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Blind Adaptive Constrained Reduced-Rank Parameter
Estimation Based on Constant Modulus Design for

CDMA Interference Suppression
Rodrigo C. de Lamare, Member, IEEE, Martin Haardt, Senior Member, IEEE, and Raimundo Sampaio-Neto

Abstract—This paper proposes a multistage decomposition for
blind adaptive parameter estimation in the Krylov subspace with
the code-constrained constant modulus (CCM) design criterion.
Based on constrained optimization of the constant modulus cost
function and utilizing the Lanczos algorithm and Arnoldi-like
iterations, a multistage decomposition is developed for blind
parameter estimation. A family of computationally efficient blind
adaptive reduced-rank stochastic gradient (SG) and recursive
least squares (RLS) type algorithms along with an automatic rank
selection procedure are also devised and evaluated against existing
methods. An analysis of the convergence properties of the method
is carried out and convergence conditions for the reduced-rank
adaptive algorithms are established. Simulation results consider
the application of the proposed techniques to the suppression of
multiaccess and intersymbol interference in DS-CDMA systems.

Index Terms—Blind adaptive constrained algorithms, DS-code-
division-multiple-access (CDMA) systems, interference suppres-
sion, reduced-rank parameter estimation.

I. INTRODUCTION

L
INEARLY constrained blind adaptive estimation algo-

rithms are useful in several areas of communications and

signal processing such as beamforming and interference sup-

pression for code-division-multiple-access (CDMA) systems

[1]. In these applications, the linear constraints correspond

to prior knowledge of certain parameters such as direction of

arrival (DoA) of user signals in antenna array processing [2]

and the signature sequence of the desired signal in CDMA

interference suppression [3], [4]. With respect to the estimation

algorithms, a very popular approach is to deploy stochastic

gradient (SG) techniques because they represent simple and

low complexity solutions that are preferred for implementation

although their convergence depends on the eigenvalue spread
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of the covariance matrix of the received vector. Conversely,

recursive least-squares (RLS) type algorithms have fast conver-

gence, are relatively insensitive to variations in the eigenvalue

spread of the covariance matrix of the observation data as

compared with the convergence of SG algorithms in stationary

scenarios but require a significantly higher complexity than SG

recursions [1].

Several attempts to provide cost-effective parameter esti-

mators with fast convergence performance have been made

in the last few decades through variable step size algorithms

[5]–[13], data-reusing [14], [12] averaging methods [15], sub-

band and frequency-domain adaptive filters [16]–[18], and RLS

type algorithms with linear complexity such as lattice-based

implementations [19], [20], fast RLS algorithms [21]–[24],

and QR-decomposition-based RLS techniques [25]–[27]. A

challenging problem that remains unsolved by conventional

techniques [5]–[27] is that when the number of elements in

the filter is very large, the algorithm requires a large number

of samples (or data record) to reach its steady-state behavior.

In these situations, even RLS algorithms require an amount

of data proportional to [1], where is the number of

elements of the estimator, in order to converge and this may

lead to unacceptable convergence performance. Furthermore,

in highly dynamic systems such as those found in wireless

communications, estimators with a large number of elements

usually fail or provide poor performance in tracking signals

embedded in interference and noise.

Reduced-rank filtering is a very powerful technique that has

gained considerable attention in the last few years due to its ef-

fectiveness in low sample support situations where it can offer

improved convergence performance at an affordable complexity

[28]–[46]. The advantages of reduced-rank adaptive filters are

their faster convergence speed and better tracking performance

over existing techniques when dealing with large number of

weights. Various reduced-rank methods and systems are based

on principal components analysis, in which a computationally

expensive singular value decomposition (SVD) to extract the

signal subspace is required [30]–[32]. Other recent techniques

such as the multistage Wiener filter (MWF) of Goldstein et al. in

[35] perform orthogonal decompositions in order to compute its

parameters, leading to very good performance and a relatively

low complexity. Another technique that resembles the MWF is

the auxiliary-vector filtering (AVF) with orthogonal auxiliary

vectors (AV) [38], [42]. In this regard, the equivalence between

the MWF and the AVF with orthogonal AVs was established in

[41]. An AVF structure with non-orthogonal auxiliary vectors

1053-587X/$25.00 © 2008 IEEE
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(AV) was reported in [43] and was shown to slightly outperform

the MWF at the cost of a higher computational complexity. Ex-

isting work on blind reduced-rank parameter estimation is very

limited and relies on an MWF [36] or an AVF [43], [44] ver-

sion of the constrained minimum variance (CMV) design crite-

rion, which are very sensitive to signature mismatch. In addition,

prior work on blind constrained parameter estimators with the

constant modulus criterion [48]–[50] has shown improved per-

formance and increased robustness against signature mismatch

over the CMV approach and a reduced-rank version of the CCM

is still not available in the literature.

In this paper, we develop a multistage decomposition for blind

adaptive parameter estimation in the Krylov subspace with the

constrained constant modulus (CCM) design criterion. Based on

constrained optimization of the constant modulus cost function

and utilizing the Lanczos algorithm and Arnoldi-like iterations,

an efficient multistage decomposition is developed for blind pa-

rameter estimation. Based on the Krylov subspace projection, we

also devise a family of computationally efficient blind adaptive

reduced-rank stochastic gradient (SG) and RLS type algorithms

along with an automatic rank selection procedure. An analysis

of the convergence properties of the method is carried out and

shows some mathematical conditions for the method to be glob-

ally convergent. We also establish the convergence conditions

for the reduced-rank adaptive algorithms. The proposed batch

and adaptive algorithms are then extensively studied in simula-

tion experiments for CDMA interference suppression.

This paper is structured as follows. Section II describes a

DS-CDMA System Model. Section III presents a framework

for the CCM linear receiver design, briefly reviews linearly

constrained receivers and blind adaptive constrained algo-

rithms. Section IV introduces the reduced-rank version of the

CCM design for linear receivers and details the multistage

decomposition used to compute the reduced-rank projection

matrix. Section V is devoted to the derivation of blind adaptive

constrained reduced-rank estimation algorithms and the auto-

matic rank selection mechanism based on the CCM criterion.

Section VI presents and discusses the numerical simulation

results, while Section VII gives the conclusions.

II. DS-CDMA SYSTEM MODEL

Let us consider the uplink of a symbol synchronous binary

phase-shift keying (BPSK) DS-CDMA system with users,

chips per symbol and propagation paths. It should be

remarked that a synchronous model is assumed for simplicity,

although it captures most of the features of more realistic

asynchronous models with small to moderate delay spreads.

Although BPSK modulation was adopted in the system model

for the sake of simplicity, the techniques presented in this work

can be easily extended to other constant modulus modulation

formats. The baseband signal transmitted by the th active user

to the base station is given by

(1)

where denotes the th symbol for user , the

real valued spreading waveform and the amplitude associated

with user are and , respectively. The spreading wave-

forms are expressed by , where

is the chip waverform, is the chip

duration and is the processing gain. Assuming that

the receiver is synchronized with the main path, the coherently

demodulated composite received signal is

(2)

where and are, respectively, the channel coefficient

and the delay associated with the th path and the th user

and represents the noise at the receiver. Assuming that

, that the channel is time-varying but constant during

each symbol interval and the spreading codes are repeated from

symbol to symbol, the received signal after filtering by a

chip-pulse matched filter and sampled at chip rate yields the

-dimensional received vector

(3)

where is

the complex Gaussian noise vector with zero mean and

whose components are independent

and identically distributed, where and de-

note transpose and Hermitian transpose, respectively, and

stands for expected value. The user symbol vector is

, the ampli-

tude of user is is the ISI for user and it should be

noted that it is already contained in the first term of the first line

of (3) and is the ISI span. The

diagonal matrix with -chips shifted versions of the signa-

ture of user is given by

. . .
...

...
. . .

...
(4)

where is the signature sequence for

the th user, the constraint matrix that contains

one-chip shifted versions of the signature sequence for user

and the vector with the multipath components are

described by

...
. . .

...
. . .

... (5)
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The channel matrix for user is

given by

...
. . .

. . .
... (6)

The MAI comes from the non-orthogonality between the re-

ceived signature sequences, whereas the ISI span depends

on the length of the channel response and how it is related to the

length of the chip sequence. For (no ISI), for

, for , and so on.

This means that at time instant we will have ISI coming not

only from the previous time instants but also from the

next symbols.

III. THE CCM LINEAR RECEIVER DESIGN

Consider the received vector , the con-

straint matrix that contains one-chip shifted versions

of the signature sequence for user and the vector

with the multipath com-

ponents to be estimated. The CCM linear receiver design

is equivalent to determining an FIR filter with

coefficients that provide an estimate of the desired symbol

, where is the signum func-

tion, selects the real component, and is optimized

according to the CM cost function

(7)

subject to the constraints given by , where

is the vector that contains the multipath

gains and is a constant to ensure the convexity of (7), as will be

discussed in Appendix I. This approach assumes the knowledge

of the channel. However, when multipath is present these pa-

rameters are unknown and time-varying, requiring channel es-

timation. The CCM filter expression that iteratively solves the

constrained optimization problem in (7) is

(8)

where

. A detailed derivation of the CCM estimation ap-

proach is given in Appendix II. It should be remarked that the

expression in (8) is a function of previous values of the filter

and therefore must be iterated in order to reach a solution.

In addition to this, the iterative method in (8) assumes the knowl-

edge of the channel parameters. Since there is a large number

of applications that have to deal with unknown multipath prop-

agation, it is also important to be able to blindly estimate the

multipath components. In this regard, it should be remarked that

the approach in (8) can also work without the channel informa-

tion by employing the inverse filtering criterion of [51], i.e., by

simply setting . However, by exploiting the

signal copies of the received signal through some knowledge of

the channel it is possible to achieve superior performance.

Fig. 1. Reduced-rank processing and receiver design.

In order to blindly estimate the channel, we adopt here the

blind channel estimation procedure based on the subspace ap-

proach proposed in [51], [47], [53] which is described by

(9)

subject to , where . The solution

is the eigenvector of the matrix corresponding to the

minimum eigenvalue of through singular value

decomposition (SVD). Here, we use in lieu of to

avoid the estimation of both and , and which shows

no performance loss as verified in our studies and explained in

Appendix III.

IV. THE REDUCED-RANK CCM LINEAR RECEIVER DESIGN

In this section, we describe the reduced-rank CCM design

based on a multistage decomposition of the expression obtained

in the previous section.

A. Reduced-Rank Receiver Design

The filter expression for the CCM design can be estimated

by either computing the matrix inversion and the remaining

operations in (8) or resorting to SG and RLS type adaptive

algorithms. However, whenever the dimension of received

data is large, the convergence performance is slow. In this

section, we describe a reduced-rank algorithm that reduces

the number of adaptive coefficients by projecting the received

signal onto a lower dimension subspace. An illustration of

reduced-rank signal processing dimensionality reduction and

corresponding receiver design is depicted in Fig. 1.

Specifically, let be a -dimensional matrix that

accomplishes the dimensionality reduction as given by

(10)

where, in what follows, all -dimensional quantities incorpo-

rate a “tilde”. The reduced-rank CCM linear receiver design is

equivalent to computing an FIR filter with elements

that yield the desired symbol as

(11)

where the optimization criterion, i.e., the CM cost function is

and the set of con-
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straints is , where . The

reduced-rank CCM filter expression is

(12)

where

.

B. Multistage Decomposition and Projection Matrix Design

Here we detail the procedure to compute the projection ma-

trix and the multistage decomposition. Let us rewrite the

CCM expression of (8) in the following alternative form

(13)

where

(14)

Following the schematic of Fig. 2, we wish to develop a multi-

stage decomposition of the expression in (13) that computes the

projection matrix . Specifically, the first filter of the struc-

ture in Fig. 2, namely , is the normalized version of ,

i.e., . In this proposed multistage de-

composition, the th filter maximizes the real part of the

correlation between its output and the output of the pre-

vious filters . This optimization problem first appeared

in [54], although, in the context of reduced-rank estimation, a

similar approach was firstly employed in [39]. Both approaches

lead to the computation of Krylov subspaces. By restricting the

filters to be orthonormal, the th filter can be computed via the

following optimization:

(15)

subject to and ,

for .

A general solution to the optimization problem in (15) can be

computed via the Arnoldi iteration [54], [52], which is a numer-

ical optimization algorithm to solve linear systems problems,

and is described by

(16)

where the matrix has the role of

projecting the signal onto the space orthogonal to the filter

and is the identity matrix. Because is Hermi-

tian, the designer can resort to the Lanczos algorithm, a simpler

technique than the Arnoldi recursion and that can be used to

solve symmetric systems of linear equations [52]. The reader is

Fig. 2. Proposed reduced-rank CCM filterbank structure.

referred to [52] for further details on the method. The method

generates a sequence of tridiagonal matrices and parameters that

are gradually better estimates of the desired solution as given by

(17)

The Lanczos method above leads to a tridiagonal co-

variance matrix for the projected vector

, where the parameters are obtained

after the application of each filter . The scalar filters

, where , are utilized to estimate the output

of the previous filter from an error signal . Fol-

lowing this procedure and Fig. 2, the reduced-rank CCM filter

with rank can be obtained by neglecting the signal .

In this respect, the procedure described above details the com-

putation of the projection matrix for user , which has

the following structure

(18)

At this point, we remark the main differences between the eigen-

decomposition techniques and the Krylov subspace approaches.

Specifically, in the work of Goldstein and Reed [35] an eigen-

decomposition approach would require an SVD on the full-rank

covariance matrix and the selection of the eigenvectors asso-

ciated with the largest eigenvalues. In contrast to that, the

Krylov-based approach does not require eigendecomposition

and selects the basis vectors which minimize the desired cost

function and will form the projection matrix (see also Honig and

Goldstein [36]). By using the projection matrix , the -di-

mensional observation vector is expressed by

(19)

and the reduced-rank CCM filter

with rank is

(20)

The reduced-rank solution with rank above projects the re-

ceived signal onto a lower dimensional subspace, which cor-
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TABLE I
BATCH ITERATIVE ALGORITHM FOR THE DESIGN OF THE PROPOSED CCM

REDUCED-RANK FILTER SCHEME

responds to the -dimensional Krylov subspace ,

where and was de-

fined for the problem at hand in (18). A summary of the batch

CCM reduced-rank algorithm is shown in Table I.

V. BLIND ADAPTIVE REDUCED-RANK

ESTIMATION ALGORITHMS

In this section, we derive blind adaptive reduced-rank estima-

tion algorithms based on the reduced-rank decomposition of the

previous section. Specifically, we develop SG and RLStype blind

constrained algorithms for reduced-rank parameter estimation.

The complexity in terms of arithmetic operations of the new al-

gorithms and the existing techniques is included as a function

of the number of adaptive elements for comparison purposes.

A. SG Reduced-Rank Algorithm

In order to develop an SG reduced-rank estimation algorithm

based on the CCM design, let us consider the following uncon-

strained cost function

(21)

where and

.

By taking the gradient terms of (21) with respect to ,

where stands for complex conjugate, and using instan-

taneous estimates of all parameters and , we seek to

adaptively minimize . If we consider the set of constraints

, we arrive at the update equations for the

estimation of

(22)

where and

is a matrix that projects the re-

duced-rank receiver’s parameters onto another hyperplane in

order to ensure the constraints. The SG channel estimation

procedure described in [53] is employed for estimating

and constructing . A summary of the

proposed CCM reduced-rank SG algorithm is shown in Table II.

TABLE II
SG ITERATIVE ALGORITHM FOR THE DESIGN OF THE PROPOSED CCM

REDUCED-RANK FILTER SCHEME

B. RLS Reduced-Rank Algorithm

Given the expressions for the reduced-rank CCM linear filter

in (12) and the projection matrix , we need to es-

timate and recursively to reduce the computa-

tional complexity required to invert these matrices. Using the

matrix inversion lemma and Kalman RLS recursions [1] we

have

(23)

(24)

and

(25)

(26)

where is the forgetting factor. The recursions in

(23)–(26) correspond to the use of the matrix inversion lemma

to reduce the complexity required for estimating the inverse of

the full-rank matrix and the inverse of the

reduced-rank matrix . The algorithms can be initialized

with and where is a scalar to

ensure numerical stability. Once is updated, it is used for

channel estimation, to obtain and to construct an estimate

of . The RLS channel estimation procedure described in

[53] is employed for estimating . Finally, we construct the

CCM reduced-rank linear receiver as described by

(27)

where

(28)

is estimated by

and the reduced-rank projec-

tion matrix is .

A summary of the proposed CCM reduced-rank RLS algorithm

is shown in Table III.
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TABLE III
RLS ITERATIVE ALGORITHM FOR THE DESIGN OF THE PROPOSED CCM

REDUCED-RANK FILTER SCHEME

TABLE IV
COMPUTATIONAL COMPLEXITY OF SG ADAPTATION ALGORITHMS AND THE

PROPOSED MWF-CCM SG ALGORITHM

C. Computational Complexity of Algorithms

In this section, we illustrate the computational complexity of

the proposed MWF-CCM-based SG and RLS algorithms and

other existing ones, as shown in Tables IV and V. The compu-

tational requirements are described in terms of number of arith-

metic operations, namely additions and multiplications.

In Fig. 3 we depict curves that describe the computational

complexity in terms of the arithmetic operations (additions and

multiplications) as a function of the number of parameters .

We use the same colors for the corresponding SG techniques

in Fig. 3(a) and their associated RLS counterparts in Fig. 3(b).

For these curves, we consider and assume that

for the MWF-SG based approaches, while for the

MWF-RLS techniques and for the AVF-based tech-

niques, which are depicted with RLS methods. The curves in

Fig. 3(a) show that there is a significant computational advan-

tage of the reduced-rank SG recursions over the blind full-rank

methods even though the LMS algorithm is still significantly

less complex. For the RLS algorithms, as depicted in Fig. 3(b),

we verify that the reduced-rank schemes are much simpler

than any full-rank RLS algorithm due to the quadratic cost

on rather than for the full-rank schemes operating with

the RLS algorithm. Amongst the reduced-rank techniques, the

blind CMV and CCM algorithms are slightly more complex

TABLE V
COMPUTATIONAL COMPLEXITY OF RLS, THE AVF-BASED RECURSIONS, AND

THE PROPOSED MWF-CCM RLS-TYPE ALGORITHMS

Fig. 3. Complexity in terms of arithmetic operations of (a) SG and (b) RLS
algorithms and AVF-based recursions. (a) Complexity of SG Algorithms.
(b) Complexity of RLS Algorithms and AVF recursions.

than their supervised counterparts, whereas the proposed CCM

recursions are comparable in complexity to the CMV-based

estimators (being slightly more complex for SG algorithms).

The AVF-based schemes [43], namely the blind AVF-CMV and

the supervised AVF, usually imply in extra complexity as they

have more operations per auxiliary vector (AV) and also require

a higher number of AVs to ensure good performance. The

AVF-CMV uses the effective signature sequence as

the initial AV, whereas the supervised AVF employs a steering

vector estimated by .
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D. Automatic Rank Selection

The performance of the algorithms described in the previous

subsections is indeed a sensitive function of the rank . Unlike

prior methods for rank selection which utilize MWF-based al-

gorithms [36] or AVF-based recursions [44], we focus on a blind

criterion based on the constant modulus criterion. In particular,

we present a method for automatically selecting the rank of

the algorithms based on the exponentially weighed a posteriori

least-squares type constant modulus cost function described by

(29)

where is the forgetting factor, is the reduced-rank

filter for user with rank , and is the reduced-rank re-

ceived data with rank . For each time interval , we can select

which minimizes and the exponential

weighting factor is required as the optimal rank varies as a

function of the data record. The proposed rank adaptation algo-

rithm is given by

(30)

where is an integer, and are the minimum and

maximum ranks allowed, respectively. Note that a smaller rank

may provide faster adaptation during the initial stages of the

estimation procedure and a slightly greater rank usually yields

a better steady-state performance. Our studies reveal that the

range for which the rank of the proposed algorithms have

a positive impact on the performance of the algorithms is very

limited, being from 3 to 5 for SG algorithms and from 3 to 8 for

RLS recursions. Furthermore, these values are rather insensitive

to the system load (number of users), to the processing gain and

work very well for all scenarios examined. In the next section,

we will illustrate how the proposed rank adaptation algorithm

performs.

VI. SIMULATION EXPERIMENTS

In this section, we assess the bit error rate (BER) and the

signal-to-interference-plus-noise ratio (SINR) performance of

the receivers designed with the following adaptive parameter

estimation criteria, i.e., the least-squares (LS), the constrained

minimum variance (CMV) and the proposed CCM. We eval-

uate their corresponding full-rank and reduced-rank versions,

as well as, adaptive implementations based on batch (that

perform matrix inversions), stochastic gradient (SG), and

RLS algorithms. In particular, we consider the MWF-based

implementations of the CMV, LS, and RLS algorithms [36]

and the AVF-based implementations of the CMV and LS

methods [43], [44]. The DS-CDMA system employs randomly

generated sequences of length . The channels experi-

enced by the users are different since we focus on an uplink

scenario and the channel coefficients ,

where are obtained with Clarke’s

model [55]. We show the results in terms of the normalized

Doppler frequency (cycles/symbol) and use three-path

channels with relative powers given by 0, 3, and 6 dB,

Fig. 4. SINR convergence performance of SG and RLS recursions at
E =N = 10 dB when the algorithms converge to the same level of SINR.
(a) N = 64;K = 16 users, E =N = 10 dB; (b) N = 64;K = 16 users,
E =N = 10 dB.

where in each run the spacing between paths is obtained from a

discrete uniform random variable between one and two chips.

The channel estimator of [53] models the channel as an FIR

filter and we employ a filter with eight taps as an upper bound

for the experiments. The phase ambiguity derived from the

blind channel estimation method in [53] is eliminated in our

simulations by using the phase of as a reference to

remove the ambiguity and for fading channels we assume ideal

phase tracking and express the results in terms of the normal-

ized Doppler frequency (cycles/symbol). Alternatively,

differential modulation can be used to account for the phase

rotations.

The supervised estimation techniques are adjusted with the

aid of a pilot sequence during the training phase, while the

blind methods only rely on their knowledge of the signature

sequences. For the sake of comparison, we also include the

curves for supervised LMS and RLS [1] adaptive algorithms,

which are trained with 200 symbols provided by a pilot channel

(at and ) and then switch

to decision-directed mode. It is assumed that the system has a

power distribution amongst the users for each run that follows

a log-normal distribution with associated standard deviation of

1.5 dB and all experiments are averaged over 200 runs. Note

that given the performance of current power control algorithms,

this power control scenario is close to a realistic situation. The

step size of SG algorithms are optimized for each situation,

whereas for RLS recursions we used because it leads

to the best performance.

In the first experiments, depicted in Fig. 4, we assess the

convergence performance of the adaptive algorithms when

they converge to the same level of SINR. This allows us to

effectively verify the speed of convergence of all analyzed

methods. All parameters are adjusted to ensure the convergence

to the same level of SINR and we employ multipath channel

which has three taps with relative powers given by 0, 3,

and 6 dB spaced by two chips. This is the only experiment

conducted with fixed channels in order to facilitate the setting

of parameters and the convergence to the same SINR value.
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Fig. 5. BER performance versus Rank (D) for (a) SG and (b) RLS algorithms
for a data record of 1500 symbols. (a) N = 64; f T = 0:0001;E =N = 12
dB, K = 16. (b) N = 64; f T = 0:0005, E =N = 15 dB, K = 24.

The remaining plots employ the settings described in the pre-

vious paragraph. The results indicate that the MWF-based and

AVF-based reduced-rank algorithms are substantially faster

than full-rank techniques. Amongst SG and RLS recursions,

it can be noticed that RLS techniques are faster than SG

methods, as expected, and this is verified for both full-rank and

reduced-rank schemes.

In the next experiments, we evaluate the BER performance of

the proposed and analyzed reduced-rank algorithms versus their

associated rank . This experiment is intended for setting the

adequate rank of the reduced-rank schemes for the remaining

assessments for a given BER and data record. The full-rank per-

formance is also included for comparison purposes. The results

shown in Fig. 5 indicate that the best performance of the pro-

posed reduced-rank CCM scheme with SG and RLS estimation

algorithms is obtained with ranks and , respec-

tively. For the AVF-based algorithms, the best rank was found

to be . It is interesting to note that the best is usually

much smaller than the number of elements in the received data

, which leads to significant computational savings. These op-

timized parameters for will be used for the remaining numer-

ical results.

In what follows, we assess the average BER convergence per-

formance of the analyzed and proposed algorithms. The BER

convergence performance of the receivers is shown for batch

and SG and RLS algorithms, in Figs. 6 and 7, respectively. It

should be remarked that RLS techniques show a performance

extremely close to the batch methods and differ basically due

to the use of the matrix inversion lemma [1]. For this reason,

we will only show the batch approach in Fig. 6 and in the re-

maining plots we will only show the SG and RLS techniques.

We consider a non-stationary scenario, where the system starts

with users and at time , eight additional

users enter the system, totalling users, and the blind

adaptive algorithms are subject to new interferers/users in the

environment.

The results show that the new reduced-rank algorithms based

on the CCM design criterion can perform very close to the su-

pervised AVF and MWF-based reduced-rank algorithms, while

Fig. 6. BER convergence performance of LS algorithms at E =N = 12 dB
in a dynamic scenario.

Fig. 7. BER convergence performance of SG algorithms at E =N = 15 dB
in a dynamic scenario.

they do not require training data. The convergence performance

of the proposed algorithms, i.e., CCM-MWF-SG and CCM-

MWF, is significantly better than all existing full-rank schemes

and allows a faster acquisition and tracking of the desired sig-

nals. In addition, we observe that the proposed CCM blind al-

gorithms are significantly superior to the existing blind MWF

and AVF techniques based on the CMV criterion, which are

more susceptible to signature mismatches. The MWF version

of the CMV approach suffers from lack of tridiagonalization

of the covariance matrix, as pointed out in [36]. A compar-

ison between the curves for SG and batch algorithms also re-

veals that a considerable performance degradation is verified

for SG techniques, which despite being less complex have an

inferior performance to batch (and RLS) techniques. This is be-

cause the performance of SG algorithms is subject to the eigen-

value spread of the covariance matrix of the received vector .
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Fig. 8. BER performance of SG algorithms versus (a) E =N and
(b) number of users (K). (a) N = 64;K = 16 users, f T = 0:0001.
(b) N = 64;E =N = 12 dB, f T = 0:0001.

Fig. 9. BER performance of RLS algorithms versus (a) E =N and
(b) number of users (K). (a) N = 64;K = 16 users, f T = 0:0001.
(b) N = 64;E =N = 12 dB, f T = 0:0001.

Specifically, when the eigenvalue spread of the covariance ma-

trix of the received vector is large SG algorithms perform

poorly, whereas the rate of convergence of batch or RLS al-

gorithms is invariant to such situation in a stationary scenario

[1]. The RLS methods were found to be less susceptible to

this phenomenon than SG algorithms in the non-stationary sce-

nario considered. Even though the impact of eigenvalue spread

is much reduced in the proposed reduced-rank CCM-MWF-SG

algorithm due to the dimensionality reduction (the eigenvalue

spread has been verified to undergo a major reduction in most

scenarios studied), for large systems or those that do not have

good power control batch or RLS recursions are the most ap-

propriate solutions.

In this part, the BER performance of the analyzed techniques

is further investigated and the receivers process 1500 symbols to

obtain the curves. In particular, the average BER performance of

the receivers versus and number of users is depicted

in Figs. 8 and 9 for SG and RLS algorithms, respectively.

For the SG algorithms, the curves reveal that the proposed

CCM-MWF-SG technique has a performance very close to the

Fig. 10. SINR convergence performance of SG and RLS recursions at
E =N = 10 dB using the proposed automatic rank selection algo-
rithm with f T = 0:0001. (a) N = 64;K = 16;E =N = 10 dB.
(b) N = 64;K = 16;E =N = 10 dB.

supervised MWF-SG method. The proposed CCM-MWF-SG

algorithm can save up to 4 dB in as compared to the

full-rank CCM-SG and LMS for the same BER performance,

and up to 8 dB as compared to both the full-rank and MWF

approaches designed with the CMV criterion. In terms of

system capacity, the proposed CCM-MWF-SG algorithm can

accommodate up to eight additional users as compared to the

full-rank schemes designed with the MMSE and CCM criteria,

and the gains are even more pronounced over CMV-based

techniques. The results with RLS algorithms corroborate those

obtained with SG recursions, even though the performance gap

between the CMV-based algorithms, the full-rank RLS and

CCM-RLS and the proposed CCM-MWF-RLS technique is

slightly reduced. This is because the RLS algorithms are more

powerful and even the full-rank RLS approaches were more

capable to deal with the parameter estimation tasks than SG

recursions. The AVF-based algorithms with non-orthogonal

AVs are slightly better than the MWF-based ones, however,

this comes at the expense of a higher complexity. When oper-

ating in blind mode with the CMV criterion, neither the AVF

nor the MWF yields a performance close to their supervised

counterparts. Conversely, the proposed CCM-MWF techniques

are able to effectively approach the performance of supervised

reduced-rank algorithms with a very good tradeoff between

performance and complexity.

Since the performance of the reduced-rank algorithms was

found in our studies to be a function of the rank and other

parameters such as step size and forgetting factor, the designer

has to consider its impact on the performance of the system.

In particular, we found that the rank is relatively dependent on

the system size and load, however, our studies indicate that the

rank does not vary significantly with system size and load. The

results of Honig and Xiao [56] on large system analysis with

asymptotic values conducted for the MWF support this. In order

to illustrate how the problem of rank adaptation was solved we

consider an experiment, shown in Fig. 10, with the automatic

rank selection algorithm proposed in Section V-D. Specifically,

we assume that the step size of SG-based recursions is optimized
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(for prior work on variable step size mechanisms, the reader is

referred to [6]–[13]), the forgetting factor of LS and RLS algo-

rithms is also adequately chosen and we focus on the proposed

automatic rank selection algorithm.

In the plots depicted in Fig. 10, the reduced-rank algorithms

utilize different values for their rank and also the proposed

automatic rank selection mechanism. The results show that

with a lower rank the reduced-rank algorithms usually con-

verge faster, however, they achieve a lower steady-state SINR

value. Conversely, with a higher rank the proposed algorithms

converge relatively slower than with a lower rank but they are

able to reach a higher SINR value at steady state. The pro-

posed automatic rank selection algorithm allows the proposed

reduced-rank adaptive estimators to circumvent the tradeoff

between convergence and steady-state performance for a given

rank, by adaptively selecting the best rank for a given data

record which provides both fast convergence and excellent

steady-state performance. We remark that the proposed rank

adaptation mechanism should be used in a realistic environment

to ensure that the best rank is appropriately selected.

VII. CONCLUSION

This paper proposed a multistage decomposition for blind

adaptive parameter estimation in the Krylov subspace with the

CCM design criterion. Based on constrained optimization of

the constant modulus cost function and utilizing the Lanczos

algorithm along with Arnoldi-like iterations, we developed a

multistage decomposition for blind parameter estimation, a

family of computationally efficient blind adaptive reduced-rank

SG and RLS type algorithms and an automatic rank adaptation

technique. An analysis of the convergence properties of the

method was carried out and convergence conditions for the

reduced-rank adaptive algorithms were established. Simulation

results considered the application of the proposed techniques

to the suppression of multiaccess and intersymbol interference

in DS-CDMA systems and have shown that the proposed

blind algorithms achieve a performance equivalent to the best

known supervised reduced-rank approaches without the need

for training data.

APPENDIX I

CONVERGENCE PROPERTIES

Let us express the cost function in (7) as

, drop the time index [i] for simplicity, assume

a stationary scenario and that the are statis-

tically independent i.i.d. complex random variables with zero

mean and unit variance, and are statistically independent.

Let us also define

(31)

(32)

Consider user 1 as the desired one, let and define

, where

and . Using

the constraint and the relation be-

tween the filter, the channel and the signature

[47], [49], [50] we have for the desired user the condition

. In the absence of

noise and neglecting ISI, the (user 1) cost function can be ex-

pressed as

(33)

where . To examine the conver-

gence properties of the optimization problem in (3), we proceed

as follows. Under the constraint , we have

(34)

where

and . To evaluate the con-

vexity of , we compute its Hessian ) using the rule

that yields

(35)

Specifically, is positive definite if for all nonzero

[52]. The second, third, and fourth terms of

(12) yield the positive definite matrix

(36)

while the first term provides the condition

(37)
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that ensures the convexity of in the noiseless case. Be-

cause is a linear function of then being

a convex function of implies that is

a convex function of . The same reasoning applies for the

reduced-rank CCM design.

Since the extrema of the cost function can be considered

for small a slight perturbation of the noise-free case

[48], the cost function is also convex for small when

. Interestingly, if we assume ideal

channel estimation and , our result reduces

to , which is the same found in [57]. For larger

values of , we remark that the term can be adjusted in order

to make the cost function in (3) convex, as pointed out

in [48].

APPENDIX II

CCM FILTER DESIGN

Here we show the optimization steps towards the filter design

according to the CCM criterion. Let us consider the constraint

vector and transform the original constrained optimization

problem given by (7) into an unconstrained optimization task

by resorting to method of Lagrange multipliers which yield the

following unconstrained cost function

(38)

where is a complex Lagrange multiplier. By taking the gra-

dient terms of with respect to and setting them to zero

we have

(39)

Then, by rearranging the terms we obtain

(40)

and then

(41)

where . Using the

constraint and substituting (41) into it, we arrive at

the expression for the Lagrange multiplier

(42)

By substituting into we obtain the

expression for the CCM linear filter

(43)

APPENDIX III

CHANNEL AND PARAMETER ESTIMATION WITH

Here, we discuss the suitability of the matrix , that

arises from the CCM method and its reduced-rank version, for

use in channel estimation. From the analysis in Appendix I

for the linear receiver, we have for an ideal and asymptotic

case that , for . Then,

and

.

Therefore, we have for the desired user (i.e., user 1)

(44)

where .

From (44), it can be seen that can be approximated by

multiplied by a scalar factor plus a noise-like term that

for sufficient has an insignificant contribution. In addi-

tion, when the symbol estimates are reliable, that

is the cost function in (7) is small ), then has

small variations around unity for linear detectors, yielding the

approximation

(45)

Therefore, we conclude that the channel and parameter estima-

tion can be performed using in lieu of , since the properties

of the matrix studied in [53] hold for .
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