8,571 research outputs found

    On feedback stabilization of linear switched systems via switching signal control

    Full text link
    Motivated by recent applications in control theory, we study the feedback stabilizability of switched systems, where one is allowed to chose the switching signal as a function of x(t)x(t) in order to stabilize the system. We propose new algorithms and analyze several mathematical features of the problem which were unnoticed up to now, to our knowledge. We prove complexity results, (in-)equivalence between various notions of stabilizability, existence of Lyapunov functions, and provide a case study for a paradigmatic example introduced by Stanford and Urbano.Comment: 19 pages, 3 figure

    Mathematical control of complex systems

    Get PDF
    Copyright © 2013 ZidongWang et al.This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited

    Invariance principles for switched systems with restrictions

    Full text link
    In this paper we consider switched nonlinear systems under average dwell time switching signals, with an otherwise arbitrary compact index set and with additional constraints in the switchings. We present invariance principles for these systems and derive by using observability-like notions some convergence and asymptotic stability criteria. These results enable us to analyze the stability of solutions of switched systems with both state-dependent constrained switching and switching whose logic has memory, i.e., the active subsystem only can switch to a prescribed subset of subsystems.Comment: 29 pages, 2 Appendixe

    A looped-functional approach for robust stability analysis of linear impulsive systems

    Full text link
    A new functional-based approach is developed for the stability analysis of linear impulsive systems. The new method, which introduces looped-functionals, considers non-monotonic Lyapunov functions and leads to LMIs conditions devoid of exponential terms. This allows one to easily formulate dwell-times results, for both certain and uncertain systems. It is also shown that this approach may be applied to a wider class of impulsive systems than existing methods. Some examples, notably on sampled-data systems, illustrate the efficiency of the approach.Comment: 13 pages, 2 figures, Accepted at Systems & Control Letter

    Time-and event-driven communication process for networked control systems: A survey

    Get PDF
    Copyright © 2014 Lei Zou et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.In recent years, theoretical and practical research topics on networked control systems (NCSs) have gained an increasing interest from many researchers in a variety of disciplines owing to the extensive applications of NCSs in practice. In particular, an urgent need has arisen to understand the effects of communication processes on system performances. Sampling and protocol are two fundamental aspects of a communication process which have attracted a great deal of research attention. Most research focus has been on the analysis and control of dynamical behaviors under certain sampling procedures and communication protocols. In this paper, we aim to survey some recent advances on the analysis and synthesis issues of NCSs with different sampling procedures (time-and event-driven sampling) and protocols (static and dynamic protocols). First, these sampling procedures and protocols are introduced in detail according to their engineering backgrounds as well as dynamic natures. Then, the developments of the stabilization, control, and filtering problems are systematically reviewed and discussed in great detail. Finally, we conclude the paper by outlining future research challenges for analysis and synthesis problems of NCSs with different communication processes.This work was supported in part by the National Natural Science Foundation of China under Grants 61329301, 61374127, and 61374010, the Royal Society of the UK, and the Alexander von Humboldt Foundation of Germany

    Approximately bisimilar symbolic models for incrementally stable switched systems

    Full text link
    Switched systems constitute an important modeling paradigm faithfully describing many engineering systems in which software interacts with the physical world. Despite considerable progress on stability and stabilization of switched systems, the constant evolution of technology demands that we make similar progress with respect to different, and perhaps more complex, objectives. This paper describes one particular approach to address these different objectives based on the construction of approximately equivalent (bisimilar) symbolic models for switched systems. The main contribution of this paper consists in showing that under standard assumptions ensuring incremental stability of a switched system (i.e. existence of a common Lyapunov function, or multiple Lyapunov functions with dwell time), it is possible to construct a finite symbolic model that is approximately bisimilar to the original switched system with a precision that can be chosen a priori. To support the computational merits of the proposed approach, we use symbolic models to synthesize controllers for two examples of switched systems, including the boost DC-DC converter.Comment: 17 page
    corecore