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A method of estimation of all parameters of a class of nonlinear uncertain dynamical systems is considered, based on the modified
projective synchronization (MPS). The case of modified Colpitts oscillators is investigated. Through a suitable transformation of
the dynamical system, sufficient conditions for achieving synchronization are derived based on Lyapunov stability theory. Global
stability and asymptotic robust synchronization of the considered systemare investigated.Theproposed approach offers a systematic
design procedure for robust adaptive synchronization of a large class of chaotic systems. The combined effect of both an additive
white Gaussian noise (AWGN) and an artificial perturbation is numerically investigated. Results of numerical simulations confirm
the effectiveness of the proposed control strategy.

1. Introduction

Synchronization of chaotic systems and their potential appli-
cations in wide areas of physics and engineering sciences is
currently a field of great interest ([1, 2] and references cited
therein).The first idea of synchronizing two identical chaotic
systems with different initial conditions is introduced by Pec-
ora and Carroll [3] and the method is realized in electronic
circuits. Synchronization techniques have been improved in
recent years, andmany differentmethods are applied theoret-
ically and experimentally to synchronize the chaotic systems
which include back stepping design technique [4], projective
synchronization (PS) [5], modified projective synchroniza-
tion (MPS) [6, 7], generalized synchronization [8], adaptive
modified projective synchronization [9], lag synchronization
[10], anticipating synchronization [11], phase synchroniza-
tion [12], and their combinations [13]. Synchronization may
involve several systems without a prescribed hierarchy (bidi-
rectional) as it is the case in synchronization of networks of

systems [14, 15], often happening naturally, for instance, in
certain biological systems. Another intensive area of research
to emphasize within bidirectional synchronization is the
study of the consensus paradigm (see an excellent text in
[16]). Amongst all kinds of chaos synchronization,MPS is the
state-of-the-art of synchronization schemes. MPSmeans that
the master and slave systems could be synchronized up to a
constant scaling matrix. Recently, various control methods
which include adaptive control [17, 18] and active control
[7, 19, 20] have been introduced. Most of the works done
on MPS of chaotic systems have used active control method
since it is easy to design a control input and to deal with
equations including scaling functions. The controller based
on the active control method is complex and contains various
variables, so it may not be suitable for real practical purpose.
In fact, it is obvious that practical controllers should have
simple structures. Besides, the projective synchronization
(PS) has been used in the research on secure communication
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[21] because of the unpredictability of the scaling factorwhich
may be a useful element.

Adaptive control technique is used when the system
parameters are unknown. In adaptive method, control law
and a parameter update rule for unknown parameters are
designed in such a way that the chaotic response system
is controlled by the chaotic drive system. Most of the
studies in synchronization involve two identical/nonidentical
systems under the hypotheses that all the parameters of the
master and slave systems are known a priori. A controller
is constructed with the known parameters and systems are
free from external perturbations. But in practical situations
the uncertainties like parameter mismatch and external
disturbancesmay destroy the synchronization and even break
it. So it is necessary to design an adaptive controller and
parameter update law for the control and synchronization
of chaotic systems consisting of unknown parameters to get
rid of internal and external noises. In the presence of model
uncertainties and external disturbances, an appropriate adap-
tive control scheme is applied to stabilize a group of chaotic
systems. In [22] Salarieh and Shahrokhi proposed an adaptive
synchronization of two different chaotic systems with time-
varying unknown parameters. An adaptive synchronization
between two different hyperchaotic systems was developed
by Wu et al. [23] while Li et al. developed a complete (anti-
) synchronization of chaotic systems with fully uncertain
parameters by adaptive control [24]. In [25] Wang et al.
present an adaptive control and synchronization for chaotic
systems with parametric uncertainties. The same control
strategy is used by Mossa et al. for the antisynchronization
of two identical and different hyperchaotic systems with
uncertain parameters [26].

From the literature survey, it is seen that, with the
development of nonlinear control theory, nowadays adaptive
projective synchronization method has become very much
effective to control and synchronize the chaotic and hyper-
chaotic systems with uncertain parameters and external dis-
turbances. Recently, many authors have studied the adaptive
synchronization for the chaotic systems. In [27] Shen et al.
demonstrated that two chaotic Colpitts circuits can be prop-
erly synchronized with employment of adaptive controllers
while the circuit parameters and the channel are time varying.
An adaptive projective synchronization between different
chaotic systems with parametric uncertainties and external
disturbances was presented by Mayank et al. [28] while Jia et
al. develop a generalized projective synchronization of a class
of chaotic (hyperchaotic) systems with uncertain parameters
[29].

Most of the adaptive control scheme is based on the
dynamic parameter estimation. In their book entitled Stable
Adaptive Systems [30], Narendra and Annaswamy show that
the estimation is feasible when the parameters of the chaotic
system can be written in the matrix form. This approach
was used in 1991 by Mossayebi et al. to present an adaptive
estimation and synchronization of chaotic systems [31]. The
authors enlarge the parameter estimation concept extended
to well-known chaotic systems in the literature. Nowadays,
many other works are carried out to show that this topic is
not new in nonlinear science but there is not generalized

method planned for this issue. The problem of estimating
the unknown parameters using adaptive control has been
extensively investigated in the literature for linear and non-
linear systems. For instance, in [32], Fotsin and Daafouz
analyzed the adaptive synchronization of uncertain chaotic
Colpitts oscillators based on parameters identification. Based
on Lyapunov stabilization theory, Huang et al. [33] proposed
an adaptive controller with parameters identification for syn-
chronizing a class of chaotic systems with unknown parame-
ters. In thework [34], synchronization-based estimation of all
parameters of chaotic systems from time series is presented
by Huang. But we notice that the underlying assumption in
those papers is that the chaotic systems used as benchmark
examples to investigate synchronizations are in a form that
provides an easy identification of these parameters. The
techniques mentioned in the above articles are not suitable
for direct estimation of all system parameters of the circuits
in which certain coefficients are arguments of some other
nonlinear functions (jerk family, modified Colpitts, etc.). An
adequate estimation of the MCO parameters then appears
inescapable because of its many advantages that it offers in
the various chaos applications. To the best of our knowledge
there is no study in the synchronization between two identical
chaotic oscillators having the topology described above with
estimation of all its parameters. Besides the topology of the
modified Colpitts oscillator presents a complex nonlinear
term in exponential form and one of our purposes consists
in estimating its arguments.

Recently, there have been many efforts for the study of
dynamical properties of this oscillator introduced by Ababei
and Marculescu in [35] where it was used in the qualitative
numerical transmission of information. The particular fea-
ture of this oscillator is the real possibility to control chaos
using a single resistor, without varying any parameter of the
intrinsic Colpitts oscillator, which offers the possibility of an
electronic analog or digital control on the system dynamics.
Most previous studies in the literature have predominantly
concentrated on standard systems such as the Lorentz, the
classic Colpitts oscillator, the Chua system, the Chen system,
the Lu system, or the Rössler system either in the studies of
their stability analysis and periodic oscillations or of their
synchronization. It has been shown that theMCO can exhibit
complicated dynamics with reference to the classical Colpitts
oscillator linked to its nonlinearity topology which is a great
advantage in telecommunication. In general, the security of
chaos-based communication systems is dependent on the
complexity degree of master’s dynamics, carrying signal as
well as the encryption scheme used [21].There are few studies
in the synchronization of the MCO [36, 37], though these
systems are widely encountered in practice, in particular in
communication [38].

In this paper, we first transform the original system
equations of MCO by rigorous mathematical theory and
secondlywewill studymodified synchronization of uncertain
MCO which is presented based on Lyapunov stability theory.

The organization of this paper is as follows. In Section 2
we first give a brief presentation of the model and its chaotic
behavior is introduced. In Section 3, we present the theory of
transformation of the MCO. Problem formulation is relaxed
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in Section 4. Main results presenting the synchronization
behavior of two unknown MCO with artificial perturbation
are studied in Section 5. Numerical simulations are given in
Section 6. Finally, conclusions are presented in Section 7.

2. The Modified Colpitts Oscillator

The simplest configuration of the MCO is shown in
Figure 1(a) [36].This circuit uses a bipolar junction transistor
(BJT) as the gain element and a resonant network consisting
of an inductor (𝐿) and a pair of capacitors (𝐶

1
and 𝐶

2
). The

resistor 𝑅
𝑑
is the additive element compared to the classical

system.Thenonlinear element is the BJT (here theNPN type)
for which the simplified model shown in Figure 1(b) consists
of nonlinear voltage-controlled resistance 𝑅

𝐸
and a linear

current-controlled current source 𝐼
𝐸
[39]. Parasite capaci-

tances of the BJT can be neglected in the frequency range of
oscillation since their effect would only be a frequency shift.
We assume 𝛼

𝐹
= 1, where 𝛼

𝐹
is the common-base forward

short-circuiting current gain. This corresponds to neglecting
the base current. The V–I characteristic of the nonlinear
resistor 𝑅

𝐸
(which corresponds normally to the emitter-base

diode) and its approximate expression are defined as usual by

𝐼
𝐸
= 𝑓 (𝑉BE) = 𝐼𝑆 [exp(

𝑒𝑉BE
𝑘
𝐵
𝑇
) − 1]

≈ 𝐼
𝑆
[exp(𝑒𝑉BE

𝑘
𝐵
𝑇
)] ,

(1)

where 𝐼
𝑆
is the saturation current of the emitter-base diode,

𝑒 the elementary charge, 𝑘
𝐵
the Boltzmann constant, and

𝑇 the absolute temperature. The thermal voltage at room
temperature is given by 𝑉

𝑇
= 𝐾

𝐵
𝑇/𝑒 ≈ 26mV. Here we set

𝐼
𝑆
= 10

−11 A.The base-emitter voltage drop 𝑉BE is given by

𝑉BE = −𝑢2 − 𝑅𝑑 (𝑖𝐿 + 𝑖𝐵) , (2)

where 𝑖
𝐵
is the base current. Moreover, the relations between

the currents are

𝑖
𝐿
= 𝑖

1
+ 𝑖

𝑐
; 𝑖

𝐿
= 𝑖

2
+ 𝑖

3
− 𝑖

𝐵
. (3)

Since we have 𝑖
𝐿
≫ 𝑖

𝐵
, the simplified state equations for the

schematic in Figure 1(a) are the following:
𝑑𝑢

1

𝑑𝑡
=
𝑖
𝐿

𝑐
1

−
𝐼
𝐸

𝑐
1

,

𝑑𝑢
2

𝑑𝑡
=
𝑖
𝐿

𝑐
2

−
𝑢
2

𝑅
𝑒
𝑐
2

−
𝑉CC
𝑅
𝑒
𝑐
2

,

𝑑𝑖
𝐿

𝑑𝑡
=
𝑉CC
𝐿
−
(𝑅

𝐶
+ 𝑅

𝑑
)

𝐿
𝑖
𝐿
−
𝑢
1

𝐿
−
𝑢
2

𝐿
.

(4)

We now introduce a set of dimensionless state variables (𝑥,
𝑦, and 𝑧) where we normalize voltages currents and time
according to the following relations:

𝑢
1
= 𝑉CC𝑥, 𝜃 = √𝐿𝑐

1
, 𝑡 = 𝜃𝜏,

𝑢
2
= 𝑉CC𝑦, 𝑖

𝐿
=
𝑉CC

√𝐿/𝑐
1

𝑧.

(5)

Using (2), (3), and (5), the system of (4) can be rewritten in
the following form:

𝑑𝑥

𝑑𝜏
= 𝑧 − 𝑎

2
exp (−𝑎𝑧 − 𝑏𝑦) ,

𝑑𝑦

𝑑𝜏
= −𝑏

0
− 𝑏

0
𝑦 + 𝑧,

𝑑𝑧

𝑑𝜏
= 1 − 𝑥 − 𝑦 − 𝑐

11
𝑧

(6)

with 𝑏
0
= 𝜃/𝑅

𝑒
𝑐
2
, 𝑏 = 𝜃𝐼

𝑆
/𝑐

2
𝑉CC, 𝑐11 = 𝜃(𝑅𝐶 + 𝑅𝑑)/𝐿, 𝑎 =

(𝑉CC/𝑉𝑇) (𝑅𝑑/√𝐿/𝑐1), and 𝑎2 = 𝐼𝑆𝜃/𝑐1𝑉CC.
Let us select the parameters: 𝐿 = 98.5 𝜇H, 𝑅

𝐶
= 35Ω,

𝑅
𝐸
= 400Ω, 𝑉CC = 𝑉EE = 5V, 𝐶1

= 𝐶
2
= 54 nF and 𝑅

𝑑
=

0.5Ω which yields 𝑎 = 2.25, 𝑏 = 192.3, 𝑏
0
= 0.106𝑐

11
= 0.934,

and 𝑎
2
= 8.51 ⋅ 10

−11; the system shows a chaotic behavior
characterized by a maximal Lyapunov exponent 𝜆max = 0.06
which confirms the occurrence of chaotic oscillations.

3. Transformation Analysis of MCO

Consider the dynamics system of MCO given by

𝑑𝑥
1

𝑑𝜏
= 𝑥

3
− 𝑎

1
exp (−𝑎𝑥

3
− 𝑏𝑥

2
) ,

𝑑𝑥
2

𝑑𝜏
= −𝑏

0
− 𝑏

0
𝑥
2
+ 𝑥

3
,

𝑑𝑥
3

𝑑𝜏
= 1 − 𝑥

1
− 𝑥

2
− 𝑐

11
𝑥
3
.

(7)

In order to quantify the parameters inside the exponential
term argument, let us introduce the coordinates change in
state and output-space:

(𝑧
1
, 𝑧

2
, 𝑧

3
) = (𝑥

1
, 𝑒

−𝑏𝑥
2 , 𝑒

−𝑎𝑥
3) . (8)

Derivatives in the considered space are given by

(�̇�
1
, �̇�

2
, �̇�

3
) = (�̇�

1
, −
1

𝑏

�̇�
2

𝑧
2

, −
1

𝑎

�̇�
3

𝑧
3

) . (9)

In these new coordinates, the system (7) takes the form

�̇�
1
= −𝜎

1
ln 𝑧

3
− 𝜎

2
𝑧
2
𝑧
3
,

�̇�
2
= 𝜎

3
𝑧
2
− 𝜎

4
𝑧
2
ln 𝑧

2
+ 𝜎

6
𝑧
2
ln 𝑧

3
,

�̇�
3
= 𝜎

0
(𝑧

1
− 1) 𝑧

3
− 𝜎

7
𝑧
3
ln 𝑧

2
− 𝜎

5
𝑧
3
ln 𝑧

3
.

(10)

with 𝜎
1
= 1/𝑎, 𝜎

2
= 𝑎

1
, 𝜎

3
= 𝑏𝑏

0
, 𝜎

4
= 𝑏

0
, 𝜎

5
= 𝑐

11
, 𝜎

0
=

𝑎, 𝜎
6
= 𝑏𝑎

−1, and 𝜎
7
= 𝜎

−1

6
. The system (10) presents five

parameters as system (7) which confirms the linearity of the
transformation.

3.1. Dissipation and Existence of Attractors. Preliminary
insights concerning the existence of attractive sets [40] that
might coexist in the system could be gained by evaluating
the volume contraction/expansion rate (Γ = 𝑉−1

𝑑𝑉/𝑑𝜏) of
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Figure 1: Circuit model: (a) Schematic of the Colpitts oscillator. (b) BJT model in common base configuration.

the oscillator modeled by (10) at any given point (𝑧
1
, 𝑧

2
, 𝑧

3
)
𝑇

of the space. The following expression can be derived:

Γ =
𝜕�̇�

1

𝜕𝑧
1

+
𝜕�̇�

2

𝜕𝑧
2

+
𝜕�̇�

3

𝜕𝑧
3

= 𝜎
3
− 𝜎

4
− 𝜎

5
− 𝜎

0
+ 𝜎

0
𝑧
1
− ln (𝑧𝜎4+𝜎7

2
𝑧
𝜎
5
−𝜎
6

3
)

= 𝜎
0
𝑧
1
− ln(

𝑧
𝜎
4
+𝜎
7

2
𝑧
𝜎
5

3

𝛿𝑧
𝜎
6

3

) ,

(11)

where ln 𝛿 = 𝜎
3
− 𝜎

4
− 𝜎

5
− 𝜎

0
and �̇� = (�̇�

1
, �̇�

2
, �̇�

3
).

Consider the fact that the system (10) is dissipative which
is expressed as follows:

div (�̇�) = 𝜎
0
𝑧
1
− ln(

𝑧
𝜎
4
+𝜎
7

2
𝑧
𝜎
5

3

𝛿𝑧
𝜎
6

3

) < 0. (12)

This condition implies that the solutions of the new system
are bounded as 𝜏 → ∞. We may rewrite condition (12) as
follows:

𝑧
1
<
1

𝜎
0

ln(
𝑧
𝜎
4
+𝜎
7

2
𝑧
𝜎
5

3

𝛿𝑧
𝜎
6

3

) . (13a)

We notice that any initial volume element Γ
0
= Γ (𝜏 = 0) will

be continuously contracted by the flow. In other words, each
volume element containing the system trajectory shrinks to

zero as time elapses. Consequently, all system orbits will be
confined to a specific bounded subset of zero volume in phase
space and the asymptotic motion converges to an attractor.

It is easily shown that the system (7) has one equilibrium
point𝐸 = (𝑥

10
; 𝑥

20
; 𝑥

30
) such that𝐸 = (1.02; −0.10; 0.09).The

characteristic equation of the Jacobean matrix of the system
(7) about the equilibrium point is

𝛽
0
𝜆
3
+ (𝑏

0
+ 𝑐

11
) 𝜆

2
+ (1 + 𝑏

0
𝑐
11
+ 𝑚

2
) 𝜆 + 𝑚

1
+ 𝑏

0
𝑚

2
= 0,

(13b)

where𝑚
1
= 𝑎

1
𝑏 exp(−𝑎𝑥

30
−𝑏𝑥

20
);𝑚

2
= 1+𝑎𝑎

1
exp(−𝑎𝑥

30
−

𝑏𝑥
20
). Let 𝛽

0
= 1, 𝛽

1
= 𝑏

0
+ 𝑐

11
, 𝛽

2
= 1 + 𝑏

0
𝑐
11
+ 𝑚

2
,

and 𝛽
3
= 𝑚

1
+ 𝑏

0
𝑚

2
. We obtain the following conditions

𝛽
1
> 0, 𝛽

2
> 0, and 𝛽

1
𝛽
2
< 𝛽

3
. According to Routh-Hurwitz

criteria the equilibrium point is unstable. The singularity is
saddle point. The transformation (8) leads to the following
equilibrium point in the new space:

(𝑧
10
, 𝑧

20
, 𝑧

30
) = (𝑥

10
, 𝑒

−𝑏𝑥
20 , 𝑒

−𝑎𝑥
30) . (13c)

Then 𝐸 = (1.02; 4046.67; 0.48) and div(�̇�(𝑧
10
, 𝑧

20
, 𝑧

30
)) =

2.72 > 0 which confirms the divergence of trajectories at
the equilibrium point. In fact, an infinitesimal deviation of
the initial conditions will eventually result in the divergence
of nearby starting orbits. After a while, the system initially
unstable becomes dissipative and stays unchanged with
respect to its dynamical variables which strongly justify the
synchronization process of MCO in the space considered.
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Figure 2: (a) Time histories of MCO, (b) Phase portraits (versus 𝑥, 𝑦 versus 𝑥, 𝑦 versus 𝑧).
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Figure 3: Time histories of MCO when no control is applied ((a) 𝑍
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3.2. Model Description. Let us consider a general class of
chaotic systems described by the following differential equa-
tion:

�̇� = 𝜙 (𝑧 (𝜏) , 𝜏) 𝜃
1
+ 𝜀 (𝑧 (𝜏) , 𝜏) 𝜃

2

+

𝑝

∑

𝑖=1

𝜃
𝑖
Ω

𝑖
𝜀 (𝑧 (𝜏) , 𝜏) , 𝑝 = 3,

(14)

where 𝑧 ∈ 𝑅𝑛 denotes the state vectors, 𝜙 : 𝑅𝑛 → 𝑅
𝑛 are

continuous function matrices, and 𝜀, 𝜀 : 𝑅𝑛 → 𝑅
𝑛 are a

continuous nonlinear function, where 𝜀 denotes the product
part of the state variables and 𝜀 the made up function in

which the arguments are the system variables and 𝜃
1
, 𝜃

2
,

and 𝜃
𝑖
are parameters vectors such that 𝜃

1
, 𝜃

2
, 𝜃

𝑖
∈ 𝑅

𝑛×𝑛

and Ω
𝑖
∈ 𝑅

𝑛×𝑛, respectively. Note that many chaotic and
hyperchaotic systems such as jerk family system, two-cell
quantum-CNN, andmodified Bloch equations with feedback
field could be described by system (14). Expression (14) is
an interesting form because it describes the whole complex
chaotic system andmakes its dynamics behavior analysis easy
such as stability and bifurcations.

Assumption 1. The states of the chaotic system described
by (14) are bounded, and the nonlinear function with two
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variables 𝑓(𝑎V
3
, 𝑏

V
2
) is locally Lipschitz; that is, there exists

a positive constant 𝑘
𝑓
such that


𝑓 (𝑎

V
3
, 𝑏

V
2
) − 𝑓 (𝑎

Ṽ
3
, 𝑏

Ṽ
2
)

≤ 𝑎


𝑘
𝑓

Ṽ3 − V3


+ 𝑏

𝑘
𝑓

Ṽ2 − V2
 ,

(15)

where V = (V
1
, V

3
, V

2
), 𝑎 and 𝑏 are positive constants.

The relation (15) can be put in the following form:

𝑓 (𝑎

V
3
, 𝑏

V
2
) − 𝑓 (𝑎

Ṽ
3
, 𝑏

Ṽ
2
)

≤ 𝑀(𝑎


, 𝑏


) 𝑒

⊥
, (16)

where 𝑒
⊥
= (‖Ṽ

1
− V

1
‖, ‖Ṽ

2
− V

2
‖, ‖Ṽ

3
− V

3
‖)

𝑇, 𝑀(𝑎, 𝑏) =
[

0 0 0

0 𝜀


0

0 0 𝜀


] with 𝜀 = 𝑏𝑘
𝑓
and 𝜀 = 𝑎𝑘

𝑓
.

Let us consider two 3-dimensional chaotic systems which
can be represented in a more generic form as follows:

�̇� = 𝑓 (𝑥 (𝑡) , 𝑡) , (17)

̇𝑦 = 𝑓 (𝑦 (𝑡) , 𝑡) , (18)

where 𝑥 ∈ 𝑅3 and 𝑦 ∈ 𝑅3 are 3-dimensional state vectors of
the system and 𝑓 : 𝑅3 → 𝑅

3 is analytic.
We assume that the asymptotic convergence of (17) and

(18) is satisfied.
In the new space, the coordinates can be written in the

following form:

�̇� = 𝑓 (𝑧 (𝑡) , 𝑡) , (19)

̇̂𝑧 = 𝑓 (�̂� (𝑡) , 𝑡) , (20)

𝑧(𝑡) = 𝜓(𝑥(𝑡)), and �̂�(𝑡) = 𝜓(𝑦(𝑡)) where 𝜓(∗) is a tran-
sformation function.

Proposition 2. If the master system (17) and slave system
(18) asymptotically synchronize, then the systems (19) and (20)
whichwere derived from the change of space also asymptotically
synchronize, such that lim

𝑡→∞
‖𝑒(𝑡)‖ = 0 ⇒ lim

𝑡→∞
‖𝑒


(𝑡)‖ =

0, where 𝑒(𝑡) = 𝑦(𝑡) − 𝑥(𝑡) and 𝑒(𝑡) = �̂�(𝑡) − 𝑧(𝑡).

Proof. Let us write 𝑓(𝑧(𝑡), 𝑡) as the sum of two functions:

𝑓 (𝑧 (𝑡) , 𝑡) = 𝜙 (𝑧 (𝑡) , 𝑡) + 𝜀 (𝑧 (𝑡) , 𝑡) , (21)

where 𝜙(𝑧(𝑡), 𝑡) is the linear part of𝑓(𝑧(𝑡), 𝑡) and can take the
form:

𝜙 (𝑧 (𝑡) , 𝑡) = 𝐴𝑧 (𝑡) = 𝐴𝜓 (𝑥 (𝑡)) , (22)

where𝐴 is a full rank constantmatrix and all eigenvalues of𝐴
have negative real parts.The simplest configuration of matrix
𝐴 is described by 𝐴 = diag(𝜆

1
, 𝜆

2
, . . . , 𝜆

𝑛
). Synchronization

error between system (19) and system (20) is defined as

𝑒

(𝑡) = �̂� (𝑡) − 𝑧 (𝑡)

= 𝐴𝜓 (𝑦 (𝑡) , 𝑡) − 𝐴𝜓 (𝑥 (𝑡) , 𝑡) + 𝜀 (�̂� (𝑡)) − 𝜀 (𝑧 (𝑡))

= 𝐴 (𝜓 (𝑦 (𝑡) , 𝑡) − 𝜓 (𝑥 (𝑡) , 𝑡)) + 𝜀 (�̂� (𝑡)) − 𝜀 (𝑧 (𝑡))

≤ 𝐴𝑀
 𝑦 (𝑡) − 𝑥 (𝑡)

 + 𝑀
𝜓 (𝑦 (𝑡) , 𝑡) − 𝜓 (𝑥 (𝑡) , 𝑡)



= 𝐴𝑀

‖𝑒 (𝑡)‖ + 𝑀𝑀


‖𝑒 (𝑡)‖

= (𝐴 +𝑀)𝑀

‖𝑒 (𝑡)‖

= 𝑀
∗
𝑒
⊥

(23)

with 𝑒
⊥
= 𝑀


‖𝑒(𝑡)‖ and𝑀∗

= (𝐴+𝑀)𝑀
 being chosen such

that all eigenvalues of the matrix𝑀∗ have negative real parts;
the dynamic errors are asymptotically stable. This completes
the proof.

4. Problem Formulation

An illustration of the modified projective synchronization
is now presented. Taking into account the synchronization
between two chaotic systems, take the drive system as follows:

�̇�
𝑚
= 𝜙 (𝑧

𝑚
, 𝜏) 𝜃

1
+ 𝜀 (𝑧

𝑚
, 𝜏) 𝜃

2

+

𝑝

∑

𝑖=1

𝜃
𝑖
Ω

𝑖
𝜀 (𝑧

𝑚
, 𝜏) + 𝜉 (𝑧

𝑚
, 𝜏) , 𝑝 = 3.

(24)

The response system is

̇𝑠 = 𝜙 (𝑠, 𝜏) 𝜃
1𝑟
+ 𝜀 (𝑠, 𝜏) 𝜃

2𝑟

+

𝑚

∑

𝑖=1

𝜃
𝑖𝑟
Ω

𝑖𝑟
𝜀 (𝑠, 𝜏) + 𝑢 (𝑧

𝑚
, 𝑠, 𝜏) + 𝑢


(𝑧

𝑚
, 𝑠, 𝜏) ,

(25)

where 𝑠 = [𝑠
1
, 𝑠

2
, . . . , 𝑠

𝑘
]
𝑇
∈ 𝑅

𝑘, (𝑢; 𝑢) ∈ 𝐶ℓ
[𝑅

+
× 𝑅

𝑛
×

𝑅
𝑘
, 𝑅

𝑘
, 𝑅

𝑛
] and ℓ ≥ 1, 𝜉(𝑧

𝑚
, 𝜏) is the external disturbances
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Figure 6: Estimated values for unknown parameters.

0 2 4 6 8 10
0.3

0.35

0.4

0.45

0.5

g
(𝜏
)

𝜏

Figure 7: Time evolution of adaptive gain.

bounded in magnitude ‖𝜉(𝑧
𝑚
, 𝜏)‖ ≤ 𝜌

, 𝑢(𝑧
𝑚
, 𝑠, 𝜏) is the

controller attached in the response system to be determined
later, and 𝑢(𝑧

𝑚
, 𝑠, 𝜏) is the adaptive controller used for

synchronizing the referencemodel with perturbation. If there
exists a function

𝛼 = diag (𝛼
1
, 𝛼

2
, . . . , 𝛼

𝑛
) satisfying lim

𝜏→∞
‖𝑒 (𝜏)‖

= lim
𝜏→∞

𝛼𝑠 (𝜏) − 𝑧𝑚 (𝜏)
 = 0 ∀𝑧

𝑚
(𝜏

0
) , 𝑠 (𝜏

0
) ∈ 𝑅

𝑛
,

(26)

then the systems (24) and (25) achieve modified projective
synchronization, where 𝑒 = (𝑒

1
, 𝑒

2
, . . . , 𝑒

𝑛
)
𝑇 and we call 𝛼 a

“scaling factor.”

Remark 3. Chaos synchronization schemes such as complete
synchronization and antisynchronization are special cases of
modified projective synchronization when 𝛼 = 1 and 𝛼 = −1,
respectively.

From the definition of error signal (26), the error dynam-
ics is

̇𝑒 (𝜏) = 𝛼𝜙 (𝑠, 𝜏) 𝜃
1𝑟
+ 𝛼𝜀 (𝑠, 𝜏) 𝜃

2𝑟

+ 𝛼

𝑝

∑

𝑖=1

𝜃
𝑖𝑟
Ω

𝑖𝑟
𝜀 (𝑠, 𝜏) + 𝛼𝑢 (𝑧

𝑚
, 𝑠, 𝜏)

− 𝜙 (𝑧
𝑚
, 𝜏) 𝜃

1
− 𝜀 (𝑧

𝑚
, 𝜏) 𝜃

2

+ 𝛼𝑢

(𝑧

𝑚
, 𝑠, 𝜏) −

𝑚

∑

𝑖=1

𝜃
𝑖
Ω

𝑖
𝜀 (𝑧

𝑚
, 𝜏) − 𝜉 (𝑧

𝑚
, 𝜏) .

(27)

Let us choose the controllers in the following form:

𝑢 =
1

𝛼
(𝜙 (𝑧

𝑚
, 𝜏) 𝜃

1𝑟
− 𝛼𝜙 (𝑠, 𝜏) 𝜃

1𝑟
− 𝛼𝜀 (𝑠, 𝜏) 𝜃

2𝑟

+ 𝜀 (𝑧
𝑚
, 𝜏) − 𝛼

𝑝

∑

𝑖=1

𝜃
𝑖𝑟
Ω

𝑖𝑟
𝜀 (𝑠, 𝜏)

+

𝑝

∑

𝑖=1

𝜃
𝑖𝑟
Ω

𝑖𝑟
𝜀 (𝑧

𝑚
, 𝜏)) − Λ𝑒,

(28)
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Figure 9: Time evolution of the dynamic error.

where Λ = diag(Λ
1
, Λ

2
, . . . , Λ

𝑛
), Λ

𝑖
> 0 (𝑖 = 1, 2, . . . , 𝑛)

are constants. One advantage of this type of controller is that
it can be easily constructed through time-varying resistors,
capacitors, or operational amplifier and their combinations,
or using a digital signal processor together with the appro-
priate converters. Consequently, we get

̇𝑒 (𝜏) = (𝜙 (𝑧
𝑚
, 𝜏) − 𝛼𝜙 (𝑠, 𝜏)) (𝜃

1𝑟
− 𝜃

1
)

+ (𝛼𝜀 (𝑠, 𝜏) − 𝜀 (𝑧
𝑚
, 𝜏)) (𝜃

2𝑟
− 𝜃

2
)

+

𝑝

∑

𝑖=1

(𝜃
𝑖𝑟
− 𝜃

𝑖
)Ω𝑒

𝑖
(𝛼𝜀 (𝑠, 𝜏) − 𝜀 (𝑧

𝑚
, 𝜏))

− Λ𝑒 − 𝜉 (𝑧
𝑚
, 𝜏) .

(29)

The parameter update rule is

̇𝜃
1𝑟
= −(𝜙 (𝑧

𝑚
, 𝜏) − 𝛼𝜙 (𝑠, 𝜏))

𝑇

𝑒 − Υ
𝛼
𝜃
1𝑟
,

̇𝜃
2𝑟
= −(𝛼𝜀 (𝑠, 𝜏) − 𝜀 (𝑧

𝑚
, 𝜏))

𝑇

𝑒 − Υ
𝛽
𝜃
2𝑟
,

̇̂
𝜃
𝑖𝑟
= −(𝛼𝜀 (𝑠, 𝜏) − 𝜀 (𝑧

𝑚
, 𝜏))

𝑇

Ω𝑒
𝑖
− Υ

𝜆
𝜃
𝑖𝑟
,

(30a)

where 𝜃
1𝑟
= 𝜃

1𝑟
−𝜃

1
, 𝜃

2𝑟
= 𝜃

2𝑟
−𝜃

2
, 𝜃

𝑖𝑟
= 𝜃

𝑖𝑟
−𝜃

𝑖
,Ω𝑒

𝑖
= Ω

𝑖𝑟
−Ω

𝑖
,

and Υ
𝑗
= diag(Υ

1𝑗
, Υ

2𝑗
, . . . , Υ

𝑝𝑗
), 𝑗 = (𝛼, 𝛽, 𝜆), are constant

positive matrices.

Theorem 4 (Barbalat’s lemma [41]). Let one consider an
uniform continuous function 𝜋 : [0,∞) → 𝑅 such that
∀𝜏 ∈ [0,∞):

lim
𝜏→∞

∫

𝜏

0

𝜋 (𝑡) 𝑑𝑡 𝑒𝑥𝑖𝑠𝑡𝑠 𝑎𝑛𝑑 𝑖𝑠 𝑓𝑖𝑛𝑖𝑡𝑒; 𝑡ℎ𝑒𝑛 lim
𝜏→∞

𝜋 (𝜏) = 0.

(30b)

Theorem 5. For the given scaling factor 𝛼, the modified
projective synchronization between drive system (24) and
response system (25) will occur under the control law (28) and
the parameter update rule (30b).

Proof. Construct dynamical Lyapunov function as follows:

�̇� =
1

2
𝑒
𝑇
𝑒 +

1

2

2

∑

V=1
𝜃
𝑇

V𝑟𝜃V𝑟 +
1

2

𝑝

∑

𝑖=1

𝜃
𝑇

𝑖𝑟
𝜃
𝑖𝑟
. (31)

Then the time derivative of Lyapunov function 𝑉 along the
trajectory of error system (29) is

�̇� = 𝑒
𝑇
̇𝑒 +

2

∑

V=1
𝜃
𝑇

V𝑟
̇̃
𝜃V𝑟 +

𝑝

∑

𝑖=1

𝜃
𝑇

𝑖𝑟

̇̂
𝜃
𝑖𝑟

= 𝑒
𝑇
(𝜙 (𝑧

𝑚
, 𝜏) − 𝛼𝜙 (𝑠, 𝜏)) (𝜃

1𝑟
− 𝜃

1
)

+ 𝑒
𝑇
(𝛼𝜀 (𝑠, 𝜏) − 𝜀 (𝑧

𝑚
, 𝜏)) (𝜃

2𝑟
− 𝜃

2
)

− 𝑒
𝑇

𝑚

∑

𝑖=1

(𝜃
𝑖𝑟
− 𝜃

𝑖
)Ω𝑒

𝑖
(𝛼𝜀 (𝑠, 𝜏) − 𝜀 (𝑧

𝑚
, 𝜏))
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− 𝑒
𝑇
Λ𝑒 − 𝜃

𝑇

1𝑟
(𝜙 (𝑧

𝑚
, 𝜏) − 𝛼𝜙 (𝑠, 𝜏))

𝑇

𝑒

− 𝜃
𝑇

1𝑟
Υ
𝛼
𝜃
1𝑟
− 𝜃

𝑇

2𝑟
(𝛼𝜀 (𝑠, 𝜏) − 𝜀 (𝑧

𝑚
, 𝜏))

𝑇

𝑒

− 𝜃
𝑇

2𝑟
Υ
𝛽
𝜃
2𝑟
−

𝑝

∑

𝑖=1

𝜃
𝑇

𝑖𝑟
Ω𝑒

𝑖
(𝛼𝜀 (𝑠, 𝜏) − 𝜀 (𝑧

𝑚
, 𝜏))

𝑇

−

𝑝

∑

𝑖=1

𝜃
𝑇

𝑖𝑟
Υ
𝜆
𝜃
𝑖𝑟
− 𝑒

𝑇
𝜉 (𝑧

𝑚
, 𝜏)

= −𝑒
𝑇
Λ𝑒 − 𝜃

𝑇

1𝑟
Υ
𝛼
𝜃
1𝑟
− 𝜃

𝑇

2𝑟
Υ
𝛽
𝜃
2𝑟

−

𝑝

∑

𝑖=1

𝜃
𝑇

𝑖𝑟
Υ
𝜆
𝜃
𝑖𝑟
− 𝑒

𝑇
𝜉 (𝑧

𝑚
, 𝜏) .

(32)

Since the systems (24) and (25) are contained in an attractor,
we can suppose that the whole error system (27) can be in
the domain Ω = {𝑒 ∈ 𝑅𝑛, ‖𝑒‖ ≤ 𝑟

0
, 𝑟

0
> 0}. Set ‖𝜉(𝑧

𝑚
, 𝜏)‖ ≤

𝜌
 and consider a bounded positive function Λ

(𝜏) such that
𝜉(𝑧

𝑚
, 𝜏) = −Λ


(𝜏)𝑒. It is obvious to note that ‖Λ

(𝑡)𝑒‖ ≤ 𝑟
0
𝜌
.

Then, (32) may be written as follows:

�̇� ≤ −𝑒
𝑇
Λ𝑒 − 𝜃

𝑇

1𝑟
Υ
𝛼
𝜃
1𝑟
− 𝜃

𝑇

2𝑟
Υ
𝛽
𝜃
2𝑟

−

𝑝

∑

𝑖=1

𝜃
𝑇

𝑖𝑟
Υ
𝜆
𝜃
𝑖𝑟
+ 𝑒

𝑇
Λ

(𝜏) 𝑒

≤ −𝑒
𝑇
(Λ − Λ


(𝜏)) 𝑒 − 𝜃

𝑇

1𝑟
Υ
𝛼
𝜃
1𝑟
− 𝜃

𝑇

2𝑟
Υ
𝛽
𝜃
2𝑟

−

𝑝

∑

𝑖=1

𝜃
𝑇

𝑖𝑟
Υ
𝜆
𝜃
𝑖𝑟
< 0.

(33)

We can see that𝑉 is positive definite ifΛ−Λ
(𝜏) ≤ 0 and �̇� is

negative definite; according to Lyapunov stability theory, the
error vectors 𝑒

𝜎
(𝜎 = 1, 2, . . . , 𝑛) asymptotically tend to zero,

leading to the modified projective synchronization between
drive (24) and response system (25). Therefore, the proof is
completed.

5. Main Results

The equations of MCO in the new space can be expressed as
in equations (24), with the following parameters:

𝑧
𝑚
= [

[

𝑧
1

𝑧
2

𝑧
3

]

]

, Ω
1
= [

[

0 0 −1

0 −𝑧
2
0

0 0 −𝑧
3

]

]

,

Ω
2
= [

[

0 0 0

0 0 𝑧
2

0 −𝑧
3
0

]

]

, 𝜙 (𝑧 (𝜏) , 𝜏) = [

[

0

𝑧
2

−𝑧
3

]

]

,

𝜀 (𝑧 (𝜏) , 𝜏) = [

[

ln 𝑧
1

ln 𝑧
2

ln 𝑧
3

]

]

, 𝜀 (𝑧 (𝜏) , 𝜏) = [

[

−𝑧
2
𝑧
3

0

𝑧
1
𝑧
3

]

]

,

𝜃
2
= [

[

𝜎
2

0

𝜎
0

]

]

, 𝜃
1
= [

[

0

𝜎
3

𝜎
0

]

]

,

𝜃
1
= [

[

𝜎
1

𝜎
4

𝜎
7

]

]

, 𝜃
2
= [

[

0

𝜎
6

𝜎
5

]

]

.

(34)

For the sake of clarity and the matter to handle easily the
calculations, expression (34) can be put in the particular
form which will enable us to underline modified projective
synchronization. Let us consider the following MCO master
with artificial perturbation and slave systems:

�̇�
1
(𝜏) = −𝜎

1
ln 𝑧

3
(𝜏) − 𝜎

2
𝑧
2
(𝜏) 𝑧

3
(𝜏) − 𝑘𝑧

1
(𝜏) ,

�̇�
2
(𝜏) = 𝜎

3
𝑧
2
(𝜏) − 𝜎

4
𝑧
2
(𝜏) ln 𝑧

2
(𝜏)

+ 𝜎
6
𝑧
2
(𝜏) ln 𝑧

3
(𝜏) ,

�̇�
3
(𝜏) = 𝜎

0
(𝑧

1
(𝜏) − 1) 𝑧

3
(𝜏) − 𝜎

7
𝑧
3
(𝜏) ln 𝑧

2
(𝜏)

− 𝜎
5
𝑧
3
(𝜏) ln 𝑧

3
(𝜏) ,

(35)

̇𝑠
1
(𝜏) = −𝜎



1
ln 𝑠

3
(𝜏) − 𝜎



2
𝑠
2
(𝜏) 𝑠

3
(𝜏) + 𝑢

1
+ 𝑢



1

̇𝑠
2
(𝜏) = 𝜎



3
𝑠
2
(𝜏) − 𝜎



4
𝑠
2
(𝜏) ln 𝑠

2
(𝜏)

+ 𝜎


6
𝑠
2
(𝑡) ln 𝑠

3
(𝜏) + 𝑢

2
+ 𝑢



2
,

̇𝑠
3
(𝜏) = 𝜎



0
(𝑠

1
(𝜏) − 1) 𝑠

3
(𝜏) − 𝜎



7
𝑠
3
(𝜏) ln 𝑠

2
(𝜏)

− 𝜎


5
𝑠
3
(𝜏) ln 𝑠

3
(𝜏) + 𝑢

3
+ 𝑢



3
,

(36)

where 𝜎
1
, 𝜎

2
, 𝜎

3
, 𝜎

4
, and 𝜎

5
are unknown parameters of the

master system and 𝜎
1
, 𝜎



2
, 𝜎



3
, 𝜎



4
, and 𝜎

5
are parameters of

the slave system which need to be estimated. Assuming that
the character of (35) could be altered by adding an artificial
perturbation 𝑘𝑧

1
(|𝑘| ≤ 𝑘

𝑚
is a pertubation coefficient), the

adaptive control input was added into the first equation of the
driven model.

By assumption, the master system operates in the chaotic
regime; hence, all master signals are bounded. Furthermore,
let us temporarily assume that the trajectory of the slave
system in closed loop, that is, 𝑠

1
(𝜏), is bounded for all 𝜏 (this

will be relaxed and proved at the end). Then, there exists 𝛽
such that

sup
𝜏≥0

𝑠1 (𝜏)
 ≤ 𝛽. (37)

The error state variables are defined as follows:

𝑒
1
(𝜏) = 𝛼

1
𝑠
1
(𝜏) − 𝑧

1
(𝜏) ,

𝑒
2
(𝜏) = 𝛼

2
𝑠
2
(𝜏) − 𝑧

2
(𝜏) ,

𝑒
3
(𝜏) = 𝛼

3
𝑠
3
(𝜏) − 𝑧

3
(𝜏) .

(38)
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From these equations, we have the following error dynamics:

̇𝑒
1
= 𝜎

1
ln 𝑧

3
(𝜏) + 𝜎

2
𝑧
2
(𝜏) 𝑧

3
(𝜏) − 𝛼

1
𝜎


1
ln 𝑠

3

− 𝛼
1
𝜎


2
𝑠
2
𝑠
3
+ 𝑘𝑧

1
(𝜏) + 𝛼

1
𝑢
1
+ 𝛼

1
𝑢


1
,

̇𝑒
2
= −𝜎

3
𝑧
2
(𝜏) − 𝜎

4
𝑧
2
(𝜏) ln 𝑧

2
(𝜏)

+ 𝜎
6
𝑧
2
(𝜏) ln 𝑧

3
(𝜏) + 𝛼

2
𝜎


3
𝑠
2
− 𝛼

2
𝜎


4
𝑠
2
ln 𝑠

2

+ 𝜎

𝛼
2
𝑠
2
ln 𝑠

3
+ 𝛼

2
𝑢
2
+ 𝛼

2
𝑢


2
,

̇𝑒
3
= −𝜎

0
(𝑧

3
(𝜏) + 𝑧

1
(𝜏) 𝑧

3
(𝜏))

+ 𝜎
7
𝑧
3
(𝜏) ln 𝑧

2
(𝜏) + 𝜎

5
𝑧
3
(𝜏) ln 𝑧

3
(𝜏)

+ 𝛼
3
𝜎


0
(𝑠

3
+ 𝑠

1
𝑠
3
) − 𝛼

3
𝜎


7
𝑠
3
ln 𝑠

2

+ 𝛼
3
𝜎
5
𝑠
3
ln 𝑠

3
+ 𝛼

3
𝑢
3
+ 𝛼

3
𝑢


3
.

(39)

The following update laws for system (39) are designed:

𝑢
1
=
1

𝛼
1

(−𝛼
1
𝜎


1
ln 𝑠

3
− 𝛼

1
𝜎


2
𝑠
2
𝑠
3
+ 𝜎



1
ln 𝑧

3
(𝜏)

−𝜎


2
𝑧
2
(𝜏) 𝑧

3
(𝜏) − 𝑘

1
𝑒
1
) ,

𝑢
2
=
1

𝛼
2

(−𝜎


3
𝑧
2
(𝜏) + 𝜎



4
𝑧
2
(𝜏) ln 𝑧

2
(𝜏)

− 𝜎


3
𝑧
2
(𝜏) ln 𝑧

3
(𝜏) + 𝛼

2
𝜎


3
𝑠
2

−𝛼
2
𝜎


4
𝑠
2
ln 𝑠

2
− 𝛼

2
𝑠
2
ln 𝑠

3
− 𝑘

2
𝑒
2
) ,

𝑢
3
=
1

𝛼
3

(−𝜎


0
(𝑧

1
(𝜏) + 1) 𝑧

3
(𝜏) + 𝜎



7
𝑧
3
(𝜏) ln 𝑧

2
(𝜏)

+ 𝜎


5
𝑧
3
(𝜏) ln 𝑧

3
(𝜏)

− 𝛼
3
𝜎


0
(𝑠

1
+ 1) 𝑠

3
+ 𝛼

3
𝜎


6
𝑠
3
ln 𝑠

2

+𝛼
3
𝜎


5
𝑠
3
ln 𝑠

3
− 𝑘

3
𝑒
3
) ,

(40)

where 𝑘
𝑖
(𝑖 = 1, 2, 3) are positive constants.

Substituting the control input (40) into (39) gives

̇𝑒
1
= (𝜎

1
− 𝜎



1
) ln 𝑧

3
(𝜏) + (𝜎

2
− 𝜎



2
) 𝑧

2
(𝜏) 𝑧

3
(𝜏)

− 𝑘
1
𝑒
1
− 𝑘𝑧

1
(𝜏) + 𝛼

1
𝑢


1
,

̇𝑒
2
= − (𝜎

3
− 𝜎



3
) 𝑧

2
(𝜏) + (𝜎

4
− 𝜎



4
) 𝑧

2
(𝜏) ln 𝑧

2
(𝜏)

+ (𝜎
6
− 𝜎



6
) 𝑧

2
(𝜏) ln 𝑧

3
(𝜏)

− 𝑘
2
𝑒
2
+ 𝛼

2
𝑢


2
,

̇𝑒
3
= − (𝜎

0
− 𝜎



0
) (𝑧

3
(𝜏) − 𝑧

1
(𝜏) 𝑧

3
(𝜏))

+ (𝜎
7
− 𝜎



7
) 𝑧

3
(𝜏) ln 𝑧

2
(𝜏)

− (𝜎
5
− 𝜎



5
) 𝑧

3
(𝜏) ln 𝑧

3
(𝜏) − 𝑘

3
𝑒
3
+ 𝛼

3
𝑢


3
.

(41)

The modified projective synchronization between master
and slave systems will occur by the control law (40) and
the following update rules for five unknown parameters
𝜎


1
, 𝜎



2
, 𝜎



3
, 𝜎



4
, and 𝜎

5
:

̇
𝜎


1
= 𝑒

1
ln 𝑧

3
(𝜏) − (𝜎



1
− 𝜎

1
) ,

̇
𝜎


2
= 𝑒

1
𝑧
2
(𝜏) 𝑧

3
(𝜏 − 𝜏) − (𝜎



2
− 𝜎

2
) ,

̇
𝜎


3
= −𝑧

2
(𝜏) 𝑒

2
− (𝜎



3
− 𝜎

3
) ,

̇
𝜎


4
= 𝑧

2
(𝜏) 𝑒

2
ln 𝑧

3
(𝜏) − (𝜎



4
− 𝜎

4
) ,

̇
𝜎


5
= 𝑧

3
(𝜏) 𝑒

3
ln 𝑧

3
(𝜏) − (𝜎



5
− 𝜎

5
) .

(42)

Theorem 6. For any nonzero scaling factors, the slave system
(36) can synchronize the master system (35) if 𝑢

1
= −(𝑔/𝛼

1
)𝑒

1

and𝑢
2
= 0,𝑢

3
= 0, where g is an estimated feedback gainwhich

is updated according to the following adaption algorithm:

𝑑𝑔

𝑑𝜏
= 𝜎𝑒

2

1
, 𝑤ℎ𝑒𝑟𝑒 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡 𝜎 > 0. (43)

Proof. The error system is

̇𝑒
1
= (𝜎

1
− 𝜎



1
) ln 𝑧

3
(𝜏) + (𝜎

2
− 𝜎



2
) 𝑧

2
(𝜏) 𝑧

3
(𝜏)

− 𝑘
1
𝑒
1
− 𝑔𝑒

1
− 𝑘𝑧

1
(𝜏) ,

̇𝑒
2
= − (𝜎

3
− 𝜎



3
) 𝑧

2
(𝜏) + (𝜎

4
− 𝜎



4
) 𝑧

2
(𝜏) ln 𝑧

2
(𝜏)

+ (𝜎
6
− 𝜎



6
) 𝑧

2
(𝜏) ln 𝑧

3
(𝜏) − 𝑘

2
𝑒
2
,

̇𝑒
3
= − (𝜎

0
− 𝜎



0
) (𝑧

3
(𝜏) − 𝑧

1
(𝜏) 𝑧

3
(𝜏))

+ (𝜎
7
− 𝜎



7
) 𝑧

3
(𝜏) ln 𝑧

2
(𝜏)

− (𝜎
5
− 𝜎



5
) 𝑧

3
(𝜏) ln 𝑧

3
(𝜏) − 𝑘

3
𝑒
3
,

̇𝑔 = 𝜌𝑒
2

1
.

(44)

Define the Lyapunov function

𝑉 =
1

2
(𝑒

𝑇
𝑒 + (𝜎

1
− 𝜎



1
)
2

+ (𝜎
2
− 𝜎



2
)
2

+(𝜎
3
− 𝜎



3
)
2

+ (𝜎
4
− 𝜎



4
)
2

+ (𝜎
5
− 𝜎



5
)
2

−
1

𝜌
(𝑔 − 𝑔

1
)
2

) ,

(45)
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where 𝑔
1
> 0 is an initial value of 𝑔 and 𝑒 = (𝑒

1
, 𝑒

2
, 𝑒

3
). The

time derivative of the Lyapunov function along the trajectory
of the error (44) is

𝑑𝑉

𝑑𝑡
= 𝑒

𝑇
̇𝑒 + �̇�

1
(𝜎

1
− 𝜎



1
) + �̇�

2
(𝜎

2
− 𝜎



2
)

+ �̇�
3
(𝜎

3
− 𝜎



3
) + �̇�

4
(𝜎

4
− 𝜎



4
)

+ �̇�
5
(𝜎

5
− 𝜎



5
) −

1

𝜌
̇𝑔 (𝑔 − 𝑔

1
)

= −𝑘
1
𝑒
2

1
− 𝑘

2
𝑒
2

2
− 𝑘

2
𝑒
2

3
− 𝑘𝑒

1
𝑧
1

− 𝑒
1
(𝜎

1
− 𝜎



1
) ln 𝑧

3
(𝜏) − (𝜎

2
− 𝜎



2
) 𝑧

2
(𝜏) 𝑒

1
𝑧
3
(𝜏)

+ (𝜎
3
− 𝜎



3
) 𝑧

2
(𝜏) 𝑒

2
(𝜎

4
− 𝜎



4
)

− 𝑧
2
(𝜏) 𝑒

2
ln 𝑧

2
(𝜏) + (𝜎

5
− 𝜎



5
) 𝑧

3
(𝜏) 𝑒

3
ln 𝑧

3
(𝜏)

= −𝑔
1
𝑒
2

1
− 𝑘

1
𝑒
2

1
− 𝑘

2
𝑒
2

2
− 𝑘

3
𝑒
3

3
− 𝑘𝑒

1
𝑧
1

= − (𝑔
1
+ 𝑘

1
) (𝑒

1
+

𝑘𝑧
1

2 (𝑔
1
+ 𝑘

1
)
)

2

−
𝑘
2
𝑧
1

2

𝑔
1
+ 𝑘

1

− 𝑘
2
𝑒
2

2
− 𝑘

3
𝑒
3

3
.

(46)

If we choose 𝑔(0) = 𝑔
1
> 0 and under the constraints that

the constant 𝑘 could be neglected because 𝑘
1
is large enough,

(46) can be rewritten in the following form:

𝑑𝑉

𝑑𝑡
≤ − (𝑔

1
+ 𝑘

1
) 𝑒

2

1
− 𝑘

2
𝑒
2

2
− 𝑘

3
𝑒
3

3

= −[

[

𝑒
1

𝑒
2

𝑒
3

]

]

[

[

𝑔
1
+ 𝑘

1
0 0

0 𝑘
2
0

0 0 𝑘
3

]

]

[

[

𝑒
1

𝑒
2

𝑒
3

]

]

= −𝑒
𝑇
𝑃𝑒.

(47)

Since the Lyapunov function 𝑉 is positive definite and its
derivative �̇� is negative semidefinite, we cannot immediately
obtain that the origin of error system (27) is asymptotically
stable. In fact, as �̇� ≤ 0, then 𝑒

1
, 𝑒

2
, 𝑒

3
, (𝜎

1
−𝜎



1
), (𝜎

2
−𝜎



2
), (𝜎

3
−

𝜎


3
), (𝜎

4
−𝜎



4
), (𝜎

5
−𝜎



5
), (𝑔−𝑔

1
) ∈ 𝐿

∞
. From the error system

(44), we have ̇𝑒
1
, ̇𝑒

2
, ̇𝑒

3
, ̇𝑔 ∈ 𝐿

∞
. Since 𝑃 is a positive-definite

matrix, we have

∫

𝜏

0

𝜆min‖𝑒‖
2
𝑑𝜏 ≤ ∫

𝜏

0

−𝑒
𝑇
𝑃𝑒 𝑑𝜏 ≤ ∫

𝜏

0

−�̇�𝑑𝜏

= 𝑉 (0) − 𝑉 (𝜏) ≤ 𝑉 (0) ,

(48)

where𝜆min(𝑃) is theminimumeigenvalue of positive-definite
matrix 𝑃. Thus ̇𝑒

1
, ̇𝑒

2
, ̇𝑒

3
∈ 𝐿

2
. According to Barbalat’s lemma

presented in Theorem 4, we have 𝑒
1
(𝜏), 𝑒

2
(𝜏), 𝑒

3
(𝜏) → 0 as

𝜏 → ∞. Therefore, the response system (36) synchronizes
the drive system (35) in the sense of modified projective
synchronization. This completes the proof.

It is left to show that the trajectories of the slave system
are bounded under the feedback. We invoke the following.

(1) Since the systems are assumed to operate in chaotic
mode without feedback, their trajectories converge
to compact invariant set. Let 𝑟 > 0 and let the
closed ball 𝐵

𝑟
strictly contain such a compact set

(since the chaotic trajectories are bounded,we assume
that they are contained in 𝐵

𝑟
); let ∞ > 𝑇

∗
≥

0 be the smallest number such that 𝑒(𝜏) ∈ 𝐵
𝑟

for all 𝜏 ≥ 𝑇
∗. The previous development shows

that 𝑉 is positive definite Lyapunov function with a
negative definite derivative for any values of the states
contained in a compact set. Hence, there always exist
control gains such that the system under feedback is
forward complete.

(2) It may be shown as in [42] that the system under
control is forward complete; that is, if there exists a
set of initial conditions and gains such that, together,
they generate solutions that tend to infinity, these
solutions may unboundedly grow only in infinite
time. From this, it follows that, for each 𝛿 > 0 and
𝑇 > 0, there exists 𝑀(𝛿, 𝑇) such that |𝑒(0)| ≤ 𝛿 ⇒
|𝑒(𝜏)| ≤ 𝑀(𝛿, 𝑇), for all 𝜏 ∈ [0, 𝑇], where 𝑀 is in
general a nondecreasing function of its arguments.
We assume that 𝑇 is the synchronization time. Since,
by assumption, the system operates in open loop for
all 𝜏 ∈ [0, 𝑇] for any 𝑇 > 0, |𝑒(𝜏)| ≤ max{𝑀(𝛿, 𝑇), 𝑟}
for all 𝜏 ∈ [0, 𝑇] for any 𝑇 > 0. That is, the solutions
are bounded. Note that the bound max{𝑀(𝛿, 𝑇), 𝑟} is
independent of the gains, and, for 𝑇 ≥ 𝑇

∗, we can
safely assume thatmax{𝑀(𝛿, 𝑇), 𝑟} = 𝑟 and𝛽depends
only on 𝑟; hence, point (2) of the proposition follows.
If 𝑇 and 𝛿 are given and max{𝑀(𝛿, 𝑇), 𝑟} = 𝑟, then 𝛽
depends on 𝑇 and 𝛿 and so does 𝑘

1
; hence, point (1)

of the proposition follows. In either case, 𝑘
1
does not

depend on the initial conditions 𝑒(0), nor is |𝑒(0)| ≤ 𝑟
required.

6. Simulations Investigations

The calculations of all equations were carried out using
the fourth-order Runge-Kutta algorithm. For this numerical
simulation, we assume the initial conditions:

(𝑧
1
(0) , 𝑧

2
(0) , 𝑧

3
(0)) = (0.5, 5 × 10

−10
, 10

−4
)

(𝑠
1
(0) , 𝑠

2
(0) , 𝑠

3
(0) , 𝑔 (0)) = (3 × 10

−15
, 10

−7
, 3 × 10

−3
, 0.3)

(49)

and control gains (𝑘
1
, 𝑘

2
, 𝑘

3
) = (1, 1, 1). As a test of verifica-

tion of strategy, let us take (𝛼
1
, 𝛼

2
, 𝛼

3
) = (0.1, 0.1, 0.1 ); hence

the error system has the initial values (𝑒
1
(0), 𝑒

2
(0), 𝑒

3
(0)) =

(−0.500, 9.5 × 10
−9
, −10

−4
). Let us choose 𝜌 = 1 and

𝑘
𝑚
= 0.05. For the specified values deduced from the circuit

parameters, the system (34) exhibits a chaotic behavior where
the phase diagramand timehistories are provided in Figure 2.
Furthermore, a kind of channel distortion by an AWGN was
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considered and added to (25). Figure 3 displays the time
history of the trajectories 𝑧

1
(𝜏) and 𝑧

3
(𝜏) of the master

system (35) in the presence of both artificial perturbation
and AWGN when no control is applied. In addition, these
graphs confirm the linearity of the transformation adopted
and also justify the benefits of using the type of control
scheme presented in this work. As it is expected in Figure 4
the divergence of the flows (10) confirms that the system (10)
is dissipative (div(�̇�(𝜏)) < 0). The robustness of adaptive
synchronization was validated with both artificial perturba-
tion and AWGN added to the controlled system. Figure 5
presents the phase portrait of system (10) in the presence of
artificial perturbation and AGWN. Figure 6 shows that the
estimations 𝜎

1
, 𝜎



2
, 𝜎



3
, 𝜎



4
, and 𝜎

5
of unknown parameters

converge to 𝜎
1
, 𝜎

2
, 𝜎

3
, 𝜎

4
, and 𝜎

5
, respectively which permits

us easily to find the constants inside exponential (𝑎 and 𝑏)
and other parameters of the system by using the following
relations: 𝑎 = 1/𝜎

1
, 𝑏 = 𝜎

3
/𝜎

4
, 𝑏

0
= 𝜎

4
, 𝑐

11
= 𝜎

5
, and

𝑎
1
= 𝜎

2
. Figure 7 shows that the system is well controlled

in the presence of the artificial perturbation. Figure 8 shows
the time evolution of the errors 𝑒

1
(𝜏), 𝑒

2
(𝜏), and 𝑒

3
(𝜏). The

dynamics of the synchronization error is defined as 𝑒
𝑞
(𝜏) =

√𝑒
2

1
(𝜏) + 𝑒

2

2
(𝜏) + 𝑒

2

3
(𝜏), whose time evolution is shown in

Figure 9.One can observe that the convergence of the systems
parameters and the synchronization errors are obtained with
a good accuracy despite the perturbation, which is consistent
with our expectations.

7. Conclusion

In this paper, based on Lyapunov stability theory, theory
of changing space of variables, and Barbalat’s lemma we
achieved lag synchronization of two modified Colpitts oscil-
lators. This control strategy of the MCO with uncertainties
including the coefficients of nonlinear terms was obtained via
adaptive control. It appears that it is possible to introduce a
specific controller to attenuate any artificial perturbation on
the system. The final remark is that the proposed scheme is
applicable to various other dynamical systems to efficiently
estimate unknown parameters which could be arguments of
some other nonlinear functions.
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