4,907 research outputs found

    Assessing the Nature of Lipid Raft Membranes

    Get PDF
    The paradigm of biological membranes has recently gone through a major update. Instead of being fluid and homogeneous, recent studies suggest that membranes are characterized by transient domains with varying fluidity. In particular, a number of experimental studies have revealed the existence of highly ordered lateral domains rich in sphingomyelin and cholesterol (CHOL). These domains, called functional lipid rafts, have been suggested to take part in a variety of dynamic cellular processes such as membrane trafficking, signal transduction, and regulation of the activity of membrane proteins. However, despite the proposed importance of these domains, their properties, and even the precise nature of the lipid phases, have remained open issues mainly because the associated short time and length scales have posed a major challenge to experiments. In this work, we employ extensive atom-scale simulations to elucidate the properties of ternary raft mixtures with CHOL, palmitoylsphingomyelin (PSM), and palmitoyloleoylphosphatidylcholine. We simulate two bilayers of 1,024 lipids for 100 ns in the liquid-ordered phase and one system of the same size in the liquid-disordered phase. The studies provide evidence that the presence of PSM and CHOL in raft-like membranes leads to strongly packed and rigid bilayers. We also find that the simulated raft bilayers are characterized by nanoscale lateral heterogeneity, though the slow lateral diffusion renders the interpretation of the observed lateral heterogeneity more difficult. The findings reveal aspects of the role of favored (specific) lipid–lipid interactions within rafts and clarify the prominent role of CHOL in altering the properties of the membrane locally in its neighborhood. Also, we show that the presence of PSM and CHOL in rafts leads to intriguing lateral pressure profiles that are distinctly different from corresponding profiles in nonraft-like membranes. The results propose that the functioning of certain classes of membrane proteins is regulated by changes in the lateral pressure profile, which can be altered by a change in lipid content

    Atomistic simulations of a multicomponent asymmetric lipid bilayer

    Full text link
    The cell membrane is inherently asymmetric and heterogeneous in its composition, a feature that is crucial for its function. Using atomistic molecular dynamics simulations, the physical properties of a 3-component asymmetric mixed lipid bilayer system comprising of an unsaturated POPC (palmitoyl-oleoyl-phosphatidyl-choline), a saturated SM (sphingomyelin) and cholesterol are investigated. In these simulations, the initial stages of liquid ordered, lol_o, domain formation are observed and such domains are found to be highly enriched in cholesterol and SM. The current simulations also suggest that the cholesterol molecules may partition into these SM-dominated regions in the ratio of 3:13:1 when compared to POPC-dominated regions. SM molecules exhibit a measurable tilt and long range tilt correlations are observed within the lol_o domain as a consequence of the asymmetry of the bilayer, with implications to local membrane deformation and budding. Tagged particle diffusion for SM and cholesterol molecules, which reflects spatial variations in the physical environment encountered by the tagged particle, is computed and compared with recent experimental results obtained from high resolution microscopy.Comment: Manuscript with 5 figures, Supplementary Information, 10 Supplementary Figure

    Influenza virus morphogenesis and budding.

    Get PDF
    Influenza viruses are enveloped, negative stranded, segmented RNA viruses belonging to Orthomyxoviridae family. Each virion consists of three major sub-viral components, namely (i) a viral envelope decorated with three transmembrane proteins hemagglutinin (HA), neuraminidase (NA) and M2, (ii) an intermediate layer of matrix protein (M1), and (iii) an innermost helical viral ribonucleocapsid [vRNP] core formed by nucleoprotein (NP) and negative strand viral RNA (vRNA). Since complete virus particles are not found inside the cell, the processes of assembly, morphogenesis, budding and release of progeny virus particles at the plasma membrane of the infected cells are critically important for the production of infectious virions and pathogenesis of influenza viruses as well. Morphogenesis and budding require that all virus components must be brought to the budding site which is the apical plasma membrane in polarized epithelial cells whether in vitro cultured cells or in vivo infected animals. HA and NA forming the outer spikes on the viral envelope possess apical sorting signals and use exocytic pathways and lipid rafts for cell surface transport and apical sorting. NP also has apical determinant(s) and is probably transported to the apical budding site similarly via lipid rafts and/or through cortical actin microfilaments. M1 binds the NP and the exposed RNAs of vRNPs, as well as to the cytoplasmic tails (CT) and transmembrane (TM) domains of HA, NA and M2, and is likely brought to the budding site on the piggy-back of vRNP and transmembrane proteins. Budding processes involve bud initiation, bud growth and bud release. The presence of lipid rafts and assembly of viral components at the budding site can cause asymmetry of lipid bilayers and outward membrane bending leading to bud initiation and bud growth. Bud release requires fusion of the apposing viral and cellular membranes and scission of the virus buds from the infected cellular membrane. The processes involved in bud initiation, bud growth and bud scission/release require involvement both viral and host components and can affect bud closing and virus release in both positive and negative ways. Among the viral components, M1, M2 and NA play important roles in bud release and M1, M2 and NA mutations all affect the morphology of buds and released viruses. Disassembly of host cortical actin microfilaments at the pinching-off site appears to facilitate bud fission and release. Bud scission is energy dependent and only a small fraction of virus buds present on the cell surface is released. Discontinuity of M1 layer underneath the lipid bilayer, absence of outer membrane spikes, absence of lipid rafts in the lipid bilayer, as well as possible presence of M2 and disassembly of cortical actin microfilaments at the pinching-off site appear to facilitate bud fission and bud release. We provide our current understanding of these important processes leading to the production of infectious influenza virus particles

    Computational studies of biomembrane systems: Theoretical considerations, simulation models, and applications

    Full text link
    This chapter summarizes several approaches combining theory, simulation and experiment that aim for a better understanding of phenomena in lipid bilayers and membrane protein systems, covering topics such as lipid rafts, membrane mediated interactions, attraction between transmembrane proteins, and aggregation in biomembranes leading to large superstructures such as the light harvesting complex of green plants. After a general overview of theoretical considerations and continuum theory of lipid membranes we introduce different options for simulations of biomembrane systems, addressing questions such as: What can be learned from generic models? When is it expedient to go beyond them? And what are the merits and challenges for systematic coarse graining and quasi-atomistic coarse grained models that ensure a certain chemical specificity

    Variational Methods for Biomolecular Modeling

    Full text link
    Structure, function and dynamics of many biomolecular systems can be characterized by the energetic variational principle and the corresponding systems of partial differential equations (PDEs). This principle allows us to focus on the identification of essential energetic components, the optimal parametrization of energies, and the efficient computational implementation of energy variation or minimization. Given the fact that complex biomolecular systems are structurally non-uniform and their interactions occur through contact interfaces, their free energies are associated with various interfaces as well, such as solute-solvent interface, molecular binding interface, lipid domain interface, and membrane surfaces. This fact motivates the inclusion of interface geometry, particular its curvatures, to the parametrization of free energies. Applications of such interface geometry based energetic variational principles are illustrated through three concrete topics: the multiscale modeling of biomolecular electrostatics and solvation that includes the curvature energy of the molecular surface, the formation of microdomains on lipid membrane due to the geometric and molecular mechanics at the lipid interface, and the mean curvature driven protein localization on membrane surfaces. By further implicitly representing the interface using a phase field function over the entire domain, one can simulate the dynamics of the interface and the corresponding energy variation by evolving the phase field function, achieving significant reduction of the number of degrees of freedom and computational complexity. Strategies for improving the efficiency of computational implementations and for extending applications to coarse-graining or multiscale molecular simulations are outlined.Comment: 36 page

    Conditions that Stabilize Membrane Domains Also Antagonize n-Alcohol Anesthesia

    Get PDF
    Diverse molecules induce general anesthesia with potency strongly correlated with both their hydrophobicity and their effects on certain ion channels. We recently observed that several n -alcohol anesthetics inhibit heterogeneity in plasma-membrane-derived vesicles by lowering the critical temperature (Tc) for phase separation. Here, we exploit conditions that stabilize membrane heterogeneity to further test the correlation between the anesthetic potency of n -alcohols and effects on Tc. First, we show that hexadecanol acts oppositely to n -alcohol anesthetics on membrane mixing and antagonizes ethanol-induced anesthesia in a tadpole behavioral assay. Second, we show that two previously described “intoxication reversers” raise Tc and counter ethanol’s effects in vesicles, mimicking the findings of previous electrophysiological and behavioral measurements. Third, we find that elevated hydrostatic pressure, long known to reverse anesthesia, also raises Tc in vesicles with a magnitude that counters the effect of butanol at relevant concentrations and pressures. Taken together, these results demonstrate that ΔTc predicts anesthetic potency for n-alcohols better than hydrophobicity in a range of contexts, supporting a mechanistic role for membrane heterogeneity in general anesthesia

    Cell membrane modulation as adjuvant in cancer therapy

    Get PDF
    Cancer is a complex disease involving numerous biological processes, which can exist in parallel, can be complementary, or are engaged when needed and as such can replace each other. This redundancy in possibilities cancer cells have, are fundamental to failure of therapy. However, intrinsic features of tumor cells and tumors as a whole provide also opportunities for therapy. Here we discuss the unique and specific makeup and arrangement of cell membranes of tumor cells and how these may help treatment. Interestingly, knowledge on cell membranes and associated structures is present already for decades, while application of membrane modification and manipulation as part of cancer therapy is lagging. Recent developments of scientific tools concerning lipids and lipid metabolism, opened new and previously unknown aspects of tumor cells and indicate possible differences in lipid composition and membrane function of tumor cells compared to healthy cells. This field, coined Lipidomics, demonstrates the importance of lipid components in cell membrane in several illnesses. Important alterations in cancer, and specially in resistant cancer cells compared to normal cells, opened the door to new therapeutic strategies. Moreover, the ability to modulate membrane components and/or properties has become a reality. Here, developments in cancer-related Lipidomics and strategies to interfere specifically with cancer cell membranes and how these affect cancer treatment are discussed. We hypothesize that combination of lipid or membrane targeted strategies with available care to improve chemotherapy, radiotherapy and immunotherapy will bring the much needed change in treatment in the years to come

    Segregation of sphingolipids and sterols during formation of secretory vesicles at the trans-Golgi network

    Get PDF
    The trans-Golgi network (TGN) is the major sorting station in the secretory pathway of all eukaryotic cells. How the TGN sorts proteins and lipids to generate the enrichment of sphingolipids and sterols at the plasma membrane is poorly understood. To address this fundamental question in membrane trafficking, we devised an immunoisolation procedure for specific recovery of post-Golgi secretory vesicles transporting a transmembrane raft protein from the TGN to the cell surface in the yeast Saccharomyces cerevisiae. Using a novel quantitative shotgun lipidomics approach, we could demonstrate that TGN sorting selectively enriched ergosterol and sphingolipid species in the immunoisolated secretory vesicles. This finding, for the first time, indicates that the TGN exhibits the capacity to sort membrane lipids. Furthermore, the observation that the immunoisolated vesicles exhibited a higher membrane order than the late Golgi membrane, as measured by C-Laurdan spectrophotometry, strongly suggests that lipid rafts play a role in the TGN-sorting machinery
    corecore