Switched systems constitute an important modeling paradigm faithfully
describing many engineering systems in which software interacts with the
physical world. Despite considerable progress on stability and stabilization of
switched systems, the constant evolution of technology demands that we make
similar progress with respect to different, and perhaps more complex,
objectives. This paper describes one particular approach to address these
different objectives based on the construction of approximately equivalent
(bisimilar) symbolic models for switched systems. The main contribution of this
paper consists in showing that under standard assumptions ensuring incremental
stability of a switched system (i.e. existence of a common Lyapunov function,
or multiple Lyapunov functions with dwell time), it is possible to construct a
finite symbolic model that is approximately bisimilar to the original switched
system with a precision that can be chosen a priori. To support the
computational merits of the proposed approach, we use symbolic models to
synthesize controllers for two examples of switched systems, including the
boost DC-DC converter.Comment: 17 page