Submitted 25 April 2023
Accepted 10 October 2023
Published 15 November 2023

Corresponding author
Changgxia Sun,
sunchangxia@henau.edu.cn

Academic editor
Sedat Akleylek

Additional Information and
Declarations can be found on
page 31

DOl 10.7717/peerj-cs.1678

© Copyright
2023 Si et al.

Distributed under
Creative Commons CC-BY 4.0

OPEN ACCESS

A secure cross-domain interaction scheme
for blockchain-based intelligent
transportation systems

Haiping Si', Weixia Li', Qingyi Wang', Haohao Cao?, Fernando Bacao’
and Changxia Sun’

! College of Information and Management Science, Henan Agricultural University, Zhengzhou,
China

% College of Information Science and Engineering, Henan University of Technology, Zhengzhou,
China

3 NOVA Information Management School (NOVA IMS), Universidade Nova de Lisboa, Lisboa,
Portugal

ABSTRACT

In the intelligent transportation system (ITS), secure and efficient data
communication among vehicles, road testing equipment, computing nodes, and
transportation agencies is important for building a smart city-integrated
transportation system. However, the traditional centralized processing approach may
face threats in terms of data leakage and trust. The use of distributed, tamper-proof
blockchain technology can improve the decentralized storage and security of data in
the ITS network. However, the cross-trust domain devices, terminals, and
transportation agencies in the heterogeneous blockchain network of the ITS still face
great challenges in trusted data communication and interoperability. In this article,
we propose a heterogeneous cross-chain interaction mechanism based on relay nodes
and identity encryption to solve the problem of data cross-domain interaction
between devices and agencies in the ITS. First, we propose the ITS cross-chain
communication framework and improve the cross-chain interaction model. The
relay nodes are interconnected through libP2P to form a relay node chain, which is
used for cross-chain information verification and transmission. Secondly, we propose
a relay node secure access scheme based on identity-based encryption to provide
reliable identity authentication for relay nodes. Finally, we build a standard cross-
chain communication protocol and cross-chain transaction lifecycle for this
mechanism. We use Hyperledger Fabric and FISCO BCOS blockchain to design and
implement this solution, and verify the feasibility of this cross-chain interaction
mechanism. The experimental results show that the mechanism can achieve a stable
data cross-chain read throughput of 2,000 transactions per second, which can meet
the requirements of secure and efficient cross-chain communication and interaction
among heterogeneous blockchains in the ITS, and has high application value.

Subjects Cryptography, Internet of Things, Blockchain
Keywords Relay node, Cross-chain interaction, Intelligent transportation, Blockchain, RNCCP

INTRODUCTION

An intelligent transportation system (ITS) generates images of a city and its transportation
by accessing data from different institutional sources (e.g., vehicle terminals, infrastructure,

How to cite this article Si H, Li W, Wang Q, Cao H, Bacao F, Sun C. 2023. A secure cross-domain interaction scheme for blockchain-based
intelligent transportation systems. Peer] Comput. Sci. 9:e1678 DOI 10.7717/peerj-cs.1678

http://dx.doi.org/10.7717/peerj-cs.1678
mailto:sunchangxia@�henau.�edu.�cn
https://peerj.com/academic-boards/editors/
https://peerj.com/academic-boards/editors/
http://dx.doi.org/10.7717/peerj-cs.1678
http://www.creativecommons.org/licenses/by/4.0/
http://www.creativecommons.org/licenses/by/4.0/
https://peerj.com/computer-science/

PeerJ Computer Science

enterprises, government, efc.) to relieve urban traffic congestion and improve road safety.
However, ITS involves a significant amount of communication and data sharing among
entities such as vehicles, pedestrians, and other road users. This includes sensitive
information like vehicle locations, travel trajectories, and personal data. The traditional
open wireless network environment poses significant challenges to secure data
transmission and data trustworthiness (Zhang ¢ Xu, 2022). During data transmission, if
the data provider is maliciously attacked or compromised by nodes, such as data
tampering or leakage to evade supervision, tracking vehicle travel trajectories, or breaching
personal privacy information, it can disrupt traffic order and jeopardize driving safety. In
addition, ITS involves multiple data providers, including governments, traffic management
departments, vehicles, communication operators, etc. How to coordinate data sharing and
cooperation among all parties is a challenging issue. Therefore, the secure transmission
and sharing of data in ITS have become the focus of general attention in both academic
research and industrial fields.

Currently, organizations in the ITS network send their data to cloud servers for
processing. Because such data are distributed in different places, the security and privacy
issues of the data become particularly important (Sun et al., 2014). For example, a secure
framework for sensitive data storage is proposed (Han, Han ¢ Zhang, 2019). Han, Han &
Zhang (2019) proposed a secure sharing group key management protocol (SSGK) to
protect the security and privacy of data sharing in cloud storage. Khan, Parkinson ¢ Qin
(2017) proposed a fog computing scheme to solve problems such as data tampering and
privacy security. However, these solutions all rely on centralized cloud service providers for
user authentication and data security maintenance, which makes it difficult to achieve data
sharing and identity verification across institutions in the ITS network, and the
trustworthiness and security of shared data during the sharing process cannot be
guaranteed. It is worth mentioning that the decentralized nature of blockchain provides a
natural solution to the problem of excessive reliance on trusted third parties during the
data sharing process, and achieves secure data transmission (Cheng et al., 2020; Lai et al,
2021).

Blockchain (Nakamoto, 2008) is essentially an immutable and traceable hash chain, with
features such as distributed accounting, P2P transmission, and consensus mechanisms.
The unique data structure of blockchain endows data records with an immutable
characteristic. Once the traffic data is recorded on the blockchain, it is difficult to be
tampered with and forged, which ensures the credibility of traffic data. Furthermore,
blockchain technology eliminates the need for traditional centralized trust entities through
the application of consensus mechanisms and cryptography. Moreover, blockchain
technology, through the application of consensus mechanisms and cryptography,
eliminates the need for traditional centralized trust entities. Data is stored across various
nodes in the network, eliminating the vulnerability of a single central server to attacks. The
verification and confirmation of traffic data no longer rely on a central server but are
achieved through the collective validation of nodes in the network. This decentralized
feature enhances the trustworthiness and security of traffic data. Compared with relying on

Si et al. (2023), Peerd Comput. Sci., DOl 10.7717/peerj-cs.1678 2/36

http://dx.doi.org/10.7717/peerj-cs.1678
https://peerj.com/computer-science/

PeerJ Computer Science

the trust mechanism of intermediaries, the intelligent transportation system built by
blockchain can simplify the process, and improve efficiency and security.

With the application of blockchain in ITS, the security communication, authentication,
trust mechanisms, and privacy protection mechanisms in ITS have all been enhanced
(Wang et al., 2020b). However, the current research has not considered the integration and
sharing of traffic data resources across different blockchain systems. As various data
providers in the ITS may use different blockchain platforms at the underlying level, there is
no unified standard among these blockchain platforms, and a common interoperability
solution is lacking. This results in poor interoperability between institution chains based
on different blockchains in ITS applications, leading to an issue of data isolation.
Therefore, it is essential to study a secure and reliable dynamic cross-domain data
interaction mechanism for different terminals, devices, and institution chains within the
ITS context.

To address the aforementioned challenges, in this article, we propose a solution for
secure cross-domain data interaction in ITS, which realizes data communication and
cross-chain interoperability among different facilities and organizational blockchains in
the intelligent transportation network, improves the efficiency of cross-chain data sharing,
and ensures the security of data in the cross-chain process. The main contributions of this
article are as follows:

1) We propose an ITS data cross-chain communication framework, which improves the
original “relay chain + gateway node” cross-chain interaction model and constructs a
new cross-chain interaction model. In addition, we define the standard cross-chain data
communication protocol for relay nodes in this cross-chain mechanism: Relay node
cross-chain protocol (RNCCP protocol), as well as cross-chain transaction lifecycle. It
can be used to achieve secure data interaction between multiple heterogeneous cross-
domain organizational chains in ITS.

2) We propose a secure access solution for relay nodes based on identity-based encryption
(IBE) to provide reliable identity authentication for relay nodes.

3) We design and implement cross-chain interaction smart contracts and algorithms for
data transmission and identity authentication between relay nodes. Based on
Hyperledger Fabric and FISCO BCOS blockchains, we conduct a large number of cross-
chain tests on the proposed solution using the NGSIM dataset to verify its superiority.

The remaining sections of this article are organized as follows. “Related Work” discusses
related research on cross-chain communication. “Technical Background” introduces the
relevant technical background of the proposed solution. “Secure Cross-Chain
Interoperability Solution for Intelligent Transportation Systems” introduces the ITS secure
cross-domain interaction solution. “Algorithm Implementation” provides a detailed
description of the implementation details of the solution. “Experimental Evaluation”
reports experimental results and theoretical analysis by constructing a cross-chain
experiment in intelligent transportation scenarios, demonstrating the effectiveness of the
proposed cross-chain mechanism. In “Discussion”, we compare our proposed solution

Si et al. (2023), Peerd Comput. Sci., DOl 10.7717/peerj-cs.1678 3/36

http://dx.doi.org/10.7717/peerj-cs.1678
https://peerj.com/computer-science/

PeerJ Computer Science

with existing cross-chain approaches and analyze its limitations and challenges. Finally,
“Conclusion” summarizes the article.

RELATED WORK

Today, blockchain technology has shown promising prospects and has been widely applied
in various fields such as the Internet of Things (IoT), healthcare, agriculture, smart cities,
and intelligent transportation systems (Wang et al., 2019; Qiao et al., 2020; Pranto et al.,
20215 Ibba et al., 2017; Cocirlea et al., 2020). In the domain of ITS research, many teams
have focused on exploring how to leverage blockchain to enhance the security and data
sharing in ITS. Some studies (Yuan ¢» Wang, 2016; Sharma, Moon & Park, 2017; Balzano
et al., 2022) used blockchain to create a more secure transportation system. Yuan ¢» Wang
(2016) studied a blockchain-based intelligent transportation system and designed a secure
and trustworthy blockchain-based seven-layer conceptual model. Sharma, Moon ¢ Park
(2017) proposed a blockchain-based intelligent city vehicle network architecture, and
constructed a new distributed vehicle transmission management system. Balzano et al.
(2022) constructed a parking system in blockchain-based vehicular ad-hoc networks. In
addition, some studies (Zeng et al., 2020; Li et al., 2020; Yeh, Shen & Hwang, 2022; Aftab
et al., 2021) used blockchain to complete data transmission and sharing. Zeng et al. (2020)
used blockchain to complete the collection, processing, and transmission of intelligent
traffic light data, and proposed an information redundant cutting technique based on
smart contracts in combination with edge intelligence technology, which reduced
communication and time costs. Li et al. (2020) studied the integrity and privacy issues of
data transmission in multiple blockchain-based interconnected vehicle network scenarios.
Yeh, Shen & Hwang (2022) achieved data stable access through smart contracts and
blockchain oracles, and completed traffic data sharing using 5G, P2P, and IPFS distributed
file systems. Aftab et al. (2021) proposed a security and dynamic access control model for
IoT-based transport systems to protect and dynamically handle data sharing and
communication. These studies highlight the advantages of the combination of blockchain
and intelligent transportation, bringing more development opportunities for this scenario.
However, it needs to be pointed out that despite the potential of blockchain in ITS, there
are still some limitations and challenges that need to be overcome. Some of these
challenges include scalability, interoperability, performance, and considerations for
practical implementation. In addition, the integration and sharing of information
resources are essential aspects of intelligent transportation network construction.
However, the possibility of different data providers using different blockchain platforms at
the underlying level, leads to a lack of interoperability among traffic data and insufficient
openness and sharing of data resources, resulting in data silos. Therefore, researching
cross-chain interoperability mechanisms in the field of ITS becomes a crucial task.
Cross-chain technology aims to solve the exchange and interoperability of digital assets
between blockchains (Schulte et al., 2019), improve the scalability of blockchain systems,
and provide secure and trusted interaction solutions for independent blockchain
applications while ensuring the atomicity of cross-chain transactions (Lu et al., 2019).
However, current cross-chain communication solutions primarily address the issues of

Si et al. (2023), Peerd Comput. Sci., DOl 10.7717/peerj-cs.1678 4/36

http://dx.doi.org/10.7717/peerj-cs.1678
https://peerj.com/computer-science/

PeerJ Computer Science

asset transfer and exchange between chains. For example, Pillai et al. (2021) proposed a
burn-to-claim cross-chain protocol, which uses a combination of encryption mechanisms
such as digital signatures and time lock to seamlessly exchange assets between networks.
Liu et al. (2021) designed a cross-chain protocol using atomic swap technology with the
Vickrey auction scheme as a way to achieve efficient cross-chain asset transfer. Hei ef al.
(2022) constructed a cross-chain exchange system (Practical AgentChain), which allows
the tokens to be mapped and traded on Practical AgentChain. In addition, some studies
focused on the design of cross-chain solutions for different application scenarios. For
example, Wang et al. (2020a) proposed a verification and exchange method for cross-chain
transactions of heterogeneous blockchains for an electricity application, which is used to
achieve secure transactions of electricity business data between different application
chains. Qiao et al. (2020) proposed a cross-chain communication mechanism that
simplified the communication topology of heterogeneous nodes to achieve dynamic
communication between healthcare alliance chains. Shao et al. (2021) proposed an IoT
blockchain cross-chain communication mechanism based on identity-based encryption to
address the cross-chain communication issue in IoT environments. However, in the
complex traffic network context, the bottom layers of applications of various institutions
are independently developed based on different blockchain platforms. Differences in the
underlying standards of blockchain limit data communication in the traffic network. The
existing cross-chain mechanisms cannot meet the demand for secure cross-domain data
interaction between ITS devices and institutional chains. Therefore, this article aims to
design a cross-chain solution suitable for intelligent transportation networks, in order to
enhance interoperability among the corresponding institutions in ITS.

TECHNICAL BACKGROUND

This section describes the technical background required for cross-domain communication
between heterogeneous facilities and institutional chains in ITS, including cross-chain

communication, libP2P, and smart contracts.

Cross-chain communication
Due to the diversity of blockchain infrastructure and the lack of unified architectural
standards within the industry, research on blockchain and its interoperability solutions has
become challenging (Belchior et al., 2021). In recent years, with the problem of blockchain
interoperability being studied in depth, the concept of cross-blockchain communication
has been considered by scholars as a necessary condition for solving blockchain
interoperability. Cross-chain communication is a process that provides value to cross the
barriers between chains and facilitates information transfer between one or more chains.
Cross-chain communication involves two blockchains: the source and target chains.
Transactions are initiated through the source chain and executed by the target chain.
Many articles have analyzed and classified cross-chain solutions. In 2016, Buterin (2016)
divided cross-chain solutions into three categories, including notary mechanisms, relays,
and hash locking. Based on Buterin’s research, Koens ¢ Poll (2019) divided relays into one-
way and two-way relays and evaluated these cross-chain solutions. Wang (2021) classified

Si et al. (2023), Peerd Comput. Sci., DOI 10.7717/peerj-cs.1678 5/36

http://dx.doi.org/10.7717/peerj-cs.1678
https://peerj.com/computer-science/

PeerJ Computer Science

blockchain cross-chain research into chain-based, bridge-based, and dApp-based
approaches. Qasse, Abu Talib ¢» Nasir (2019) summarized four solutions for inter-
blockchain communication, including sidechains, blockchain router, smart contracts, and
industry solutions.

The cross-chain communication protocol is also an important part of achieving cross-
chain interoperability. The cross-chain communication protocol refers to the process of
enabling blockchain interoperability by defining a series of communication data formats,
protocol specifications, and consensus protocols (Meng et al., 2022). Zamyatin et al. (2021)
defined a universal cross-chain protocol as a process in which a pair of chains interact with
each other to achieve synchronization and consistent states between the chains and
determined the primary stages of the universal cross-chain protocol. The cross-chain
communication protocol is a protocol that enables processes in the blockchain to meet
validity, atomicity, and timeliness requirements.

Thus, research into the implementation of cross-chain communication technology
among heterogeneous blockchains is important to the development of the cross-chain
field. However, the differences in underlying standards for blockchains provide
opportunities and produce many challenges to cross-chain operations.

LibP2P

LibP2P (Dias ¢ Benet, 2016) is a modular network stack and library for building P2P
networks that originated from the open-source project IPFS. The modular design of libP2P
also allows it to be used as a P2P network layer for building various decentralized
applications. Currently, blockchain projects such as Ethereum 2.0 (Schwarz, 2019),
Polkadot (Wood, 2016), Filecoin (Psaras ¢~ Dias, 2020), BitXHub (Ye et al., 2020), chose to
use the libP2P library to build the network layer of their systems. LibP2P has many
excellent features, such as node discovery (i.e., the ability to discover other nodes in the
P2P network), routing, support for multiple data transmission protocols, protection of
transmitted data privacy, and various encryption and identity authentication mechanisms.
LibP2P uses an encoding scheme called “multiaddr” to unify different protocol address
formats and assigns a unique network-wide ID to the nodes in the network. By using the
node ID, the issue of man-in-the-middle attacks can be effectively addressed. Due to its
flexibility and scalability, 1ibP2P has been widely used in distributed file systems and the
construction of decentralized applications.

In the application scenario of blockchain, libP2P is an extremely useful tool as it enables
fast data transmission. In addition, within libP2P, when two peers establish a connection, it
creates a bidirectional and secure communication channel, allowing the specification of
protocols used to ensure secure bidirectional communication. Experiments have
demonstrated that libP2P greatly simplifies the development of P2P applications and
effectively addresses most inherent issues in P2P networks (Guidi, Michienzi ¢ Ricci,
2021).

Similarly available for building P2P networks, the BitTorrent file sharing protocol (Xia
¢ Muppala, 2010) is mainly used for the distribution and download of large-scale files.
Although both libP2P and BitTorrent can be used to build a P2P network, their main

Si et al. (2023), Peerd Comput. Sci., DOl 10.7717/peerj-cs.1678 6/36

http://dx.doi.org/10.7717/peerj-cs.1678
https://peerj.com/computer-science/

PeerJ Computer Science

application scenarios and design goals are slightly different. LibP2P is more versatile and
flexible, suitable for constructing various decentralized applications and the networking
layer of blockchain projects, while BitTorrent focuses on efficient sharing and
downloading of large files. It is worth noting that libP2P is committed to providing
interoperability, enabling nodes with different implementations to communicate with each
other. This means that libP2P can be used to build networks across different blockchain
platforms or distributed applications. Therefore, in this article, libP2P is selected for
interconnecting communication between relay nodes.

Smart contract

The concept of smart contracts was first proposed by Nick Szabo in 1994 and is defined as
“computerized transaction protocols that execute the terms of a contract” (Szabo, 1997).
However, due to limitations in computing power and application scenarios in the early
days, smart contracts did not receive much attention from researchers. In 2013, Buterin
(2014) introduced the Ethereum blockchain platform, which provided the Turing-
complete programming language Solidity for writing smart contracts, and smart contracts
were then applied to the blockchain. In blockchain technology, smart contracts can be
considered a specific type of software program that is deployed and executed by a
distributed ledger (KannengiefSer et al., 2020). Smart contracts are crucial for facilitating,
verifying, and executing transactions without the involvement of third parties in the
blockchain.

Smart contracts can be classified into two types: deterministic contracts and non-
deterministic contracts (Morabito, 2017). Deterministic contracts, also known as oracles,
do not require external information from outside the blockchain during runtime, while
non-deterministic contracts, on the contrary, rely on external information. Smart contracts
can be developed and deployed on different blockchain platforms, such as Ethereum,
Bitcoin, Hyperledger Fabric, and FISCO BCOS (Alharby ¢ van Moorsel, 2017). Each
platform offers smart contracts with different functionalities and programming languages.
Deploying contracts on consortium blockchain platforms can provide higher performance
and privacy compared to public and private blockchains.

There are also various programming languages for smart contracts, such as Solidity,
Vyper, Hawk, and Serpent (Varela-Vaca ¢ Quintero, 2021). Each language has its unique
advantages and suitable scenarios. For example, Solidity is the most commonly used smart
contract language on Ethereum, with extensive development tools and support. Vyper
(Kaleem, Mavridou & Laszka, 2020) focuses on security and ease of analysis, while Hawk
(Kosba et al., 2016) interacts with the blockchain using cryptographic primitives to protect
transaction privacy. Smart contracts are critical to the operation of a blockchain because
even minor errors or flaws can lead to security issues. Additionally, the privacy,
performance, and scalability issues involved in smart contracts are also critical (Macrinici,
Cartofeanu & Gao, 2018).

Si et al. (2023), Peerd Comput. Sci., DOl 10.7717/peerj-cs.1678 7/36

http://dx.doi.org/10.7717/peerj-cs.1678
https://peerj.com/computer-science/

PeerJ Computer Science

SECURE CROSS-CHAIN INTEROPERABILITY SOLUTION
FOR INTELLIGENT TRANSPORTATION SYSTEMS

In blockchain-based ITS, different transportation organizations, infrastructure, and road
testing units use different types of blockchains according to their functional requirements.
For example, the transportation department and transportation enterprises must supervise
and authenticate data; thus, they use a consortium blockchain network at the underlying
level. Conversely, various transportation infrastructures, such as vehicles, roads, and
clouds, must share a lot of dynamic data with each other and thus use a chain-on-chain
collaborative storage mode at the underlying level. In addition, users or other small data
sources can use a private chain network. However, the independence of different
blockchains hinders data communication and interaction between transportation
organizations.

This section proposes a solution for secure cross-chain data exchange in heterogeneous
ITS. To address the aforementioned situation, a novel cross-chain communication
architecture composed of institution chains, facility chains, and relay node chains is
constructed, as shown in Fig. 1. The various heterogeneous organization chains use the
cross-chain interaction mechanism based on the relay node for data sharing and
interaction. The relay nodes use the IBE mechanism to securely access the chain of relay
nodes and communicate securely with other nodes. The organization chain accesses the
cross-chain network through its corresponding relay node, and each organization chain
performs different functional responsibilities in the ITS. With non-cross-chain
interactions, users of the organization chain perform business logic processing within the
blockchain they are on. If a cross-chain operation is required, the relay node forwards
the cross-chain transaction request, and the other organization chains cooperate to process
the operation.

Heterogeneous cross-chain interaction mechanism based on relay
nodes

To achieve trusted interconnection and sharing of data among various types of blockchains
across regions and organizations in the ITS, as well as the high-throughput and low-
latency transaction requirements of this application scenario, this article proposes a
heterogeneous cross-chain interaction model based on relay nodes to meet the needs of
cross-chain interoperability in intelligent transportation scenarios. The model uses a cross-
chain architecture with multiple relay nodes, where each blockchain is connected to a
corresponding relay node in a one-to-one manner, and each relay node only connects to
one chain. The relay nodes are interconnected through libP2P for node-to-node
communication, forming a relay node chain where nodes can connect and forward
requests to each other. The cross-chain transactions in the communication process are
defined according to the RNCCP cross-chain data transmission protocol, and data flow
between different blockchains and secure contract calling are achieved via the interaction
between relay nodes.

Si et al. (2023), Peerd Comput. Sci., DOI 10.7717/peerj-cs.1678 8/36

http://dx.doi.org/10.7717/peerj-cs.1678
https://peerj.com/computer-science/

PeerJ Computer Science

Traffic Data Sources Blockchain

Small Data Sources
onLo Private Blockchain
I

¢ Transportation Department Blockchain
i Data Interaction

os]
5
(¢]
=~
(]
=
.
@ =}
e,
[]
[)
V) |
o
[
o‘:\
A

e 5 Departments

)
- |
R. 2
ﬂ%x e D ! @'8'@ Government
e o« I
|
)

o

Data Upload .®
==Y ¢ Data Inferaction

Wl eee. g .

Data R
Request

{@;
&0
o

A

L |
1
’ . 000 | |
g Data Analysis i H
i i and Processing | 2 e ° 3 | 17 Consortium
o ! g ° 1 .
58 s, : &
i K o i
| @ - .« i —
. . | Z ; ode
Transport Enterprise Blockchain \. S . oniTonteattion ‘
~N——,e— e e e ———— _‘. ___________ -

Data Interaction

Relay node (master

é E: :':/\::: .’ node)
) l : > 1 ioh
®* ol ensorSTot Relay node (light
)
9%

node
Data Hash DCV‘CCS A)
Collaborative storage Cb Blockchain
between on-chain and
eff-ghain Transport infrastructure Blockchain
Figure 1 Cross-chain communication architecture for the intelligent transport network. Full-size K&l DOT: 10.7717/peerj-cs.1678/fig-1

Figure 2 shows the detailed architecture of the heterogeneous cross-chain model based
on relay nodes in ITS. The architecture consists of relay nodes, relay node blockchains,
cross-domain institutions, corresponding application blockchains, and smart contracts.

The relay node chain is a blockchain cross-chain network formed by interconnecting
relay nodes, and after identity authentication, nodes in the network can directly interact
and communicate using libP2P.

The relay node chain includes three types of relay nodes: master node, cross-chain
nodes, and light nodes. In ITS, there is only one master node in the cross-chain network,
which is represented by the relay node of the transportation department chain. This node
has all cross-chain transaction data and corresponding proof information and conducts
identity authentication and data supervision for other relay nodes that join the cross-chain
network. Nodes in the cross-chain network other than the master node can be cross-chain
nodes or light nodes. The difference is that nodes participating in cross-chain interaction
on both sides of the transaction are cross-chain nodes, which store the cross-chain
transaction data of both parties. Other nodes that do not participate in cross-chain

Si et al. (2023), Peerd Comput. Sci., DOI 10.7717/peerj-cs.1678 9/36

http://dx.doi.org/10.7717/peerj-cs.1678/fig-1
http://dx.doi.org/10.7717/peerj-cs.1678
https://peerj.com/computer-science/

PeerJ Computer Science

reN
o
Transport Transport
Enterprise A == T T Department B
o & SN
/ Application /// < _@_ - AN 14 Application \
,_____}EISCECEa_m_A_____W ,/ 690’/ cross-chain \@\[’oo \\ l;,;_PI_OC;kghﬁ"l%_g,,‘
I ! L 5/ node NN I I
: Cross-chain | I crosé-chain \\ d \\ : Cross-chain “
| con;ract | i hode Relay Node master hode | contract |
I e L 14 . ®<—o——>| «- 1
| U Sl _‘_' X BlockChain i i UIer !
! contract | \ \ 4 | ! contract !
i I 4 3 / ; ' |
\ / |
[‘lf ___________ | % N cross-chain S8 [P T_ o
N> P
8 W hode &y,
VB yser \ ~-F J®
User A N - UserB (&5
_ Lo J J AN 1 7 _ Lo Y,

Figure 2 Cross-chain model architecture based on relay nodes.
Full-size K&l DOT: 10.7717/peerj-cs.1678/fig-2

interaction in this transaction act as light nodes, which store only transaction data related
to their own cross-chain nodes.

To meet the cross-chain communication needs of ITS, the application chains of each
institution must deploy corresponding cross-chain contracts. The application chains
access the cross-chain network through the relay node, use cross-chain contracts to
exchange data with user contracts, and receive cross-chain requests from users, thereby
achieving interchain data exchange and communication. For example, in Fig. 2, we
consider transport enterprise A and transport sector B as an example. These entities deploy
application chain A and application chain B, respectively, and deploy the corresponding
cross-chain contracts and user contracts on the blockchain. Chains A and B are connected
through the relay node chain, enabling data interaction and communication between user
L of enterprise A and user Z of transport sector B.

To improve cross-chain transaction validation efficiency and cross-chain storage space
utilization, this model designs different storage schemes for different types of relay nodes.
First, the master node in the cross-chain network stores all cross-chain transaction
information that occurs on the relay node chain, while cross-chain nodes and light nodes
only must store transaction data related to themselves and save block header information
for subsequent verification. Then, non-cross-chain transactions that occur only on a single
blockchain do not need to be processed by the relay node and are only processed, verified,
and stored by the business nodes of this blockchain. This process improves the efficiency of
cross-chain transaction processing and reduces unnecessary storage costs.

Secure access and communication of IBE-based relay nodes

IBE mechanism

Identity-based encryption (IBE), which is also known as identity-based cryptography, was
proposed by Shamir (1985) and consists of two mechanisms: identity-based encryption
and identity-based signature. In the IBE mechanism, certificates are not necessary, and the
user’s identity is directly used as the public key, simplifying the key management in the

Si et al. (2023), Peerd Comput. Sci., DOl 10.7717/peerj-cs.1678

10/36

http://dx.doi.org/10.7717/peerj-cs.1678/fig-2
http://dx.doi.org/10.7717/peerj-cs.1678
https://peerj.com/computer-science/

PeerJ Computer Science

public key infrastructure (PKI). However, this idea had no suitable tools for
implementation until 2001, when Boneh ¢ Franklin (2001) used the bilinear pairings of
elliptic curves to develop what is considered the first practical IBE scheme. In the IBE
scheme, the trusted third party is the private key generator (PKG). Given the user’s
identity, the PKG verifies the authenticity of the user’s identity, and after verification, the
PKG generates the user’s private key based on the user’s identity and the system master
private key. Other users in the encrypted communication only must use the public key of
the other party for encryption, without the must obtain the public key through a certificate.

The IBE mechanism typically consists of four algorithms (Setup, Extract, Encrypt,
Decrypt). The specific algorithms are defined as follows. We let ID = {ID;,ID,,...,ID,}
be the set of user identities, where ID is the user’s identity number, M is the plaintext
message to be encrypted, and C is the ciphertext after encryption.

1. The algorithm Setup is used for system initialization, taking a security parameter k as
input, and producing the public parameters PK publicly disclosed to everyone and the
master secret key MSK known only by PKG:

Setup(k) — (PK, MSK) (1)

2. The algorithm Extract is used to extract the user’s private key from the identity
information and the master secret key. It takes MSK and the user’s identity ID as input and
produces the user’s private key SKip as output:

Extract(MSK, ID) — SKip (2)

3. The algorithm Encrypt is used to encrypt messages so that they can only be decrypted
by a user with a specific ID. It takes the public parameters PK, the plaintext message M,
and the target user’s identity ID as input, and produces the ciphertext C corresponding to
the encrypted message M as output:

Encrypt(PK, M,ID) — C (3)

4. The algorithm Decrypt is used to decrypt the ciphertext. The input is the ciphertext C,
the user’s private key SKip and the public parameter PK, and the output is the plaintext
message M:

Decrypt(C,SKip, PK) — M (4)

The encryption and decryption process of the IBE mechanism must satisfy the
consistency constraint, that is, VM, Encrypt(PK, M, ID) = C, and
Decrypt(C, SKip, PK) = M.

Relay node secure access and communication scheme

In ITS, the corresponding relay nodes of the institutional chain must undergo identity
authentication before performing cross-chain operations. In the relay node access scheme
based on IBE, the unique ID of the relay node is used as the public key to replace the digital
certificate issued by a third party, which simplifies the authentication process.

Si et al. (2023), Peerd Comput. Sci., DOl 10.7717/peerj-cs.1678 11/36

http://dx.doi.org/10.7717/peerj-cs.1678
https://peerj.com/computer-science/

PeerJ Computer Science

This solution requires initialization first, and the PKG of the transportation government
department runs the Setup algorithm to generate the system parameters
PK{e, P, Py, Hy, Hz} and the master key MSK of the cross-chain network.
e: Gy X G; — G, is called bilinear mapping, where G1 and G2 are two g-order cyclic
groups; G1 is the additive group, G2 is the multiplicative group, and they satisty the
following equations: VP, Q € Gy, and Va, b € Zj, allsatisfy e(aP, bQ) = e(P, Q)“. Then,
a hash function is selected to generate keys and authenticate identities:

H; :{0,1}" — G,

H2 : G2 — {0, 1}n (5)

when a relay node first connects to the cross-chain network, it must be authenticated by
the transportation department and request a private key from the PKG in the ITS cross-
chain network. This private key is used for identity verification and secure data
transmission during cross-chain transactions.

By running the Extract algorithm, the PKG maps the relay node’s identity ID € {0, 1}"
to a point Qp on an elliptic curve with order q, which is the public key Q;p = H,(ID), and
then generates the private key SK;p = MSK - Qyp for the node and sends the SKjp to the
relay node in a secure manner.

Once the relay node has connected to the cross-chain network, its corresponding
institutional chain can directly use the relay node’s identity ID for identity verification and
cross-chain data communication with other institutional chains. To ensure the security of
cross-chain transactions between relay nodes, the transactions must be encrypted.

The process of encrypted communication based on IBE is as follows: when relay node A
of institutional chain A sends a communication message M to relay node B of institutional
chain B, the proposed method calculates Q;p = H; (ID) using the identity ID of relay node
B. Then, the algorithm randomly selects r € Z;, and the Extract algorithm is executed to
generate the ciphertext C = (U, V) corresponding to M based on the PK and Qjp, where
U=rP,V=M&H(gp) gp=e(PKip, Pou). After receiving the ciphertext C, relay
node B runs the Decrypt algorithm, utilizing its private key SKjp and PK to decrypt the C,
message plaintext M = V & H,(e(SKjp, U)). The specific encryption communication
process is shown in Fig. 3.

Cross-chain communication protocols for heterogeneous chains

As an important component of cross-chain design in the ITS, the cross-chain
communication protocol allows heterogeneous blockchains to access the cross-chain
platform without changing the underlying structure, and perform unified cross-chain
operations. This article proposes a generic interchain message transmission protocol, the
RNCCP, which can perform trusted cross-chain contract interoperability and data
transmission. The protocol defines a unified data structure and operation object for cross-
chain transactions, defines the lifecycle of cross-chain transactions between different
heterogeneous blockchains in the ITS, and provides a consistent invocation interface to the
upper-level cross-chain platform.

Si et al. (2023), Peerd Comput. Sci., DOI 10.7717/peerj-cs.1678 12/36

http://dx.doi.org/10.7717/peerj-cs.1678
https://peerj.com/computer-science/

PeerJ Computer Science

Transport Department PKG PK. @
e _ _$.5 8 (4) Dearypt
ng (1) Setup SKBP., @ _® gﬁ &,
OGP @ Exuact Relay Node B of Blockchain B Message
plaintext M

P
PK | Get Data Ciphertext

i @_ _ _@ (3) Encrypt

Relay Node A of Blockchain A Ciphertext C

I
1l

Message plaintext M

Figure 3 IBE-based relay node encrypted communication process.
Full-size k4] DOT: 10.7717/peerj-cs.1678/fig-3

RNCCP data structure

The RNCCP protocol is applied to relay nodes and focuses on the RNCCP data structure,
which provides a uniform definition of the necessary fields of the cross-chain transaction
object constructed by the relay node, as shown in Fig. 4. The key fields are explained as
follows.

CrossTxNo: This field contains the unique number corresponding to the cross-chain
transaction and is composed of the source chain number, the destination chain number,
and the self-incrementing number corresponding to that source and destination chain
stitched together. The cross-chain transaction number is generated by the relay node; thus,
all blockchains participating in cross-chain transactions must maintain a ledger with all
blockchain numbers in the corresponding relay node.

SrcContractInfo and DestContractInfo: These fields contain the contract name and
contract version information of the corresponding cross-chain contract, respectively.

CrossChainData are byte data that are parsed into JSON cross-chain transaction data
corresponding to different transaction types.

Proof: This field contains legitimacy verification information of the cross-chain
transaction, which must be constructed by multiple relay nodes in collaboration. The proof
contains the block number corresponding to the cross-chain transaction, the Merkle root
hash and the signature of the cross-chain node for this transaction. Proof is used for
transaction atomicity verification, signature verification, block header verification, etc.

The relay node parses the cross-chain message initiated by the source chain, verifies the
transaction and signs it; constructs the cross-chain message as a cross-chain transaction
object that conforms to the RNCCP data structure; and sends it to the relay node of the
destination chain for processing.

Si et al. (2023), Peerd Comput. Sci., DOI 10.7717/peerj-cs.1678 13/36

http://dx.doi.org/10.7717/peerj-cs.1678/fig-3
http://dx.doi.org/10.7717/peerj-cs.1678
https://peerj.com/computer-science/

PeerJ Computer Science

coe RNCCP ; RNCCP Zik
Blockchain 7 @ 2 Blockchain

Realy Node Blockchain

RNCCP
KeyName Type Description
CrossTxNo
CrossTxNo String, Cross-chain Transaction Number(unique) ~ e———Splicing———e i
SrcChainNo DestChainNo Number
SrcChainNo String Source Blockchain Number
DestChainNo String Destination Blockchain Number
SrcAdd String Source Blockchain Address
DestAdd String Destination Blockchain Address
. Cross-chain Transaction Types: 0. 1(Transfer.
TxType int N
Contract Interoperability)
ContractInfo

SrcContractinfo | Stringl | Source Blockchain Contract

Information(Contract Name. Contract Version) i N ContmsiVerton
DestContractino | String] | Ui e Bt :

Information(Contract Name, Contract Version)

Name of the Target Blockchain Contract

OESCOh T String Interface for Cross-chain Calls
CorssChainData byte [] Cross-chain Data Content
TxResult byte [] Cross-chain Transaction Processing Results
Proof
Proof byte [] Transaction Verification Information —=Secrialize—e
TxIash BlockNumber Mark_Root_Hash Signature

Figure 4 RNCCP structure constructed by relay nodes. Full-size K&l DOI: 10.7717/peerj-cs.1678/fig-4

Lifecycle of cross-chain transactions

The RNCCP protocol defines the lifecycle of cross-chain transactions, with different
transaction states corresponding to different stages. Figure 5 shows the state transition
diagram for the cross-chain transaction lifecycle. The StartCrossTx state indicates the
beginning of a cross-chain transaction, the Executed state indicates that the cross-chain
transaction has been executed, and the Completed state indicates that the cross-chain
transaction has been completed.

The state of a cross-chain transaction is created and transitioned according to the
different cross-chain steps. During the cross-chain process, the cross-chain smart contract
controls the transition of the cross-chain transaction lifecycle and implements the logic of
the transition between the different states. When initiating a cross-chain transaction, the
“current state” field is set in the transaction object’s data structure to indicate the
transaction’s state. This state can be StartCrossTx, Executed, or Completed. Each
independent cross-chain transaction begins in the null state, indicating that the transaction
does not exist. The cross-chain transaction is created by the cross-chain contract on Chain
A and initially assigned the StartCrossTx state. Then, the cross-chain transaction is
executed on Chain B’s cross-chain contract and assigned the Executed state. Finally, the
entire cross-chain transaction is completed by the cross-chain contract on Chain A and

assigned the Completed state.

Si et al. (2023), Peerd Comput. Sci., DOI 10.7717/peerj-cs.1678 14/36

http://dx.doi.org/10.7717/peerj-cs.1678/fig-4
http://dx.doi.org/10.7717/peerj-cs.1678
https://peerj.com/computer-science/

PeerJ Computer Science

start | execute | commit |
‘—»StartCrossTx—» Executed ———— > Completed

Figure 5 Cross-chain transaction state transition diagram.
Full-size K&l DOT: 10.7717/peerj-cs.1678/fig-5

Cross-chain interaction process

The proposed cross-chain model primarily relies on the cross-chain contracts and relay
nodes of both sides for cross-chain interaction. One or more corresponding cross-chain
contracts must be deployed on the application chain. The application chain accesses the
cross-chain network through the relay nodes, transfers data with user contracts through
cross-chain contracts, and receives cross-chain requests from users.

There are three primary types of requests in the cross-chain interaction process:
contract invocation, event listening, and relay node interaction. The contract invocation
phase primarily involves the user, the user contract, and the cross-chain contract,
providing the user with interfaces for cross-chain interaction. Event listening is for cross-
chain contracts and relay nodes, and cross-chain nodes listen to cross-chain events of the
contracts to process them accordingly. Relay node interactions are node calls between the
blockchains involved in the cross-chain.

Considering the example of user A in transportation company chain A that conducts a
one-way cross-chain data interaction with user B in transportation department chain B,
the specific cross-chain process is shown in Fig. 6.

Step 1: The user of chain A creates the user contract and invokes the user contract to
send the cross-chain request data.

Step 2: After receiving the cross-chain request and data from the user, the user contract
calls the cross-chain contract of chain A and sends a cross-chain transaction request
(CCTX request), setting the state of the cross-chain transaction to “Current-State=NULL”.

Step 3: After receiving the CCTX request, the cross-chain contract of chain A creates a
unique cross-chain transaction number “CrossTxNo=[SrcChainNo:DestChainNo:
Number]” by splicing the source chain number, destination chain number, and
incremental code. Then, the contract generates a cross-chain transaction object and sets
the state of the cross-chain transaction to “Current-State=StartCrossTx”. Finally, it sends
the “startCrossTxEvent” event with the cross-chain transaction object to indicate the start
of the cross-chain transaction.

Step 4: The relay node corresponding to chain A listens asynchronously for events on
the blockchain.

Step 5: After listening to the “startCrossTxEvent” event and the cross-chain transaction,
the relay node of chain A encapsulates the cross-chain transaction according to the defined
RNCCP, and transmits the encapsulated transaction data to the relay node of chain B using
libP2P.

Step 6: After receiving the cross-chain message from the node of chain A, the relay node
of chain B validates the proof field of the cross-chain transaction. After verification, the
relay node converts the cross-chain transaction into a transaction object that can be

Si et al. (2023), Peerd Comput. Sci., DOI 10.7717/peerj-cs.1678 15/36

http://dx.doi.org/10.7717/peerj-cs.1678/fig-5
http://dx.doi.org/10.7717/peerj-cs.1678
https://peerj.com/computer-science/

PeerJ Computer Science

Transport Enterprise . @ j Transport Sector

T I
| | | |
| | | |
: Blockchain A l Z L Blockchain B |
O

I [g I
| - = | | - — |
(. (= Lo o= & I
& - & o
! o &
I -oss-chai [osschai I
I User A User Contract Cross ‘fham Relay Node | | Relay Node Cross c411a1n User Contract User A |
| . A Conp act ‘ | | . Conltl act ‘ : |
| il | | | | | | I I | |
| Step 1, | | o | | o
I Step2 | | L i | | P
| d | | | I | I 1 |
! |) i | l b
| sepd L : : o

L | | | |
| | | | | | | |
| | | | I | |
| ‘ Step 4 Step 5 } | | ! ! {

| |

| } | | } : |
| | T | | | | |
: | | } } Step 7 } i t

———————— l
| } } | | Step 8 } | |

| | I | I
I | M o I | | !
| | | | I | | |
| [! I I I
| | }Step 9 | | | |
I Step 10 Lo | ! ! ! |
[I I (N A | | ! ! ! ! |
[) " — Step 11 L [! : 1.Query, Cross-chain Regults |
| Step 12 | I | I | | | |
| T T | | | | I I |
Lo i | | Lo i | !
| 1 | | | | | 1 | |
| I 1 I I | | I I |
Lo i | | Lo i | !
1 1	I		1	
1 1 I			1	
L e e e e ————— e — 1 1

Figure 6 Cross-chain interaction process. Full-size K&l DOT: 10.7717/peerj-cs.1678/fig-6

accepted by blockchain B according to the RNCCP. Then, the relay node calls the cross-
chain contract to parse the cross-chain transaction object and perform the corresponding
cross-chain operation based on the parsed cross-chain object.

Step 7: The B-chain cross-chain contract executes the cross-chain operation and records
it on the blockchain. After execution, the contract sends the “ExecutedEvent” event and
sets “Current-State=Executed”, indicating that the cross-chain operation has been
completed.

Step 8: The relay node of chain B asynchronously listens to the “ExecutedEvent” event
sent by the cross-chain contract.

Step 9: The relay node of chain B encapsulates and processes the event and the result of
the cross-chain transaction and then sends the cross-chain response (CCTX response) to
the cross-chain node of chain A.

Step 10: After receiving the CCTX response sent by the relay node of chain B, the relay
node of chain A parses and verifies the transaction according to the RNCCP, and calls the
cross-chain contract to send the transaction result.

Step 11: After receiving the cross-chain transaction result, the cross-chain contract of
chain A records the transaction result on the blockchain and then calls the user contract to
send the result.

Step 12: After receiving the result, the user contract of chain A returns the cross-chain
result to user A.

Si et al. (2023), Peerd Comput. Sci., DOI 10.7717/peerj-cs.1678 16/36

http://dx.doi.org/10.7717/peerj-cs.1678/fig-6
http://dx.doi.org/10.7717/peerj-cs.1678
https://peerj.com/computer-science/

PeerJ Computer Science

The cross-chain transaction process is then fully executed, and user B on the blockchain
can query the cross-chain result by deploying user contract B on chain B.

ALGORITHM IMPLEMENTATION

In the previous section, we introduced the overall cross-chain architecture and the detailed
implementation scheme for the ITS. In this section, we provide a detailed introduction to
the algorithm implementation based on the above solution, primarily including the
implementation algorithms related to cross-chain smart contracts, relay node
communication, and relay node identity authentication.

Cross-chain interaction smart contract

As the code in the blockchain can be automatically executed according to the event trigger,
the execution logic of smart contracts is important. The cross-chain interaction smart
contract designed in this article serves as a bridge connecting users, blockchains, and relay
node chains (see Fig. 7), and primarily implements the cross-chain interoperability logic
processing between heterogeneous chains. The cross-chain contract inherits the storage
contract and contains two contract reference objects (ADD and STR-OPE) and the
algorithm for cross-chain interaction.

1. Parent contract. The storage contract defines the related cross-chain contract events,
contract objects, and necessary parameters in the cross-chain process. The names and
descriptions of the corresponding cross-chain contract events and parameters are shown
in Table 1. The data structure of the contract objects is shown in Fig. 4 in the previous
section.

2. Contract objects. The ADD and STR-OPE contracts are reference objects. The ADD
contract sets relevant information such as the set of relay nodes and blockchain numbers.
The STR-OPE contract contains algorithms for processing string-type data for cross-chain
contract data processing.

3. Cross-chain interaction algorithm. In order of execution, we describe the key
algorithms involved in the cross-chain interaction process in detail as follows.

startCrossChainTx(): As shown in Algorithm 1, this algorithm is called by the user
contract on the blockchain. Firstly, it determines the transaction type based on the
“txType” field. Then, it creates a cross-chain transaction object to initiate the cross-chain
transaction. Finally, it submits the startCrossChainTxEvent on the blockchain, which is
provided for listening by the relay nodes. The input of this algorithm includes relevant
information about the cross-chain transaction object. This algorithm corresponds to the
“StartCrossTx” state in the cross-chain transaction lifecycle. The other two states, Executed
and Completed, have similar execution and completion algorithms, with the only
difference being the need for ledger-related operations in the cross-chain transaction
execution algorithm.

sendAckedTx(). As shown in Algorithm 2, this algorithm is called by the relay node to
submit the cross-chain acknowledgment transaction and parse the proof information.
Firstly, the algorithm checks if the caller is a relay node, and then verifies if the contract
version is compliant. Next, based on different transaction statuses, it parses data and

Si et al. (2023), Peerd Comput. Sci., DOl 10.7717/peerj-cs.1678 17/36

http://dx.doi.org/10.7717/peerj-cs.1678
https://peerj.com/computer-science/

PeerJ Computer Science

Relay Node Chain
s - - - -----"-"-"=-" """ """ ""=”- ""=” ""=” ""-""="="—"="—"="—"="—"=—-—-=—-"—"= ~
\
| |
| |
— e _ A A _____ !
Institutional Blockchain A Institutional Blockchain B
i s Y oo |
I User Contract Cross-chain ! I Cross-chain User Contract !
| Contract | i Contract i
| [| [
i Sl PN B b lo= — i
i — i i — i
.. 4: ____________________ ! N $!
O User A User B O
Figure 7 Cross-chain interaction structure. Full-size k4] DOT: 10.7717/peerj-cs.1678/fig-7
Table 1 Cross-chain transaction fields.
Name Description
setSrcChainNoEvent Event emitted when the source blockchain number is set
setDestChainNoEvent Event emitted when the destination blockchain number is set
createCrossTxEvent Event emitted when the cross-chain transaction is created
startCrossTxEvent Event emitted when source blockchain contract sent cross-chain transaction
executedEvent Event emitted when destination blockchain contract executed cross-chain transaction
completedEvent Event emitted when source blockchain received and confirmed the result of cross-chain transaction
Owner The person who deployed the contract
relayNodeList Relay node list
Version Cross-chain contract version information
CrossChainTxObjMap The mapping list of cross-chain transaction objects
Number Used to calculate cross-chain transaction number

constructs a cross-chain transaction object in accordance with the RNCCP structure.
Finally, the algorithm sends the sendAckedEvent on the blockchain.

Relay nodes
As an important bridge that connects different regional blockchains in ITS, the cross-chain
network composed of relay nodes must have the following functions: (1) secure data
transmission between nodes; and (2) trusted node identity authentication. To achieve
secure and interactive communication between nodes in the cross-chain network, this
study uses libP2P to build a peer-to-peer communication network between nodes.

The relay node module includes communication between nodes and communication
between nodes and blockchains. Communication between nodes is based on the libP2P

Si et al. (2023), Peerd Comput. Sci., DOI 10.7717/peerj-cs.1678 18/36

http://dx.doi.org/10.7717/peerj-cs.1678/fig-7
http://dx.doi.org/10.7717/peerj-cs.1678
https://peerj.com/computer-science/

PeerJ Computer Science

Algorithm 1 User initiated cross-chain transactions.

Input: source address, destination address, source blockchain number, destination blockchain number, destination contract function name, cross-
chain data, contract version, transaction type

if version.equals(contract Version) then

if transaction type # 0 and transaction type # 1 then

Wrong transaction type

else

if transaction type = 1 then

user sends contract interoperability

/I Create cross-chain object

crossChainTxObj < createCrossChainTx(source blockchain number, destination blockchain number, source address, destination
address, destination contract function name, cross-chain data)

/I Add the cross-chain object to the list of cross-chain objects

CrossChainTxObjMap|[crossChainTxObj.crossTxNo)] ¢ crossChainTxObj

// Emit “startCrossChainTxEvent” event

emit startCrossChainTxEvent(“startCrossChainTxEvent”, crossChainTxObj.crossTxNo)

else

Cross-chain transaction type: transfer

end if
end if
end if

framework, while communication between nodes and blockchains is implemented using
event listening mechanisms and the blockchain SDK. The primary algorithms for node-to-
node communication and node-to-blockchain communication are given below.

nodesCommunication(): As shown in Algorithm 3, this algorithm creates p2p nodes for
two relay nodes A and B. We assume that node A is the server and responsible for listening,
while node B is the client and responsible for connecting to the server and establishing a
communication channel with the server. Node A opens a listening port, and node B
connects to node A using the encoding address. Then, the two nodes can communicate in
encrypted channels with multiple concurrent streams. The inputs for this algorithm are the
listening port and address of node A and the host object in the P2P network. The algorithm
then determines whether node A is the server or the client based on whether the node
address is empty or not. If the address is empty, then it is the server, and the port listening
on the server side is opened. When a client node connects, according to the protocol
specified by the PID, it begins the read-and-write flow. If the address is not empty, it means
that the node is a client. After parsing the address and reading the multiaddress of the
server, the multiaddress of the node is added to the peerstore. Then, the communication
stream is opened between the two nodes, and a non-blocking read-and-write byte stream
and a read-and-write process are created to start communication.

Si et al. (2023), Peerd Comput. Sci., DOl 10.7717/peerj-cs.1678 19/36

http://dx.doi.org/10.7717/peerj-cs.1678
https://peerj.com/computer-science/

PeerJ Computer Science

Algorithm 2 Relay node submits cross-chain confirmation transaction.

Input: crossTxNo, txResult, contract version, proof
/I Verify if the algorithm is called by the relay node
if checkRelayNode() = false then
This function is restricted to the relay node
else
if version.equals(contract version) then
/I Obtain cross-chain object from the list: CrossChainTxObjMap
crossTxObj ¢ CrossChainTxObjMap|crossTxNo]
if crossTxObj.TxResult equals to INIT then
if the relay node belongs to the source chain then
if crossTxObj.TxType equals to transfer then
Parsing cross-chain object and payload based on transfer type
else
/I crossTxObj.TxType equals contract interoperability
Parsing cross-chain object and payload based on contract interoperability type
end if
crossTxObj.TxResult « txResult
Parsing transaction hash and block number where the transaction is located from proof
crossTxObj.proof ¢ proof
CrossChainTxObjMap[crossTxNo] ¢ crossTxObj
emit sendAckedEvent(“sendAckedEvent”,crossTxObj.CrossTxNo,crossTxObj. TxType)
end if
end if
end if
end if

contractEventListener(). As shown in Algorithm 4, this algorithm acts as a bridge for
intercommunication between relay nodes and the blockchain. It utilizes an event listening
mechanism to monitor events occurring in the contract. It calls back the client with the
relevant cross-chain events that happened on the blockchain. Depending on different
cross-chain events, it processes them accordingly. For example, when the
startCrossChainTxEvent is detected, the source chain’s relay node forwards the cross-
chain transaction information to the destination chain’s relay node. Similarly, when the
“executedEvent” is detected, it indicates that the cross-chain operation has been executed
in the destination chain’s contract, and the destination chain’s relay node forwards the
relevant information back to the source chain’s relay node.

Si et al. (2023), Peerd Comput. Sci., DOI 10.7717/peerj-cs.1678 20/36

http://dx.doi.org/10.7717/peerj-cs.1678
https://peerj.com/computer-science/

PeerJ Computer Science

Algorithm 3 Inter-node communication.
Input: listening port (source port), server-side node address (dest), object in p2p network (host)
if dest = “” then

// When a client node connects to the server, the read/write stream is started using the protocol specified by the PID, and the
“streamHandler” is the non-blocking read/write buffer stream created.

host.SetStreamHandler(PID, streamHandler)
for each la in range h.Network().ListenAddresses() do
p < la.valueForProtocol(multiaddr.P_TCP)
port < p
end for
else
madder ¢« multiaddr.NewMultiaddr(dest)
/I Extract peer ID from multiaddr.
info < peer.AddrInfoFromP2PAddr(madder)
/I Add the address of the server node to the peerstore.
host.PeerStore(). AddAddrs(info.ID, info.Address, peerstore. PermanentAddrTTL)
/] Establishing a stream with a server-side node.
s < h.NewStream(context.Background (), info.ID, PID)
/I Create a non-blocking read/write buffer stream.
rw < buffer NewReaderWriter(buffer.NewReader(s), buffer NewWriter(s))
Execute writeData(rw) // Create write threads.
Execute readData(rw) // Create read threads.

end if

IBE-based authentication of relay nodes

When a relay node applies to join the network, it must communicate with the master node.
After it is authenticated by the master node, it can join the cross-chain network. Once the
relay node has been authenticated, its multiaddress will be added to the peerstore, and the
address will be broadcast to other nodes in the network. Each node in the cross-chain
network maintains a ledger with the multiple addresses of all nodes that are used for
subsequent communication between the nodes.

RelayNodeAuthentication(): As shown in Algorithm 5, this algorithm is used for
identity authentication of the relay node when joining the network. The algorithm is based
on the IBE mechanism, which generates a public-private key pair for the node at startup
and is used to encrypt and decrypt the node’s identity. Identity is authenticated by the
master node corresponding to the transport department chain in the ITS. If the identity
matches, the authentication is passed, and subsequent cross-chain data interaction can be
performed.

Si et al. (2023), Peerd Comput. Sci., DOI 10.7717/peerj-cs.1678 21/36

http://dx.doi.org/10.7717/peerj-cs.1678
https://peerj.com/computer-science/

PeerJ Computer Science

Algorithm 4 Contract event listening.

Input: start block, end block
Set relevant parameters, including start block, end block, contract address, contract event, etc.
Construct a callback function to retrieve the observed cross-chain events: logs
if logs are not empty then
for each log in logs do
list < decode event log content
crossTxNo « list[1]
crossTxType < list[2]
blockNumber < log.getBlockNumber()
txHash < log.getTransactionHash()
eventName < list[0]
/] Execute different functions based on the eventName
if eventName.equals(“startCrossChainTxEvent”) then

Execute startTx()

else
if eventName.equals(“executedEvent”) then
Execute execute()
eventName.equals(“sendAckedEvent”)
else
Execute sendAcked()
end if
end if
end for
end if

EXPERIMENTAL EVALUATION

In this section, we first introduce the experimental environment used in this article. Then,
we simulate the proposed cross-chain mechanism on Hyperledger Fabric and FISCO
BCOS blockchain and analyze the performance of the mechanism through experimental
tests.

Setup

In order to test the feasibility and performance of the proposed solution in this article, we
use Hyperledger Fabric and FISCO BCOS to build a network environment for the
heterogeneous cross-chain interaction architecture based on relay nodes. The cross-chain
network consisted of 19 nodes. Specifically, the HyperLedger Fabric blockchain network
was set up with 11 nodes, comprising three orderer nodes and four organizations, with
each organization having two peer nodes. The Raft consensus algorithm was utilized for

Si et al. (2023), Peerd Comput. Sci., DOI 10.7717/peerj-cs.1678 22/36

http://dx.doi.org/10.7717/peerj-cs.1678
https://peerj.com/computer-science/

PeerJ Computer Science

Algorithm 5 Node authentication based on IBE.

Input: relay node identity (id), system master key (master_key), system parameters (parameters)
Output: Whether the relay node has passed identity authentication (authenticated), session key used for subsequent communication (session_key)
/] Generate a random number as the private key of the relay node.
private_key <« generate_private_key()
/] Generate the relay node's public key
public_key « derive_public_key(private_key)
/I Use IBE to encrypt the identity of the relay node.
encrypted_id <« ibe_encrypt(id, public_key, parameters)
// ' The relay node sends the encrypted identity and its public key to the main node of the cross-chain network.
message < {encrypted_id, public_key}
/I ' The master node uses IBE to decrypt the encrypted identity.
decrypted_id ¢ ibe_decrypt(encrypted_id, private_key, parameters)
/1 1f the decrypted identity matches the public key sent by the relay node, the authentication is successful.
if decrypted_id = public_key then
authenticated ¢ true
/I Generate a session key for subsequent communication.
session_key <« generate_session_key()
else
authenticated <« false

end if

this blockchain network. The FISCO BCOS network was deployed with three groups,
totaling eight nodes, and the Raft consensus algorithm was also chosen as the consensus
mechanism for this blockchain. The experimental environment is Intel Xeon E5 CPU,
64 GB of RAM, 35 MB of L3 cache, and the Ubuntu 18.04 operating system.

We wrote and deployed smart contracts for cross-chain communication and used Java
and Go languages to write corresponding relay node execution algorithms for two
institutional chains. Then, we utilized the NGSIM dataset to simulate a scenario of cross-
chain interaction between two heterogeneous institutional chains in ITS, and Fig. 8 shows
the results of the two traffic data reads across the chains. Finally, we employed Hyperledger
Caliper and JMeter tools to script performance evaluation tests for the cross-chain smart
contract and the overall cross-chain process.

The NGSIM dataset includes four different scenarios from six cities in the United States:
US-101, I-80, Lankershim, and Peachtree. US-101 and I-80 record the trajectories of
vehicles on highways, while Lankershim and Peachtree record the trajectories of vehicles
on city roads. The data fields in this dataset are explained in Table 2. For testing, we
randomly selected data from this dataset to simulate 10,000 concurrent traffic services.

Si et al. (2023), Peerd Comput. Sci., DOI 10.7717/peerj-cs.1678 23/36

http://dx.doi.org/10.7717/peerj-cs.1678
https://peerj.com/computer-science/

PeerJ Computer Science

:~/go/src/github.com/hyperledger/fabric/scripts/fabri
-network$S peer chaincode invoke -o localhost: 7050 ——order
1. Cross-chain Request erTLSHostnameoverrlde orderer.example.com --tls true --cafile S${PWD
}/organizations/ordererOrganizations/example.com/orderers/orderer.e
xample.com/msp/tlscacerts/tlsca.example.com-cert.pem -C mychannel -
n crossChainContract --peerAddresses localhost:7051 --tlsRootCertFi
les ${PWD}/organizations/peerOrganizations/orgl.example.com/peers/p
eer0.orgl.example.com/tls/ca.crt --peerAddresses localhost:9051 --t
1sRootCertFiles ${PWD}/organizations/peerOrganizations/org2.example
.com/peers/peer@.org2.example.com/tls/ca.crt -c '{"function":"cros
sChainRead","Args":["Vehicle_ID:515"]}'

Function: CrossChainRead

Args: Vehicle ID:515

2022-11-23 03:41:47.726 PST [chaincodeCmd] chaincodeInvokeOrQuery -
> INFO 001 Chaincode invoke successful. result: status:200 payload:

1. Cross-chain Response "Vehicle_ID:515, Frame_ID: 233, Total_Frames: 1123, Global_Time: 11
18848075000, Local_X: 30.034, Local_Y:188.062, Global_X: 6451203.72
9, Global_Y: 1873252.549, v_length: 13, v_Width: 6.9, v_Class: 2, v
_Vel: 23.31, Lane_ID: 3, Location: us-101"

i~/ /github.com/hyperle er/fabric/scripts/fabric-sa

erTLSHustnameoverrlde orderer. example com ——tls true --cafile S${PWD

2. Cross-chain Request }/organizations/ordererOrganizations/example.com/orderers/orderer.e

xample.com/msp/tlscacerts/tlsca.example.com-cert.pem -C mychannel -

Function: CrossChainRead N crossChainContract --peerAddresses localhost:7051 --tlsRootCertFi

les ${PWD}/organizations/peerOrganizations/orgl.example.com/peers/p

Vehicle TD:2224 eer®.orgl.example.com/tls/ca.crt --peerAddresses localhost:9051 --t

=" 1sRootCertFiles ${PWD}/organizations/peerOrganizations/org2.example

.com/peers/peer@.org2.example.com/tls/ca.crt -c '{"function":"cros
sChainRead","Args":["Vehicle_ID:2224"]}'

Args:

2022-11-23 03:41:44.830 PST [chaincodeCmd] chaincodeInvokeOrQuery -
> INFO 001 Chaincode invoke successful. result: status:200 payload:

2. Cross-chain Response "Vehicle_ID:2224, Frame_ID: 6548, Total_Frames: 1902, Global_Time:
1113437421700, Local_X: 41.429, Local_Y:472.901, Global_X: 6042814.
264, Global_Y: 2133542.012, v_length: 14.3, v_Width: 6.9, v_Class:
2, v_Vel: 26.54, Lane_ID: 4, Location: i-80"

Figure 8 Results of cross-chain reading of traffic data. Full-size Kal DOI: 10.7717/peerj-cs.1678/fig-8

Complexity analysis

Before presenting the numerical evaluation results, we analyze the complexity of the five
algorithms in the proposed scheme. Algorithm 1 submits an event on the blockchain after
creating a cross-chain transaction object. The time complexity of this algorithm can be
represented as O(1). Algorithm 2 is used by relay nodes to submit cross-chain transaction
information, construct transaction objects compliant with RNCCP structure, and parse
Proof information. The time complexity of these operations is also O(1); therefore, the
time complexity of this algorithm can be represented as O(1). Algorithm 3 is used for
communication between relay nodes, assuming that the number of relay nodes is m. Nodes
connect by retrieving “multiaddr” encoded addresses. Once connected, nodes can engage
in concurrent communication, and connected relay nodes can communicate directly
within a fixed time, avoiding unnecessary time costs for reconnection. The time complexity
of establishing connections is O(m), and the time complexity of concurrent
communication is O(1). Thus, the total time complexity of this algorithm is O(m).
Algorithm 4 achieves communication between relay nodes and the blockchain through
event listening. Assuming that the total number of cross-chain events on a single
blockchain is N, and the number of cross-chain events from the start block to the end block
within the specified time is n (n<<N). This algorithm iterates through n cross-chain events

Si et al. (2023), Peerd Comput. Sci., DOl 10.7717/peerj-cs.1678 24/36

http://dx.doi.org/10.7717/peerj-cs.1678/fig-8
http://dx.doi.org/10.7717/peerj-cs.1678
https://peerj.com/computer-science/

PeerJ Computer Science

Table 2 The data fields of the NGSIM dataset.

Name Description

Vehicle_ID Vehicle identification number

Frame_ID The frame number of the data at a certain moment
Total_Frames Total number of frames in which the vehicle appears in this dataset
Global_Time Timestamp (ms)

Local X X value in the local coordinate system, measured in feet
Local Y Y value in the local coordinate system, measured in feet
Global_X X value in the standard geographic coordinate system
Global_Y Y value in the standard geographic coordinate system
v_length Vehicle length, measured in feet

v_Width Vehicle width, measured in feet

v_Class Vehicle type: 1-Motorcycle, 2-Car, 3-Truck

v_Vel Instantaneous vehicle velocity, measured in feet per second
Lane_ID Current lane position of the vehicle

Location Street name or highway name

and executes different cross-chain event handling methods. The time complexity of
executing event handling methods is O(1), so the time complexity of Algorithm 4 is O(n).
Algorithm 5 mainly involves identity encryption and decryption, as well as the
transmission of ciphertext between relay nodes and main nodes. Since relay nodes can only
establish connections with main nodes after identity authentication, the time complexity of
this algorithm is O(m).

In summary, based on Fig. 6, the cross-chain interaction process, for a blockchain that
joins this cross-chain network for the first time, incurs the longest overall cross-chain time
consumption, with a time complexity of O(2m+2n).

Performance evaluation
We used widely recognized metrics in the field of cross-chain research, namely execution
time and gas consumption, to evaluate the performance of our approach. The experiments
in this study were divided into three groups. The first group of experiments tested the
overall performance of our proposed cross-chain solution, and this group of experiments
ignored the impact of transaction initiation time. The second group of experiments tested
the performance of the cross-chain contract algorithm, evaluating the smart contract
algorithms’ performance under different levels of concurrent traffic services. The third
group of experiments tested the gas consumption required for executing cross-chain
operations. This was done to evaluate the computing and storage resources consumed by
cross-chain transactions. This experiment was conducted on the Ethereum platform.

To make the experimental presentation more clear, we give a detailed description of the
relevant experimental parameters in Table 3.

Experiment 1. We conducted performance testing on the complete cross-chain process
(from user request initiation to receiving cross-chain data) of the proposed cross-chain

Si et al. (2023), Peerd Comput. Sci., DOI 10.7717/peerj-cs.1678 25/36

http://dx.doi.org/10.7717/peerj-cs.1678
https://peerj.com/computer-science/

PeerJ Computer Science

Table 3 Experimental parameter definitions.

Name Description

Cross-chain traffic A service represents a cross-chain request, where the data field of this cross-chain request corresponds to a traffic data
services object from the NGSIM dataset.

Number of parallel The number of cross-chain transactions executed concurrently in the network environment.
transactions

Transaction rounds Due to a large number of cross-chain services and the instability of individual cross-chain transactions, we categorize cross-

chain transactions into groups. Each group comprises 100 consecutive cross-chain transaction requests, and the average
execution time is calculated to represent the execution time for that group.

Send rate The sending rate of cross-chain requests, representing the concurrency and load of cross-chain transactions.

mechanism in this article using JMeter. To evaluate the performance of our solution, we
compared the time of the complete cross-chain process with the solutions proposed by Lu
et al. (2023) and Xiong et al. (2022). Furthermore, in order to better evaluate whether the
proposed solution is suitable for a multi-transaction, high-concurrency ITS cross-chain
network, we used the NGSIM dataset to set up 10,000 cross-chain traffic services. The
number of concurrent services was set to 50, 100, and 200, respectively, and we conducted
tests and statistics on the time of the complete cross-chain process. We divided the 10,000
transactions into rounds of 100 transactions each and calculated their averages for
evaluation.

Based on the results shown in Figs. 9 and 10, our proposed solution demonstrated an
overall cross-chain average time below 2,500 ms for concurrent transaction numbers of 50,
100, and 200, ranging from 1,868 to 2,409 ms. In comparison, the scheme presented by Lu
et al. (2023) showed a stable inter-chain communication delay at around 3,000 ms, and the
solution proposed by Xiong et al. (2022) remained stable at around 2,500 ms. In addition,
compared with Wu (2021), due to the participation of the relay chain, the burden of inter-
chain interaction is increased, and the average cross-chain time overhead of this article is
about 10.47 s. In summary, our scheme is more effective than Lu ef al. (2023) and Xiong
et al. (2022) in terms of cross-chain performance. Furthermore, our scheme exhibits
minimal fluctuations between 10-90 transaction rounds, demonstrating excellent stability
and suitability for ITS cross-domain network environments.

Experiment 2. To study the efficiency of various algorithms in the cross-chain contract
under different concurrent traffic service scenarios, we conducted experiments using
Hyperledger Caliper. We simulate different transaction concurrency and loads by
controlling the transaction sending rate (Send Rate). We set the transaction sending rate
per second in the ranges (100, 650) and (1,600, 2,200), with an interval of 50 transactions
per second, to test the impact of different concurrent transaction requests on the
performance of the cross-chain contract. We measured the performance of different cross-
chain functions, including throughput, average transaction execution time, and CPU
resource consumption ratio, as shown in Figs. 11-13. The test results showed that with the
increase in cross-chain transaction concurrency, the throughput of the cross-chain
algorithms significantly improved. The throughput of the cross-chain read operation

Si et al. (2023), Peerd Comput. Sci., DOI 10.7717/peerj-cs.1678 26/36

http://dx.doi.org/10.7717/peerj-cs.1678
https://peerj.com/computer-science/

PeerJ Computer Science

3500
Our scheme, number of parallel transactions =1

—— Our scheme, number of parallel transactions =50

w
o
o
o

Our scheme, number of parallel transactions =100
—— Our scheme, number of parallel transactions = 200

N — T

7 i e * —

2500

average execution time/ms

2000 7
1500
0 10 20 30 40 50 60 70 80 90 100
transaction rounds
Figure 9 Cross-chain execution time. Full-size K&l DOT: 10.7717/peerj-cs.1678/fig-9
4000 Our scheme, number of parallel transactions =1
Lu et.al(2023), number of parallel transactions =1
3500 —e— Xiong et.al(2022), number of parallel transactions =1

w
o
o
o

N
wu
o
o

average execution time/ms
N
o
o
o

1500
0 10 20 30 40 50 60 70 80 90 100
transaction rounds
Figure 10 Cross-chain performance comparison. Full-size K] DOT: 10.7717/peetj-cs.1678/fig-10

reached 2100 TPS, and the average execution time remained stable below 10 ms. The
average execution time of the cross-chain write operation was approximately 500 ms,
meeting the requirements of ITS for cross-chain read operations.

Experiment 3. We deployed the cross-chain contract on the Ethereum network to test
and evaluate the cost of cross-chain transactions. Gas consumption is used to measure the
transaction cost, which depends on factors such as the complexity of the smart contract,
the computational resources required for execution, and the network transmission cost.

In Table 4, we list the costs of the main functional functions of the cross-chain contract,
including gas consumption, corresponding ETH, and USD prices. The table is calculated
based on the gas price (20 Gwei) and 1 ETH price ($1,849.84) on July 24, 2023. From the
table, we can see that the deployment of the cross-chain contract incurs the highest gas
cost, reaching 7,877,145 gas, but this situation only occurs once. In addition, the gas cost

Si et al. (2023), Peerd Comput. Sci., DOI 10.7717/peerj-cs.1678 27/36

http://dx.doi.org/10.7717/peerj-cs.1678/fig-9
http://dx.doi.org/10.7717/peerj-cs.1678/fig-10
http://dx.doi.org/10.7717/peerj-cs.1678
https://peerj.com/computer-science/

PeerJ Computer Science

Send rate(transactions-s-1)

700/2200 F
650/2150 F
600/2100 F
550/2050 F
500/2000 ?
450/1950 ?
400/1900 ?
350/1850 r
300/1800 F
250/1750 r

200/1700 F

150/1650 F B Cross-chain reading

[0 Creating cross-chain objects

100/1600 [Creating cross-chain objects

0 500 1000 1500 2000 2500
Throughput(TPS)
Figure 11 Cross-chain contract throughput. Full-size K&] DOT: 10.7717/peerj-cs.1678/fig-11

[0 Cross-chain writing
1400 . .
Cross-chain reading

1200 M Initiating cross-chain events
»1000
S
T
£ 800
£
5
2 600
>
(8]

Q
3 400
Q
oo
©
5 200
>
(1]

0 || || — — || || || || || — || — ||

100 150 200 250 300 350 400 450 500 550 600 650 700
Send rate(transactions-s-1)

Figure 12 Cross-chain contract average execution time.Full-size Kal DOT: 10.7717/peerj-cs.1678/fig-12

Si et al. (2023), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1678 I 28/36

http://dx.doi.org/10.7717/peerj-cs.1678/fig-11
http://dx.doi.org/10.7717/peerj-cs.1678/fig-12
http://dx.doi.org/10.7717/peerj-cs.1678
https://peerj.com/computer-science/

PeerJ Computer Science

—+— “Initiating cross-chain events” —e— “Creating cross-chain objects”

“Cross-chain writing” —=— “Cross-chain reading”
70

60
50

40 —— ﬁ/
30 —
20 g i ——
10

0

CPU % (avg)

Q Q Q Q Q Q Q Q QO Q 0 Q
B N N N N N N N SN LN LS e

Send rate(transactions-s!)

Figure 13 Cross-chain contract CPU resource consumption percentage.
Full-size K&l DOT: 10.7717/peerj-cs.1678/fig-13

Table 4 The gas cost of each operation in cross-chain contract and the corresponding price.

Function name Transaction cost (gas) ETH Cost (USD)
CrossChainContract 7,877,145 0.1575429 291.429158136
Initialize 113,276 0.00226552 4.1908495168
startCrossChainTx 550,212 0.01100424 20.3560833216
getCrossChainTx 65,985 0.0013197 2.441233848
createCrossChainTxNo 87,937 0.00175874 3.2533876016
createCrossChainTx 38,746 0.00077492 1.4334780128
executeCrossChainTx 48,965 0.0009793 1.811548312
sendAckedTx 687,719 0.01375438 25.4434022992
setRelayNode 47,360 0.0009472 1.752168448

for initiating cross-chain transactions and submitting acknowledgment transactions is also
high, as these two functions involve parsing cross-chain data, transaction creation, data
verification, and complex operations related to the ledger. For sending and creating
transactions, the gas spent is directly related to the size of the data contained in the
transaction. For transactions such as initialization, setting relay node addresses, and
obtaining cross-chain transaction objects, the gas spent is fixed, because these algorithms
only need to set addresses or cross-chain transaction ID as parameters.

DISCUSSION

As shown in Table 5, we conducted a comparison based on five aspects: support for
identity authentication, support for complex network scenarios, support for heterogeneous
cross-chain, security, and efficiency. Through the comparison, we found that the
MyBlockEHR (Sonkamble et al., 2021) and Practical AgentChain (Hei et al., 2022)
solutions only implemented homogenous cross-chain on the Ethereum platform, and did
not support heterogeneous cross-chain operations. Additionally, these two solutions

Si et al. (2023), Peerd Comput. Sci., DOI 10.7717/peerj-cs.1678 29/36

http://dx.doi.org/10.7717/peerj-cs.1678/fig-13
http://dx.doi.org/10.7717/peerj-cs.1678
https://peerj.com/computer-science/

PeerJ Computer Science

Table 5 Comparison of cross-chain solutions.

Solutions Support for identity Support for complex network Support for heterogeneous Security Efficiency
authentication scenarios cross-chain

MyBlockEHR (Sonkamble No Yes No Higher Lower

et al., 2021)
IBE-BCIOT (Shao et al., 2021) Yes No Yes Higher Higher
Practical AgentChain (Hei No No No Higher Lower

et al., 2022)
FHTTI (Li et al., 2023) Yes Yes No Higher Medium
The scheme proposed in this Yes Yes Yes Higher Higher

article

exhibited execution times exceeding 10 s, indicating relatively low efficiency, and they did
not address the issue of cross-chain identity authentication. Although the IBE-BCIOT
(Shao et al., 2021) scheme considers both identity verification and data security, it does not
support complex network scenarios. The FHTI (Li et al., 2023) solution only supports
dual-layer cross-chain operations within the same platform’s consortium chains. In
contrast, our proposed solution was tested on the Hyperledger Fabric, FISCO BCOS, and
Ethereum platforms, demonstrating that it can meet the requirements for heterogeneous
chain cross-chain interaction in intelligent transportation scenarios. It effectively addresses
data interoperability across multiple transportation blockchains to some extent,
considering aspects like thread parallelism and transaction efficiency. Furthermore, our
solution is not limited to the intelligent transportation domain. For example, in the IoT
domain, cross-domain data exchange between devices is also a common requirement. By
modifying the RNCCP data structure, our solution can be easily extended to this domain,
facilitating secure and efficient communication among different IoT devices.

Our proposed solution achieved some success in the experiments and demonstrated
advantages in cross-chain performance. However, we must also recognize that there are
certain limitations and potential challenges. Firstly, although we validated the feasibility of
this cross-chain interaction mechanism in our experiments, applying it to real intelligent
transportation scenarios may encounter challenges different from the experimental
environment. Real-world applications may involve more complex data interaction
scenarios and more participants. Ensuring reliability and stability in a real environment
requires further research. Secondly, the scalability of the solution is also a concern,
especially in real large-scale ITS networks. Maintaining high throughput and performance
in such networks will require further investigation. Additionally, the organizations in the
ITS cross-chain network may not fully trust each other, and the data in the network may
not be entirely open and transparent. This data often contains sensitive information, and
there are limitations on the permissions and scope of data sharing between different
chains. Therefore, implementing data access control in the ITS network to ensure data and
user privacy security is another issue that needs attention.

Si et al. (2023), Peerd Comput. Sci., DOI 10.7717/peerj-cs.1678 30/36

http://dx.doi.org/10.7717/peerj-cs.1678
https://peerj.com/computer-science/

PeerJ Computer Science

CONCLUSION

This article introduces a solution for cross-chain interaction between heterogeneous chains
in the ITS and proposes an innovative cross-chain interaction mechanism based on relay
nodes. This mechanism is of significant importance in optimizing collaboration and
interoperability between heterogeneous chains, enabling secure and efficient data exchange
and communication among vehicles, road testing devices, computing nodes, and traffic
institutions. By constructing a cross-chain model architecture consisting of relay nodes,
relay chains, and cross-domain institutions, as well as designing a secure relay node access
and communication scheme based on identity-based encryption, this article provides a
feasible solution to the problem of cross-domain data interaction between devices and
institutions in ITS. Experimental results demonstrate that this mechanism effectively
meets the cross-chain interaction requirements in intelligent transportation scenarios and
provides reliable technical support for data sharing and collaboration in ITS. Our solution
has been tested and verified on platforms such as Hyperledger Fabric, FISCO BCOS, and
Ethereum, confirming its stability and adaptability, thus providing strong support for
practical applications.

The cross-chain interoperability mechanism studied in this article facilitates cross-
organizational and cross-regional data collaboration in ITS networks, enhancing the value
and utility of data. In future work, we will further explore cross-chain data privacy
protection schemes. By studying access control mechanisms in cross-chain networks, we
aim to ensure the security and privacy of data interactions between devices and traffic
institutions across trust domains, while promoting collaboration and information
exchange between multiple chains. Additionally, we plan to integrate this mechanism into
real-world scenarios (such as intelligent transportation, IoT, etc.) for simulation testing to
further validate its effectiveness and reliability in practical applications.

ACKNOWLEDGEMENTS

The authors thank Henan Agricultural University for providing lab facilities used in the
implementation of this work.

ADDITIONAL INFORMATION AND DECLARATIONS

Funding

This work was supported by the Henan Province Key Science-technology Research Project
under Grant No. 232102520006 and 232102210122, the Key Research Project of Henan
Provincial Higher Education Institution under Grant No. 23A520005, and the Henan
Province Major Public Welfare Projects under Grant No. 201300210300. The funders had
no role in study design, data collection and analysis, decision to publish, or preparation of
the manuscript.

Grant Disclosures
The following grant information was disclosed by the authors:
Henan Province Key Science-technology Research Project: 232102520006 and

Si et al. (2023), Peerd Comput. Sci., DOI 10.7717/peerj-cs.1678 31/36

http://dx.doi.org/10.7717/peerj-cs.1678
https://peerj.com/computer-science/

PeerJ Computer Science

232102210122.
Key Research Project of Henan Provincial Higher Education Institution: 23A520005.
Henan Province Major Public Welfare Projects: 201300210300.

Competing Interests
The authors declare that they have no competing interests.

Author Contributions

e Haiping Si conceived and designed the experiments, analyzed the data, authored or
reviewed drafts of the article, and approved the final draft.

e Weixia Li conceived and designed the experiments, performed the experiments,
analyzed the data, performed the computation work, prepared figures and/or tables,
authored or reviewed drafts of the article, and approved the final draft.

e Qingyi Wang conceived and designed the experiments, prepared figures and/or tables,
and approved the final draft.

e Haohao Cao conceived and designed the experiments, performed the experiments,
authored or reviewed drafts of the article, and approved the final draft.

e Fernando Bacao analyzed the data, prepared figures and/or tables, and approved the final
draft.

o Changxia Sun analyzed the data, authored or reviewed drafts of the article, and approved
the final draft.

Data Availability
The following information was supplied regarding data availability:

The code is available at Zenodo.

Weixia Li. (2023). cross-chain. Zenodo. https://doi.org/10.5281/zenodo.8341447.

The data is available at transportation.gov: https://data.transportation.gov/
Automobiles/Next-Generation-Simulation-NGSIM-Vehicle-Trajector/8ect-6jgj.

U.S. Department of Transportation Federal Highway Administration. (2016). Next
Generation Simulation (NGSIM) Vehicle Trajectories and Supporting Data. [Dataset].
Provided by ITS DataHub through Data.transportation.gov. http://doi.org/10.21949/
1504477.

Supplemental Information
Supplemental information for this article can be found online at http://dx.doi.org/10.7717/
peerj-cs.1678#supplemental-information.

REFERENCES

Aftab MU, Oluwasanmi A, Alharbi A, Sohaib O, Nie X, Qin Z, Ngo ST. 2021. Secure and
dynamic access control for the Internet of Things (IoT) based traffic system. Peer] Computer
Science 7(5):e471 DOI 10.7717/peerj-cs.471.

Alharby M, van Moorsel A. 2017. Blockchain based smart contracts: a systematic mapping study.
In: Computer Science & Information Technology (CSIT). Academy & Industry Research
Collaboration Center (AIRCC).

Si et al. (2023), Peerd Comput. Sci., DOI 10.7717/peerj-cs.1678 32/36

https://doi.org/10.5281/zenodo.8341447
https://data.transportation.gov/Automobiles/Next-Generation-Simulation-NGSIM-Vehicle-Trajector/8ect-6jqj
https://data.transportation.gov/Automobiles/Next-Generation-Simulation-NGSIM-Vehicle-Trajector/8ect-6jqj
http://doi.org/10.21949/1504477
http://doi.org/10.21949/1504477
http://dx.doi.org/10.7717/peerj-cs.1678#supplemental-information
http://dx.doi.org/10.7717/peerj-cs.1678#supplemental-information
http://dx.doi.org/10.7717/peerj-cs.471
http://dx.doi.org/10.7717/peerj-cs.1678
https://peerj.com/computer-science/

PeerJ Computer Science

Balzano W, Lapegna M, Stranieri S, Vitale F. 2022. Competitive-blockchain-based parking
system with fairness constraints. Soft Computing 26(9):4151-4162
DOI 10.1007/s00500-022-06888-1.

Belchior R, Vasconcelos A, Guerreiro S, Correia M. 2021. A survey on blockchain
interoperability: past, present, and future trends. ACM Computing Surveys (CSUR) 54(8):1-41
DOI 10.1145/3471140.

Boneh D, Franklin M. 2001. Identity-based encryption from the weil pairing. In: Kilian J, ed.
Advances in Cryptology—CRYPTO 2001. Berlin, Heidelberg: Springer, 213-229.

Buterin V. 2014. A next-generation smart contract and decentralized application platform. White
Paper 3(37):2-11.

Buterin V. 2016. Chain interoperability. R3 Research Paper 9:1-25.

Cheng X, Chen F, Xie D, Sun H, Huang C. 2020. Design of a secure medical data sharing scheme
based on blockchain. Journal of Medical Systems 44(2):52 DOI 10.1007/s10916-019-1468-1.

Cocirlea D, Dobre C, Hirtan L-A, Purnichescu-Purtan R. 2020. Blockchain in intelligent
transportation systems. Electronics 9(10):1682 DOI 10.3390/electronics9101682.

Dias D, Benet J. 2016. Distributed web applications with IPFS, tutorial. In: Web Engineering: 16th
International Conference, ICWE 2016, Lugano, Switzerland, June 6-9, 2016. Proceedings 16.
vol. 16: Cham: Springer, 616-619.

Guidi B, Michienzi A, Ricci L. 2021. A libp2p implementation of the bitcoin block exchange
protocol. In: Proceedings of the 2nd International Workshop on Distributed Infrastructure for
Common Good, DICG21. New York, NY, USA: Association for Computing Machinery, 1-4.

Han S, Han K, Zhang S. 2019. A data sharing protocol to minimize security and privacy risks of
cloud storage in big data era. IEEE Access 7:60290-60298 DOI 10.1109/ACCESS.2019.2914862.

Hei Y, Li D, Zhang C, Liu J, Liu Y, Wu Q. 2022. Practical agentchain: a compatible cross-chain
exchange system. Future Generation Computer Systems 130(9):207-218
DOI 10.1016/j.future.2021.11.029.

Ibba S, Pinna A, Seu M, Pani FE. 2017. Citysense: blockchain-oriented smart cities. In:
Proceedings of the XP2017 Scientific Workshops, XP ’17. New York, NY, USA: Association for
Computing Machinery.

Kaleem M, Mavridou A, Laszka A. 2020. Vyper: a security comparison with solidity based on
common vulnerabilities. In: 2020 2nd Conference on Blockchain Research & Applications for
Innovative Networks and Services (BRAINS). 107-111.

Kannengiefler N, Pfister M, Greulich M, Lins S, Sunyaev A. 2020. Bridges between Islands: cross-
chain technology for distributed ledger technology. In: Proceedings of the Hawaii International
Conference on System Sciences, 2020.

Khan S, Parkinson S, Qin Y. 2017. Fog computing security: a review of current applications and
security solutions. Journal of Cloud Computing 6:19 DOI 10.1186/s13677-017-0090-3.

Koens T, Poll E. 2019. Assessing interoperability solutions for distributed ledgers. Pervasive and
Mobile Computing 59(3):101079 DOI 10.1016/j.pmc;j.2019.101079.

Kosba A, Miller A, Shi E, Wen Z, Papamanthou C. 2016. Hawk: the blockchain model of
cryptography and privacy-preserving smart contracts. In: 2016 IEEE Symposium on Security and
Privacy (SP). Piscataway: IEEE, 839-858.

Lai L, Zhou T, Cai Z, Yu J, Bai H, Cui J. 2021. Leveraging blockchain for cross-institution data
sharing and authentication in mobile healthcare. In: 2021 17th International Conference on
Mobility, Sensing and Networking (MSN). Piscataway: IEEE, 311-318.

Si et al. (2023), Peerd Comput. Sci., DOI 10.7717/peerj-cs.1678 33/36

http://dx.doi.org/10.1007/s00500-022-06888-1
http://dx.doi.org/10.1145/3471140
http://dx.doi.org/10.1007/s10916-019-1468-1
http://dx.doi.org/10.3390/electronics9101682
http://dx.doi.org/10.1109/ACCESS.2019.2914862
http://dx.doi.org/10.1016/j.future.2021.11.029
http://dx.doi.org/10.1186/s13677-017-0090-3
http://dx.doi.org/10.1016/j.pmcj.2019.101079
http://dx.doi.org/10.7717/peerj-cs.1678
https://peerj.com/computer-science/

PeerJ Computer Science

Li W, Guo H, Nejad M, Shen C-C. 2020. Privacy-preserving traffic management: a blockchain and
zero-knowledge proof inspired approach. IEEE Access 8:181733-181743
DOI 10.1109/ACCESS.2020.3028189.

Li C, Yang H, Sun Z, Yao Q, Bao B, Zhang J, Vasilakos AV. 2023. Federated hierarchical trust-
based interaction scheme for cross-domain industrial IoT. IEEE Internet of Things Journal
10(1):447-457 DOI 10.1109/J10T.2022.3200854.

Liu W, Wu H, Meng T, Wang R, Wang Y, Xu C-Z. 2021. AucSwap: a Vickrey auction modeled
decentralized cross-blockchain asset transfer. Journal of Systems Architecture 117(4):102102
DOI 10.1016/j.sysarc.2021.102102.

Lu S, Pei J, Zhao R, Yu X, Zhang X, Li J, Yang G. 2023. CCIO: a cross-chain interoperability
approach for consortium blockchains based on oracle. Sensors 23(4):1864
DOI 10.3390/523041864.

Lu A, Zhao K, Yang J, Wang F. 2019. Research on cross-chain technology of blockchain. Netinfo
Security 2019(8):83-90 DOI 10.3969/j.issn.1671-1122.2019.08.012.

Macrinici D, Cartofeanu C, Gao S. 2018. Smart contract applications within blockchain
technology: a systematic mapping study. Telematics and Informatics 35(8):2337-2354
DOI 10.1016/j.tele.2018.10.004.

Meng B, Wang Y, Zhao C, Wang D, Ma B. 2022. Survey on cross-chain protocols of blockchain.
Journal of Frontiers of Computer Science & Technology 16(10):2177-2192
DOI 10.3778/j.issn.1673-9418.2203032.

Morabito V. 2017. Business innovation through blockchain. Cham: Springer International
Publishing.

Nakamoto S. 2008. Bitcoin: a peer-to-peer electronic cash system. Decentralized Business Review.

Pillai B, Biswas K, Hou Z, Muthukkumarasamy V. 2021. Burn-to-claim: an asset transfer
protocol for blockchain interoperability. Computer Networks 200:108495
DOI 10.1016/j.comnet.2021.108495.

Pranto TH, Noman AA, Mahmud A, Haque AB. 2021. Blockchain and smart contract for IoT
enabled smart agriculture. Peer] Computer Science 7(15-16):e407 DOI 10.7717/peerj-cs.407.

Psaras Y, Dias D. 2020. The interplanetary file system and the filecoin network. In: 2020 50th
Annual IEEE-IFIP International Conference on Dependable Systems and Networks-Supplemental
Volume (DSN-S). Piscataway: IEEE, 80.

Qasse IA, Abu Talib M, Nasir Q. 2019. Inter blockchain communication: a survey. In: Proceedings
of the ArabWIC 6th Annual International Conference Research Track, ArabWIC 2019.

New York, NY, USA: Association for Computing Machinery.

Qiao R, Luo X-Y, Zhu S-F, Liu A-D, Yan X-Q, Wang Q-X. 2020. Dynamic autonomous cross
consortium chain mechanism in E-healthcare. IEEE Journal of Biomedical and Health
Informatics 24(8):2157-2168 DOI 10.1109/JBHI.2019.2963437.

Schulte S, Sigwart M, Frauenthaler P, Borkowski M. 2019. Towards blockchain interoperability.
In: Business Process Management: Blockchain and Central and Eastern Europe Forum. Cham:
Springer International Publishing, 3-10.

Schwarz C. 2019. Ethereum 2.0: a complete guide. Medium. Available at https://blog.chainsafe.io/
ethereum-2-0-a-complete-guide-ewasm-394cac756baf.

Shamir A. 1985. Identity-based cryptosystems and signature schemes. In: Advances in Cryptology.
Berlin, Heidelberg: Springer, 47-53.

Shao S, Chen F, Xiao X, Gu W, Lu Y, Wang S, Tang W, Liu S, Wu F, He], Ji Y, Zhang K, Mei F.
2021. IBE-BCIOT: an IBE based cross-chain communication mechanism of blockchain in IoT.

Si et al. (2023), Peerd Comput. Sci., DOI 10.7717/peerj-cs.1678 34/36

http://dx.doi.org/10.1109/ACCESS.2020.3028189
http://dx.doi.org/10.1109/JIOT.2022.3200854
http://dx.doi.org/10.1016/j.sysarc.2021.102102
http://dx.doi.org/10.3390/s23041864
http://dx.doi.org/10.3969/j.issn.1671-1122.2019.08.012
http://dx.doi.org/10.1016/j.tele.2018.10.004
http://dx.doi.org/10.3778/j.issn.1673-9418.2203032
http://dx.doi.org/10.1016/j.comnet.2021.108495
http://dx.doi.org/10.7717/peerj-cs.407
http://dx.doi.org/10.1109/JBHI.2019.2963437
https://blog.chainsafe.io/ethereum-2-0-a-complete-guide-ewasm-394cac756baf
https://blog.chainsafe.io/ethereum-2-0-a-complete-guide-ewasm-394cac756baf
http://dx.doi.org/10.7717/peerj-cs.1678
https://peerj.com/computer-science/

PeerJ Computer Science

World Wide Web-internet and Web Information Systems 24(5):1665-1690
DOI 10.1007/s11280-021-00864-9.

Sharma PK, Moon SY, Park JH. 2017. Block-VN: a distributed blockchain based vehicular
network architecture in smart city. Journal of Information Processing Systems 13(1):184-195
DOI 10.3745/JIPS.03.0065.

Sonkamble RG, Phansalkar SP, Potdar VM, Bongale AM. 2021. Survey of interoperability in
electronic health records management and proposed blockchain based framework:
MyBlockEHR. IEEE Access 9:158367-158401 DOI 10.1109/ACCESS.2021.3129284.

Sun Y, Zhang J, Xiong Y, Zhu G. 2014. Data security and privacy in cloud computing.
International Journal of Distributed Sensor Networks 10(7):190903 DOI 10.1155/2014/190903.

Szabo N. 1997. Formalizing and securing relationships on public networks. First Monday 2(9):548
DOI 10.5210/fm.v2i9.548.

Varela-Vaca AJ, Quintero AMR. 2021. Smart contract languages: a multivocal mapping study.
ACM Computing Survey 54(1):1-38 DOI 10.1145/3423166.

Wang G. 2021. Sok: Exploring blockchains interoperability. Cryptology ePrint Archive. Available
at https://eprint.iacr.org/2021/537.

Wang H, He D, Gao Y, Wang X, Xu C, Qiu W, Yao Y, Wang Q. 2020a. Research on data
verification and exchange of heterogeneous blockchains for electricity application. Journal of
Physics: Conference Series 1631(1):012154 DOI 10.1088/1742-6596/1631/1/012154.

Wang X, Xu C, Zhou Z, Yang S, Sun L. 2020b. A survey of blockchain-based cybersecurity for
vehicular networks. In: 2020 International Wireless Communications and Mobile Computing
(IWCMC). Piscataway: IEEE, 740-745.

Wang X, Zha X, Ni W, Liu RP, Guo Y], Niu X, Zheng K. 2019. Survey on blockchain for internet
of things. Computer Communications 136(7):10-29 DOI 10.1016/j.comcom.2019.01.006.

Wood G. 2016. Polkadot: vision for a heterogeneous multi-chain framework. White Paper
21(2327):4662.

Wu X. 2021. Cross-chain workflow model based on trusted relay. In: Proceedings of the ACM
Turing Award Celebration Conference-China, ACM TURC °21. New York, NY, USA: Association
for Computing Machinery, 49-53.

Xia RL, Muppala JK. 2010. A survey of BitTorrent performance. IEEE Communications Surveys ¢
Tutorials 12(2):140-158 DOI 10.1109/SURV.2010.021110.00036.

Xiong A, Liu G, Zhu Q, Jing A, Loke SW. 2022. A notary group-based cross-chain mechanism.
Digital Communications and Networks 8(6):1059-1067 DOI 10.1016/j.dcan.2022.04.012.

Ye S, Wang X, Xu C, Sun J. 2020. BitxHub: side-relay chain based heterogeneous blockchain
interoperable platform. Computer Science 47(6):294-302 DOI 10.11896/jsjkx.191100055.

Yeh L-Y, Shen N-X, Hwang R-H. 2022. Blockchain-based privacy-preserving and sustainable data
query service over 5G-VANETs. IEEE Transactions on Intelligent Transportation Systems
23(9):15909-15921 DOI 10.1109/T1TS.2022.3146322.

Yuan Y, Wang F-Y. 2016. Towards blockchain-based intelligent transportation systems. In: 2016
IEEE 19th International Conference on Intelligent Transportation Systems (ITSC). Piscataway:
IEEE, 2663-2668.

Zamyatin A, Al-Bassam M, Zindros D, Kokoris-Kogias E, Moreno-Sanchez P, Kiayias A,
Knottenbelt WJ. 2021. Sok: communication across distributed ledgers. In: Borisov N, Diaz C,
eds. Financial Cryptography and Data Security. Berlin, Heidelberg: Springer, 3-36.

Si et al. (2023), Peerd Comput. Sci., DOI 10.7717/peerj-cs.1678 35/36

http://dx.doi.org/10.1007/s11280-021-00864-9
http://dx.doi.org/10.3745/JIPS.03.0065
http://dx.doi.org/10.1109/ACCESS.2021.3129284
http://dx.doi.org/10.1155/2014/190903
http://dx.doi.org/10.5210/fm.v2i9.548
http://dx.doi.org/10.1145/3423166
https://eprint.iacr.org/2021/537
http://dx.doi.org/10.1088/1742-6596/1631/1/012154
http://dx.doi.org/10.1016/j.comcom.2019.01.006
http://dx.doi.org/10.1109/SURV.2010.021110.00036
http://dx.doi.org/10.1016/j.dcan.2022.04.012
http://dx.doi.org/10.11896/jsjkx.191100055
http://dx.doi.org/10.1109/TITS.2022.3146322
http://dx.doi.org/10.7717/peerj-cs.1678
https://peerj.com/computer-science/

PeerJ Computer Science

Zeng P, Wang X, Li H, Jiang F, Doss R. 2020. A scheme of intelligent traffic light system based on
distributed security architecture of blockchain technology. IEEE Access 8:33644-33657
DOI 10.1109/ACCESS.2020.2972606.

Zhang L, Xu J. 2022. Blockchain-based anonymous authentication for traffic reporting in
VANETs. Connection Science 34(1):1038-1065 DOI 10.1080/09540091.2022.2026888.

Si et al. (2023), Peerd Comput. Sci., DOI 10.7717/peerj-cs.1678 36/36

http://dx.doi.org/10.1109/ACCESS.2020.2972606
http://dx.doi.org/10.1080/09540091.2022.2026888
http://dx.doi.org/10.7717/peerj-cs.1678
https://peerj.com/computer-science/

	A secure cross-domain interaction scheme for blockchain-based intelligent transportation systems
	Introduction
	Related work
	Technical background
	Secure cross-chain interoperability solution for intelligent transportation systems
	Algorithm implementation
	Experimental Evaluation
	Discussion
	Conclusion
	flink9
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile (None)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Average
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002000740069006c0020006b00760061006c00690074006500740073007500640073006b007200690076006e0069006e006700200065006c006c006500720020006b006f007200720065006b007400750072006c00e60073006e0069006e0067002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f00630068007700650072007400690067006500200044007200750063006b006500200061007500660020004400650073006b0074006f0070002d0044007200750063006b00650072006e00200075006e0064002000500072006f006f0066002d00470065007200e400740065006e002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f0062006500200050004400460020007000610072006100200063006f006e00730065006700750069007200200069006d0070007200650073006900f3006e002000640065002000630061006c006900640061006400200065006e00200069006d0070007200650073006f0072006100730020006400650020006500730063007200690074006f00720069006f00200079002000680065007200720061006d00690065006e00740061007300200064006500200063006f00720072006500630063006900f3006e002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f007500720020006400650073002000e90070007200650075007600650073002000650074002000640065007300200069006d007000720065007300730069006f006e00730020006400650020006800610075007400650020007100750061006c0069007400e90020007300750072002000640065007300200069006d007000720069006d0061006e0074006500730020006400650020006200750072006500610075002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f006200650020005000440046002000700065007200200075006e00610020007300740061006d007000610020006400690020007100750061006c0069007400e00020007300750020007300740061006d00700061006e0074006900200065002000700072006f006f0066006500720020006400650073006b0074006f0070002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea51fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e3059300230c730b930af30c830c330d730d730ea30f330bf3067306e53705237307e305f306f30d730eb30fc30d57528306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200066006f00720020007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c00690074006500740020007000e500200062006f007200640073006b0072006900760065007200200065006c006c00650072002000700072006f006f006600650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020007000610072006100200069006d0070007200650073007300f5006500730020006400650020007100750061006c0069006400610064006500200065006d00200069006d00700072006500730073006f0072006100730020006400650073006b0074006f00700020006500200064006900730070006f00730069007400690076006f0073002000640065002000700072006f00760061002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a00610020006c0061006100640075006b006100730074006100200074007900f6007000f60079007400e400740075006c006f0073007400750073007400610020006a00610020007600650064006f007300740075007300740061002000760061007200740065006e002e00200020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740020006600f600720020006b00760061006c00690074006500740073007500740073006b0072006900660074006500720020007000e5002000760061006e006c00690067006100200073006b0072006900760061007200650020006f006300680020006600f600720020006b006f007200720065006b007400750072002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /NA
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure true
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

