906 research outputs found

    Asymptotic Analysis and Design of Iterative Receivers for Non Linear ISI Channels

    Get PDF
    International audienceIn this paper, iterative receiver analysis and design for non linear satellite channels is investigated. To do so, an EXtrinsic Information Transfer (EXIT) chart-based optimization is applied using two major assumptions: the equalizer outputs follow a Gaussian Mixture distribution since we use non-binary modulations and partial interleavers are used between the Low Density Parity Check (LDPC) code and the mapper. Achievable rates, performance and thresholds of the optimized receiver are analysed. The objective in fine is to answer the question: Is it worth optimizing an iterative receiver for non linear satellite channels

    An Information Theoretic Charachterization of Channel Shortening Receivers

    Get PDF
    Optimal data detection of data transmitted over a linear channel can always be implemented through the Viterbi algorithm (VA). However, in many cases of interest the memory of the channel prohibits application of the VA. A popular and conceptually simple method in this case, studied since the early 70s, is to first filter the received signal in order to shorten the memory of the channel, and then to apply a VA that operates with the shorter memory. We shall refer to this as a channel shortening (CS) receiver. Although studied for almost four decades, an information theoretic understanding of what such a simple receiver solution is actually doing is not available. In this paper we will show that an optimized CS receiver is implementing the chain rule of mutual information, but only up to the shortened memory that the receiver is operating with. Further, we will show that the tools for analyzing the ensuing achievable rates from an optimized CS receiver are precisely the same as those used for analyzing the achievable rates of a minimum mean square error (MMSE) receiver

    Blind adaptive constrained reduced-rank parameter estimation based on constant modulus design for CDMA interference suppression

    Get PDF
    This paper proposes a multistage decomposition for blind adaptive parameter estimation in the Krylov subspace with the code-constrained constant modulus (CCM) design criterion. Based on constrained optimization of the constant modulus cost function and utilizing the Lanczos algorithm and Arnoldi-like iterations, a multistage decomposition is developed for blind parameter estimation. A family of computationally efficient blind adaptive reduced-rank stochastic gradient (SG) and recursive least squares (RLS) type algorithms along with an automatic rank selection procedure are also devised and evaluated against existing methods. An analysis of the convergence properties of the method is carried out and convergence conditions for the reduced-rank adaptive algorithms are established. Simulation results consider the application of the proposed techniques to the suppression of multiaccess and intersymbol interference in DS-CDMA systems

    Limiting Performance of Conventional and Widely Linear DFT-precoded-OFDM Receivers in Wideband Frequency Selective Channels

    Get PDF
    This paper describes the limiting behavior of linear and decision feedback equalizers (DFEs) in single/multiple antenna systems employing real/complex-valued modulation alphabets. The wideband frequency selective channel is modeled using a Rayleigh fading channel model with infinite number of time domain channel taps. Using this model, we show that the considered equalizers offer a fixed post signal-to-noise-ratio (post-SNR) at the equalizer output that is close to the matched filter bound (MFB). General expressions for the post-SNR are obtained for zero-forcing (ZF) based conventional receivers as well as for the case of receivers employing widely linear (WL) processing. Simulation is used to study the bit error rate (BER) performance of both MMSE and ZF based receivers. Results show that the considered receivers advantageously exploit the rich frequency selective channel to mitigate both fading and inter-symbol-interference (ISI) while offering a performance comparable to the MFB

    MIMO signal processing in offset-QAM based filter bank multicarrier systems

    Get PDF
    Next-generation communication systems have to comply with very strict requirements for increased flexibility in heterogeneous environments, high spectral efficiency, and agility of carrier aggregation. This fact motivates research in advanced multicarrier modulation (MCM) schemes, such as filter bank-based multicarrier (FBMC) modulation. This paper focuses on the offset quadrature amplitude modulation (OQAM)-based FBMC variant, known as FBMC/OQAM, which presents outstanding spectral efficiency and confinement in a number of channels and applications. Its special nature, however, generates a number of new signal processing challenges that are not present in other MCM schemes, notably, in orthogonal-frequency-division multiplexing (OFDM). In multiple-input multiple-output (MIMO) architectures, which are expected to play a primary role in future communication systems, these challenges are intensified, creating new interesting research problems and calling for new ideas and methods that are adapted to the particularities of the MIMO-FBMC/OQAM system. The goal of this paper is to focus on these signal processing problems and provide a concise yet comprehensive overview of the recent advances in this area. Open problems and associated directions for future research are also discussed.Peer ReviewedPostprint (author's final draft

    Reduced Receivers for Faster-than-Nyquist Signaling and General Linear Channels

    Get PDF
    Fast and reliable data transmission together with high bandwidth efficiency are important design aspects in a modern digital communication system. Many different approaches exist but in this thesis bandwidth efficiency is obtained by increasing the data transmission rate with the faster-than-Nyquist (FTN) framework while keeping a fixed power spectral density (PSD). In FTN consecutive information carrying symbols can overlap in time and in that way introduce a controlled amount of intentional intersymbol interference (ISI). This technique was introduced already in 1975 by Mazo and has since then been extended in many directions. Since the ISI stemming from practical FTN signaling can be of significant duration, optimum detection with traditional methods is often prohibitively complex, and alternative equalization methods with acceptable complexity-performance tradeoffs are needed. The key objective of this thesis is therefore to design reduced-complexity receivers for FTN and general linear channels that achieve optimal or near-optimal performance. Although the performance of a detector can be measured by several means, this thesis is restricted to bit error rate (BER) and mutual information results. FTN signaling is applied in two ways: As a separate uncoded narrowband communication system or in a coded scenario consisting of a convolutional encoder, interleaver and the inner ISI mechanism in serial concatenation. Turbo equalization where soft information in the form of log likelihood ratios (LLRs) is exchanged between the equalizer and the decoder is a commonly used decoding technique for coded FTN signals. The first part of the thesis considers receivers and arising stability problems when working within the white noise constraint. New M-BCJR algorithms for turbo equalization are proposed and compared to reduced-trellis VA and BCJR benchmarks based on an offset label idea. By adding a third low-complexity M-BCJR recursion, LLR quality is improved for practical values of M. M here measures the reduced number of BCJR computations for each data symbol. An improvement of the minimum phase conversion that sharpens the focus of the ISI model energy is proposed. When combined with a delayed and slightly mismatched receiver, the decoding allows a smaller M without significant loss in BER. The second part analyzes the effect of the internal metric calculations on the performance of Forney- and Ungerboeck-based reduced-complexity equalizers of the M-algorithm type for both ISI and multiple-input multiple-output (MIMO) channels. Even though the final output of a full-complexity equalizer is identical for both models, the internal metric calculations are in general different. Hence, suboptimum methods need not produce the same final output. Additionally, new models working in between the two extremes are proposed and evaluated. Note that the choice of observation model does not impact the detection complexity as the underlying algorithm is unaltered. The last part of the thesis is devoted to a different complexity reducing approach. Optimal channel shortening detectors for linear channels are optimized from an information theoretical perspective. The achievable information rates of the shortened models as well as closed form expressions for all components of the optimal detector of the class are derived. The framework used in this thesis is more general than what has been previously used within the area

    MIMO Transceiver Optimization With Linear Constraints on Transmitted Signal Covariance Components

    Get PDF
    This correspondence revisits the joint transceiver optimization problem for multiple-input multiple-output (MIMO) channels. The linear transceiver as well as the transceiver with linear precoding and decision feedback equalization are considered. For both types of transceivers, in addition to the usual total power constraint, an individual power constraint on each antenna element is also imposed. A number of objective functions including the average bit error rate, are considered for both of the above systems under the generalized power constraint. It is shown that for both types of systems the optimization problem can be solved by first solving a class of MMSE problems (AM-MMSE or GM-MMSE depending on the type of transceiver), and then using majorization theory. The first step, under the generalized power constraint, can be formulated as a semidefinite program (SDP) for both types of transceivers, and can be solved efficiently by convex optimization tools. The second step is addressed by using results from majorization theory. The framework developed here is general enough to add any finite number of linear constraints to the covariance matrix of the input
    corecore