4,051 research outputs found

    Overcoming barriers and increasing independence: service robots for elderly and disabled people

    Get PDF
    This paper discusses the potential for service robots to overcome barriers and increase independence of elderly and disabled people. It includes a brief overview of the existing uses of service robots by disabled and elderly people and advances in technology which will make new uses possible and provides suggestions for some of these new applications. The paper also considers the design and other conditions to be met for user acceptance. It also discusses the complementarity of assistive service robots and personal assistance and considers the types of applications and users for which service robots are and are not suitable

    Internet of robotic things : converging sensing/actuating, hypoconnectivity, artificial intelligence and IoT Platforms

    Get PDF
    The Internet of Things (IoT) concept is evolving rapidly and influencing newdevelopments in various application domains, such as the Internet of MobileThings (IoMT), Autonomous Internet of Things (A-IoT), Autonomous Systemof Things (ASoT), Internet of Autonomous Things (IoAT), Internetof Things Clouds (IoT-C) and the Internet of Robotic Things (IoRT) etc.that are progressing/advancing by using IoT technology. The IoT influencerepresents new development and deployment challenges in different areassuch as seamless platform integration, context based cognitive network integration,new mobile sensor/actuator network paradigms, things identification(addressing, naming in IoT) and dynamic things discoverability and manyothers. The IoRT represents new convergence challenges and their need to be addressed, in one side the programmability and the communication ofmultiple heterogeneous mobile/autonomous/robotic things for cooperating,their coordination, configuration, exchange of information, security, safetyand protection. Developments in IoT heterogeneous parallel processing/communication and dynamic systems based on parallelism and concurrencyrequire new ideas for integrating the intelligent “devices”, collaborativerobots (COBOTS), into IoT applications. Dynamic maintainability, selfhealing,self-repair of resources, changing resource state, (re-) configurationand context based IoT systems for service implementation and integrationwith IoT network service composition are of paramount importance whennew “cognitive devices” are becoming active participants in IoT applications.This chapter aims to be an overview of the IoRT concept, technologies,architectures and applications and to provide a comprehensive coverage offuture challenges, developments and applications

    Towards Early Mobility Independence: An Intelligent Paediatric Wheelchair with Case Studies

    No full text
    Standard powered wheelchairs are still heavily dependent on the cognitive capabilities of users. Unfortunately, this excludes disabled users who lack the required problem-solving and spatial skills, particularly young children. For these children to be denied powered mobility is a crucial set-back; exploration is important for their cognitive, emotional and psychosocial development. In this paper, we present a safer paediatric wheelchair: the Assistive Robot Transport for Youngsters (ARTY). The fundamental goal of this research is to provide a key-enabling technology to young children who would otherwise be unable to navigate independently in their environment. In addition to the technical details of our smart wheelchair, we present user-trials with able-bodied individuals as well as one 5-year-old child with special needs. ARTY promises to provide young children with early access to the path towards mobility independence

    Empowering and assisting natural human mobility: The simbiosis walker

    Get PDF
    This paper presents the complete development of the Simbiosis Smart Walker. The device is equipped with a set of sensor subsystems to acquire user-machine interaction forces and the temporal evolution of user's feet during gait. The authors present an adaptive filtering technique used for the identification and separation of different components found on the human-machine interaction forces. This technique allowed isolating the components related with the navigational commands and developing a Fuzzy logic controller to guide the device. The Smart Walker was clinically validated at the Spinal Cord Injury Hospital of Toledo - Spain, presenting great acceptability by spinal chord injury patients and clinical staf

    Accessibility requirements for human-robot interaction for socially assistive robots

    Get PDF
    Mención Internacional en el título de doctorPrograma de Doctorado en Ciencia y Tecnología Informática por la Universidad Carlos III de MadridPresidente: María Ángeles Malfaz Vázquez.- Secretario: Diego Martín de Andrés.- Vocal: Mike Wal

    Conversational affective social robots for ageing and dementia support

    Get PDF
    Socially assistive robots (SAR) hold significant potential to assist older adults and people with dementia in human engagement and clinical contexts by supporting mental health and independence at home. While SAR research has recently experienced prolific growth, long-term trust, clinical translation and patient benefit remain immature. Affective human-robot interactions are unresolved and the deployment of robots with conversational abilities is fundamental for robustness and humanrobot engagement. In this paper, we review the state of the art within the past two decades, design trends, and current applications of conversational affective SAR for ageing and dementia support. A horizon scanning of AI voice technology for healthcare, including ubiquitous smart speakers, is further introduced to address current gaps inhibiting home use. We discuss the role of user-centred approaches in the design of voice systems, including the capacity to handle communication breakdowns for effective use by target populations. We summarise the state of development in interactions using speech and natural language processing, which forms a baseline for longitudinal health monitoring and cognitive assessment. Drawing from this foundation, we identify open challenges and propose future directions to advance conversational affective social robots for: 1) user engagement, 2) deployment in real-world settings, and 3) clinical translation

    An interactive interface for nursing robots.

    Get PDF
    Physical Human-Robot Interaction (pHRI) is inevitable for a human user while working with assistive robots. There are various aspects of pHRI, such as choosing the interface, type of control schemes implemented and the modes of interaction. The research work presented in this thesis concentrates on a health-care assistive robot called Adaptive Robot Nursing Assistant (ARNA). An assistive robot in a health-care environment has to be able to perform routine tasks and be aware of the surrounding environment at the same time. In order to operate the robot, a teleoperation based interaction would be tedious for some patients as it would require a high level of concentration and can cause cognitive fatigue. It would also require a learning curve for the user in order to teleoperate the robot efficiently. The research work involves the development of a proposed Human-Machine Interface (HMI) framework which integrates the decision-making module, interaction module, and a tablet interface module. The HMI framework integrates a traded control based interaction which allows the robot to take decisions on planning and executing a task while the user only has to specify the task through a tablet interface. According to the preliminary experiments conducted as a part of this thesis, the traded control based approach allows a novice user to operate the robot with the same efficiency as an expert user. Past researchers have shown that during a conversation with a speech interface, a user would feel disengaged if the answers received from the interface are not in the context of the conversation. The research work in this thesis explores the different possibilities of implementing a speech interface that would be able to reply to any conversational queries from the user. A speech interface was developed by creating a semantic space out of Wikipedia database using Latent Semantic Analysis (LSA). This allowed the speech interface to have a wide knowledge-base and be able to maintain a conversation in the same context as intended by the user. This interface was developed as a web-service and was deployed on two different robots to exhibit its portability and the ease of implementation with any other robot. In the work presented, a tablet application was developed which integrates speech interface and an onscreen button interface to execute tasks through ARNA robot. This tablet interface application can access video feed and sensor data from robots, assist the user with decision making during pick and place operations, monitor the user health over time, and provide conversational dialogue during sitting sessions. In this thesis, we present the software and hardware framework that enable a patient sitter HMI, and together with experimental results with a small number of users that demonstrate that the concept is sound and scalable
    corecore