This paper describes the limiting behavior of linear and decision feedback
equalizers (DFEs) in single/multiple antenna systems employing
real/complex-valued modulation alphabets. The wideband frequency selective
channel is modeled using a Rayleigh fading channel model with infinite number
of time domain channel taps. Using this model, we show that the considered
equalizers offer a fixed post signal-to-noise-ratio (post-SNR) at the equalizer
output that is close to the matched filter bound (MFB). General expressions for
the post-SNR are obtained for zero-forcing (ZF) based conventional receivers as
well as for the case of receivers employing widely linear (WL) processing.
Simulation is used to study the bit error rate (BER) performance of both MMSE
and ZF based receivers. Results show that the considered receivers
advantageously exploit the rich frequency selective channel to mitigate both
fading and inter-symbol-interference (ISI) while offering a performance
comparable to the MFB