝑠
)

(23)

with 𝑦
𝑠

= 𝑧
𝑠
1

, where 𝐿
𝑛𝜅
𝑚

and 𝐿
𝑛𝜅
𝑠

must be selected, such that
the following matrices are obtained:

𝑀
𝑛𝜅
𝑚

= 𝐴
𝑛

+ 𝐵
𝑛
𝐾
𝑇

𝑚
− 𝐿
𝑛𝜅
𝑚

𝐶
𝑇

𝑛
;

𝑀
𝑛𝜅
𝑠

= 𝐴
𝑛

+ 𝐵
𝑛
𝐾
𝑇

𝑠
− 𝐿
𝑛𝜅
𝑠

𝐶
𝑇

𝑛
,

(24)

being Hurwitz and fulfilling the Lyapunov equation
𝑃
𝑛𝜅
𝑖

𝑀
𝑛𝜅
𝑖

+ 𝑀
𝑇

𝑛𝜅
𝑖

𝑃
𝑛𝜅
𝑖

= −𝐼
𝑛
, 𝑖 = {𝑠, 𝑚}, with the following

restrictions:
2𝛾
𝑠


𝑃
𝑛𝜅
𝑠

𝐵
𝑛


< 1;

2𝛾
𝑚


𝑃
𝑛𝜅
𝑚

𝐵
𝑛


< 1.

(25)

In the next section, we use the Lyapunov-based observer
to solve the GS control problem.
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3.1. Generalized Synchronization. Now we are ready to intro-
duce the main proposition of this paper.

Proposition 5. Assuming that the observers, (22) and (23),
satisfy the conditions in Remark 4, the following static feedback,

𝑢 (ẑ
𝑠
, ẑ
𝑚

) =
1

𝑝
(−𝜙 (𝑦

𝑚
, 𝑦
𝑠
) − 𝐾 (ẑ

𝑚
, ẑ
𝑠
) − 𝑓 (ẑ

𝑚
, ẑ
𝑠
)

− 𝐾
𝑛,𝑧

(ẑ
𝑚

− ẑ
𝑠
)) ,

(26)

where,

𝜙 (𝑦
𝑚

, 𝑦
𝑠
) Š 𝜙
𝑚

(𝑦
𝑚

) − 𝜙
𝑠
(𝑦
𝑠
) ;

𝐾 (x, y) Š 𝐾
𝑇

𝑚
x − 𝐾

𝑇

𝑠
y;

𝑓 (x, y) Š 𝑓
𝑚

(x) − 𝑓
𝑠
(y) ,

(27)

ensures that the synchronization error 𝑒
𝑧

= 𝑧
𝑠

− 𝑧
𝑚
exponen-

tially converges to zero.

Proof. From Assumptions P1 and P2, we have that systems
Σ
𝑚

and Σ
𝑠,𝑢

can be expressed according to (11) and (13),
respectively. Computing the dynamic error, e

𝑧
, we have

ė
𝑧

= 𝐴
𝑛
e
𝑧

+ 𝐵
𝑛

(𝜙 (𝑦
𝑚

, 𝑦
𝑠
) + 𝐾 (z

𝑚
, z
𝑠
) + 𝑓 (z

𝑚
, z
𝑠
) + 𝑝𝑢) .

(28)

Therefore, introducing 𝑢(ẑ
𝑠
, ẑ
𝑚

), proposed in (26), into (28),
we obtain

ė
𝑧

= 𝐴
𝑛
e
𝑧

+ 𝐵
𝑛

(−𝐾 (ẑ
𝑚

, ẑ
𝑠
) + 𝐾 (z

𝑚
, z
𝑠
) + Δ (z)

− 𝐾
𝑛,𝑧

(ẑ
𝑚

− ẑ
𝑠
)) ,

(29)

where z = (z𝑇
𝑚

, z𝑇
𝑠
, ẑ𝑇
𝑚

, ẑ𝑇
𝑠
) and Δ are defined by

Δ (z) = 𝑓 (z
𝑚

, z
𝑠
) − 𝑓 (ẑ

𝑚
, ẑ
𝑠
) . (30)

Remembering that e
𝑠

= z
𝑠
− ẑ
𝑠
and e
𝑚

= z
𝑚

− ẑ
𝑚
, we have the

following relations:

𝐾 (ẑ
𝑚

, ẑ
𝑠
) − 𝐾 (z

𝑚
, z
𝑠
)

= 𝐾
𝑇

𝑚
ẑ
𝑚

− 𝐾
𝑇

𝑠
ẑ
𝑠
− 𝐾
𝑇

𝑚
z
𝑚

+ 𝐾
𝑇

𝑠
z
𝑠
;

= −𝐾
𝑇

𝑚
e
𝑚

+ 𝐾
𝑇

𝑠
e
𝑠
.

(31)

Similarly,

𝐾
𝑛,𝑧

(ẑ
𝑚

− ẑ
𝑠
) = 𝐾
𝑛,𝑧
e
𝑧

+ 𝐾
𝑛,𝑧

(e
𝑠
− e
𝑚

) . (32)

Substituting these two relations into (29), we obtain

ė
𝑧

= (𝐴
𝑛

− 𝐵
𝑛
𝐾
𝑛,𝑧

) e
𝑧

+

𝑤(e,z)
⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞

𝐵
𝑛

(𝐾
𝑛,𝑧

(e
𝑠
− e
𝑚

) + 𝐾
𝑇

𝑠
e
𝑠
− 𝐾
𝑇

𝑚
e
𝑚

) + 𝐵
𝑛
Δ (z) .

(33)

Using simple algebra, we have that Δ(z) can be upper
bounded, as follows:

Δ =

𝑓 (z
𝑚

, z
𝑠
) − 𝑓 (ẑ

𝑚
, ẑ
𝑠
)


=
(𝑓𝑚 (z

𝑚
) − 𝑓
𝑚

(ẑ
𝑚

)) − (𝑓
𝑠
(z
𝑠
) − 𝑓
𝑠
(ẑ
𝑠
))



≤ 𝛾
𝑚

e𝑚
 + 𝛾
𝑠

e𝑠
 .

(34)

Defining

𝐴
𝑛𝑠

= 𝐴
𝑛

− 𝐵
𝑛
𝐾
𝑛,𝑧

, (35)

provided that 𝐴
𝑛𝑠

is Hurwitz, (33) can be written in the
following simple way:

ė
𝑧

= 𝐴
𝑛𝑠
e
𝑧

+ 𝐵
𝑛
𝑤 (e, z) , (36)

where 𝑤(e, z) is given by

𝑤 (e, z) = 𝐵
𝑛

(𝐾
𝑛,𝑧

(e
𝑠
− e
𝑚

) + 𝐾
𝑇

𝑠
e
𝑠
− 𝐾
𝑇

𝑚
e
𝑚

)

+ 𝐵
𝑛
Δ (z) .

(37)

However, according to (34), 𝑤(∗) can be upper bounded, as
follows:

|𝑤 (∗)| ≤
𝐾𝑛,𝑧



e𝑠 − e
𝑚

 +

𝐾
𝑇

𝑠



e𝑠
 +


𝐾
𝑇

𝑚



e𝑚


+ 𝛾
𝑚

e𝑚
 + 𝛾
𝑠

e𝑠
 .

(38)

By assumption, e
𝑠
and e
𝑚
converge exponentially and asymp-

totically to zero. Then, there are some 𝛼 and 𝛽 being strictly
positives, such that |𝑤(∗)| ≤ 𝛼𝑒

−𝛽𝑡. Consequently, the error
e
𝑧
of system (36) asymptotically and exponentially converges

to zero.

4. Numerical Simulations

The goal of this example consists of solving the GS problem
for the controlled slave Chua system and the free master
Colpitts oscillator, provided that a single output of each
system is available for measurements. On the other hand, we
underscore that, in the present case, the trajectories of the
Colpitts system are bounded in some compact set and exhibit
chaotic or oscillatory behavior.

Master System. Consider the state equations for the Colpitts
oscillator Σ

𝑚
, given by

�̇�
1

= −𝑎
𝑚

𝑒
−𝑥
2 + 𝑎
𝑚

𝑥
3

+ 𝑎
𝑚

,

�̇�
2

= 𝑏
𝑚

𝑥
3
,

�̇�
3

= −𝑐
𝑚

𝑥
1

− 𝑐
𝑚

𝑥
2

− 𝑑
𝑚

𝑥
3
,

(39)

where 𝑎
𝑚

= 𝑏
𝑚

(𝐶
2
/𝐶
1
), 𝑏
𝑚

= 𝐼
0
/𝑤
0
𝐶
2
𝑉
𝑡
, 𝑐
𝑚

= 𝑉
𝑡
/𝑤
0
𝐿𝐼
𝑜
, and

𝑑
𝑚

= 𝑅/𝐿𝑤
0
(to avoid confusion, the master parameters use

the subscript 𝑚, and the slave parameters use the subscript
𝑠). It is well known that this oscillator exhibits, for certain
values of its parameters, a chaotic behavior.Wewill show that,
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selecting𝑦
𝑚

= 𝑥
2
as the differential primitive element, we can

write it according to expression (11). We use x𝑇
𝑚

= (𝑥
1
, 𝑥
2
, 𝑥
3
)

to refer to the vector state of the Colpitts system. From 𝑦
𝑚

=

𝑥
2
, we obtain the following representation:

z
𝑚

= Φ
𝑚

(x
𝑚

) =
[
[

[

𝑦
𝑚

̇𝑦
𝑚

̈𝑦
𝑚

]
]

]

=
[
[

[

𝑥
2

𝑏
𝑚

𝑥
3

𝑏
𝑚

(−𝑐
𝑚

𝑥
1

− 𝑐
𝑚

𝑥
2

− 𝑑
𝑚

𝑥
3
)

]
]

]

,

(40)

where Φ
𝑚
is invertible. Furthermore, the time derivative of

z
𝑚
can be written as

[
[
[

[

�̇�
𝑚
1

�̇�
𝑚
2

�̇�
𝑚
3

]
]
]

]

=
[
[

[

𝑧
𝑚
2

𝑧
𝑚
3

Ψ
𝑛

(x
𝑚

)

]
]

]

, (41)

where

Ψ
𝑚

(x
𝑚

) = −𝑏
𝑚

𝑐
𝑚

�̇�
1

− 𝑏
𝑚

𝑐
𝑚

�̇�
2

− 𝑏
𝑚

𝑑
𝑚

�̇�
3
. (42)

Notice that the term Ψ
𝑚

(x
𝑚

) can be expressed in the coordi-
nates of z

𝑚
, as

Ψ
𝑚

(z
𝑚

) =

𝜙
𝑚
(𝑦
𝑚
)

⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞
𝑎
𝑚

𝑏
𝑚

𝑐
𝑚

(−1 + 𝑒
−𝑦
𝑚)

+

𝐾
𝑇

𝑚
z
𝑚

⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞
(−𝑎
𝑚

𝑐
𝑚

− 𝑏
𝑚

𝑐
𝑚

) 𝑧
2
𝑚

− 𝑑
𝑚

𝑧
3
𝑚

.

(43)

Notice that (41) and (43) are in agreement with the condition
in Assumption P1. According to Proposition 3 and Remark 4,
the observer can be proposed as

̇̂z
𝑚

= 𝐴
3
ẑ
𝑚

+ 𝐵
3

(𝜙
𝑚

(𝑦
𝑚

) + 𝐾
𝑇

𝑚
ẑ
𝑚

)

− 𝐿
3𝜅
𝑚

𝐶
𝑇

3
(ẑ
𝑚

− z
𝑚

) ,

(44)

where 𝐿
3𝜅
𝑚

has to be selected, such that𝑀
3𝜅
𝑚

= (𝐴
3
+𝐵
3
𝐾
𝑇

𝑚
−

𝐿
3𝜅
𝑚

𝐶
𝑇

3
) is Hurwitz. Using the following actual parameters

reported in [27],

𝑎 = 𝑏 = 6.2723,

𝑐 = 0.0797,

𝑑 = 0.6898,

(45)

it is easy to show that selecting 𝐿
3𝜅
𝑠

= [6, 11, 6] allows us to
obtain the following matrix:

𝑀
3𝜅
𝑚

=
[
[

[

−6 1 0

−11 0 1

−6 −0.249 −0.689

]
]

]

, (46)

which is Hurwitz. Therefore, proposed observer (44) ensures
that the estimation error e

𝑚
= z
𝑚

− ẑ
𝑚
converges exponen-

tially and asymptotically to zero.
For the numerical simulation, the experimental setup

assumed the above defined parameter values, the master
initial conditions as 𝑥

𝑚
(0) = (1, −1, 2), and the master

observer as 𝑥
𝑚

(0) = 0. The obtained results are shown in
Figure 1, where we can see that the estimation error of each
state variable settles to almost zero after nearly 4 seconds.

Slave System. Consider the Chua chaotic system as the con-
trolled slave system,Σ

𝑠,𝑢
.This system is formed by three linear

energy-storage elements (an inductor and two capacitors), a
linear resistor, and a single nonlinear resistor. It is well known
that this circuit is described by the following differential
equations:

�̇�
1

= 𝑎
𝑠
(𝑥
2

− 𝑥
1

− V
𝑠
(𝑥
1
)) + 𝑢,

�̇�
2

= 𝑥
1

− 𝑥
2

+ 𝑥
3
,

�̇�
3

= −𝑏
𝑠
𝑥
2
,

(47)

with

V
𝑠
(𝑥) = 𝑚

1
𝑥 +

𝑚
0

− 𝑚
1

2
(|𝑥 + 1| − |𝑥 − 1|) , (48)

where parameters 𝑎
𝑠
, 𝑏
𝑠
, 𝑚
0
, and 𝑚

1
are chosen, such that

system (47) exhibits a chaotic behavior when 𝑢 = 0. Notice
that 𝑢 is the input of the slave system that is necessary to
achieve the GS problem. Particularly, in the case where 𝑢 = 0

and the parameters values are in the neighbourhood of [28],

𝑏
𝑠

= 28;

𝑎
𝑠

= 15.6;

𝑚
0

= −
8

7
;

𝑚
1

= −
5

7
,

(49)

it is known that we have the so-called double scroll chaotic
attractors. As before, we use symbol x𝑇

𝑠
= (𝑥
1
, 𝑥
2
, 𝑥
3
) to

indicate the states of slave system (47). In a similar fashion,
we choose as the primitive element 𝑦

𝑠
= 𝑥
3
. Therefore, to

obtain the corresponding canonical form, we derive 𝑦
𝑠
two

times, obtaining

z
𝑠

= Φ
𝑠
(x
𝑠
) =

[
[

[

𝑦
𝑠

̇𝑦
𝑠

̈𝑦
𝑠

]
]

]

=
[
[

[

𝑥
3

−𝑏𝑥
2

−𝑏
𝑠
(𝑥
1

− 𝑥
2

+ 𝑥
3
)

]
]

]

, (50)

where Φ
𝑠
is an invertible map. From the above equation, the

time derivative of z
𝑠
is given by

[
[
[

[

�̇�
𝑠
1

�̇�
𝑠
2

�̇�
𝑠
3

]
]
]

]

=
[
[

[

𝑧
𝑠
2

𝑧
𝑠
3

Ψ
𝑠
(x
𝑠
) − 𝑏
𝑠
𝑢

]
]

]

, (51)
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Figure 1: Observation error for the Colpitts or master system in the transformed coordinates: 𝑒
𝑚

= 𝑧
𝑚

− �̂�
𝑚
.

where

Ψ
𝑠
(x
𝑠
) = −𝑏

𝑠
(�̇�
1

− �̇�
2

+ �̇�
3
) . (52)

Notice that Ψ
𝑠
(x
𝑠
) can be rewritten in the coordinates of z

𝑠
as

Ψ
𝑠
(𝑦
𝑠
, z
𝑠
) = 𝐾

𝑇

𝑠
z
𝑠
+ 𝑎
𝑠
𝑏
𝑠
𝑓
𝑠
(𝑥
1
) − 𝑏
𝑠
𝑢, (53)

where 𝑓
𝑠
(𝑥
1
) = V
𝑥
(𝑥
1
) and

𝑥
1

= −𝑧
𝑠
1

−

𝑧
𝑠
2

+ 𝑧
𝑠
3

𝑏
;

𝐾
𝑇

𝑠
= [−𝑎𝑏 −𝑏 −1 − 𝑎] .

(54)

On the other hand, it is clear that V
𝑥
is Lipchitz, with 𝛾

𝑠
=

|𝑚
1
| + |𝑚

0
− 𝑚
1
| (see Appendix). Notice that (51) and (53)

are in agreement with Assumption P2. Now, according to
Proposition 3 and Remark 4, the observer can be proposed
as

̇̂z
𝑠

= 𝐴
3
ẑ
𝑠
+ 𝐵
3

(𝑎𝑏V
𝑥

(𝑥
1
) − 𝑏𝑢 + 𝐾

𝑇

𝑠
ẑ
𝑠
)

− 𝐿
3𝜅
𝑠

𝐶
𝑇

3
(ẑ
𝑠
− z
𝑠
) .

(55)

Using 𝐿
3𝜅
𝑠

= [24, 26, 9] and the list of data (49), we have the
following matrix:

𝑀
3𝜅
𝑠

=
[
[

[

−24 1 0

−26 0 1

−399 −25 −16

]
]

]

, (56)
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Figure 2: Observation error for the Chua or slave system in the transformed coordinates: 𝑒
𝑠

= 𝑧
𝑠
− �̂�
𝑠
.

which is stable, and 𝛾
𝑠

= 1.1429. Solving the Lyapunov
equation,

𝑃
3𝜅
𝑠

𝑀
3𝜅
𝑠

+ 𝑀
𝑇

3𝜅
𝑠

𝑃
3𝜅
𝑠

= −𝐼
3
, (57)

it is easy to see that ‖𝑃
3𝜅
𝑠

𝐵
3
‖ = 0.308, ensuring that

2𝛾
𝑠
(0.308) < 1. That is, the corresponding observer proposed

in (55) ensures that the estimation error e
𝑠

= z
𝑠
− ẑ
𝑠
converges

exponentially and asymptotically to zero.
Similarly to the master system, the slave experimental

setup uses the above defined parameter values, and the initial
conditions of the slave and its observer were fixed as 𝑥

𝑠
(0) =

(1, 0.5, 0.4) and 𝑥
𝑠
(0) = 0, respectively. The slave input was

fixed as 𝑢 = 0. In Figure 2, it is easy to see that the errors are
very close to zero after 3.5-second elapse.

Colpitts Oscillator and Chua Circuit Generalized Synchro-
nization. For this numerical simulation, we used the same
experimental setup and the same observer as in the previous

experiments. The setup for the slave controller was fixed
according to Proposition 5. The used static feedback was

𝑢 (ẑ
𝑠
, ẑ
𝑚

) =
1

𝑝
(−𝜙 (𝑦

𝑚
) − 𝐾 (ẑ

𝑚
, ẑ
𝑠
) − 𝑓 (z

𝑠
)

− 𝐾
𝑛,𝑧

(ẑ
𝑚

− ẑ
𝑠
)) ,

(58)

where
𝜙 (𝑦
𝑚

) = 𝑎
𝑚

𝑏
𝑚

𝑐
𝑚

(−1 + 𝑒
−𝑦
𝑚) ;

𝐾 (ẑ
𝑚

, ẑ
𝑠
) = 𝐾

𝑇

𝑚
ẑ
𝑚

− 𝐾
𝑇

𝑠
ẑ
𝑠
;

𝑓 (z
𝑠
) = −𝑎

𝑠
𝑏
𝑠
V
𝑠
(−𝑧
𝑠
1

−

𝑧
𝑠
2

+ 𝑧
𝑠
3

𝑏
𝑠

) .

(59)

The synchronization error of this experiment is shown in
Figure 3, where we can see that, after 9-second elapse, the
difference between each pair of transformed coordinates is
almost zero, for the case 𝑟 = 1.
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Figure 3: Generalized synchronization error between the free Colpitts oscillator and the driven Chua circuit in transformed coordinates.

5. Conclusions

In this paper, we proposed a solution to the output-feedback
GS problem for a class of chaotic systems, namely, the
free master and the controlled slave, assuming that the
master system trajectories are bounded in a compact set.
The problem was solved given that the slave was controlled
using a single input, and a single output of each system was
available or measurable. The solution consisted of expressing
both systems in their corresponding observable generalized
canonical form, through the differentiable primitive element.
To this end, a suitable diffeomorphism transformation was
applied, between the original state space and the correspond-
ing canonical observability form of each system. Due to
the fact that the controlled slave system uses its own whole
state and the whole state of the master, a kind of a Luen-
berger observer for each system was proposed. Finally, the
information obtained through the observers is used by
the controlled slave system, solving the GS problem. The
corresponding convergence analysis was carried out using

the linear control approach and the Lyapunov method.
The effectiveness of the obtained method was assessed by
convincing numerical simulations, using the chaotic Colpitts
oscillator as the master and the chaotic Chua circuit as the
slave.

Appendix

Computing the Lipchitz Constant for
Function V

𝑥

From the definition given in (48), we have that

V𝑥 (𝑥) − V
𝑥

(𝑦)


≤
𝑚1



𝑥 − 𝑦
 +

𝑚0 − 𝑚
1



2

(|𝑥 + 1| −
𝑦 + 1

)


+

𝑚0 − 𝑚
1



2

(
𝑦 − 1

 − |𝑥 − 1|)
 .

(A.1)
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After using the well-known inequality,

|(|𝑎| − |𝑏|)| ≤ |𝑎 − 𝑏| , (A.2)

(A.1) can be rewritten as
V𝑥 (𝑥) − V

𝑥
(𝑦)

 ≤
𝑚1



𝑥 − 𝑦
 +

𝑚0 − 𝑚
1



𝑥 − 𝑦


≤ 𝑚
𝑥 − 𝑦

 ,

(A.3)

where

𝑚 =
𝑚1

 +
𝑚0 − 𝑚

1

 . (A.4)
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