13 research outputs found

    Enabling interoperable distributed ledger technology with legacy platforms for enterprise digitalization

    Get PDF
    Presently to achieve enterprise digitalization technologies such as Distributed Ledger Technologies (DLT) has now been deployed to support digital services provided by enterprises. But several challenges in DLTs remain to be addressed, including the interoperability, standardization, and integration. Therefore, this study provides theoretical and practical understanding of DLT interoperability and identified the factors that influence the interoperability of DLTs. Also, an architecture is designed to shows how interoperability can be achieved in DLTs and legacy systems supported by Application Programming Interface (API). A case study is presented to illustrate the applicability of the architecture to support a digital energy marketplace.acceptedVersio

    Bridges Between Islands: Cross-Chain Technology for Distributed Ledger Technology

    Get PDF
    Since the emergence of blockchain in 2008, today, we see a kaleidoscopic variety of applications built on distributed ledger technology (DLT), including applications for financial services, healthcare, or the Internet of Things. Yet, each application comes with specific requirements for DLT characteristics (e.g., high throughput, scalability). However, trade-offs between DLT characteristics restrict the development of a DLT design (e.g., Ethereum, IOTA) that fits all use cases’ requirements simultaneously. Consequently, separated DLT designs emerged, each specialized to suite dedicated application requirements. To enable the development of more powerful applications on DLT, such DLT islands must be bridged. However, knowledge on cross-chain technology (CCT) is scattered across scientific and practical sources. Therefore, we examine this diverse body of knowledge and provide comprehensive insights into CCT by synthesizing underlying characteristics, evolving patterns, and use cases. Our findings resolve existing contradictions in the literature and provide avenues for future research in an emerging scientific field

    Byzantine-Tolerant Distributed Grow-Only Sets: Specification and Applications

    Get PDF
    In order to formalize Distributed Ledger Technologies and their interconnections, a recent line of research work has formulated the notion of Distributed Ledger Object (DLO), which is a concurrent object that maintains a totally ordered sequence of records, abstracting blockchains and distributed ledgers. Through DLO, the Atomic Appends problem, intended as the need of a primitive able to append multiple records to distinct ledgers in an atomic way, is studied as a basic interconnection problem among ledgers. In this work, we propose the Distributed Grow-only Set object (DSO), which instead of maintaining a sequence of records, as in a DLO, maintains a set of records in an immutable way: only Add and Get operations are provided. This object is inspired by the Grow-only Set (G-Set) data type which is part of the Conflict-free Replicated Data Types. We formally specify the object and we provide a consensus-free Byzantine-tolerant implementation that guarantees eventual consistency. We then use our Byzantine-tolerant DSO (BDSO) implementation to provide consensus-free algorithmic solutions to the Atomic Appends and Atomic Adds (the analogous problem of atomic appends applied on G-Sets) problems, as well as to construct consensus-free Single-Writer BDLOs. We believe that the BDSO has applications beyond the above-mentioned problems

    A secure cross-domain interaction scheme for blockchain-based intelligent transportation systems

    Get PDF
    Si, H., Li, W., Wang, Q., Cao, H., Bação, F., & Sun, C. (2023). A secure cross-domain interaction scheme for blockchain-based intelligent transportation systems. PeerJ Computer Science, (November 2023), 1-36. https://doi.org/10.7717/peerj-cs.1678, https://doi.org/10.7717/peerj-cs.1678/supp-1, https://doi.org/10.7717/peerj-cs.1678/supp-2---This work was supported by the Henan Province Key Science-technology Research Project under Grant No. 232102520006 and 232102210122, the Key Research Project of Henan Provincial Higher Education Institution under Grant No. 23A520005, and the Henan Province Major Public Welfare Projects under Grant No. 201300210300. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.In the intelligent transportation system (ITS), secure and efficient data communication among vehicles, road testing equipment, computing nodes, and transportation agencies is important for building a smart city-integrated transportation system. However, the traditional centralized processing approach may face threats in terms of data leakage and trust. The use of distributed, tamper-proof blockchain technology can improve the decentralized storage and security of data in the ITS network. However, the cross-trust domain devices, terminals, and transportation agencies in the heterogeneous blockchain network of the ITS still face great challenges in trusted data communication and interoperability. In this article, we propose a heterogeneous cross-chain interaction mechanism based on relay nodes and identity encryption to solve the problem of data cross-domain interaction between devices and agencies in the ITS. First, we propose the ITS cross-chain communication framework and improve the cross-chain interaction model. The relay nodes are interconnected through libP2P to form a relay node chain, which is used for cross-chain information verification and transmission. Secondly, we propose a relay node secure access scheme based on identity-based encryption to provide reliable identity authentication for relay nodes. Finally, we build a standard cross-chain communication protocol and cross-chain transaction lifecycle for this mechanism. We use Hyperledger Fabric and FISCO BCOS blockchain to design and implement this solution, and verify the feasibility of this cross-chain interaction mechanism. The experimental results show that the mechanism can achieve a stable data cross-chain read throughput of 2,000 transactions per second, which can meet the requirements of secure and efficient cross-chain communication and interaction among heterogeneous blockchains in the ITS, and has high application value.publishersversionpublishe

    Chain-Net: An Internet-inspired Framework for Interoperable Blockchains

    Get PDF
    Blockchain has introduced new opportunities with the potential to enhance systems and services across diverse application domains. Fundamental characteristics of blockchains such as immutability, decentralisation, transparency and traceability have a profound role in this. However, integration with contemporary systems and among disparate blockchain-based applications is a non-trivial challenge primarily due to differences with respect to platforms, consensus mechanism, and governance. Although this challenge has received some attention from the research community, it requires careful analysis to analyse existing work and ascertain gaps to achieve effective and efficient solution to this challenge. This paper presents a thorough systematic review of existing research within blockchain interoperability highlighting significant contributions. Leveraging this analysis, the paper presents an internet-inspired framework (Chain-Net) to facilitate interoperability within blockchain-based systems whereby two systems within independent Blockchain networks can securely exchange data with each other. This is achieved by using gateway module at each network. This module is lightweight node registered by Blockchain network, equipped with discovery service to lookup a target blockchain, and is responsible for forwarding cross-chain transactions to gateway module at the target blockchain. Gateway module plays a vital role in Chain-Net model, as it holds a cross-chain transaction in a pending state until a confirmation is received from the target blockchain, thus maintaining the record integrity between the two chains. The paper presents our efforts to evaluate the proposed blockchain interoperability framework against a success criteria based on our analysis of the blockchain interoperability challenge

    Gateways-based Interoperability for DLT

    Get PDF
    Blockchain is a distributed ledger technology (DLT) to manage data in a decentralised way. During the last years, interoperability has become one of the main challenges within blockchain research as blockchains increasingly require integration between each other. Indeed, blockchains work by design in silos of information as interoperability is not a native feature. The main efforts in the field are focused on blockchains, such as Bitcoin and Ethereum. However, interoperability in DLT remains as an almost untouched area of work as they introduce additional requirements focusing on privacy and identity. Although there are some interoperability solutions for DLT, they are either high-level design proposals not providing concrete implementations or focus on interoperability issues between business applications and blockchain platforms. In this paper we propose a gateway-based platform-to-platform interoperability solution for DLT, which comprises a detailed solution design and a reference implementation. The proposal was assessed through the development of a social security case scenario and the evaluation through two interoperability frameworks. A reference implementation was built using two DLT: Hyperledger Fabric and Corda. The experimental results shows that it is possible to achieve technical interoperability between two heterogeneous DLT platforms using a gateway-based interoperability solution, relaxing decentralisation, data privacy, identity and authorisation management properties

    Facilitating cross-chain cryptocurrency exchanges: An inquiry into blockchain technology and interoperability with an emphasis on cryptocurrency arbitrage

    Get PDF
    Since the introduction and proliferation of the blockchain-based cryptocurrency Bitcoin, alternative cryptocurrencies also based on blockchain technology have exploded in number. It was once believed that one, or very few, cryptocurrencies would eventually dominate the market and drive out competitors. This assumption, however, was incorrect. Thousands of cryptocurrencies exist concurrently. The vast number of cryptocurrencies leads to a problem—what if the cryptocurrency that an individual possesses does not meet their current needs as well as another cryptocurrency might? The attempt to solve this problem has led to the rise of many cryptocurrency exchanges and exchange schemes. In this paper, we will discuss the motivations for an individual to be interested in exchanging two or more cryptocurrencies by describing and comparing various popular cryptocurrencies with different desirable attributes. While we will discuss these attributes, this paper will give special focus to arbitrage in particular. In addition, we will describe various cryptocurrency exchange schemes and their advantages and disadvantages. Finally, we contribute to the understanding of cryptocurrency exchangeability and interoperability by comparing the historical price data of several cryptocurrencies to determine how often arbitrage has been possible in the past

    Enabling Resilient and Efficient Communication for the XRP Ledger and Interledger

    Get PDF
    The blockchain technology is relatively new and still evolving. Its development was fostered by an enthusiastic community of developers, which sometimes forgot about the lessons from the past related to security, resilience and efficiency of communication which can impact network scalability, service quality and even service availability. These challenges can be addressed at network level but also at operating system level. At network level, the protocols and the architecture used play a major role, and overlays have interesting advantages like custom protocols and the possibility of arbitrary deployments. This thesis shows how overlay networks can be designed and deployed to benefit the security and performance in communication for consensus-validation based blockchains and blockchain inter-operativity, taking as concrete cases the XRP ledger and respectively the Interledger protocol. XRP Ledger is a consensus-validation based blockchain focused on payments which currently uses a flooding mechanism for peer to peer communication, with a negative impact on scalability. One of the proposed overlays is based on Named Data Networking, an Internet architecture using for propagation the data name instead of data location. The second proposed overlay is based on Spines, a solution offering improved latency on lossy paths, intrusion tolerance and resilience to routing attacks. The system component was also interesting to study, and the contribution of this thesis centers around methodologies to evaluate the system performance of a node and increase the security from the system level. The value added by the presented work can be synthesized as follows: i) investigate and propose a Named Data Networking-based overlay solution to improve the efficiency of intra-blockchain communication at network level, taking as a working case the XRP Ledger; ii) investigate and propose an overlay solution based on Spines, which improves the security and resilience of inter-blockchain communication at network level, taking as a working case the Interledger protocol; iii) investigate and propose a host-level solution for non-intrusive instrumentation and monitoring which helps improve the performance and security of inter-blockchain communication at the system level of machines running Distributed Ledger infrastructure applications treated as black-boxes, with Interledger Connectors as a concrete case
    corecore