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ABSTRACT

The rapid development of network technologies has escalated the demand for network connections;

methods and strategies of network sharing and resource management are introduced every

day. With the upcoming 6G and beyond networks, technologies such as Industry 4.0 and

autonomous surgery will become mature and prevalent. These applications vary with each

other in several ways, such as data requirement, computational power, and location. Hence,

the monolithic service provisioning architecture is no longer viable to cope with the diversity

in service demand. The key network players, such as network planners and service providers

will need to redesign and redefine the ways network resources are managed, distributed, and

shared. Indeed, technologies such as Software Defined Networking (SDN), and Network

Function Virtualisation (NFV) provide viable resource sharing mechanisms. Yet, resource

sharing needs to broaden its spectrum and reach every granularity of the network architecture;

that is, it must include more variables in the equations that govern viable and scalable network

resource sharing. While an immense amount of research has already been conducted on network

resource sharing techniques, little attention has been paid to an accountable and transparent

contracting mechanism for network resource management and sharing.

The main objective of this thesis is to explore the potential of distributed ledger technologies

for accountable and transparent networks resource management and sharing, with the focus on

a tamper-proof contracting mechanism. This thesis explores smart contracts as the contracting



ix

mechanism and evaluates their viability as Service Level Agreements (SLAs). As a comprehensive

suitability assessment is required, we explore, firstly, the network applications where smart

contracts are a potential contracting solution. A comprehensive study is done on the potential

of smart contracts as SLAs in future network applications.

Next, we propose an end-to-end novel architecture JITRA – Just-in-Time Resource

Allocation with distributed ledgers for 5G and beyond. This architecture proposes short-term

and flexible service contracts instead of traditional long-term and monolithic ones. To explore

the resource reservation, we have studied network slicing as a use case for resource provisioning

and developed a Mininet-based simulation for network slicing on similar, but simpler, real-world

network topologies. The network slice was created in the evaluation in minutes and the contract

was executed in the order of just seconds.

To enable data integrity in JITRA, we next propose cryptographic accumulators and

a side-channel based (Quality of Service) QoS monitoring mechanism. A comprehensive

evaluation of three different types of cryptographic accumulators was conducted: RSA accumulators,

secure bloom filters and sketches. The evaluation results show that secure bloom filters

outperform other accumulation techniques in terms of latency, size and setting up time.

Finally, we propose BEAT – Blockchain-Enabled Accountable and Transparent for infrastructure

sharing in 6G and beyond. BEAT is an open architecture in which several network users own

network devices; the usage is recorded to a distributed ledger. An Interrogation Protocol is

further proposed to handle situations of a dispute between the network users. Our evaluations

show that BEAT adds only seconds of overhead to the network flows on a limited resource

device.
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CHAPTER 1

INTRODUCTION

The duty to keep a contract at common law means a prediction that you must pay

damages if you do not keep it and nothing else. - Oliver Wendell Holmes The

Path of Law, 1897

The concept of a contract, as a formal and enforceable representation of a promise dates back

to ancient times. Evidence of contemporary style contracts can be connected to The Twelve

Tables in 451 - 450 B.C [1] which provided the foundations of the Roman Law and outlines the

responsibilities of a Roman citizen. Throughout the history, a contract existed in various forms

as technology advanced, but the enduring characteristic of a contract is its enforceability – a

contract is useless if its terms are not executed and enforced as agreed.

When the Internet was commercialised in the 1990s, several forms of business-to-consumer (B2C),

consumer-to-consumer (C2C) and business-to-business (B2B) contracts emerged. The most

commonly known of these is the Service Level Agreement (SLA). As the name implies, an SLA

is a contractual agreement between the customer and the service provider which outlines the

contract terms of the service being provided, such as service duration and quality. Depending

on the application, an SLA can be as detailed and as brief as the participants want, but the

important factor is that, like any legal contract, an SLA must be honoured.

Service Level Agreement compliance is the fundamental requirement of every network

service provisioning. It builds trust in the service providers and provides customers’ confidence

in the network connection, which is crucial for the viability of both the current and future
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“mission-critical” network applications such as autonomous surgery. It follows that SLAs

will play an increasingly vital role in the organic evolution of networks to 6G and beyond.

They will not merely enable trust on the network participants but also enable the techniques

and systems that are essential for the viability of future networks. Looking at the latest

estimates1, an exponential increase in demand in service connections and diversity in network

applications is anticipated. Such an inflated demand will pose challenges of network scalability

and management for the service providers. We believe that automating the contractual system

will solve these problems and will pave the way for a smooth transition from 5G to 6G networks

and beyond.

The viability of future networks of 6G and beyond requires significant changes to network

management and sharing practices. Firstly, the future SLAs will need to be tailored to specific

contexts in a fine-grained fashion. For example, for an autonomous surgery, a guaranteed

connection would be required in a fixed location; on the other hand, for an autonomous vehicle,

the mobile connection guarantee would be required throughout the journey (i.e., from the

source to destination). The critical nature of such future applications therefore mandates a

fine-grained assignment of liabilities when the SLAs are violated – for instance, if a failure

occurs on the operating table during remote surgery or an accident occurs on the road, it is vital

to be able to pinpoint precisely where the fault lay. Given that networks generally have been

treated as a “blackbox”, no easy solutions exist for resolving whether or not a network operator

is at fault due to not meeting SLA standards. Both the network operator and the customer who

obtains connectivity with a guaranteed level of service will always have incentive to blame each

other and avoid liability, and this is compounded by the fact that in general, there is usually no

Trusted Third Party (TTP), who can monitor and ensure accountability.

Secondly, with operational costs of 5G on operators expected to reach $87.9 billion

annually by 2023 [3], challenges regarding site availability, acquisition and installation of

the state-of-the-art equipment are already proving to be barriers in the wide adoption of 5G

services. Any realistic review of infrastructure management that can handle 6G and beyond

technologies needs to be comprehensive in scope and strike a balance between the often

1The number of IoT will increase to 30.9 billion and non-IoT to 10.3 billion by 2025 [2]
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competing variables of greater network capacity, lower operating costs and innovative business

models for revenue generation. This calls for radical changes in the way that current network

infrastructure is managed from a deployment and operational point of view. However, with the

main 3GPP 5G standards already frozen with Release 16, opportunities to evolve the standards

towards these changes will only be possible with R17, R18 and subsequent 6G standards.

We believe that the most realistic way forward to strengthen the contractual system and

tackle the ever-expanding demand for network services and network connections is network

resource sharing through collaboration at the mobile service providers (MSPs) level. For

instance, MSPs can work collaboratively to share resources such as backhaul and RAN. Clearly,

the sharing will only be viable and widely adopted with trustworthy and automated contractual

mechanisms that are accountable and transparent. Specifically, all parties sharing a resource

should be able to access an identical and immutable copy of the contract that would be executed

automatically on pre-programmed conditions, with all penalties (if due) being paid without any

delay and autonomously.

This work focuses on the anticipated requirements from the future service contracts (i.e.,

SLAs) and their role in solving the challenges such as network scalability and management

through a strengthening of the contractual mechanism. Indeed, the solutions we provide in

this work can be adopted to other areas of future network services with minimal changes.

Specifically, we focus on two key areas:

1) Application Layer resource provisioning which would determine a service contract

between a client (such as an autonomous vehicle) and a service provider; and

2) Network Layer resource sharing which would govern infrastructure sharing between

different network players, for instance between a Mobile Network Operator (MNO) and

an Over-The-Top (OTT) provider.

We do not, in this thesis, concern ourselves with the issue of guaranteed service quality,

but rather on developing contractual systems that enable and enforce usage transparency and

accountability whenever network resources are to be allocated and shared autonomously in

future generation end-to-end architectures. To this end, we propose the usage of Permissioned
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Distributed Ledgers (PDLs), a subset of recently emergent Distributed Ledger Technology

for the contractual mechanism. PDLs are a particular type of distributed ledger that enable

interaction between a closed group of mutually non-trusted parties. Access is managed via

stringent access control mechanisms – only authorised members can access a PDL, making them

ideal for business-like applications. Furthermore, PDLs are immutable and contain executable

smart contract code which gets deployed and executed on the ledger. Smart contracts have

following properties that are essential for the future generation SLAs.

• Immutability – once recorded in a distributed ledger, smart contract cannot be deleted or

amended;

• Transparency – with smart contracts being replicated across all the devices in the network,

all the stakeholders maintain an identical copy at all times;

• Monitorability – all smart contract code execution is recorded on the ledger, thereby

ensuring that they are monitorable to all stakeholders at all times;

• Automation – smart contract code execution can be triggered through programming

whenever some network condition is met.

In the past decade, smart contracts have gained much attention due to their inherent properties,

and several DLT focused network sharing and SLA management solutions have been proposed.

For instance, a game-theoretic blockchain-based unlicensed spectrum sharing approach is

presented by [4]. This work addresses the problem of sharing in unlicensed bands and shows

that both the operators will converge towards Nash equilibrium after some time with the

proposed algorithm. Authors in [5] present the concept of small-cell sharing with a blockchain.

The overall idea of this work is to manage Home Subscriber Server (HSS) using a distributed

ledger rather than managing centrally. However, this work is limited to a proof-of-concept with

a high-level architecture and does not address the problem of accountability. Another work [6]

proposes a blockchain-based solution for 5G roaming. Roaming is a type of infrastructure

sharing in which service providers lend the network resources from other operators where

the former has no coverage. In a typical scenario, roaming experiences problems either with
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high latency or, in the case of Local Blackout (LBO), the home operator losing control of its

users. Using blockchain-based management of billing visiting MNOs participants can record

the usage to the ledger/blockchain, which the other participants of the ledger can validate. Yet,

this study is limited to the roaming scenario; it does not discuss the accountability challenge

nor does it address the pitfalls and limitations of distributed ledgers with such a design.

In general, we find that existing works either focus on smart contracts for SLA management [7–

9] or measure the viability of DLT or smart contract in resource sharing [5, 6, 10, 11]. As such,

the issue of providing an end-to-end architecture for resource sharing with DLT and smart

contracts and considering the accountability aspects of SLAs, together with their limitations,

remains an area of research. This thesis is a contribution towards this goal, and is intended to

provide bridge from existing 5G to 6G and beyond networks as the world transitions towards

ever-increasing levels of automation. Specifically, we identify four major contributions, as

follows:

1.1 Thesis Statement

The overall goal of this thesis is 1) Accountability in 2) Service Contracts (i.e., SLAs) through

3) Distributed Ledger Technology. In this thesis, we study future networks in the context of

5G and 6G. However, the solutions we present in this work are not limited to 5G and 6G, and

apply to the overall future generation of networks. The main argument of this thesis is that

in future networks, traditional monolithic service provisioning architecture will not be viable.

Dynamic and open service provisioning methods will be required and achievable through

transparent and accountable contractual mechanisms.

To this end, we exploit distributed ledger technology for the contractual mechanisms. First,

we outline the essential requirements for future service contracts and propose a DLT-enabled

service contracts architecture for future generation networks. Next, we address dynamic

network service provisioning on two different network layers: 1) Application Layer – we

propose JITRA – the architecture for transparent and accountable service provisioning and 2)

Network Layer – we propose BEAT – a blockchain-enabled infrastructure sharing architecture.
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However, due to the inherent properties of DLT, it is not trivial to design DLT-enabled

architectures. We also study the DLT pitfalls (e.g., scalability) and propose solutions to

overcome the challenges in our architectures.

1.2 Contributions

1.2.1 Autonomous Service Level Agreements for 6G and Beyond

In considering the requirements of autonomous SLAs for 6G and beyond, we have taken the

following approach:

1. Novel SLA requirements for future network SLAs are explored and identified. These

requirements drive the design of new SLA architecture enabled by smart contracts.

2. A new SLA architectural framework is proposed, which utilizes smart contracts to

automate the entire multi-layer SLA process consisting of: orchestration layer, initialization

layer, operation layer, and termination layer. Under this autonomous SLA architecture,

key issues and design considerations on SLA enforcement, SLA management, AI-enabled

smart contracts, data inputs, interoperability, and security are to be discussed.

3. Several future directions are identified and detailed, which include: a) open and distributed

networks; and b) integration of non-public (private) and public networks, and intent-based

network service consumption.

1.2.2 Just-in-Time Resource Allocation (JITRA) with Distributed Ledgers

We have proposed the concept of using smart contracts to advertise and automatically execute

SLAs in a just-in-time and accountable manner. Specifically, we have studied smart contracts as

a contractual mechanism in service provisioning architectures. Once executed, a smart contract

binds the network operator to a service level and the customer to the payment for that service,

thereby providing accountability on both sides. Smart contracts can be executed just-in-time

when a particular type of service is required, and only for the given duration of time that the
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service level requires, thereby providing service level guarantees in a dynamic, fine-grained

and context specific fashion. The ability to dynamically change agreed upon service levels in a

fine-grained fashion will address the dual realities that customers may not need the same level

of service at all times and neither may the operators be able to provide such guarantees at all

times and for all locations.

In this work an end-to-end architecture for service provisioning is presented and evaluated.

The approach we adopted was as follows:

• To support our argument of data versatility, we performed additional analysis on the data

from a previous study [12] and studied the data behaviour of seven different Internet of

Things (IoTs) devices.

• We performed additional analysis on the data from [13] and studied the spatial and

temporal characteristics of the UK’s four major service providers based on the insight

from our analysis.

• We perform analysis on the data from [13] and studied the basestation behaviour of the

UK’s four major operators.

• We have proposed an accountable and transparent DLT-focused end-to-end architecture:

Just-in-Time Resource Allocation (JITRA) – for future networks’ service provisioning.

This architecture exploits the inherent characteristics of distributed ledgers and smart

contracts to implement autonomous, transparent and accountable resource reservation.

• We have also proposed an architecture of Distributed Applications (DApps) for JITRA.

• We built a Mininet and Ryu controller based simulation of network slicing. We also

designed and coded the Just-in-Time Controller atop the Ryu Controller to evaluate the

impact of admission control on the Quality-of-Service.

• We evaluated network slice creation time and admission control on a typical mobile

service provider’s topology.
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• We built tools to evaluate, and perform evaluations on distributed ledgers both in the

permissioned (i.e., Hyperledger Fabric and Quorum) and permissionless (i.e., Ethereum

Ropsten Testnet) environments. We also design and code smart contracts in Solidity

language [14] to evaluate the smart contract overheads in permissioned and permissionless

testnets.

1.2.3 Monitoring Algorithm for JITRA

Distributed ledgers and smart contracts rely on external inputs, that is, smart contracts are

executed from the user input and if the users are compromised the ledger will have wrong/incorrect

data; for additional details on smart contract inputs, see Appendix B.10.

To this end, we have proposed a Quality of Service (QoS) monitoring architecture for

JITRA. This architecture is state-channel based and records the data to the ledger only at the

start and end of service provisioning. The integrity of data is maintained by cryptographic

accumulators located at both the customer and operator end such that no party can deny the

service provisioning and QoS received/provided.

This aspect of the work includes the following further contributions:

• We have proposed a side-channel and cryptographic accumulator based QoS monitoring

architecture for JITRA. However, this model is not limited to JITRA and can be inherited

to any distributed ledger focused service provisioning.

• We have evaluated, compared and contrasted three different cryptographic accumulators:

RSA-Accumulators, Secure Bloom Filters and Sketches to find the suitable tools for the

architecture.
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1.2.4 BEAT: Blockchain-Enabled Accountable and Transparent Infrastructure

Sharing for 6G and Beyond

.

We proposed a blockchain-based end-to-end architecture for accountable and transparent

(BEAT) sharing of infrastructure resources through smart contracts residing on Permissioned

Distributed Ledgers (PDLs). BEAT supports multi-operator and multi-vendor environment in

which infrastructure resources are owned and shared by several network players.

BEAT has following further contributions:

• We have proposed a DLT-focused end-to-end architecture: BEAT (Blockchain-Enabled

Accountable and Transparent Infrastructure Sharing for 6G and Beyond).

• To address accountability challenge in BEAT, we have proposed an Interrogation Protocol.

• We built evaluation tools are on the GNS3 network simulator and with Python to evaluate

BEAT. Ethereum’s Clique flavour was installed on the BEAT evaluation topology and

the overheads (e.g. processing time and memory usage) are evaluated.

1.3 List of Publications

1.3.1 List of Peer-reviewed Articles

[15] Faisal, T., Di Francesco Maesa, D., Sastry, N., & Mangiante, S. (2020, September).

AJIT: Accountable Just-in-Time Network Resource Allocation with Smart Contracts.

In Proceedings of the ACM MobiArch 2020, The 15th Workshop on Mobility in the

Evolving Internet Architecture (pp. 48-53).

[16] Faisal, T., Di Maesa, D., Sastry, N., & Mangiante, S. (2021, May). How to Request

Network Resources Just-in-Time Using Smart Contracts. In IEEE International Conference

on Blockchain and Cryptocurrency (ICBC) (pp. 1-5).
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29th International Symposium on Quality of Service (IWQoS) (pp. 1-6).

[18] Faisal, T., Di Maesa, D., Sastry, N., & Mangiante, S. (2021, June). Automated Quality

of Service Monitoring for 5G and Beyond Using Distributed Ledgers. In IEEE/ACM

Transactions of Networking. Submitted

[19] Faisal, T., Dohler, M., Mangiante, S., & Lopez, D. R. (2022). BEAT: Blockchain-Enabled

Accountable and Transparent Network Sharing in 6G. In IEEE Communications Magazine,

March 2022.

[20] Faisal, T., Dohler, M., Mangiante, S., & Lopez, D. R. (2022). BEAT: Blockchain-Enabled

Accountable and Transparent Infrastructure Sharing in 6G and beyond. IEEE Access,

2022.
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1.3.2 List of White Papers

[22] Chonggang Wang, Mischa Dohler, Diego R. López, Raymond Forbes, Shahar Steiff,

Tooba Faisal, Sheeba Backia Mary B., Qianren Liu, Ismael Arribas. ETSI White Paper

on “An Introduction of Permissioned Distributed Ledger (PDL)”.
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1.3.3 List of Standards Contributions

[23] ETSI Group Report: “Permissioned Distributed Ledgers (PDL); Smart Contracts System

Architecture and Functional Specification”. Rapporteur: Faisal, T. . See Appendix A.

[24] ETSI Group Specification: “Requirements for Smart Contracts’ Architecture and Security”.

Rapporteur: Faisal, T. . See Appendix B.

1.4 Organisation of the Thesis

The thesis is organised as follows:

Chapter 2: In this chapter, we provide the fundamental concepts discussed in this work. We organised

this chapter into four subsections. Section 2.2 provides a brief and comprehensive

overview of distributed ledgers and their types. Section 2.3 provides basic types of

network sharing addressed in this work. Section 2.4 discusses an overview of Service

Level Agreements, their lifecycle and requirements. Section 2.5 discusses the importance

of accountability in networks briefly. We summarise the chapter in Section 2.6.

Chapter 3: This chapter discusses the requirement, challenges, and architecture for future network

SLAs of 6G. This chapter is further organised into subsections. Firstly, we review the

existing work in Section 3.2, Next, we highlight the recommendations about SLA for

6G in Section 3.3. We propose a novel DLT-enabled SLA architecture in Section 3.4.

Designing a DLT-enabled architecture is not trivial, several considerations, precautions

and planning are required. We discuss these considerations for our architecture in

Section 3.5. Then, a few future directions on using smart contracts for enabling

autonomous SLA for 6G networks are discussed in Section 3.6. Lastly, we summarise

our work in Section 3.7.

Chapter 4: In this chapter, we present JITRA: Just-in-Time Resource Allocation with Distributed

Ledgers. The work done by other researchers related to JITRA is presented in Section 4.2.

An analysis of IoT devices behaviour and service providers’ performance analysis is
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presented in Section 4.3. Based on the motivations, we present the architecture of JITRA

in Section 4.4. The presented architecture is evaluated in Section 4.5. This chapter is

summarised in Section 4.6.

Chapter 5: In this chapter, we present a monitoring protocol for JITRA. We discuss the required

monitoring tools for the protocol in Section 5.2 and the monitoring protocol is presented

in Section 5.3. The evaluation is presented in Section 5.4. We summarise this chapter in

Section 5.6.

Chapter 6: In this chapter, we present BEAT: Blockchain-Enable Accountable and Transparent

Infrastructure Sharing in 6G and beyond networks. The related work to this study is

presented in Section 6.2. The system architecture for BEAT is presented in Section 6.3.

BEAT’s Interrogation Protocol is discussed in Section 6.4. We present evaluation results

in Section 6.5. BEAT’s considerations are highlighted in Section 6.6 and is summarised

in Section 6.7.

Chapter 7: In this chapter, we conclude our work and discuss possible future directions.



CHAPTER 2

BACKGROUND

2.1 Overview

In this chapter, we discuss the background concepts essential for this thesis. We begin by

clarifying concepts related to distributed ledger technology, its components and types in Section

2.2. We discuss network sharing with network slicing and infrastructure sharing in Section

2.3. The concepts of service level agreement, its life cycle and requirements and violations are

discussed in Section 2.4. An overview of network accountability is provided in Section 2.5 and

we summarise this chapter in Section 2.6.

2.2 Distributed Ledger Technology

This section is discussed in our published work [20]. Distributed Ledger Technology introduces

decentralisation in the record management. It is a radical shift from a centralised structure in

which all the parties rely on a central entity for record maintenance. The concept of Distributed

Ledger Technology is based on the The Byzantine General Problem proposed by Lamport et al.

in 1982 [25].

The Byzantine General Problem discusses the dilemma in a schematized Byzantine war

when the technology for real-time communication was not present and decision of attack or

retreat dependent upon the lieutenants bringing information from the borders and/or near enemy
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lines. If some of the lieutenants are malicious and convey incorrect messages to the General,

the army could potentially lose the war. For example, one lieutenant gives false information that

the circumstances are feasible for attack and another honest lieutenant brings the information

that the circumstances are not suitable for an attack and the army should retreat. The General’s

dilemma is deciding on which lieutenant to trust and what information to ignore. In such a

case, Lamport et al. proved that at least 3m+1 votes are required to take the correct decision,

where m is the number of lieutenants [25].

In Distributed Ledger Technology, the problem is similar; when a number of nodes write

to a ledger, it is difficult to identify the wrong/incorrect data. Similar to Byzantine General

Problem, distributed ledger technology relies on a minimum number of honest nodes to make

the decisions before committing, that is, communicating with other nodes. Note that it does not

have to be 3m+1, as the threshold depends on the distributed consensus algorithm employed,

for example, 50%+1 nodes in Ethereum.

Distributed Ledger Technology is a broad term and its applications include distributed

ledgers and smart contracts.

2.2.1 Distributed Ledgers

Several definitions of distributed ledgers are presented in the literature [26]. In this work we

define Distributed Ledgers as:

A network of distributed devices, which uses methods and techniques to replicate

data across multiple devices within a distributed network to ensure data integrity

and transparency.

Distributed Ledgers are data structures in which data with a unique cryptographic signature

and a timestamp is replicated across different machines across the network. When a node

sends a transaction request, that is, a request to write certain data in the ledger, based on the

consensus algorithm chosen for the distributed ledgers, the transaction is accepted or rejected.

However, when several nodes send data to a shared/distributed ledger, it is difficult to verify the

authenticity of data. That is, if a node is malicious and cheats (e.g. recording incorrect data to
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the ledger), all the nodes will receive the wrong data and the whole ledger will be compromised.

To this end, distributed ledgers add the data to the ledger only after a consensus is reached. We

observe that the Byzantine Generals Problem is the ideal analogy in describing the issue of

achieving consensus in DLTs, and its mathematical solution can be readily applied herein.

Due to the extra steps required to achieve consensus in a distributed ledger, write operations

in DLTs are generally slower than would be the case for traditional centralised databases. DLTs,

therefore, enforce distribution of trust by design, as opposed to the single-sourced data control

of traditional databases [26]. Nevertheless, DLTs do suffer from known issues and limitations

such as serialisation (in some distributed ledger types), out-of-sync data and fraud [27]. The

typical problem of serialisation in distributed ledgers is solved in Blockchains. Blockchains are

discussed in the next section.

2.2.1.1 Blockchain

A blockchain or “Block-chain” is A type of distributed ledger which is formed through verified

and serialised blocks replicated across the network nodes. That is, the members of the

blockchain agree to the consensus of block generation. Blocks may be generated, for example,

over a fixed time duration and/or by solving a cryptographic puzzle; once generated, they are

added to the blockchain through consensus. The concept of blockchain dates back to 1991 [28]

when Haber and Stornetta presented the idea of time stamping and linking documents such that

no party can amend the records [29].

In literature, distributed ledgers and blockchain are sometimes used interchangeably [26].

“Distributed ledgers” is a broad term, and, indeed, blockchain is a particular type of distributed

ledger, but distributed ledgers do not necessarily need to rely blocks.
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2.2.1.2 Classification of Distributed Ledgers

We may further classify distributed ledgers into two main categories:

• Permissionless distributed ledgers

• Permissioned distributed ledgers

Note that any distributed ledger which generates serialised blocks of data, can be classed as a

blockchain. This condition stands for both the permissionless and permissioned scenarios, as

discussed below:

(a) Permissionless Distributed Ledgers: In Permissionless Distributed Ledgers, the ledger

participants can join freely without any access-control mechanisms. The best-known

examples of permissionless distributed ledgers are Bitcoin and Ethereum’s Mainnet.

Since, participants can join the network without any checks, permissionless distributed

ledgers are often not suitable for business-like applications [30] and they are at higher

risks of malicious attacks, as well as having limited scalability.

Permissionless ledgers have no access control which enable a high number of participants

to join the network. Therefore, transactions, typically take longer to approve due a large

number of approval is required.

(b) Permissioned Distributed Ledgers: Permissioned Distributed Ledgers (PDLs) are a

special type of distributed ledgers, formed by a consortium of members. Generally, these

members are somehow known to each other and members are allowed in the network

with strict control mechanisms. Permissioned Distributed Ledgers are also known as

Consortium Blockchains. The best-known examples are the Hyperledger Fabric [31] and

R3 Corda [32].

Since participants are allowed in permissioned ledgers with access control, the number of

participants in these type of ledgers are typically lower than permissionless ledgers. The

transaction approval time (latency) is lower and therefore, the throughtput (transactions

per second) is higher in these type of ledger because they are formed by a relatively
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smaller group of known participants. Permissioned ledgers can also be deleted/termibated

for-good relatively easily with the consensus of the participants or the approval of the

governance.

Due their advantages overs their permissionless counterparts such as controlled access,

they are suitable for business-like applications and are receiving increased attention from

the industry and standardisation bodies. For instance, ETSI ISG PDL is focused on

developing standards for industries, specific to permissioned distributed ledgers.

A brief comparison of permissionless and permissioned distributed ledgers is given in

Table 2.1.

Property Permissionless DL Permissioned DL

Scalability Low Medium to High
Eternity High Governance-dependent
Latency [30] High Low
Throughput [30] Low High
Control No Control Governance Controlled
Access Control No Yes

Table 2.1 Comparison of Permissionless and Permissioned Distributed Ledgers

2.2.2 Smart Contracts

Distributed Ledgers (both permissioned and permissionless) on their own are static. That is,

they record the data as per the consensus to the ledger and do not perform executions. In order

that users may run executable code, however, distributed ledgers rely on smart contracts, which

are snippets of codes installed on the distributed ledger itself. Since, they are installed on the

ledger, smart contracts inherit the properties of distributed ledgers.

Some of the properties of a smart contract are as follows:

(a) Auto-execution: Smart contracts are executable autonomously with certain pre-defined

conditions.
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(b) Immutability: As distributed ledgers are immutable, it follows that smart contracts are

also immutable – once installed, a smart contract cannot be changed or deleted.

(c) Monitorability: It follows from transparency that the executions of a smart contract is

replicated through out the ledger/nodes.

(d) Transparency: Typically, all the nodes of a distributed ledger keep an identical copy of

the ledger. Therefore, a smart contract is also replicated on every node of the ledger, and

any changes to them become transparent to all the members of the system.

2.2.3 ETSI Standardisation

The ETSI Industries Specifications Group for Permissioned Distributed Ledgers was established

in 2018. Its aim is to develop standards for Permissioned Distributed Ledgers, including smart

contracts and reference architectures for PDLs. The details of the activities for the group can

be found in [33]. The Work Items (WIs) specific to this study that include a major contribution

from the author of this thesis, are ETSI Group Report on Smart Contracts [23] and ETSI Group

Specifications on Smart Contracts [24]. The specification document has been well received

by the European Commission, and is a reference for developing European laws for Smart

Contracts and Distributed Ledgers.

2.3 Network Sharing

The goal of a computer network is for each computer to make every local resource

available to any computer in the net such a way that any program available to

local users can be used remotely without degradation.— Lawrence G. Roberts and

Barry D. Wessler (1970)[34].

It is indisputable that network resources are limited, whereas millions of new network

devices such as Internet-of-Things (IoTs) and smart phones join the network daily. It is expected

that the number of IoTs will increase to 30.9 billion and non-IoT to 10.3 billion by 2025 [2],
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thereby ensuring the demands for network resources will continue to increase. Future networks

of 6G and beyond must therefore be designed to cope with the expected inflation in demand.

Indeed, network sharing through techniques such as, network slicing and virtualisation is a

common practice for service providers. Particularly in mobile networks, sharing scenarios such

as infrastructure and spectrum sharing are proving to be beneficial in terms of both CAPEX

and OPEX [35]. In this work, two different types of network sharing are discussed: 1) network

slicing and 2) infrastructure sharing, therefore we limit our discussion which these two different

types.

2.3.1 Network Slicing

The concept of Network Slicing dates back to 1960s when IBM introduced a time-sharing

and virtual memory based computer that could accommodate 15 users simultaneously [36].

Network slicing allows the creation of several virtual users atop a common hardware through

softwareization. Next Generation Mobile Network Alliance (NGMN) defines network slice

instance s as:

A set of network functions, and resources to run these network functions, forming

a completed instantiated logical network to meet certain network characteristics

required by the service instance(s) [37].

Several virtual or logical networks can be formed which can be working independently through

network slicing. Every logical network has its own resources assigned by the infrastructure

provider and generally in an isolated manner. Network slices are created by stitching the

network functions together and forming a dedicated end-to-end slice. From the Core to RAN,

a slice can be created at any layer. An end-to-end dedicated network enables the operators

to manage better the network resources. For example, a slice dedicated to latency-focused

applications can be assigned a dedicated slice with low-latency service metrics. Network slicing

is economical both for CAPEX and OPEX [38] and through network slice-based sharing,

operators have been known to generate annual revenue of up to 200 billion USD [39].
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Fig. 2.1 Network Slicing Architecture for 5G – reproduced from [35] with minor modifications

In a blog, Ericsson has identified around 70 use cases of network slicing [39]. However,

network slicing poses design challenges [38] such as slice security [40] and isolation [41].

Further details on the challenges and opportunities of network slicing can be found in [42–45].

2.3.2 Infrastructure Sharing

In Infrastructure Sharing, Mobile Service Providers (MSPs) collaboratively share network

infrastructure. Such schemes have been shown to be beneficial for CAPEX and OPEX [35], are

energy-efficient [46], and, furthermore, help the MSPs serve their customers where the former

have none to poor coverage.

In the future networks of 6G and beyond, infrastructure sharing will play a key role. The

major reason is that the frequency bands in 6G are expected to reach TeraHertz, which is a
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major shift from the 5G frequencies, that typically operates in the 3.5 GHz range (3.3 GHz -

4.2 GHz), or, in the case of mmWave, around 28 GHz [47]. The advantage of high-frequency

bands is that the higher throughput, and due to short wavelengths, the connection speed is much

higher than the lower frequency bands. The downside is that the signals cannot propagate to

longer distances. Given this limitation, MSPs will have to install more cell sites to cope with

the higher demand loads for reliable network connections. This translates into challenges of

site acquisitions and equipment installation [48], particularly in urban areas. It makes economic

sense, therefore, for MSPs to collaborate and share their infrastructure to expand their coverage

and minimise the CAPEX, instead of repeatedly installing new sites.

Depending on service providers’ requirements and available capacity, several sharing

scenarios are possible. Generalised sharing models include the following:

(a) Passive Sharing – the non-operational resources such as masts and sites are shared.

(b) Active Sharing – the sharing in which active parts of the network such as Radio Access

Network (RAN) are shared.

(c) Roaming-Based Sharing – where a service providers do not have coverage in some

country/region and rely on other service providers’ services.

2.4 Service Level Agreements

A Service Level Agreements (SLAs) can be traced back to the advent of the telecommunication

industry, and can be defined as:

A legal contract or agreement between a customer and a service provider which

defines the roles, responsibilities and obligations of the parties involved.

“Customer” and “Service Provider” are a generic terms here, and it can include individuals

and business customers, both single party or multi-party. For instance, an MVNO will be

a customer when they purchase network services (typically wholesale) from an MNO, who

would be considered as a service provider. The same MNO will become a customer when it
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purchases infrastructure services from an Infrastructure Provider (InP), who would be a service

provider. Depending on the business requirements, an SLA can be as detailed and complicated

as required; all the detailed risk scenarios must be addressed in an SLA.

Like every agreement, an SLA has a definite start and end, which determines the “SLA

Lifecycle”. SLA lifecycle is discussed in next section.

2.4.1 SLA Lifecycle

A Service Level Agreement (SLA) starts with the agreement between the parties and ends with

completing the agreed goal. Beyond these limits, an SLA may not have any role however, to

enable accountability and honour an SLA, during this period the steps of the agreement (SLA)

must be managed and monitored carefully. The steps during this lifecycle depend upon the

parties designing the contract. However, in [49] the life cycle of SLAs can apportioned into

three components, as follows:

(a) Creation phase – when the parties negotiate the terms and conditions, define requirements

and outline the agreement.

(b) Operation phase – this covers the as aspects of the contract execution, such as service

provisioning, online monitoring and possible audits.

(c) Removal phase – this determines the service modalities when the contract is completed

and terminated – any violations recorded are dealt with at this stage.

2.4.2 Requirements of an SLA

The SLA is, formally, a legal document; in situations of disputes, it can be produced in a

court of law to show what had been agreed. If an SLA has incomplete or absent clauses and

conditions, it is may be difficult or even impossible to defend or prove the fault of the guilty

party. Particularly in the telecommunications industry, the following are requirements of an

SLA, as discussed in the literature:
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Fig. 2.2 Three Phases of SLA Lifecycle [49]

(a) Automation [50] Successful operation of all the clauses of an SLA, requires automation;

in case of violation, reporting of QoS degradation should, for instance be automatic.

(b) Dynamicity [50] All the clauses of an SLA should operate dynamically. For example,

in the case of cloud services, if a virtual machine allocated to a user is unavailable, the

service contract (i.e., SLA) should dynamically reconfigure to a new available location

and adjust the relevant parameters accordingly.

(c) Enforceability [51, 52] An SLA is a legal document and must be enforceable. At any

stage of an SLA, if a violation is detected the relevant clauses must be executed without

any delay. Typically, in the event of a dispute arising, the parties proceed towards legal

resolutions.

(d) Measurability [49, 53] The SLA metrics and the clauses in the SLA should clearly and

precisely [54] define the boundaries of the agreement. That is, relevant details, such as

roles, responsibilities and prices, should be listed with their conditions in a measurable

way so that, in the event of a contract violation, the stakeholders can execute the relevant

clauses without any ambiguity [55]. For instance, in cloud computing SLAs, details such

as disaster recovery and governance are often ignored [56]. In the example of distaster

recovery, the parameters such as recovery time and rules to recover a cloud service from

disaster should be clearly defined in the SLA.
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(e) Monitorability [57, 51, 58, 54, 53] The stakeholders should be able to monitor the SLA

throughout its entire lifecycle (i.e., from the Creation to Removal phase). For instance,

in service provisioning, the clients should be aware of the quality of service they are

receive, and be able compare it with the agreed service quality in the contract. Similarly,

the service providers should also be able to monitor the service quality provided and

audit their performance [50].

(f) Interoperability [50] Network service provisioning is typically a chain of agreements,

with several organisations being involved in the network service provisioning process,

with each having a different methods to implement the SLA. It is important that all the

SLAs can be interpreted and executed correctly by all the systems involved in a service

provisioning chain.

(g) Transparency [59, 57] Terms and conditions in an SLA are required to be transparent

to all the stakeholders. All the stakeholders have an identical copy of the contract;

any changes should be communicated to all stakeholders in a verifiable and consistent

manner.

(h) Unexploitability [54] Parties should not forced to pay unfair penalties.

2.4.3 SLA Violations

Since an SLA is a legal binding contract between a service provider and customer, all the

stakeholders involved in the contract are duty-bound to honour it. In addition, SLA abidance is

vital for service providers for the reasons such as trade reputation and customer trust. When an

SLA is violated, typically, people try to blame each other to avoid paying the penalties. Such

an attitude damages the company’s reputation and jeopardises customers’ trust in the network

services.

It is common practice for service providers to monitor their service provisioning and

identify the SLA violations through methods such as Profile-based techniques [60], Machine

Learning [61] and Bayesian-Model based prediction [62]. This helps service providers to
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maintain a correct balance between what they promise and what they can provide to their

customers to avoid paying hefty fines.

Clearly, SLA Management has risks associated with it; for instance, if a certain clause

violation has a large penalty to be paid, the service providers will want to ensure that they

adhere strictly to the SLA terms. Three different approaches for risk migration are identified by

Verma in [63]:

(a) Insurance-based Approach – The service provider provides the same service to all the

customer and the violations are indemnified by third party Insurance. Generally, the

identification of service level objectives are designed in such a way as to cover the risk

of the violations.

(b) Provisioning- based Approach – The service provider signs different types of service

level objectives with different customers. This determination of the right configurations

and needs for each customer is a challenge. This type of configuration is suitable for

modern applications involving techniques such as Network Slicing.

(c) Adaptive Approach – Service Provider would dynamically alter the configuration

of the provisioning approach. By monitoring the system’s health and modifying the

configuration in real-time, the service provider would ensure that the SLA objectives

are met. These types of configurations are suitable for future applications such as the

dynamic resource provisioning proposed in [16].

2.5 Network Accountability

An Accountable Network can be defined as: One which has the ability of a network to precisely

and accurately pinpoint the entity that has, malfunctioned, or due to which loss has occurred.

Accountability is a key-enabler for customers’ trust in the network service provider. For

example, augmented reality is a significant technology for healthcare practitioners to perform

remote surgeries. Yet, this is only possible if the network is accountable. If there is a connection

drop, the party liable for this service disturbance should be exactly pinpointed. Accountability
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should not be confused with guaranteed service quality, albeit accountability is a promise

that the service provider will adhere to the Service Level Agreement (SLA). The terms and

conditions decided in the agreement should be honoured.

The absence of accountability on the Internet is the root of several problems. Common

attacks such as IP spoofing [64] (when the packet cannot be linked to its host), or Denial of

Service attacks (where the hosts that purposefully caused the hosts overwhelmed) happen

because it is very difficult identify the culprits. The key to enabling accountability in networks

is positive identification [65][64]. If a network or node is positively identified, it is far less

likely that they will be misbehaving.

Researchers have proposed various techniques to enable accountability in the networks,

for example, self-reporting accountability interface [66], forwarding accountability focused

protocols [67], in which the autonomous systems that have forwarded the packet mark it and

modification of Internet Protocols [65]. It is crucial to enable accountability in any network,

to keep the network healthy. Humans, and ultimately networks, usually misbehave when they

cannot be identified and held accountable.

2.6 Summary

In this chapter, we provided an overview of the concepts discussed in the subsequent chapters.

Distributed ledger technology is a broad term and includes distributed ledger, blockchain

and smart contract. We discussed its basic concepts and highlighted the difference between

permissioned and permissionless types of distributed ledgers. The properties of smart contracts

make them a potential choice for future generation service contracts. Network sharing concepts,

particularly network slicing and infrastructure sharing and an overview of past and present

methodologies are provided. We provided an extensive literature overview on the properties,

lifecycle and requirements of service level agreements and the importance of accountable

networks in current and future scenarios.



CHAPTER 3

HOW TO DESIGN AUTONOMOUS SLAS FOR 6G AND BEYOND

3.1 Overview

A Service Level Agreement (SLA) is a contract or agreement between a service provider and

a customer. The customer can be an organisation or an individual. It is a legal and detailed

document that typically includes roles and responsibilities of all parties involved such as service

quality, duration and penalties [50]. Typically, network service providers (e.g., mobile service

provider or infrastructure providers) have set procedures in place to monitor their SLAs and

generate periodic reports. Such mechanisms allows them to monitor their service quality and

keep records in the situations of customer complaints or disputes.

In the 6G networks, many of the existing and foreseen 5G applications will evolve to be

applicable in much more demanding environments. Applications such as remote surgery and

extreme uses of the Industry 4.0 paradigms will become prevalent. Robots and machines will

be in charge of critical procedures such as direct health and personal care, and the piloting of

autonomous vehicles. Irrespective of whether these systems will be human or machine-guided,

they will all require extremely reliable network connections. It follows that future network

application providers (critical examples include remote surgery and self driving cars) will need

to prove the reliability of their applications to gain customer trust in their product or service.

For example, in human-guided remote surgery, the customers will want to ensure that the

connection between the surgeon and the patient is reliable.



3.1 Overview 28

This ultimately calls for a reliable and enforceable contractual mechanism for future

networks of 6G and beyond. We note the two key requirements that future SLAs must fulfil.

Firstly, the SLAs must be reliable and trustable. This means that all the stakeholders should

trust the contractual mechanism, and that the SLAs shall be honoured in all the circumstances.

Secondly, they must be automatically managed throughout their lifetime, with a special focus

on SLA monitoring and enforcement stages. The reason is that future networks will face a

high demand for connectivity from an ever-increasing number of devices subscribed to B2B

and B2C services. This imposes great scalability burdens that can only be alleviated with

automation (zero-touch) procedures, at both the network and infrastructure levels.

To that end, we propose the use of DLT, particularly Permissioned Distributed Ledgers

(PDLs), to design a contractual mechanism for SLAs in future networks. Distributed Ledgers

are an immutable and transparent network of nodes, in which all the participants keep an

identical copy of the record. The planned executions are recorded in the ledgers in the form of

executable software code called as “Smart Contracts”. Typically smart contracts are installed

on distributed ledgers and consequently inherit some of the distributed ledgers’ properties such

as immutability and automated execution. Relevant properties of smart contracts were briefly

described in Chapter 2.

From a lifecycle perspective, smart contracts inherently resemble to SLAs as illustrated in

Figure 3.1. The SLA processing lifecycle usually includes a creation phase, an operation phase

and a termination phase; this is inherited in the life-cycle of a smart contract, which consists

of equivalent phases such as initialisation/creation, expectation/logic, and termination. The

smart contract lifecycle and its inherent properties (i.e., immutability, auto-executability and

transparency) are aligned with the design requirements of future SLAs. To enable properties

such as reliability, trust and automatic management SLA will required to be autonomous. That

is, an SLA which can respond to the network conditions and take decisions without any human

intervention. We present in this chapter a new SLA approach which leverages smart contracts

and PDL to enable autonomous and accountable SLAs for 6G and beyond networks.

This chapter is based on [21] and in this chapter, we highlight the requirements of future

SLAs. We present a generalised architecture of DLT-focused SLAs, which can be incorporated



3.2 Related Work 29

(a) SLA Processes – Reproduced from [49]

(b) Smart Contract Processes [23]

Fig. 3.1 Smart Contract and Service Level Agreement

in most of the today’s telco applications. We begin by reviewing relevant existing work

in Section 3.2. Next, in Section 3.3, we highlight the recommendations about SLAs for

6G and then propose a novel DLT-enabled SLA architecture in Section 3.4. Designing a

DLT-enabled architecture is a non-trivial undertaking: several considerations are required,

including precautions and planning, and we discuss these in Section 3.5, before concluding

with remarks on some probable future directions on the use of smart contracts for enabling

autonomous SLA for 6G networks in Section 3.6.

3.2 Related Work

Smart contracts as SLAs have been in discussion for a while, and several applications have

been proposed. For instance, in [68] authors propose the use of DLT in the design of an

SLA management system for cloud-based services; however, it is limited to smart contract

modularisation for SLAs in the cloud scenario. Also, they do not discuss the pitfalls of the

distributed ledgers and the considerations for their adoption in the architecture. The potential of

SLA management in 6G through blockchain/smart contract is proposed in [69] and a platform

to manage the SLA between the service providers and customers is presented by [70]. However,

none of these define an SLA framework itself with the requirements, challenges and future

directions of SLAs when they are implemented based on smart contracts technologies. A smart

contract together with an SLA model is represented by [71] where the authors propose a witness

committee based model to monitor the SLA; the system incentivises committee members for
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being honest. However, they do not discuss the structure of SLA nor challenges related to

adopting a smart contract as SLA. Authors in [72] propose a model for translating SLAs into a

fsmart contract; the proposed model relies on a third party to collect the monitoring data and

adjust the metrics (e.g., billing and payment) accordingly. Like other existing works, the work

from [72] is also focused on smart contract implementation for SLAs, but neither discusses the

limitations of smart contracts nor the requirements for future networks.

In this work, we discuss the requirements of SLAs for 6G and beyond, and explore the

potential of DLT and smart contracts for SLAs. We propose a novel SLA framework which

is compatible with smart contracts. Our framework is designed in a way that also exploits

and manages the inherent properties of smart contracts. We further discuss the challenges and

requirements for future network SLAs with some design considerations.

3.3 SLAs in 6G

6G networks will introduce a new wave of devices, applications and use cases, with technologies

such as Industry 4.0 and remote surgery being mature and a reality. Such an evolution clearly

introduces new SLA requirements.: traditional SLA mechanisms will no longer be sufficiently

applicable, and service providers will have to revisit and redesign the contractual mechanisms.

In this section, we identify the key requirements for future SLAs:

Monitorability – The future SLAs must be monitorable during their lifetime, that is, from

its initialisation to completion (Figure 3.1(a)). In future networks, an application such as

Industry 4.0 will rely on a an IoT fabric for production and manufacturing services. The

most significant challenge with industrial IoT will be the management and health-monitoring

of millions of sensors and monitoring their health. For instance, vehicle manufacturing will

involve cognitive abilities of machines. Indeed, currently, vehicle automation is at present

already a common practice; in the future, it will also require robots to make decisions based

on the customer requirement and vehicles specifications such as customised programming of

vehicle software. When robots take decisions, they will clearly encounter the problems of

trust and accountability. The manufacturer should be able to monitor that the manufacturing
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equipment, that is, the robots are making accurate decisions, and the client should be able to

monitor that the vehicle that was ordered is getting manufactured as per the contract.

Transparency – A future network SLA will need to be transparently available to all the

contract stakeholders for the reasons such as a prospective audit and external SLA verifiability.

For example, in a shared network infrastructure like [19], all the stakeholders (e.g., service

providers and vendors) should have an identical copy of the contract, in which any changes/tempering

in one contract automatically echoed into other copies of the contract.

Auto-Executability – Future network SLAs will need to be auto-executable. That is, their

execution must be triggered under pre-programmed conditions without human intervention.

We argue that such automated execution should not be from initialisation to termination but

should be carried out at certain checkpoints only to ensure that micro targets are being met.

This means that the management software should verify the contract details at every milestone

and take appropriate actions autonomously if any contract violation is identified.

Dynamicity – SLAs will need to be dynamically generated and in the real-time as per the

user’s demand. For example, once a customer orders an autonomous car, the system should

generate a contract as per his specifications. Special requests such as a change of delivery date

and customisation should dynamically adjust the main agreed-upon SLA as well as all other

dependent SLAs accordingly and autonomously.

Zero Touch Network and Service Management – Zero Touch Network and Service

Management allows the networks to perform maintenance and configuration tasks such as

rerouting and self-healing autonomously and without any human interference.

SLA should be actively monitoring the system and report any anomalies in the system

autonomously. In case of potential SLA violations, they must make corrective measurements

and adjustments, for instance, to reroute the traffic to another path, and to report this to the

control system or the service provider.

AI-Enablement – Managing an ever-growing number of customers will be a significant

challenge in the future. The service providers will need to work diligently to resolve customer

problems along with the everyday activities such as service requests and QoS monitoring.

Indeed software automation is already a common practice for tasks such as network management.
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Yet, disputes and disagreements are often done manually and on a case-by-case basis. In smart

contract scenario, this problem is even worse, since smart contracts rely on the users’ input to

execute the compensation and the users may lie about the service rendered, for example, feed

an exaggerated QoS metrics in order to avoid paying penalties.

In a PDL scenario, ideally, the governance can step-in to resolve the dispute. However, when

a number of devices need governance support, a manual approach will not suffice, and an

automated governance system with cognitive abilities is required to make decisions. Hence,

future generation of contractual systems must have the cognitive ability to make human-like

decisions in unforeseen situations like network anomalies and participants’ disputes.

Intent-Enablement – Intent-based management is a potential and prominent shift from

complicated service provisioning commands to understandable and straightforward statements

referred to as intents. As per its IETF Definition: “An intent specifies the goals and outcomes

of the network without specifying how to achieve them” [73].

Intent-based management allows the provider to fulfil customer expectation (target service

requirements) in a non-perspective manner. Infact, the customer can specify from a wide variety

of intents, and the provider has the liberty to allocate resources to achieve those functionalities

as per the network’s feasibility and resource availability. For example, a user may state its

intent as requesting a network connection for watching a Netflix movie, or a surgeon may state

its intention as obtaining a connection for a remote surgery at 11 pm on Monday. Similarly, a

service provider can state its intent to the network to reconfigure a path for high data rates only.

These intents are specified without any further details, and it is the network’s responsibility to

interpret the intent and distribute it to the devices across the network. In future networks, the

network participants (both B2B and B2C) will have a provision for their customers to request

services without specifying the details of the service metrics, that is, merely by stating their

intent. Intent should not be confused with the service metrics such as Quality of Service (QoS)

and Quality of Experience (QoE), which are measurable. On the contrary, an intent is simply

a statement which describles the users requirement in simpler terms. However, a good intent

translation may improve customers’ QoE.



3.4 Architecture 33

Cross-Provider Collaboration – Cross-provider collaboration is already a common

practice (e.g., RAN sharing, roaming) to allow operators to extend their service footprint

at reasonable costs. However, service providers must adopt this (collaborative) practice

at a broader scale; instead of installing new infrastructure, first consider collaboration and

subsequently share the existing front-haul and mid-haul resources mutually.

3.4 Architecture

Based on the requirements identified in Section 3.3, we present in this section, our contractual

system for future networks of 6G. Our architecture exploits permissioned distributed ledger

(i.e., PDL) to enable an automated and transparent contractual tool. We advocate modularity

in contractual mechanism and divide service contracts (e.g., SLAs) into modules (Figure 3.2).

The modules are conceptually placed into three different phases:

(a) Initialization Phase: – We specify the setup tasks in the initialisation phase which

includes initialisation functions such as service discovery and contract negotiation.

(b) Execution Phase: – Once the contract is initialized, the required service provisioning is

started. This phase include functions such as service contract initialization and service

management. This phase lasts for the lifetime of the service provisioning.

(c) Termination Phase: – Once the service provisioning is completed, the contract is

terminated. In this phase, functions, such as termination and service quality reports are

executed. Since we advocate the usage of smart contracts as SLAs, all the variables

within the smart contract (SLA) must be flushed out after the contract termination,

autonomously [24].

.

As a use case, we position the modularized SLA components in a typical service providers’

network slicing architecture [74]. The components (Figure 3.2) are placed in a complete telco

stack, that is, in the BSS (Business Support System), OSS (Operation Support System) and

network layers (Figure 3.3).
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Fig. 3.2 Overall SLA Architecture

The aim of our architecture is to modularise the SLA architecture to enable portability and

decentralisation. As seen in Figure 3.3, the SLA components are modularised into sub-functions;

which organises the contract development process and makes it ready for the DLT-based

contractual solutions. In Figure 3.2, we place these components in an example of network

slicing, to explain the notion that these components will be executed at different layers of

the service provisioning. However, network slicing is a use case only and our architecture is

applicable to a wide scale of telco-applications.

The following diagram shows the key players involved in the architecture:

Service Customer – including end-users (B2C market) and most notably enterprise

customers (B2B/B2B2C market), such as hyperscalers, large-scale content service providers,

industry verticals and MVNOs, to name a few.

Governance – A group of players, which oversees the network management and operations;

they also maintain the compliance strategies within the architecture and watches for wrongdoings.

There are two types of governance involved in the architecture:

Local Governance belongs to one network architecture only, and in the case of multiple

architectures.
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Inter-PDL Governance which sits atop one or more network architectures and performs

the relevant management tasks.

Typically, an SLA has several modules or subcontracts, which form an end-to-end SLA

or contract. The most common subcontracts in our architecture are detailed below. Note that,

in this work, we provide a generic contractual system architecture. As per the application, a

contractual mechanism can have more or fewer subcontracts.

Intent-Translation Smart Contract (IT-SC) – records the agreed SLA terms established

on the intent to the ledger. The IT-SC is executed by the ITF (Intent Translation Function)

Access Control Smart Contract (AC-SC) – records the access control credentials to the

ledger. It includes an internal timers, which automatically revokes the access rights when the

assigned access time elapses. The AC-SC is executed by the P-ACF (PDL Access Control

Function) and

Service Orchestration Smart Contract (SO-SC) – sets up the service provisioning through

resource allocation; for instance, types and duration of resources used. It is executed by the

P-SOF (PDL Service Orchestration Function).

Service Recording Smart Contract (SR-SC) – records the service usage to the ledger. It

is executed by executed by the PDLF (PDL Function).

Our architecture is underpinned by the following strata, which further includes functional

elements of the architecture:

3.4.1 Orchestration Stratum

It is the first point of contact from a user to the network and part of the BSS and OSS Layers.

A customer requests for the services (e.g., a network slice or RAN) through the orchestration

stratum. It has the following functions:
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3.4.1.1 Intent Translation Functions (ITF)

The first phase in our architecture is to interpret the customers’ intent. Note that, in the

future networks, the network service requests do not need to be described in or include

network-specific vocabulary (e.g. bandwidth and packet loss rate), and the customers will have

the liberty to express their requirements in simple terms (i.e., Intent).

To this end, ITF translates intents to the actionable or configuration commands. Intent

translation is usually an iterative process, and the ITF may need to consult the customer/user

several times before the terms are agreed upon. The final agreement on the intent translation is

recorded through a smart contract to the ledger.

3.4.1.2 PDL Service Discovery Function (P-SDF)

Once the customer agrees on the translated intent values, the P-SDF will browse through the

SLA catalogue and show the available services to the customer as per the stated requirements.

For example, if a customer has asked for a network slice for a football match, the P-SDF will

show all the available service offerings suitable for the football match during the time and the

day.

3.4.1.3 PDL Contract Negotiation Function (P-CNF)

In some cases, it may be required to negotiate the SLAs, for example, if the service provider

wishes to provision their services through an auction or when a customer needs unique or

bespoke services. P-CNF will provide negotiation functionalities such as bids and customised

pricing in such a situation. The governance of the PDL controls this function, but the service

provider will negotiate the SLA.
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3.4.1.4 PDL Access Control Function (P-ACF)

In the next step, internal PDL governance will assign access credentials to the customers

through P-ACF and as per the agreed SLA. The access control will be recorded to the ledger

through AC-SC for a limited and SLA-agreed time.

3.4.1.5 PDL Service Orchestration Function (P-SOF)

PDL Service Orchestration Function allocates the resources as per the agreed SLA (for example,

a shared Radio Unit). It is worth noting that services are orchestrated at this point only and

provisioned after the contract initialisation.

3.4.1.6 PDL Contract Initialisation Function (P-CIF)

Once the services are orchestrated, the P-CIF initialises the smart contract (i.e., SLA), and the

services are provided. P-CIF also initialises a timer within the contract to keep track of service

provisioning duration.

3.4.1.7 PDL Inter-Operability Function (P-IoF)

We advocated a single multi-operator and shared architecture and argued on the viability of

service providers’ collaboration in (Section 3.3). However, several networks are likely to be

involved in some service provisioning, as for instance, in a roaming scenario. Yet, distributed

ledgers have a significant consideration of interoperability. That is, not every DLT protocol

is compatible with other DLT protocols. To this end, P-IoF will ensure that appropriate

functionalities are implemented to enable interoperability between two service providers. The

PDL interoperability strategies and algorithms are a research area on their own, and we leave

this for future work.
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3.4.2 Functional Stratum

3.4.2.1 PDL Function (PDLF)

This function provides the PDL functionalities, that is, recording the data to the PDL and

running the consensus mechanism. Every operator-managed resource, including network

functions and OSS assets, is equipped with a PDLF (see Figure 3.3). However, the PDL

functionalities are not always required to be active and only be activated when needed. For

instance, if the RAN usage is needed to be stored, the PDLF in the Radio Unit (RU) and

Distributed Unit (DU) will be active. The overall idea is that every operator-managed resource

is DLT-enabled and ready to execute smart contracts.

A PDLF will have two major functions 1) record the data to the PDL, and 2) generate and

send periodic reports to the intra-PDL governance for future auditability.

3.4.2.2 PDL SLA Management Function (P-SMF)

This function monitors the SLA and collects the insights of SLA execution and checks for

anomalies. In case any misbehaviour is identified, the P-SMF will immediately send a report

to the intra-PDL governance, and the smart contract will be interrupted immediately through

control instructions [23].

3.4.3 Termination Stratum

Once the service contract is completed, and SLA is finalised, the smart contract must be

deactivated properly [23]. The complete and safe termination of a contract is the responsibility

of the Termination Stratum and has the following functions:
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Fig. 3.3 Our novel PDL-Enabled SLA modular architecture. We place components (in color) of
our novel architecture on network slicing architecture discussed in literature as a use case [74].
The architecture is not limited to network slicing scenario and can be applied to any future and
current network applications. The modules are independent and managed by the owner of the
devices.
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3.4.3.1 PDL Contract Termination Function (P-CTF)

All the smart contract variables are cleared at this stage. The access rights are automatically

revoked by the P-ACF, however, the governance will ensure that access rights are revoked and

the smart contract is no longer accessible by the any stakeholder.

3.4.3.2 PDL Final Report Function (P-FRF)

The system will also generate a final report. This report will include SLA lifecycle parameters

such as the SLA start and end times, proof of successful deactivation and details of the involved

parties. The governance of PDL, will keep these report for the audit purposes. Note that, the

PDL, itself is immutable, therefore some of the details such as execution times and parameters

will be recorded in the PDL anyways. However, we propose to generate these reports for two

reasons: 1) first, all the details such as confirmation of access rights revocation will not be

the part of the PDL; and 2) secondly, in some cases the stakeholders may choose to execute

the smart contract with encrypted/hashed parameters. Keeping a record of SLA reports will

provide detailed results for the stakeholders.

3.5 Considerations

Indeed, DLT-focused systems poses several challenges. One can argue on their inherent

properties, such as immutability, which can lead to scalability problem in the future. At the

same time, one can also argue on the enforcement challenges across the borders. We believe

all the challenges are reasonable and require discussion. Therefore, this section highlights the

considerations necessary for adopting smart contracts as SLAs.
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3.5.1 SLA Enforcement

Distributed ledgers are a network of world-wide set of distributed nodes. When an SLA is

installed on the ledger and the nodes are distributed in a global footprint, different jurisdiction

rules apply to the node and smart contract enforcement across the national borders is still

a challenge. For example, certain GDPR laws apply to the EU and the UK but may not be

applicable to the other countries.

3.5.2 SLA Composability

An SLA has horizontal and vertical components [75]. The horizontal SLAs represent an

agreement whereby provider and customer roles correspond to actors from the same layer, e.g.,

a contract between two network service providers. The vertical SLA represents an agreement

whereby provider and customer role corresponds to actors from different layers e.g., a contract

between the vendor and service provider. These horizontal and vertical components are chained

together as functions to form an end-to-end SLA. During a service provisioning, one SLA

function would often call other SLA functions. For example, for the provisioning of a network

slice, network service provider-managed SLA may call the vendor-managed SLAs before

setting up the network devices/functions building up such a network slice.

Smart contracts can automate the end-to-end process, yet they are auto-executable. This

means an uncontrolled or unmanaged function can initiate a chain of authorised and unauthorised

executions. We have witnessed, in the famous DAO (Decentralised Autonomous Organisation)

attack, developers’ mistakes that led the attackers to access the payment functions of the SLA

and caused huge monetary losses. To enable security in smart contracts, they should be coded

so that they are allowed to access other functions with a comprehensive security framework

including strict access-control [23].
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3.5.3 AI-Enabled Smart Contracts

As discussed in Section 3.3, future SLAs may need to be AI-enabled. Yet, computations

required for AI-based systems would require compatible hardware and software. Generally,

the distributed ledger nodes’ processing resources are dominated by the node management

tasks such as transaction processing. One of the possible solution is to offload computation

intensive task to an external system [23]. With modularisation, a smart contract can be divided

into several small modules, and computation-intensive parts can be installed on appropriate

hardware.

3.5.4 Inherent Properties

3.5.4.1 Immutability and Scalability

Despite its advantages, the challenges with immutability are two-fold. First, the immutability

leads to scalability limitation, that is, if a contract cannot be deleted or amended, erroneous

and expired contracts will stay in the ledger forever. Secondly, it is also a security risk. For

example, a developer codes a smart contract and forgets to make the payment function private

(i.e., accessible by the owner only). Malicious users can access the smart contract and drain

the contract’s funds. Because smart contracts are unamendable, they cannot be updated or

patched and will stay accessible by every member of the ledger. If a term in an SLA is wrongly

coded, it will stay in the ledger forever. The possible solutions to these problems are careful

planning and Termination Function [23]. Note that the termination functions cannot remove

a smart contract from the ledger but will clear all the variables and deactivate it, therefore

scalability challenges remain. Solutions such as off-chain storage [76][23] are proposed by

research community to solve scalability challenges.
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3.5.4.2 Transparency

In distributed ledgers, every node keeps a copy of the ledger, and all the transactions and smart

contracts are replicated across the network. This is problematic in the scenario when a number

of competitors are in the ledger working as a node. For example, if vendor A has some contract

with Operator A’ and doesn’t want to disclose their contractual conditions to operator B and

vendor B’. Techniques such as Hyperledger Fabric’s Channels [77] allow PDL users to create

private channels of communication within a ledger network.

3.5.5 Data Inputs

Data in smart contracts are entered automatically, which means that it is injected through either

another smart contract or an external oracle. The whole process is automated, in the sense that

there is no way to pick up if the internal or external sources are entering the wrong data in

the smart contracts. Transport layer protocols such as TLS will not work in this case because

the problem is not limited to transportation. In oracles, for instance, data is collected from

several sources (e.g. weather feeds) and if those sources are malicious they it will be difficult

to identify the problem.

Secure data feed proposals such as Town Crier [78] can be used but the limitations and

requirements of these mechanisms should be considered. Another option is an internal oracle

service as proposed in [23], whereby the service is managed and maintained by the distributed

ledger network and overseen by the governance.

3.5.6 Interoperability

An SLA generally involves two or more organisations, for instance, vendor A and operator

A’. If two organisations operate different ledger types, then it follows that the challenge of

interoperability exists between these two types of ledgers. Typically, distributed ledgers vary in

several ways, such as consensus algorithms and access control mechanisms, and interoperability

between them have additional challenges such as synchronisation latency and accurate and

timely translation of parameters.
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Strategies such as Notary schemes, Relay schemes or Hash-locking [79] are discussed in the

literature and can be adapted to enable interoperability between distributed ledgers. However,

the network designers should be careful to guarantee that both the ledgers get synchronised in a

timely manner so that SLA integrity and enforcement is not affected.

3.5.7 Security

Security is of paramount importance for SLAs; if an SLA is tampered with or executed with

inaccurate data, it can cause monetary losses such as payment to illegitimate parties. Particular

care must be taken when SLAs are coded as smart contracts because smart contracts are

vulnerable to several security problems such as their inherent properties (see Section 3.5.4) and

hardware security challenges. Hardware or physical layer attacks, for instance, Man-in-the-Middle

Attack, can be protected by holding the device owner accountable for any wrongdoings. The

governance of the ledger can schedule periodic security audits of the nodes to ensure that the

device is secure and not being tampered with.

3.6 Future Directions & Challenges

3.6.1 Open and Distributed Networks

Future networks of 6G and beyond, will be more open and agile. This means that i) network

functions will be more plug-and-play, thanks to the open interfaces; and ii) players will be able

to join the network or leave the network without any cumbersome process. SLA through smart

contracts can facilitate automation in the process. For example, a customer joining the network

will be registered automatically through the execution of a smart contract. The main challenge

would be that devices (acting as nodes in a PDL environment) will be more agile, that they will

often be joining the network and leaving the network simultaneously.

Typically, distributed ledgers require consensus to approve/reject the transaction, and this

means that if the consensus is not achieved (e.g., because there are not enough nodes active in

the network to validate the transaction), the PDL will not converge towards a consensus and the
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transaction will be rejected. The second problem is that if the majority of the nodes collude

against the newly joined nodes and reject their transactions, the system will never be impartial,

and honest nodes will be penalised.

A potential solution is to design an appropriate consensus mechanism for the PDL and a

strong governance model with a government body (e.g. Ofcom) overseeing the whole system.

The Governance’s authority can enforce strategies to ensure a threshold number of nodes stay in

the system. They can also take compliance actions the misbehaving nodes such as blacklisting

the colluding nodes.

3.6.2 Integration of Non-Public (Private) and Public Network

Private 5G networks, i.e., non-public networks, are getting attention. By providing authority

over wireless coverage and capacity, private 5G network market ensures guaranteed and secured

connectivity, while supporting a wide range of applications, ranging from push-to- talk group

communications and real-time video delivery to wireless control and automation in industrial

environments. This has motivated to a wide variety of industry verticals (e.g. militaries,

utilities, public safety agencies, manufacturers) to start making sizeable investments in private

5G networks.

Though early roll-out of private 5G services will be based on Standalone Non-Public

Networks (SNPN), scenarios in the mid term will be built on Public Network Integrated

Non-Public Networks (PNI-NPNs). In this modality, the private 5G network is provisioned

with the support of public network (PLMN) resources. The role of PLMN here is to provide

service continuity for those cases where the user moves out of private network coverage. For

example, a hospital has network connectivity through non-public network, and an automated

ambulance is dispatched to collect the patients from an accident site. The ambulance is likely

to move beyond the coverage of the non-public network and will enter to the public network

managed coverage. In such a situation, the QoS will be affected, taking into account that

non-public networks typically are designed to provide better network guarantees than public

networks. For this hybrid (private-public) model, it is needed to formulate the SLA as a
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weighted composition of NPN’s SLA and PLMN’s SLA, with PLMN’s SLA set based on

negotiation between the mobile network operator and the hospital.

In future networks of 6G and beyond, integration and interoperability between private and

public networks will happen at a much wider scale, connecting together networks of different

nature and scale, thereby realizing the so-called network of networks. In these scenarios, SLAs

will be defined as a composition of a number of fine-grained, context-aware SLAs, with many

more variants that shall be managed appropriately.

3.7 Summary

This work highlights the requirements of the SLAs for future 6G networks. Based on the

identified requirements, we argued that smart contracts are the key to future SLAs. They

pose the essential properties for future SLAs, and on this notion, we proposed a modularised,

PDL-enabled SLA architecture for future networks of 6G. Like every technology, distributed

ledgers have limitations, which may hinder their adoption as SLAs. We discussed these

limitations in detail and argued that these limitations could be managed and mitigated through

comprehensive planning and standardization. We believe this work will mark a new era of

SLAs which are trustable by all the stakeholders.



CHAPTER 4

ACCOUNTABLE AND TRANSPARENT RESOURCE ALLOCATION

WITH DISTRIBUTED LEDGERS

4.1 Overview

With the emergence of high-speed data networks, the demand for network connections has

increased exponentially. With the number of IoT devices is expected to reach 30.9 billion [80]

and autonomous vehicles will rise to 20 million by 2025 [81], we have witnessed an increase in

both volume and diversity in network applications. Very soon, such technological advancements

will open doors for new applications and will be beneficial for life-saving procedures such as

remote surgery [82].

However, this surge in demand will also bring several new challenges for Mobile Service

Providers such as efficient resource allocation to accommodate a large number of devices. In

this chapter, we address two key obstacles operators will face in the near future with respect

to application layer. Firstly, with current network resource allocations methods, it is difficult

to cope up with the inflated and diverse network connection demand. That is, as mentioned

earlier, the number of diverse network devices also has diverse network requirements, hence

they require tailor-made network connection rather than traditional one-size-fits-all.

Secondly, to enable the “killer applications” of 5G and beyond, such as remote surgery,

the service quality will required to be guaranteed and accountable, that is, when the service

level agreement is agreed, it must be honoured. Note that we don’t advocate a fast and
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Universally-Guaranteed-Service connection, but a connection with service quality agreed in the

SLA. For example, if a customer has purchased a 500 Mbps connection, throughout the network

connection and regardless of temporal and spatial variations service quality in accordance

with the agreed SLA, it must be sustained. Prior research has shown that, yet the quality of

service drops as the number of connections increase [83]. Therefore, coping up with the surge

in connection demand while keeping the agreed service quality would be a major challenge for

operators.

To this end, we argue that traditional service contracts where services are assigned weeks,

probably months in advance and for longer duration (e.g., In 2017, 50% of service contracts

in the UK were 24 months long and only 5% was up to 6 months [84]) are no longer feasible.

Instead, in this work, we advocate short-term and flexible service contracts with regards to

the spatial and temporal characteristics of the network. That is, customers should get network

services as per their requirement and operators should offer the services if and only if they have

resources (i.e., capacity) available to meet the SLA.

Indeed, our proposal is both practical and advantageous for customers and operators alike.

Customers will have the liberty to choose network services as per their requirements. For

operators, the advantage is two-fold, firstly and clearly, one can predict the network behaviour

in short-time better than in long-term, therefore, it is also easier to provide service guarantees

in the short-term. Secondly, operators can also manage congestion by incentivising their

customers to shift their usage to off-peak. Prior research has shown that shifting the usage to

off-peak indeed provides better value-for-money, and customers are willing to do it, if they are

incentivised [85], for example, by a reduced price for off-peak service.

However, short-term and dynamic contract would certainly see inflated demand in service

contracts. One can rightly argue that when customers have short-term contracts they will be

requesting network connections frequently. For operators, managing millions, probably billions

of devices is not trivial, they require (i.e., human and equipment) resources.

Clearly, these challenges require a transparent, automated and accountable resource provisioning

system which can cope with the future network demand and enable “killer-applications” for

5G and beyond (e.g., remote surgery). To this end, we exploit inherent properties of DLT and
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propose Just-In-Time Resource Allocation (JITRA) – an accountable resource provisioning

system architecture in which resources can be requested and assigned dynamically with the

notice of minutes [15][16]. We refer our model as Just-in-Time as the term is used in the

literature for dynamic and on-demand resource provisioning in the context of cloudlets [86]

and virtual machines [87].

JITRA is a collaborative system in which all the participating operators are part of the same

PDL network. Collaboration is indeed beneficial to increase the revenue [88] even when the

competitors are involved (e.g. , operators) [89]. In JITRA, operators advertise their available

service contracts on a web portal (i.e., A Distributed Application (DApp)). These service

contracts are backed by corresponding smart contracts. Smart contracts are software codes,

installed on PDLs and inherit PDL properties such as transparency and immutability.

Customers can choose their suitable network service contract request for the services

dynamically. With the service request, the resources are allocated for the customer and the

service is initiated. In JITRA, this feature is particularly important, a customer can purchase a

service contract within minutes and with only a transaction request sent to the ledger. Moreover,

in case of SLA violation, for example, if the promised Quality of Service (QoS) is not achieved,

the penalties clauses will be executed and the affected party will be paid automatically.

In the last chapter, we defined the requirements of future generation service level agreements

and introduced a DLT-enabled SLA architecture. The proposed architecture can be enabled in

a range of telco applications, including dynamic network resource reservation, which will be

further investigated in this and the forthcoming chapters.

Based on our work in [15, 16, 18], in this chapter, we explore service provisioning

with distributed ledgers and advocate that short-term and dynamic service contracts are, in

fact, a win-win situation. That is, they are beneficial for the operator and customer alike.

Firstly, to justify our argument of dynamic and short-term contracts, we analyse and study

the requirements of current network applications in Section 4.3. Based on our motivation, we

propose an end-to-end resource provisioning architecture: JITRA – Just-in-Time Resource

Allocation in Section 4.4. In the end, we evaluate JITRA and measure its viability in detail in

Section 4.5. We summarise this chapter in Section 4.6.
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4.2 Related Work

This work has two major components, 1) Dynamic resource provisioning and 2) Distributed

Ledger Technology. In this section we outline the work close to our research.

4.2.1 Dynamic Resource Provisioning

Dynamic Resource Provisioning can be described as “resources are allocated to customers

on-demand” through techniques such as virtualisation. We studied Dynamic Resource Provisioning

in the context of network slicing. Network Slicing [42] is a key component of contemporary 5G

and beyond mobile architectures and network slices are formed by creating logical networks on

top of a shared infrastructure through virtual Network Functions (vNF) [90]. A large amount

of work has been done in proposing network slicing solutions, including surveys on challenges

and future directions [38, 42]. Dynamic, automated, and on-demand resource allocation in

network slicing is discussed by [35] using signal-based methods and introduces a centralised

entity called the Network Slice Broker which looks after operations such as resource assignment

and admission control. Network slicing policy enforcement between different Mobile Virtual

Network Operators (MVNOs) and mechanisms to minimise interference between them is

discussed in [91].

Sciancalepore [92] also proposes a reinforcement learning-Based 5G Network Slice Broker

which uses admission control based on traffic prediction to ensure SLA fulfilment in network

slices. This can be adapted to our admission control mechanism. To our knowledge, this line of

work does not discuss accountability and monitoring of delivered service in real time, which is

our contribution.

Using network switches for chaining NFs and optimally forming service function chains,

to avoid conflicts and minimise the cost of network policy, is discussed by [93], but they

also, don’t address the significant issue of ensuring accountability. Performance Contracts, a

library to predict the performance of NFs, are introduced in [94]. [95] has proposed a heuristic

algorithm to solve the problem of delay guarantees in real-time systems.
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4.2.2 Distributed Ledger Technology

There are several flavours of distributed ledgers. The two primary categories are Permissionless

ledgers (e.g., Bitcoin and Ethereum [96]) and Permissioned ledgers (e.g., Hyperledger Fabric [31]

and R3 Corda [32]). The choice of DLT is dependent on application requirements and resources

available; the demands and constraints of using DLT are discussed in [30].

Slice orchestration in 5G through blockchains is proposed by [97], but their work is limited

to conceptualising blockchain for slice creation, which is a modification of [35]. Our work

expands beyond that to support mission-critical applications.

A DLT focused Blockchain-based Network Slice Broker, that is, a service broker that

can act as a mediator between the slice provider and the customer using smart contracts and

distributed ledgers is presented by [10], but this work is solely focused on the creation of smart

contracts from network slice templates. Blockchain Slice Leasing Ledger, a blockchain focused

assignment architecture for reducing network slice creation time is presented in [97]. The

work closest to our approach is [11], in which authors advocate the use of DLT for Network

slices sharing among the Mobile Network Operators (MNOs) and Mobile Virtual Network

Operators (MVNOs). Like us, this work also advocates admission control; however, they are

focused towards the usage of DLT in the context of operators bidding for network slices through

DLT. None of the work mentioned above exploit the inherent properties of smart contracts

for accountability, nor do they ensure continuous monitoring. The concept of Distributed

Application (DApp) is discussed by [98] but this work is focused on components of a DApp

only.

4.3 Motivation

In our proposal, we advocate dynamic, short-term and flexible service contracts. That is, the

customers should be able to choose service contracts as per their requirements and for a specific

duration. Similarly, the operator should advertise the service contracts as per their available

capacity. That is to say, their available network resources and ability to fulfil the agreed SLA.
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Indeed, it is an ambitious proposal and requires a strong justification. In this section, we

justify our arguments with data from previous studies.

4.3.1 User Requirement is Neither Continuous Nor Uniform

We argue that every user has a unique data requirement and customers do not always require an

uninterrupted network connection. For example, a smart meter typically will need connectivity

only when it will send the readings to the service provider. In another example, during a remote

surgery, a surgeon would require continuous and guaranteed network connectivity. Clearly,

in both cases, the network requirements are orthogonal. Previous researchers studying users’

online behaviour have shown that users’ data usage depends on the day (i.e., weekend and

weekday) and the time (e.g., morning and evening) [99]. Therefore, to utilise the spectrum

efficiently, operators need to identify users’ demands and allocate resources accordingly.

As a use case, we analysed the data from [12] to understand the behaviour of IoT devices.

The results are presented in Figure (4.1). Note that devices D1, D2 and D4 are utilising the

spectrum well, which means they are sending data continuously and in a regular and predictable

way. Yet, some of the devices (e.g., D3 and D5) are sending data periodically, consequently,

underutilising the network. During the intervals when such devices don’t send any data, the

reserved network resources are wasted. But, when many of such devices send data suddenly, the

network can become congested. In future, when millions, probably billions of such devices will

send data together and abruptly, the network will become congested and none of the devices

will be able to acquire the resources.

To this end, short-term and flexible service contracts allow the customers to request service

contracts only when they require them. For example, for remote surgery, a surgeon can acquire

a network service contract for the duration of the surgery only. It is equally beneficial for

operators because they can sell the peak-time contracts at a higher price and under-utilised

resources (e.g., network slice ) at a bargain price.

In this work, we advocate short term and flexible service provisioning. Our proposal is

agnostic to network layer of resource reservation protocols such as RSVP.
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4.3.2 Spatial and Temporal Characteristics of Service Providers (i.e.,

Network Operators)

We strongly argue that, it is neither required nor feasible for operators to provide guaranteed

QoS universally. We argue on this for two reasons, firstly, congestion in a particular area might

be more than other areas. That is, in some areas, operators may have more demand than others.

Secondly, every operator has a different coverage demand and policy. Due to many potential

reasons such as legal and logistics, it is not feasible for some operators to provide connection

in some regions. For instance, switching off a base station due to low demand.

To study the operators’ coverage and service quality, we analysed data from [13] and

compared the (Round Trip Time) RTT of the UK’s four major operators during a day. In

Figure 4.2, we refer RTT as the performance metric for the operators.

We note high variance in the performance of all the operators’ except Op2. However, lower

variance does not guarantee the universally good performance. The reason is, as we see that in

Figure 4.2, despite the fact that Op2 has lowest variance, it has the highest minimum value (i.e.,

36.21 ms) among all the operators. Therefore, in a particular region if a customer requires a

low-latency connection, Op2 may not be the best operator for them and some other operator

(e.g., Op1 in this case with minimum value of 30 ms) may be offering better service there.

Secondly, we investigate operators’ temporal characteristics using the same data. In

Figure 4.3, we show the operators’ performance at discretised time intervals. We divided the

day’s data into 15 minutes consecutive intervals (i.e. t1 - t20). By these consecutive intervals,

we can estimate the operator’s performance in a long time.
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Fig. 4.1 Data pattern for five different IoT devices. Note that, some devices (e.g., D5) send
data periodically and in bursts while D1 and D2 send data continuously and better utilise the
spectrum.
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Fig. 4.2 Round Trip Time (RTT) at base stations of the UK’s four major mobile service
providers - data is logged and capped at 1000 ms to improve readability. The minimum value
for Op1, Op2, Op3 and Op4 is 20 ms, 36.21 ms, 31.71 ms and 32.07 ms, respectively. The
maximum values for Op1, Op2, Op3 and Op4 are 2077.64 ms, 89.17 ms, 100,000 ms and
572.07 ms, respectively. Note that all of the operators except Op2 have a higher variance in
their performance. Yet, in some particular areas, some operators indeed perform better than
others. For example, despite Op3’s highest max value (i.e., 100,000 ms), its minimum value is
the second lowest (i.e., 31.71ms).
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Note that operators’ performance (i.e., RTT) is varied across all the intervals. Some of the

operators perform well in some intervals, while some in others. For example, Op3 has poor

performance in some intervals but it does perform better than any other operator (e.g., t10 and

t14). This means, Op3 can be chosen in areas and times when it is performing well, regardless

of its performance in other times and areas.

On this note, we remark that operators’ performance is not steady during the day and time.

That is, temporal and spatial constraints impact the performance of the network. To this end,

short-term and dynamic contracts allow the operators to commit to an SLA for a shorter and

practically predictable period. We also infer, customers do not always require an uninterrupted

network connection. That is, most of the applications for today’s internet are non-urgent. For

example, 92.3% [100] of adults in the US used the internet for text messaging. In such cases,

short-term and flexible contracts are beneficial for customers equally.

In the next section, we present our system architecture that allows the operators to allocate

resources automatically on short notice enabling short-term and flexible service contracts.

4.4 System Architecture

Our goal is to set up a guaranteed Service Level Agreement just-in-time between an operator

and customer. This is done by executing a smart contract and recording the agreement in an

appropriate Distributed Ledger Technology (DLT).

Our system is built atop a specific type of DLT, Permissioned Distributed Ledger (PDL),

maintained by a consortium of operators and regulatory authorities. We envision a DLT focused

marketplace where operators can advertise their available services, backed by smart contracts

deployed on a PDL.

We note that even in a PDL, the state updates are still agreed upon through a distributed

consensus algorithm, so the members need not trust each other and may still compete with each

other [30]. However, PDLs are still susceptible to majority attacks wherein the majority of

parties (often 50%+1 or 33%+1 depending on the consensus algorithm employed) can collude

to influence the ledger. Therefore, a set of chosen regulatory authorities (e.g., FCC in the US,
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or Ofcom in the UK) are employed to provide oversight through consensus level access. The

participants of the PDL are discussed below: Three different type of participants interact with

this system:

Customers require network services and request for contracts. Customers only have read

access to the PDL, that is, they do not take part in the consensus protocol to maintain

it, but they can still affect the state of the PDL by submitting smart contract execution

transactions, which may then lead to the recording of new SLAs.

Service Operators advertise their services on a portal and allocate services to the

customers upon request. They act as validator nodes, i.e., are responsible for updating

the ledger by executing transactions received by both operators and customers. They

have read/write access to the ledger, and are in charge of creating and deploying new

service contracts. We assume the network operators to be competing with each other, so

their cooperation on the PDL management is achieved algorithmically, by them taking

part in a distributed consensus protocol; there is no trust required between them.

Authorities are introduced as trustworthy entities on the consensus layer of the PDL. By

taking part in the distributed consensus protocol, they can detect anomalous or fraudulent

behaviour from the operators and cartel forming among operator coalitions. Note that

regulatory authorities are not in charge of managing the system. Instead, they only act as

“fall back” watcher nodes in case of disputes or misbehaviour. As such, they are not a

Trusted-Third Party (TTP), and control still resides with operators.

4.4.1 JITRA Components

In this section, we discuss two key components of JITRA: 1) Just-in-Time Controller – allocates

resources at the network layer and 2) Distributed Application (DApp) – where the available

resources are advertised by the service operators.



4.4 System Architecture 59

4.4.1.1 Just-in-Time Controller

The Just-in-Time Controller is the resource manager and allocator at the network layer. The

Controller maintains an internal database, which keeps track of the available resources and

network functions (NFs), and their respective path metrics, which will be needed to honour

a particular SLA. With every incoming service request, the controller consults the database

and stitches an end-to-end network slice from available resources that can satisfy the requested

SLA. If such a slice cannot be created, this is communicated back to the PDL, nullifying the

smart contract. Once the slice creation is confirmed with the smart contract, the resources

and network functions used are marked as “reserved” or “in-use” within the database for the

duration of the contract.

Fig. 4.4 JIT-Controller allocates resources through consultation with an internal database

4.4.1.2 Distributed Application (DApp)

The available resources are advertised on a Distributed Application (DApp), see Figure 4.5.

This application can be installed as a mobile or desktop application and will run a discovery

service every specified time interval to maintain an updated log of available operators in the

vicinity along with their offered contracts and corresponding service quality. Service providers
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advertise their service contracts, and the customers purchase them through this DApp. When

a user wants to buy a service contract, the DApp will list all the available contracts from the

operators as per user’s preference. When a customer chooses a contract and pays for it, the

DApp sends the payment to the contract escrow, where it is kept until the contract is completed,

and notifies the operator to start the services.

Fig. 4.5 Architecture of the proposed Distributed Application (DApp) - It is run on users’ device
and acts as gateway to pull/push data from/to the PDL. JIT-Controller (Figure 4.4) performs
network level resource allocation.

4.4.2 JITRA Overall Architecture

The sequence of actions required to set up connectivity is depicted in Figure 4.6:

1. Contracts are advertised on a public portal accessible through the DApp, so that a

customer can select one as per their requirements. Customers are required to approve an

appropriate payment with the contract request. These funds will be held in escrow, to be

paid to the operator upon successful delivery of service.

2. Once the customer requests a service, the DApp sends an activation request, signed

by the customer, to the corresponding smart contract residing in the PDL. Note that
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Fig. 4.6 Just-in-Time Resource Allocation - Architecture

on top of any payment to the operator if the smart contract executes successfully, the

customer incurs a cost simply to execute it (to prevent denial of capability attacks, where

a malicious customer requests services and makes an operator reserve network resources

without any intention of using and paying for the services).

3. The smart contract is executed, first checking with the operator whether there are available

resources that can be reserved in order to provide the requested quality of service.

Depending on the jurisdiction and the nature of the contract, regulators may also need to

be informed about the potential service contract being agreed upon.

4. Once the operator confirms that it is able to deliver the service (and if needed, regulatory

approval is obtained), appropriate resource reservations are made on operator hardware

such as base stations. Then, the initial state is setup to monitor the network connection

during run time.

5. At this point, everything is setup, and the operator provides the requested service. Details

of the service provided are recorded in a dedicated state channel established between

customer and operator.
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(a)

(b)

Fig. 4.7 a) Simulation Topology b) Goodput achieved by 1) Without Admission Control (AC)
and 2) Just-in-Time (JIT) with Admission Control (AC)

6. At the end of service, the operator provides proof from the state channel that the agreed

upon service has been delivered, and claims the service payment locked in escrow by the

contract.

4.5 Evaluation

4.5.1 Resource Reservation Simulation

We evaluate the viability of our proposal on top of a topology (Figure 4.7(a)) that emulates in

Mininet a simplified version of the topology of a major mobile operator in the UK. Similar

topology is discussed in [101]. To send instructions to the Mininet-emulated switches we
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built a Just-in-Time Controller (Figure 4.4) atop Ryu Controller [102], which works in

collaboration with a SQLlite database. The Ryu Controller is a Software Defined Networking

(SDN) framework, which allows monitoring and commanding network switches. The database

keeps a record of the path assignment and available capacity of the network and updates the

controller on-demand.

The incoming traffic in both the approaches is divided into three service types: two queues

are prioritised by 20 and 10 Mb/s minimum bandwidth, and the rest of the traffic is directed

towards a standard queue, that is “Best-effort” without any minimum service level requirement.

We present our results in Figure 4.7(b). This clearly shows that without admission control, all

classes of traffic start to contend with each other, and goodput suffers as a result. All three

classes achieve only about 6 Mb/s, regardless of whether they asked for 20 Mb/s, 10 Mb/s or

Best Effort (different best effort flows achieve different goodput, as shown by the box plot,

but the median throughput remains close to 6 Mb/s). In contrast, with JITRA and admission

control that does not admit new customers when resources cannot be reserved, the service types

which request 20 and 10 Mb/s obtain close to their requested goodput. This clearly establishes

the expected result that just creating a network slice is not sufficient, and admission control and

careful resource reservation are required to ensure a given service level requirement is met.

However, setting up a network slice and reserving resources comes with an overhead.

We measured the time taken to setup and reserve resources over 350 service contracts with

varying background service load. Both the mean and median are below ≈ 5 minutes. Thus

“just in time” resource reservation and network slice set up can happen on the order of a few

minutes. Practically, slice-setup can be avoided operators follow a “Blue-print” approach,

by grouping similar resource requests together and assigning them to a pre-configured set of

network functions.
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4.5.2 Distributed Ledger Comparison

As our study is focused on Resource Allocation of Network Resources using Smart Contracts, it

is essential to measure the overheads incurred by the employed PDL and smart contracts. The

rationale behind adopting a PDL over a permissionless approach is explained in Section 4.4.

However, to measure the practical impact, we deployed 200 service contracts on two different

permissioned ledgers (i.e. Quorum [103] and Hyperledger Fabric [31]) and a permissionless

ledger (i.e. the public Ethereum Ropsten testnet).

The example service contracts are executed on two local nodes of Hyperledger Fabric (Version

1.3.0) through a Hyperledger Burrow [104] running on a Ubuntu 64-bit, 16.04.7 virtual machine

with 4.096 GB of RAM, and a 2.3 GHz Dual-Core Intel Core i5 processor. For Quorum we

used an identical virtual machine as Hyperledger Fabric and installed two Quorum nodes with

RAFT [105] consensus.

Overall, Quorum’s Raft protocol is a leadership model, in which a single leader is elected

to manage the replication of transactions to other nodes and is ideal for closed groups of

nodes where fast block creation is required, ideally at the granularity of milliseconds [105]. In

Hyperledger Fabric transactions are sent to endorsers first (in our case we have two endorsers)

who endorse the transactions as per the endorsing policy of the ledger. Once the transactions

are endorsed, they are sent to orderers (one orderer in our experimental setup), who use Apache

Kafka to reach a consensus [106].

This difference in the speed of the two consensus algorithms is reflected in our analysis,

in which Quorum outperforms Hyperledger Fabric on average. The mean execution time

for Hyperledger Fabric is ≈ 91 ms which is a bit higher than Quorum’s that is ≈ 68 ms.

However, the standard deviation is ≈ 16 ms and ≈ 24 ms for Hyperledger Fabric and Quorum,

respectively. That is, although Quorum has lower execution times than Hyperledger Fabric,

the standard deviation is higher, meaning that more diversified execution times should be

expected with Quorum. This is also visible from Figure 4.8(b), where Quorum is slower than

Hyperledger Fabric in the worst case. This indicates that Hyperledger Fabric could be a more
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(a) Permissionless Ledger

(b) Permissioned Ledgers

Fig. 4.8 Distributed Ledger comparison of execution latency in a) Permissionless ledger, that
is Ethereum Ropsten Testnet and b) Permissioned ledgers, that are, Hyperledger Fabric and
Quorum. Note that, permissionless ledgers have high execution latency than permissioned
ledgers. Furthermore, within permissioned ledgers, Quorum outperforms Hyperledger Fabric
due to Quorum’s leadership consensus.

desirable alternative in application scenarios where the consistency of performances is more

desirable than speed.
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To measure the behaviour of smart contracts in a permissionless ledger, we deployed another

200 contracts on Ropsten through a node with an Intel Xeon CPU E5-2660 (2.60 GHz with 20

cores) and 94 GB RAM. The analysis shows that it took an average of ≈ 49.3 sec to execute

the same contracts on the Ropsten testnet with a standard deviation of ≈ 35 sec.

The difference between contracts execution times measured on permissioned and permissionless

ledgers is an entire order of magnitude, confirming the performance advantages of permissioned

ledgers. Another factor, however, is that the permissionless experiment was conducted on

a possibly congested public testnet, while both permissioned experiments were set up on

dedicated private testnets.

4.6 Summary

In this work, we advocate short-term and dynamic service contracts and presented JITRA –

DLT-focused end-to-end architecture for dynamic and accountable network service provisioning.

We believe guaranteed service quality is achievable through customised and tailor-made network

services rather than traditional one-size-fits-all. To this end, we propose to install service

contracts (i.e., SLAs) in a permissioned PDL as smart contracts enabling transparency and

accountability in the system.

We evaluated two main components of JITRA: firstly, resource provisioning – our results

show that it takes on the order of minutes to set up a network slice and make hard resource

reservations. Secondly, the overheads incurred due to smart contracts both in permissioned

and permissionless settings – our results show that permissioned ledger indeed outperforms

permissionless ledgers.

This study embarks in a new era of network service provisioning, where accountability is

of prime importance. In the next chapter, we will discuss the monitoring challenges of service

provisioning with DLT and propose a monitoring algorithm for JITRA.



CHAPTER 5

MONITORING PROTOCOL FOR JUST-IN-TIME

RESOURCE ALLOCATION (JITRA)

5.1 Overview

Throughout this thesis, we have advocated, accountability in service provisioning and sharing as

an essential feature for future networks. In the previous chapter, we proposed JITRA (Just-in-Time

Resource Allocation) with Distributed Ledgers, where the customer and service provider report

their service metrics through the devices controlled by them. This implies that there may

be a dispute over whether the service was rendered at an adequate level; consequently, the

connection needs to be monitored, and records need to be maintained about which packets

were delivered and at what time. Doing this at the so-called “line rates” (maximum possible

data rates) of today’s communication networks is problematic because, firstly, it is not feasible

for the customer and operator to send the packet receipt due to network and distributed ledger

bandwidth limitations. Secondly, distributed ledgers suffer from scalability problems which

means that recording too many receipts will lead to a congested ledger. This chapter is based

on our work in [15, 17, 18]. In this chapter, we propose a work-around: state-channel based

monitoring protocol for JITRA [17]. Firstly, we discuss the monitoring tools used in the

protocol in Section 5.2. Then, the protocol is presented in Section 5.3 and evaluation of the

protocol is performed in Section 5.4. Considerations of the proposed monitoring protocol are

discussed in Section 5.5. The chapter is summarised in Section 5.6.
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The viability of new mission-critical networked applications such as connected cars or

remote surgery is heavily dependent on the availability of truly customized network services at

a Quality of Service (QoS) level that both the network operator and the customer can agree on.

This is difficult to achieve in today’s mainly “best effort” Internet. Even if a level of service

were to be agreed upon between a consumer and an operator, it is important for both parties to

be able to scalably and impartially monitor the quality of service delivered in order to enforce

the service level agreement (SLA).

A key goal of JITRA is to allow the customer and operator to agree on a given level

of service at set up time, and then to monitor and enforce the quality of the service (QoS)

delivered by the operator. As such, it is required to have a mechanism to clearly flag SLA

infringements by both parties: operators failing to provide the promised QoS, and customers

falsely claiming that a worse-than-agreed service level was delivered. We say that our QoS

monitoring is accountable if and only if both customer and operator can independently provide

a trustworthy (i.e., cryptographically unforgeable) certificate showing the correct QoS history

of the service provided so far in case of no dispute, and neither customer nor operator can

provide a trustworthy certificate showing a false QoS in case of a dispute.

To that end, in this chapter we propose the monitoring protocol for JITRA. The protocol is

based on dividing the entire service provision period into discrete epochs. During each epoch,

a given number of packets are sent by the operator towards the customer (or vice versa). Both

parties can also exchange acknowledgements and other utility messages in both directions. For

the sake of simplicity, we consider an SLA in this scenario as the actual set of packets that

the customer and operator both agree has been sent to the customer by the operator (or vice

versa). Note that this construct can capture or approximate common service level indicators.

For example, from the actual set of packets, one can compute the number of packets exchanged

during a given epoch, from which the achieved throughput can be calculated. By using special

‘timer’ packets to delineate small periods into different epochs, latency can be approximated.

Despite the best-effort service of today’s Internet, there have been several calls for accountability.

Andersen et al. [65] uses accountability in the sense of understanding who is responsible for a

given packet. Argyryaki [107, 66] studied the feasibility of per-packet accountability, as well as
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providing an understanding of packet loss. Such techniques can be used for better monitoring

in our architecture. A decentralised, hierarchical approach for Virtualised Authentication,

Authorization and Accounting (V-AAA) in 5G is proposed by Wong [108]. However, V-AAA

is limited to authorization and authentication of subscribers and tenants of a network rather

than SLA monitoring. Operators measure QoS of their network using receipts generated by

sample packets. Some operators may give sampled packets a preferential treatment, and a

packet sampling algorithm to prevent such "prioritization attacks" is proposed by[109]. Further

work in path quality monitoring is carried out by [110] and verifiable network performance is

discussed in Network Confession [111].

5.2 Monitoring Tools

To enable accountability and QoS monitoring in JITRA each party keeps an independent record

of the packets by maintaining a cryptographic accumulator [112] that compresses an arbitrary

number of packet receipts into a single fixed length value. We then use a state channel-based

design for both parties to quickly and scalably agree and sign off on the data that was delivered

in each epoch, making it possible to monitor and enforce at run time the agreed upon QoS

levels. In this Section, we discuss these two main monitoring tools used for the protocol: 1)

Cryptographic accumulation techniques and 2) State-Channel based monitoring.

5.2.1 Cryptographic Accumulation Techniques

We require the accumulator to be cryptographically secure to avoid participants from falsely

claiming that an element is contained (or not contained) in the accumulator. Note that an

accumulator allows to the verification of whether or not an element is contained in it without

the need to trust the accumulator creator, with the drawback being that we cannot efficiently

list all the elements contained in it [112]. In this Section, we compare three different one-way1

accumulation techniques: RSA-Accumulator [113, 114], Secure Bloom Filters [115] and

Sketches [116] to identify the right tools for the protocol:

1In a one-way technique, only the membership of an item can be verified and original item cannot be recovered
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5.2.1.1 RSA-Accumulators

RSA accumulators or one-way accumulators were first presented in the seminal work of

Benaloh and De Mare [113]. Indeed, several flavours and improvements of RSA-accumulators

have been proposed by the research community such as [117–119]. RSA accumulators are

based on RSA-cryptography and breaking the accumulator’s properties is as difficult as breaking

the RSA cryptographic assumption. In a simplest scenario, item are added to the accumulator

as per Equation 5.1. For elements at a source S = {e1,e2, ...,en}, each element e is represented

by k bits; the source computes the representative of each element ei, denoted by xi, which is a

chosen prime. S also chooses a base a that is relatively prime to N = p∗q [120]. The source

can calculate the RSA accumulation by:

A = ax1,x2,...,xn (mod N) (5.1)

To ensure the security of the accumulators it is important that p and q are sufficiently large and

safe primes numbers of equal size. N is at least 23k [120] and a prime p is safe if p−1
2 is also a

prime number [114]. Since, calculating a prime number is a computation intensive task, it is

typically computationally expensive to calculate the resultant accumulator value.

Detailed performance assessments and further details on RSA-accumulators can be found

in [114, 121, 120].

5.2.1.2 Secure Bloom Filters

Secure Bloom Filters (SBFs) are compact data structures. In SBFs, elements are stored in a

single-dimensional array (i.e., a bitarray) which only provides the membership proof. The

elements are hashed and corresponding bits get set in the bitarray. However, since SBF store

all the elements in one array, there is a possibility of overlapping bits, i.e., false positives. Of

course, false positives can be reduced by increasing the number of hash functions, namely, by

calculating different hashes of a same element and set different bits. This, however, comes with

increased costs, for example, a larger SBF size. To estimate the size of SBF required for 1Gbps
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connection, we investigated the standard equation (Equation 5.2) for SBF defined in [115] and

list our calculations in Table 5.1.

k = (m/n) ln2 (5.2)

Here, m is the number of bits of the array, n is the number elements expected to be stored in the

Bloom Filter, optimal number of hash functions k. The size of bitarray (SBF) m is dependent

on the tolerable probability of false positives, that is, to reduce the probability of false positives

the array size needs to be increased. Further details may be found in [115].

5.2.1.3 Sketches

The final algorithm we explore for this study is the sketches. As discussed earlier, Secure

Bloom Filters are suitable for membership proof, that is, to determine if an item is present or not

in the list. However, it is not always required to find the membership of an item, and a counter

of occurrences will be enough to make inferences. Sketches [116] are multi-dimensional data

structures that maintain a counter for each element rather than storing the item itself.

Sketch, at first, looks similar to secure Bloom Filters, as it uses an array and a set of hash

functions, but they have significant differences in detail [116]. In sketches, each hash function

corresponds to an array of counters, and, the number of hash functions corresponds to the

number of rows. Therefore, they are two-dimensional, contrary to Seccure Bloom Filters that

maintain a single array for all the elements and hash functions set in the same array.

Recall that our goal in JITRA is to measure the QoS rendered. With sketches, every

incoming packet can increment the counter and provide the number of packets received/sent.

Therefore, sketches can be a workable candidate for our study.
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5.2.2 State-Channel Based Monitoring

For efficiency reasons, we also propose to employ a state channel [122] for each service

agreement. Conceptually a state channel in a DLT is a private channel between two entities

that agree on an initial commitment, on incremental updates, and, on the end, on a closure

commitment. More precisely, both parties open the channel with a set-up transaction recorded in

the DLT, which specifies the channel state (e.g., how much is initially owed to each participant

in case of payment channels) and its additional parameters (e.g., its expiration time). Once this

transaction gets accepted in the DLT, the channel can be used by the participants. To use the

channel, all participants cooperate to create a new transaction updating the state of the channel.

Once such transaction is well-formed, any participant could broadcast it to the DLT, effectively

closing the channel with the new state. All participants, however, are incentivised to keep such

transaction private. Holding the well formed transaction is a guarantee to the participants that it

can be released at any point to enforce the current state of the channel, so the current state is to

be considered as equivalent to being written in the DLT. Once all participants agree to close

the channel, or any participant misbehaves by refusing to cooperate to create an updated state

transaction, the honest participants broadcast the last valid state transaction to the DLT, closing

the state channel. The advantages of using a state channel in this manner are threefold:

Efficiency: the state update transactions are kept private between the participants, so

they are not dependent on the slow consensus times of the DLT;

Cost: as only two transactions are written in the DLT for each channel, i.e., the first

(set up) and the last (closure), the associated fees are paid only for two transactions

independently of the arbitrarily large number of private state updates;

Privacy: as all intermediate state updates are kept private, the state of the channel is only

visible to outside entities when the channel is closed, and only the final state is visible,

rather than any intermediate ones.
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Fig. 5.1 Steps for state-channel based monitoring of QoS

5.3 Monitoring Protocol

Recall that the operator and customer(s) involved commit to an SLA for a given price by

running a smart contract. The same smart contract code can set up the DLT state channel and

requisite initial state to monitor the SLA.

The initial state consists of equivalent empty accumulators on both sides, whose parameters

are decided by the service contract. Whenever the operator forwards packets to (or receives

packets from) the customer, it records the packets in its accumulator. Likewise, the customer

records in its accumulator all packets received from or forwarded to the operator. If there is a

link failure (e.g., packet lost due to radio channel interference in a wireless link, or a link flap

in fixed-line network) both parties are expected to honestly identify this and not record the lost

packet(s). Thus, the accumulator keeps track of service delivered. For example, the number of

packets added to the accumulator over a time period is a measure of bandwidth (number of

packets/time period).

Service is broken down into epochs, with a part of the total price and a customisable

level of service attached to each epoch. At the end of each epoch, both parties compare their

accumulators. If the two accumulators match, the epoch has been successful, and the state is

recorded in the state channel, and can be used for a future payment. If the accumulators do not

match, then they interrupt the service and start a dispute.
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At the end of the last epoch, if no dispute was launched, the final common accumulator

value is used to close the channel (Figure 5.1(4a)). The service contract can then terminate

compensating the parties accordingly. If there was a dispute, i.e., accumulators do not match at

the end of an epoch, the last valid channel state will be the last common accumulator value at

the end of the previous epoch (Figure 5.1(4b)). This is then broadcast by any party to the wider

DLT and the state channel is closed. Since the contract is structured with payments and service

levels for each epoch, it ensures compensation for the part of service over which there is no

dispute.

Note that because the accumulators are cryptographically secure, they can be treated

as a trustworthy representation of QoS – it becomes computationally unfeasible for either

party to add or remove a packet from their copy of the accumulator whilst still ensuring both

accumulators match. When accumulators match at the end of any epoch, it protects both

participants from false claims. For example, suppose the customer claims that they never

received a particular packet. This can be efficiently checked by querying whether the packet is

in either of the two matching accumulators. If the packet is in the accumulator, the customer’s

claim is false, as it must have been sent by the operator. If it is not in the accumulator, it was

never sent by the operator, so the operator’s claim is false. Note that such claim verification can

be performed by any third party, with no further information on the service levels.

5.4 Evaluation

The main constraining factor while the service contract is running is the overhead of maintaining

per-packet records in accumulators. To investigate this, in this section we evaluate the

performance of cryptographic accumulation techniques discussed in Section 5.2.1 and compare

and contrast their trade-offs.
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5.4.1 Comparison between Secure Bloom Filter (SBF) and RSA Accumulator

Firstly, we compare the performance of such accumulators with a more traditional RSA

accumulator. Both accumulators are evaluated in two different compute infrastructures, meant

to represent different kinds of customers. The first is a server-based customer, represented by

an Intel Xeon CPU E5-2660 (2.60 GHz with 20 cores) and 94 GB RAM. The second is a more

constrained customer (e.g., an IoT deployment), comprising a Raspberry Pi Virtual Machine

(1.5 GHz processor) with 8 GB RAM.

The primary constraint for QoS monitoring is the time required by resource limited

devices to add packets to accumulators. Hence, we compared the add operations in both

the SBF and RSA Accumulators using implementations from [123] for SBF, and [124] for

RSA Accumulators. To each accumulator, we added 64-byte packets one at a time for 1000

iterations. Note that for a given amount of data to be transferred, using small (64 byte) sized

packets lead to a larger number of packets, and therefore represents the worst case upper bound

for overheads.

(a) (b)

Fig. 5.2 Accumulator experimental evaluation for 1000 records. Cumulative Distribution
Function (CDF) of single add operation on a) Secure Bloom Filter and b) RSA Accumulator.
Note that, in a) the data is capped at 0.6 ms and in b) it is capped at 60 s to enhance readability.
The maximum value in a) is ≈ 0.09 ms and ≈ 12.05 ms for the Server and Raspberry Pi
respectively; and in b) the maximum value is ≈ 17.19 s and ≈ 261.66 s for the Server and
Raspberry Pi respectively.

We present our results in Figure 5.2(a) and 5.2(b). It can be seen that SBF is orders

of magnitude faster than RSA accumulators. In fact, SBF only adds a few milliseconds of
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additional packet processing latency whereas adding each packet to an RSA accumulator takes

several seconds, making the RSA accumulator completely infeasible for our use case. We also

note that even the SBF benefits from the superior compute power of the server, which can add

a packet to the SBF in one tenth the time it takes to add a packet in the Raspberry Pi.

5.4.2 Comparison between Secure Bloom Filter (SBF) and Sketch

Next, we explore the performance of SBF with sketches [115]. Both the sketches and SBF are

compact data structures and provide a summary of big data, for example, IP packets. However,

both of them work differently and have trade-offs [116].

In Figure 5.3(a), note that SBF are generally faster than sketches but have higher variance.

Recall that in SBF, elements are added by setting up bits to 1, but in Sketches the counter is

incremented which is an expensive operation compared to the setting up of bits. This makes

the sketches slower when compared to SBF.

The next factor we measure is the size of the data structure (Figure 5.3(b)). Note that, the

size of a data structure increases in both sketches and SBF with the increase of hash functions.

Yet, in sketches every hash function represents a row: consequently, adding a hash function

increases a row in the sketch. In SBF, however, all the hash functions correspond to the same

array therefore, the size does not increase exponentially.

In JITRA, accumulator filling time is dependent on the epoch size – the sooner the

accumulator is filled, the finer the epoch can be and the more fine-grained the QoS monitoring

would be. Recall from Section 5, we add packets to an accumulator (i.e., a data structure)

and once the accumulator is filled, the receipt is sent to the operator. In Figure 5.3(c), the

initialisation time for sketches increases exponentially for sketches and for SBF we note a

very slight increase. As s ketches are multi-dimensional, increasing the hash functions in fact

increases the number of rows. Clearly, the larger the data structure, the longer it will take to

initialise them. In case of SBF, however, all the hash functions share the same array and array

size depends on the probability of error. Therefore we note a slight increase in the initialise

time, but it is still far less than the initialisation time for sketches.
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Probability of Error Secure Bloom Filter size (bits) Hash Functions

0.0001 37441634.2 13
0.00001 46802043 17

0.000001 56162452 20
0.0000001 65522861 23

0.00000001 74883269 27
0.000000001 84243678 30

0.0000000001 93604086 33

Table 5.1 Optimum SBF size and number of hash functions with given probabilities of error

Clearly, we note a trade-off while comparing these two data structures. Indeed, SBF are

more efficient both in terms of space and performance, but they have the limitation of false

positives. On the other hand, sketches, indeed, provide a better picture of the data but they are

more costly to implement.

We remark that the accumulator choice is a key aspect of the proposal feasibility. Each

packet needs to be recorded in the accumulator, and thereby it becomes a limiting factor for

overall performance. We use Secure Bloom Filters (SBF) [125] as cryptographic accumulators

as they outperform traditional accumulators, in terms of operations speed [114] (see Section 5.4).

5.5 Considerations

Our monitoring protocol ensures that a dispute can only jeopardise the last epoch of service

provision, without invalidating the QoS measurements up to that. Moreover, the service is

halted in case of a dispute; this means that both operator and customer can only attempt to get

an unfair gain on the last epoch they are willing to receive/serve. This implies that, even if

we cannot pinpoint responsibility on a misbehaving entity, we can still mitigate the practical

effectiveness of misbehaviour in general. Service contracts can employ a decreasing neutral

penalty scheme on the length of the service, to disincentive misbehaviour. As all service is

verifiably paid as intended for all epochs except, in the worst case, the final epoch, operators

can price such risk inside their service offers in advance.
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(a) Mean Add time in SBF and Sketch

(b) Accumulator size with a given number of hash
functions

(c) Accumulator setup time with a given number of
hash functions

Fig. 5.3 Our Analysis shows that SBF outperforms Sketches in terms of add la tency, size and
setup time. It is noteworthy that this performance is achieved with the cost of error probability
in SBF. Details of error probability with number of hash functions are given in Table 5.1

The above protocol can also be strengthened depending on the use case. As an example,

Trusted Execution Environments (TEE) [126] can be employed to add the guarantee that

customers can only consume packets they admit to have received. If we have a TEE trusted by

the operator and deployed on the customer device, then the operator can encrypt each packet

before sending it to the customer. Only the TEE is capable of decrypting a packet, so the user

is forced to send all packets they want to consume to the TEE first. In this scenario it would

be the TEE to manage the accumulator on the customer side. The TEE decrypts and adds to

the accumulator all packets that it receives before sending them in clear to the customer. This

implies that consuming a packet and adding it to the accumulator are considered as a single

joint atomic operation from the customer point of view, preventing them from consuming

packets without adding them to the accumulator. Such higher level of security for the operator
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comes at a price. Encrypting and decrypting packets adds to the packet processing latency,

and the requirement to deploy and run a TEE on customer devices may hamper deployability.

This limits such examples to application scenarios where the advantages outweigh the costs.

However, it shows how it would be possible to have customisable security levels, for higher

premiums, on different service offerings depending on the application needs, on top of our

universal basic QoS monitoring protocol.

5.6 Summary

In this work, we proposed a method for automated monitoring of Quality of Service in an

ongoing connection as a foundation for accountable network services. We believe accountability

based on hard resource reservations is a key-enabler for 5G and beyond “mission-critical”

services such as remote surgery or connected cars. However, monitoring a service provisioning,

particularly in a remote device is not trivial. When customers and the service providers record

service on their own ends, disputes over the QoS provided may arise.

To enable accountable accounting, we proposed a side-channel and cryptographic accumlators

focused system to record QoS metrics. We showed how to make hard guarantees based on

resource reservations and agreed upon service levels can be monitored and enforced at run

time, with acceptable overheads, by keeping per-packet records of the data transfer using

cryptographic accumlators.

In our proposal, the participants (i.e., the service provider and the customer) establish a

side-channel as soon as they agree on a service contract. During the service provisioning,

service metrics are recorded both at the provider’s and the customer’s end in a cryptographic

accumulator. To solve the problem of dispute over the service quality provided, the receipts are

exchanged every epoch.

Our proposed monitoring protocol solves two main problems: 1) accountable QoS – because

both the parties record the metrics on their ends in cryptographically secure Bloom Filters

and 2) scalability – JITRA records service level metrics in a distributed ledger which have
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limitations such as throughtput and scalability. Using side-channels only the first and last

receipts are recorded in the ledger solving the problem of scalability.

We evaluated three different types of cryptographic accumulators for this study: RSA-Accumulators,

Secure Bloom Filters and Sketches. Our evaluation shows that Secure Bloom Filters outperform

their counterparts in terms of add latency, size and setup time.



CHAPTER 6

BEAT: BLOCKCHAIN-ENABLED ACCOUNTABLE AND

TRANSPARENT INFRASTRUCTURE SHARING IN 6G AND BEYOND

6.1 Overview

Recall from chapter 1 that this thesis asserts that accountable and transparent resource provisioning

and sharing is the key for the future networks and network capabilities. In the previous chapters,

we have demonstrated that dynamic and agile service provisioning is viable through smart

contracts and distributed ledgers. In this chapter, we advance this the same notion in the context

of network infrastructure sharing and study the viability of DLT therein. This work is based on

our works in [19, 20].

We begin by discussing related works in Section 6.2. Next, we propose BEAT – Blockchain-Enabled

Accountable and Transparent infrastructure sharing architecture in Section 6.3. To address the

limitations of BEAT we propose the Interrogation Protocol in Section 6.4. We evaluate our

work in Section 6.5 and summarise the chapter in Section 6.7.

The introduction of 5G has launched the era of low latency and high bandwidth applications;

concepts such as the Internet of Skills and Industry 4.0 provide us with both a goal and a vision

of the future of telecommunications technologies. Indeed, these applications hold the potential

to contribute substantially to the prosperity of humankind. For instance, the Internet of Skills

can allow for knowledge and expertise developed for the treatment of highly contagious viruses,

like Ebola in [127] to be applied in real-time to the treatment of today’s Covid-19 pandemic.
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Using robotics, medical staff can treat the covid patients remotely without risking their own

lives. Similarly, Industry 4.0 will enable the demands of the growing world population to be

met with the production and supply of goods with maximal, and perhaps optimal automation.

For applications such as automated remote surgery, enabled by the Internet of Skills [127],

there is the inherent mandate for network stability and guaranteed low latency [128]. These

critical requirements are above and beyond those expected of so-called “non-critical” applications,

such as listening to music or watching a movie, for which today’s “best-effort” Internet delivery

systems suffice admirably. Particularly where human lives are at stake, guaranteed performance

levels provide a compelling reason for us to engineer network systems that can meet these

requirements.

In this work, we advocate two key directions to increase the network capability and enable

scalability in the future networks of 6G and beyond. Firstly, one realistic solution to coping

with growing demand is the Mobile Service Providers’ (MSP) collaboration. Indeed, we have

already witnessed, for instance, the recent merger between Virgin Media and O2 [129], which

will make Virgin Media one of the biggest providers; and the planned masts’ sharing agreement

between O2, Three and Vodafone to boost the rural coverage [130] is another noteworthy

development. We note that this trend is global in nature, and not just limited to the UK:

Japanese telecom operator KDDI and SoftBank have announced a sharing agreement of RAN

sharing through Multi-operator RAN (MORAN) to provide 5G network coverage to rural

areas. In a similar deal, in 2019, China Telecom and China Unicom started to share their 5G

infrastructure in a deal that allows them to save around $13.2 billion [131].

Clearly, such resource sharing agreements are increasingly part of MSPs’ operating practices

that are proving to be both financially and technically viable. However, we note that typically

such arrangements involve only a limited number of infrastructure providers bound by a

long-term contract model. As 5G transitions inevitably towards 6G, we anticipate that

agreements are likely to become both more compelling and common.

Secondly, millions of new devices such as connected cars and industrial IoTs are now

connecting to mobile networks on a daily basis. 6G must be ready to meet the scale and demand

of not just millions, but billions of network devices – according to [2], the number of IoT nodes
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will increase to 30.9 billion and non-IoT to 10.3 billion by 2025. Paradoxically, one of the

obstacles to meeting the inflated demand is the device supply – the vendors must scale up

their production capacity to produce the equipment that can meet the future user demand for

network devices. However, from the perspectives of network engineering, in the situations of a

production bottleneck, the network services should not be impacted at all.

The realistic approach to balancing network scalability and device vendors’ workload

is to enable multi-vendor equipment. The current deployment of 5G, certainly enables a

multi-vendor environment as a standard feature; for instance, O-RAN allows the disaggregation

of hardware and software of RAN which directly supports multi-vendor interoperabilities. Yet,

we find that the openness is both cumbersome and is a complicated process owing to various

reasons such as network management, interoperability and even geopolitical considerations. In

a recent report [132], “Lack of Single Accountable Supplier” is listed as one of the challenges

for OpenRAN viability.

Having identified the two key motivations above, we note that both the solutions proposed

have challenges and requirements. Whilst one can argue for the need for trust amongst

MSPs, one can also argue about the dangers and accountability challenges in a multi-vendor

environment. We believe that the network sharing systems in 6G and beyond are required

to be transparent such that all the stakeholders can monitor and manage the Service Level

Agreement transparently. In case of violation, a party at fault can be held accountable, and all

the penalties should be applied and paid for automatically without any delays.

Network sharing mechanisms proposed by the research community tend to focus majorly

on the efficiency of resource sharing issues. For instance, [133] discusses the efficient resource

sharing in network slices, but not accountable resource reservation at the device level; Samdani

et al. [35] rely on a centralised entity for network sharing, but do not provide any mechanism

to maintain records for future audits nor do they provide transparency to the network users for

the services provided.

To this end, in this chapter we introduce our proposed solution to the aforementioned

problems and outline a viable way forward for the industry. We introduce Blockchain-Enabled

Accountable and transparent (BEAT) infrastructure sharing through smart contracts residing on
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Fig. 6.1 BEAT Vision – We envision a multi-operator and multi-vendor network infrastructure.
Network infrastructure is formed by multiple operators (e.g., OpA,OpB,OpC,OpD) and devices
are provided by multiple vendors(e.g., Vm,Vx,Vy,Vz))

Permissioned Distributed Ledgers (PDLs). PDLs are a particular type of distributed ledger that

work between a closed group of mutually non-trusted parties. Access is managed via stringent

access control mechanisms; i.e. only authorised members can access a PDL, making them ideal

for business-like applications. Furthermore, PDLs are immutable and contain executable smart

contract code which gets deployed and executed on the ledger.

The required SLAs are installed as smart contracts on a PDL whilst the PDL nodes

themselves are installed on the network devices, either baremetal or in a virtualized environment.

They record the infrastructure usage by monitoring APIs, packet flows, etc; and by recording

the relevant data to the PDL. The high degree of automation in this design can cope with surges

in demands for network services and makes the infrastructure sharing plug-and-play without a

long contractual process.

6.2 Related Work

The use of blockchain-based distributed ledger technologies for network resource sharing is an

emerging area of research that has been considered by several workers already.

We restrict our discussion here to those results that are most closely related to our own

efforts, and in particular, focus on resource sharing with distributed ledger technologies and

accountability challenges.
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6.2.1 Resource Sharing

The concept of infrastructure and spectrum sharing in 5G and beyond with blockchain is

presented by Maksymyuket al. in [134] and [4], where they propose a coalition algorithm for

spectrum sharing [4], and further list the tokenization model for spectrum, infrastructure and

service pricing [134]. They also provide a dynamic and smart contract focused protocol for

spectrum sharing. Although both works focus on providing a broad vision of possibilities of

exploiting blockchain technology for future networks, neither provides a detailed, device-level

architecture for infrastructure sharing.

Another Distributed Ledger Technology (DLT)-focused resource reservation work is

Blockchain Network Slice Broker [97], which is based on the Network Slice Broker of [35].

In that work, tenants (such as Over-the-Top providers) can request network services from the

Mobile Network Operators (MNOs) on-the-fly. The SLAs for the allocation are recorded to a

distributed ledger through smart contracts. However, the actual resource usage at a device is not

recorded, and the problem of accountability in network sharing is not addressed. An extension

of Network Slice Broker (NSB) is presented in [35] which provides a blockchain-focused

architecture for network slice auction; in this work, infrastructure providers allocate network

slices through an intermediate “Intermediate Broker” entity which further allocates resources

to tenants. However, NSB does not discuss the problem of accountability.

A transparent on-the-fly Software Defined Network (SDN) based technique for radio

resource sharing architecture is proposed by [135]. In this work, a customer can connect to

any available operator where the resources are available and is dependent on a third-party

entity (essentially an SDN-Server), which keeps track of available resources throughout the

participating service providers. However, this work is limited to resource provisioning and does

not discuss the prospects of low-level (i.e., switch-level) sharing or accountability due to SLA

violation.

Inter-operator network sharing architecture, specifically for smaller/denser cells, is proposed

in [136] and in [5]. The network sharing SLAs between MNOs are stored as smart contracts on a

distributed ledger and executed with service requests through an SDN layer. A blockchain-focused
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unlicensed spectrum sharing approach is presented by [4]. Although this work discusses the

prospect of network sharing among different players it does not provide any architecture for

network sharing, in spite of introducing a game-theoretic algorithm for unlicensed spectrum

sharing.

6.2.2 Accountability

Accountability is the fundamental property of BEAT, presented here as a novel architecture,

that should scale up to future as-yet undefined 6G technologies. The network users should

adhere to the SLA and not misbehave with other networks users. The Interrogation Protocol

(Section 6.4) proposes a solution to enable accountability in resource allocation. The devices

(e.g., routers and switches) are stitched together to enable resource sharing; as this idea is

similar to the Internet network model, we study and take inspiration from accountability in the

context of Internet Service Providers and the Internet.

We note that solutions to enable accountability at the Administrative-Domain (AD) level

have previously been presented in AudIt, a network traffic auditing protocol [66]. Like BEAT,

in AudIt, the service providers report their QoS parameters, but at the Autonomous System (AS)

granularity, rather than at device granularity as in our approach. Also, the reports collected are

not recorded by all the devices immutably for a future audit. Similarly, we find that the FAIR

(Forwarding Accountability for Internet Reputability) – accountability-focused protocol of [67]

enables the AS-level accountability through packet inscription. This is in contrast to the BEAT

solution, where accountability is enabled at the device level without any packet modifications.

6.3 Proposed System Architecture

BEAT is an automated architectural solution with three key elements: (1) Resource sharing with

(2) Distributed Ledgers and Smart contracts that enable (3) Accountability and Transparency,

with these objectives being achieved through PDLs and smart contracts. In this section, we

explain the BEAT architecture in detail.
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Fig. 6.2 BEAT Architecture for Infrastructure Sharing

6.3.1 BEAT’s Architecture

The architecture is underpinned by the following actors:

Network Users: These are B2B actors who can be further classified into Network Owners

– a party or group of participants who own the infrastructure, or 2) Network Tenants –

the party who leases the infrastructure from network owners, or 3) both – own some of

the network infrastructure, which other tenants can lease. Moreover, they also lease/rent

some network infrastructure from the owners to serve their customers.

Device Vendors: These are actors who provide network devices (e.g., routers and

switches).

Governance: The network Governance is in general a decision-making committee

formed by the consortium of the network users, and includes their representatives. It is

up to the network users to decide the strategy (e.g., through voting) by which Governance

representatives are chosen. Governance takes management decisions such as access
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control and dispute resolution. The PDL nodes will follow the governance clock as

proposed by [24]. Governance members may have control over their own devices only

and do not control their peers’ devices. Therefore, in the situations of a malicious user in

the Governance, only one vote will be compromised.

Typically, it is a challenge in distributed ledgers to truly distribute the power among the

nodes; some entities somehow try to control the network [137]. In BEAT, every network user

will have equal representation to vote and nominate their representative regardless of their stake

in the network infrastructure. Our Governance model is similar to the Network Administrative

Organisation (NAO) of [138]. In NAO, a third party manages the network rather than the

network members. In BEAT, the Governance includes the PDL members rather than an external

entity.

In addition to these actors, BEAT’s architecture comprises three operational layers, namely

the Orchestration, Network and PDL layers. They are illustrated in Figure 6.2 and we discuss

them next.

6.3.2 Orchestration Layer

The Orchestration Layer is the top layer and handles the network resource requests from the

tenants. Its operations are similar to ETSI’s Management And Orchestration Layer (MANO).

This layer is maintained and managed by the Governance of the PDL. It oversees the network

operations and allocation decisions such as setting up network access, lease duration, price and

privileges. The Orchestration Layer is managed by the Governance of the network.

As shown in Figure 6.3, the Orchestration Layer has three main components:

1. Orchestration Manager this serves the incoming requests and has features such as

Universal View similar to the Software-Defined Mobile Network Orchestrator (SDM-O)

discussed in [133] and the SDN-Server of [135]. When a network participant joins the

network, the Orchestration Manager assigns the credentials and keeps records. The

Orchestration Manager also allocates a node PDL-ID to a device. This PDL-ID is
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Fig. 6.3 BEAT Orchestration Process

different from the Layer 2/3 addresses because the devices may change their IP addresses

anytime whereas the PDL-ID must remain same.

2. Access Control An access control verification entity which maintains a database to keep

the record of credentials and replies to access control confirmation queries from the

Orchestration Manager.

3. Network Log: A database to maintain network resource logs.

The Orchestration Manager allocates the network resources through strict access controls.

The first function of the Orchestration Manager is to install network SLAs as smart contracts

on the PDL. Two different types of SLAs are installed on the PDL, 1) Resource Orchestration

SLA and 2) QoS Monitoring SLA.

The Resource Orchestration SLA (RO-SLA) – is the SLA which is the initial agreement

between the network users (e.g., an owner and tenant) and is executed at the start of the service.

The Governance installs RO-SLA at the earliest (e.g., at the time of PDL formation) and

executes it with every network request. RO-SLA maintains the resource allocation details, such

as route identity and agreed QoS parameters .

The QoS Monitoring SLA (QM-SLA) – this is an SLA for quality monitoring which records

the per flow data to the PDL.
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6.3.3 Network and PDL Layers

Infrastructure and network resources, such as switches and routers, form the Network Layer

of BEAT; these are managed and maintained by its Orchestration Layer. Network devices have

a maximum threshold capacity to forward network traffic while maintaining agreed service

levels. Since service quality would get affected Beyond these limits, network access must be

monitored and controlled.

When the tenants request network resources, the Orchestration Manager will verify from the

access control entity if the tenant has an agreement in place already. If the agreement is present,

the Orchestration Manager will then check from the Network Log the status of the network,

namely the current load on each path of the network and on each device. If the network has

resources available, the Orchestration Manager will send a confirmation message to the tenant.

Next, a smart contract will be executed to initialize the SLA and then orchestrate the network

resource for the tenant. In the event that the capacity is not available, the tenant can simply

wait for the resources to become available.

BEAT advocates a multi-operator and multi-vendor environment. Therefore, stakeholders

must know the performance and usage of the network components at a very fine-grained level.

Such performance metrics are required for future SLA compliance and accountability of the

sharing agreement.

The infrastructure usage in BEAT is recorded at device level and transparently shared with

smart contracts at the PDL Layer. Every device in BEAT is equipped with a PDL node and

can execute smart contracts to record relevant data to the PDL. At macro-level, all the devices

together form a PDL within the network infrastructure.
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Fig. 6.4 The Packet Processor – records the packet data (i.e., node_ID, src_IP, dst_IP, timestamp)
to the PDL node

6.3.4 Automated Recording with Smart Contracts

A tenant’s main objective is to get agreed on service levels to serve its customers’ demands.

Service quality can get affected for several reasons, such as a slower path or network device

malfunctioning. In the event of service degradation, the tenant is entitled to get compensation

if applicable and without any hassle. In such cases, all the stakeholders (i.e., network operators

and vendors) would blame each other to avoid paying the penalty. Therefore, there should be a

mechanism to record the service data, which no party can deny.

In BEAT, the flows’ data is recorded to the PDL through smart contracts. For each flow,

the source and the destination both records the relevant data to the PDL. PDLs are immutable,

which means data recorded to them cannot be deleted. Moreover, PDLs are transparent, and all

the participants for the consortium can see the flow source and destination information in the

PDL. To resolve these two problems of scalability and privacy, we install minimum hashed

data per flow to the PDL; specifically, node ID, source IP address, destination IP address and

timestamp. For packet i and node j will record the following data D to the smart contract:

Di j = SHA3(node_ID j,src_IPi,dst_IPi, tsi). (6.1)
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6.3.5 Trusted Execution Environments for Flow Monitoring

The data is recorded to the PDL by means of a smart contract that is executed by the Packet

Processor, which is a software script that runs on a virtual machine within the PDL node

adjacent to the device (Figure 6.4). The packet processor extracts the data from the flow, hashes

it and executes a smart contract to record the data to the PDL node. In BEAT, the owner has no

control over this virtual machine, which ensures secure and trustworthy data recording. On

the other hand, both the Packet Processor and the PDL node are installed on operator and/or

vendor-controlled devices, whom tenants may not trust, as owners could always tamper with

the data. Some device owners may, in addition to this, behave maliciously – for example, they

may intentionally drop a packet and claim that the packet was sent from the source and was

dropped in the network. It is difficult to dispute such claims due to the best-effort nature of

today’s internet.

To circumvent these issues, BEAT adds another layer of security and wraps the Packet

Processor and the PDL node inside a Trusted Execution Environment (TEE). It is to be noted

here that TEE is a separate secure processing system that solves this trust issue. The Governance

can give the tenants controlled access to the virtual machine – this access is decided by the PDL

voting mechanisms and will rotate among the tenants to enable trustworthy record keeping.

6.4 Security

We posit that it is unlikely for network users to misbehave because of two reasons. Firstly,

they are allowed in the network with access control mechanisms and therefore known to the

Governance and other network users. Secondly, all the receipts are recorded to a PDL and

when data is recorded to the PDL, it can be easily verified later due to its shared replicated

record structure. However, there still exists the possibility that any dominant network user, for

example an owner with majority of the devices in the network path, to cheat: such owners can,

for instance, allocate devices to their tenants on a slower and cheaper path instead of the agreed

and expensive path without the tenants’ knowledge; see Figure 6.5.
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Fig. 6.5 Receipts are recorded at the src (Node T) and dst (Node K) – the dominant operator Y
can allocate devices on a slower and cheaper path rather than the agreed path.

BEAT is an inherently transparent architecture. In this section, we propose BEAT’s

Interrogation protocol which is invoked when any network user (e.g., tenant) believes that they

have not received the agreed service quality. The Interrogation protocol is underpinned by the

two key elements of localised record maintenance and forwarding proof. The combination of

these two enables future auditability.

6.4.1 Forwarding Proof

In BEAT, the accountability is managed through the Receipts (Equation 6.1). The receipts

are recorded at the source and the destination of the packet. In the event of an SLA violation,

device owners and vendors will be required to prove that they have allocated the devices from

the source to the destination as agreed in the SLA (Figure 6.5). Receipts being recording to

the PDL through a smart contract at every device are not feasible due to PDL performance

considerations. To this end, we propose a Forwarding Proof – a lightweight mechanism for

network users to show that they have allocated the SLA-agreed devices throughout the service.

The Forwarding proofs are stored in local storage and produced on-demand to the Governance

and not exchanged until the dispute occurs to save the network bandwidth. Because PDLs
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are inherently transparent and permissioned, we do not need to use any intensive computation

techniques to create proofs, and any simple mechanism will suffice with the only objective

being to identify the network user who may have abused the system.

For the ith packet, with Node ID is N, source ID is src_IDi, destination ID is dst_IDi and

timestamp is tri. Here, source and destination are node’s direct neighbours and may not be the

final source and destination of the packet. The forwarding proof Pi can be calculated as:

Pi = N + src_IDi +dst_IDi + tri (6.2)

Note that receipt timestamp tri is the time when the received proof is recorded to the internal

storage. This is different from the packet timestamp in Equation 6.1 which is the timestamp of

the packet received at the device. The source and destination follow the governance clock as

proposed by [24].

6.4.2 Localised Record Maintenance

BEAT maintains two different types of storage for record keeping; a short-term storage called

the Proof Buffer and a long-term storage called the Report Generator – Figure 6.6.

6.4.2.1 Proof Buffer

Proof Buffer is a short-term volatile storage that stores the packet receipts for a Governance-defined

time called the Threshold Time. This threshold time is dependent on the PDL network priorities

and available resources. The Proof (Equation 6.2) on the other hand, needs to be kept in a local

storage Proof Buffer for a Threshold Time, and after which time it can be overwritten by newer

proofs.
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6.4.2.2 Report Generator

For the integrity and compliance monitoring of the PDLs, Governance should get periodic

reports of the network users. Network devices generate large amounts of data, which makes

it very difficult to keep all the data in the device for a long time. The Report Generator is

a long-term non-volatile storage that saves the packet count only (Equation 6.3). With very

incoming packet, the software will increment the counter by one, and at the end of service

provisioning, it will send the report to the Governance. We are standardising the notion of

periodic smart contract reports in ETSI ISG PDL 11 [24]. Given src_ID and dst_ID as source

and destination identifiers respectively and are node’s direct neighbours and may not be the

final source and destination. The node N will store record R as.

R = (src_ID,dst_ID,number_o f _packets) (6.3)

Fig. 6.6 Simplified network device architecture depicting only the two different internal storage
BEAT maintains.
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6.4.3 Interrogation Protocol

If a customer believes that they have not been assigned devices as per the agreed SLA and their

performance is affected (e.g. throughput degradation), they can ask the Governance to initiate

the Interrogation Protocol.

Recall from Section 6.3.1, that the Governance maintains the record of allocated resources

in the SLA for all the resource assignments. Once the dispute is launched, the Governance will

initiate the Interrogation Protocol and ask all the devices in the route to send their proof buffers.

If the proofs match with the buffer, it means that the devices were assigned honestly, and there

was a problem with service quality in the network.

When the Governance confirms that all the devices are assigned as per the SLA, further

investigations of throughput degradation due to problems such as link failure and packet

drop/loss should be carried out. As BEAT is focused fundamentally on resource assignment,

service degradation due to other copiously discussed factors such as packet loss and delay [66] [110],

prioritisation attacks [109] and devices intentionally dropping packet [139] are out of scope for

this work, and we leave these details for future enhancements. Nevertheless, the throughput

and packet loss per device can still be calculated with the timestamps in the receipts (ts) and

forwarding proofs (tr).

Network users can still be dishonest, as they can install false replicated forwarding proofs

on multiple devices and paths. For instance, one path A (the agreed path) can store the same

data as another path B (path sent); see Figure 6.7. Note that from Figure 6.5, forwarding proofs

are generated by all devices – therefore, if a network user (e.g., User Y in Figure 6.7) is being

dishonest, neighbouring devices on the route (e.g., Devices Z and F) also report their proofs

with the corresponding timestamps. By matching the source and destination device identities,

it can be verified which device has in fact forwarded the traffic.
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Fig. 6.7 BEAT Threat Model – the malicious user Y has replicated the proofs to both of their
paths to lie to their tenants that they have assigned devices on the promised path. In such a case
honest neighbours who also record the source ID can verify the source of the device

6.5 Evaluating BEAT

The aim of our evaluation was to establish the overheads introduced by BEAT. To this end, we

installed PDL nodes on every network device within the GNS3 simulated network infrastructure

that formed an end-to-end PDL system in our simulations.

We studied the compatibility between two independent systems, namely, the PDLs and the

network infrastructure. We evaluated the viability of our proposal with a simple but similar

real-world network topology (Figure 6.8) with three network devices. Each device ran a PDL

node and was connected to the Governance node.

The idea of this study was to enable accountability with PDLs at the network layer and we

therefore installed one Ethereum node on each of the three edge routers. As we have advocated

the use of permissioned distributed ledger, hence we adopted Ethereum’s permissioned version

with a Proof-of-Authority (PoA) consensus protocol, specifically, the “Clique” implementation

of PoA which has higher throughput and lower latency than a traditional Proof-of-Work

protocol [140] wherein blocks can be generated at a user-defined time interval. Clique also

outperforms its other PoA counterparts and requires fewer message exchanges and hence

delivers high throughput as compared to other permissioned flavours of Ethereum such as

Aura [141].

We set up our simulations on an Intel Core (dual core with two logical processors) i7 CPU

at 2.70 GHz with 16 GB RAM and with the GNS3 network simulator. The blocks for the
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Fig. 6.8 BEAT Simulation Topology – Each network device has a Packet Processor (PP) and a
PDL node (N) installed. Packet Processor sends the captured data to their respective PDL node.
Note that the Governance Node does not take part in the consensus and is a logical entity.

PDL are generated at 15 seconds intervals. The smart contract to record the usage is coded in

Solidity and installed on the ledger. Two different SQLite databases are maintained to evaluate

the Orchestration Process; see Section 6.3.

6.5.1 SLA Deployment Latency

The focus of this study was on accountable and transparent SLAs and we achieved this through

smart contracts. In BEAT, the Governance of the PDL is responsible for the deployment of SLA.

There are two different types of SLAs are involved in BEAT, 1) the Resource Orchestration

SLA (RO-SLA), that is, SLAs that allocate the resources, and 2) the QoS monitoring SLA

(QM-SLA).
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6.5.1.1 Resource Orchestration SLA (RO-SLA)

These smart contracts are deployed by the Orchestration Manager. In our simulation the

resource orchestration SLA took a minimal time of mean 3.98 seconds.

6.5.1.2 QoS Monitoring SLA (QM-SLA)

In our simulation, the installation took a mean 3.11 seconds. Typically smart contracts are

installed once and can be executed several times as required. Yet, this is dependent on the

number of simultaneous transactions allowed by the PDL.

6.5.2 Orchestration Process

As shown in Figure 6.3, three key elements for the Orchestration Process are the access control

verification, the resource availability verification and the execution of the RO-SLA.

The orchestration process starts with a resource request to the Orchestration Manger. The

Orchestration Manager forwards this request to the access control entity which manages the

access control list in a database. As shown in Figure 6.9, the access verified in 3.85 ms. The

Orchestration Manager then checks for resource availability from an internal database which

took an average of 3.93 ms. If the resources are available the RO-SLA (i.e., smart contract)

executes, which took an average of 3.73 seconds (Figure 6.9).

In summary, the overall orchestration process took around 4 seconds on average; Figure 6.10.

Fig. 6.9 Segregated Orchestration Process overheads – Note that the overall orchestration
process took a mean 4 seconds
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Fig. 6.10 Orchestration Process – Note that the total orchestration process took an order of just
seconds.

6.5.3 Packet Processor

The next step is to start the packet forwarding process. The packet processor shown in Figure 6.4

is coded in Python 3 and installed on a virtual machine adjacent to PDL node. We sent almost

4000 flows in our topology. The Packet Processor captures and processes the flow data and

records to the PDL. In our simulations, it took an average of 1.02 ms (Figure 6.11(a)) to capture

the packet and extract the relevant data (i.e., node ID, source IP address, destination IP address,

and timestamp). The Packet Processor then hashes this data (Equation 6.1) and records it to the

PDL through smart contract execution. We advocate the use of a pluggable hashing algorithm –

that is, the Governance of the PDL has the liberty to choose their preferred algorithm based

on their priorities, such as the availability of computational power. In this study, however, we

chose the 32-byte version of SHA3, that is, SHA3-256. In our experiments, it took an average

of 0.06 ms to hash the 48 to 56 bytes processed data; see Figure 6.11(b).

Recall from Section 6.4.2, that BEAT also maintains local storage on every node to

maintain off-chain records for future auditability. In our simulations it took just an order

of milliseconds (specifically, 6.15 ms mean) to record the forwarding proofs (Equation 6.2) to

an internal storage (Figure 6.11(c)).

The receipts are recorded to the PDL at the first and last devices only. They are recorded

through the execution of a pre-installed smart contract and took an average of 3.51 seconds in

our simulations (Figure 6.11(d)).
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Like any other running software, PDL requires additional computational resources. Note

that our setup is in a simulation environment where network switches are, infact, containers.

To measure the memory and CPU utilisation of BEAT, we randomly chose 500 records. CPU

utilisation was measured every 0.1 seconds during the packet capture process, and the results

are shown in Figure 6.11(e). The CPU utilization had a maximum median at 89.45% and the

maximum value was 109.20%. Note that the maximum CPU utilization on a dual-core CPU

can go upto 200% [142]. This implies that our algorithms are using almost 50% of available

CPU (a VM in this case) resources.

The memory utilisation is shown in Figure 6.11(f) – memory is measured during the packet

processing time and we note that in some cases the memory utilisation earlier. This implies that

the contract is executed faster in some cases. Note that, most of the data is in between 35 - 39

MB and the maximum memory utilization is 39 MB. In other words, BEAT adds a negligible

overhead to the system. Note that our simulations were performed on a standard laptop. All

the devices were infact virtualised containers and shared the same hardware. In a production

environment with specialised network devices, we anticipate far better performance.

6.6 Considerations

Designing a system for 6G and the PDLs is not trivial. We advocate PDLs for BEAT, in

permissioned distributed ledgers, with the Governance overseeing the network operations such

as the allowed number of users and participants’ misbehaviour. Most of the challenges can

be resolved with the compliance strategies implemented by the Governance. However, some

considerations, such as transaction throughput and scalability, need attention. In this section,

we discuss the considerations related to the BEAT.
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6.6.1 Inherent Networks Attacks

6.6.1.1 Intra-PDL Denial-Of-Service (DoS)

Every PDL allows a particular number of Transactions Per Second (TPS), which are generally

higher in PDLs (e.g., 20,000 TPS [143]) than in permissionless ledgers ( such as the Ethereum

Mainnet which has a TPS of ≈ 15). This means that if many devices send data simultaneously,

it can cause congestion at the ledger or DoS for incoming transactions. Therefore, whilst

designing a PDL network, it is important to adopt a PDL-type (e.g., Hyperledger Fabric), which

can cope with the network’s requirements. In this work, we advocated the use of PDLs, due

to their high transaction throughput and stringent access control mechanisms, with only the

number of users that the PDL system can cope with being allowed by the Governance.

6.6.1.2 Denial of Capability (DoC) Attack

BEAT’s permissioned nature makes inter-PDL DoS attacks unviable, yet, general DoS attacks

(e.g., DoS due to outside network users) are still possible. This means that malicious users

can send an inflated number of requests to the Orchestration Manager (Section 6.3), causing

congestion. Several solutions to combat DoS exist and can be used to mitigate the problem.

However, in this work, we support capability-based solutions [144], since, in such systems,

the requesting traffic is limited to a small channel, and the rest of the bandwidth is dedicated

to authorised traffic for general usage. During the requesting period, users will be assigned a

token that allows them to access the network on the main channel. Based on criteria and user

behaviour, a user can be assigned a token for a longer time duration. This is a viable approach

in BEAT because BEAT will need to communicate with its client only at the setup time. This

will involve a small number of communications between a client and the network. In addition,

the clients are likely to be legitimate and safe to be assigned tokens for longer terms. Limiting

the connection requests to a dedicated channel will allow only the authorised traffic (from

clients such as OTT) to further communicate with the orchestration manager.

Nevertheless, we note that the requesting channel is still open to unauthorised users to

send requests. A large number of connection requests flooding the request channel can cause



6.6 Considerations 103

congestion at the requesting channel. Consequently, legitimate users are unable to send the

connection request to the network. This has been identified as a “Denial-of-Capability Attack”

by Argyraki et al. in [145] where they argued against their viability in combating the DoS

attack in [145]. However, other research works counter Argraki et al.’s argument and propose

enhancements to solve the problem at the requesting channel, such as stateless-filtering [146]

and puzzles [147]. BEAT can implement these solutions to solve the problem of DoC attacks.

The details on DoS and DoC are beyond the scope of this work.

We have argued for and supported capability-based solutions to combat DoS attacks for

BEAT. We note that a number of other solutions have been proposed to mitigate DoS attacks,

such as [148] and [149] and these can be adopted and used to mitigate DoS attacks in BEAT.

6.6.1.3 Malicious Devices

All the devices record the data to the PDL, and the data is replicated across the network

nodes (i.e., network devices). If a malicious device starts sending false and irrelevant data to

the PDL, the system can get overwhelmed by the number of requests and increase the data

sizes inside the routers exponentially.

To combat this problem, BEAT maintains a node ID for all the nodes in the network

(Section 6.3). In the event of a misbehaviour, the Governance can use node IDs to take

appropriate actions and block future access of such nodes. Indeed, such an enforcement

requires standardisation, and the authors of this paper have proposed standardised compliance

strategies to manage node misbehaviour in ETSI Group Specification PDL 11 [24].

6.6.2 Other Threats

6.6.2.1 Integrity of Data

Smart contracts do not have any built-in means to verify the integrity of the data. Hence, it

is vital to ensure that the data recorded by network devices is valid. In BEAT, TEE ensures

that the correct data is recorded to the PDL. However, the network device feeds the data to the

packet processor and if this device is malicious, it will provide false information to the PDL.
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This is one of the reasons we advocated the use of Governance-controlled Permissioned

Distributed Ledgers. In a PDL, the members are allowed with access control mechanisms and

affected parties can report such misbehaviour to the Governance, which can take subsequently

disciplinary actions and blacklist the node as well as imposing penalties [24].

6.6.2.2 Colluding MSPs

In a Blockchain-enabled architecture like BEAT, the network users can collude with each other.

In such a case, dominant network users can behave maliciously towards other tenants such as

in rejecting their transactions. To solve such problems, a regulatory authority (e.g. Ofcom in

the UK and Federal Communications Commission (FCC) in the US) can also be a part of the

PDL network Governance. Note that, the role of the regulatory authority is as an observation

entity only and it should be contacted only in the event of disputes. The regulatory authority

neither takes part in consensus nor controls any device.

To add additional layer of security it is also possible to record the complete path of the

packet with BEAT and record the data on every device if scalability and congestion of the PDL

are not a concern.

6.6.2.3 Waiting Times

Recall that the Orchestration Manager allocates the resources considering the available capacity

of the network. Therefore, it is likely that some users will have to wait to get hold of

the resources. BEAT is an accountability focused architecture, that is, adherent to the

SLA. Controlled resource allocation ensures that the network is not overwhelmed by the

service requests and that users receive SLA-promised services.



6.7 Summary 105

6.7 Summary

In this work, we have presented “BEAT”, a PDL focused automated, transparent, accountable

network sharing architecture operating at the network layer. In future generation networks,

operators need to work collaboratively to broaden their coverage area and cope with the

ever-increasing demand for network services. A key enabler for viable network sharing is

accountability and transparency at every layer of the network sharing architecture. Our focus,

in this chapter has been on the network layer.

In BEAT, the SLAs between the network users are recorded as smart contracts in a PDL. We

introduced a layered architecture in which Governance of the PDL manages and maintains the

network resources with stringent access control and network management strategies. Yet, some

of the network users can still misbehave, for example, by allocating resources on a cheaper and

slower path instead of the agreed path. To this end, the BEAT maintains internal records in all

of the network devices as receipts. This record/receipt is presented by the devices only in the

event of a dispute arising, thereby enabling a lightweight audit mechanism.

BEAT adds a negligible overhead to the system, when considering the time and cost required

for the negotiation of SLAs for infrastructure sharing. We believe that our system provides a

faster and a more seamlessly-automated solution and is the future of infrastructure sharing.

In conclusion, it is our hope that this work marks the inception of a new era of network

sharing in which competing stakeholders can work efficiently and transparently to achieve a

scalable and open network.



6.7 Summary 106

(a) KDE plot for packet capture

(b) KDE plot for hashing (c) KDE plot for receipt recording

(d) CDF of SLA execution

(e) KDE plot for CPU Utilization (f) Memory Utilization

Fig. 6.11 Packet Processor Overheads – Our results show that packet processor and SLA
recording adds less than 5 seconds of overhead. For Kernel Density Plot (KDE) for packet
capture (a), hashing (b), receipt recording (c) and CPU utilization (e) bandwidths (BW) are
adjusted to improve the readability and data visualisation.



CHAPTER 7

CONCLUSION AND FUTURE WORK

In this work, we argued that future networks need radical changes to the ways network resources

are marketed, managed and shared. The traditional monolithic long-term contracts are not

viable as the world transitions towards 6G and above technologies. Network practitioners and

operators must adopt a dynamic, collaborative and open approach to enable scalability and a

seamless transaction from 5G to 6G and beyond networks. Yet, this only is possible through

the trust between the network players, which must, we argue, be enabled through a transparent

and accountable contractual mechanism.

To achieve these goals, we exploited the inherent properties of distributed ledger technology

and proposed the architectures for network management both in the service provisioning and

resource sharing scenarios. The contractual mechanism, proposed in this work is based on

smart contracts, enabling transparency and accountability through future auditing. Firstly, we

outlined the requirements of SLA in future networks. We advocated that these requirements

can be met with the properties of smart contracts. We also proposed a DLT-enabled architecture

for future service contracts.

Secondly, we argued that short-term and flexible service contracts are beneficial for both

service providers and customers. The service providers can advertise their resources as per

resource availability and customers can choose service contracts suitable to their purpose. To

this end, we proposed JITRA – an end-to-end solution for transparent and accountable service

provisioning. Service providers advertise resources on a marketplace where service contracts
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are backed by smart contracts enabling autonomous, transparent, and accountable resource

provisioning.

Future network service requirements will not be limited to service contracts. Collaboration

and sharing will also be required at the infrastructure level. To this end, we proposed BEAT, an

infrastructure sharing solution based on distributed ledger technology. In BEAT, infrastructure

resources such as switches, and routers are equipped with a DLT node. The sharing agreements

are recorded in a distributed ledger through smart contracts. The service metrics are recorded

throughout the service provisioning in the ledger.

Inherent properties of distributed ledgers also lead to limitations; we also discussed the

pitfalls and limitations of adopting distributed ledgers in networks and provided their solutions.

For JITRA, we proposed a side channel and cryptographic accumlator based solution to record

the service metrics. For BEAT, we proposed an Interrogation Protocol to enable accountability

in the system.

In our simulation-based evaluations, smart contracts added an order of seconds to network

execution times. With future network hardware, we can realistically anticipate a far better

performance. The authors of this work are actively involved in the ETSI ISG PDL and

continuously working towards proposing improvements and working towards standardising the

smart contracts’ architectures as an industry standard for contractual mechanism.

Our work opens several new directions for research and implementation. Firstly, Blockchain

and AI are two key enablers for 6G [150]. Both of the architectures discussed in this study are

inherently AI-enabled. All of the functions which are manual at this stage, can, in principle, be

automated through AI. For instance, at this stage, the system relies on the PDL members to

report SLA violations. Using AI algorithms such as logic regression and Hidden Markov Model,

anomalies in the network can be detected [151] and reported automatically, and therefore, SLA

violations can be reported without any human intervention.

In this thesis, we proposed a Governance model to be formed through representatives from

all the members of the PDL. However, Governance can also be an automated functionality as

software code, programmed and approved by all PDL members, which takes decisions instead

of human. Artificially Intelligent Governance, indeed, can play an important role in future
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corporate governance [152]. Through AI, the governance model could even be trained to take

operational decisions such as disputes.

At this stage, smart contracts are pre-programmed and installed on the PDL by the

Governance. In future, we aim to install AI-based intelligent smart contracts. Such smart

contracts could implement smart metering and automated detection of SLA violations.

Most of today’s available PDLs (e.g., Hyperledger Fabric and Corda) can be used atop both

the architectures. However, we aim to design a telco-focused permissioned ledger:“T-Chain”.

In a closed group architectures, the network users are typically known to each other. Primary

requirements are an immutable, transparent and automated system for a contract management

system. In T-Chain, the consensus algorithm is lightweight, and all the transactions do not need

to be approved by all the members, but approval from the governance node is sufficient.

In conclusion, it is our hope that this work marks the inception of a new era of network

sharing in which competing stakeholders can work efficiently and transparently to achieve a

scalable and open network.
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APPENDIX A

INTRODUCTION TO SMART CONTRACTS

A.1 Executive summary

The present document specifies a high-level functional abstraction of PDL Smart Contract

System Architecture. In particular, basic building blocks for designing, coding and testing

Smart Contracts for the PDLs. This includes describing how different classes of systems

interact with Smart Contracts. Processes, models, and detailed information are beyond the

scope of the present document.

A.2 Introduction

The present document defines a high-level functional abstraction of policies to design and code

Smart Contract components. Smart Contracts are mere codes, and if not well planned, designed,

coded and tested can leave the system vulnerable to external attacks and internal errors.
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A.3 Scope

The present document specifies the functional components of Smart Contracts, their planning,

coding and testing. This includes:

(a) reference architecture of the technology enabling Smart Contracts - the planning, designing

and programming frameworks;

(b) specify how to engage using this architecture - the methods and frameworks the Smart

Contracts building blocks possibly communicate;

(c) point out possible threats and limitations.

A.4 References

A.4.1 Normative References

References are either specific (identified by date of publication and/or edition number or version

number) or non specific. For specific references, only the cited version applies. For non-specific

references, the latest version of the referenced document (including any amendments) applies.

Referenced documents which are not found to be publicly available in the expected location

might be found at https //docbox.etsi.org/Reference/.

NOTE While any hyperlinks included in this clause were valid at the time of publication,

ETSI cannot guarantee their long term validity. The following referenced documents are

necessary for the application of the present document. Not applicable.
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A.4.2 Informative References

References are either specific (identified by date of publication and/or edition number or version

number) or non specific. For specific references, only the cited version applies. For non-specific

references, the latest version of the referenced document (including any amendments) applies.

NOTE While any hyperlinks included in this clause were valid at the time of publication,

ETSI cannot guarantee their long term validity. The following referenced documents are not

necessary for the application of the present document but they assist the user with regard to a

particular subject area.

[i.1] ACM Digital Library: “Securify: Practical Security Analysis of Smart Contracts”.

NOTE Available at htt ps : //dl.acm.org/doi/pd f/10.1145

/3243734.3243780.

[i.2] ACM Digital Library: “SmartCheck: Static Analysis of Ethereum Smart Contracts”.

NOTE Available at htt ps : //dl.acm.org/doi/pd f/10.1145

/3194113.3194115.

[i.3] ITU-T Report: “Distributed Ledger Technologies and Financial inclusion”. NOTE

Available at htt ps : //www.itu.int/en/ITU −T/ f ocusgroups

/d f s/Documents/201703/ITUFGDFSReport−on−DLT −and−Financial−Inclusion.pd f .

[i.4] ETSI GR PDL 003: “Permissioned Distributed Ledger (PDL); Application Scenarios”.

NOTE Available at htt ps : //portal.etsi.org/webapp

/WorkProgram/ReportW orkItem.asp?WKIID = 57511.

[i.5] United Nations Commission on International Trade Law. NOTE Available at

htt ps : //uncitral.un.org/.
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[i.6] Decentralized Public Key Infrastructure. NOTE Available at htt ps : //medium.com/hackergirl

/decentralized − public− key− in f rastructure−4e7ea9173bac.

A.5 Definitions of Terms, Symbols, and Abbreviations

A.5.1 Terms

For the purposes of the present document, the following terms apply:

Coin: implementation using a unique ledger and usually used for financial transactions (e.g.

Ether, Bitcoin)

Eternal contracts: contracts which are active for infinite time

Mainnet: ledger in-production

NOTE: The contracts and transactions on a mainnet are ultimate.

Master-Chain: primary chain where the executions of the Smart Contract are recorded

Off-Chain Smart Contract: smart contracts stored away from the ledger (i.e. trusted

database or side-chain) and their execution may depend on on-chain contracts (i.e. on-chain

contract can initiate off-chain contracts) and later the state can be updated

On-Chain Smart Contract: contract that resides in the master-chain and on side-chain,

that is executed directly without the instantiation of any other contract

NOTE: The beneficiaries get rewarded as soon as the contract is executed without the

involvement of any other contract.

Participants: participants are the members of the PDL which keep the copy of the ledger

and take part in the consensus.

Ricardian Contract: single contract document which is both easily readable by human

and machines and not self executable.
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NOTE 1: It is formatted as a text file and digitally signed by the issuer of the contract.

NOTE 2: The security of a Ricardian contract is achieved by OpenPGP and all the signing

keys are included within the contract so eliminates the use of external certificate authority, in

other words a Ricardian contract carries its own PKI with them.

NOTE 3: The Difference between Ricardian contract and Smart Contract: The major

difference between the Smart Contract and the Ricardian contracts is that Smart Contracts

are executable code but Ricardian contracts are the agreements recorded in a single file and

not executable on their own. A Smart Contract does not have to be a Ricardian contract and

a Ricardian contract is not a Smart Contract, but a Smart Contract can execute a Ricardian

contract.

Side-Chain: chain(s) which work as a secondary chain to the main-chain/ledger.

NOTE: It can be used to off-load some of the computations for scalability or privacy.

Smart Contract (SC):computer program stored in a distributed ledger system, wherein the

outcome of any execution of the program is recorded on the distributed ledger.

NOTE: A Smart Contract might represent terms in a contract in law and create a legally

enforceable obligation under the legislation of an applicable jurisdiction. A Smart Contract

may but does not have to be human readable and is self-executable. Any executable code stored

on a PDL is dubbed a "Smart Contract" (SC). The focus of the present document is Smart

Contract as software codes and is different from legal contracts.

Stakeholders: parties that benefit from the PDL NOTE: All the stakeholders may or may

not keep the copy of the ledger (i.e. act as a node) and take part in consensus.

Testnet: ledger or sandbox on which Smart Contracts can be installed to test their working

and performance prior to installation on a mainnet.
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NOTE: Testnets are installed to test the performance of the code and the transactions and

Smart Contracts are for the testing purposes only.

A.6 Introduction to Smart Contracts

A Smart Contract is a computer program deployed on a PDL. The primary purpose of smart

contract to keep certain software in a PDL that execute on certain execution requests. Any

PDL’s general goal is the distributed management of a common data repository defining a

current global state; there is no assumption on the type of data stored. When such data is an

executable code (i.e. smart contracts), the induced global state can be seen as the state of a

distributed virtual machine.

A.6.1 Object-Oriented Paradigm

Historically, the main model adopted for SCs has been along the line of the traditional Object

Oriented paradigm. As such, a SC is seen as a code entity composed of two main clauses:

• Internal storage, in the form of identifiers - value associations akin to a dictionary,

similarly to object fields.

• Functions’ definitions, specify the set of actions allowed for the given SC with the

appropriate scope modifiers, similarly to object methods.

Similar to the concepts of Object-Oriented programming a Smart Contract is instantiated

from a class, and once instantiated holds a unique identifier; that is to say every instantiation

is unique. The deployed Smart Contract holds a global state which means that all its fields

and functions become visible and callable by other contracts (depending on access rights).

Moreover, a deployed Smart Contract can be called as many times as required; however, this is
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dependent on the implementation. Smart contracts have different implementations depending

on the technology and consensus mechanism such as PDL types (e.g. Hyperledger, Quorum)

A.6.2 Properties of Smart Contracts

A.6.2.1 Introduction

The properties of Smart Contracts directly depend on the properties of the underlying PDL and

some properties due to their requirements.

A.6.2.2 Immutability

As any data on a PDL, an SC is immutable; this means that a Smart Contract code, once accepted

through consensus, cannot be changed. However, modifications through other methods such as

proxy contracts or introducing a new Smart Contract, are possible. In such an event, the old

version of the contract remains in the chain. A consequence of immutability is Importability

which means that it cannot be deleted from the ledger after deployment. This brings the

challenges of scalability as a PDL might be populated with dormant contracts over time. The

details on scalability are discussed in later clauses. The values contained inside an SC’s internal

storage are mutable as expected through function calls; for example, in an auction contract bid

values will change with new bids but the final winning bid may be immutable.
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A.6.2.3 Availability

In the case of on-chain SC, it is always available as long as the underlying master ledger is

accessible. This means that a SC function can be invoked, and its fields (i.e. variables) can be

read, by an entity as long as the entity has the appropriate privileges specified by the contract

and the PDL. However, in the case of off-chain Smart Contracts, if the ledger where the contract

is installed (i.e. secondary PDL) is not available, the SC is not accessible by the master PDL.

A.6.2.4 Transparency

Any entity, with the appropriate privileges, might inspect a SC code and current values. As

such, it is transparent to all intended participants of the PDL. Transparency is not to be confused

with immutability; a contract code remains unchangeable even though it is transparent to both

parties. Moreover, any call to a function of a contract is performed through a general state

update on the PDL (i.e. transaction). As such, all function calls are recorded in the PDL and

traceable by the members of the PDL with appropriate access rights.

A.6.2.5 Self-Execution

Any execution of a SC, i.e. an invocation to one of its visible functions, is performed by the

PDL nodes, not by the user invoking the SC, nor by the SC creator. The SC execution is

protected by the distributed consensus of the PDL; as such, it is beyond the control of any

single party to execute a Smart Contract without the approval of PDL members. This property

induces the sub-properties of:

• Atomicity: an SC invocation runs entirely or fails without affecting the state (i.e. there

is no such thing as partial SC execution).
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• Synchronicity: an SC invocation is executed in a synchronous way (i.e. every member

with appropriate access rights get the update).

• Determinism: an SC invocation returns the same result for any node executing it.

A.6.2.6 Reusability

SCs are coded once and can be executed multiple times depending on PDL governance. A

given Smart Contract can be used as a template for a wider set of applications sharing the

same high-level logic. The actual behaviour of a given contract may change depending on

the parameters which are set at invocation time. For example, the SC for cellular service is

modelled with required fields for QoS metrics such as latency; all the telecom operators, in this

case, will be required to specify the latency as a parameter.

A.6.3 Storage

Smart Contracts are typically stored in distributed ledgers; however, their storage depends upon

the nature of the ledger architecture. For example, in case of a permissionless blockchain such

as Ethereum, a Smart Contract will be stored by all nodes; on the contrary, in a permissioned

blockchain such as Hyperledger, Smart Contracts are stored only on the nodes that are part of

a given channel (an abstract point-to-point link between nodes) and are established through

communication between nodes. For off-chain SCs, the contracts may be stored on a trusted data

storage, away from the ledger. This type of storage mechanism needs special security measures

set out by the governance of the PDL. Reusability techniques such as template contracts can be

used to allow efficient storage of the contracts. The decision of storage is dependent on the

implementation of a PDL, and the technology the companies adopt. The limitations due to the

external existence of a contract is discussed in clause A.10.
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A.6.4 The Lifecycle of a Smart Contract

A Smart Contract is a computer program; the difference is that the Smart Contracts are

immutable, so it requires great care to program them and is good be tested on several levels

before deployment. This clause presents the recommended lifecycle, a Smart Contract may

follow in order to avoid the dangers such as erroneous code. This recommended lifecycle

consists of three phases: planning phase, coding & testing phase and deployment & execution

phase. The phases are explained in detail in clause A.7.
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A.7 Smart Contracts - Lifecycle phases

A.7.1 Introduction

Smart Contracts are software codes similar to any other software program. The difference

from usual software is in the way the bugs are being fixed. The nature of PDL, does notallow

backward modification of information or code so any change to Smart Contract can only be

applied to the time of deployment and onwards. Hence, careful planning and scrutiny of the

code before deployment to the ledger is of utmost importance. In this clause, the stages of

the Smart Contract lifecycle (Figure A.1) are defined, which the industries may follow to

implement Smart Contracts in the adopted PDL.

A.7.2 Planning Phase

A.7.2.1 Introduction

A Smart Contract can be deployed in many ways, and the deployment methods are dependent

on the underlying ledger technology and acceptable by the participants through consensus.

The goal is to create a contract that can be trusted by participants who do not trust each other.

The planning of a Smart Contract will enable the participants to define their requirements and

functionalities of a Smart Contract. The planning phase may include:

1. governance - ownership and access rights;

2. design - coding and testing;

3. deployment; and

4. management planning.
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A.7.2.2 Governance

A.7.2.2.1 Introduction A Smart Contract may define a contract, and its associated terms

and conditions covering the full lifecycle of the contract, between the participants. Governance

planning defines the authority of different stakeholders over the contract, for example, ownership

and access rights. Usually, the creator of a contract is the owner as well; the owner of the

contracts has exclusive privileges such as contract destruction. However, in PDLs where

contracts can be reused by several participants for several unrelated transactions, it is feasible to

have a role-based ownership mechanism. In Role-Based ownership, the operations of a contract

are governed by a group of participants with appropriate privileges; as PDL is a collaborative

ledger, these privileges can be specific to a contract.

A.7.2.2.2 Single-party Governance The Smart Contract, when deployed, is usually identified

as being governed by a specific part (N=1) or a group of distinct parties depending on consensus

and governance model. This agreement needs to take into account the legal and business aspects

of the Smart Contract, and address issues such as who is eligible to stop, terminate, or upgrade

the Smart Contract, and how these are enforced contractually or technically. Smart Contracts

are a digital model of such contracts, and actors and their arrangements are beyond the scope

of the present document.

A.7.2.2.3 Multi-party Governance A Smart Contract may be developed for N-M interaction,

i.e. one-to-one, one-to-many, many-to-one or many-to-many interactions. For example, if the

contract is governed by more than one party, a consortium agreement needs to be formulated

within that group to outline the governance model that is applied to the Smart Contract.

Moreover, a contract may be managed by a third-party such as some stakeholders which are
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not directly involved in the contract. For multi-party governance, this requires decisions on the

technical implementation aspects of:

• From whom will Smart Contracts accept the operational decisions, and how? Since in

this scenario, a Smart Contract is governed by multiple stakeholders, it is likely that

some of the authorized parties/stakeholders may disagree with some decisions such as

termination of a contract. In such cases, multi-signatures and voting mechanisms can be

used to approve/reject a transaction.

• In multi-signatures, group members sign a decision that is communicated to a Smart

Contract and verified.

• Another option is to use voting, in which case action is initiated, but the Smart Contract

requires different parties to individually endorse the action (or reject it) within a time

limit.

• How are the governing parties recognized by the Smart Contract? Depending on the

ledger, this may be an organizational identity within the ledger, or an account owned by

the party (e.g. a public key).

• What are rights each governing entity has? It is possible that some ledgers do not allow

some actions, such as contract stop and resume, termination, contract upgrade, changes

in governing party identities, and any other business-specific actions.

• How are Smart Contracts upgraded? If the Smart Contract can be upgraded, either via

the ledger’s native support (e.g. in Hyperledger Fabric, using versioned chain code), or

via development techniques (e.g. proxy contract), the process of upgrade needs to be

managed. This may need communication with the users of the Smart Contract as with
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any software release management process. If the Smart Contract is governed by a group,

it is important that the group coordinate for the upgrade using the appropriate technical

means.

A.7.2.3 Design Planning - Coding and Testing

In this stage, the stakeholders may list the coding and testing strategies and resources, they may

require for later stages of coding and testing. The strategies and resources may include the

following:

• Choice of programming languages.

• Choice of testing environment.

• Resources required for coding and testing such as developers and development tools.

A.7.2.4 Deployment Planning

Smart Contracts can be deployed on the master-chain, side-chain or off-chain depending on the

planning and requirements of the organizations. For example, if two companies are willing

to run a business contract that may stay exclusively between them, they can have a side-chain

with Smart Contracts deployed there and make appropriate selective updates to the main-chain

such as contract start and termination dates without the details of the contract.

In the following clauses, the possible methods of deployment are discussed.
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Consideration Master-chain Side-chain Off-chain

Contract-type Contract, Address
of Contracts on
Side-chain and/or
Off-chain

Contract Contract

Scalability Limited Limited High

Security High Limited Requires off-chain
security measures

Immutability High Ledger-dependent Limited

Eternity High Ledger-dependent Limited

Risks Low Medium High

Storage
requirements

Local Can be distributed Does not need to
be shared

Speed Medium Slower Faster

Dependency None Ledger and
governance
dependent

Ledger and
governance
dependent

Parallelization Ledger-dependent Ledger-dependent Governance
dependent

Table A.1 Smart Contract Deployment Considerations

A.7.2.4.1 On-chain Deployment This is the simplest method for deployment of Smart

Contracts and the contracts are stored directly in the ledger, which can be a master-chain, a

side-chain or an off-chain. The advantage is that the customers do not have to rely on any other

side-chain or off-chain (which may require additional resources) and it is best for a system

managed by a single entity. Since all the full contract codes are stored in a single chain, in

long-term scalability can be a problem. The simplest deployment model is where the Smart

Contract is never terminated. In some ledgers, a Smart Contract can always be removed, while

in other ledgers this decision can be built into the Smart Contract at development (i.e. self
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Fig. A.2 Master-chain and Side-chain Smart Contracts

destructible clauses) or deployment time (i.e. by choosing to include or omit a "termination"

mechanism self destructible clause are discussed).

A.7.2.4.2 Side-chain Deployment In this method, the main logic of a contract is stored in

a side-chain and only some indication of that contract (such as hash or address) is stored in the

master-chain. The advantage of this technique is that, since it is not required for a full contract

code to be in the master-chain, this technique is scalable. Additionally, the side-chain contract

address in the master-chain can be updated by the owner of the contract through a transaction

with no additional means. The danger in this type of deployment is that, if the side-chain

contract is not self destructive, it can stay forever and can be callable by other contracts, also as

it is in the chain (no matter if the chain is side-chain) it occupies storage. Side-chain Smart

Contracts can be reused by other users of the PDL (delegated by the owner of the contract).

A.7.2.4.3 Off-chain Deployment In off-chain deployment, Smart Contracts are stored

away from the ledger and may be in a trusted data structure. The indication of the presence of

contracts such as invocations are only recorded in the master-chain or a side-chain. Off chain

deployment possess risk of trust and rely on security of the database where the contracts are

stored. The major advantage of an off-chain deployment is this technique is scalable since only
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the invocations are stored in the PDL. Since off-chain deployment does not depend on any

specific PDL, such contracts can be ported to other PDL types with relative simplicity.

A.7.2.4.4 Immutable Deployment There are methods by which Smart Contracts’ immutability

can be managed. This is typically done at the deployment stage. Some of immutability

management techniques may be available natively in a specific ledger, and for other ledgers,

this may require the use of programming techniques such as call delegation across contracts.

Immutability as a property is discussed in clause A.6.2.2. If the ledger has immutable Smart

Contracts, this governance model is recommended to be encoded within the Smart Contract

during the contract planning. This is intended to stop later changes.

A.7.2.4.5 Terminable Deployment A Smart Contract may be terminated, i.e. permanently

disabled, if the ledger or the Smart Contract itself directly supports this mechanism. A PDL is

typically immutable so that Smart Contracts, but some ledgers may allow the contracts to be

terminated and is dependent on the governance and the consensus of the under-lying ledger.

A.7.2.4.6 Upgradeable Deployment Some ledger technologies support upgrades to an

existing Smart Contract, i.e. changing the Smart Contract’s operational code. This typically

happens by installing a master contract with a mutable field similar to passing an argument

to a function. This argument acts as a pointer to another contract which carries the actual

operational code. This type of deployment is useful when upgrades of a contract are needed.

However, in this case, the problem of scalability exists because the old contracts may not be

deleted and stay in the ledger as a dormant contract. If the Smart Contract can be upgraded,

either via the ledger’s native support (such as in Hyperledger Fabric, using versioned chain

code), or via development techniques (proxy contract), the process of upgrades needs to be
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managed. This may require communication with the users of the Smart Contract as with any

software release management process. If the Smart Contract is governed by a group, the group

may coordinate the upgrade using the appropriate technical means.

A.7.2.5 Draft Template

A.7.2.5.1 Introduction In the future, the PDL technology is envisioned to be used widely

for all kinds of business transactions. Therefore, before the planning and coding process begins,

a Smart Contract can be drafted electronically or manually. At this initial stage, some or all

of the stakeholders can decide together with their requirements such as code and resources

requirements. This step facilitates the smooth and error-free coding of a contract.

A.7.2.5.2 Terms Negotiation Once the draft of requirements is ready, the terms and

conditions between the stakeholders can be decided and agreed. It is particularly important in a

Smart Contracts because in traditional manual contracts, there may be a freedom of amendment

at any time, whereas Smart Contract by-design do not typically have such freedom. At the

same time, it is important that all stakeholders agree on terms of the entire deliberation so that

there is no conflict in the future. The terms and conditions will be varied from organization

and its governance, but questions such as deployment management and lifecycle of a Smart

Contract can be addressed. Some of the important points that may be a part of the negotiation

of the terms are:

• Is the Smart Contract going to on-chain or off-chain?

• If participants want to maintain a side-chain, who will be participants and their role?

• For how long the side-chain will be active?
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Especially in situations where contract can be stopped and resumed, terminated, or upgraded,

the multi-party governance agreement may take into account who has the authority to issue

these operations. Depending on the capabilities of the ledger itself some of these policy

decisions may be part of the ledger itself; in other cases, these decisions may be encoded into

the Smart Contract and defined in design phase already.

A.7.2.5.3 Map Draft Template to the Machine-Readable Context (Compile Draft) This

step provides the bridge between the draft template and the coding phase and involves the

procedures in mapping the draft contract (from draft template clause A.7.2.5) to a Smart

Contract which is the technical representation of the same. This step not to be confused with

"Compile" in the context of programming and only harmonises the template and coding steps.

This step can specify the complete supervisory level specifications such as underlying ledger

technology to be used and the stakeholder needs.

A.7.2.5.4 Draft Review (Reference Checklist) The last step of the planning phase to

review and verify the complete planning phase. The reference checklist may include:

1. All the stakeholder requirements are listed in the draft.

2. The planned hardware and software resources such as PDL are acceptable and reachable

to all of the future nodes (i.e. participants).

3. All the functions are mapped accurately to the requirements.

4. The governance of a contract is clearly documented and part of the draft template

(clause A.7.2.5).

5. The contract is planned in accordance with the standardization body guidelines.
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A.7.3 Coding and Testing Phase

A.7.3.1 Introduction

As soon as the contract plan is in place, the next step is to code it. This clause will cover the

coding and testing phase of a Smart Contract and discuss the steps which can help industries

produce viable contracts.

A.7.3.2 Coding Process

The coding language decision is dependent on the underlying PDL type. Some of the PDLs

may allow different languages for the Smart Contract coding, but some are very specific to

this. Where there is freedom provided by a PDL type to use multiple languages, the widely

used language may be adopted as they are better understood by the programmers and may have

more tools available for testing and bug fixing.

A.7.3.3 Testing Process

A Smart Contract may go through a comprehensive testing process to avoid erroneous contracts

being deployed. Several steps can be part of this process, depending on the priority of

organizations. A recommended testing flow is shown in Figure A.3.

A.7.3.4 Code/Programming Language Level Testing

The Smart Contracts’ testing varies from traditional software testing in several ways. Traditional

software mostly has freedom of revision. When needed, it goes through regular updates,

software revisions and patches to remove bugs. Smart Contracts are deployed on PDLs; this

means all the nodes carry a copy of the same contract and execute as required. Also, any syntax
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Fig. A.3 Smart Contract Testing Process
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or logical error will be replicated to all of the nodes, and it is impossible to fix such errors once

the contract is deployed in the PDL. Such errors can be avoided by traditional language-specific

software testing mechanisms. Programmers can ensure that a contract is error-free and carry

out all necessary tests in a test environment before deployment.

A.7.3.5 Smart Contract Specific Testing

Smart Contract testing is different from code-level testing, as this level of testing ensures

a safe and manageable Smart Contract. Smart Contracts are typically auto-executable, and

their termination is difficult; hence it is important to consider following while testing a Smart

Contract.

A.7.3.5.1 Source SC Analysers A number of open-source SC analysers such as Securify

[i.1] and SmartCheck [i.2] are available to analyse the SC code and tag the vulnerabilities

present in the program. These vulnerabilities, such as uninitiated functions can provide

third party (possibly malicious) access to a contract, thus to the ledger. These analysers

prevent external accesses by inspecting the code and flagging the possible vulnerabilities in

the code. However, all the analysers have their limitations such as they support certain ledger

technology or programming language. Also, the attacks on the contracts are evolving; hence

more comprehensive scrutiny of the contracts can be achieved by multiple analysis techniques.

Another important consideration for an analyser is the support for a PDL type, most of the

available analysers are for Ethereum and Hyperledger and the adopters of the other ledger types

can look for their respective PDL supported analyser.
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A.7.3.5.2 Sandbox Testing A PDL is a group of nodes, and erroneous Smart Contracts can

be harmful to all of the nodes. A Sandbox testing mechanism is useful before the execution of

a Smart Contract on an in-production PDL to ensure safe and error-free contracts. Sandboxes

are specific to the ledger type and can be local or distributed.

Local Sandbox– A local copy of ledger can be used as a sandbox, and sample contracts

can run several times to verify the output. A disadvantage of local testing is that it may

not give realistic latencies for execution and deployment. A solution for this can be a

distributed full-scale Test-net.

Distributed Sandbox/Test-net – A solution for limitations of local sandbox can be a

permanent a sandbox between the nodes or a Test-net, which serve as the testing ground

only and all the Smart Contracts deployed there may not be considered as valid; to enable

scalability in such sandboxes, they can be deleted after a certain time to free storage.

A.7.3.5.3 Three Passes It is recommended that nodes run their pre-tests before sending

the deployment transaction. These pre-tests are specific to the use-case and the PDL type. For

example, in a token contract, the address of the payee is important to be included in the contract,

and for the asset trail contract, the change of ownership is an important parameter. Here, three

reference passes for a contract are highlighted, stakeholders may look for, before deployment

of their Smart Contract:

• Execution Clauses A contract is executed with certain predefined conditions which can

be internal such as start time or external such as an API call. Hence, it is important to

have the execution clauses in a contract clearly defined, as its absence will make the

contract dormant. Moreover, the presence of unintended conditions can open backdoors

in a contract and to be avoided.
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• Penetrable Clauses The clauses that invoke the critical parts of the contracts such as

payment remittance may be accessed exclusively by the owner or the authorized member

of the PDL. Moreover, all the entry points to the contract can be examined to prevent

unauthorised access. Hackers usually exploit such loopholes or openings to gain access

to the contracts.

• Termination Clauses Smart Contracts by-definition cannot be destructed but become

inactive. Termination clauses allow the contract to stop its execution and become inactive;

this prevents the ledger from having eternal contracts. Moreover, after a specific time, a

contract may be self-destructible to avoid outdated versions of the contracts and allow

the modified new versions.

It is be noted here that Smart Contracts vary in certain ways from legal contracts which cannot

self-destruct but may include clauses after which those contracts become ineffective.

A.7.3.6 Validation

The Smart Contract may be the exact and true representation of the natural language contract

and perform only the tasks specified there. In other words, semantic gaps between the expected

and the actual execution are important to be eliminated to avoid the wrongdoings of a contract

and implement an error-free code. The semantic gaps can be checked at Level 3 of the testing

process Figure A.3.
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A.7.3.7 User Experience Testing

A group of users can test a Smart Contract on a sandbox. Their feedback will help in two ways:

1. the future users of the product can comment on the quality of the contracts and future

development; and

2. identify the errors and semantic gap in the contracts.

A.7.3.8 Consumer Protection

It is recommended to exercise the disclosure of minimum terms and conditions to transfer

liability from the developers to the user. The user may take full responsibility for the protection

of sensitive data such as keys as leakage of information can put other PDL members’ data at

risk.

A.7.4 Deployment and Execution Phase

A.7.4.1 Deployment

Smart Contracts by-design once deployed cannot be changed or amended. Hence, extensive

emphasis on careful planning and design has been placed on the earlier stages. In the

deployment stage, the contract is installed on a PDL, and it particularly involves the stakeholders

such as a mobile operator and a tractor vendor, who agreed on a contract for network services.

This stage may not necessarily involve the developers as the deployment can be straightforward

if the earlier steps are carried out correctly, and the pre-tested template of a required contract is

available.
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A.7.4.2 Execution

Deployed contracts can be executed unlimited times (depends upon the under-lying PDL type)

during the execution phase. The execution of a Smart Contract can be parameterized, and

non-parameterized depends on the design model and can be performed by any authorized party

through an API. Rest APIs can be used here, and the payload can be implementation-dependent.

A.7.4.3 Termination

Smart Contracts are recommended to be terminated exclusively, or they may be self-destructible

after certain a time as may contain critical conditions such as pay-outs. In this case, if a dormant

contract exists in a ledger can be exploited by the adversary. The termination of the contract

can be done by the contract itself (i.e. destroys itself) or through an API handled exclusively by

the stakeholders through the digital-signature mechanism, to ensure security. The termination

may exclusively be performed by the owner of the contract, and it is possible that instantiation

of one contract terminates the older one.

A.8 Architectural Requirements for Smart Contracts

A.8.1 Introduction

Smart Contract depends on the PDL type, and their architecture is also dependent on the PDL

support. The careful design of the internal architecture of Smart Contracts is important to

design a safe and scalable Smart Contract. In this clause, the architectural requirements for a

viable Smart Contract are discussed.
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A.8.2 Architectural Requirements

A.8.2.1 Reusability

Since a Smart Contract is a software that can live forever in a PDL, its architecture may be

able to provide flexibility for reusability; that is to say, a contract may be generalized enough

to be used multiple times. In a Smart Contract, key parameter such as start date, end date,

and beneficiary information can be specified to allocate a Smart Contract to several users.

The reusability can prevent the dormant contracts and the PDL being populated, thus helps in

scalability.

A.8.2.2 Self-destruction

As discussed in clause A.7, Smart Contract may be destroyed or terminated after some time to

avoid dormant or eternal contracts. However, some contracts are not suitable to be destroyed or

terminated completely. For example, contracts with some monetary value cannot be terminated

because their destruction will cause the customers to lose funds. However, if a contract is

some kind of agreement, for example, an agreement between a user and their network service

provider, it can include the self-destructive clause. Self-destruction may have two substates:

1. End of use

2. Management removal, or achieving, if the self-destruct clause allows this. This may run:

• On time-out.

• On periodic heartbeat.

• On explicit management action.
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A.8.2.3 Data Ownership

A Smart Contract may comply with GDPR requirements and keep public data only. If a Smart

Contract wants to access or keep the private data (i.e. under certain licensing restrictions), the

governance of the PDL may take and record appropriate permissions from the owner of the

data.

A.8.3 Reference Architecture

Smart Contract development may go through three different processes:

1. logic - in which the original purpose of a Smart Contract is defined;

2. algorithm - the code logic and the interpretation of logic to execution; and

3. code - the final code which is a true representation of the initially planned logic.

In Figure A.4 smart contract processes are illustrated.

A.8.4 Data Retrieval in Smart Contracts

A Smart Contract may retrieve data from external sources such as oracles through an API. This

access can be in compliance with the governance of the PDL and the country laws such as

GDPR. As discussed in clause A.8.2.3, the data added to this Smart Contract may comply with

GDPR - the Smart Contract can keep only public data - private data, if added, is informative

and comply with regionally agreed and national regulations.
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Fig. A.4 Processes of a Smart Contract
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A.8.5 Transactions and Transaction Dependencies

A Smart Contract deployment and execution creates a transaction which is recorded in the PDL.

It is possible that a Smart Contract transaction is initiated by other Smart Contracts; that is

to say that a Smart Contract execution is dependent upon certain prerequisite state of another

Smart Contract and triggered by them. Here is some consideration to be taken care of, such as

the latency of prerequisite Smart Contracts may delay the execution of future contracts. The

transaction ordering for a Smart Contract is important to be defined in the consensus of the

corresponding PDL. It is recommended to adopt specific ordering of transaction inside the

base contract (i.e. the contract which will initiate the chain of contracts) to avoid transactions

being rejected and cause clutter in the ledger because even the rejected transaction is recorded.

Additionally, an appropriate delay may be added to call the next contracts; this approach can

mitigate the problem of latency and provide sufficient time for earlier contract transactions to

complete their execution.

A.8.6 Smart Contract Architecture - Without Smart Contract Chaining

Following reference architecture defines a Smart Contract with recommended processes.

Organizations may choose their own variations depending on the PDL type and requirements

of the use-case and may consider this as an initial design.
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Fig. A.5 Reference Architecture of Smart Contract with External Input

A.8.7 Smart Contract Architecture - With Smart Contracts Chaining

Fig. A.6 Reference Architecture of Smart Contract with Internal Input

A.9 Smart Contracts - Applications, Solutions and Needs

A.9.1 Introduction

Smart Contracts and their properties can be useful in many applications. Smart Contracts can

be applied in any DLT scenario where an automated and transparent contractual mechanism
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is required. However, the limitations and implications of adopting a Smart Contract based

solution may be considered. In this clause, some of the possible applications and limitations of

Smart Contracts are highlighted along with potential solutions.

A.9.2 Applications

A.9.2.1 Introduction

Smart Contracts can potentially be a viable solution for applications where transparency and

immutability are a priority. They provide a mechanism to automate the contractual process,

track the contract executions, and provide accountability in the contractual process. There

are several ways and solutions where Smart Contracts can be applied to achieve the goals

mentioned above, and some of them are highlighted here.

A.9.2.2 ICT Sector

In the ICT sector, there are a number of ways a digital service provider and a customer (business

or individual) engage in contracts. For example, Home mobile provider and Visited mobile

provider have contracts for roaming services; the services consumed by the customer in the

visited location is recorded and sent by the visited provider to the home provider. Smart

Contracts can automate this procedure by enabling service providers to create Smart Contracts

for such digital services; as soon as the visiting customer consumes the network services of the

visited operator, the corresponding Smart Contract is activated and enables instant settlement

between the host and the visited provider including the availability of the credit and payments.

Furthermore, mobile operators may not offer the same consistent performance; factors such as

congestion in the area and day/time impact the performance [i.3]. This may result in a violation

of the SLA between the user and the service provider. In situations where the mobile operators
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cannot provide the required QoS, possibly due to the congestion, customers may consider

getting the services from other operators who offer a service guarantee. These provisions

need automaticity and transparency. The customer wants to get the services instantly and

automatically. In the scenarios where QoS is of paramount importance (e.g. services for

life-relying activities such as remote surgery), strict SLAs are expected be honoured, and if

the violation happens, the customer is notified (Transparency) and potentially compensated.

Smart Contracts can help to achieve these targets and provide a contractual framework in an

untrusted environment. This is achieved through logging of SLA and performance data on a

PDL, and applying a Smart Contract to calculate the actual performance against the targets and

automatically calculate the penalties according to the SLA where applicable, penalties can be

automatically reduced from the invoice on the next billing cycle.

A.9.2.3 Automated Machines/Sensors

Automated machinery such as tractors and solar farms are equipped with sensors; these sensors

transmit the device data such as engine readings or battery life to the Cloud or command

centre, where this information is processed to make future decisions such as capacity planning.

Such systems are vulnerable to eavesdropping, replication, and man-in-the-middle attack. The

attacker can pretend to be a legitimate device and send erroneous or incorrect data to the

command centre, and the valid user can be blamed for sending false/fake information. Such

attacks can be mitigated using Smart Contracts, which can be installed on the ledger and while

transmitting the sensor data, the unique identifier of the sensor sent along with the data, this

information will be recorded as part of Smart Contract execution, which can verify the identity

of the sensor. It is expected that data is sent within a quantum-safe encrypted form to mitigate

man-in-the-middle attack and eavesdropping.
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A.9.2.4 Automated Auctions/Sales

Automated auctions are found in almost every field - for example, telecom regulators auction

bandwidths to operators. Smart Contracts can help automate this process in such a way that

the bandwidth contract is installed on a PDL with predefined parameters. An auction starts

and ends with predefined time, and all the bids are recorded in a PDL. This process becomes

transparent to all the parties preventing dishonesty both by the bidder and the auctioneers.

These bids can be tailored for specific needs for visibility and automated actioning.

A.9.2.5 Mechanism for Access Control/Certification Authority

Smart Contracts may be used as a mechanism for access control; as by definition, they execute

automatically, all the access information (e.g. user credentials) can be recorded in a PDL.

For example, a Smart Contract can be executed when some access rights are granted by a

PDL-based certification authority. This may prevent the future disputes of the data breach and

provide a record of all the information exchange and key distribution. In another example,

Certificate Authorities are trusted by the users, and it is possible for malicious parties to act as a

CA and issue fake certificates. This can cause users to trust malicious websites and share their

personal records and bank information with them. This problem can be mitigated with PDLs by

distributing trust between a group of users rather than a single entity and can be compromised

only when more than 50 % (or any higher threshold set by the governance) nodes are malicious.

As soon as user credentials are allocated, the respective Smart Contract can be executed, and all

the relevant information for the certificate is recorded. These credentials may be used to access

the controlled data or records (e.g. PDL data). Since the credentials are issued by the group of

users in a PDL and their integrity is backed by a transparent mechanism, they can be trusted.

Also, it is difficult for malicious users to act as a CA because PDLs are managed by a group
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Fig. A.7 Example of PDL based Certificate Authority

of nodes, and all the records (such as public keys) are transparent, so the users can verify the

integrity of a website with the PDL. s Smart Contracts can provide a mechanism for accessing

data from a foreign ledger, by distributing authorized keys to the authenticated participants only,

in this way, the participants will not need to ask for access keys repeatedly; the key distribution

is recorded via Smart Contract to a PDL enabling the records to be updated automatically and

transparent to all PDL members. This facilitates the future audit of the access records.

A.9.3 Solutions

A.9.3.1 Introduction

Smart Contracts have some limitations such as scalability and immutability, which are already

discussed in earlier clauses. In this clause, the possible solutions to these inherent properties of
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Smart Contracts (e.g. immutability and auto-execution) are discussed. It is to be noted that in

certain cases these properties cannot be eliminated but can be mitigated through design and

planning.

A.9.3.2 Scalability

All the executions of a Smart Contract are recorded in a PDL, and removing them from PDL

is not possible for a typical PDL. Because Smart Contracts cannot be removed, unused and

dormant contracts may live for eternity in the PDL costing PDL node resources. Some potential

solutions to manage the scalability problem of PDLs due to Smart Contracts specifically.

A.9.3.3 Check-point

The Smart Contracts can be installed on side-chains with a check-point to self-destruct after a

certain time. A side-chain can record the existence of the contracts in the master-chain before

destruction. This can be achieved by introducing a check-point (e.g. a specific date). For

example, a side-chain with certain dealings between a telecom operator and a vendor, and

once this contract is completed, the chain is destructed, but final settlement transaction may be

recorded in the master-chain.

A.9.3.4 Extensibility

Smart Contracts are immutable; however, they can be extended or revised by adopting the

off-chain mechanism. That is to say that the master contract is deployed in a master-chain (or

maybe the side-chain acting as master-chain) with the initializing clauses only and include

commands which call the logic contract. The logic contracts are separate contracts which may

be installed on the same or different (e.g. master-chain or side-chain) PDL or may be installed
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off-chain (i.e. trusted data structure). Sample architecture for contract chaining is shown in

Figure A.6.

A.9.4 Security of Contracts

Smart Contracts are software and are not web-based; hence the traditional application layer

security protocols (such as https) are not applicable to them. Incorrect information can activate

Smart Contracts in a manner which may have a negative impact on the ledger and its users. A

possible solution is mandating that activation requests for Smart Contracts are always generated

from a Trusted Execution Environment (TEE) (Figure 7-2). In Figure A.8 a Smart Contract

based QoS monitoring system is explained where TEE is installed on both the user and the

operator, the request to execute a Smart Contract is generated from the user, however, the QoS

parameters are reported to the PDL through a TEE which is submitted to the operator through

customer’s TEE. The detailed procedure is explained in clause 7.5.

A.9.5 Example: Smart Contracts with QoS Monitoring

The architecture explained in Figure 7-2 provides a mechanism of network services allocation

using Smart Contracts; the industry can adopt this for an accountable contractual mechanism

for network service provisioning. In this architecture, the operators and regulatory authority

operate as PDL nodes, and customers (entities who need services) have limited read-only access

to the ledger that is, customers, do not take part in the consensus of the ledger. The service

contracts along with their Service Level Agreements (SLAs) are recorded (deployed) in the

PDL in the form of Smart Contracts. The goal of this architecture is that the service contracts or

Service Level Agreement (SLA) along with QoS metrics provided during the service provision

is recorded in a PDL, enabling future audibility and SLA monitoring. To prevent customer or
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operator being dishonest and reporting wrong QoS parameters, the QoS recording and reporting

will be done through TEE only. The annotations in Figure A.8 are discussed below:

1. All the service contracts from all available operators are advertised on a Distributed

Application (DApp) (which works as a marketplace for the service contracts); these

service contracts are backed by Smart Contracts stored in the PDL. Like a typical

marketplace, a customer can input their requirements and choose a suitable network

service offer. The customers may be asked to forward the agreed-upon payment to the

chosen operator using traditional means to prevent DDoS attacks on the PDL.

2. Once the customer chooses a service contract, the DApp fills an activation request to the

corresponding Smart Contract, transferring the payment due at the same time (which will

be payable only if the request is successful). The service request is then encoded as a

transaction and sent to the PDL; customer is required to sign this request to prove their

approval. As mentioned earlier, the service contracts, as Smart Contracts are already

installed on the PDL and ready to accept execution requests.

3. The new transaction containing the activation request is added to the pool of pending

requests by the validators (i.e. operators and regulatory authorities), who will eventually

accept it, through the distributed consensus algorithm, if well-formed.

4. On successful execution, the respective operator gets notified and can start allocating the

resources to provide the requested service.

5. The service from the operator to the customer is being provided. At this stage, the actual

QoS is managed by a customer-side and an operator-side Trusted Execution Environment

(TEE). The operator-side TEE is called as Performance Monitor.



A.9 Smart Contracts - Applications, Solutions and Needs 161

Fig. A.8 Smart Contracts with QoS Monitoring

6. The Performance Monitor records the receipts from the user and send to the PDL inside

the corresponding Smart Contract (i.e. their agreement). This allows to verify, and prove,

if the SLA has been fulfilled.

A.9.6 Needs - Requirements to Build a Viable System with Smart Contracts

A.9.6.1 Regulatory Aspects

The PDLs’ governance may manage the Smart Contracts, the group organizing a PDL can

reach a consensus on the regulation of the terms and penalties in case of violation. For example,

roaming is currently a challenge for mobile network operators. In current systems, billing in

roaming may be a long process and involves several steps such as sending the usage to the

home operator to make claims. To resolve this, customers’ payment can be directed to the

visiting operators through the PDL and invocation of a Smart Contract. This system is only

viable when both the participants honour the Smart Contract and in the situations of dispute

resolve them as per the governance of the PDL.
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A.9.6.2 Security of the Contracts

In Blockchains such as Ethereum, Smart Contracts are publicly available; as per Ethereum

consensus a copy of every contract is stored at every node; this may not be a scalable strategy

for many real-world applications, where all the participants, even from the same PDL are not

involved in every agreement or contract. In such a situation, a more exclusive mechanism can

be adopted, where only the involved participants, may have access to Smart Contracts. To

ensure privacy in Smart Contracts, different access rights can be assigned to every participant of

the contract. Here, the participants can be direct trading parties or the other stakeholders such

as the mediators (in PDL access control mechanisms may prevent security breaches). Another

advantage of this strategy is it enables scalability for the nodes.

A.9.6.3 Secure Data Feed (Oracles)

Smart Contracts usually get data from external sources such as oracle services; sometimes, this

data-feed is used by them to start executing specific functions such as payments and penalties.

For example, in the telco-sector, the QoS records are submitted to a contract to perform payment

functions for the network services provided. It is likely that the participants, such as clients,

can tamper with the actual data to benefit themselves. For example, they report wrong QoS

metrics to blame the provider for not offering the contractual service. This problem can be

tackled at the implementation stage; however, security mechanisms such as the installation

of trusted hardware at the customer end, for example Trusted Code Base/Trusted Execution

Environments (TEEs) can be adopted after checking implications.
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A.9.6.4 Enforceability

Smart Contracts are self-executable, which means they can automatically execute with the

fulfilment of a certain pre-coded condition; When two or more parties internally or externally

agree on a contract, they are expected to honour the agreement without any disputes, and if

there is any, the stakeholders can come together to resolve the issue as per organization policies.

NOTE: Smart Contracts are enforceable across the borders (i.e. internationally) and can follow

the PDL governance policies and the participants’ laws. This will be normatively addressed in

a future specification regarding the work on the UN regulations for international trade [i.5].

A.9.6.5 Availability

As Smart Contracts are aiming to be adopted as a contract mechanism for industry, an important

consideration for them is to be always available for execution which depends on the transaction

speed of the native PDL. If a PDL supports higher transaction speed it also allows more

connections to Smart Contracts; the number of requests at the PDL (i.e. transactions) impacts

the availability of the PDL hence Smart Contracts. Hence, to avoid unwanted traffic at the

PDL, admission control mechanisms may be applied to ensure legitimate and necessary nodes

access the PDL only. For example, a PDL governance may enforce a rule to allow a node to

send a certain number of transactions in a specified time only after they are not allowed to send

transactions for some specified time, or they can go to hibernation state that is their "Idle-time".

The number of allowed transactions and idle time of nodes depends on the use-case and the

governance of the PDL, for example, an organization using a PDL-type which allows hundreds

of transactions per second may allow more frequent transactions from their users compared

to other PDL-type which support tens of transactions per second which can accommodate a

smaller number of participants.
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A.9.6.6 Attacks

A.9.6.6.1 Re-entrancy Re-entrancy attack happens when the attacker takes hold of the

contract and attempts to change the ledger through this contract; one consequence is that they

are possibly able to transfer funds to themselves. The most famous example of this attack

the DAO attack in 2016, in which the attacker was able to steal 3,6 million Ethers through a

re-entrancy attack. Re-entrancy can be:

1. single function; and

2. cross-function.

In Single Function re-entrancy, the attacker can control only one function and recursively

calls the same function to create damage; for example, drain all funds managed by the contract.

In Cross Function re-entrancy, the attacker can control functions which share states with other

functions. For example, a pay-out contract shares its state with a vulnerable function.

A.9.6.6.2 Free Option Problem This type of problem is well discussed in Plasma blockchain.

When two parties, X and Y agree to do some purchase and decide to pay through a Smart

Contract, X sends its signed transaction; in the mean-time Y changes its mind and backs-off.

In this situation, X has already sent Y the payment for the item, but Y has refused to send the

product; in this case, Y has the Free-Option he can take the money without giving the product.

In PDLs, this type of attack can be mitigated by the governance and the penalties enforced by

them.
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A.9.6.6.3 Denial of Capacity Attack Like other distributed systems, PDLs are vulnerable

to attacks from malicious parties which can cause Denial of Service (DoS) to legitimate users.

For example, since the PDLs allow a finite number of transactions per second, the malicious

users can send continuous and redundant service requests from malicious users to the PDL,

which can overwhelm the PDL. A global lock of a certain time(possibly a few seconds) can be

applied to prevent such happenings. Also, penalties through governance may also prevent such

wrongdoings.

A.10 Threats and Limitations of Smart Contracts

A.10.1 Introduction

This clause discusses two major limitations of Smart Contracts 1) Inter and Intra system

threats - These threats are due to an internal and external system of the Smart Contracts and 2)

Limitations of a Smart Contract - due to its inherent properties.

A.10.2 Inter and Intra System Threats

A.10.2.1 Introduction

ITU, in its report on DLT [i.3] identified these potential risks to Smart Contract technology:

1. a reliance on a computer system itself that executes the contract;

2. flaws in the Smart Contract code (clause A.10.2.5); and

3. the reliance on an external ’off-chain’ event or person - to integrate with and execute -

the embedded terms of the contract.
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Some prominent points and their possible mitigation techniques are discussed below.

A.10.2.2 Absence of Termination Clause/Self-destruction

In every Smart Contract, a termination function is a fragile entity. If it does not exist or is not

programmed with the utmost care, can be active for an indefinite period, which can prove very

dangerous. For example, if a contract is meant to be writing vehicle service records to the

ledger such as location etc. and this car is sold by the company to another company, the absence

of or flaw in termination function can result in this vehicle to continue sending the critical data

to the ledger. This is dangerous to the new owner of the car because his information, perhaps

critical, is being seen by a third-party; also, for the old owner as this vehicle is still utilizing the

ledger and occupying the costly storage. For example, if a contract stipulates payment for a

certain period of time and the contract does not expire after that period, the amount will be paid

indefinitely. Indeed, the payments can be cancelled by other means such as informing banks to

stop the payment, but that is also dependent on the design of the contract. Moreover, if such

errors go unnoticed, can potentially result in more significant losses such as the execution of

certain terms which may harm the company’s reputation.

A.10.2.3 Admission Control

Smart Contracts may be allowed by authorized participants only through stringent access

control mechanisms; strong governance can potentially handle this, and consensus agreed by

the PDL members. If Smart Contracts’ access is not carefully managed, they can become open

to malicious users. However, this risk in a PDL is minimum since the participants are usually

known and allowed with consensus, yet the risk of a replay attack exists. In such attacks, the

malicious party intercepts the communication, and sends a modified data; if an attacker can
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alter the data such as payment amount or the payee, the payments will be issued by the contract.

Admission control mechanisms can ensure that the transactions received by the legitimate client

only.

A.10.2.4 Off-chain and Side-chain Contracts Handling

Smart contracts may be installed off-chain or on side-chains; they can be called external

contracts. These external contracts may not have full access the ledger and may be allowed

to record some limited information to the main-chain to synchronize with the system only

and not allowed to perform specific actions such as access or read other contracts of the

main-chains or other side-chains. However, these external contracts still may have certain

write access to the main-chain, as they may be allowed to report their contract status to the

main-chain to synchronize with the network. The critical consideration here is that if these

side-chains or external data sources (i.e. the data structures maintaining off-chain contracts)

are compromised, they can send malicious and erroneous data to the main-chain. Such acts

can cause more massive disruptions to the PDL system, such as unauthorised initialization of

other contracts and sending false information to the main-chain. A method to mitigate such

problems can be intrusion detection mechanisms installed on all the external sources and the

strong accountability imposed by the governance to the management of these data storages (i.e.

side-chains and off chain storages).
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A.10.2.5 Poor Exception Handling

If syntax and logic errors in a Smart Contract are not thoroughly checked and handled, it can

cause an infinite loop or hanged contract; this danger can be mitigated by careful design and

testing of contracts, as discussed in clause A.7.

A.10.2.6 Transparency of a PDL

Though private, PDL is still shared among members means that transactions are visible to the

members. This can be dangerous when competitors are sharing a ledger, for example in the

situation of bidding, the price of bid is recorded as a transaction in the ledger, the competing

members can see this value in the ledger and can exploit this vulnerability. This situation can

be mitigated by governance such as using a hash instead of actual value or enter only encrypted

values in the ledger.

A.10.2.7 External Libraries

Computer software such as Smart Contracts rely on built-in programming language libraries;

these third-party libraries are prone to error, and using them may be risky. Furthermore, the

malicious party can develop such a library to penetrate in Smart Contracts. Developers may

consider security vulnerabilities while using third-party libraries to avoid any dangers to the

Smart Contract.
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A.10.3 Limitations

A.10.3.1 Introduction

Smart Contracts’ inherent properties also cause some limitations. This clause outlines these

limitations and considerations that need management before the deployment of a viable contract.

These limitations are specific to the Smart Contract and dependent on the underlying PDL-type.

For example, if some PDL-type with high transaction speed, more Smart Contracts will be

executed per second than the PDL-type, allowing fewer transactions per second.

A.10.3.2 Occupancy

Smart Contracts are software codes, and they are installed on a PDL, which by-definition is

immutable. Hence if a Smart Contract is installed on a PDL, it cannot be deleted or amended.

As discussed in earlier clauses, there exist mechanisms that allow the contracts to be updated.

With such techniques, a new copy of a Smart Contract is installed, then the pointer to the

old contract is updated. These techniques do not remove the old contract, and it lives in the

ledger but dormant. If dormant and inactive contracts populate a PDL, it can cause scalability

problems over time.

A.10.3.3 Latency

The key consideration for deploying a Smart Contract is the delay or latency. The latency of

a Smart Contract is the time it takes for a contract to get deployed and executed and can be

categorized in:

1. deployment latency; and

2. execution latency.
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Smart Contracts get compiled on the local machines which can potentially be personal

computers; then the request to deploy them is issued by the deployment entity through a

transaction. In this situation, the Smart Contract latency is dependent on the compilation of the

code and the network delay for a contract request to reach the chain. Mostly, Smart Contracts

get executed more often than deployment. The pre-deployed Smart Contract can be executed

by any entity with the right permissions. To execute or invoke a Smart Contract, a transaction

is issued by the invoking entity, and this depends upon the factors such as network connection

and the congestion at the chain. Moreover, the nodes of the ledger by-design are distributed

across the World and computation, and speed limitations of every node add an overhead to the

latency in the verification of contract transaction. The method of deployment and execution

discussed here is a high-level picture of the Smart Contract system and is strongly dependent

on the underlying chain.

A.10.3.4 Underlying and Relying Ledgers in Permissioned Context

One of the most important considerations for the industry to adopt Smart Contract technology

is that of the underlying ledger. Smart Contracts are deployed on the ledger such as Corda,

Ethereum or Hyperledger Fabric. Every ledger is unique in its properties and has different

resource requirements. As of the time of writing the present document, there is no system

for ledgers to interact with different ledger exist, all the organizations or nodes use the same

underlying ledger technology in order to implement the Smart Contract as their contractual

mechanism. This is not always possible for several reasons such as economically and feasibly

to use same ledger technology: hence, be part of the consortium.
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A.10.3.5 Not Every Term can be Translated to a Smart Contract

Smart Contracts are nonetheless a computer program, and computer programs have very strict

rules, such as if this then that or do this until this condition becomes true or false. Nevertheless,

in real-world contracts, the conditions are not always this rigid and there is flexibility allowed

intentionally by both parties, for example, if a business relationship between two organizations

is old and they do want to give each other some discount but not to record in the contract, then

it may be difficult to have a Smart Contract. For a Smart Contract, either it is, or it is not, there

is no opportunity for a middle ground. However, it is important for parties to be transparent

in the contractual process and such bilateral promises which cannot be translated to the code,

can be recorded in additional contract field in a plain text or in hash format, this will enable

transparency between the participants. Adding this field in a hash form, can be verified later.

A.10.3.6 Legal Uncertainty

PDL is comprised of distributed nodes, which can potentially be spread across the globe. The

enforceability of Smart Contracts in different countries can be an issue. Legal aspects of

contracts are beyond the scope of the present document, but geographic regulations and laws

such as GDPR still applies and depends on the governance and consortia. For example, if

two parties exist in the same country, the country laws will apply, but in a multi-jurisdictional

transaction, it is recommended to follow the UNCITRAL arbitration rules and considerations

[i.5].
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A.10.3.7 Intellectual Property Rights

If a Smart Contract is deployed on a consortia ledger, it is important that parties be aware of

the potential exposure of Smart Contract code to other parties, as depending on the ledger,

either the source code of the contract, or the compiled version of the contract is shared across

the whole distributed ledger. This requires the parties to manage IPR related to the Smart

Contract, and potentially include licensing across consortia members or non-disclosure claims

in the consortia agreement to meet the required IPR management standards across the different

organizations.

A.10.3.8 Accountability in Smart Contracts

Following some pre-auditing mechanism to guarantee the completeness of the Smart Contracts,

there would be two dimensions: a) Smart Contracts that are minimal functionalities or security

functionality components with the building blocks consensus. b) Smart Contracts that are

for business layers and for development and enhancement proposals. In terms of functional

components, the accountability has cleared by the governance model which may include a

mechanism of testing, discoverability issues and mitigation of bugs before the genesis of the

PDL which normally occur on testnet period before the mainnet, but it has to be audited before

the genesis block of the network which it would be governed. For the business layers, there is a

variety of approach which in permissioned environment, either public or private, have a modular

ingredient whereby minimal terms of use are recommended and complete acquaintanceship

with the governing body of the PDL however in some cases the accountability could be a

private permissioned environment whereby the responsibility and liabilities would be by the

perfected interest in business although replicate the usage of the PDL in accordance with the

consensus mechanism.
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ETSI PDL 11 – GROUP SPECIFICATION ON SMART CONTRACTS

B.1 Executive summary

This Work Item discusses the challenges and requirements of viable deployment of smart

contracts for industries. The challenges due to inherent properties of smart contracts, and also

due to external and internal interaction are discussed and their solutions are presented.

B.2 Introduction

This work item extends the discussion of challenges and requirements for the successful

adoption of smart contracts. This document discusses the current challenges of smart contracts’

deployment and outlines architecture requirements that can mitigate those problems and enable

error-free and efficient smart contracts. Moreover, this document also oversees smart contracts’

security aspects and explains internal and external threats to a smart contract and presents

possible mitigation techniques for them.
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B.3 Scope

This work item establishes the architectural and functional specifications of smart contracts.

Additionally, highlight the potential threats and specify the solutions to mitigate them. Requirements

on the use of technology for smart contracts, governance, purpose, motivation and security.

B.4 References

B.4.1 Normative References

References are either specific (identified by date of publication and/or edition number or version

number) or non specific. For specific references, only the cited version applies. For non-specific

references, the latest version of the referenced document (including any amendments) applies.

Referenced documents which are not found to be publicly available in the expected location

might be found at https //docbox.etsi.org/Reference/.

NOTE While any hyperlinks included in this clause were valid at the time of publication,

ETSI cannot guarantee their long term validity. The following referenced documents are

necessary for the application of the present document. Not applicable.

B.4.2 Informative References

References are either specific (identified by date of publication and/or edition number or version

number) or non specific. For specific references, only the cited version applies. For non-specific

references, the latest version of the referenced document (including any amendments) applies.

NOTE While any hyperlinks included in this clause were valid at the time of publication,

ETSI cannot guarantee their long term validity. The following referenced documents are not



B.5 Definitions of Terms, Symbols, and Abbreviations 175

necessary for the application of the present document but they assist the user with regard to a

particular subject area.

[i.1] ETSI GR PDL 004: “Permissioned Distributed Ledgers (PDL); Smart Contracts;

System Architecture and Functional Specification”. NOTE Available at htt ps : //www.etsi.org/deliver/

etsi_gr/PDL/001_099/004/01.01.01_60/

gr_PDL004v010101p.pd f .

[i.2] ETSI GR PDL 010: “PDL Operations in Offline Mode”.

NOTE Available at htt ps : //www.etsi.org/deliver/

etsi_gr/PDL/001_099/010/01.01.01_60/gr_PDL010v010101p.pd f .

[i.3] ETSI GS PDL 012: “PDL Reference Architecture Framework”. NOTE Available at

htt ps : //portal.etsi.org/webapp

/WorkProgram/Report_WorkItem.asp?WKI_ID = 63501.

[i.4] ETSI GR PDL 006: “Inter-ledger Interoperability”. NOTE Available at htt ps :

//portal.etsi.org/webapp

/WorkProgram/Report_WorkItem.asp?WKI_ID = 59251.

B.5 Definitions of Terms, Symbols, and Abbreviations

B.5.1 Terms

For the purposes of the present document, the following terms apply:

Chain Types:
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Mainchain: The chain is formed at the formation of the consortium and is not

dependent on any other chain.

Sidechain: The chains depend on the mainchain or is a sub-chain of the mainchain.

Contract Types:

Eternal: Lack in without internal termination function.

Replicated: Different smart contract versions active at the same time

Template: Contract stored in ledger which are generalised to be reused by several

participants through parametrised executions

On-Chain: Smart contract installed on the mainchain

Off-Chain: Smart contract installed not on the mainchain

Smart Contract Functions

Entry Functions: Provides access to a contract from outside world.

Contract Owner: The entity installed the smart contract.

Contract Administrator: The entity that is responsible for manage and execute

the smart contract.

NOTE In the cases, when the smart contract is shared among multiple participants the

governance of the PDL is the owner of the contract

Stakeholders All the parties benefited from the smart contract deployment, execution

and destruction.

Governance Time: Governance clock
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Auditable Libraries Programming language libraries which are available for free of

charge for audit.

Contract Expiration Time The time when the governance will call the self-destruct

clause to destruct a smart contract

Oracles A service that sends data to/from a PDL.

NOTE It should not be confused with the commercial company product name ORACLE

by Sun Microsystems.

Termination Suspend a smart contract. Termination can be reused with different

parameters or can be revised with minor changes.

Natural Termination: after completing the task

Interrupt Termination: during the task

Destruction – completed its life cycle – cannot be used anymore

Home PDL-Network (HPN) A PDL network is classed as “Home PDL Network”

(HPN) when all the permanent nodes belong to the same PDL network.

Smart Contract Timers Timers that keeps track of the smart contract active/inactive

time

– Long-Term Timers Lasts the lifecycle of the smart contract. Contract creation to

destruction.
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– Short-Term Timers A duration of an execution of a smart contract. contract

initialization until its termination.

Auditable Library The complete code and its dependencies of a library is available for

free to audit.

B.6 Define the Properties of Smart Contracts

B.6.1 Introduction

Smart Contracts are executable codes which are installed on DLTs (i.e., PDLs for the purpose

this document), therefore their characteristics are dependent on their underlying ledger technology.

Some of these characteristics such as immutability and transparency are by-design properties

of a PDL and hence common to all PDL-types. Smart contracts inherit these properties from

PDLs. In this clause, such challenges which shall be taken care when designing smart contracts

are highlighted.

B.6.2 Challenges

B.6.2.1 Inherent Properties

B.6.2.1.1 Immutability Smart Contracts are immutable, which means an already registered

smart contract cannot be modified or deleted and cannot be tampered with. This way, the

integrity of a contract is guaranteed; that is to say, a contractual agreement installed as a

smart contract on a PDL becomes ossified, and none of the participants can make any changes

retroactively. Immutability produces tamperproof contracts and prevents document frauds.

However, immutability comes with a cost of scalability and has two significant problems:
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• An expired contract (or smart contract) – Even a smart contract that is expired, still lives

on the ledger and occupies the storage. For example, if a vendor and an operator are in

a contract; the contract may be valid/active for some certain duration and will expire.

Such contracts if installed as smart contracts cannot be deleted from the ledger, and cause

scalability problem.

• Erroneous contracts (or smart contracts) – If a smart contract has bugs or errors, it can

make unwanted and unintentional, possibly harmful transactions. It is to be noted here

that all the transactions either wanted or unwanted are recorded in a PDL. A bug-free and

corrected contract may replace the old contract, but records already stored in the PDL

cannot be altered.

B.6.2.1.2 Transparency In PDLs, all the ledger nodes keep an identical copy of a ledger;

this means they all share the same information. As a result, all the transactions are transparent

or known to all the participants of the PDL. Hence, none of them can deny the details of a

transaction. In certain cases, or events, when some of the participants of a PDL want private

dealings, transparency is not required and may not even defeat the purpose of privacy. For

example, a sub-group of participants in a large PDL want to do some business and install a

smart contract for the contractual terms and do not want to reveal their contractual details to the

rest of the PDL users. In a typical PDL every node will have a copy of this contract but here

a private smart contract is required. A possible to this challenge would be private chains or

private channels, such as implementation of private channels in Hyperledger Fabric, in where

smart contracts can be installed on separate, private channels only visible to the sub-group

involved in a contract.



B.6 Define the Properties of Smart Contracts 180

B.6.2.1.3 Auto-Executable Smart contracts are triggered by a software condition and can

even be executed without human intervention. Auto-executable smart contracts provide an

automated method of contracts’ execution in which parties can install the contracts as smart

contracts which are executed by the code itself. However, this property instigates the following

challenges:

• Uncontrollable executions – Erroneous code can trigger uncontrollable executions. As

an example, unwanted automated payments may cause monetary losses or delivery of

incorrect amount of goods due to uncontrollable and out-of-order delivery instruction.

• Malicious executions – If malicious parties create backdoors to a smart contract, they

can execute smart contracts and it may be difficult to stop such executions without a hard

fork to the ledger or installing a revised smart contract that blocks further execution of

the malicious smart contract.

B.6.2.2 Interoperability/Ledger Dependency

Smart contracts have a dynamic nature – they often take input, perform executions and record

results to the ledger they are installed on, or may send the execution results to other ledgers.

Smart contracts may also take inputs from other ledgers. Following are the scenarios when a

smart contract will interact with other ledgers (inter-ledger) and within the ledger it is installed

on (intra-ledger).

• A Smart contract’s interaction with other smart contracts in the same ledger (intra-ledger)

– Smart contracts within the same ledger can call each other without any need of

harmonization because they all use the same ledger type. The only consideration here

is that if an execution of a smart contract is dependent on another smart contract, they
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shall be sequential such that an execution is not started until the previous execution is

completed and its results are recorded. The reason for that sequence is that the results of

the previous executions may later be used as inputs for the next contract in the chain.

• A Smart contract’s interaction with smart contracts in other ledgers (inter-ledger) – A

smart contract may send execution results to another ledger, but the smart contract should

have correct access rights to the other ledger. Moreover, both of the ledgers may have

different and incompatible data formats which should be addressed. PDL inter-ledger

interoperability is discussed in detail in ETSI GR PDL 006[i.2].

B.6.2.3 Scalability

This problem is not limited to smart contract and is applied to every aspect of PDL, such as

data blocks. Since any data or contract loaded to PDL stays there for the lifetime of the ledger

the ledger keeps growing, the ledger will eventually require compute/storage resources that

will prevent scale. For example, in the context of smart contracts, if a consortium of telecom

operators run a ledger to offer service contracts to their customers, this ledger may be running

for several years and in those years millions of contracts may be issued. If old and unused

contracts are not deleted and removed but can be only deactivated, the ledger will be cluttered

with several unused and dormant contracts and ledger resources will be wasted.

B.6.2.4 Synchronisation of Offline Smart Contracts

In a typical PDL, transactions and smart contracts are installed on distributed nodes and these

nodes connected to form a ledger to take part in consensus (i.e., approve or reject transactions).

In the situations, when some of the nodes go offline possibly due to the reasons such as network
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connection or duty cycle, there are many scenarios possible, discussed in detail in PDL 010,

clause 6.2 [i.2]. Two examples are highlighted here:

1. Independent smart contract – which may depend on authenticated data from offline nodes

(i.e., nodes not connected to the PDL). Such smart contracts may or may not proceed

processing depending on same.

2. Chained smart contracts – when smart contract execution is dependent on other smart

contract execution, then execution will not continue/commence until the required number

of nodes are back online.

B.6.2.5 Ledger Time Synchronization

Like all distributed systems, PDL nodes are distributed across several time zones and don’t have

solitary clock. This may have several aspects such as local clock of the machine which may or

may not be synchronised with atomic clock resulting in inconsistent timestamp. Furthermore,

time zone needs to be included to compare with the universal time used for governance timing,

including other constraints such as daylight saving.
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B.6.3 Actors in a Smart contract

See clause B.7.2.

B.6.4 Smart Contract Policy Governance

For role of governance in smart contracts see clause B.11 and for details on the general

governance role see document GS PDL 012[i.3].

B.7 Requirements for Designing a Smart Contract

B.7.1 Smart Contract Facets

Smart contracts are not monotonous, they may take different roles and perform a wide range of

operations within and outside the PDL. Following are the roles a smart contract can take:

B.7.1.1 Foundational Role

Defines the roles, statements, constitution. These types of smart contracts start with the

PDL itself and may be the part of the genesis, that is, initialisation of the PDL. For example,

automated governance can be defined as the functional role.
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B.7.1.2 Functional Role

Smart contracts work as active functions, for example, Access control and intra-circumstances

during a PDL.

B.7.1.3 Business/Operational Role

Mix of both functions – some of the smart contracts have both foundational and functional

attributes. For example, monitoring smart contract may initialised with the PDL and performs

operations such as access control for its lifetime or lifetime of the PDL.

B.7.2 Actors

All the actors within the PDL network shall be assigned unique identities and access control

rights. The governance is responsible to ensure that all the actors are allocated unique access

rights, the role of governance is outside the scope of this document.

The actors related to smart contracts are chosen by the governance and defined as follows.

B.7.2.1 Lifecycle Management

Lifecycle Management of the PDL is performed by a committee or group of participants chosen

by the PDL members by mutual consensus. Typically, management decisions such as access

rights and protocols PDL members will be adhere to.

Lifecycle Management can be single party or multi-party and the role of Lifecycle Management

in smart contract are detailed in clause B.11.
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B.7.2.2 Owner

Contract owner is the party who programs and installs the smart contract. In some scenarios,

for example, when a smart contract is expected to be shared among several PDL participants,

the governance of the PDL can be the owner of the contract.

B.7.2.3 Stakeholders

All the parties involved in the smart contracts’ executions, for example, two contractual partners.

The can different categories of stakeholders

• Contracting parties – the parties sign the contracts.

• Beneficiaries – the parties affect by the contract/ advantage/disadvantaged.

B.7.2.4 Requirements During Design

B.7.2.4.1 Lifecycle Smart contracts are expected to follow the complete lifecycle proposed

in clause 4.5 GR PDL 004 [i.1]. The stepwise approach proposed will facilitate an error-free

design of smart contracts. The main advantages of adopting such approach are:

[RLC 1] Access Control and Ownerships – ownership and access control strategies

decided during the planning phase will prevent future disputes. This will also facilitate

the developers to accurately code the assigned rights while coding the smart contracts.

Access Control and Ownership shall be defined, discussed, and agreed between the

stakeholders and the governance before smart contract coding starts. It is the governance

responsibility to ensure this.

[RLC 2] Reusability – smart contracts shall be reusable and parametrised for economical

storage. During the planning phase, the stakeholders shall adopt strategies to design
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parametrised smart contracts to enable maximum reusability. It the developers’ responsibility

to ensure a reusable contract.

[RLC 3] Minimise human error – human errors may cause erroneous contracts and may

result in a security breach of smart contracts. For example, if a developer mistakenly

makes the execution function inaccessible, the contract will never be executed. A

smart contract shall be tested before the deployment and as specified in clause B.12.

NOTE: Human error, such as developer mistakes, may be alleviated through methodical

development practices. This occurs during two stages of the smart contract life cycle:

1. the planning phase – by carefully outlining the requirements from the smart contract

2. the development and testing phase – by testing the smart contract code against the

requirements.

[RLC 4] Pre-installation checks – smart contract shall be checked before the final

deployment. See clause B.12 for details.

[RLC 5] Online auditing/monitoring – smart contracts shall be audited during their

execution. See clause B.12.6 for details.

B.7.2.5 Available Technologies

Smart contracts are expected to be widely adopted; hence they should be cautious towards:

[RAT 1] Programming Languages – programming language for a smart contract programming

is usually ledger dependent but, if possible, widely available, and widely adopted

programming languages shall be used. For example, in Hyperledger Fabric, developers

have choice between several languages (e.g., Golang, JavaScript), in such cases, widely

available programming language should be adopted. This will be advantageous to the
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PDL consortium members in the future as well, for example, it will be easier to recruit

developers.

[RAT 2] Language Libraries – programming languages often have external libraries,

used for different functions such as hashing or digital signing. These external, third-party

libraries may include functions which can cause danger to a smart contracts’ security.

Only governance authorised and verified libraries shall be used.

NOTE: If a developer doesn’t do as recommended, would fail the subsequent audit.

B.7.2.6 Usage of Auditable Libraries

[RUAL 1] Developers shall use auditable libraries for smart contract programming for

the purpose of verifiable smart contracts’ program/code. Such libraries shall be testable

through governance approved testing techniques (e.g., Certification Laboratory using an

approved test suite).

[RUAL 2] The Auditable libraries used in smart contract programming shall be available

for free use for auditing purpose. However, users/developers may or may not pay to use

them. The use of open-available and free and the auditability of software libraries will

allow inspection and versioning of code in cases of future disputes or malfunctioning of

a smart contract.
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B.7.3 Input to the Smart Contracts

[RINSC 1] Smart contract developers shall ensure that a smart contract only accepts

input from authorised sources (e.g., authorised APIs).

[RINSC 2] These sources shall be approved by and given access rights by the governance

functions of the PDL.

The inputs to smart contracts are detailed in clause B.10.

B.7.4 Universal Clock

PDLs lack universal clock mechanism due to distributed nature of the nodes. Smart contracts

shall follow:

[RUC 1] Smart contracts shall use Governance defined clock – the time/zone format the

PDL network governance.

[RUC 2] Clock of the node may differ from the governance clock and is local to the

machine/hardware. In such a case the owner of the node shall ensure the synchronise

with the governance clock.

[RUC 3] Node shall drive the time from an atomic clock or from another node designated

as a source clock (timing source). All nodes shall use the same time specified by the

governance. This is to avoid time mismatch between nodes.

[RUC 4] The nodes have the capability to follow and noting the PDL time specified by

the governance, even if it deviates from the local time (geographical time). For example,

governance may have UTC as its time and all the nodes shall use UTC time as their time.
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B.7.5 Terminatable

Eternal contracts can cause problems such as unwanted executions and unauthorised future

access. There should be a mechanism to terminate or deactivate smart contracts after a certain

date/time.

NOTE: if a developer doesn’t provide a mechanism to deactivate the smart contract, then it

shall be known before the deployment of the contract. Consequently, it is advised to have a

management action to perform the same.

[RTSC 1] A smart contract shall be terminatable.

[RTSC 2] A smart contract shall include a function that can terminate the smart contract.

See clause B.8.11 for details.

[RTSC 3] The owner and governance shall ensure that the parties execute the contract,

should also safely terminate it as per specifications in clause B.8.12.

B.7.6 Security

Security of a smart contract is an important matter because insecure smart contract may allow

unauthorised parties to access the data and perform executions. See clause B.14 for details.



B.8 Solutions for Architecture and Functional Modelling 190

Fig. B.1 Smart contract in a simplest scenario: Smart contracts are installed on the mainchain

B.8 Solutions for Architecture and Functional Modelling

B.8.1 Introduction

Smart contracts are designed to enable secure executions of the contracts. This clause highlights

the architectural and functional requirements; also, solutions for designing a secure smart

contract.

B.8.2 Smart Contract Offloading

In a simplest model, smart contracts are stored in the mainchain as shown in the Figure below.

However, it is sometimes infeasible and even unnecessary to install the smart contract on the

master-chain. One way to implement that will be to off-load all or some of the functionalities

of the smart contract to an external storage (e.g., secure data storage).

[COFF1] Management Overheads – may require additional management overhead (e.g.,

storage auditing)

Several combinations of external storages are possible, some are listed here:

• Managed by HPN
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– Sidechain

– Non-PDL storage

• Managed by third party

– Foreign PDL mainchain

– Sidechain

– Non-PDL storage

B.8.3 Requirements for the External Storages

Regardless of the type of external storage listed in B.8.2 and otherwise, the external storages

serving smart contracts shall have following requirements:

[RES 1] The external storage is secured, that is, smart contract execution is safe from all

the internal and external, both malicious and benign attacks.

[RES 2] The storage may be shared by several other smart contracts and software, in

such case, the smart contract shall work in an isolated fashion.

[RES 3] The external storage shall be tamper resistant as the PDL.

[RES 4] The governance shall list the requirements of storage and all the stakeholders,

and the owner of the contract shall approve it.

[RES 5] The list of external storage requirements shall include:

(a) Hardware requirements, notably, required processor and memory

(b) Software requirements

(c) Security Protocols
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(d) The type of smart contracts is expected to be executed on this storage

(e) The duration for which the external storage will be used for the PDL

[RES 6] It is the storage owner’s responsibility to ensure that the storage follows the

governance specifications in terms of:

(a) Hardware requirements, notably, required processor and memory

(b) Software requirements

(c) Security protocols

[RES 7] The governance of the PDL, whose contracts are stored in the external storage

shall carryout periodic security and standards audit to ensure that correct standards are

followed.

[RES 8] The results produced by external execution should be provided to the PDL in a

timely fashion.

[OES 1] The list of external storage requirements may include: a. The number of smart

contracts will be running on the external storage

[OES 2] Owner/governance of the contract may install the smart contracts inside a TEE

or use other secure storage mechanisms.
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B.8.4 Requirements for External Smart Contracts

Following are the generalised requirements when a smart contract is executed on external

storage:

[RESC 1] Execution reports shall be sent to the governance periodically for audit

purposes.

[RESC 2] Owner/Administrator of the storage shall ensure the security of contracts and

their executions.

[RESC 3] Owner/Administrator shall ensure that governance-defined security protocols

are followed.

[RESC 4] The smart contract in an external storage shall access the PDL, as per the

access control mechanism defined in the clause B.8.13.

[RESC 5] The governance, owner and all stakeholders shall give an approval for smart

contract offloading, in a verifiable manner (e.g., digitally signed document)

[RESC 6] Coordination and synchronisation – All the execution blocks shall perform in a

synchronised fashion. Execution in external storages may be faster than PDL executions,

in such cases developers of the PDL shall ensure synchronisation of both the execution

blocks. For example: a smart contract may be stored in a Trusted Execution Environment

(TEE) or other security approaches may apply.
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B.8.4.1 Home-PDL Managed Storage

B.8.4.1.1 Non-PDL External Storage Contingent on availability of resources, governance

can manage external storage. Smart contracts can be stored on an external storage if it meets

the requirements listed in clauses B.8.3 and B.8.4.

Fig. B.2 Smart contract is distributed between the mainchain and an external storage.

B.8.4.1.2 HPN Managed Sidechain When a smart contract is installed on a sidechain and

is a part of the Home-PDL network, (that is, the sidechain is governed by the same governance

as the master-chain) the following conditions shall be met, in addition to the requirement listed

in clauses B.8.3 and B.8.4.

[RSC1] The access control mechanisms shall be followed as per the same guidelines as

in clause B.8.14.
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[RSC2] If the sidechain is using a different PDL-type, the execution latency shall be

compared with the master chain. NOTE: it is possible that difference in execution

latencies between two PDLs, that is, master chain and sidechain may produce ambiguous

results.

[RSC3] The parties responsible for this offloading shall ensure that results produced with

offloading are valid and timely.

[RSC4] Sidechain deletion or maintenance should not impact the smart contract functioning.

That is, Sidechain shall not be deleted or go under maintenance before all the offloaded

smart contracts are moved to an alternate storage and functioning successfully.

[RSC5] The governance/owner of the smart contract shall be notified well before for the

sidechain planned maintenance that may impact the smart contract functioning.

[RSC6] The notification time shall be part of the agreement between the governance/owner

and the sidechain storage owner.

[RSC7] If the sidechain is using a different PDL-type or version, governance/owner shall

ensure that results produced are valid, timely and interpretable by the recipient chain.

B.8.4.2 Non-HPN Sources Managed Storage

When smart contract is managed by an external entity, which is not the part of the HPN,

following can be scenarios:

• Non-Home PDL (mainchain)

• Non-Home PDL (sidechain)
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Fig. B.3 Smart contract is distributed between the mainchain, and an HPN managed external
storage.

• Third-party managed external storage

The generalised requirements for scenarios in this clause are as follows:

[RFR1] Governances of all the respective PDLs shall outline the access control mechanisms

and oversee the sharing of the contract and the data.

[RFR2] A verifiable agreement shall be completed and signed before the contract is

offloaded.

[RFR3] It is the responsibility of both the PDLs to ensure the integrity and reliability of

the data accessed through smart contract.

B.8.4.2.1 Non-HPN Mainchain Smart contracts can be installed on a foreign master-chain,

that is a PDL which belongs to another PDL network. In Figure B.4, PDL network 1 may need

to access the smart contract installed on PDL network 2.

In such a scenario, following are the requirements:

[RFMC 1] Smart contracts on a foreign PDL shall be accessed as per guidelines in

clause B.10.4.
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Fig. B.4 Smart contract offloaded to a foreign PDL’s mainchain

Fig. B.5 Smart contract is installed on an external PDL’s sidechain

[RFMC 2] Governances of both the PDLs shall define and manage the access control

strategies (see details in clause B.8.14).

[RFMC 3] Governance of the PDL network wish to share their smart contracts with

other PDL network shall take consent from their participants before agreement to share.

[RFMC 4] The shared smart contracts shall not be updated/terminated/destructed without

the consent of all the participating PDL networks.

[RFMC 5] The update/termination/destruction of the shared contracts shall be documented

in a secure way.

[RFMC 6] The update/termination/destruction of shared contracts shall not be processed

when any of the PDL is accessing the contract.

B.8.4.2.2 Non-HPN PDL Sidechain When a smart contract is installed on a foreign PDL

sidechain, the requirements are same as listed in clause B.8.4.2.1.
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Fig. B.6 Smart contract on third-party managed external storage

B.8.4.2.3 Third-party Managed External Storage When a smart contract is managed on

third-party storage. In additions to the conditions in clause B.8.4.2, the following requirements

shall apply:

[RTPES 1] Entity/party who is in control of the hardware and software shall be responsible

for the security of the contract and its data.

[RTPES 2] The governance of the PDL shall ensure that third party storage follows

security protocols which are compliant with the requirements of the application.

[RTPES 3] The governance of the PDL shall ensure that third party storage have, and

they implement adequate hardware, software and security resources to install and manage

smart contracts.

[RTPES 4] the party who is in control of the hardware and software shall be responsible

for data stored and the inputs to the smart contract.
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B.8.5 Modularised Smart Contracts

B.8.5.1 Introduction

Smart contracts can be modularised into small components, called as Modularised Smart

Contracts. In some situations, it may be feasible to split the smart contract components

between different chains and storages. This is mostly useful to improve the performance as well

as the security of the PDLs through segregation. For example, if a smart contract component is

generalised and can be shared among several PDL networks, it may be feasible to install that

component on a sidechain, so that it is shared/accessible among several PDLs without all the

PDLs accessing each other’s mainchain.

The general requirement for modularised smart contracts as follows:

[RDSC 1] All the smart contract modules shall work as a unit.

[RDSC 2] All the smart contract components shall avoid functional redundancies. That

is, every component should have unique functions.

[RDSC 3] Securely stored – agreed by the governance and PDL consensus.

The general considerations for modularised smart contracts are as follows:

[CDSC1] Management overhead caused by distributing the execution components.

[CDSC2] Authorization and coordination may require additional resources such as

additional time and coding.

[CDSC3] Latencies may be different for different devices.

Following are the possibilities of smart contract functionalities distribution.
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Fig. B.7 Smart Contract modularisation into functional components

B.8.5.2 Sidechain Offloading

It is already demonstrated that a smart contract may be distributed into two or more different

execution modules, for example, a code module which requires heavy computational resources

and another component which calls/initiates those resource-incentive computations. In such a

situation:

[OSCO 1] These execution components can be distributed among several off-chain and

external storages.

This model is generally efficient in the situations when smart contracts may need to perform

resource-intensive tasks such as, in future Machine Learning (ML) or Artificial Intelligence

(AI) computations. Following are requirements for sidechain offloading within the same PDL

network:
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Fig. B.8 Smart Contract split into two execution components (i.e., SC1 and SC2). SC1 is
stored on the mainchain and SC2 is stored on a sidechain

[RSCO 1] The results produced by the functional components managed by the sidechain

are timely and accurate.

[RSCO 2] The results produced by the functional components from a sidechain follow

the same formatting as the mainchain.

[RSCO 3] It is possible that the sidechain is following different version and PDL type as

the mainchain, in such a case, governance shall ensure requirements RSCO1 and RSCO2

are followed.

[RSCO 4] The difference is PDL type/version number shall not impact the operation of

smart contracts and shall produce results as required.
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Fig. B.9 Smart contract execution split: SC1 and SC2 are stored in two different sidechains

Fig. B.10 Smart contract execution split: SC1 is stored on the mainchain and the SC2 is stored
on an external storage

B.8.5.3 HPN-Managed Datacentre

When a smart contract is stored in an HPN datacentre, in addition to the conditions in

clause B.8.5.1, following are the requirements:

[RHDC 1] Governance of the PDL is responsible for security and integrity of the data

and datacentre.

[RHDC 2] The governance of the PDL shall ensure that results produced and/or

executions performed on the external storage are timely and PDL compliant.
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Fig. B.11 Smart contract split between two PDL networks

Fig. B.12 Smart contract is split between mainchain and sidechain of non-HPN

B.8.5.4 External PDL Smart Contract Split

In this scenario, smart contract execution components are distributed or shared among two or

more PDLs.

[RSCS 1] The governances of the respective PDLs shall oversee the access-control

mechanisms and outline the strategies to access the smart contract and the respective data

(see clause B.11 for detailed governance role in smart contracts).

B.8.5.5 Non-HPN Sidechain

B.8.5.6 External and Shared Storages Among PDLs

Clearly, it is also possible that a smart contract component is stored on an external storage and

this block is shared among several PDLs.
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Fig. B.13 A Smart contract component is stored at an external storage and shared among several
PDLs

[RESCS 1] The governance of the respective PDLs shall outline the access control and

sharing strategies that are expected to be followed by the requesting PDL.

B.8.6 Time-dependent Smart Contracts

Often smart contracts are dependent on execution of other parts of other smart contracts, which

may lead to synchronisation and sequencing issues. In such cases, the executions may be stored

in an interim data structure. Following are the requirements:

[RTDSC 1] If one component of a smart contract is executed faster than other components,

execution results shall be kept secure in an interim data structure.

[RTDSC 2] The security of this interim data structure shall be managed by the operator

in accordance with the governance-defined requirement for secure storages.

[RTDSC 3] The security of this interim data structure shall be audited by the governance

of the PDL periodically as per the governance-defined guidelines.

[RTDSC 4] If the health of this data structure is not satisfactory, the governance shall

take the necessary remedy actions.
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[RTDSC 5] When a smart contract takes longer than other smart contract components,

governance shall define a waiting time for the smart contract components to produce

output.

[RTDSC 6] Operators of the PDL shall plan the executions considering the dependencies

and smart contract (and data structure) latencies.

Considerations:

[CTDSC 1] In such a situation the subsequent smart contracts’ execution can be

invalidated because absence of the valid input (which was expected through a pre-requisite

smart contract).

B.8.6.1 Smart Contract Time/Timers

In order to avoid the malicious or accidental uncontrolled executions of a contract, several

timers may be a part of a contract and can be referred as “Smart Contract Timers”. The

following requirements shall be followed:

[RSCT 1] A smart contract shall execute in a time-controlled manner, that is, owner/governance

shall have control over the termination and interruption of the contract.

[RSCT 2] Smart Contract Timer shall be defined as a function of a smart contract.

[RSCT 3] When a smart contract is initialized, it shall also activate some internal

functions, which can reset or destruct the contract to stop/interrupt the execution.

[RSCT 4] The smart contract functions shall be executed explicitly, hence the timer

function shall be executed by the owner or governance.
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[RSCT 5] All the timer functions included in this clause and other clauses throughout

this document shall maintain precision of nano seconds.

See clause B.9.1 for details on required functions for a smart contract.

B.8.7 Data Integrity Sanity Checking

It is important that data entered to a smart contract is accurate, therefore the inputs can be

verified for their validity at the middleware layer. Following are the requirements:

[RDISC 1] Data entered to a Smart contract input data shall be accurate and timely.

[RDISC 2] The quality of the data shall be check at the middleware.

[RDISC 3] Data sanity checking is responsibility of the node/party executing the smart

contract.

[RDISC 4] Governance shall take necessary measures to prevent nodes feeding inaccurate

and invalid data.

[RDISC 5] When data sanity checker is implemented as a software, it should be

configured to check the accuracy of the data thoroughly. Options are as follows:

[ODISC 1] Data sanity checking can be implemented as software code.
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Fig. B.14 Data integrity shall be check at the middleware layer before the data is sent to the
ledger

B.8.8 Architectural and Functional Requirements

B.8.8.1 Lifecycle of a Smart Contract

[RLC 1] All smart contracts shall follow the lifecycle stated in Figure B.15.

[RLC 2] All the smart contracts will have terminations

[RLC 3] The owner/governance keeps the rights to destructs the smart contract.
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Fig. B.15 Smart contract lifecycle

B.8.9 Template Contracts

Smart contracts are immutable and if there is an error (e.g., developers’ mistake), they may

need to be obsoleted by a newer improved smart contract. To avoid that, following strategies

can be applied to ensure safe and well-tested contracts:

[OTC 1] it is recommended to use template contracts that have been tested and debugged

to reduce the chance of such errors.

[OTC 2] Template contracts are designed with more consideration and secured with

several security checks.

[OTC 3] Templates may require specification of the throughput/bandwidth of the contract

and depend on the governance, application of the contract and the stakeholders involved.
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Fig. B.16 Smart contract internal termination

B.8.10 Time-Limited

Eternal smart contracts can cause unwanted executions in future, Therefore, smart contracts

shall have internal and external ways to limit their lifetime.

B.8.11 Internal Termination

Following are requirements, that shall be defined as function of smart contracts to avoid eternal

smart contracts:

[RIT 1] Smart contracts shall be terminated with an internal termination signal/command.

[RIT 2] Every smart contract should have a termination function that disables further

executions of the smart contract after a certain period or upon notice.

[RIT 3] If a contract is generalised enough to be shared among several users, such

contract should have means of terminating/deactivating itself after an end-date or upon a

specific condition.

Note that, Internal termination is a short-term timer, and a deactivated smart contract may

be reactivated for future contract executions with different parameters upon signal or specific

conditions.
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B.8.12 Safe Termination

Smart contracts can be assigned very sensitive tasks, so it is important to safely terminate them

to avoid future attacks. The requirements for safe termination are as follows:

[RST 1] Governance and owners of the contract shall ensure a safe termination of such

order.

[RST 2] Ensure that none of the terminated smart contract functions is callable.

[RST 3] All the access rights of the current execution for the smart contract are revoked.

[RST 4] Data is archived for future reference such that data integrity should be maintained.

[RST 5] When a smart contract is required to be terminated, the reason of the termination

shall be sent as an argument of the contract. Further details in clause B.9.1.5.

Reasons for the termination can be as follows:

[OST 1] Natural Termination e.g., the purpose of the smart contract is fulfilled.

[OST 2] One of the parties is pulled-off the contract or revoked the contract (interruptive

termination).

[OST 3] Timeout of the contract reached.

[OST 4] Other reasons such as malicious activities or other non-contractual actions.
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Fig. B.17 Smart Contract Destruction – Termination is different from the destruction and
removes/deactivates the contract forever

B.8.13 Destruction

Destruction occurs when the long-term timer of the smart contract is elapsed, and the contract

end date/time is reached. Destruction is different from termination (both natural and interruptive)

of the smart contracts because a destructed smart contract cannot be reactivated. Following are

the requirements of a smart contract destruction:

[RD 1] Once destroyed the contract cannot be reinstated.

[RD 2] All the functions shall be inactivated before the destruction.

[RD 3] If a smart contract is required to be revised, that is, a new/revised version to be

installed, it shall be classed as a termination, not as a destruction.

In a typical PDL, a smart contract cannot be initiated on its own, therefore, destruction shall

be initiated.

[CD 1] The governance of the PDL can initiate the destruction through a control

instruction (clause B.8.15).

Example:
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Listing B.1 Smart contract destruct example

f u n c t i o n d e s t r u c t C o n t r a c t ( . . . ) {

i f ( endTime <=now ) {

C l e a r a l l v a r i a b l e s and d e a c t i v a t e \ \

t h e c o n t r a c t c o m p l e t e l y }}

B.8.14 Secure Access Control Mechanisms

In PDLs, smart contracts accessed by the PDL participants (e.g., owners) and external sources

(e.g., off chain sources) through strict access-control mechanisms. Following are the requirements

for accessing a smart contract.

[RSACM 1] Smart contracts should be accessible by the owner(s) of the contract, or any

other party authorised/delegated by the governance

[RSACM 2] The governance of the PDL shall ensure that access rights are granted to

authorised members (internal and external) only.

[RSACM 3] Smart contracts access shall be in a time-controlled manner, that is every

access to every smart contract shall have a limited-time access only.

[RSACM 4] Stringent access control mechanism should be implemented to enforce the

same.

[RSACM 5] Governance shall maintain a record of access rights granted to parties/entities

in an access control list (ACL).

[RSACM 6] The fields of an ACL shall include:
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(a) Node Identity (different from public key, and is assigned by the governance when

the node joins a PDL)

(b) Access start date

(c) Access end date

(d) Access start time

(e) Access end time

(f) Smart contract identity

(g) Functions granted access to the smart contract

[RSACM 7] The access revocation shall be automated, and software based. After the

agreed condition(s) are met the access rights are revoked automatically.

Options:

[OSACM 1] In some cases, the owner of the contract or governance may temporarily

use delegates to assign rights of a contract.

B.8.14.1 Access Control Requirements for Delegates

[RACD 1] Access delegation should be for a limited time and will be revoked when such

time elapses.

[RACD 2] If the delegation is changed, that is, a delegate further delegates the rights,

a delegate will have most of the rights as the owner but not all. More specifically, a

delegate may not be allowed to further delegate the smart contract rights to another party.
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[RACD 3] Such delegation rights will stay exclusive to the owner and the governance

of the PDL. However, an owner may allow the further delegation to the delegates with

discretion in some situations.

[RACD 4] It is possible that, some of the delegates further delegates the access rights

without authorization. To handle this, the device authentication should be implemented.

That is to say, the access keys assigned to the delegate shall also check for the device

identification.

[RACD 5] If a different device is identified than the authorized one than the access of

the delegate shall be blocked, and warning should be issued.

[RACD 6] The delegation rights should be the function of the Governance Layer. The

governance of some PDLs may allow delegation of all functionalities and the governance

of some PDLs may prefer to restrict delegation of some functionalities only.

[RACD 7] The delegate identification can be done through node identifier (Node

Identifier) which is assigned by the governance to the nodes of the PDL.

B.8.15 Control Instructions

Though these are function which are executed in special circumstances, other than usual smart

contract operations and are only for the purpose of control instructions. For example, sending

an interrupt instruction. Some of the examples to send control instructions are as follows:

1. Blocking/Unblocking Instruction – if a smart contract is not performing as planned

(because of reasons such as error in a contract).
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Fig. B.18 Instruction Flow Between the Layers

Such a contract should be stopped or blocked by exclusive instructions. Depending on

the requirements of the contract, such instructions can be of several types. For example,

invoke/execute the termination clause. See clause B.9.1.5 for further details.

2. Function updates – depends on the PDL-type. For example, at some instance, certain

functions are mandatory to update/modify (see Table B.1).

3. Destruct Instruction – As discussed in clause B.8.13.

NOTE: Only the values of the functions can be modified, the functions, that is, the code

is immutable.

Following are requirements for a smart contract to include control instructions:

[RCI 1] Smart contract shall include instructions as functions to allow interrupt the

execution.

[RCI 2] Following control instructions shall be defined in smart contracts

(a) Internal Termination (clause B.8.11)

(b) Interrupt Execution – that immediately stops the smart contract execution
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(c) Destruct

[RCI 3] Control instructions are of high importance and shall be accessible only by the

governance and the owner of the contract with exclusive access control credentials.

Functions Governance Owner Delegate

Change of owner Yes No (see NOTE 1) No
Interrupt Yes Yes Yes
Terminate Yes Yes Yes
Access duration Lifetime of the

contract
Limited (see
NOTE 2)

Limited (see
NOTE 3)

Delegation (see
NOTE 4)

Yes Yes See clause 6.2.5

End date (see
NOTE 5)

Yes No No

Table B.1 Functions Instructions

NOTE 1: The owner may ask the governance of the PDL for the change of the owner.

NOTE 2: The owner of the contract has governance defined access duration.

NOTE 3: The governance will delegate limited time duration.

NOTE 4: Delegation should be the functionality of the Governance layer.

NOTE 5: can be used for extension.

B.8.16 Archiving the data

Smart contracts are only execution code, the data generated by them is recorded in the ledger.

[CAD 1] In some cases, the customers may wish to terminate the contract completely,

such as self-destruct function in Ethereum, which completely removes all the states from

the ledger. Note that, such contracts can still be reinstated.
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However, in the following cases the owners shall ensure to Safely Terminate (clause B.8.12)

the contract.

Following are the example cases where the safe termination may be important.

Contract Type (e.g., the sensitive
data this function may have)

Importance of data archiving

Financial Contracts Payment functions
Identity Contracts Public keys, certificates
Auction Contracts Bid values, minimum bid value
Service Level Agreement Contracts Contract between vendors and

operators
Table B.2 Examples of data achieving in specific scenarios

In some cases, however, the owner may wish to keep the local record of the smart contract

and its executions. Note that, in such cases integrity of the data is very important. Other

participants may not trust the locally stored data of the smart contract. Following are some of

the storage methods owners may wish to use to store their data:

[OAD 1] Back up the executions and data in a cold storage with a timestamp

[OAD 2] Create a sidechain, and copy the executions there,

[OAD 3] Hash the smart contract and the respective data and store it in a local storage.

B.8.17 Stale Data

If a smart contract is destructed or deactivated, the data generated by the smart contract will

stay in the ledger for the lifetime of the ledger.

Smart contract logic and code shall be stored in a secure way within the ledger to keep the

record of the operations performed on the data in the past (for example, strategies discussed in

clause B.8.2).
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B.8.18 Updates

See clause B.13 for details.

B.8.19 Smart Contract Fields

A smart contract is initialised with some data, typically this data identifies the smart contracts.

In a smart contracts two types of fields:

[RSCF 1] Mandatory fields – These fields shall be the part of a smart contract

[OSCF 1] Optional fields – Owner/governance many introduce bespoke fields to serve

the purpose of a smart contract

B.8.19.1 Mandatory Fields

[RMF 1] Every smart contract shall include both fixed and parameterised fields.

[RMF 2] Developers/testers shall ensure that all the mandatory fields listed below are

included in the smart contract before deployment.

B.8.19.1.1 Fixed/Permanent Smart contracts are required to have the following fields.

These fields are set at the time of the deployment

[RMF 1] Contract ID – an internal identity of smart contract. This identity is allocated

by the governance of the PDL. Following are fields shall be included in the ContractID.

ContractID = LedgerID:OwnerID:ContractIdentifier

– Ledger Identity (LedgerID)

– Owner Identity (OwnerID)
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– Contract Identifier

NOTE: Contract Identifier is different than Contract ID NOTE: Contract Identifier is a

unique identifier represents the contract within a PDL.

[RMFP 1] Ledger ID – Every ledger shall be identified by a unique identity; all the

regulated ledgers should be assigned an ID by the relevant authorities (such as governance

or the owner). Following fields may include in a Ledger ID, and the construct of the

Ledger ID is out of the scope of this work:

– Region Identity (RegionID) (e.g., GB, IT)

– Company Identity (CompanyID) (Company or organisation node in a PDL assigned

ID) e.g., RegionID:CompanyID

[RMF 2] Owner ID – Typically a smart contract should be owned by the governance

and borrowed/leased to users of the PDL. However, it is possible that some users wish to

install customised contracts for specific purposes. In both the cases, the owner ID should

be the mandatory section of a smart contract.

[RMF 3] Start time (Governance-defined clock) – the start time of the contract, that is ,

time when the contract is deployed in the ledger and is different from the execution/invocation

time of the ledger.

[RMF 4] End time (All times will represent to governance-defined clock) – the end time

of the contract. The self-destruct clause will execute at this time and the contract will be

terminated. Users of the contract shall ensure that all the sub-contract execution time is

within the end-time of the contract (Figure B.15). Depends on the scenario, it may be
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changeable, for example, an interrupt instruction may change this time to stop and revise

the contract version.

[RMF 5] Version No. – Version Number of the smart contract, if a smart contract is

re-deployed after termination, same versioning sequence shall be followed.

B.8.19.1.2 Parameterised

[RMFP 1] Execution Start Time – start time of a particular smart contract execution

[RMFP 3] Execution End Time – end time of a particular smart contract execution. It

shall be before the contract end time.

[RMFP 4] Execution ID – identity of execution by a user of the PDL or external entity.

[RMFP 5] Executing party ID – Identity of the participant executing the smart contract.

This is different from the public key and is the permanent identity assigned by the

governance of the PDL. In a typical PDL, the transaction ID or public key of the

executing participant is recorded in the ledger at the time of the contract execution, but it

should be the part of the contract as well. Anonymisation should be resolvable because

we support accountability in PDLs. Pseudo-anonymised by the PDL governance.

[OMF 1] In special or exception circumstances (e.g., malfunctioning of the contract),

some of the fields may be updated with the discretion of the governance.
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B.8.19.2 Optional Fields

Optional fields of a smart contract depend on several reasons such as purpose, usage and timing.

It is up to the governance and the owners of the contract to introduce optional fields as per their

requirements. These fields are out of scope of this work; however, some examples are listed

below:

• Smart Contract genre description

• Corresponding paper contract reference numbers/identifiers

• List of middle-parties involved in the contract

• Corresponding country/region laws if applicable

[ROF 1] These fields should be clearly identified as optional fields within the contract.

That is, within the contract it should be clear that the field is optional or mandatory.

[ROF 2] Mandatory fields should be maintained in a container field, which will maintain

all the optional fields.

B.9 Architecture and Functional Descriptions

B.9.1 Required Functions

B.9.1.1 Initialization

The contract is initialized with the initialization function that is the constructor of a contract

and prepares the smart contract for executions such as initialization of the variables. The

initialization function:
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Fig. B.19 Initialization Elements of a Smart Contract

[RINT 1] Shall include initialization of variables

[RINT 2] Initialization function shall be checked explicitly, along with logic functions at

the testing stage (from the lifecycle [i.1]) because if not present, the smart contract can

be dormant.

[OINT 1] May call to logic functions of a smart contract. Initialization functions may

also verify the login credentials.

In Figure B.19, the key elements of a smart contract are shown.

Timer The Timer of the smart contract is initialized whenever the smart contract is executed.

In some cases, the timer may be initialized with the first execution of the smart contract and

keeps running (possibly pausing from time-to-time on certain conditions) until the contract is

deactivated. Some of the conditions for pausing/deactivating are listed below:

• Achieved the lifetime of the contract.

• Once execution is completed (but the contract can be executed in future).

• Malfunctioning of a smart contract.

• Access rights given to malicious users accidently or otherwise.



B.9 Architecture and Functional Descriptions 223

Timer function usually calculates the time elapsed relative to local time:

Listing B.2 Example of a timer function

f u n c t i o n t i m e r _ f u n c t i o n ( ) {

T ime_e lapsed = now ( ) + n a n o _ s e c o n d s _ e l a p s e d ; }

[RTF 1] now() in Code Extract B.9.1.1, is the governance time.

[RTF 2] Nodes shall maintain all the timers to nano seconds precision.

B.9.1.2 Access-Control

The Access-Control Function inside the smart contract will ensure that users who are executing

the smart contract functions are authorised to access those functions.

[RACF 1] In addition to Access Control of a smart contract (clause B.8.14), stringent

access control shall be the part of the smart contract itself as a function.

[RACF 2] Access control functions shall verify if the user has sufficient rights to access

a particular function.

[RACF 3] Access Control functions shall be hardcoded and grant/block access by

checking the role of the caller.

[RACF 4] Developers should design a smart contract to ensure that Access Control

Function is not callable by any other function (within or outside smart contract).

For example, in an auction contract, bidders can place a bid in the auction but may not be

allowed to stop it. Therefore, they will not be allowed to access the endAuction() function of

the smart contract.
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B.9.1.3 Logic

Logic Functions are the main tasks of a smart contract.

[RLF 1] Logic functions shall be accessible by strict access control mechanisms as

discussed in clause B.9.1.2.

[OLF 1] They may include several classes and functions which do the executions to

serve the smart contract purpose.

B.9.1.4 Entry Functions

[REF 1] In a typical case, contract users shall be able to access only a certain subset of

functions.

[REF 2] Interaction between smart contracts’ functions should be limited and controlled

to prevent unauthorised access to other users’ data.

For example, if a contract function initiates a payment to a client after checking the user

credentials through check_access and then invokes payment through a payment function.

[REF 3] Other functions (as an example above) should only issue the payment and shall

not invoke/initiate any other function of the contract, for example, historical data of

payments.

[REF 4] By default, Initialization Functions (clause B.9.1.1) are Entry Functions because

they are the entry -point for any outside request. However, other smart contract functions

accessible by Oracles/APIs shall also be classed Entry Functions.

[REF 5] Developers/Testing Engineers shall test and verify that no backdoor is present

from entry functions to other functions.
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Fig. B.20 Entry Functions shall not create back doors to other functions of the contract

B.9.1.5 Termination Function

[RCT 1] As explained in clause B.8.10, smart contracts shall be terminated at a certain

point when certain conditions are fulfilled, to avoid future accidental executions. A

Function that performs the termination of a smart contract shall be present in the smart

contract.

[RCT 2] The termination function shall be accessible by the governance/delegate or

owner of the contract with appropriate access rights.

Listing B.3 Example of a Termination function

f u n c t i o n t e r m i n a t e C o n t r a c t ( s t r r e a s o n . . ) {

i f ( t e r m i n a t i o n _ c o n d i t i o n == True {

C l e a r a l l v a r i a b l e s and r e v e r t a c c e s s r i g h t s }}

[RCT 3] In case of interruptive terminations, for example, termination before the end of

the contract, a Smart contract shall not be terminated without the agreement of all the

stakeholders and the governance.
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[RCT 4] In both Interrupt Termination and Natural Termination, reason of termination

shall be sent as an argument with the termination function. Also, participants may try to

send invalid reasons such as xxx.

[RCT 5] Governance of the PDL shall ensure that only valid inputs are sent to the

termination functions.

[RCT 6] If any participants identified sending invalid string as argument, governance

shall take necessary measures of compliance such as blacklisting of the nodes (node

reputation).

[RCT 7] Unmeaningful reasons, that is the reasons that do not clearly identify the

problem of the interrupt shall be categorised as Invalid Reasons.

[RCT 8] All the reasons shall provide the details of the interruption.

[RCT 9] Brief reasons shall not be used, that is, few words description shall not be used,

and the reasons shall provide the complete description with identifiers.

[RCT 10] The reasons shall provide complete information specific to the jurisdiction

and the contract.

[OCT 1] To avoid problems of compliance such as invalid arguments in the function

(RCT 5), the governance may restrict the termination to themselves.
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B.9.1.5.1 Examples of Invalid Reasons Some of the examples for invalid reasons are as

follows:

• Invalid version – invalid version is not a valid reason, details such as why the version is

invalid should be included

• Human error – shall specify the type error for example, typo with missing information

along with corrections. For example: wanted to send ABC as input but sent AB only.

The correct input is ABC.

• Example corrected version – should also include the date and type of error such as Person

A has activated the contract with wrong parameters.

• Missing information – specify the missing fields.

B.9.1.5.2 Example of Valid Reasons

– Smart contract completed life cycle

– New version of the contract is required

– Smart contract completion
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Fig. B.21 Reference Architecture of Smart Contract with External Input

Fig. B.22 Reference Architecture of Smart Contract with Internal Input

B.9.2 Example Architecture of a Smart Contract

B.9.2.1 Smart Contract with External Input

B.9.2.2 Smart Contract with another smart contract

B.10 Data Inputs and Outputs

When interacting with the environment, smart contracts may take input from internal and

external data sources such as other smart contracts and webservers. They may also provide

output to other sources such as local and external PDLs and webservers.
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Several combinations of data inputs and outputs are possible. A smart contract may take

inputs from:

• Another smart contracts (internal or external)

• Oracle services

• Other sources such as webservers and databases

And may provide output to:

• Other smart contracts (internal or external)

• Oracle services

• Other sources such as webservers and databases

B.10.1 Generalised Input/Output Requirements

Smart Contracts don’t have any built-in mechanisms to verify the integrity of the data. Therefore,

it is important that the data input to a smart contract is trustworthy. The generalised requirements

for the data inputs are:

[RINP 1] Integrity: Data shall be untampered and unaltered. It is forbidden to send

altered or tampered data.

[RINP 2] Governance shall take punitive actions against entities that enter/or try to enter

altered or tampered data.

[RINP 3] Accuracy: The data input shall be accurate and trustworthy.
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[RINP 4] Quality of the data (e.g., syntax, semantics, context): a smart contract shall

be given accurate input. Parties executing the smart contract shall ensure that they send

accurate and timely input to the smart contract.

[RINP 5] Security: The inputs are secure from attacks such as the "Man-in-the-Middle

Attack". This can be dangerous in some use cases such as in an auction contract if a bid

value is intercepted, can affect the validity of the auction.

[RINP 6] Authenticity: Data shall be from the authorised users with appropriate access

rights only. The allocation of access rights is discussed in clause B.8.14.

[RINP 7] Sequencing and synchronising inter-ledger and intra-ledger executions: (e.g.,

Output from one ledger is input to another ledger). Some smart contracts are dependent

on operations/inputs from other smart contracts, which may be internal or external. In

such a case, it is important that the execution of the pre-requisite shall be completed

before hand.

B.10.2 Internal Data Inputs

Internal data inputs are the inputs from the HPN. A smart contract may take input from:

• PDL participants

• HPN smart contracts
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B.10.2.1 PDL Participants

Typically, PDL participants access smart contracts through a transaction request. In addition to

the requirements specified in clause B.10.1, following are the requirements:

[RIPINP 1] The Smart contract shall receive data from authorized participants only.

[RIPINP 2] The participants sending the data/parameters to smart contracts shall ensure

that data is accurate.

[RIPINP 3] The access control mechanism shall be handled through identity and

permission control services defined in PDL Reference Architecture [PDL-12[i.3] Work

in Progress].

Note: Selected internal PDL participants can access smart contracts within the same

PDL with access rights allocated by the governance and owner of the contract and as per

guidelines stated in clause B.8.14.

B.10.2.2 HPN Smart Contracts

When a smart contract is dependent on the data from another smart contracts’ output, the

important challenge is the completion of pre-requisite contract. In addition to the requirements

specified in clause B.10.1, following are the requirements:

[RSCINP 1] The pre-requisite smart contract shall be completed before sending the

subsequent request. Only some fields and functions of a smart contract are accessible by

other smart contracts.

[RSCINP 2] Developers shall ensure that there is no ambiguity in access allocation.

[RSCINP 3] Execution triggered by unauthorised smart contracts shall be rejected.
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The unauthorised access will be granted by chain of the contracts due auto-execution

property of smart contracts. Note: Selected internal PDL smart contract can access other smart

contracts within the same PDL with access rights allocated by the governance and owner of the

contract and as per guidelines stated in clause B.8.14.

B.10.3 Requirements for Internal Outputs

A smart contract may provide output to other smart contracts within the PDL network. In such

a case following are the requirements:

[RIO 1] The data produced by smart contract shall follow the requirements specified in

clause B.10.1.

B.10.4 External Data Inputs

B.10.4.1 External PDLs

A smart contract may take input from external PDL networks, that external participants or

smart contract. In such a scenario, following are the requirements:

[REPINP 1] The external PDL governance shall manage access of their respective PDL’s

smart contracts and assign access-rights accordingly.

[REPINP 2] Appropriate access-rights shall be acquired before such access.

[REPINP 3] External data shall be exchanged or accessed through the governance-channel

only and participants from any side shall not have any direct access to the external PDLs.

Two possible approaches to access the data from an external PDL as are follows:

• Faster Approach
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Fig. B.23 Smart contract from external PDL (Faster Approach)

• Secure Approach

B.10.4.1.1 Faster Approach When PDL participants want to access the data from an

external PDL, they can generate a request-to-access message to their local governance which

will subsequently send this request to the Gateway.

The Gateway can be maintained and administrated by both the internal and external

governance and elected by mutual consensus of all participating PDL governance.

[REFAINP 1] All the access from an external PDL shall be recorded by the Gateway in

a separate secured storage as well for future audit.

In Figure B.23, the possible architecture for external data access is shown. The Gateway

maintains an access control list, that keeps the record of the data shared between the PDLs.

Note that, this access control list is also maintained in secured data structure. This is a faster

approach but have some security considerations which are listed below:

The considerations with this approach are as follows:

[CEFAINP 1] The major security consideration here is the single point of failure for the

Gateway. This means that if the Gateway is compromised, the malicious party can take

over the system and issue the keys to themselves or possibly to other malicious parties.

To resolve such a vulnerability, a secured approach is discussed in the next clause.
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Fig. B.24 Smart contract from external PDL (Secure but slower approach)

B.10.4.1.2 Secured Approach To avoid single point of failure as discussed in the last

clause a secure approach is to request the access rights in a dynamic manner (Figure B.24).

In the secured approach, when PDL participants generate request-to-access to their local

PDL governance, the governance forwards this request to the Gateway. The Gateway sends

the access request to the governance of the external PDLs. Upon approval access is granted or

rejected. Note that, in this case there is no access list maintained by the gateway and decision

to grant/reject access rights are made dynamically. However, the gateway does maintain a list

of access granted by the PDLs for future audit.

B.10.5 Oracles

Smart contracts often interact to the outside environment, that is, in many situations, they may

take data from external sources (e.g., marketplaces and weather data). They may also send

data to the outside world. A common medium is the “Oracles”. Oracles extract and verify data

inputs for the smart contracts and PDLs. They also send the data to the outside world from the

PDL in the similar manner. Typically, oracles are services (e.g., web APIs) which extracts the

data from external data sources and translates it into PDL-understandable format.

Generally, oracles are divided into two different categories:
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Fig. B.25 Oracles take input from several data sources processes them and provides input to
smart contracts

1. Hardware oracles: Many applications of PDLs require data input from hardware probes

such as thermometers, pressure gauges, distance measurement devices. Some of these

hardware devices generate analogue output that needs to be converted to digital using

A/D convertor. A/D convertors have an intrinsic element of error.

2. Software oracles: The input sources for the oracles are software such as stock exchange

data from their website/WebAPIs. This data is digital to begin with, so no conversion is

needed, and the above element of error is eliminated.

NOTE: In both cases the oracles should be programmed to convert the information into

meaningful data format for the purpose of the PDL application.

Oracles are blockchain-agnostic and typically generalised enough to access any PDL and

provide the data. The problem with oracles that problem is that they are sometimes not

trustworthy.
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B.10.6 Requirements for Oracles

To avoid delay in transaction processing Oracles shall have the following properties:

[ROS 1] Availability – Governance shall implement strategies to ensure the availability

of the oracles. That is, when a smart contract needs the data, it shall be pre-processed by

the oracles and available for the smart contract input.

Data such as stocks and weather are time-dependent (vary with time) and change

frequently. When a smart contract needs such data through an oracle, there may be

some discrepancy due to delay in data generation, extraction and execution time and the

latency of smart contract itself. That is to say, smart contracts may be slower in execution

than the speed of the data generated which may result in getting outdated data.

[ROS 2] Security – Provenance and channel – Governance shall implement strategies

to ensure the source of the data is trustworthy and the channels are secured to prevent

interception such as man-in-the-middle attack.

[ROS 3] Governance Approved Oracles list – In the case of external oracle services, they

shall be authorised by the governance. That is, governance shall have a list of approved

oracle services which may provide the data to the PDL.

[ROS 4] Trustworthiness – PDL governance shall ensure that the malicious oracles

cannot provide data to smart contracts. Oracles may process the data from several other

sources such as, for the stock exchange information, the oracles may take data from

several stock exchanges and processes them before providing it to the ledger. Generally,

there are several websites/APIs publish this data. This compromises the integrity of the
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data. To tackle with this problem, oracle services shall only take inputs from the verified

data sources.

[ROS 5] Performance – Oracles shall have performance matching to the PDL. For

example, some PDLs have high Transaction throughput. The oracles shall match the

performance or throughput of the PDLs, to ensure the availability and timely data. Oracle

services shall also ensure that they can cope with the demand of the PDL data, for

example, some PDLs may request large amount of data. Oracle services shall ensure that

they can match with the volume demand. Oracle services shall be scalable such that they

can cope of with inflated demand of the requests from a PDL.

B.10.7 Oracles’ Access Rights

[ROAR 1] The governance shall assign the access rights for the oracles and for the

required duration only. That is the, the start and end dates should be explicitly defined in

the request to access the data.

B.10.8 Oracles as Internal Service

[OOAR 1] If the PDL participants have the resources available, they may run their own

oracle service. This may ensure the authenticity of the data.
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Fig. B.26 Oracle service internal to the PDL network

Fig. B.27 Oracle service external to the PDL network

B.10.9 Oracle from External Sources

[ROES 1] Governance shall take sufficient measures (depending on the use case) to

ensure the integrity of the service and the data.

[OOES 1] If an oracle service provider is misbehaving/faulty (e.g., providing wrong

data), the governance may blacklist/suspend the oracle service.

[OOES 2] PDL participants may outsource the oracle service to other entities.



B.10 Data Inputs and Outputs 239

B.10.10 Criteria for Oracles Services Approval

The governance of the PDL will register the services of oracles through application procedures.

Application procedures are up to the preferred methods of governance. For example, governance

may take oracles services applications through an open call or specific invite. Yet, the approval

requires mandatory requirements listed below. Note the difference between the application

procedure, which is the governance-defined method, and the approval procedure shall follow

the following guidelines.

[RCOA 1] Smart contract shall have a built-in mechanism to verify the validity of oracle.

[RCOA 2] The list of approved oracles shall be updated periodically. This is the

governance discretion to set the timeline of this review, but the review period shall not be

more than three calendar months.

[RCOA 3] Governance shall define the criteria of the approval before or at the time of

the PDL formation. This shall include:

(a) Oracles shall be from authorised and validated sources only.

(b) Time-limited Approval – approve the oracles for a certain governance-defined time

only. After this time, the access shall automatically be revoked and come under

review.

(c) Oracles services shall be using transparent and auditable software to translate the

data.

(d) The oracles services code and architecture shall be auditable without any additional

monetary transaction.

(e) The oracles services shall be transparent.
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(f) Oracles services shall be using government-approved software libraries only.

(g) The author/source of data shall be specified by the oracles before/at the time of

approval.

(h) Oracles shall be using authorised sources only. That is, they shall sign IPR

agreement with the data sources before making application request with PDL

governance.

[RCOA 4] Oracle sources shall provide details of their software and hardware security

methods for data protection and authentication to the oracle services.

[RCOA 5] Oracles services shall maintain an online open directory for their available

oracles.

[RCOA 6] All oracles shall be verifiable through this open directory. NOTE: These

guidelines are in the scope of generalised governance and PDL roles. The details

including those are listed above are included in GS PDL 012 Reference Architecture

[i.3].

B.10.11 Offline Oracles

An oracle (either external or internal) could become offline or unavailable due to many reasons

such as the loss of communication connection. Mechanisms are required to guarantee the

availability of oracles. For example, a smart contact can be coded or provisioned with the

addresses or APIs of multiple oracles; when one oracle becomes unavailable, other oracles can

be used by the smart contract.
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B.11 Governance Role in Smart Contracts

B.11.1 Introduction

Generally, Governance of a PDL oversees the overall operations of the PDL. This includes but

not limited to access control and operational strategies. Yet, the role of governance depends on

the consensus of the PDL founding participants. Governance can be automated as well, in which

a software program can take the decisions based on the pre-programmed conditions. In this

clause, the governance role specific to smart contract is outlined and general role governance

role is out of the scope.

B.11.2 Governance Role Delegated to Policy of Smart Contract

Governance of a PDL shall take the following decisions for smart contracts

[RGR 1] Listing the approved oracles for smart contracts

[RGR 2] Listing the test strategies for smart contracts

[RGR 3] Identification and acceptance of new members for a smart contract

[RGR 4] Updating a smart contract

[RGR 5] Access to smart contracts from external sources shall be contingent on approval

of both internal and external governance.

Governance of a PDL may take the following decisions for smart contracts

[OGR 1] Transaction approval time – a time smart contract shall wait to for its next

executions
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[OGR 2] Installing a smart contract – a new smart contract is installed with the

governance’s approval.

B.11.3 Updating a Smart Contract

[RGUP 1] Governance’s approval shall be required to update a smart contract.

A smart contract update can be required in several scenarios listed in clause B.13.

B.11.4 Operational Decisions

[RGOD 1] Operational decisions are the responsibility of governance, and the owner of

the contract shall follow the governance’s advice to ensure the successful operation of a

smart contract.

The operational decisions a governance shall involve in are listed below:

[RGOD 2] Start date/time and end date/time of the contract.

[RGOD 3] Allocate access rights to all the actors with in the PDL network.

[RGOD 4] Updating the contract.

[RGOD 5] Contract versioning.

[RGOD 6] Approved software/hardware technologies.

[RGOD 7] Access control strategies, technologies, and algorithms.

[RGOD 8] The external participants who can access the contract âĂŞ this is important

because the owner shall not allow the external entities to access the contract if not allowed

by the governance.



B.11 Governance Role in Smart Contracts 243

[RGOD 9] Allocate unique identities to all the actors (clause B.7.2) with in the PDL

network.

The owner shall be responsible to decide on:

[RGODO 1] The internal participants who can access the contract

[RGODO 2] Choose between governance approved technologies

[RGODO 3] Testing strategies listed in governance guidelines

[RGODO 4] Oracle’s list approved in governance guidelines

B.11.5 Termination of Contract

Smart contract termination is a critical event that may affect (e.g., adversely) the behaviour and

content of the PDL. Following are the requirements for smart contract termination:

[RGT 1] Owners of the contracts shall not initiate termination without the agreement of

the governance.

[RGT 2] All the stakeholders and the governance shall approve the termination before

the termination is initiated. That is, participants of the contract shall not pull out of the

contract by terminating it.

[RGT 3] Participants shall take the full responsibility of the smart contract and ensure

the termination follows a standard procedure.

[RGT 4] When it is identified that a smart contract is not working as required and needs

to be terminated the governance shall be informed of this problem without any delay.
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[RGT 5] In case of malfunctioning, after the governances’ consent, if the smart contract

is still active it will be turned off.

[RGT 6] If a revised (updated) smart contract is required, it will need to be activated

either before or after the termination of the previous contract as applicable.

[RGT 7] If it is not active and/or does not require a replacement (e.g., dormant), the

governance shall terminate the contract without a revised smart contract.

B.11.6 General Compliance Strategies for Smart Contracts

PDL governance may follow the following guidelines to make a smart contract secure:

[RGC 1] Compliance measures are dependent on the local laws. The PDL governance

shall ensure that a contract follow the laws in the respective juridical.

[RGC 2] In case of cross-border PDL, that is, a PDL network where many governance

laws are involved, the governance of the PDL shall outline the strategies of laws the

coded in smart contracts, when initiating the PDL and as per the laws applicable for such

scenarios.

[RGC 3] The penalties is the governance and PDL founders decision. But all the

compensation and penalties shall be recorded in a document and signed by all the parties

at the time of PDL initialisation.

[RGC 4] The PDL participants that join the network later, shall made aware of the

document and its contents and sign the document before joining the PDL.

[RGC 5] Any wrongdoing detected after the damage the governance may blacklist/ block

the node. Penalties/compensation can be imposed on the malicious nodes.
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[RGC 6] Step wise approach – first offence, second offence and so on. At the end node

can have lifetime ban or high penalties.

B.12 Testing Smart Contracts

B.12.1 Introduction

Testing for any software program is an essential step before its deployment. Rigorous testing

can prevent errors and enable designing safe and correct smart contracts.

[RT 1] Smart contracts can be tested like any other software, but an additional layer of

testing shall be applied. That is, to ensure a smart contract interaction within itself and

external entities (inter-PDL and intra-PDL) is protected through rigorous access control

mechanism at the governance and smart contract layers.

For the sake of simplicity, this document is focused on the testing strategies specific to

smart contracts rather than generalised software testing mechanisms.

Testing is an important indicator for the unintended smart contract behaviour and shall

ensure the following:

[RT 2] Modularity – if the test fails, the smart contract shall clearly indicate which part

of the test failed.

[RT 3] Well-structured – the test codes should have clear indicators of the errors. For

example, instead of generalised term such as Exception, a more specific exception type

(e.g., IntegerOverflow Exception) shall be used.

[RT 4] Clear and self-explanatory – The tests shall use meaningful variable names; this

will assist future debugging.
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[RT 5] Parameterised – A testing code shall be parameterised, that is, it shall allow test

engineers to pass a wide range of parameters to validate and verify the smart contracts’

behaviour with different data types. Typically, smart contracts shall test in two stages:

[RT 6] Unit Tests – Tests small units or functional blocks of a smart contract

[RT 7] Integration Test – Compile or add all the functional blocks and test the complete

end-to-end smart contract.

B.12.2 Testing Strategies

The smart contract shall follow the security protocol listed in this document. That is, it shall

be secure and impenetrable. However, to achieve this, developers can follow test strategies

best suited to them.

[RTS 1] Testing targets listed in B.12.1 and B.12.4 shall be met.

[RTS 2] Modular and Reusable – smart contract tests are designed in a modular and

reusable fashion. These modular tests are managed by the governance and can be shared

among the participants of the PDL. This can be useful, as it will ensure the reusability of

the tests and may save time to design specific tests.

[RTS 3] It is up to the developers to design and implement test strategies. However, the

resultant smart contract shall be secure and efficient, that is, it shall follow the guidelines

listed in clause B.8.

Some of the testing strategies developers can adopt are listed below:

[OTS 1] Automated Testing – some of the tests may be automated, that is, a smart

contract can be verified through automated engines (for example, Remix), that may be



B.12 Testing Smart Contracts 247

able to verify some traits of a smart contract, for example, presence of certain required

libraries.

[OTS 2] Outsource testing – In some cases, the governance of the PDL may prefer

to outsource the testing procedure. In case of outsourcing testing, it is required that

the testing firm meets the standards and follows the same procedures as listed in this

document

[OTS 3] To avoid several branches and conflicts at the end, the developers may choose

to use Continuous Integration and Continuous Delivery (CI/CD) technique. In this

technique, a small code is written and integration to avoid the conflicts. In the situations,

where enhanced testing is required, the code can be integrated to test environment to

measure its behaviour in the production PDL.

B.12.3 Generalised Testing Targets

It is upto the developers to adopt the strategies to test a smart contract. However, the following

generalised testing targets listed below shall be met.

[RGT 1] Validate expected behaviour – verify the expected behaviour with the achieved

one. Improve code quality – the code shall be clearly and professionally designed.

[RGT 2] Design efficient smart contracts by adopting efficient programming strategies

(e.g., some built-in language functions perform better than others)

[RGT 3] Using widely available libraries – that is, some libraries may be not generalised

enough
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[RGT 4] Behaviour in Edge cases (e.g., Genesis block, divided-by-zero error, lack of

input and memory including errors resulting from network failures).

[RGT 5] Synchronisation – check for sequential flow of the code. That is, for example,

the pre-requisites shall be executed before the follow-up.

B.12.4 Testing Checklist

The desired output of a smart contract depends on its purpose. Therefore, testing checklist

varies depending on the requirement and expectation from the smart contract. Following

conditions shall be checked explicitly and documented:

[RTC 1] Entry Functions are secured and doesn’t create back doors to other functions

without access-control – Which of the smart contract’s functions allow entry from external

entities. That is, the functions that are accessible to a caller of the smart contract.

[RTC 2] Termination Function – A smart contract shall have a safe and callable

termination condition (see clause B.9.1.5).

[RTC 3] Logic Functions – Functions that perform the operations of a smart contract

shall be present. Without such functions a smart contract is not usable.

[RTC 4] Access Rights – Only authorised user(s) shall have access to the functions of a

smart contract. At the testing phase, accessibility to different functions with different

roles (e.g., admin and user) shall be verified and validated.

[RTC 5] Mandatory fields (clause B.8.19.1)

This may include:

[OTC 1] Monitor inputs and outputs
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[OTC 2] Execution time and network latency effects

[OTC 3] CPU and memory consumption

[OTC 4] External dependencies (e.g., other smart contracts and external sources of

information)

[OTC 5] Technological dependencies (e.g., software libraries)

B.12.5 Offline Testing

In offline testing a smart contract is tested locally, without connecting to the production PDL.

[OOT 1] This may include a standalone test node or a group of nodes working as a

testbed.

[OOT 2] Both the unit [RT 6] and integration tests [RT 7] can be done offline before the

online testing, to validate the smart contract expected behaviour.

Some of the offline testing can be done through:

B.12.5.1 Sandbox Testing

Typically, sandboxes run on a single machine with several containers acting as nodes of that

PDL. Some of parameters may not be accurate with sandbox testing such as transaction latency,

which will obviously be very low when all the containers are in a same machine. However,

sandbox testing is still helpful for measuring and validating the behaviour of certain aspects

of a smart contract. Sandboxes should emulate production environment with the exception of

execution latency.

Following are some requirements of the sandboxes that shall be used for smart contract

testing:
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[RST 1] Use the same PDL type and version as the smart contract is expected to be

installed to. For example, Hyperledger Fabric version 2.0 smart contract shall be tested

on a Hyperledger Fabric version 2.0 sandbox.

[RST 2] The sandbox shall be using/downloaded from the same source as the PDL-type.

For example, for Corda testbed, the ledger artifacts shall be downloaded/extracted from

the verified Corda source.

[RST 3] Number of Nodes – If resources are available (e.g., enough computation

availability), a sandbox shall use same/or close to same number of nodes as the production

PDL.

[RST 4] Operating system of the underlying sandbox shall be same (or as close as

possible) to the production environment (e.g., Kubernetes and Docker)

B.12.5.2 Testbeds

If the resources allow, it is always a good idea to use a group of test nodes and mimic

a production PDL. Smart contracts tested on such test-PDLs can be tested for additional

parameters such as transaction throughput.

Following are the requirements for testbeds.

[RTB 1] All nodes shall use same PDL-type and version number as the production PDL.

[RTB 2] All the smart contracts shall be using the same programming language, libraries,

and software as they are expected to be using in the production environment.

[RTB 3] All the PDL nodes shall be using same software configuration as the production-PDL

(e.g., operating system and developers’ environment)
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B.12.6 Online Monitoring

In online monitoring a smart contract is installed on a production PDL and the outputs and its

interaction with other entities (e.g., other smart contracts and external PDLs) are monitored.

B.12.6.1 Time-limited Test

[RTLT 1] Before the online monitoring initiates, a smart contract shall be installed on

the production PDL and be tested for a limited time.

[RTLT 2] All the participants of the PDL, shall be made aware of the test-status of the

contract. That is, any transactions done by the test smart contract shall not be valid until

the test time is elapsed.

[OTLT 1] After the testing time, the governance may choose to extend the lifetime of

the contract and take it to production or terminate it for improvements.

B.12.6.2 Monitoring

[RM 1] A smart contract shall be monitored for its lifetime.

[RM 2] It is essential to monitor a smart contract continuously because despite of

thorough testing, some of the cases may lead to unexpected (possibly harmful) outcomes.

This advantageous for both the improvement and debugging purposes.
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B.12.6.3 Online Reports

[OOR 1] A smart contract can have a programmed function which can generate periodic

reports to the governance.

[OOR 2] The parameters of the reports may be specific to the purpose of the smart

contract and the discretion of the PDL governance.

[COR 1] As such an approach will occupy bandwidth, it may be feasible to program

reporting transactions to off-peak times.

These reports may include:

[OOR 3] Number of execution requests in a unit time

[OOR 4] The input and outputs

B.12.7 Decisions based on the reports

Following decisions can be taken based on the reports:

[OORD 1] Suspension and upgradation of smart contract

[OORD 2] Adjusting/updating access control to smart contracts.
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B.13 Updating a Smart Contract

It is sometimes required to update a smart contract, for example, change its end date or owner

details. Yet, smart contracts are immutable, so an installed smart contract cannot be amended.

However, this can be upgraded through installing a newer version of the smart contract and

deactivating the old contract.

B.13.1 Update Situations

There can be several situations in which smart contract updates may be required. It is up to the

governance, owners and stakeholders to make the decision when updates are required. Some of

the scenarios are outlined below:

1. New terms are identified which need to be included in future versions

2. Vulnerability found in the old contract

3. Old contract reached its end date and stakeholders wish to continue using the contract (in

this case, stakeholders may choose to change the end date of the old contract instead of

installing a new version)

Following are the situations when a smart contract shall be updated, and the old version will be

considered as invalid or obsolete:

[RSCU 1] New vulnerability identified in the programming language, or any library used

in the code of a smart contract

[RSCU 2] Change/update in governing laws or standards

[RSCU 3] The smart contract is not acting as planned
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B.13.2 Strategies of Updating

B.13.2.1 Old version

[CSTU 1] Deactivating the old contract – the old contract shall be deactivated properly

which means, ensuring the end date is the past date and all the variables are deactivated.

Note that, two versions of a smart contract shall not be operational at a same time.

[CSTU 1] Back up data and variables – the old version stays on the ledger even after

the deactivation. However, some stakeholders may prefer to keep a local copy due to

unforeseen circumstances such as deletion of the complete chain.

B.13.2.2 Technological upgrades

Below are the requirements for the update of the smart contract updates

[RSTTU 1] Technological updates – new versions shall follow the same technology (e.g.,

programming language) as the old version to avoid interoperability issues. However,

in some cases it may be required some updates but the developers shall ensure the

interoperability with other contracts and the PDL technology.

[RSTTU 2] Vulnerability – if a vulnerability is found in old technology used, the

reason/cause of the vulnerability shall be fixed by using the newer version. For example,

if a library used in the old version has errors, that library shall not be used in the newer

version and an alternate version of the library or alternate library shall be adopted for

future contract versions.
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Fig. B.28 Smart contract update processes

B.13.2.3 Upgrading through Versioning

[RUV] When a smart contract is updated, it shall follow the version number in continuation

with the old contract. For example, if the old version was xx:xxx:01 the next version

shall be xx:xxx:02.

B.13.2.4 Updating steps

Once the governance and stakeholders agree to update a smart contract. All of the following

steps shall be taken:

[RUS 1] Identify the changes to be made (i.e., functions or software library)

[RUS 2] Make the changes

[RUS 3] Test the smart contract

[RUS 4] Redeploy the smart contract – a new version of a smart contract shall not be

deployed before it has passed the testing.
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B.13.3 Checklist before Redeployment

These steps are mandatory and similar to initial deployment of the smart contract:

[RCKL 1] Passed the code test (test engineers or developers shall check and verify this)

as per the guidelines listed in clause B.12.

[RCKL 2] Passed the testbed/sandbox test (test engineers or developers shall check and

verify this) as per the guidelines in clause B.12.

[RCKL 3] If the test is carried out by test engineers, then confirmation is required from

developers that the tests met the requirements. The testing requirements shall follow the

guidelines listed in clause B.12.

B.13.4 Securely Inactivating Old Contract

[RSIOC 1] Old version of the smart contract shall be terminated before or concurrently

with the deployment of a new/updated version.

[OSIOC 1] The sequence is decided on a case-by-case basis by the stakeholders and the

governance.

[RSIOC 2] In either case, the agreement or the smart contract shall not be affected by

this transition from the old to the new/revised contract.

The requirements are as follows:

[RSIOC 3]The start date of the new version shall be after the termination date of the old

version.
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[OSIOC 2] The time between the start of new version and end of old version is up to the

stakeholders and the governance but;

[RSIOC 4] in no circumstances two versions of a smart contracts shall be active at the

same time.

B.14 Threats and Security

To use smart contracts for contractual purposes, they should be secured and impenetrable.

Threats and dangers to a smart contract are highlighted in GR PDL 004[i.2].

B.14.1 Threats

B.14.1.1 Smart Contract programming Errors

As discussed in earlier sections, smart contracts are immutable, therefore any error done in

programming would make a smart contract perform invalid/erroneous executions. Such an

action may cause people hefty damages such as monetary losses and reputational damages.

It is the contract owners’ and developers’ shared responsibility that the testing checklist

(clause B.12.4) is followed before the deployment of the contract.

[RPE 1] Governance shall ensure that all the owners of the contracts are following the

correct procedures for the coding and testing as specified in this document and ISG PDL

GR 004.

[RPE 2] A smart contract shall be tested against a pre-defined list of tests based on

the requirements defined in clause B.12 should pass those tests as a pre-condition to

deployment.
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B.14.2 Internal Threats

B.14.2.1 Transactions Ordering

Smart contracts may require information resulting from previous transactions.

[RTO 1] The governance shall sequence the transaction executions such that dependent

smart contracts operate in a consecutive manner.

[RTO 2] A smart contract shall receive a correct data for its execution. Governance of

the PDL shall keep track of PDL latency.

[OTP 1] may introduce a wait time before the execution of smart contract. For example,

if a PDL has 5ms transaction latency, the smart contracts will wait for this time before

starting the execution.

B.14.2.2 Malicious/Accidental Executions

Albeit the access control mechanisms it is still possible that some of the users send incorrect

data to the PDL. Such a behaviour can be benign or intentional.

[RME 1] Governance shall ensure that all the nodes (i.e., PDL participants) shall

follow security protocols (i.e. SSL) to access the PDL to avoid attacks such as the

man-in-the-middle attack.

[RME 2] Governance shall ensure that the nodes (i.e., PDL participants), shall not send

invalid/wrong transactions.

[RME 3] Governance of the PDL shall introduce compliance strategies such as applying

penalties (such as temporary blacklisting) to nodes that do not follow the protocol.
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[RME 4] Node owners should ensure that they have adequate network resources to meet

smart contract execution requirements.

B.14.2.3 Reporting wrong parameters

Users may advertently and inadvertently report incorrect data, which may affect the smart

contract executions and results. For example, when a user is reporting its own device managed

data (e.g., QoS parameters) and it is in their benefit to overstate their parameters. It is likely

that they may send wrong/incorrect parameters to the ledger. In some of the cases when data

is at very fast speed such as routers’ data, due to speed of execution, it may be difficult to

identify such behaviour in real time. It is not always the users who will try to send the wrong

data to the ledger, other factors such as man-in-the-middle or benign mistakes can also result

in wrong data inputs.

This can be mitigated through online monitoring (clause B.12.6). The smart contract and

associated data can be monitored, and if wrong inputs are deducted the smart contract can be

terminated immediately. If wrong parameters are reported following measures shall be taken:

[RWP 1] Node Owners shall take all the necessary measures that accurate and timely

parameters are passed to a smart contract

[RWP 2] Governance shall observe execution activities periodically and take necessary

compliance measures of potential problems identified.

[OWP 1] Governance observation intervals/periods is dependent on case-to-case bases

and upto the discretion of the governance.
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Another solution may be to adopt interrogation protocol. In this protocol, the devices keep

the local record of the data forwarded by them and only the details of the flow at the source and

the destination is recorded in the ledger.

B.14.3 External Threats

External threats are the dangers and threats to a smart contract from external entities such as

external PDL or oracles. The governance shall ensure the safety and security of smart contracts

and shall not allow the external entities to access the contracts without rigorous checking.

However, even the allowed calls if not checked for latency can cause the denial-of-service

attacks. That is, a smart contract gets more executions than it can handle.

To avoid external threats following are the requirements.:

[RAD 1] Too many transactions – may not be able to process by a smart, may cause

congestion at the ledger. Governance will be responsible to keep track of this.

[RAD 2] Authorised access – the keys should be revoked without ANY delay.

[RAD 3] Governance shall ensure the smart contract only gets as many calls it can

handle.

B.14.3.1 Malicious Oracles

Oracles can be both internal or external (clause B.10.5). Oracles can be malicious and send the

wrong/delayed information to the PDL. In the earlier clauses, it is required that governance of

the PDL shall maintain a list of trusted oracles.

[RMO 1] To ensure the timely data, Governance of the PDL shall define the threshold

time to accept the data from oracles.
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[CMO 1] This time would differ with the use case. For example, for weather data, hourly

update would be appropriate but for stock exchange a finer interval would be required.

[CMO 2] Oracles may be vulnerable to attacks such as bribery.

[CMO 3] Malicious Oracles cause denial of service attacks because if there is no API in

the middle it can overwhelm the PDL

B.14.4 Accidental Damages

[RAD 4] System should be able handle accidental attacks and minimise such problems

B.14.5 Malicious Attacks

Some of the checks listed below can be adopted to achieve this:

[RMA 1] System should be self-protecting, that is a smart contract shall have mechanisms

to pick up erroneous and malicious calls and shall mechanism to report such a behaviour

to the governance.

[RMA 2] malicious attacks should be penalised by the governance. Governance can

maintain a list of entities/parties trying to behave maliciously and take necessary measures

to block their future access.
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B.14.5.1 Denial of Service Attack

[RMDOS 1] Governance of the PDL shall ensure all the external inputs to the PDL are

through an API, that is, shall be checked before allowed in the PDL network.

[RMDOS 2] Number of transaction requests altogether (local requests and external

requests) shall not exceed the throughput of the PDL.

B.14.5.2 Reentrancy Attack

[REEA 1] To prevent this attack, the developers shall ensure that a smart contract is

secure and impenetrable. Further details in clause B.8.8.

B.14.5.3 Numerical/Integer Overflow attack

This attack can be prevented through careful planning and thorough testing. Developers shall

follow the guidelines in clause B.12 for testing.
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