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Abstract—Optimal data detection of a linear channel can
always be implemented through the Viterbi algorithm (VA).
However, in many cases of interest the memory of the channel
prohibits application of the VA. A popular and conceptually
simple method in this case, studied since the early 70s, is to
first filter the received signal in order to shorten the memory
of the channel, and then to apply a VA that operates with the
shorter memory. We shall refer to this as a channel shortening
(CS) receiver. Although studied for almost four decades, an
information theoretic understanding of what such simple receiver
solution is actually doing is not available.

In this paper we will show that an optimized CS receiver is
implementing the chain rule of mutual information, but only up
to the shortened memory that the receiver is operating with.
Further, we will show that the tools for analyzing the ensuing
achievable rates from an optimized CS receiver are precisely the
same as the tools that are used for analyzing the achievable rates
of an minimum mean square error (MMSE) receiver.

Index Terms—Receiver design, channel shortening detection,
reduced complexity detection, mismatched receivers, mismatched
mutual information.

I. INTRODUCTION

In 1972, Forney [1] showed that the VA can be applied to
intersymbol interference (ISI) channels in order to implement
maximum likelihood (ML) detection. However, the complexity
of the VA is exponential in the memory of the channel which
prohibits the VA. As a remedy, Falconer and Magee proposed
in 1973 the concept of channel shortening [2], also known
as combined linear and Viterbi equalization. The concept is
straightforward: (i) filter the received signal with a channel
shortening filter so that the effective channel has much shorter
duration than the original channel, (ii) Apply the VA to the
shorter effective channel. Although Falconeer and Magee’s
original paper dealt solely with ISI, the concept extends
straighforwardly to general linear channels in which case
”filter with a channel shortening filter” should be interpreted
as a matrix multiplication. After a QR factorization, the VA
is then applied. Albeit simple, the achievable rates that can be
supported by such receiver was first derived as late as 2012
in [3]. While [3] established the optimal parameters for the
CS receiver, no insights into the nature of the optimized CS
receiver was given. In this paper we analyze the optimal CS
receiver from an information theoretic perspective. The two
main findings are (i) An optimized CS receiver implements the
chain rule of mutual information up to the reduced memory
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of the receiver and (ii) The tools for analyzing the achievable
rates of CS are precisely the same as those used for analyzing
the rates of MMSE receivers [7].

II. SYSTEM MODEL

We consider a system model according to

y = Hx+ n, (1)

where y is the nR × 1 received vector, H is an arbitrary
channel matrix of dimension nR×nT that is perfectly known
to the receiver, x is an nT×1 vector comprising the transmitted
symbols from X , and n is an nR×1 noise vector. We assume
that x is distributed as a zero mean circularily symmetric
complex Gaussian distributed vector with covariance InT and
that n is distributed as a zero mean circularily symmetric
complex Gaussian distributed vector with covariance N0InR .
Note that we are not imposing any structure upon the matrix
H , so that (1) encompasses many communication systems,
such as multiple-input multiple-output (MIMO), intersymbol
interference (ISI), MIMO-ISI channels, intercarrier interfer-
ence (ICI) etc. In our subsequent analysis the underlying
structure of the channel matrix is irrelevant - the same results
apply in all cases - but we point out that the Toeplitz structure
of the matrix can be used to simplify the formulas for the ISI
cases.

At the receiver side, a data detector is de-modulating the
channel according to a certain detection rule that assigns a
metric to each vector x for a given y, µ(x|y). In a coded
system, not all vectors x can be transmitted, and, ideally, the
detector should consider only the set of valid code words C
and choose the one that maximizes the metric, i.e., it should
solve

x̂ = argmax
x∈C

µ(x|y). (2)

In practice, such a procedure is difficult to carry out, and it
is therefore common to apply iterative receivers where the
receiver is iterating between channel detection and the de-
coding of the error control code. Nevertheless, the achievable
rates that can be sustained depends ultimately on the detection
rule µ(x|y) that the date detector is equipped with. In this
paper, we assume that some Search Algorithm (SA) operating
with µ(x|y) is adopted that can achieve close to optimal
performance in the sense of (2). The pre-dominant approach
would be to use the BCJR as the main component of the SA
and then perform iterative detection.
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An optimal SA for the channel (1) is operating on the basis
of the conditional probability density function (pdf)

p(y|x) ∝ exp

(
−∥y −Hx∥2

N0

)
. (3)

The SA can now be implemented based on p(y|x) over a
trellis with |X |L states, where L is the memory of the channel
H . Memory is a central theme of the paper and we therefore
define it formally.

Definition 1: Let G = HHH . If Gk,ℓ = 0 for |k − ℓ| > L
we say that the memory of the channel H is L.

For MIMO and ICI, the memory is typically ”full” in the
sense that L = nT − 1. In those cases, the optimal detector is
operating over a tree with |X |nT leaf nodes rather than over
a trellis. Nevetheless, after linear filtering, we shall compress
the memory of the channel, so that trellis processing can be
applied. By applying a suitable permutation of the columns
of H one can obtain a smaller memory. In this paper we
do, however, not treat such permutation. We strongly point
out that the aforementioned permutation is not the same as
performing a minimum phase conversion of an ISI channel.
Minimum phase conversions are covered by Definition 1.

A. Classical CS

Classical CS [2] proceeds via the following steps,
1) Filter the signal y with a matrix W , to obtain r = Wy.
2) Impose the structure r = Fx+w, where F is a memory

K < L matrix and w a noise vector.
3) Apply the SA to the signal r as if F is the true channel

and w a white noise.
In terms of a conditional pdf, classical CS can be expressed
as if the SA is operating with the mismatched pdf

q(y|x) ∝ exp

(
−∥Wy − Fx∥2

N0

)
. (4)

Note that it is no loss of generality to assume the same noise
density, as the two matrices W and F can be scaled at will.

B. A new framework for CS

To the best of the authors’ knowledge, all previous papers
dealing with CS detection has been based on (4) and the
goal has been to optimize the receiver parameters W and F .
However, the system model (4) is not the only system model
for CS. As will be discussed in Property 1, the model (4) is not
the most suitable model for CS. The conditional pdf q(y|x)
can be written as

q(y|x) ∝ exp

2R
{
xHFHWy

}
− xHFHFx

N0

 . (5)

Based on (5), the SA can still be implemented, with no
increase in computational complexity, using the formulation
by Ungerboeck in [4] and its BCJR-version [5].

We now modify q(y|x) in order to obtain an alternative
framework for CS. We propose to abandon (4) in favor of

q̃(y|x) ∝ exp
(
2R
{
xHHry

}
− xHGrx

)
, (6)

where Hr is an arbitrary nT × nR matrix and Gr is an
Hermitian matrix of memory K. Again, based on [4] the
SA can be implemented also for q̃(y|x). Altogether, from a
conceptual and a computational complexity point of view, it
is irrelevant whether the SA is implemented over q(y|x) or
q̃(y|x), but as we discuss next, the latter pdf offers important
advantages over the former.

Property 1: The pdf q̃(y|x) is a more general framework
for CS than q(y|x) as the matrix Gr need not be positive semi-
definite as the matrix FHF must be. For a given memory K,
the complexity is identical in both cases.

Ostensibly, it may appear as if Property 1 lacks operational
interest as one is tempted to assume that an optimized system
would use an indefinite Gr only in rare special cases, but
this is not the case. Whenever the channel matrix H contains
one or more small, but still strictly positive, eigenvalues, the
optimal matrix Gr to use is often indefinite.

If we set K = nT − 1 we reach the true conditional pdf,
which means that the optimal SA is included as a special case
of CS. Further, with K = 0 we can reach the linear MMSE
equalizer. Hence, CS has these two well known detectors as
limiting cases and, as we will show later, CS shares many
properties with the MMSE equalizer.

C. Special cases of CS

A popular special case of CS is to use a block diagonal
form for Gr [6]. We assume that Gr contains M blocks of
dimensions Km×Km, 1 ≤ m ≤ M, along the main diagonal,
with

M∑
m=1

Km = nT.

Ideally, all blocks should have dimension Km = K, but
this may not be possible for certain parameter combinations.
The rationale of this simplification is not that the detection
is done over a single trellis of memory K, but rather that
the detection is broken up into M trees, of depths Km. An
important property of such scheme is

Property 2: With a block diagonal constraint on Gr, the
optimal Gr is always positive semi-definite.
We point out that ”optimal” is with respect to generalized
mutual information, which will be made more precise in
Section III. This implies that for a block diagonal Gr there is
no gain in using the new framework from Section II-B as it
can always be cast in the form of q(y|x) from Section II-A.

III. ANALYSIS OF THE ACHIEVABLE RATES OF CS

With an SA that operates with q̃(y|x) instead of the true
p(y|x), the information rate of the channel

IR = I(y;x)

cannot be reached. (Note that limits and normalization must be
included for ISI channels.) Instead, the relevant performance
measure is the generalized mutual information (GMI). The
GMI establishes a lower bound to the achievable rate that can
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be supported with the mismatched conditional pdf. The GMI,
in nats/channel input, equals

IGMI = −E log (q̃(y)) + E log (q̃(y|x)) ,

where the expectations are with respect to the true conditional
pdf p(y|x).

Maximization of IGMI over the two matrices Hr and Gr

was carried out in [3], and we state the optimal solutions next.
Property 3: The optimal matrix Hr is

Hr = (Gr + InT)H
H
[
HHH +N0InR

]−1

.

Let Gr = UUH − InT and define

B , −H†
[
HH† +N0InR

]−1

H + InT . (7)

To find the optimal Gr, one proceeds as follows. Let B̃
K

k

denote the submatrix

B̃
K

k =

 Bk+1 k+1 · · · Bk+1κ

...
. . .

...
Bκ k+1 · · · Bκκ

 ,

of B, where κ = min(nT, k + K). Let bKk be the row
vector bKk = [Bk k+1, . . . B1 min(nT,k+K)]. For k = N ,
B̃

ν

k = 0 and bνk = 0. Let uK
k denote the row vector

uK
k = [uk k+1, . . . uk min(nT,k+K)], where {umn} are the

elements of U . Then,

max
Gr

IGMI =

nT∑
n=1

log

(
1

cn

)
, (8)

where the constants cn are given by

cn = Bnn − bKn (B̃
K

n )−1(bKn )†.

The optimal Gr = UU † − I is constructed from

unn =
1

√
cn

and
uK
n = −unnb

K
n (B̃

K

n )−1.

The recipe to find the optimal Gr in property 3 is fairly
involved, and our first result is a simpler characterization of
it.

Lemma 1: Let diagk(X) be a matrix of equal dimensions
as X that equals X along the center 2K + 1 diagonals and
zero elsewhere, i.e., if Z = diagk(X) then

Zkℓ =

{
Xkℓ, |k − ℓ| ≤ K
0, |k − ℓ| > K.

The optimal Gr satisfies

diagK
(
[Gr + InT ]

−1
)
= diagK

(
[G+N0InT ]

−1
)
.

Lemma 1 is sufficient to determine the optimal Gr which can
be verified by counting the number of variables in Gr and the
number of constraints specified by Lemma 1.

Our next Lemma, first derived in [8], simplifies the expres-
sion for the GMI.

Lemma 2: For the optimal Hr and Gr, we have

IGMI = log det (InT +Gr) .

We next give our main theorem.
Theorem 1: Let H [k,n] be the same matrix as H but with

columns [k, k + 1, k + 2, . . . , n] removed. Let G[k,n] =

HH
[k,n]H [k,n] and use the convention G[k,k−m] = G for

m > 0. For the optimal Hr and Gr, we have

IGMI = log det

(
InT +

G

N0

)
−

nT−K∑
k=1

log det

(
InT +

G[k,k+K]

N0

)

+

nT−K∑
k=2

log det

(
InT +

G[k,k+K−1]

N0

)
. (9)

In [7] the MMSE equalizer was analyzed and the following
formula for the achievable rate was established,

IMMSE = nT log det

(
InT +

G

N0

)
−

nT∑
k=1

log det

(
InT +

G[k,k]

N0

)
. (10)

By inspection, it can be seen that by setting K = 0, Theorem
1 collapses into IMMSE in (10). The structure of the formula
for IGMI of CS detection is closely related to that of IMMSE.
In fact, if there is no transmit correlation, so that the columns
of H are IID, then an analysis of IGMI of CS detection for
nR×nT MIMO is equivalent to an analysis of the achievable
rates of MMSE for nR × (nT − K) MIMO. There is an
abundance of literature dealing with analysis of the MMSE
receiver, and essentially all of those results can be carried
over to CS detection through Theorem 1. We will examplify
this with an interesting example in Section IV.

We close this section with a re-formulation of Theorem
1 that sheds further light of the nature of CS detection.
Recall that by using the chain rule of mutual information,
the information rate of the channel can be expressed as

IR =

nT∑
k=1

I(y;xk|xk−1, . . . , x1).

We have
Theorem 2: The rate IGMI in Theorem 1 can be expressed

as

IGMI =

nT∑
k=1

I(y;xk|xk−1, . . . , xk−K).

Theorem 2 is most intuative: a properly optimized CS detector
implements the chain rule of mutual information, but only up
to the reduced memory of the receiver. With the block diagonal
structure of Gr, we have the following corollary

Corollary 1: With a block diagonal structure of Gr with
M blocks, each one of dimension Km ×Km, we have

IGMI =
M∑

m=1

Km∑
k=1

I (y;xTm+k|xTm+k−1, ..., xTm) ,
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where Tm =
∑m−1

ℓ=1 Mℓ.
The meaning of Corollary 1 is that the chain rule of mutual
information is implemented, but conditioning does not carry
over across the blocks.

IV. APPLICATIONS

Let us now consider the ergodic achievable rates of nR×nT

MIMO channels comprising IID complex Gaussian random
variates, each one with zero mean and unit variance, with
CS detection. Since we are interested in ergodic rates and
the channel elements are IID, the formula for E[IGMI] sim-
plifies. This is so since G[k,k+n] is statistically equivalent to
G[k+p,k+n+p] for any p. Let us introduce the notation

Ī[nT, nR, N0] , E

[
log det

(
InT

+
HHH

N0

)]
where H is an IID complex Gaussian random matrix of
dimension nR × nT. Then,

E[IGMI] = Ī[nT, nR, N0]−(nT−K)Ī[nT−K−1, nR, N0]

+(nT −K − 1)Ī[nT −K,nR, N0]. (11)

Let us now consider the asymptotic slope of the achievable
ergodic rate

S∞ = lim
N0→0

−E[IGMI]

log(N0)
.

A well known result is [7]

lim
N0→0

− Ī[nT, nR, N0]

log(N0)
= min(nR, nT).

For the MMSE equalizer, i.e., a CS detector with K = 0, this
gives after a few manipulations

S∞ =

{
nT, nR ≥ nT

0, nR < nT.

Thus, for MMSE equalization, the asymptotic slope of the
ergodic rate is zero if the number of receive antennas is less
than the number of transmit antennas. As we shall see next,
CS can compensate for the lack of receive antennas.

Lemma 3: For an optimized CS detector with memory K
we have

S∞ =

 nT, nR ≥ nT

nR, nR < nT, nR +K ≥ nT

0, otherwise.

Altogether, in the case of fewer receive antennas than transmit
antennas, MMSE equalization is not effective at high SNR. CS
detection can compensate for the lack of receive antennas by
setting its memory equal to the difference between the antenna
numbers. The trade-off between complexity and performance
is clear.

Let us now return to the special case of a block diagonal
structure of Gr. In this case we can show

Lemma 4: With a block diagonal structure of Gr the
asymptotic slope of the ergodic rate becomes

S∞ =

{
nT, nR ≥ nT∑

m:Km>nT−nR
Km − (nT − nR), nT > nR.

It can be verified that whenever maxm Km ≤ K, the slope
in Lemma 3 is always superior to the slope in Lemma 4. We
give an example next,

Example 1: Let nT = 6 and nR = 4. In Figure 1 we plot
the ergodic rates E[IGMI] against SNR for different values of
the memory of the CS detector. As we can see, whenever the
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Fig. 1. Ergodic rates of 4× 6 MIMO with IID complex Gaussian channel
elementsw with CS detection.

memory K equals the difference K = nT−nR = 2, the slope
S∞ is optimal. The SNR penalty can be derived based on the
results in [7].

In our next example, we consider the block diagonal special
case in Section II-C.

Example 2: For the same parameter setup as in Example
1, i.e., nT = 6 and nR = 4 let us consider a block diagonal
structure of Gr. The matrix Gr has dimensions nT × nT =
6 × 6. What options do we have to select the block sizes?
Clearly we can choose three blocks, i.e., M = 3, and each
block would then be 2×2, i.e., K1 = K2 = K3 = 2. However,
we then always have Kk < nT − nR = 2 so from Lemma 4
we get that S∞ = 0. The conclusion of this is that although
the block-diagonal detector with M = 2 is more complex than
an MMSE equalizer, it does not improve much upon MMSE
equalization at high SNR since S∞ = 0.

Another choice would be to pick M = 2 and use K1 =
K2 = 3. In view of Lemma 4, we now have K1 = K2 >
nT − nR, and therefore we have that

S∞ = K1 − (nT − nR) +K2 − (nT − nR) = 2.

This is still inferior to the slope of a CS detector with K = 2.
An illustration is provided in Figure 2. Note that in this case,
the detection complexity of the block diagonal structure is
lower than that of a CS with K = 2. In the former case,
we have two search trees of depth 3, while in the latter case
we have one trellis of memory 2 with depth 6. However,
performance is grossly reduced at high SNR.

In our next example we change the parameter settings.
Example 3: Let nT = 6 and nR = 5. In this case we

already know from Lemma 3 that CS detection with K = 1 is
sufficient to reach S∞ = min(nR, nT) = nR = 5. Detection
can be made on the basis of a trellis with memory K = 1.
The number of states in the trellis becomes |X |.
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Fig. 2. Same case as in Example 1, but where the ergodic rate corresponding
to a block diagonal Gr with K1 = K2 = 3 has been added.

For the block diagonal structure, we still have the two
choices M = 3, K1 = K2 = K3 = 2 and M = 2, K1 =
K2 = 3. For M = 2, we get from Lemma 4 that S∞ = 3,
while for M = 3 we get S∞ = 4. Hence, both cases are worse
than CS with K = 1. Complexity wise, the M = 2 case is
less complex than the CS K = 1 case. However, for M = 3
we have two trees with depth 3. The number of leaf nodes
becomes |X |3 and this is one order worse than the number of
states in the trellis multiplied with its branching number |X |.
An illustration of the discussed slopes is provided in Figure
3.
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Fig. 3. Illustration of the ergodic rates discussed in Example 3.

We conclude by giving an illustration of what the optimized
matrices Gr may actually look like.

Example 4: Assume a channel matrix equal to

H =

 0 1 1 1
1 1 2 1
1 −1 0 0


and that N0 = 1. An optimized CS receiver with K = 1 has

Gr =


1.33 −1 0 0
−1 1.93 1.25 0
0 1.25 2.04 0.83
0 0 0.83 0.67

 .

The trellis structure is arising since there is no cross-coupling
between the symbols (x1, x3), (x1, x4), and (x2, x4). Now
consider the block diagonal structure with M = 2. After
optimization, for example via Lemma 1, we get

Gr =


1.33 −1 0 0
−1 1.33 0 0
0 0 1.417 0.83
0 0 0.83 0.67

 .

It is interesting to observe that the first and the last rows are
not altered compared with the CS K = 1 case. This is so since
the memory is still 1 at these two rows even with the block
diagonal structure. At the two middle rows, the cross-coupling
between symbols (x2, x3) has been broken and this enforces
a somewhat ”weaker” matrix Gr at these two rows. Further,
due to the separated blocks, the trellis collapses into two trees.
Finally, note that the matrix Gr for the CS case is indefinite
which means that the framework used in [2] will not be able
to produce this particular receiver setting. The block diagonal
Gr is always positive semi-definite due to Property 2.

V. CONCLUSION

In this paper we have investigated rate optimized channel
shortening receivers. We have shown that an optimized re-
ceiver can reach the chain rule of mutual information, up to
the reduced memory assumed by the receiver. Further, we have
shown that the formula for the achievable rate of a receiver
with memory K is essentially the same as for an MMSE
equlizer of a MIMO system with K transmit antennas less.
This results enables significant analytical treatment. As an
example of this, we derived the asymptotic capacity slopes
at high SNR, and we demonstrated that receiver memory can
compensate for a lack of receive antennas.

We also discussed that the classical model for channel
shortening is bounded away from the optimal solution due
to an inappropriate system model. A better model should be
based upon Ungerboeck’s formulation of trellis detection for
ISI channels.
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