
PhD-FSTM-2023-028

The Faculty of Science, Technology and Medicine

DISSERTATION

Defence held on 15/05/2023 in Luxembourg

to obtain the degree of

DOCTEUR DE L’UNIVERSITÉ DU LUXEMBOURG

EN INFORMATIQUE

by

Lucian-Andrei TRESTIOREANU
Born on 13 June 1977 in Ploiesti, Romania

ENABLING RESILIENT AND EFFICIENT

COMMUNICATION FOR

THE XRP LEDGER AND INTERLEDGER

Dissertation defence committee

Dr. Cristina NITA-ROTARU, Vice Chair
Professor, Northeastern University, USA

Dr. Cyril CASSAGNES
Ph.D., MAQIT S.A., Luxembourg

Dr. Damien MAGONI
Professor, Université de Bordeaux, France

Dr. Raphael FRANK, Chairman
Professor, Université du Luxembourg

Dr. Radu STATE, dissertation Supervisor
Professor, Université du Luxembourg

Affidavit

I hereby confirm that the Ph.D. thesis entitled ”Enabling Resilient and Efficient Communi-

cation for the XRP Ledger and Interledger” has been written independently and without any

other sources than cited.

Luxembourg, 30 January 2023 Lucian TRESTIOREANU

Name

iii

Acknowledgments

First and foremost, I would like to offer my deepest gratitude to my supervisor, Professor

Radu State for making everything possible; for giving me the chance to learn more and

become better; for the time and patience spent offering me valuable regular feedback; for his

optimism and encouragement to believe, to persevere, to dare, to strive for better. Nelson

Mandela said ”It always seems impossible until it’s done.”, but Radu shaped me to believe

that things are possible, even before they are done.

I want to gratefully thank Professor Cristina Nita-Rotaru from Northeastern University,

USA, for her support and guidance; I am forever indebted for all the time spent providing

me with valuable advice, for challenging me and making me think about the work from new

perspectives, for the drive for excellence.

I would like to extend my thanks to my advisors Dr. Cyril Cassagnes and Dr. Ing.

Wazen Shbair for their countless support, advice and assistance along the way. I thank

Dr. Aanchal Malhotra from Ripple Labs for the discussions providing valuable insights and

advice with respect to XRP and Interledger. I want to thank Professor Raphael Frank,

member of my defense committee. I would also want to thank Professor Damien Magoni from

LaBRI, Universite de Bordeaux, France, for the valuable discussions and support concerning

networking aspects related to the XRP ledger.

A warm thank you to my present and former colleagues from SnT for the fun times and

ideas exchanged, especially Professor Patrick Glauner from Deggendorf Institute of Technol-

ogy, Germany - my former Master thesis advisor, who encouraged me to pursue this path

and provided me with advice long after he left SnT; to Dr. Eric Falk, Dr. Christof Ferreira

Torres and Flaviene Scheidt de Cristo - with whom I closely collaborated, and to all those

who contributed to what I did and who I am today - professionally, and not only. As Sir

Isaac Newton put it, if I was able to see further, this was thanks to all the many great people

before and around me.

This work was supported by the Luxembourg National Research Fund through grant

PRIDE15/10621687/SPsquared. In addition, we thankfully acknowledge the support from

the RIPPLE University Blockchain Research Initiative (UBRI) for our research.

v

Dedications

This work is dedicated to my son, with the hope that it will inspire and motivate him; to my

mother, a math teacher, who has been my best mentor and example all along, and who sow

in me the seeds that years later made it possible that I walk this path; and to the family that

supported and encouraged me.

Last but not least I dedicate it to the whole world - before, around and after me - it would

be my greatest reward and satisfaction to contribute, even a little bit, to advancing mankind

towards being an even better place.

vii

Index

List of Figures xv

List of Tables xvii

1 Introduction 1

1.1 Research Questions . 2

1.2 Contributions . 5

2 State of the Art 7

2.1 The Distributed Ledger Technology . 7

2.1.1 Overview of DLT . 8

2.1.2 The XRP Ledger (XRPL) . 11

2.1.3 NDN data synchronization protocols 14

2.2 DLT interconnectivity . 15

2.2.1 DLT interconnectivity landscape . 15

2.2.2 DLT interconnectivity examples . 19

2.2.2.1 The Interledger protocol stack 26

3 XRP-NDN Overlay: Improving the Communication Efficiency of Consensus-

Validation Based Blockchains with an NDN Overlay 37

3.1 Introduction . 37

3.2 Background . 40

3.2.1 Named Data Networking (NDN) . 41

3.2.2 The XRP Ledger . 43

ix

3.3 Design and Implementation . 46

3.4 Evaluation . 52

3.4.1 Results . 54

3.4.1.1 Production validators on the XRPL Livenet 54

3.4.1.2 Baseline - private network of unmodified XRPL validators . 55

3.4.1.3 The ”Piggibacking on Interest” model 56

3.4.1.4 The ”Polling” model . 57

3.4.1.5 The ”Announce-pull” model 58

3.4.1.6 The ”Advanced-request” model 59

3.5 Discussion . 60

4 Performance Monitoring and Evaluation 63

4.1 Network monitoring for the XRP Ledger . 64

4.2 Using eBPF for non-intrusive performance monitoring 68

4.2.1 Background and related work . 69

4.2.1.1 Profiling and Tracing tools 71

4.2.2 Non-intrusive monitoring and profiling 73

4.2.2.1 Container isolation . 73

4.2.2.2 eBPF integration . 74

4.2.3 Profiling and tracing of Interledger . 76

4.2.3.1 Interledger Connector . 77

4.2.3.2 Performance analysis and flamegraph analysis 80

4.2.3.3 New eBPF program created 84

4.3 Conclusion . 87

5 SPON: Enabling Resilient Inter-Ledgers Payments with an Intrusion-Tolerant

Overlay 89

5.1 Introduction . 91

5.2 Motivation . 92

5.2.1 Limitations of ILP Payment Systems over the Internet 92

5.3 SPON Design and Implementation . 94

x

5.3.1 Design Goals and High-level Approach 94

5.3.2 Threat Model . 96

5.3.3 SPON Design and Implementation . 97

5.4 Experimental Results . 99

5.4.1 Methodology . 100

5.4.2 Performance . 102

5.4.2.1 Chain topology . 102

5.4.2.2 The Global topology . 104

5.4.3 Resilience to Network Melting . 105

5.4.3.1 The Chain topology . 105

5.4.3.2 The Global topology . 106

5.4.4 Resilience to Denial of Service from Malicious Clients 107

5.4.5 BGP Hijacking Attacks and Benign Route Misdirections 109

5.4.6 Results summary . 110

5.5 Discussion . 111

6 Discussion and Perspectives 115

6.1 Discussion . 115

6.1.1 The network component . 115

6.1.2 The system component . 117

6.1.3 Conclusion . 118

6.2 Future work . 119

List of Publications, Tutorials and Achievements during PhD Thesis Work 121

References 126

xi

List of Figures

2.1 Distributed databases, DLT and Blockchains 8

2.2 The DLT landscape . 9

2.3 FBA quorum slices . 12

2.4 Polkadot architecture . 20

2.5 Polkadot tech stack . 20

2.6 Hyperledger Cacti architecture . 21

2.7 Example ILP payment . 23

2.8 The money transfer system . 24

2.9 Money transfer in practice . 26

2.10 STREAM . 27

2.11 The STREAM protocol flow . 28

2.12 Unfolding of the ILP protocol . 29

2.13 Interledger Protocols - advanced diagram . 30

3.1 The basic mechanisms of NDN . 42

3.2 The XRPL consensus protocol . 44

3.3 The DFA of the XRPL consensus . 47

3.4 General architecture of XRP-NDN Overlay 47

3.5 XRP-NDN Overlay: the polling model . 49

3.6 XRP-NDN Overlay: the announce-pull model 49

3.7 XRP-NDN Overlay: the advance-request model 50

3.8 XRP-NDN Overlay: the piggyback model . 50

xiii

3.9 XRP-NDN Overlay: the experimental topologies 53

3.10 Typical validation interarrival time on XRPL livenet 54

3.11 Behaviors of validators on the XRPL livenet, different from the typical behavior 55

3.12 Validation interarrival time: Baseline (private XRPL) 56

3.13 Validation interarrival time: Piggyback(tri) model 57

3.14 Validation interarrival time: Polling(tri) model 58

3.15 Validation interarrival time: Announce-Pull(tri) model 59

3.16 Validation interarrival time: Announce-Pull(star) 60

3.17 Validation interarrival time: Advanced-request(tri) model 60

4.1 XRPL network monitoring testbed deployed on Grid 5000 65

4.2 Unmodified XRPL vs XRPL with squelching: total number of Messages IN . 66

4.3 Unmodified XRPL vs XRPL with squelching: total number of Messages OUT 66

4.4 Unmodified XRPL vs XRPL with squelching: total number of Bytes IN . . . 67

4.5 Unmodified XRPL vs XRPL with squelching: total number of Bytes OUT . . 67

4.6 Overview of the performance monitoring setup 76

4.7 ILP payment chain . 77

4.8 Interledger packets data structure . 78

4.9 The BTP protocol in practice . 80

4.10 ILP implementations at work - full flamegraph 82

4.11 Reference implementation while idle - full flamegraph 83

4.12 Rafiki implementation while idle - full flamegraph 83

4.13 Latency of nodejs garbage collector . 85

4.14 ILP DoS mitigation with XDP . 86

4.15 Code snippet to prevent DDOS with XDP . 87

5.1 Example ILP payment routing and actual geographical location of the corre-

sponding ILP nodes . 93

5.2 Communication mapping for Ledgers, Overlay, and Internet 97

5.3 SPON Architecture . 98

5.4 General diagram of the Mininet testbed . 101

xiv

5.5 Chain Topology . 102

5.6 Global Topology . 103

5.7 The average ILP-ping RTT on the Chain topology in a network loss scenario

for Priority or Reliable messaging . 103

5.8 Payment latency on the Chain topology in a network loss scenario, Priority or

Reliable messaging . 104

5.9 Payment latency on the Global topology in a network loss scenario, Priority

or Reliable messaging . 105

5.10 Payment latency on the Chain topology in a network meltdown scenario, Pri-

ority messaging . 106

5.11 Payment latency on the Global topology in a network meltdown scenario,

Priority messaging . 107

5.12 Network topology for the flow fairness . 108

5.13 Legitimate and malicious flows contending for BW 108

5.14 BGP attack mitigation with SPON . 110

5.15 Positioning of SPON . 113

xv

List of Tables

2.1 DLT types . 16

2.2 A parallel between the Internet and Interledger architectures 27

2.3 Blockchain inter-operativity solutions . 35

2.4 Blockchain message dissemination solutions 36

3.1 Topology analysis of the XRPL network . 39

3.2 XRP-NDN Overlay: experiments summary 59

4.1 Protocol layers to decapsulate manually to locate the HTTP payload 86

5.1 SPON services (via Spines) . 99

5.2 SPON additional processing . 111

5.3 SPON real-life gains . 111

xvii

Abstract

The blockchain technology is relatively new and still evolving. Its development was fos-

tered by an enthusiastic community of developers, which sometimes forgot about the lessons

from the past related to security, resilience and efficiency of communication which can impact

network scalability, service quality and even service availability. These challenges can be ad-

dressed at network level but also at operating system level. At network level, the protocols

and the architecture used play a major role, and overlays have interesting advantages like

custom protocols and the possibility of arbitrary deployments. This thesis shows how overlay

networks can be designed and deployed to benefit the security and performance in commu-

nication for consensus-validation based blockchains and blockchain inter-operativity, taking

as concrete cases the XRP ledger and respectively the Interledger protocol. XRP Ledger is a

consensus-validation based blockchain focused on payments which currently uses a flooding

mechanism for peer to peer communication, with a negative impact on scalability. One of

the proposed overlays is based on Named Data Networking, an Internet architecture using for

propagation the data name instead of data location. The second proposed overlay is based on

Spines, a solution offering improved latency on lossy paths, intrusion tolerance and resilience

to routing attacks. The system component was also interesting to study, and the contribution

of this thesis centers around methodologies to evaluate the system performance of a node and

increase the security from the system level. The value added by the presented work can be

synthesized as follows: i) investigate and propose a Named Data Networking-based overlay

solution to improve the efficiency of intra-blockchain communication at network level, taking

as a working case the XRP Ledger; ii) investigate and propose an overlay solution based

on Spines, which improves the security and resilience of inter-blockchain communication at

network level, taking as a working case the Interledger protocol; iii) investigate and propose

a host-level solution for non-intrusive instrumentation and monitoring which helps improve

the performance and security of inter-blockchain communication at the system level of ma-

chines running Distributed Ledger infrastructure applications treated as black-boxes, with

Interledger Connectors as a concrete case.

xix

1
Introduction

Distributed databases (databases stored distributively on multiple servers) emerged as an

improvement over Centralised Databases (databases stored on a single central server) because

they offered enhanced security and fault tolerance by redundancy. In the distributed database

architecture, the trust boundary is set between the distributed database as a whole on one

side, and each user on the other side. Because for certain use cases this was a limitation, new

technologies like the distributed ledger technology appeared, which enable ”database” nodes

that don’t fully trust each other to cooperate in a byzantine scenario for maintaining and

updating the database entries correctly by a consensus mechanism between the participating

nodes. The byzantine consensus problem is often explained through the example of the

agreement dilemma of the generals of the Byzantine army:

A number of generals of the Byzantine army which can communicate only by messengers

must agree on the attack of an enemy city. While one or more of the generals could be traitors

sending confusing messages, how could the honest generals reach a secure agreement? [1], [2].

Blockchain is a type of distributed ledger technology on which for example, cryptocurren-

1

cies like Bitcoin are based. It is a secure, auditable technology resilient to outages that, in

a byzantine environment, enables the recording of transactions in a transparent, immutable,

irrevocable, and digital manner.

Even though blockchain technology is relatively new, it has already distinguished as a

possibly disruptive technology in several industries: finance, multimedia, healthcare, industry

supply chains, energy, the public sector, and more.

However, the blockchain technology is still evolving, with needs for improvement con-

cerning various sub-technologies involved being felt at different levels. For example the

network traffic underpinning the blockchain communication can impact the scalability of

the blockchain networks, as well as blockchain interoperability. Different aspects related to

network traffic can be addressed at the networking level but also at the operating system (sys-

tem) level. The work presented in this thesis concerns both levels. A large part of the work,

presented in Chapters 3 and 5 investigates the usage of overlays as a solution to improve the

security, resilience and efficiency of network-level traffic for the XRP Ledger (XRPL)1 and

respectively for blockchain inter-operativity solutions like the Interledger Protocol (ILP) [3].

Chapter 4 presents work at system level to provide better solutions for non-intrusive perfor-

mance monitoring and profiling, and improved security for the Interledger Protocol taking as

a concrete working example two implementations of the Interledger Protocol specification.

This work is relevant because the ongoing scaling of the blockchain networks requires

secure, resilient and efficient communication, with the same required for the software infras-

tructure implementing it.

1.1 Research Questions

In the above context, it was interesting to investigate the following main Research Questions

which in particular, concern two networks: one implementing a distributed system, the XRP

Ledger; and the other implementing a blockchain interoperability solution, specifically the

Interledger Protocol. Both of them rely on (internet) network communication for a secure,

reliable, and efficient service. The below research questions will be refined and clarified in

1https://xrpl.org/, valid in January 2023

2

their respective Chapters.

• Could overlay architectures, and more specifically, architectures based on Named Data

Networking (NDN) [4] and Spines [5], be useful to improve distributed systems like

blockchains, at the communication level?

Currently there exist many solutions for implementing overlays, like Gossipsub [6],

Named Data Networking, Spines, Nebula [7], and Open Overlay [8] to name a few. One

of the reasons for choosing to investigate NDN was its push-pull model for data dissem-

ination, which brought along the interesting exercise of finding out how the consensus

process of consensus-validation-based blockchains could be mapped to NDN. Spines

was chosen because it offers security properties like intrusion-tolerance and resilience

to various attacks, including Border Gateway Protocol (BGP) [9] attacks. Spines was

used for performing remote surgery [10] and it has a good track record of reliability. It

was interesting to see how can it be used for blockchain inter-operability.

• At system level, how to find the real cause of the performance problems of particular

implementations (e.g. Interledger applications), and how to assess the performance of

the software stack while the application is running, and is treated as a black-box? In

this context, to what extent the security and resilience of running applications treated

as black-boxes can be improved by acting at the system level?

More specifically, the research work presented in this thesis focuses on the following as-

pects:

1) The efficiency of blockchain communication. The growing adoption of Dis-

tributed Ledger Technologies and Blockchain in particular, naturally led to the challenge of

scaling the networks that they are based on, which highlighted the inherent need for efficient

and resilient communication used by the underlying consensus and replication mechanisms.

While resilient and efficient communication is one of the main pillars of an efficient blockchain

network as a whole, Distributed Ledger Technology is still relatively new and the task of scal-

ing these networks has come with its own challenges towards ensuring these goals. In our

concrete case, the XRPL network encountered scaling challenges due to processing and band-

width overhead induced by the flooding of messages: at scale (around 1000 nodes), because

3

of the sheer number of consensus-related and transaction messages, including duplicates, in

the XRPL peer-to-peer network the nodes need ever increasing resources (CPU, memory,

bandwidth) to stay in sync. New content distribution concepts like Information Centric

Networking (ICN) [11], of which Named Data Networking is investigated here, create new

possibilities for achieving this goal, through in-network caching or built-in native multicast-

ing, for example. We modified XRPL to connect to NDN, built an experimental testbed in the

lab and evaluated four NDN-based dissemination models on two different topologies, show-

ing that the proposed solution, XRP-NDN-overlay, provides a decreased number of messages

processed at XRPL node level and improved stability for the XRPL network.

2) Improving the performance and security of blockchain inter-operativity.

Payment systems are a critical component of the finance industry and the everyday life of our

society. While in many situations payments can still suffer from combinations of low speed,

opacity, siloed systems, high costs, or even failures, users expect them to be fast, transparent,

cheap, reliable, and global. Recent technologies such as distributed ledgers create opportu-

nities for near-real-time, cheaper, and more transparent payments. However, to achieve a

global payment system, payments should be possible not only within one ledger, but also

across different ledgers and geographies. One existing solution to enable payments between

ledgers is the Interledger Protocol (ILP) [3],[12]. Unfortunately, like many services deployed

over the Internet, ILP payments can suffer due to events like lossy links, network failures, and

routing misdirections of benign or malicious nature. Also, in the quest towards near-real-time

payments, it would greatly benefit from improved link latencies. These challenges must be

addressed first, for such systems to be adopted on a large scale. As such, this thesis proposes

Secure Payments with Overlay Networks (SPON), a service that enables global payments

across multiple ledgers by combining the transaction exchange provided by the Interledger

protocol with an intrusion-tolerant overlay of relay nodes to achieve (1) improved payment

latency, (2) fault-tolerance to benign failures such as node failures and network partitions,

and (3) resilience to Border Gateway Protocol (BGP) hijacking attacks. The design takes

into account that overlay nodes can be compromised and thus has provisions to address the

resilience and fairness of payments in the presence of such compromised overlay nodes. The

design goals are discussed, and an implementation based on the Interledger Protocol and

4

Spines overlay network is presented. We analyze the resilience of SPON and demonstrate

through experimental evaluation that it is able to improve payment latency, recover from

path outages, withstand network partition attacks, and disseminate payments fairly across

multiple ledgers. It is also shown how SPON can be deployed to make the communication

between different ledgers resilient to BGP hijacking attacks.

3) Enabling non-intrusive monitoring and performance investigation. Mean-

while, in the current technology state, proper tools and methodologies for monitoring and

performance investigation of the infrastructure nodes become more important; relying on

static or manual program instrumentation to obtain key performance metrics is unusable

for many production environments, while container engines are strengthening their isolation

mechanisms. Therefore, non-intrusive monitoring becomes a must-have for the performance

analysis of containerized user-space applications in production environments.

The main question addressed in this context is how to find the real cause of your perfor-

mance problems and how to assess the performance of your software stack?

These capabilities are created and demonstrated by carrying out profiling and tracing

of several Interledger connectors using two full-fledged implementations of the Interledger

protocol specifications.

1.2 Contributions

The contribution brought by the work presented in this thesis is threefold, and can be syn-

thesized as follows:

• Network level - optimization of blockchain communication: Evaluate the uti-

lization of Named Data Networking (NDN) as a communication overlay to identify

performance trade-offs to improve the efficiency of communication at the blockchain

networking level.

• System level - blockchain interconnectivity through Interledger: propose a

solution for non-intrusive performance monitoring of Interledger infrastructure (con-

nectors) using eBPF.

5

• Network level - blockchain inter-connectivity through Interledger: design,

implement and evaluate Secure Payments with Overlay Networks (SPON), a system

which is a solution that enables global payments across multiple ledgers while improving

payments latency, offering fault-tolerance to benign network failures and resilience to

malicious attacks like BGP hijacking attacks.

6

2
State of the Art

This chapter presents the current state of the art and background in the areas of blockchain

technology and blockchain interoperability solutions. It also highlights some of the known

technology limitations in this space and identifies the opportunities for improvement relevant

to the topic.

2.1 The Distributed Ledger Technology

Initially data, and in particular bank accounts ledgers, was stored on paper books, or later

on digitally, on a server. Because the traditional centralized storage solutions were prone

to errors, theft, and loss of data, distributed database solutions have been developed where

the same data is stored on multiple machines, improving resilience through redundancy and

making forgery more complicated due to the multiple-eyes and multiple-copies nature of

Distributed Databases [13]. Normally, on Distributed Databases, all database nodes trust all

other database nodes and the limit of trust is between the Distributed Database as a whole

and each user.

7

Distributed Ledger Technology (DLT) appeared as an alternative to Distributed Databases,

where data is stored also in a distributed way, but it was designed to work for different trust

assumptions [14]. As shown in Figure 2.1, DLT introduces an Adversarial Model, where the

nodes which don’t fully trust each other cooperate to reach a consensus on the state of the

shared data while assuming the possible presence of some malicious nodes. As such, the

distributed data can be updated or modified only through a consensus mechanism between

participants. DLT uses cryptography means to ensure immutability, non-repudiation, and

authorization of the recorded data (transactions) [15].

2.1.1 Overview of DLT

Currently, there are many types of DLT proposed and in production, such as Hashgraphs,

Directed Acyclic Graphs (DAG), Holochains, Tempo, and more, with Blockchain technology

being just another subtype of DLT.

Figure 2.1: Distributed databases, DLT and Blockchains.

Being a DLT, the blockchain technology also replicates the same data distributively on

the participating machines or nodes, which do not necessarily fully trust each other but the

8

blockchain is trusted as a group. In the context of other DLTs, blockchains use a specific

data structure where the data is stored as a chain of blocks, with each block pointing back

to a single parent block (e.g., DAG data structure can be a tree). As such, blockchain

can be used both to refer to the specific data structure and the specific DLT type. The

blocks are linked through cryptographic signatures named hashes (each block points to the

previous, or parent block) to guarantee that the recorded information can not be tampered

with. To alter the information on some block, all the blocks that followed it should be

modified, which, given the consensus mechanisms employed by DLT makes it very hard to

achieve. Blockchains can be classified as Private (controlled by an organization), Public (no

central authority), or Consortium (controlled by a group). From another perspective, they

can be considered permissionless (free to join) or permissioned (working in private enterprise

contexts for example).

Each DLT has its own consensus mechanisms, with Proof of Work (PoW), Proof of Au-

thority (PoA), Proof of Stake (PoS), or Practical Byzantine Fault Tolerance (pBFT) being

some of the most important. Other examples are proof of elapsed time, proof of activity, proof

of weight, proof of importance, leased proof of stake, proof of capacity, or proof of burn. Even

though incomplete due to inherent graphical limitations, Figure 2.2 attempts to illustrate the

DLT landscape [16].

PERMISSIONLESS PERMISSIONED

PoW consensus

Byzantine consensus

ETHEREUM (until 2022)

BITCOIN

STELLAR

XRPL

HYPERLEDGER

GUARDTIME KSI

Figure 2.2: The DLT landscape.

9

Proof of Work (PoW) blockchains.

Well-known blockchains based on the Proof of Work consensus are Bitcoin (BTC) [17], and

until recently, Ethereum (ETH). Bitcoin was anonymously proposed under the pseudonym

Satoshi Nakamoto. The PoW consensus mechanism employed requires a significant but fea-

sible computing effort to verify transactions and add them to the blockchain. This method

prevents malicious actors from exploiting the system, however, it is lately criticized for using

excessive computing power at scale and as such, being carbon-intensive energy-wise. It is

argued that the energy used in the process is lost forever, unlike the gold used to back some

FIAT currency1.

Proof of Stake (PoS) blockchains.

The PoS consensus [18] was designed as an alternative to the energy-intensive PoW,

and recently ETH transitioned to PoS for reasons which include the carbon intensiveness

of PoW. To the best of the author’s knowledge, this mechanism was initially proposed by

the user ”QuantumMechanic” on ”bitcointalk” 2 [19]. PoS is a consensus mechanism where

cryptocurrency owners validate block transactions based on the number of staked coins that

they offer as collateral (stake) during the process. Also, PoS is argued to be more secure,

because the way it structures compensation makes potential attacks on the network less

attractive3.

Proof of Authority (PoA) blockchains.

The proof of authority consensus was originally proposed by Gavin Wood 4, co-founder of

Ethereum and Parity Technologies, for private networks [20] in the ETH ecosystem. Suitable

for private and consortium settings, for example logistical applications, the PoA consensus is

relatively fast due to a design that uses identity as a stake. With a low energy consumption,

a small, arbitrarily selected and trustworthy number of nodes validates the transactions while

staking their reputation instead of coins. Foregoing decentralization, PoA is often seen as

an alternative to improve over centralized solutions in corporate environments. Possible

1https://nakamotoinstitute.org/mempool/the-proof-of-work-concept/, valid in January 2023
2https://bitcointalk.org/index.php?topic=27787.0, valid in January 2023
3https://www.investopedia.com/terms/p/proof-stake-pos.asp, valid in January 2023
4https://github.com/ethereum/guide/blob/master/poa.md, valid in January 2023

10

PoA blockchain examples are Parity, Geth [20], Hyperledger Besu [21, 22], VeChain 5, and

Xodex [23].

Practical Byzantine Fault Tolerant (pBFT) blockchains.

As early as 1982, Leslie Lamport showed that, in a synchronous environment, a consensus

can be achieved if at most n out of 3n+1 parties involved are dishonest [1]. However, for

an asynchronous environment an algorithm was proposed only in 1999 under the name of

Practical Byzantine Fault Tolerance [24]. The advantages of the proposed algorithm over

BFT are that it can work over the internet which is an asynchronous environment, and that

it is optimized to improve the previous response times. This makes it practical also for use

cases like DLT.

Federated Byzantine Agreement (FBA) blockchains.

The FBA consensus is part of the Byzantine consensus family. In Byzantine agreement

systems, all nodes must agree on the list of participants and require all nodes to process

all transactions to reach a consensus. FBA introduces the concept of quorum slices, where

a node only needs to trust a specific set of other nodes to take its own decision. Because

nodes can decide on their own which other nodes to trust, multiple quorum slices form in

the network. For a healthy network, the quorum slices must overlap as shown in Figure 2.3,

which means some nodes are trusted in multiple quorum slices which as a result ensures the

dissemination of information. The quorum slices must reach a decision among themselves,

and when this is reached, a final decision can be taken.

The XRP Ledger (XRPL) 6 is an example blockchain using FBA [25], [26], [27] to achieve

high throughput (currently +/- 1500 tx/s), speed (can settle a tx in 3-5s), and low transaction

costs (e.g. $0.0000774 in April 2021).

2.1.2 The XRP Ledger (XRPL)

As one of the most established DLTs to date, XRPL is characterized as an open-source,

permissionless, and decentralized blockchain system. While the developers of XRPL state

5https://www.vechain.org/, valid in January 2023
6https://xrpl.org, valid in January 2023

11

UNL2

UNL3

UNL1

Figure 2.3: FBA quorum slices.

that XRPL is technically a permissionless blockchain, XRPL is arguably perceived by some

as permissioned or centralized [28] because, between others, the Default Unique Node List

(dUNL) defining the default nodes to be trusted by a node is centrally proposed at this time.

It is also considered eco-friendly, with a low energy consumption mainly because by design

does not make use of, for example, Proof of Work. All XRPL tokens are pre-generated at the

initial launch of the ledger. No new tokens are created after this moment, instead a very small

amount of the initially pre-generated coins is burnt for each transaction as an anti-spamming

measure.

XRPL node types can be trackers or validators. Both types receive, relay, and process

transactions, but tracking servers are meant to distribute transactions from clients and re-

spond to queries about the ledger while validating servers can do the same functions as the

tracking servers, plus they work to advance the ledger history. For performance reasons it

is recommended that validators do not receive and distribute transactions from clients or

respond to queries.

XRPL consensus [29], [30] uses message flooding for communication between nodes and

prioritizes safety over liveness which means that in case consensus can not be reached, the

building of new ledgers halts until the problem is solved, possibly by manual intervention.

During flooding, every incoming packet to a node is re-transmitted through every outgoing

link except the one it arrived on. The advantages of flooding are that it is simple to implement,

and that, if a packet can be delivered then it will, although probably multiple times. The

12

disadvantages of flooding are message duplication which increases the network load, and poor

bandwidth usage - a message with only one destination reaches all nodes; moreover, unless

specific measures are taken, duplicate packets may circulate forever.

As such, at scale (around 1000 nodes) XRPL starts suffering from the high number of

messages incurred by the flooding mechanism used for the dissemination of messages like

transactions and consensus-related messages. The nodes need increasing hardware specifica-

tions and bandwidth to keep up with the network (remain in sync with the rest of the XRPL

network). As such the XRP Ledger encountered a scalability challenge, which needs to be

addressed. This is one of the topics of this thesis.

A literature review showed that most peer-reviewed work related to XRPL focuses mainly

on the XRPL consensus protocol which was originally described in 2014 [26]. It was analyzed

in [31], [32], [33] and investigated empirically in [34]. In 2020, the authors of [25] identi-

fied relatively simple cases where consensus may violate safety and/or liveness; it is argued

that the XRPL needs a very close synchronization, interconnection, and fault-free operation

between validators.

Other work related to XRPL comprises an analysis of the energy consumption of the

XRPL validator nodes [35], crypto-asset network flows [36], a health assessment of the XRPL

credit network [37], a proposal for a blockchain benchmarking framework [38], or a topology

analysis [39]. XRPL’s security is challenged in [40] through a man-in-the-middle attack.

However, to the best of the author’s knowledge, there is no previous peer-reviewed work

focused on the efficiency of messaging mechanisms involved in the XRPL consensus protocol

and transaction propagation. At the same time, the problem of communication efficiency for

blockchain networks at scale has lately received increased attention, and different solutions,

some making use of overlays, have been investigated:

At the protocol level, a squelching mechanism was proposed by Ripple Labs to mitigate

the impact of message flooding on the XRPL nodes and bandwidth performance 7,8, but it

was not yet deployed in production. Erlay [41], an efficient transaction relay for Bitcoin,

reduces bandwidth by 84% but increases the latency for Tx dissemination by 2.6s (from

7https://xrpl.org/blog/2021/message-routing-optimizations-pt-1-proposal-validation-relaying.html, valid
in January 2023

8https://github.com/XRPLF/rippled/blob/develop/RELEASENOTES.md, valid in January 2023

13

3.15 to 5.75s). Perigee [42] which as the title says, is an efficient peer to peer network

design for blockchains, focuses on mitigating the block propagation delay, but not on the

message flooding issue. Epidemic Broadcast Trees [43] propose broadcast trees embedded

on a gossip-based overlay while Splitstream [44] distributes the load of forwarding messages

evenly between participants.

At the overlay level, Gossipsub [6], was proposed for improving transaction and block

propagation in ETH2 and Filecoin (IPFS). It disseminates data by forming a separate, ded-

icated overlay mesh network of Gossipsub nodes. Its main advantages are: the node degree

can be set and tweaked as necessary between a min and max; it addresses the latency while

being resilient to network churn. Security assessments have been performed for a large spec-

trum of attacks and strong mitigation solutions implemented. It scales to large networks,

provides an adjustable trade-off between bandwidth and latency, and the mesh updates in

real-time as per nodes’ individual decisions.

Named Data Networking [4], [45] is another possible overlay solution, which is investigated

in this thesis for practical FBA blockchains like XRPL.

BoNDN [46], proposes tx dissemination for Bitcoin (BTC) through a push model over

NDN interests, and a subscribe-push model for block propagation. The model proposed

for tx dissemination is similar to our approach piggyback where we obtained good results

performance-wise, but it is challenged in [47] for using multicast at the NDN level - the

authors argue that it is doubtful if in practice, the NDN nodes would enable multicast for

the given data-labels. For XRPL which incurs a handful of known-in-advance, static list of

validators, we find such a set-up not problematic.

Another design and implementation for propagating over NDN the transactions and blocks

for PoW blockchains like the Ethereum blockchain were proposed in [47], while [48] sends

blocks over a multi-layer design based on NDN to achieve 74% of [49]’s overhead.

2.1.3 NDN data synchronization protocols

Being content-oriented, the NDN architecture suites for data synchronization, which re-

sulted in the development of different data synchronization protocols, like Vectorsync [50],

Chronosync [51], or Psync [52].

14

BlockNDN [49] employs the Chronosync protocol for block broadcasting on a Bitcoin-like

blockchain and State Vector Sync [53] was also proposed to sync data between multiple nodes

over NDN. However, in [47], it is argued that these solutions are not suitable for blockchain

networks because, among others, the underlying protocol used was not originally designed

for the byzantine environment characteristic of DLT. Moreover for XRPL, if the goal is to

minimize the number of messages incurred by the communication, then the synchronization

protocols could introduce some additional synchronization messages which could be counter-

productive.

2.2 DLT interconnectivity

DLT interconnectivity, in particular blockchain interoperability, refers to the ability of differ-

ent independent blockchain networks to exchange assets, and data as a superset of the former,

in a secure, trusted way. Exchanging data could be seen as the ability to make advanced

inter-blockchain API calls. The motivating idea is that the future will rather have multiple

blockchains that need to communicate with each other, than multiple blockchains working in

isolation. The simplest analogy would be that someone with an AOL account could not send

in the past an email to someone else with an MSN account, as it is the case today between any

email providers. Someone with an Ethereum account for example, can not natively (at layer

1) make a payment to someone with an XRP account. Possible blockchain interoperability

project examples are Polkadot [54], Interledger [3], Cosmos [55], Cardano [56, 57], Plasma

Bridge [58], Quant’s Overledger [59], and Lisk 9.

2.2.1 DLT interconnectivity landscape

The best-known types of technical approaches to blockchain interoperability could be classi-

fied as i) notary schemes (e.g. the ”atomic mode” of Interledger [3]), ii) relay or multi-chain

(e.g. Cosmos and Polkadot), and iii) hashed timelocks, with the latter enabling in principle

only the exchange of assets (e.g. the Lightning network [60, 61, 62]); HTLCs were at some

point introduced in the Interledger Protocol as a way to remove the need for the notaries. The

9https://lisk.com/learn/undefined/lisk-interoperability, valid January 2023

15

Interledger Protocol (ILP) v.4 is today blockchain agnostic and the settlement can be either

based on Hashed TimeLock Contract (HTLC)10 [63, 64], unconditional payment channels 11,

on-chain transactions, or legacy payment systems.

A Systematization of Knowledge on the topic of Cross Chain Communication (CCC)12 was

published in 2019 [65], as a systematic exposition of protocols for cross-chain communication.

The paper shows that (CCC) is not possible unless a trusted third party is involved.

Belchior et. al. [62] extend and generalize the classification to include more types, as shown

in Table 2.1. Along the time, ILP went through the notary scheme and hashed time locks

to become open to any settlement method and blockchain-agnostic, or even more generally,

ledger-agnostic.

Table 2.1: DLT types.

Type Subtype Examples

Public connectors

Blockchain of blockchains

Hybrid Connectors

Notary schemes
- ILP "atomic mode"
- Binance, Coinbase (centralised)
- 0x, Uniswap (decentralised)

Sidechains and relays - BTC Relay, Zendoo
HTLC based - ILP with HTL settlement, Lightning, XClaim

- Polkadot, Cosmos

Trusted Relays - Hyperledger Cactus, supporting Hyperledger
 Besu and Fabric, Corda and Quorum

Blockchain agnostic - ILPv.4
Blockchain migrators - Hyperledger Burrow based on ETH

With reference to Table 2.1, The public connectors family was the first one to emerge [60],

to allow crypto token exchange, but this is no longer the only scope of DLT interoperabil-

ity, and solutions for generalized interoperability have emerged, namely the blockchain-of-

blockchains and hybrid connector types [62].

A brief presentation of the above approaches is provided below.

Public connectors are further categorized into the following:

10https://en.bitcoinwiki.org/wiki/Hashed Timelock Contracts, valid in January 2023
11https://interledger.org/rfcs/0027-interledger-protocol-4/#why-unconditional-payment-channels, valid in

January 2023
12https://crosschain.mx/, valid in January 2023

16

Sidechains and relays. One blockchain (the main chain) considers a second chain as its

child chain or secondary chain or side chain. Through specific protocols, the two blockchains

can interoperate and transfer assets. Main chains can also be a sidechain to each other. To

enable the asset transfer, a two-way peg is required between the two blockchains. In fact, the

asset transfer does not physically happen, instead the assets are only locked and unlocked on

the respective chains. Smart contracts are used to enable this process. An example is the

Liquid 13 [66] open-source side chain for Bitcoin. Security-wise, if the security of the main

chain is compromised, the logic of the sidechain is invalidated. Another limitation is that

sidechains do not allow users to embed specific pegging mechanisms into their applications.

Notary schemes. The notary schemes employ a trusted federation of notaries to attest to

chain A that some event happened on chain B, and can be seen as cryptocurrency exchanges.

They can be centralized or decentralized, acting as intermediaries between blockchains, but

their applications are limited. One disadvantage of this approach comes from the trust that

must be invested in the federation of notaries.

While on the notary scheme, some intermediary had to verify for some blockchain that an

event took place on another blockchain, in the multichain or relay approach, the blockchains

do this task themselves, i.e., one blockchain can read events on another blockchain, and

possibly, the other way around. This approach can cover use cases like asset portability and

atomic swaps. Asset portability means that some coin, native on Ledger X, can be transferred

and used on Ledger Y, with the possibility to return to ledger X. Atomic swaps mean that,

if two users A and B have accounts on both ledgers, some payment from A to B will happen

only if another payment from B to A happens also.

Hash-locking. On hash locking, two events on chains A and B are triggered by the same

event, possibly the preimage of some hash. It is used for cross-chain atomic operations,

but can not enable asset portability or cross-chain oracles. A blockchain oracle is an infor-

mational gateway for that blockchain to the outside world. A smart contract deployed on

some blockchain would have limited functionality if all data that it could access would be

the data on its native blockchain. Blockchain oracles provide a way to query data from the

outside world, and in this way enable for example much more coverage for smart contracts

13https://liquid.net/, valid in January 2023

17

deployed on some blockchain. Cross-chain oracles would provide the same data to multi-

ple blockchains, which is sometimes not always easy because each blockchain has its own

integration requirements [60].

Blockchain of blockchains enables the creation of customized, application-specific

blockchains that can inter-operate, and are somewhat similar to the sidechains in the sense

that they are composed of a main relay chain and secondary chains that use mechanisms

called bridges to connect to other blockchains through pegging or Hashed Time Locks. They

are very recent, with Kusama 14 - the test network of Polkadot released in 2019 for example,

and Cosmos’ main network launched in March 2019 [62]. Cosmos is focused on transferring

tokens while Polkadot focuses on the transfer of data and assets, besides tokens. Since none of

the present solutions is accepted as wide as a standard, solutions like Polkadot or Cosmos still

risk creating fragmentation and siloing of user data and value, also because their users can

not connect to any arbitrary blockchain, should they wish so. It is also argued that validator

nodes can be compromised, and a costly BFT consensus is used amongst blockchains [67].

Hybrid connectors use a blockchain abstraction layer [68] to enable decentralised Ap-

plications (dApps) to interact with blockchains through several uniform operations instead

of different APIs [62],[69].

Trusted relays act as a trusted party that relays data from a source to a target blockchain,

without involving a new blockchain. Users work with different APIs and can create arbitrary

logic. An example is Linux Foundation’s open-source Hyperledger Cacti, which resulted from

the merge of Hyperledger Cactus and Hyperledger Weaver 15 supported by Accenture and

Fujitsu, which is currently compatible with Hyperledger Besu, Hyperledger Fabric, Hyperledger

Sawtooth, Corda, Iroha, Go-Ethereum, and Quorum. Security wise it is argued that the

centralized Cacti node server could be compromised [67].

Blockchain agnostic protocols make use of an abstraction layer to enable inter-connectivity

between virtually any blockchain networks, and the business logic flexibility is somewhat

limited. The parties emitting transactions on different blockchains i.e. the connectors are the

root of trust, meaning that they are accountable under the law. An example is Interledger

14https://kusama.network/, valid in January 2023
15https://www.hyperledger.org/use/cactus, valid in January 2023

18

Protocol v.4 (ILPv4), a protocol also discussed at the World Wide Web Consortium (W3C).

Blockchain migrators. Using this approach, users cam migrate data between blockchains,

with smart contract to be implemented in future work. Similarly to pegged sidechains, tokens

or smart contracts could be locked on a chain and re-deployed on another one [70].

2.2.2 DLT interconnectivity examples

This section introduces a few of the most relevant blockchain interoperability solutions with

an emphasis on the Interledger Protocol which is part of one of this thesis’ lines of work.

Polkadot [71] is one of the best-known examples of the relay chains or blockchain of

blockchains family. The term polkadot is used to define a token and a protocol. The protocol

aims to enable different independent blockchains to exchange money and data. The token is

used in governance to enable holders to have a say on the future of Polkadot for example, and

in the consensus mechanism as a stake for the transaction verification. Polkadot consensus is

based on a Nominated Proof of Stake (NPoS) [72] mechanism, and it is made up of a central

super-ledger or relay ledger, and multiple parallel chains whose transactions can be processed

in parallel which are called parachains. The parachains can communicate between themselves

through the central relay ledger and do significant heavy computation, thus freeing up the

central relay ledger. This is possible due to the sharding technique to split a database into

pieces, a technique used here to enable multiple blockchains (the parachains) to process data

in parallel [73].

This is how Polkadot can perform many transactions in a short time (approximately 1000

transactions per second). The central relay ledger is performing the consensus and validation

of transactions and relaying the communication between the parachains. The parachains are

application-specific full-fledged, specialized blockchains. The security of the architecture is

ensured by the validators on the central relay ledger, which are chosen by the Nominators,

while Fishermen ensure that the validators behave correctly, or otherwise their stake (and

nominator’s) would be lost to the other stakeholders. Collator nodes are lighter than the

validators - they just record the valid transactions on the parachain and send them to the

relay chain validators. Figure 2.4 illustrates the architecture of Polkadot. The central relay

blockchain ensures information exchange between the parachains and as such between the

19

RELAY CHAIN

External blockchain e.g. Ethereum

Collators

Bridge

Validators

Parachain bridge slot

Parachain

Parachain slot

DATA
FLOWS

Figure 2.4: Polkadot architecture.

external inter-connected blockchains, hence the name ”blockchain of blockchains”. Through

Polkadot blockchains can exchange tokens, account balances, information from the real world,

and interoperability between smart contracts deployed on different blockchains is achieved.

The transactions are atomic.

P2P, Crypto, Wasm

Polkadot

Chains

Second layer protocols

Tools, Apis, Languages

Explorers, Wallets

Dapps

DeFi Gaming Provenance

Other

Technologies

Figure 2.5: Polkadot tech stack.

The Polkadot Tech Stack [74], illustrated in Figure 2.5 is based on open-source tech-

nologies and is meant to be used for the development of decentralized applications dApps

20

including DeFi, Gaming, Provenance, and more.

Hyperledger Cactus, renamed Cacti after the fusion between Hyperledger Cactus and

Hyperledger Weaver 16, makes use of different plugins to interconnect with different ledgers.

The plugins can be built as part of the Hyperledger Cacti project, or as separate projects

by private or consortium entities. When interconnecting different blockchains, proofs of the

network-wide states of the blockchains must be provided to the outside, and these proofs

must be verifiable by others. As such, in Cacti, for each connected external blockchain,

there is a group of validators external to the said blockchain (also called ledger connectors)

- which work together to reach a consensus agreement (independent from the consensus of

the monitored blockchain) on the state of the monitored blockchain, and provide proof of the

network-wide state of the blockchain.

B

V

Blockchain node

Validator node

Proof verifier

B
B

B

B

B

B

V

V

V P

P

B
B

B

B

B

B

V

V

V

Blockchain 1 Blockchain 2

Cactus node

Business logic plugin
implementation (app)

P
Routing
interface

API
USER

Figure 2.6: Hyperledger Cacti architecture.

The validators are ledger-specific, which means that a new group of validators must be

deployed to connect a new blockchain. The advantage of using such validators is that being

similar, they are easier to discover and connect to, and as well, the signatures they provide

to verify the proofs are easier to verify because they all have the same format. With the

condition that they trust the validator nodes, outside verifier nodes can request validator

signatures and use these to verify the proofs of the connected blockchain [75]. The design of

16https://www.hyperledger.org/use/cactus, valid in January 2023

21

the Cacti architecture is illustrated in Figure 2.6.

The Interledger Protocol (ILP) is an interoperability solution proposed to support

payments across different ledgers. Because ILP is an important component of the work

presented in this thesis, the Interledger protocol will be discussed in more detail below. This

work considers the current version of Interledger which is version 4 (ILPv4)17.

The goal of Interledger is to create an international friction-less payments routing system

for sending and receiving money globally. The Interledger protocol is literally a protocol for

inter-ledger payments. Its main usage consists of multi-ledger payments, enabled by a set of

connectors. To stream payments, the ILP stack provides STREAM, an additional transport

protocol that breaks the total amount into small packets of value and then streams them.

Besides lower cost and faster settlement than some classic banking transactions, one of the

most interesting aspects of the Interledger Protocol (ILP) is that it will seamlessly manage

payments when the sender’s currency is different from the receiver’s currency, or when the

sender’s payments network is different from the receiver’s payments network.

The ILP ecosystem comprises multiple software components. Ledgers keep records of

users’ accounts and balances, either in fiat or crypto-currencies. In the context of Interledger,

a Ledger is any accounting system that holds user accounts and balances. It can be linked

to cryptocurrencies like Bitcoin, Ethereum and XRP, or to classic banks, PayPal and more.

ILP Connectors are the transaction intermediaries and hold multiple wallets on different

ledgers, such that they can perform currency exchange, and forward packets on behalf of

their customers, while receiving a fee. Finally, Applications ran by end-users connect to ILP

Connectors to perform transactions between each other; examples include Moneyd, or Switch

API by Kava Labs.

Figure 2.7 shows how ILP facilitates payments. Consider customers Alice and Bob, where

Alice has an account in Euro and wants to pay Bob, who has an account in BTC. Connector

C1 has an account in Euro, and an account in XRP, while Connector C2 has an account in

XRP and an account in BTC. C1 and C2 are peered together, i.e. they negotiated also a

business relationship. ILP allows Alice to create a payment request in Bob’s favor, which will

travel from her to C1, C2 and then to Bob. Upon receiving the payment, Bob will send back

17https://interledger.org/rfcs/0027-interledger-protocol-4/, valid in January 2023

22

Bob

XRPEUR BTC

Prepare

Prepare

Prepare

 Fulfill

 Fulfill

 FulfillAlice

C1 C2

Figure 2.7: Payment with ILP. C1 and C2 are ILP connector nodes.

on the same path a receipt, which will finally reach Alice. The receipt assures all parties that

the payment was successful and they settle their balances. As it travels between connectors,

the value changed wallets and currencies.

In ILP, money is actually not moved, meaning that ILP doesn’t decrease or increase the

total amount of electronic money in circulation. A connector swapping both currencies has

an account for each payment system it supports. Account balances are open and closed

between parties involved in a particular transaction according to the transaction instructions

of each payment system involved. The parties are the sender, the intermediaries (connectors),

and the receiver. In other words, when the receiver’s currency is different from the sender’s

currency, also, no money is leaving the sender’s network and no money enters the receiver’s

network. In fact, at some point along the chain, some connector with accounts on both

payment systems keeps the sender’s currency in one wallet (belonging to the same ledger as

the sender) and forwards the money towards the receiver, now denominated in the receiver’s

currency, from its other wallet holding that currency on the second ledger - the same ledger

with the receiver’s. The main difference with the classic system running today is that with

ILP, the end-to-end payment becomes completely seamless thanks to the automation of many

parts provided by the Interledger Protocol (ILP) suite.

As represented in Figure 2.8, the system of money transfer over ILP involves recording

and manipulating balances at different levels:

• The Bilateral (ILP) Balance, kept between two peers.

23

• Settlement on the payment channel (paychan), which involves signing claims that are

recorded on the payment channel opened between the two peers. The claims settle

the transactions between the two peers resulting from adjusting the Bilateral Balance

above.

• On-Ledger recorded transactions, resulting, for example, from redeeming the previous

claims submitted on the payment channel.

Underlying Ledger (the Ripple XRP main Ledger)

Alice Bob
ILP transactions

ILP Balance:
- maximum
- threshold
- settle to

ILP Balance:
- maximum
- threshold
- settle to

Redeem claims

Record claims

Paychan

Paychan balance

Figure 2.8: The money transfer system.

Payment Channels are an important feature of nowadays Interledger. Some distributed

ledgers are defining their own payment channel concept. Therefore, it is important to keep

in mind the definition of the (ILP) Payment Channel agreed in the documentation of In-

terledger18.

When two ILP nodes connect, they negotiate a payment channel according to their needs.

Payment channels are opened only between direct peers. Their bilateral transactions will

18https://github.com/interledger/rfcs/blob/master/0027-interledger-protocol-4/0027-interledger-protocol-
4.md, valid in January 2023

24

afterward be carried on to the payment channel. Payment channels are a solution for faster,

cheaper and more secure transactions, especially when the ledger involved is slow or expensive.

Bilateral Ledger. When transacting on a payment channel, each of the two parties

holds a Bilateral (ILP) Ledger, which records the transactions performed in-between the two,

and the balance (this is not the underlying ledger but internal to the application). Most of the

transactions are performed off-ledger, thus also improving the speed and transaction costs.

Only when the peers redeem their recorded payment channel claims, the specific transaction

is recorded on-ledger. On the payment channel each claim is recorded individually, but they

can be later redeemed individually or in bulk on the ledger [76].

Settlement is a core concept used in ILP and only occurs between direct Interledger

peers. In practice, settling is encountered for example while setting up plugins or in relation

to payment channels. The main concept, illustrated in Figure 2.8 [77, 78], in practice usually

involves a system of Interledger balances and payment channel claims.

In relation to payment channels, settlement involves signing a claim for the money owed.

Claims do not need to be directly submitted to the ledger, but in the case of the XRP Ledger

which is fast and cheap, they can [79, 76]. The process will be reflected in the payment

channel balance in Figure 2.8. Multiple claims can be signed on the payment channel, and

the payment channel balance will update accordingly. Note that at this point, no amount or

transaction has been yet recorded on-ledger (except the initial channel creation and funding),

so the ledger accounts for Alice and Bob still show the same balances as before (except

for cheap and fast ledgers like the XRP Ledger which makes it possible to submit claims

individually if desired, to make the money available faster).

Claims can be redeemed out of the payment channel and into the user ledger account in

bulk or individually. The payment channel can be closed or reused.

On-Ledger transfers. On-ledger transfers can be initiated in different ways. The most

relevant in ILP is redeeming the claims submitted on the payment channel. Only at this

point, the money will show up in the user’s wallet. Another possible way to initiate an

on-ledger transaction is for example directly using the ripple-API.

A real-life scenario is shown in Figure 2.9: If Alice wants to send Bob 10 USD, ILP will

find a route for this payment, which in the given case involves Connectors 1 and 2.

25

ILP transactions

Underlying Ledger (the Ripple XRP main Ledger)

Alice Connector 1ILP transactions

ILP Balance:
- maximum
- threshold
- settle to

ILP Balance:
- maximum
- threshold
- settle to

Redeem claims

Record claims

Paychan

Paychan balance

Connector 2 Bob

ILP Balance:
- maximum
- threshold
- settle to

ILP Balance:
- maximum
- threshold
- settle to

Redeem claims

Record claims

Paychan

Paychan balance

ILP transactions

Redeem claims

Record claims

Paychan

Paychan balance

ILP Balance:
- maximum
- threshold
- settle to

ILP Balance:
- maximum
- threshold
- settle to

Figure 2.9: The money transfer system in practice.

The prepare packets will travel forth from Alice to Bob through Connector 1 and Con-

nector 2, and the fulfill packets will travel backward on the same path. Firstly, Connector 2

will pay the 10 dollars to Bob, and settle with Bob, in exchange for the proof from Bob that

he got his money. Then Connector 2 will forward the proof to Connector 1 and in exchange,

Connector 1 will send the 10 USD to Connector 2 so they can settle with each other. Finally,

Connector 1 will pass the proof to Alice which will settle with Connector 1 by paying the 10

USD she wanted to send to Bob. By means of this chain, Alice has in fact sent Bob 10 USD.

2.2.2.1 The Interledger protocol stack

The Interledger architecture is often compared with the Internet architecture, as shown in

Table 2.2, also because they adopt a similar layered approach [80]. It involves multiple

protocols, of which the most representative are the Bilateral Transfer Protocol (BTP), the

Interledger Protocol (ILP), the Streaming Transport for the Real-time Exchange of Assets

and Messages (STREAM), and the Simple Payment Setup Protocol (SPSP).

SPSP is a protocol for exchanging the required information to set-up an Interledger

payment between a payee and a payer. It is the most widely used Interledger Application

Layer Protocol today [82]. SPSP makes use of the STREAM protocol to generate the ILP

condition and for data encoding.

Because STREAM does not specify how to exchange the required payment details, some

26

Table 2.2: A parallel between the Internet and Interledger architectures. [80]

Internet architecture Interledger architecture

L5 Application HTTP SMTP NTP L5 Application SPSP HTTP-ILP Paytorrent

L4 Transport TCP UDP QUIC [81] L4 Transport IPR PSK STREAM

L3 Internetwork IP L3 Interledger ILP

L2 Network PPP Ethernet WiFi L2 Link BTP

L1 Physical Copper Fiber Radio L1 Ledger Blockchains, Central Ledgers

other protocol or application has to implement this: SPSP is a protocol for exchanging

payment details between the sender and the receiver, i.e. ILP address and shared secret

[83]. In other words, SPSP is a means for exchanging the server details needed to establish

a STREAM connection.

Payment pointers are persistent payment end-point identifiers on Interledger. They are a

standardized identifier for accounts which can receive payments [84]. Payment pointers can

uniquely identify invoices and pull-payment agreements.

STREAM is a Transport Protocol working with ILPv4. Application-level protocols

like SPSP make use of the STREAM protocol to send money. STREAM splits payments

into packets, sends them over ILP, and reassembles them automatically. It can be used to

stream micropayments or larger discrete payments and messages. STREAM is inspired by the

QUIC Internet Transport Protocol [81] and was preceded by the ”preshared key v2” (PSK2)

transport protocol.

STREAM
2 way virtual channel of data and money

 Alice
(server)

ILP

Connector 1 Connector 2

SPSP

 Bob
(client)

Figure 2.10: STREAM is a logical, bidirectional channel over ILP. [80]

As illustrated in Figure 2.10 with yellow, a STREAM connection establishes a logical

27

two-way, virtual channel of data and money between the payer and payee. STREAM packets

can be sent as the data field of different Interledger packets like ILP Prepare (type 12 ILP

packet), Fulfill (type 13 ILP packet), or Reject packets (type 14 ILP packet), after being

encoded and encrypted. The logical connection is used to send authenticated ILP packets

between the ”client” and ”server” (the blue connections in Figure 2.10). One STREAM

logical connection can spawn up to eight ILP physical Interledger packet streams, in the case

of Figure 2.10 - the four blue flows. Either the payer or the payee can be the server or the

client. STREAM provides authentication, encryption, flow control (ensure one party doesn’t

send more than the other can process), and congestion control (avoid flooding the network

over its processing power).

4. STREAM logical connection
using ILP address and secret

3. GET Bob’s ILP address
GET secret

Alice Bob

2. SPSP over http query SPSP server
SPSP client

$example.com/bob

SPSP endpoint

http://example.com/bob

Payment pointer

5. Interledger payment

1. Bob shares his payment pointer

STREAM module
(client)

STREAM module
(server)

ILP module ILP module

Figure 2.11: The STREAM protocol flow.

Figure 2.11 illustrates the unfolding of the STREAM protocol. STREAM servers are

waiting for clients to connect over ILP. The servers connect to a specific plugin on the local

machine and wait for the ILP packets. Usually, the ilp-plugin is used to connect to Moneyd.

The server generates a unique ILP address and shared secret, which will be used to encrypt

28

data and generate fulfillments for ILP packets in relation to a specific client. The request for

the address and secret, and the response, are not handled by STREAM, but for example by

SPSP. After a client has the ILP address and secret (obtained with SPSP for example), it

can connect to the STREAM server by using these credentials [85, 86].

STREAM facilitates micro-payments use cases like Coil [87], where users pay a flat fee,

then Coil sends micropayments to content creators for each second users enjoyed their content;

or like ILP torrent, which only communicates the list of peers if the fee for the file was paid.

STREAM’s micropayments feature also helps mitigate the risks associated with transferring

large amounts by lowering the amounts in-flight.

The temporal interaction between the components of the Interledger Protocol (comprising

BTP, ILP, STREAM, and SPSP), as well as the application-level infrastructure involved is

illustrated in Figure 2.12.

btp
7442

 btp
Peering

 10666

Paychan using BTP

SPSP server connects to Moneyd

Paychan using BTP

Paychan using BTP

btp
7442

Logical STREAM initiated between Alice and Bob over ILP, using ILP address and secret

User ILP
module

(Moneyd)

User ILP
module

(Moneyd)

Alice’s SPSP client queries Bob’s SPSP server for the ILP address and a secret

Alice’s SPSP client receives ILP address and secret from Bob’s SPSP server

ILP Prepare
ILP Fulfill

Up to 8 physical ILP packet flows are spawned by the logical STREAM

STREAM finished. End balance on paychan.

ALICE BOB

SPSP client app SPSP server app

Connector
btp
port
7768

btp
port
7768

SPSP client connects to Moneyd

Connector
SPSP SPSP

STREAM
module

STREAM
module

Bob can redeem his money from Paychan (transfer on Ledger)

Figure 2.12: Unfolding of the ILP protocol.

The advanced relationship between protocols can be better understood by referring to

Figure 2.13 [88, 89], which summarizes all the information provided above.

The annotations used in the Figure 2.13 are explained as follows [88, 89].

29

I
P

l
a
y
e
r

c
o
n
n
e
c
t
i
o
n

(
e
.
g
.

W
e
b
S
o
c
k
e
t
)

I
n
t
e
r
a
c
t
i
o
n

b
e
t
w
e
e
n

p
r
o
g
r
a
m
s

E
x
p
l
a
n
a
t
i
o
n

o
f

s
o
m
e
t
h
i
n
g

N
o
d
e

A
:

g
.
n
o
d
e
-
a

(
1
3
)

R
o
u
t
i
n
g

T
a
b
l
e

M
o
d
u
l
e

R
o
u
t
i
n
g

T
a
b
l
e

A
c
c
o
u
n
t

f
o
r

L
e
d
g
e
r

B

(
1
1
)

A
c
c
o
u
n
t

M
o
d
u
l
e

(
1
2
)

B
i
l
a
t
e
r
a
l

L
e
d
g
e
r

R
o
u
t
i
n
g

T
a
b
l
e

M
o
d
u
l
e

R
o
u
t
i
n
g

T
a
b
l
e

A
c
c
o
u
n
t

f
o
r

L
e
d
g
e
r

B

A
c
c
o
u
n
t

M
o
d
u
l
e

B
i
l
a
t
e
r
a
l

L
e
d
g
e
r

(
A
)

B
T
P

o
v
e
r

W
e
b
S
o
c
k
e
t

(
C
)

S
P
S
P

o
v
e
r

H
T
T
P
S

T
h
e

i
d
e
n
t
i
f
i
e
r

o
f

n
o
d
e
s

(
g
.
x
x
x
)

i
s

(
3
)

I
L
P

a
d
d
r
e
s
s

S
E
N
D
E
R

A
p
p
l
i
c
a
t
i
o
n

P
a
c
k
e
t

D
a
t
a

S
t
r
u
c
t
u
r
e

(
7
)

D
C
P

P
a
c
k
e
t

I
L
P

P
a
c
k
e
t

B
T
P

P
a
c
k
e
t

(
8
)

R
B
P

P
a
c
k
e
t

I
L
P

P
a
c
k
e
t

B
T
P

P
a
c
k
e
t

T
h
e

d
e
t
a
i
l
s

(
o
r
d
e
r
,

v
a
l
u
e

t
y
p
e
,

l
e
n
g
t
h
)

a
r
e

d
e
f
i
n
e
d

a
s

(
9
)

A
S
N
.
1

.

T
h
e

A
S
N
.
1

s
t
r
u
c
t
u
r
e

i
s

e
n
c
o
d
e
d

i
n

b
i
n
a
r
y

b
y

(
1
0
)

C
a
n
o
n
i
c
a
l

O
E
R

r
u
l
e
.

(
5
)

A
p
p
l
i
c
a
t
i
o
n

P
a
c
k
e
t

(
4
)

S
T
R
E
A
M

P
a
c
k
e
t

(
2
)

I
L
P

P
a
c
k
e
t

(
1
)

B
T
P

P
a
c
k
e
t

A
c
c
o
u
n
t

f
o
r

L
e
d
g
e
r

A

A
c
c
o
u
n
t

M
o
d
u
l
e

B
i
l
a
t
e
r
a
l

L
e
d
g
e
r

(4) STREAM Packet
(
1
4
)

C
o
n
f
i
g
u
r
a
t
i
o
n

M
o
d
u
l
e

(7) DCP Packet

(
6
)

S
P
S
P

i
n
f
o
r
m
a
t
i
o
n

(
8
)

R
B
P

P
a
c
k
e
t

L
e
d
g
e
r

B

A
c
c
o
u
n
t

f
o
r

N
o
d
e

A

A
c
c
o
u
n
t

f
o
r

N
o
d
e

B

P
a
y
m
e
n
t

C
h
a
n
n
e
l

f
o
r

N
o
d
e

A

a
n
d

B

(
B
)

L
e
d
g
e
r

s
p
e
c
i
f
i
c

c
o
n
n
e
c
t
i
o
n

(
t
o

t
h
e

S
P
S
P

s
e
r
v
e
r

o
f

t
h
e

R
E
C
E
I
V
E
R
)

(
1
)

B
T
P

P
a
c
k
e
t

(
t
o

N
o
d
e

C
)

(
t
o

L
e
d
g
e
r

A
)

N
o
d
e

B
:

g
.
n
o
d
e
-
a
.
c
h
i
l
d
-
b

I
N
T
E
R
L
E
D
G
E
R

S
E
R
V
I
C
E

P
R
O
V
I
D
E
R

(
I
L
S
P
)

Figure 2.13: Interledger Protocols and details. Advanced diagram. [88, 89]

30

CONNECTIONS

(A) BTP over WebSocket is used to establish the connection between two nodes to exchange

payments, configuration and routing information by creating secure communication channels

between the peers. BTP currently works over WebSocket Secure connections.

(B) The Ledger specific connection is established from Nodes to Ledgers as a means to settle

their payments. If the settlement is done over a blockchain, the nodes could use payment

channels because they are faster and cheaper than direct blockchain settlements.

(C) Prior to effectively starting a payment, the SPSP protocol, running over HTTPS, enables

an Application to exchange the required payment information such as a shared secret or a

destination address with the payment Receiver running an SPSP Server at their end of the

connection.

PROTOCOLS

Link Layer Protocol

(1) BTP - The Bilateral Transfer Protocol 2.0 (BTP 2.0) is used as a carrier for ILP packets

and messages between two nodes.

Core ILP Protocols

(2) ILP - The Interledger Protocol V4 (ILPv4) is used for sending payment packets over

multi-hop routes. Other protocols, e.g. for node configuration or routing, can also work

over ILP by encapsulating their information in the ILP packets which are exchanged between

nodes.

(3) The ILP Address is used for nodes identification.

Transport Layer Protocol

(4) STREAM is a Multiplexed Money and Data Transport for ILP. Built on top of ILP, it

enables a bidirectional transfer of money and data between applications.

Application Layer Protocols

(5) Application Packet - Applications can implement custom protocols over STREAM by

encapsulating their protocol data in the data field inside the STREAM packet.

(6) SPSP - Prior to issuing a payment, the Simple Payment Setup Protocol (SPSP) is used

to establish the required end-to-end payment details such as a shared secret or destination

31

address.

Connector to Connector Protocol

(7) DCP - The Interledger Dynamic Configuration Protocol v1 (ILDCPv1) works over ILP to

enable the exchange of node information like ILP addresses. The protocol data is encapsulated

inside an extensible data field in the ILP packets.

(8) RBP works over ILP by encapsulating the data required for sharing the routing infor-

mation needed to create the routing tables.

DATA STRUCTURE AND ENCODING

(9) ASN.1 defines the concrete structure of data such as the order, the type, or its length.

(10) Canonical OER - Because ASN.1 doesn’t specify an encoding rule, i.e. how packets are

encoded in binary, canonical OER 19 is used to define the encoding.

FUNCTIONS

The functions can have different forms, according to implementation.

(11) The Account Module manages the connection to a given peer node and to the ledger

used for settlement with the given node.

(12) Bilateral Ledger is implemented as the Bilateral Transfer Protocol 2.0 (BTP 2.0) to keep

track of payment balances, e.g. for not-yet-settled payments, between two peered nodes.

(13) The Routing Table Module processes the received routing information to build the best

routes.

(14) The Configuration Module is implemented over the Interledger Dynamic Configuration

Protocol v1 (ILDCP v1), to request to a parent node the ILP address and other information

that a child (user) node needs to use.

(15) The SPSP Server executes the SPSP protocol over HTTPS to provide the payer with

necessary payment details like shared secret and destination address and it may, or may not,

be run on the payee node.

19https://gist.github.com/sappenin/100a475fc7175a164a949985b05fa696, valid in January 2023

32

However, because they work over the internet, the DLT interoperability solutions of which

Interledger is part of, can suffer from lossy paths, network faults and partitions, or DoS attacks

like route hijacking. Previous work used relays to solve some of these individual problems.

The security of the interconnection is very important. SABRE [90] was for example

proposed to address BGP routing attacks against Bitcoin (BTC). SABRE relies on the BGP

path selection to ensure through the placement of a few nodes (less than 10) that most BTC

nodes will not be partitioned by a BGP hijacking attack. This is achieved by relaying all the

traffic through this very small set of relays that must be equipped with sophisticated hardware

to sustain the high load of the BTC network. Changes in BGP peering relationships together

with cost changes will impact the correct functioning of SABRE. SABRE also relies on the

fact that many BTC clients are within a very small number of ASes, and as such, scaling it for

inter-ledger communication to cover clients spread across many different locations may not be

a straightforward task. SABRE does not employ custom protocols to improve performance.

Finally, SABRE requires that relay nodes do not get compromised and follow the protocol

correctly. Partially because of a low relay/client ratio SABRE [91] uses a software-hardware

co-design to sustain high loads. It does not consider compromised relay nodes.

With respect to performance, another stream of ideas aims to improve blockchain trans-

action rate by speeding up block propagation: Falcon [92] and Fibre [93] use relays for fast

dissemination of BTC blocks. BloXroute [94] also uses relays for fast dissemination of blocks,

for several ledgers. All of them focus on blocks and not payments, are vulnerable to routing

attacks, and together with SABRE, assume that the relay nodes are not compromised and

follow the protocol correctly.

Falcon achieves gains through minimal validation; hand-optimized, dynamical topology

and 10 servers deployed world-wide use cut-through routing for fast block propagation: data

is propagated as soon as any portion of a block has been received. The blocks are transmitted

as they are being actively received by the network. It is orthogonal to block compression,

however, if blocks are compressed, there should still be benefits. Falcon has the disadvantage

that a block can be validated only after receiving all required packets [95].

Fibre uses Forward Error Correction to enable nodes to reconstruct data in advance even

if some parts have been lost on the way [95].

33

Both Falcon and Fibre are centralized solutions that put control in the hands of the

entities that control them, and thus indirectly in the hands of the governments where they

reside. As such censorship possibilities are introduced. They are operated voluntarily by

small groups and are dependent on them [94].

bloXroute has a provably-neutral network design and the goal to provide the abstraction to

connected nodes of being connected to all p2p nodes by the use of cut-through routing [94]. It

provides encryption, is ignorant to packet content and seeks to treat all blocks (or payments)

fairly but it assumes that the overlay nodes can not be compromised; it also sends audit

control packets which offer the possibility to check censorship on origin or content, and show

that the network is neutral. Together with Falcon, bloXroute considers the incentivization

of overlay operators.

Spines [5] proposes a Soft Realtime Link protocol enabling localized retransmissions to

increase packet delivery ratio [96] and can protect against BGP hijacking.

Nebula [7] and Open Overlay [8] provide security groups and access control lists but are

not intrusion-tolerant.

The above are synthesized in the following two tables: Table [97] presents compara-

tively the most important characteristics of selected blockchain inter-connectivity solutions.

Table [98] illustrates the same for chosen blockchain accelerator and blockchain security so-

lutions.

34

Table 2.3: Blockchain inter-operativity solutions.

Solution Polkadot Hyperledger Cacti Interledger

Approach sidechain + relay nodes notary scheme relay nodes

Use case move data and tokens move data and tokens pay across ledgers

Limits

- validators can be compromised

- costly BFT consensus

- limited number of parachains

available; slots sold via auction

- central server can be

compromised

- complex architecture

- connectors can be compromised

Security

- shared state between

relay chain and parachains

- already hacked, millions lost

- tendermint consensus

- 100 validators
conditional transfers

Strong points
- flexibility (modular framework)

- shared security model

- extensible plugin architecture

- secure by default

- toll free

micropayments

Open source? yes yes
yes - Interledger Foundation

approves commits

Last git commit
January 2023

complex ecosystem
January 2023

January 2023

implementation dependant

(ILP is a protocol)

Governance
token holders weight +

referenda [99]

- under Linux Foundation

- open governance

- set of maintainers [100]

Interledger foundation

35

Table 2.4: Blockchain message dissemination solutions.

Solution SABRE Falcon Fibre Bloxroute

Purpose - BGP security - fast block dissemination - fast block dissemination - fast block dissemination

Limits

- affected by changes in cost

of inter-AS agreements and

changes in BGP peering

relationships

- designed for cases when

most clients are in a small

number of AS-es

- performance was not a goal

- focus only on block

propagation (not payments)

- blocks validated only

after receiving all packets

- commercial project

- no performance analysis on

block propagation [101]

- focus only on block

propagation (not payments)

- focus only on block

propagation (not payments)

- tiered subscription model

Strong

points

- BGP security for BTC at

relatively low cost

- partially deployable

- provides some protection

even with only 2 relays

- overlay operators incentives

- cut-through forwarding on

relay nodes

- Forward Error Correction

reconstructs data in advance

if some parts have been lost

- UDP, data compression [101]

- treats all blocks fairly

- sends audit packets to

ensure correctness

Incentive - not defined - overlay operator incentives - BTC health
- overlay operator incentive

(token)

Risks - relays can be compromised
- routing attack vulnerability

- relays can be compromised

- routing attack vulnerability

- relays can be compromised

- routing attack vulnerability

- relays can be compromised

Gover-

nance

- just technical solution

- multiple SABRE systems

belonging to different

entities can coexist

- Cornell University

research team

- preceded bloXroute [102]

Matt Corallo (BTC team)

- founders

(Cornell University

research team)

Open

source

- partial

(some pseudocode in paper)
no yes

- no [103]

- gateway is open source

36

3
XRP-NDN Overlay:

Improving the Communication Efficiency

of Consensus-Validation Based Blockchains

with an NDN Overlay

3.1 Introduction

The scalability of blockchain networks is an active problem in the community and also in

research. Previous work highlighted how latency and bandwidth limit scalability.

There is also, a loose current of opinion that generally, at most two of the following three

properties can be achieved for blockchains: decentralization, scalability, and security [104].

Security is reinforced in a permissionless network by broadcasting all transactions and blocks

between all the participants, of whom a majority must agree on the state of the blockchain.

This process however is expensive and hinders scalability. On the other hand, security can

37

also be achieved by setting a fixed number of trusted participants to control the state of the

blockchain, which makes the blockchain permissioned or centralised.

Here, we focus on the scalability problem [105] for permissionless blockchains, which states

that starting from a well-provisioned blockchain, we can obtain a new well-provisioned one

with proportionally increased load and nodes, where:

• Load is the stream of transactions, measured in transactions/second (TPS).

• A blockchain is well-provisioned for some load if the max throughput of that blockchain

is higher than the respective load.

• Max throughput is the load that can be processed with bounded latency.

While different aspects of Distributed Ledger Technology (DLT) research have lately

benefited from increased attention from the community, the underlying communication pro-

tocols, often relying on flooding mechanisms due to the one-to-many and many-to-many

communication needs of DLT, have received somewhat less attention. The task of scaling

the blockchain networks while maintaining their performance and resilience comes with its

own specific challenges, one of these being to maintain or even improve the efficiency and

resilience of the underlying communication when working at scale. Each blockchain technol-

ogy type has its specifics, and per our current understanding, a one-size-fits-all solution is

far from possible. For example in the case of Ethereum (ETH), which until recently was a

Proof of Work (PoW) blockchain, Gossipsub [6] was proposed to improve its communication

layer, while [47] proposed a Named Data Networking (NDN)-based design for the ETH block

propagation. Authors of [48] propose and experiment an NDN-based design for block prop-

agation obtaining 74% less overhead than [49], but the fairness of their evaluation versus IP

network communication is not clear. Nevertheless, the community effort was mainly directed

towards PoW-type DLTs, with other types like consensus-validation based blockchains, of

which XRPL is part of, receiving less attention. On XRPL, the size of the messages involved

in the consensus protocol, e.g. validations and proposals is small enough (approximately

0.5kB) as to not pose a challenge regarding message size itself. Instead, in the context of

the near-real-time communication needs (a new ledger is created every 3 to 5 seconds), it

38

is rather the overwhelming number of messages and the processing incurred at each node,

inherent to the flooding model of communication used in XRPL, that finally challenges the

scalability goals of the XRPL network.

This is aggravated by the strong interconnectivity between the nodes in the XRPL net-

work, as shown by the analysis we performed with Nem [106] after scanning and capturing

the XRPL network topology: the network consisted of 892 nodes of which 152 were identified

as validators. The average distance between nodes was 2.37. The average shortest path is

the sum of all shortest paths between vertex couples divided by the total number of vertex

couples. We also found a topology diameter of 5 (the greatest distance between any pair of

vertices, or the graph ”compactness”).

Between these nodes, a giant bi-connected component of 867 nodes was identified, together

with 25 smaller ones. The giant component was analysed further: the component had 9172

edges. The mean degree of the nodes was 21, while the maximum degree was 296, with

multiple similarly high-degree nodes, which means that some nodes act as hubs. The mean

distance was 2.34, the median distance 2.37, with a diameter of 4 and a radius of 3. The

results are summarised in Table 3.1.

Table 3.1: Topology analysis of the XRPL production network.

Metric nodes edges validators diameter radius avg dist. med dist. avg deg. max deg.

Full XRPL 892 9197 158 5 - 2.37 - - -

Giant component 867 9172 - 4 3 2.34 2.37 21.15 296

At scale, the overhead incurred by the flooding of messages increases the requirements for

the communication channels e.g. bandwidth (BW), the hardware used by the nodes (CPU

and memory), and the energy and financial burden, which if not addressed, could finally

result in a degradation of the overall network performance.

In a previous work, [107] showed that on XRPL, the number of proposal and validation

messages can represent 72% of all messages.

To mitigate the flooding overhead, different approaches to improve the message dissem-

ination efficiency could be considered, e.g. improving the efficiency of the dissemination

protocol itself, or external solutions such as overlays.

As such, in the case of XRPL, the problem can be stated, in a broad manner: How can the

39

performance burden added to the nodes’ CPUs, memory, and bandwidth by the high number

of messages incurred by the flooding dissemination model used at scale, could be alleviated?

Of the possible solutions, we focus on improving the dissemination method to decrease the

number of messages, and deviating (some of) these messages through an overlay where we

can make use of specific properties to achieve this goal.

NDN [4] is a proposal for a Future Internet Architecture which instead of delivering pack-

ets to a given destination (IP), fetches the data by name, offering for example content caching

to improve delivery speed and reduce congestion. The process of DLT data dissemination

can also benefit from native, built-in multicast available on NDN.

Data can be disseminated over NDN in at least the following two main ways:

1) In the classic, native pull-based approach, nodes request and receive by name the

pieces of data that they are interested in; this, combined with NDN’s native in-network

caching, could increase communication efficiency by decreasing the overall number of messages

exchanged.

2) In another approach, also taken by [46] for example on DLT, the data can be en-

capsulated in the Interest Packet and disseminated with multicast on pre-determined paths

(interested nodes must enable multi-cast for the respective Interest). Moreover, current work

to decrease the number of duplicate messages on NDN multicasting [108], could further im-

prove communication efficiency of XRPL.

The contribution is two-fold: i) there has been no prior work on this topic focusing on

consensus-validation based DLTs, and ii) this work evaluates over multiple practical imple-

mentation models, to find the best approach that benefits a concrete case such as the case of

XRPL.

3.2 Background

This section presents the background related to the two main technologies on which this work

is centered around: the Named Data Networking as an overlay solution, and the XRP Ledger

with a focus on messaging that pertains to being ported to NDN.

40

3.2.1 Named Data Networking (NDN)

Named Data Networking (NDN) is a proposed Future Internet architecture evolved from the

2006 Content-Centric Networking (CCN) project, by Van Jacobson [109].

Noticing that today’s Internet is rather used as an information distribution network, NDN

is not delivering packets to a given destination address (IP), but it fetches the data which

is identified by a given name. NDN distinguishes itself from other architectures through the

following:

1. In NDN, the data is named by the applications, and Consumers request data by its

name. As such, the process is consumer-driven.

2. Data packets are cryptographically signed by their respective Producers. As a result of

this data-centric approach, the data can be verified by consumers no matter how it was

received.

3. Routers record each data request (Interest packet) and erase it once data is received.

As such, smart strategies can be used for forwarding, and loops eliminated.

NDN offers content caching to improve delivery speed and reduce congestion, a simpler

configuration of the network devices, and data-level security.

On NDN, the Producer creates new data, and the Consumer is interested to receive or

”consume” the new data produced by the Producer. From these two roles derive the packet

types:

1. The Interest packet, normally sent by a Consumer to ask for some data piece produced

by a Producer.

2. The Data packet, which is normally created by a Producer and sent back to a Consumer

as a response to an Interest packet sent by the Consumer.

Besides the above, other relevant NDN building blocks are:

1. Content Store (CS) which stores for some period the data packets which it has already

seen in order to immediately serve them in case of a new request.

41

Figure 3.1: The basic mechanisms of NDN.

2. The Pending Interest Table (PIT) is a storage for unfulfilled Interest packets.

3. The Forward Information Base (FIB), similar to a routing table, helps an NDN node

decide where and how to route some packet.

As illustrated in Figure 3.1, NDN is working as follows:

1) The Consumer node A is interested to receive some piece of Data and sends the

Interest(1).

2) Upon receiving the interest, the Router node C:

- Checks its own Content Store to see if data is already available locally. If data is available

it answers with the data, or in case the data is not available locally it proceeds to next check.

In the Figure 3.1, data is not available locally, so C proceeds to the next check:

- It looks in its own Pending Interest Table (PIT) to see if a similar interest was already

received. If a similar interest is already received, the router discards the newly received

interest, or if it can’t find an entry (this is a new interest), it then proceeds to the next check.

In Figure 3.1, this is a fresh new Interest, so C proceeds to the next check:

- It checks its Forwarding Information Base (FIB) to see if it knows how to route the

42

interest further. If it does, it forwards the Interest, or if it can’t find an entry it drops it. In

Figure 3.1, C has a routing entry in its FIB so it forwards the Interest(2) to Producer node

D.

- Upon receiving the Interest, D answers by sending the Data(3) which then is stored by

node C in its CS, AND forwarded to node A as the Data(4) packet.

3) When Consumer node B sends the Interest(5) for same Data, the data is found by C

in its CS, and is directly forwarded to B as the Data(6) packet in Figure 3.1.

3.2.2 The XRP Ledger

XRPL topology. As shown in Section 3.1, the XRPL network consists of around 1000

nodes which are strongly connected. The network is forecast to continue to grow. In the

context of this work, we were interested to shift the transport of the XRPL consensus messages

to the NDN overlay. As such, the XRPL consensus was studied and is presented on short

below, together with the identified consensus message types that pertain to the NDN overlay.

XRPL consensus algorithm. XRPL’s consensus algorithm is classified as part of the

Federated Byzantine Agreement (FBA) family. The two main phases of XRP’s blockchain

building process are called ”Consensus” and ”Validation” 1:

During Consensus, new transactions are received and the participants agree on: the

transaction set to apply over the previous agreed-upon ledger AND on the closing time of the

newly created ledger. The transaction set is a set of transactions with a unique ID, on which

the consensus protocol is to reach agreement whether to include it in the current ledger being

built. Validation means that the validators agree on the generated ledger (validate it), based

on the ledgers built by chosen validators.

XRPL validators do not explicitly know all the other participating validators, and con-

sensus wise a validator only communicates with those from its own Unique Node List (UNL),

where UNL is defined as a set of validators that an individual validator does not necessarily

consider to be all honest, but instead it trusts not to collude to fraud.

Before presenting the XRPL consensus, some specific terms should be introduced first:

1https://github.com/ripple/rippled/blob/develop/docs/consensus.md, valid in January 2023,

43

• A validator’s position is the validator’s current belief on what is the current candidate

transaction set to be included in the ledger being built AND the close time.

• Close time: each validator calculates its own close time when it closes the open ledger.

The exact close time is rounded to the nearest multiple of the current effective close

time resolution.

• Proposal messages, which can be: an initial proposal which is the initial position taken

by a validator before taking into consideration other validators’ proposals, and updated

proposals where validators update their position after receiving proposals from other

validators.

The main phases of the consensus 1, also shown in Figure 3.2, are [29]:

Wait new Tx to include Share/rcv Proposals Phases
- Open
- Establish
- Accept

Actions
- Start round
- Close
- Consensus
- End Round

TimerEntry =
LEDGER_MIN_CLOSE

Apply Tx, share Ledger

Heartbeat Heartbeat ArbitraryArbitrary

TimerEntry
TimerEntry

TimerEntry

TimerEntry
TimerEntry

TimerEntry

TimerEntry
TimerEntry

TimerEntry

StartRound EndRound

Transactions

Peer
Proposals

Open EstablishClose Consensus Accept

Figure 3.2: The XRPL consensus protocol. a

ahttps://github.com/XRPLF/rippled/blob/develop/docs/consensus.md

1. ”Open” phase - New tx’s are received. To reach as many nodes as fast as possible,

a flooding mechanism is currently being used for tx propagation. The transaction

messages pertain to the NDN overlay.

44

2. ”Close” state - The current ledger won’t accept new tx’s, instead the Consensus pro-

tocol advances towards closing the current ledger. Tx’s received after this moment will

be recorded and applied to next ledger. There are multiple ways a ledger can be closed:

• Case 1: In the typical behavior, the validator has received transactions in the

open ledger AND more than the minimum predefined time for closing a ledger has

passed.

• Case 2: No transactions have been received AND an appropriately longer waiting

time has passed. The longer waiting time increases the opportunity to receive and

add some tx into the next ledger and avoids useless work to close an empty ledger.

• Case 3: More than half of the participants closed already, which could mean that

the validator is remaining behind and should close, to catch up.

3. ”Establish” phase - Based on an increasing threshold for inclusion, the participant

validators work towards agreeing with a super-majority of participants on the current

tx set by exchanging proposal messages and adding or removing tx’s. They also agree

on the effective close time, which is part of the validator’s position and is shared with

peers in its proposals. In this phase, flooding is also being used for the propagation

of the proposal messages. As such, proposal messages also pertain to be disseminated

over NDN.

4. ”Consensus reached” state - Participants agreed on the tx set to include in the current

ledger. The consensus is declared when ALL below conditions are true:

• A minimum consensus time was spent during establish.

• At least 75% of peers proposed, OR this establish phase is minimum consensus

time longer than the previous round’s establish phase.

• A minimum consensus percentage of validators (self included) have the same po-

sition.

5. ”Accept” phase - Participants apply the agreed upon tx set in canonical order and share

the result.

45

6. ”End round” state - the current round is finished, and the participants move to Validate

this ledger.

During Validation, the validator nodes share their results as signed messages containing

the hash of the calculated ledger. These messages are called validations and allow participants

to check if they obtained identical results; then, they can declare the ledger ”final”. The

propagation of validation messages also uses a flooding mechanism. Validations pertain to

the usage of the NDN overlay and have been used for the experimental evaluation. Validators

compare their results and declare the ledger validated IF enough trusted validators agree.

This number of validators is also called ”quorum”.

The deterministic finite automaton of XRPL consensus is presented in Figure 3.3 [34].

While the main flow is already explained above, the Figure also illustrates some failsafe

mechanisms built into the protocol in the case of errors, for example when a validator for

some reason finds itself working on the wrong ledger. In this case the validator would bow

out of the consensus and work the current round in observing mode. During this time the

validator may receive the correct ledger from the network, in which case would move to he

switched ledger state and continue to work in observing mode. Starting next round, if all is

well, the validator will switch to proposing mode, or if not, it will go back to wrong ledger

mode.

Summarising, flooding is the main dissemination protocol on XRPL, an approach which

ensures robustness. The main types of flooded data are Transactions (Tx), Proposals, and

Validations. The efficiency of the propagation of these message types needs optimisation and

these messages pertain to the proposed XRPL-NDN overlay.

3.3 Design and Implementation

This section describes XRPL-NDN Overlay, a solution for improving the communication

efficiency in the case of the blockchains based on consensus-validation. We work on the

concrete case of the XRP ledger.

NDN was chosen as overlay because it offers: i) in-network caching of data, which on

large networks can lower the overall number of messages in-flight at a given moment, and

46

Wrong
Ledger

INIT Open Deliberate Apply
transactions DONE Fully

Validated

Round ended
prematurely

Switched
Ledger
(open)

Wrong
Ledger
(open)

Switched
Ledger
(delib)

Wrong
Ledger
(delib)

Consensus is reached

Receive proposal

Receive proposalReceive/relay Tx

Receive/relay Tx

Start new round
Start new round

Receive/send proposalReceive/relay Tx

Start new round Close ledger
Consensus
Is reached

Finished
Building ledger L is fully

validated

Send validation
Main flow

Wrong
Ledger

Close
Ledger

Close
Ledger

Wrong
Ledger

Wrong
Ledger

Received
Correct Ledger

Received
Correct Ledger

Figure 3.3: The deterministic finite automaton (DFA) of the XRPL consensus protocol.

ii) native multicasting, which could also soon benefit from mechanisms of reducing message

duplicates [108].

XRPL node 1

 gRPC

NDN Overlay

CLIENT SERVER

SERVER CLIENT

Local NDN node 1

MACHINE 1

PRODUCER CONSUMER

gRPC

Custom app.

NDN
logic

XRPL node 2

 gRPCCLIENT SERVER

SERVER CLIENT

Local NDN node 2

MACHINE 2

PRODUCER CONSUMER

gRPC

Custom app.

NDN
logic

XRP Overlay
other messages

validations validations

Figure 3.4: General architecture of XRP-NDN Overlay.

The architecture used by XRP-NDN Overlay is shown in Figure 3.4. Each XRPL node

47

runs a gRPC server and client which enable it to send and receive validations through gRPC.

On each machine running XRPL, an NDN node is also ran, enabling the XRPL node to

connect to the NDN overlay. A standalone App (illustrated in blue) talks to the XRPL

node through a gRPC server-client pair on the one hand, and to the local NDN node for the

dissemination of validations via the NDN overlay. The same App implements various NDN

dissemination models, which are described next.

With a goal to decrease the load on the XRPL nodes by decreasing the number of messages

processed by them, this work seeks to answer the following questions:

Q1 What models could be used to map the XRPL consensus protocol to the NDN commu-

nication environment?

Q2 How would the models considered compare between each other and with the baseline

(unmodified XRPL communication)?

With respect to Q1, four possible models for sending XRPL validations over NDN were

evaluated:

1. ”Polling”: Each validator maintains a ”sequence number”, i.e., to each newly created

validation it associates an increasing ”sequence number”. The nodes interested to re-

ceive a validation from this validator, will send periodic interests asking ”what is the

last sequence of your validations?”. If the sequence is unchanged, they do nothing, and

if the sequence increased, they ask for the new validation. As the interval between

ledgers on XRPL is normally 3-5 seconds, a 200ms polling interval was chosen in order

to ensure the propagation of any fresh validation is not sensibly delayed. The process

is illustrated in Figure 3.5.

2. ”Announce-pull”: A validator which has created a new validation, would send a multi-

cast interest to let all nodes know the new sequence of its new validation. The interested

nodes will pull the validation with the given sequence. The process is illustrated in Fig-

ure 3.6.

3. ”Advanced-request”: On XRPL, because a Consumer knows in advance the identity of

the originating Producer (a validator on its UNL), and because the interval between

48

 1. Produce new validation for NDN:

 2. Create new label with new val_ID:

 3. Check new val_ID (200ms)
 If YES, extract val_ID

 4. Retrieve V1’s validation
 (send interest for val_ID)

Rippled validator V1

GRPC

 Rippled validator V2

NFD node
(router)

NFD node
(router)

MACHINE 1 MACHINE 2

XRPL overlay

GRPC

GRPC

“Publish” own
validations on

“Receive” V1’s
validations on

/last1/xyz

/val1/xyz /last1/xyz

/val1/xyz

NDN

 NDN overlay

GRPC

NDN

STANDALONE
APP

STANDALONE
APP

Figure 3.5: The polling model.

 1. Produce new validation for NDN:

 2. Send interest to announce new val_ID:

 3. Receive interest with val_ID
 Extract val_ID

 4. Retrieve V1’s validation
 (send interest for val_ID)

Rippled validator V1

GRPC

 Rippled validator V2

NFD node
(router)

NFD node
(router)

MACHINE 1 MACHINE 2

XRPL overlay

GRPC

GRPC

“Publish” own
validations on

“Receive” V1’s
validations on

/last1/xyz

/val1/xyz /last1/xyz

/val1/xyz

NDN

 NDN overlay

GRPC

NDN

STANDALONE
APP

STANDALONE
APP

Figure 3.6: The announce-pull model.

49

validations is somewhat predictable (3-5s in real-life), it is possible to consider the an-

nouncement of a new validation made even before the validation is produced. Thus, the

time required to forward the interest to source can be eliminated by proactively request-

ing the validation in advance, as illustrated in Figure 3.7. This pull-based approach

can ensure that the data is served as soon as it is available.

 1. Produce new validation for NDN:

 2. Create new label with new val_ID:

 3. Get new val_ID (once)
 Extract val_ID

 4. Retrieve V1’s validation
 5. val_ID = val_ID+1

Rippled validator V1

GRPC

 Rippled validator V2

NFD node
(router)

NFD node
(router)

MACHINE 1 MACHINE 2

XRPL overlay

GRPC

GRPC

“Publish” own
validations on

“Receive” V1’s
validations on

/last1/xyz

/val1/xyz /last1/xyz

/val1/xyz

NDN

 NDN overlay

GRPC

NDN

STANDALONE
APP

STANDALONE
APP

Figure 3.7: The advance-request model.

 1. Send interest carrying V1’s new validation
 (inserted in “AppParameters” field)

 2. Receive interest

 3. Unpack val from “AppParam”

Rippled validator V1

GRPC

 Rippled validator V2

NFD node
(router)

NFD node
(router)

MACHINE 1 MACHINE 2

XRPL overlay

GRPC

GRPC

“Publish” own
validations on

“Receive” V1’s
validations on

/val1/xyz /val1/xyz

NDN

 NDN overlay

GRPC

NDN

STANDALONE
APP

STANDALONE
APP

Figure 3.8: The piggyback model.

50

4. ”Piggybacking on Interest”: We notice that it is feasible to send the XRPL validations

directly over NDN Interests by encapsulating them in the field named appParameters 2

from the Interest packet. Normally this field is meant to carry custom extra data which

could eventually be necessary to disambiguate, or help define completely, the request

expressed by the Interest message, and the data format is similar to the Data Packet

response issued by the content Producer. In this model, the validator which has created

a new validation will encapsulate it in an Interest message and send it directly with

multicast to all nodes. This solution can help reduce at minimum possible the number

of messages exchanged at the NDN overlay level because for the dissemination of a

validation, only one message (the Interest) is sent, instead of the regular exchanges

Consumer-Producer, e.g. compared to the announce-pull model. This approach can

also help latency-wise in some cases (no two way request-response here), because the

data caching available in the pull model can help latency-wise especially when multiple

nodes request same data on a same data path. The process is illustrated in Figure 3.8.

To answer Q2, we used the following metrics:

M1 XRPL node load : How do our NDN models compare with each other and with the

baseline concerning the number of validations in/out at XRPL executable level? This

metric is important because the number of messages at node level directly impacts the

performance of the node (CPU, memory) because all messages must be processed - a

decision must be taken regarding each of the messages.

M2 Network load : How do our NDN models compare with each other and with the baseline

in regards to the amount of physical messages and bytes required to travel in order to

propagate a validation to all nodes? This was measured at machine NIC level and is

important because it reflects the network bandwidth usage. Other NDN traffic adds on

top of the traffic of validations at the XRPL executable level.

M3 XRPL network stability : How do our NDN models affect the inter-arrival times of the

validation messages? This metric shows if the XRPL network as a whole is working

2https://docs.named-data.net/NDN-packet-spec/current/interest.html, valid in January 2023

51

normally. The validation inter-arrival time on a healthy XRPL network is 3 to 5 seconds.

We consider network stability (M3) eliminatory, which means that if a model does not

behave acceptably under M3 it will not be investigated further.

Besides the four models proposed above, we also investigated:

1. The validation messages for UNL validators in the live XRPL network, presented below.

This gave us information about the behavior of XRPL messaging in real-life: what is

the normal state of the XRPL network in real life, in regular conditions and under

regular load? For example, this gave an idea about M3 in real-life conditions.

2. The same for a private network of unmodified XRPL validators fully connected in-

between each other, which is the baseline.

3.4 Evaluation

To conduct the evaluation we used both a real testbed deployed in the lab, as well as the

XRPL live production network. The version of XRPL used was v 1.7 for the baseline, and

we modified it to be able to divert the validation messages through gRPC towards the NDN

overlay.

To build the NDN overlay, we used the NDNts typescript library [110],[111]. The experi-

ments were performed on the below three topologies, which can reveal if topology influences

performance. The topologies are illustrated in Figure 3.9.

1. Star - seven NDN nodes linked in a star formation, of which the three nodes at the

edges are also XRPL nodes. The central node is the most stressed traffic-wise so it

could potentially be a bottleneck.

2. Triangle (tri) - six NDN nodes linked in a triangle formation. The three edge nodes

are also XRPL nodes. This topology is more balanced: the three middle nodes share

the traffic more fairly.

3. Baseline is made of three unmodified XRPL nodes fully connected. This topology is a

natural choice for a fair comparison with the other two topologies: at XRP logical level

52

Figure 3.9: The experimental topologies.

(message-wise) it is the closest equivalent to the other two.

M1: For the unmodified version of the XRPL node executable, we used Rippled Monitor3

and Grafana to collect statistics regarding the total number of validations coming in and going

out from a node, as well as the total bytes incurred by these messages. For the modified

version of the XRPL node working over NDN, we counted the number of validations in/out

of the node with our own tool.

M2: We used vnstat [112] and tshark [113] to count the number of bytes/packets at the

local machine NIC level.

M3: We parsed specific lines in the XRPL log and extracted the necessary info to analyze

the inter-arrival times per validator. To facilitate the readability of our time-series figures,

we plotted:

- in orange color, the rolling mean (rm) over the previous 20 data-points (which means

generally over 1-2 minutes depending on the interarrival times).

- in green color, the rm(20) plus 2 times the rolling standard deviation (rSTD) computed

over the same 20 data-points: rm(20) + 2 ∗ rSTD(20).

- in red color, the same rm(20) from which we substract 2 times the rSTD(20), i.e.:

rm(20) − 2 ∗ rSTD(20).

3https://github.com/ripple/rippledmon, valid in January 2023

53

3.4.1 RESULTS

This Section presents the experimental methodology and the results, which will subsequently

be discussed in Section 3.5.

3.4.1.1 Production validators on the XRPL Livenet

The main goal of analysing the behavior of XRPL validations on the production network was

to get an idea of M3 in a real-life scenario.

We deployed and connected an XRPL validator node on the live XRPL network. From this

node, we listen for incoming validations from each of the approximately 35 XRPL validators

on the official UNL. We record only the first received validation from each of these trusted

validators, and drop the duplicate messages.

(a) Pdf: validation interarrival time (b) Validation interarrival time

(c) Time series: validation interarrival time

Figure 3.10: Typical validation interarrival time on XRPL livenet.

M1, M2: We didn’t collect any data because in the case of the livenet, it is not possible

to perform a fair comparison with our models using these metrics. The main reasons are the

number of nodes involved, the topology and the real-life internet environment that we can

54

(a) ”Intermittent” behavior (b) ”Atypical” behavior

(c) ”One-off” behavior (d) ”One-off” behavior

(e) ”Regular intervals” behavior (f) ”Regular intervals” behavior

(g) ”Regular intervals” behavior.

Figure 3.11: Behaviors of validators on the XRPL livenet, different from the typical behavior
(time series).

not recreate for our models.

M3: We notice that for the XRPL validators which we ”listen” to, while the seemingly

default behaviour would be to receive incoming validations spaced at between 3 to 5 seconds

(with the mean approximately around 3.92s, median around 4s, quantile(0.25) around 3.98s

and quantile(0.75) around 4.02s, as shown in Figures 3.10c, 3.10a, 3.10b), there are validators

which exhibit atypical, one-off, irregular or seemingly regular disruptions in the default pat-

tern, of which we illustrate some cases in Figures 3.11g, 3.11f, 3.11e, 3.11c, 3.11d, 3.11a, 3.11b.

3.4.1.2 Baseline - private network of unmodified XRPL validators

On our dedicated testbed we set up a private network of unmodified, fully connected XRPL

validators. From one of these, we record as above, the intervals between the first arrived

unique validations from all other validator nodes, dropping duplicates.

55

(a) Pdf: validation interarrival time (b) Validation interarrival time

(c) Time series: validation interarrival time

Figure 3.12: Validation interarrival time: Baseline (private XRPL).

M1: Using RippledMon and Grafana we were able to compute the ratio of total validations

in+out to ledgers created. It turns out that for the baseline topology from Figure 3.9(middle),

there are on average 7.34 validations travelling in/out from an XRPL node to create one

ledger, and a total number of 17845 validations over 2 hours.

M2: Over 10 minutes, Tshark recorded 14420 packets. Vnstat reported an average rate

of 58kbit/s over 5 minutes.

M3: We notice a strong tendency for interarrival times spaced sharply at around 3

seconds with a mean, median, quantile(0.25) and quantile(0.75) all around 3.00s, as shown

in Figures 3.12a, 3.12b and 3.12. These figures will be used later to compare the different

models.

3.4.1.3 The ”Piggibacking on Interest” model

Under M1, there was a total number of 3 validations in+out of the XRPL node, per ledger

created. M2 was evaluated using tshark, which recorded over 10 minutes a number of 13713

56

packets, and vnstat showed an average of 80kbit/s over 5 minutes. M3 is better than the

baseline, as shown in Figure 3.13.

(a) Pdf: validation interarrival time (b) Validation interarrival time

(c) Time series: validation interarrival time

Figure 3.13: Validation interarrival time: Piggyback(tri) model.

The experiments were carried out on the ”triangle” topology from Figure 3.9. The prob-

ability distribution plots show a slightly better performance of the piggyback model versus

the baseline, while in regards to the number of validations processed at the XRPL node, the

piggyback model is clearly better with 3 validations/ledger versus 7.34, meaning that our

model is 2.44 times better for this experimental setup.

3.4.1.4 The ”Polling” model

This was our first validation dissemination model, mostly to see how the XRPL and NDN

would work out together. We carried out the experiments related to the polling model on

the triangle topology.

M3: The inter-arrival times from Figure 3.14 are generally not better than the baseline.

This, together with the high number of messages incurred at NDN level by the continuous

57

polling make this set-up unfeasible for a real-life usage.

Because this model performed worse than the Baseline and the Piggyback model (de-

scribed below) in regards to validation interarrival times (Table 3.2), we didn’t collect any

further metrics (M1 and M2). However, this model could be further improved to use for

example adaptive polling intervals.

(a) Pdf: validation interarrival time (b) Validation interarrival time

(c) Time series: validation interarrival time

Figure 3.14: Validation interarrival time: Polling(tri) model.

3.4.1.5 The ”Announce-pull” model

We experimented with both the star and triangle topologies. This was the second model we

experimented with, as an improvement over the first one.

On the triangle topology, overall, this model showed a more stable behavior, however

without getting close to the baseline regarding M3 (rm and rSTD), as shown in Figure 3.15.

On the star topology, we present our results in Figure 3.16.

Figures 3.12, 3.13, 3.14, 3.15 show that under M3, both the Announce and the Polling

models performed worse than the Baseline and than the Piggyback model with respect to the

58

(a) Pdf: validation interarrival time (b) Validation interarrival time

(c) Time series: validation interarrival time

Figure 3.15: Validation interarrival time: Announce-Pull(tri) model.

validation interarrival times (Table 3.2). This is why, we didn’t collect any further metrics

(concerning M1 and M2).

3.4.1.6 The ”Advanced-request” model

The results obtained on the triangle topology are presented in Figure 3.17. This model was

not investigated further as the performance under M3 was not satisfactory.

The evaluation results are summarized in Table 3.2.

Table 3.2: Experiments summary.

Model Topo
Val inter-arrival time XRP node load NIC load Content Store (rates / min)

q(0.25) q(0.5) q(0.75) vals in+out/ledger avg bitrate (5min) pkt/10min misses hits entries

Baseline tri 3.00 3.00 3.00 7.34 59kbit/s 14420 N/A N/A N/A

Adv-req tri 3.00 4.00 5.00 not collected 20kbit/s 11800 not collected

Polling tri 2.95 3.48 4.52 not collected

Announce

Pull

star 3.00 3.86 4.21 not collected 170->790 (2h) 0 887->1520 (2h)

tri 3.86 4.07 4.84 not collected 900->1500 (2h) 0 190-785 (2h)

Piggyback tri 3.00 3.00 3.00 3 80kbit/s 13700 785 (flat) 0 65 (flat)

59

(a) Pdf: validation interarrival time (b) Validation interarrival time

(c) Time series: validation interarrival time

Figure 3.16: Validation interarrival time: Announce-Pull(star).

(a) Pdf: validation interarrival time (b) Validation interarrival time

Figure 3.17: Validation interarrival time: Advanced-request(tri) model.

3.5 Discussion

According to the results, for the concrete case of XRPL validations, the most suitable solution

is their encapsulation in Interest messages and dissemination with multicast. This approach

uses few additional messages (the goal was to minimise the overall number of messages, and

60

the ratio we obtained was 3 to 7 between our model and the baseline, respectively). This

model improves significantly over the baseline as shown by comparing the interarrival times,

while ensuring robust dissemination and low latency. Also, by retaining the data push model,

the impact on security should be minimized.

The topic of blockchain message dissemination over NDN has also been studied in peer-

reviewed work like [47] which proposes a design and implementation for propagating the

ETH tx’s and blocks over NDN. However, the design is focused on PoW blockchains, with a

concrete case for ETH. Nevertheless, the needs of consensus-validation based DLTs are fairly

different from those of PoW DLTs, to require separate consideration. For example the size

of the consensus messages in XRPL (proposals and validations) is much smaller than the

size of ETH blocks, and XRPL uses the concept of UNLs where, strictly from a consensus

perspective, a validator needs only receive messages from those other validators in its defined

UNL. Moreover on NDN, the data can be signed and dated by the producer, which in XRPL

case is already known (UNL validators are known from a logical point of view), making some

types of attacks discussed in this paper not applicable for our work on XRP-NDN Overlay.

In [47], NDN data sync models are dismissed for various reasons, including security. While

for XRPL’s validations for example, the sync vector can be easily constructed, these models

could indeed add unnecessary traffic hindering scalability, and also, they were not designed

with Byzantine failures in mind.

The authors of [47] also propose an announce-pull model for both tx and block prop-

agation, arguing that this can benefit from in-network caching and multicasting to avoid

redundant traffic. For the case of XRPL, because a Consumer knows in advance the identity

of the originating Producer (a validator on its UNL), and because the interval between new

validations is somewhat predictable (3-5 seconds in real-life) this model can be simplified

to consider the announce already made, and issue pull requests in advance. Moreover, the

authors use the ETH P2P overlay to broadcast the creation of a new block and then NDN

to pull the block after learning about it. The problem on XRPL is fundamentally different

and consists of a very large number of messages - a result of the flood mechanism when the

network is scaled up. For XRPL, this number needs to be minimised. As such in this work

we have been searching for, and proposed, a paradigm suitable for the XRP Ledger.

61

XRPL Proposal messages share similar characteristics to validations and could use the

same dissemination model. Because of specific use cases such as trading or high frequency

trading which need that transactions propagate as fast as possible such that they are included

in the earliest possible ledger, the transactions could also use the piggybacking on Interest

model to propagate. This approach however, might be subject to poisoning attacks and thus

require additional mitigation measures, such as in-flight transaction verification, auditing, or

node scoring.

The XRPL consensus leverages the concept of UNLs where a validator may want to be

interested to hear only validations from nodes on its own UNL. Currently in production, only

two largely overlapping UNLs co-exist. Using more UNLs in production will not impact NDN

traffic on any local NDN node since the local NDN nodes can be independently set to also

relay any other intended traffic at NDN level.

The experiments were carried out on a real testbed deployed in our lab and on the live

XRPL network. We used the original XRPL code which required a significant effort to

integrate NDN. The code is open source and can be found on Github 4. The experimentation

was limited to the scenarios and topologies reported.

4https://github.com/FlavScheidt/sntrippled, valid in January 2023

62

4
Performance Monitoring and Evaluation

This chapter describes the work on network monitoring for the XRP Ledger, and on system-

level non-intrusive monitoring and instrumentation of application performance.

In order to monitor an XRP Ledger node at networking level, several questions had to be

answered:

• How can we build a Testbed?

• What are the assessment criteria? number of messages?

• What is the impact of different optimisation methods for message dissemination?

On the other hand, we have different implementations of the Interledger protocol spec-

ification, where for the same specification, different design decisions for different software

architectures have been taken. The design decisions can potentially lead to differences in

application performance. We wanted to see if a different performance can be noticed, where

does it come from, and how could we achieve such insights. We chose eBPF because it enables

63

non-intrusive monitoring and instrumentation at system level. This approach lets us see, in

a detailed way, how the functions are implemented and how are they called (system calls).

4.1 Network monitoring for the XRP Ledger

The goal of this work was to monitor and evaluate the performance differences between

two different approaches for the dissemination of XRPL consensus messages. An unmodi-

fied version of XRPL implementing message flooding was compared with a modified version

implementing a message relaying reduction mechanism called ”squelching”.

In the Squelching approach1, based on defined criteria, each node selects five of its neigh-

bors and then squelches the rest of them for a random time. The node sends Pause/Resume

commands to some of its neighbours, to control the flow of messages. The nodes keep up

to T seconds record concerning the status of their peers. By reducing the number of peers

with which to share messages, the total number of messages circulating in the p2p XRPL

network is reduced while maintaining the overall ”flooding” approach and to some extent its

advantages : guarantees for message dissemination and network robustness.

In order to do the evaluation, a real-life environment was sought, in order to simulate the

real-life conditions where nodes are spread among different geographical locations.

Grid 50002 is a large-Scale HPC platform, a testbed with interconnected sites in France

and Luxembourg. It features a large amount of resources: 15000 cores, 800 compute-nodes

and 10 GB Ethernet links. Grid 5000 offers the possibility of reconfigurable and controllable

experimentation with advanced monitoring and measurement features. It was chosen because

of its geographically distributed nodes and the configurable testing environment.

To deploy the XRPL network on Grid 5000 and perform the evaluation, we used a previous

work, the BlockZoom [114] Tool, which is a large-scale blockchain testbed developed to run

on top of Grid 5000. It offers a reproducible environment for experimentation with DLT and

smart contracts. The behavior of different blockchains and the performance of applications

can be evaluated at a life-like scale for different configurable scenarios. The tool has two main

sections: the framework for the blockchain orchestration and the module for configuration

1https://xrpl.org/blog/2021/rippled-1.7.0.html, valid in January 2023
2https://www.grid5000.fr/w/Grid5000:Home, valid in January 2023

64

of experiment parameters like: site location, number of nodes, duration, operating system,

blockchain platform, smart contract and workload generator. The code for BlockZoom is

available on Github3.

3 Nodes

3 Nodes

3 Nodes

3 Nodes

3 Nodes

RippledMon Server
AWS CLOUD

XRPL p2p network

10G dedicated lambda

Figure 4.1: XRPL network monitoring testbed deployed on Grid 5000.

The Baseline used for the evaluation was an unmodified version of XRPL, which was

compared with a modified XRPL4 implementing the Squelching mechanism.

The evaluation steps were:

• Baseline evaluation (XRPL v1.6).

• Squelching evaluation (XRPL v1.7).

• Results analysis.

The deployment steps were:

• Integrate XRPL to our BlockZoom Tool for deployment.

• Deploy the testbed nodes on Grid 5000.

• configure the validator nodes and configure the network among peers.

3https://github.com/wshbair/BlockZoom, valid in January 2023
4https://github.com/XRPLF/rippled/pull/3412, valid in January 2023

65

• Deploy and configure the statistics tool Rippled Monitor.

The testbed comprised of 15 XRPL nodes evenly spread over five Grid 5000 site locations,

meaning three nodes per site. The consensus quorum was set to six (in real life not all nodes

on the production XRPL network are validators). The nodes boot with no transactions being

generated and after a preset time, a number of 1000 transactions per site was sent in parallel.

Squelching enabled Start sending Tx Stop sending Tx

Figure 4.2: Unmodified XRPL vs XRPL with squelching: total number of Messages IN.

Time (seconds)

N
um

be
r o

f M
es

sa
ge

s
O

U
T

0

100,000

200,000

300,000

400,000

500,000

500 1000 1500 2000 2500 3000 3500

XRPL with flooding XRPL with squelching

Figure 4.3: Unmodified XRPL vs XRPL with squelching: total number of Messages OUT.

The comparative results are presented in Figures 4.2, 4.3, 4.4, 4.5. The annotated Fig-

66

Time (seconds)

N
um

be
r o

f B
yt

es
 IN

0

25,000,000

50,000,000

75,000,000

100,000,000

500 1000 1500 2000 2500 3000 3500

XRPL with flooding XRPL with squelching

Figure 4.4: Unmodified XRPL vs XRPL with squelching: total number of Bytes IN.

Time (seconds)

N
um

be
r o

f B
yt

es
 O

U
T

0

25,000,000

50,000,000

75,000,000

100,000,000

500.000 1000.000 1500.000 2000.000 2500.000 3000.000 3500.000

XRPL with flooding XRPL with squelching

Figure 4.5: Unmodified XRPL vs XRPL with squelching: total number of Bytes OUT.

ure 4.2 facilitates the discussion of the results: both XRPL versions start similarly, until

the squelching mechanism is activated on the modified version (annotated as ”squelching en-

abled”). From this moment it is possible to see a sensible reduction in the total number of

messages. The number of messages changes again when the transactions start to flow through

the network - annotated as ”start sending Tx” and ”stop sending Tx”.

67

Conclusion. The evaluation showed, as expected, that the messaging efficiency of the

squelching approach is sensibly better than flooding. Nevertheless, the squelching technique

raises additional questions concerning the security, resilience and robustness of the XRPL

network.

4.2 Using eBPF for non-intrusive performance monitoring

The requirement to monitor computer software at different levels of the software stack ap-

peared seamlessly with the introduction of computers in industry. Monitoring helps and is

the only way to diagnose different types of problems or anomalies [115]. Nonetheless, this

activity is not a new requirement or a new problem. Cloud service providers require to mon-

itor further and at scale what is happening in their data center [116]. What has changed in

the last few years is that new tools at the operating system level and new tools to package

and deploy software appeared (e.g. micro-services). This has been made possible thanks to

Linux kernel evolution (e.g. namespace, cgroups) [117]. However, the non-intrusive manage-

ment of containers relies on the observability of the underlying operating system. For this

reason, we explore the observability capability of the Linux kernel offered by eBPF. To do

this, we analyze the potential of eBPF-based tools, which offer unique capability. Beyond

networking functions, eBPF instruction set allows for monitoring in-kernel IO subsystems, i.e.

tracing, analytics, and security functions. We specifically assess the added-value of the ex-

tended Berkeley packet filter tracing framework. Our contribution is the experimental study

of eBPF-based tools in the context of non-intrusive profiling and diagnoses of a user-space

application in production. Indeed, all parties hosting and/or operating an application cannot

rely on predefined metrics externalized by developers. Moreover, to find root causes after an

incident5, cloud users may also want to monitor the internals of the system.

Therefore, we address here the challenge of monitoring a new generation of user-space

applications at the deepest level without any support from the application.

The structure of this chapter is as follows. The Section 4.2.1 discusses the state of the

art and the capability of eBPF for networking and beyond. Section 4.2.2 presents the eBPF

5https://landing.google.com/sre/sre-book/chapters/monitoring-distributed-systems, valid in January
2023

68

tracing tools against process isolation mechanisms. Section 4.2.3 presents and analyzes infor-

mation extracted for Interledger Connectors. This Section explains also the rationale behind

the design of our performance tool-chain. Section 4.3 concludes.

4.2.1 Background and related work

In the last few years, BPF has evolved with the extension of its instruction set. BPF becomes

the extended Berkeley Packet Filter (eBPF), the Linux subsystem making possible the safe

execution in the kernel of untrusted user eBPF programs [118]. Since, eBPF is completely

redefining the scope of usage and interaction with the kernel. It offers the possibility to

instrument most parts of the kernel. eBPF adds the ability to inject code at specific trace-

points. This goes from network tracing to process or I/O monitoring like proposed in the I/O

Visor project6. eBPF does not require a new kernel module in comparison to other tools (e.g.

LTTng or SystemTap). eBPF is by default in the Linux kernel. Metrics can be collected by

attaching to the following possible points: kernel functions - kprobes; system calls - seccomp;

userspace functions - uprobe, and tracepoints. Thanks to SECure COMPuting with filters

(seccomp), eBPF changes also the way we can perform security monitoring in the system.

Like explained in the Linux kernel documentation, seccomp enables processes to specify fil-

ters for the incoming system calls. The filter is expressed as a BPF program. For instance

in [119], the authors use it to spot malicious system activities. Instead of using packets as

traditional applications to intercept communications, they monitor network activities by ex-

ploiting trace points and Linux kernel probes. Here, we explore these capabilities to trace

and profile user-land applications.

Because of its origin, eBPF is already used heavily for networking subsystems [120]. In

this context, eBPF is used in conjunction with the eXpress data path (XDP) framework.

XDP has been created to process packets before they enter the kernel, unlike the traffic

control subsystem (TC). TC operates in the network stack, which means that the packet

has been already processed by the kernel. Indeed, after a packet passes the XDP layer, the

kernel allocates a buffer to parse the packet and store metadata about it. Then, to access

the packet, the eBPF program uses a pointer to sk buff, and not xdp buff, which is not in

6www.iovisor.org/, valid in January 2023

69

the kernel. Nonetheless, the primary goal of these frameworks is to perform efficient switch-

ing, traffic classification [121], virtualized networks [122, 123], routing, traffic generation or

communication optimization [124]. For instance, in [125] the main technical contribution of

the authors is to show how this nascent technology can be used to not only build in-kernel

programmable VNFs but also how to interconnect them on a single system. Indeed, the

Linux kernel limits the size of eBPF programs to 4096 instructions or 32 kbytes, i.e. 4096

instructions of 64 bits. To get around this instruction limit imposed by Linux for security,

Tail-calls are possible. This means that one program triggers another filter/program to create

a chain of eBPF programs. In this area, Polycube is a framework for creation and deployment

of custom virtual network functions 7.

Another new feature offered by this tool allows the authors of [126] to deal with the

increase in encrypted traffic. To obtain access to the clear text payload in the case of ap-

plications with end to end encryption they propose to use the recently merged kernel TLS

functionality. The method does not require any data decryption and re-encryption, and re-

duces latency and overhead. However eBPF/XDP is not the only system which facilitates

programmable packet processing [127]. The Data Plane Development Kit (DPDK) is the

main alternative to use accelerators (hardware or software) to manage transport protocols of

the future and minimize the impact of the network service chain [128]. The approach of XDP

is opposite to bypassing kernel. Next, like explained by the authors of [129], the monitoring

of network traffic is traditionally using packet analysis. While many times useful, it does not

help for detailed visibility in the case of virtual systems and containers. Like they suggest

in their work, a merge between system and network monitoring is required. That is why,

we explore the limits of eBPF to monitor system-wise a containerized user-space application.

Indeed, most of the research work on eBPF is related to the primary goal of the tool, i.e.

packet processing. Therefore, talking of eBPF without talking about packet processing was

until recently not relevant. However, eBPF is now valuable for network filtering and security

monitoring, but also program debugging, tracing or profiling.

With regards to the opportunity for Cloud infrastructures, cloud data centres of today

have providers at the physical level and customers at virtual level. To see the load patterns

7https://github.com/polycube-network/polycube, valid in January 2023

70

and detect malfunctions [130], they monitor both at the hardware and at the software lev-

els, which offers opportunities for alerting, resource allocation, and visualization [131]. The

added-value of eBPF is performing those tasks for applications in production environment,

even when micro-services are used. Indeed, in [132] the authors explain how micro-services

are challenging the classical methodology and performance tools. Unlike traditional client-

server applications, resolving performance issues requires to determine which micro-service

is the root cause of performance degradation. The major contribution of the authors is their

benchmarks, which unfortunately does not consider payment or micro-payment infrastruc-

ture, like Interledger [133].

4.2.1.1 Profiling and Tracing tools

The recommended front-end for using BPF tracing framework is the BPF Compiler Collection

(BCC). BCC was created by Brenden Blanco in April 2015 but the work of Brendan D. Gregg

is now more than influential [134]. Performance tools allow performing two major tasks:

• Tracing, to report when events occur over time.

• Profiling, to report the number of occurrences of each type of event tracked.

There are many ways to perform tracing in Linux [135], from the original Linux tracer

Ftrace 8, to perf profiling tools. Over time, more complex kernel tools like BPF, eBPF,

or LTTng 9, SystemTap 10 and Dtrace 11 appeared [136]. The most intrusive method uses

only static instrumentation: tracepoints and user application statically defined tracepoints

(USDT). However, this has several implications. First, this required access to the source

code to add the user markers (USDT). Then, in any case, it requires recompilation to acti-

vate pre-defined marker. Second, user markers will have to be maintained over time based on

the evolution of the code base. However, eBPF opens a new world of possibilities with kernel

and user level dynamic tracing (kprobes and uprobes). For instance, in Java the dynamic

instrumentation known as dynamic tracing enables tracing of functions in running binaries

8https://www.kernel.org/doc/html/v5.0/trace/ftrace.html, valid in January 2023
9https://lttng.org/, valid in January 2023

10https://sourceware.org/systemtap/, valid in January 2023
11http://dtrace.org/blogs/about/, valid in January 2023

71

without restart. Nonetheless, one downside of this approach is the continuity of service over

time because instrumented functions can be removed or renamed depending of the maturity

of the software interface observed.

eBPF being introduced, we present now the mainstream front-ends for using it, which

have been disseminated in a conference organized by the Linux foundation [137]. Moreover,

we specifically used them in the context of our experimentation.

First, the BPF Compiler Collection includes a BPF library and interfaces for writing

programs based on Python, Lua and C++. BCC12 front-end is a toolkit suitable for complex

tools with a bound scope or for agents. In this respect, BCC provides a large set of predefined

tools. Brendan just released most of his work in a book [138] where he presents all these

tools. An interesting fact is the audience targeted by the book, i.e. system administrators and

reliability engineers. This confirms the relevance of the tools for cloud providers or in-house

critical IT infrastructure. BCC requires a program built in three parts:

1. Importing the dependencies to use the eBPF framework.

2. The eBPF program always written in C-like language and stored in a variable.

3. The processing script allowing to load, execute and retrieve data from the eBPF pro-

gram injected in the kernel.

Second, the Bpftrace for quick instrumentation (e.g. for the detection of zero day vul-

nerabilities). Bpftrace13 enables the creation of new metrics by decomposing them into

distributions, or logs per event. Ultimately, the tool helps to uncover blind spots. Bpftrace

was created by Alastair Robertson [139]. An LLVM based backend compiles the scripts into

BPF bytecode. It interacts with Linux BPF system through BCC and also kprobes, uprobes,

and tracepoints Linux tracing. The language is based on C, awk, and previous tracers like

DTrace, SystemTap. Bottom line, Bpftrace is suitable for quick investigations and small

scripts.

Third, the Performance Co-Pilot (PCP) provides a range of services that are used to

monitor and manage system performance. PCP 14 is a system-level suite of tools for perfor-

12https://github.com/iovisor/bcc, valid in January 2023
13https://github.com/iovisor/bpftrace, valid in January 2023
14https://pcp.io, valid in January 2023

72

mance analysis. It has been field-tested in RedHat distributions and provides a framework.

PCP uses a daemon and relies on PMDA (Performance Metric Domain Agent) 15 to collect

metrics.

eBPF collects the data in the kernel and transfers it in the user-space thanks to BPF

Maps. This is a key/value store inside the kernel. This allows to collect metrics at each

iteration of the eBPF program. Currently, one BPF program can directly access up to 64

maps. As such, eBPF is changing drastically the capability of the Linux kernel [140, 141].

4.2.2 Non-intrusive monitoring and profiling

Today performance monitoring for Cloud service providers is complex; while they do not

have control of the application layer, they must provide the technical means to align with

new regulations such as data protection in Europe. Moreover, containers have become a

commonly-used method for deploying services on many operating systems, providing short

application start-up times, resource control, and ease of deployment. Consequently, Cloud

service providers have to deal with Continuous integration (CI) and continuous delivery (CD),

application elasticity, and distributed data processing workloads.

4.2.2.1 Container isolation

With the release of version 0.9, Docker.io has dropped LXC as the default execution environ-

ment, replacing it with their own libcontainer. Consequent investments around containers

technology point out interesting opportunities for research to update the way containers are

managed. The isolation boundaries of a container can vary. In the case of Linux, namespaces

and cgroups are used to set those boundaries. The first meaning that we attach to the prin-

ciple of isolation implies protecting each process from other processes within the operating

system. In consequence, this segregate the memory space of process A from the memory space

of process B. To enforce this, Docker container and other container technologies use a col-

lective noun for a group of isolation and resource control primitives. Moreover, after the rise

of Platform-as-a-Service and Software-as-a-Service, Function-as-a-service (FaaS) is the new

model to run code in the Cloud. A factor pushing this model is the low running cost. Indeed,

15https://manpages.ubuntu.com/manpages/xenial/man3/PMDA.3.html, valid in January 2023

73

it is cheaper to fire-up and run specific application functions only when needed. Nonetheless,

despite fancy names, all of this relies on the container, and it has become difficult for the

service provider to gather performance indicators and guarantee security. For instance, the

Google gVisor 16, the IBM Nabla 17 secure container systems, and others propose a promis-

ing approach to containment [142]. The authors propose X-Containers, a security solution

to isolate cloud native, single containers. They explain that replacing some of the isolation

primitives with local system call emulation sandboxes is not enough guarantee.

In this context, where isolation of software components is strengthening, we advocate

for non intrusive performance monitoring with in-kernel facilities. Security and performance

are the primary concern but gathering indicators for performance or to guarantee security

becomes a challenge. On the one hand, user level tools are required to monitor the full stack

of their application in an outsourced environment and, on the other hand, more advanced

sysadmin tools are required to monitor black-box containers. Indeed, it is not clear yet

how dynamic instrumentation will be able to safely penetrate the containment boundaries

where the business code is. The added-value of non-intrusive monitoring has been proven in

many other works [143], [144], [145], [146], [147] and [116]. For instance, Cilium18 leverages

eBPF in a cloud native and micro-services context. However, Kubectl-trace is a command line

front end for Kubernetes which allows running bpftrace in Kubernetes cluster machines [148].

While currently, using Kubernetes or similar it is not possible to activate capturing of metrics

during the deployment of containerized applications.

4.2.2.2 eBPF integration

Our goal is to dissect the behavior of Interledger connectors. This means that at minimum,

we want to perform the full scope of classic system resources monitoring, e.g. CPU, memory,

TCP connections. Then, two other requirements are the possibility to filter traffic at the

XDP level and the possibility to filter the metrics gathered per container. For this, we use

the PID or a port number for a container running a specific network service.

16https://github.com/google/gvisor, valid in January 2023
17https://nabla-containers.github.io/, valid in January 2023
18cilium.io, valid in January 2023

74

The key features that we consider for our tool chain are:

F1) The extensibility of the tools used.

F2) The possibility to store collected data. We want the ability to archive metrics to

perform a posteriori analysis.

Like explained previously, BCC and bpftrace are meant to be used for the creation of

higher level tools such as eBPF exporter 19 or Performance Co-Pilot (PCP). At first, we

experiment with eBPF exporter, open sourced by Cloudflare, to extract metrics and feed the

main Prometheus server 20. The server collects and stores time series data. It is supported

by the Linux foundation and uses special exporters for the eBPF exporter. Prometheus has

a data model that is multi dimensional. The time series data is identified by the name of the

metric and pairs of key-value. Prometheus provides a query language named PromQL.

Then, we were not satisfied with the module provided by the eBPF exporter. Indeed, we

did not have the possibility to monitor the garbage collector or any facility to add IP filtering.

Between modifying the parser of the YAML files used by the exporter written in Golang and

switching to PCP, we decide to switch to PCP. Another argument in favor of PCP is that it

provides support for the creation and management of archive logs.

Figure 4.6 shows the selected tool chain. PMDA modules are in charge of injecting eBPF

bytecode in the Kernel. Then, PMDA modules gather and transmit collected metrics to a

PCP web daemon. Next, a visualization layer is required. In this context, we try the following

tool composition for the realization of our performance monitoring tool chain:

• eBPF Exporter: integration with Prometheus and Grafana.

• Vector and Performance Co-Pilot (PCP): for remote BPF monitoring.

• Grafana with PCP: for remote BPF monitoring.

Regarding data visualizations, we experiment with Grafana and Vector. Built on top of

PCP, Vector enables real time visualisation and analysis of metrics like CPU, memory, stor-

age and network at system and application level. Application profiling is possible through

flamegraphs. PCP web daemon is connected to the metric collector daemon to provide Vector

19https://blog.cloudflare.com/introducing-ebpf exporter/, valid in January 2023
20https://prometheus.io/, valid in January 2023

75

U
se
r	
sp
ac
e

D
oc
ke
r

Ke
rn
el

Client

Client

eBPF bytecode

PMDA
BCC

gc_latency

Performance Co-Pilot

eBPF bytecode

PMDA
BCC

http_analysisUSDT

System call

Interledger
JavaScript
Connector

Internal call

HTTP request

Other
PMDA

Vector

Arrows Legend

Figure 4.6: Overview of the performance monitoring setup.

with performance data. This is a lightweight model because data is not stored along browser

sessions and no metrics are aggregated between hosts.

Finally, in spite of our critics on static program instrumentation, we try user application

statically defined tracepoints as shown in Figure 4.6. This approach is simple, easy to parse

but completely intrusive and lacks features such as typed arguments. This is only suitable

for the development and debugging phase.

4.2.3 Profiling and tracing of Interledger

As explained before, on-line monitoring is required in our case. The default toolkits do

not fulfill our needs. That is why we have to create new eBPF programs, which will be

integrated in our monitoring solution based on Vector and PCP, like presented in Figure 4.6.

We add dedicated modules for the purpose of monitoring the connector during its execution.

For each module, parameters can be set through a common configuration file for the BCC

PMDA of PCP. Therefore, we filter the monitoring to the connector itself, by setting the

ports, IP address and PID of the network stream to be monitored. It is even possible in some

76

cases to limit to a process selected by regular-expression matched name. Each module was

systematically added in three steps. First, write the corresponding user-space program to

inject and perform the measurement with the eBPF program. Second, gather and store data

with PCP, by adding the corresponding module in the BCC PMDA. Third and last step,

display the data in one or more widgets in Vector, to allow for on-line monitoring.

4.2.3.1 Interledger Connector

The goal of Interledger is to provide an architecture and a minimal set of protocols to enable

interoperability for any value transfer system. The Interledger protocol is literally a protocol

for Interledger payments. Interledger Connectors aim to realize the vision of an international

friction-less payments routing system. In other words, a standard for bridging diverse financial

systems [133].

The reference implementation of the connector specification is in JavaScript and so is the

new Rafiki connector. However, other implementations are also written, in Java and Rust.

Figure 4.7 shows how connectors are bridging all ledgers and their end-users, represented in

the Figure by ”Alice” and ”Bob”.

SPSP

Plugin
Ledger 1

SPSP

BTP

CONNECTOR 1

ALICE BOB

Plugin
Ledger 1

Plugin
Ledger 2

Plugin
Ledger 3

BTP

Plugin
Ledger 2

Plugin
Ledger 3

ILP ILP

Ledger 1 Ledger 2 Ledger 3

CONNECTOR 2
STREAM

ILP

BTP

STREAM

ILP

BTP

Alice wants to pay Bob

* Plugins are optional, depending on implementation

Figure 4.7: ILP payment chain.

77

Connectors are run by different entities and offer payment inter-operability across the

payment platform to the ”customers” running a ”customer app”. The connectors are the

”service providers”, or ”market makers”, or ”liquidity providers”, because they provide end-

users access to other payment networks, provide payment routing, exchange and liquidity. To

do this, the Connectors use, among others, the Interledger Protocol (ILP), and ILP addresses.

In this Section, we use two full-fledged implementations of the Interledger protocol. Each

of them runs over the last long-term support version of nodejs (v10) in a Docker container.

The reference implementation of the protocols is in github 21. This is the reference JavaScript

implementation of an Interledger connector. The second implementation of an Interledger

connector is also in JavaScript and all the source code is on github 22. To facilitate the

discussion about the performance and flamegraph analysis, the Bilateral Transfer protocol

and the STREAM protocol which are also run by the Interledger connectors are presented

below.

The Bilateral Transfer Protocol (BTP) emerged as a necessity, due to a combination

of ILP goals (fast and cheap transactions) and the realities of some ledgers (expensive and/or

slow settlements). With BTP, two parties can send funds directly to each other, up to a

maximum amount they are willing to trust before settlement. BTP is used between connec-

tors for transferring ILP packets and messages necessary to exchange payments, settlement,

configuration and routing information.

BTP packet

ILP packet

STREAM packet

Application packet

Figure 4.8: Interledger packets data structure. [88, 89]

21https://github.com/interledgerjs/ilp-connector, valid in January 2023
22https://github.com/interledger/rafiki, valid in January 2023

78

As shown in Figure 4.8, BTP is a ”carrier” for ILP packets and as such, for other protocols

like STREAM for example. BTP establishes the ”link” between connectors, on top of which

the ILP packets are being sent. When setting-up the connector plugins, one also generally

sets-up a BTP connection. The data is sent over web socket connections. One of the peers

acts as a server while the other is connected as a client. It implements a Bilateral Ledger,

where the two peers keep track of their (yet) un-settled accounts and balances. The Bilateral

Ledger, a micro-ledger kept by the two peers in-between them, is not to be confused with

the Underlying Ledger - the main ledger where all accounts and transactions are stored,

e.g. the XRP Ledger. The ILP protocol is a standalone protocol specification which can

still work without BTP [149]. The BTP in its current form is a binary request/response

and authentication protocol implemented over WebSockets and includes the ”sub-protocol”

naming [82].

The BTP protocol is illustrated in Figure 4.9: In order to connect to Interledger, each

of Alice’s and Bob’s ILP modules establish a BTP connection over wss with the parent

connector. As long as they are connected to Interledger, this connection will be live. The

ILP packets will travel over BTP. While opening the BTP connection, both of them also

negotiate a unique paychan with their direct peer, the connector.

To complete a payment, the Interledger Connectors run also the STREAM protocol.

The STREAM module inside a Connector is able to break the payment into multiple packets,

which will be sent over ILP using prepare-fulfill-error packets. The STREAM module at the

receiver’s end will finally reassemble the payment. The biggest Interledger connectors’ risk

is not to be able to fulfill an incoming transfer after the corresponding outgoing transfer was

done [150]. This is called the Fulfillment Failure. To diminish as much as possible the odds

of that occurring, some mitigation measures 23 have been proposed. For two of them, eBPF

has a clear added-value:

• Packet filtering - White-listing or denial of service protection

• Redundant Instances - Difficulty to interfere with program instance(s)

Therefore, monitoring is a must in this case and in the case of an unexpected attack. Indeed,

23https://interledger.org/rfcs/0018-connector-risk-mitigations/, valid in January 2023

79

4. STREAM logical connection
using ILP address and secret

3. GET Bob’s ILP address
GET secret

Alice Bob

2. SPSP over http query
SPSP server

SPSP client

$example.com/bob

SPSP endpoint

http://example.com/bob

Payment pointer
1. Bob shares his payment pointer

STREAM module
(client)

STREAM module
(server)

ILP module
Moneyd

ILP module
Moneyd

Alice’s ILP address Bob’s ILP address

INTERLEDGER

Money (XRP)

Connector

5. ILP transfer

Figure 4.9: The BTP protocol in practice. [88, 89]

a worldwide payments routing system will certainly be a clear target.

4.2.3.2 Performance analysis and flamegraph analysis

This Subsection shows how we profiled both Interledger connectors to point out performance

flaws. All the material and code produced in the context of the experimentation we carried

out is available on a github repository24.

In [151], we explain how to setup an Interledger test-bed connected to a private RippleNet

and Ethereum PoA. We used a simplified version of our test-bed to first generate traffic only

through two connectors based on the reference implementation. This simplified test-bed is

24https://github.com/Oliryc/monobpf, valid in January 2023

80

composed of a private RippleNet and three interconnected connectors, i.e. forming a triangle

where one is only observer/idle. Then, using the same setup, we generate traffic through

the Rafiki connector. To generate the workload, we trigger payments between two users

connected to two different connectors and exchanging 50000 XRP at a rate of 1 XRP per

ILP packet. This means that we create a proper payment channel and carry well formed ILP

packet.

To perform the stack trace profiling, i.e. flamegraphs, we use a tool called 0x 25. The

stack trace profiling can be resource intensive. Therefore, 0x proposes a method to generate

a flamegraph on a production server. By default 0x uses the internal profiler of the JavaScript

engine (V8). This means native frames are omitted.

Each sample is a coarse fixed-rate 1 ms ”snapshot” of the current stack, which is an

effective profiling method allowing to identify which code paths take more time to execute.

Flamegraphs help visualize two metrics: how much time a function spends on the CPU,

and the time a function spends at the top of stack. In the given concrete case, each block in

the Flamegraph represents a JavaScript function.

On the Y-axis, the last function to be called is at the top of the stack. High blocks signify

a deep call stack. They also show the parent to child function relationships. If a function

is at the top of the stack more often than others, this means it may be blocking the loop of

events and it is called as hot.

The X-axis helps illustrate the ticks accumulated by the investigated function. The width

of a block in the Flamegraph represents the amount of time a function appears in the same

stack in ratio to the total samples. The longer the block, the more time the function, including

children, spends on the CPU.

The block color represents the heat, meaning how much time the function appeared at

the top of stack compared to the total samples.

The relative position of the blocks does not represent the sequence of execution, meaning

the left blocks are not necessarily executed before the blocks on right side. The Flamegraph

does not show the passage of time from left to right; the left to right ordering is in fact the

alphabetical sort of frames, which maximizes frame merging [138]. Therefore, a more subtle

25https://github.com/davidmarkclements/0x, valid in January 2023

81

inspection is required to finding when a method is effectively called.

X axis : how many times a function appears in stack, ratio to total samples

Y

 a
xi

s :
 fu

nc
tio

n
st

ac
k

ILP prepare
Serial./Deserial.Function where it start

BTP

Same

ILP triggers
settlement when
fulfill packet.
NOT IN RAFIKI

ILP prepare
Serial./Deserial. ILP prepare

BTP
Same

Unoptimized

Figure 4.10: ILP implementations at WORK - full flamegraph :
Reference connector (top) and the Rafiki connector (bottom).

Tracing presents how events occur over time, while profiling shows the number of occur-

rences per event type.

Figure 4.10 shows the flamegraph generated for the Reference implementation (top) and

for Rafiki implementation (bottom), both under workload, i.e. sending ILP packets. These

flamegraphs are presented to emphasize first the differences in terms of behavior. Concep-

tually, the two connectors do the same thing. Indeed, both implementations are based on

the same specification and the same JavaScript libraries. The main thing that distinguishes

Rafiki is its software architecture.

To compare the Interledger connectors, we also carry their stack trace profiling while in

idle state, to have a baseline. Figure 4.11 shows the stack trace profiling for the Reference

implementation while Figure 4.12 shows the same type of graph for Rafiki. Clearly, when

IDLE, the Figures are colder, i.e. the flames are less red.

Besides, in our Vector dashboard we are also able to monitor application specific metrics:

garbage collector, TCP sessions lifetime, HTTP traffic (HTTP verbs, code), Websocket ses-

82

Figure 4.11: Reference implementation while IDLE - full flamegraph.

Figure 4.12: Rafiki implementation while IDLE - full flamegraph.

sions, network throughput and other classic metrics. At this scale, Figure 4.10 only allow us

to point out major performance differences between the two implementations.

One of the major added-value of such Flamegraphs is the interactive nature of the plot

that lets you drill-down and zoom on any function call. This is helpful when you do not know

what you are looking for. That is why, we primarily used the Flamegraph as a map to find

out where the Bilateral Transfer Protocol (BTP) and the Interledger Protocol v4 are active.

It is also possible to zoom-in on key ”business functionality” of the ILP implementation.

Flamegraph interpretation: At this scale, the Figures are especially suitable for two

83

things:

• Observe the general shape of the flamegraph. Knowing that functions are ordered

alphabetically.

• Observe the proportion at runtime of each function level, i.e. native, business, etc.

For the reference implementation we notice several prominent columns pointing out deep and

long function calls at the application level. The software stack at issue is managing part of

the ILP packets processing and part of the settlement process. Therefore, we investigated

further how ILP packets are (de-)serialized and how the settlement process is triggered. It

turns out that in Rafiki developers decouple the settlement engine from the packet processing

logic. Therefore, results are consistent with their architectural modification. In Rafiki, the

columns pattern disappears.

The decoupling of packet processing from settlement allows independent packet processing

with potentially positive impact on packet latency. Thus, this design approach can allow for

mitigation of ILP connectors’ financial risks arising from unfulfilled ILP packets (fulfillment

failure) 26.

4.2.3.3 New eBPF program created

Monitoring the garbage collector. BCC provides an example to count the number of

executions of the Garbage Collector (GC) and time them. This was however not integrated

into PCP and Vector. Therefore, we built on the example to create a PMDA module and

a heatmap widget for Vector. The heatmap in Figure 4.13 presents the lifetime and the

frequency of all the calls to the garbage collector.

HTTP traffic Identification. We get the packets in a raw form, quite close to the bytes

circulating on the network. Even though some processing has been performed by the network

card at this stage. For instance, on card TCP checksum validation leads to an incorrect value

of the corresponding field when reading the packet at our stage. All the following process is

performed in the kernel at TC level. Our goal was to show how far we can go in the packet

26https://interledger.org/rfcs/0018-connector-risk-mitigations/, valid in January 2023

84

Figure 4.13: Latency of nodejs garbage collector.

analysis at this level to, for instance, filter packets as early as possible. Consequently, we

process each network layer to locate the HTTP content. First, we read the ”type” field of

the Ethernet layer header. If the value is the one associated with IP protocol, the packet is

candidate, i.e. it could be an HTTP packet and we process it further. The next header is

then from the Internet protocol. We know the position of its first byte because the Ethernet

layer is fixed-size. The ”nextp” field of the IP header is checked for correspondence with

TCP. If so, the packet is still candidate. To know where the first byte of this TCP header

is, we use the ”ihl” field of the IP header. Similarly, to know where the first byte of the

HTTP header is, the ”doff” field of the TCP header can be used to know the length of this

last header. Finally, we can check the packet for typical HTTP content, like methods (GET,

POST). If this matches, we send the packet to the user-space program, where a similar task

is performed to locate the HTTP payload. From this payload, features of the HTTP protocol

can be extracted, like methods, headers, return codes. Note that as soon as the packet is not

candidate anymore, the treatment is interrupted.

IP Whitelisting and Denial of Service Attack. As a hardening measure, we leveraged

eBPF and XDP to improve the resilience of the ILP connectors against denial of service

(DoS) attacks. It has been observed in the industry that rejecting packets with iptables rules

85

Header How to know the size?

Ethernet Fixed size in spec.

IP Size inferred from the ”ihl” field.

TCP Size inferred from the ”doff” field.

HTTP Sequence-delimited size.

Table 4.1: Protocol layers to decapsulate manually to locate the HTTP payload.

was not efficient enough to successfully handle medium-sized DoS attack.

Figure 4.14: ILP DoS mitigation with
XDP.

The reason is that once iptable decides to drop a

packet based on one of its rules, it is quite late already.

Some copy and processing already went through the

kernel stack and situations where all the CPU time

is used to merely drop the packets arise. To solve

this, a new good practice is to rely on XDP. However,

this security layer is not perfect but clearly improve

the capability of the kernel. With XDP, we can de-

cide to drop a packet right away, on the networking

card, thus without entering the kernel stack, as shown

in Figure 4.14. Indeed, this technique becomes even

more relevant for the new generation of network cards.

A key point of XDP compared to iptable is that

there are no costs associated to the re-injection of the packet into the kernel when we want

to keep it. This is paramount to avoid slowing down legitimate packets during an attack.

Nonetheless, since it is based on IP white-listing, the risk for DoS attacks still exists if an

attacker succeeds to find an IP in the white-list. Finally, the code of the eBPF program used

for DoS protection is presented in Figure 4.15.

86

1 #define WHITE4SIZE 6

2

3 static int ip4white[] = { 3137448128, 1644275904, 16885952, 2516691136, 2197924032,

1140959424};↪→

4

5 int xdp_prog1(struct CTXTYPE *ctx) {

6 nh_off = sizeof(*eth);

7

8 if (data + nh_off > data_end) {

9 return rc;

10 }

11 h_proto = eth->h_proto;

12 if (h_proto == htons(ETH_P_IP)) {

13 // Allow packet to pass if its IP is in the whitelist

14 int ip = get_ipv4(data, nh_off, data_end);

15 if (ip == NOIP) {

16 return XDP_DROP;

17 }

18 #pragma unroll

19 for (int i = 0; i < WHITE4SIZE; i++) {

20 if (ip4white[i] == ip) {

21 return XDP_PASS;

22 }

23 }

24 return XDP_DROP;

25 } else if (h_proto == htons(ETH_P_ARP)) {

26 return XDP_PASS;

27 } else {

28 return XDP_DROP;

29 }

30 }

Figure 4.15: Code snippet to prevent DDOS with XDP.

4.3 Conclusion

In this Chapter, we presented a part of our results. Indeed, to perform a precise analysis

and diagnosis of the program under workload the cross-validation of all the different metrics

collected is required. Our experimentation are twofold. We use eBPF to better understand

Interledger connectors when treated as a black-box program. Then, we assess the potential

of eBPF probes to monitor the full stack from operating system to application layer when

the application is containerized and not modifiable.

This work was published in IEEE NOMS 2020 [152].

87

5
SPON:

Enabling Resilient Inter-Ledgers Payments

with an Intrusion-Tolerant Overlay

Lately, considerable attention from private, academic and governmental actors is focusing on

improving the global payment systems. Besides directly customer related aspects like speed,

cost, interconnectivity or transparency of payments, the ever growing cyber risks require

renewed efforts towards increasing key requirements like resilience, reliability and security.

New technologies like Distributed Ledgers create new opportunities towards achieving

these goals. For example a payment initiated on some ledger could cross different ledgers

until reaching the final payee on another ledger.

But how could different DLTs be connected in a standardized way? Recent developments

in protocols like the Interledger protocol, which can also accommodate FIAT currencies,

enable transfers of value between different ledgers through means of Interledger Connectors

having accounts on different ledgers and thus able to facilitate the transfer of value. They

89

charge a small fee in return for their service.

The current version of Interledger, ILPv4, includes the STREAM protocol that works on

top of it and facilitates splitting of a larger payment into small chunks, then sends them as a

continuous STREAM of value and data. Thus, ILP mitigates risks associated with transfers

of larger amounts, and accommodates micro-payments use cases.

However because it works over the Internet, the Interledger protocol can be subject to

Internet specific vulnerabilities like lossy paths, path failures and network partitions, or even

BGP hijacking attacks. Moreover, due to the way the ILP connectors can form peering

relationships, the ILP network is not necessarily constructed on latency or attack resilience

criteria. This, combined with the current ILP payment routing mechanism, makes it possible

that at a network level, a payment initiated in San Francisco could cross the world a few

times until reaching a final payee in Frankfurt, thus increasing even more the vulnerability

to Internet network path degradations or attacks.

We argue that while ILP is not meant to optimize at network level, for payment systems

the desirable levels of resiliency and security are similar to cyber-physical systems or SCADA

networks.

An overlay of relay nodes can help achieve the desired goals by leveraging redundancy in

the IP network and deploying customized protocols. To answer these challenges, we present

“Secure Payments with Overlay Networks”, an overlay based design for global payments

across different ledgers.

In this work, we demonstrate the advantages of SPON:

• Improved real-life performance by adding resilience to lossy paths.

• Increased service availability by providing resilience to network path failures.

• Increased security guarantees, including resilience to BGP hijacking attacks.

To achieve the stated goals, SPON architecture introduces an overlay of relay nodes

strategically positioned on top of the underlying internet to leverage the redundancy in the

IP infrastructure.

90

5.1 Introduction

As already stated, one approach to address the performance, resilience, and security issues is

to use an overlay of relay nodes. These relay nodes are not part of the distributed ledger’s

nodes and their only goal is to relay communication between ledgers. Such an overlay of

relays can leverage redundancy in the IP network and deploy customized protocols to provide

desired security, latency performance, and resilience to failure and attacks.

This work shows how a global payment system enabling payments between different

ledgers can be designed and deployed over the public Internet using ILP and Spines [153]

intrusion-tolerant overlay network. ILP facilitates the interoperability of any payment sys-

tems across different ledgers, while Spines serves as secure and trusted transport backbone

for ILP communication. We assume that clients conducting payments within the same ledger

are handled by internal ledger-specific protocols (e.g. BTC), and we focus on inter-ledgers

communication. While intra-ledger protocols typically consider that any ledger node can be

compromised (e.g. BTC nodes), previous work using relays to connect ledgers did not assume

that relay nodes between ledgers can also be compromised and not forward payments or that

the relay network itself can be subject to BGP routing attacks.

We implemented SPON and investigated how well it achieves its goals.

We consider three network topologies:

- The first is a synthetic topology allowing to investigate different capabilities of SPON;

- The second topology is based on a real-life deployment [153] with nodes spread over

North America, Europe and East Asia which allows to evaluate SPON’s performance in a

more realistic scenario;

- Finally, the third was used in [154] to show the impact of eclipse attacks conducted

by partitioning the network using BGP hijacking, and we use it to show how SPON can be

deployed to address such attacks.

The findings can be summarized as follows:

• SPON improves the payments latency over a baseline system not using the overlay.

Benefits become higher as network loss increases, because the customized overlay pro-

tocols recover the lost packets from nodes closer to the recipient instead of recovering

91

it from the sender.

• Even under extreme scenarios such as a network meltdown SPON was able to continue

forwarding payments by rerouting around the failures, while the baseline system could

not complete the payments.

• We used the network topology in [154] to show the impact of eclipse attacks conducted

by partitioning the network using BGP hijacking, as a demonstrative example on how

SPON should be deployed to address such attacks.

This Chapter is structured as follows: Section 5.2 discusses challenges for global payment

systems and how to overcome them by using overlays. Section 5.3 presents the SPON design

and implementation, while Section 5.4 presents the experimental results. The Chapter ends

with a final discussion in Section 5.5.

5.2 Motivation

What makes the Interledger protocol really different is its ability to break a payment into

many, arbitrary small packets and sending of that payment as a continuous STREAM of

money. However it is desirable that data streams benefit from a good quality connection,

and this opens the discussion about some of the limitations of ILP.

5.2.1 Limitations of ILP Payment Systems over the Internet

To facilitate the discussion about some of the limitations of current payment systems designs

we present an example in Figure 5.1. The lower left thumbnail shows a possible example of

an ILP network, where the nodes are ILP connectors. As ILP nodes may freely form links on

the ILP network, according to reasons like regulatory, legal, business and trust relationships,

the network is not constructed based on latency or attack resilience criteria. So, according to

current ILP payment routing algorithm, a payment from San Francisco (SFO) to Frankfurt

(FRA) could be routed along the green path in the thumbnail also including Hong Kong

(HKG). The physical locations of these ILP nodes along the payment path highlighted in

92

green could be spread all around the world, resulting in high end-to-end latency and increased

vulnerability of the payment system to lossy data paths, faults and attacks.

16

SFO FRAHKG

SFO

HKG

FRA

Figure 5.1: Example ILP payment routing (lower left thumbnail) and actual geographical
location of corresponding ILP nodes.

This work focuses on network level limitations of ILP payment systems. We identify three

such limitations: (1) resilience to lossy paths, (2) resilience to network faults and partitions,

(3) resilience to DoS such as route hijacking.

Lossy paths can be problematic especially in the case of streaming payments, in which

one single payment can be spawned over multiple smaller payments. This is encountered in

pay-as-you go for torrent like distribution services [155], which can not afford packet losses

even if the per packet level payment amount is tiny. Many underbanked communities [156]

experience the downsides of digital, financial divides and even in developed economies some

rural communities have to face mediocre Internet connectivity. Therefore, tolerance with

respect to poor network connectivity is an essential feature of the payment system.

Path failures and network partitions. Network resilience is an important factor to

consider since network enabled systems can be partitioned by intentional actions (censorship)

or non-intentional (faults) accidents. The consequences for both are the same: outage, delays

and degraded performance which impact the availability of the service. Payment systems

should be capable to rapidly detect failures and react accordingly.

BGP hijacking attacks. BGP routing attacks against ILP could have a serious impact

93

such as: partition the payment network and create a situation similar to a DoS, which can

result in revenue loss for ILP nodes and their customers (open attack), delay all/chosen

packets, while attacker’s packets would be forwarded at normal rate (covert attack), hairpin

drop packets from/to a certain ILP node/endpoint (covert attack), or at will, attacker can

be the only one able to send/receive ILP transactions in/from both partitions. The attacker

can also divert, store, map and analyse the traffic: get geo-location information of ILP

providers/customers, gather/infer information about the volumes of payments per ILP node

(average value carried by an ILPv4 packet at the attack moment is x XRP).

5.3 SPON Design and Implementation

In this section we describe SPON, our proposal for resilient global payment systems over

Internet. We first describe the design goals for our system, then describe the attacker model,

and give a description of the design and implementation.

5.3.1 Design Goals and High-level Approach

Our main goal is to design a global payment system that supports payments across differ-

ent ledgers while achieving: improved performance (latency), improved service availability

(fault-tolerance), and security guarantees, including resilience to routing attacks. We assume

clients conducting payments within the same ledger are handled by ledger-specific protocols.

While these internal protocols can also benefit from additional improvements, our focus is

on connecting different ledgers and not on services within a ledger. We use ILP to facilitate

the exchanges across different currencies and ledgers. However, ILP is not meant to opti-

mize network communication and address fault-tolerance to network failures or BGP attacks.

With our goals in mind, we would like our service connecting multiple ledgers to have the

following properties:

G1 Improved payment latency: Our design should leverage the redundancy in the

underlying IP network to take advantage of links offering better connectivity, by using

customized routing protocols.

94

G2 Resilience to lossy paths: Our design should be resilient to lossy communication

links across ledgers and as such improve the client network’s resilience to lossy links.

G3 Resilience to path failure and node crashes: The design should increase payment

service availability by increasing data flow availability through providing a system re-

silient to network path failures and relay node crashes.

G4 Resilience to BGP routing attacks: Our design, also deployment dependent, should

provide resilience to routing attacks like Coremelt and Crossfire [157, 158].

Approach. These goals can be achieved by changing an existing payment-exchange pro-

tocol like ILP to add the desired performance, fault-tolerance, and attack resilience. However,

we argue that a separation between the payment-exchange and the communication function-

alities provides more flexibility in ILP node placement and modularized development. For

example, the ledger pre-post processing functionality is better placed closer to the ledger;

also, because they manipulate user value and data, the placement of ILP nodes in different

geographical areas may involve different legal restrictions, licensing, regulations. A compro-

mised ILP node is more dangerous than a compromised overlay node performing a simple

forwarding because the forwarding nodes do not need visibility into the payments to per-

form network-level forwarding. Thus, our approach is to separate ledger processing from the

forwarding functionality, to maximize performance and resilience to attacks, while accom-

modating legal restrictions. The data forwarding layer can be an overlay of relay nodes that

implement customized routing algorithms for better latency, routing around failures and with

BGP attack resilience. The ILP payment exchange connectors use the overlay of relays to

communicate with each other.

Figure 5.2 shows how communication flows between ILP nodes Alice and Bob, through

ILP and the overlay of relay nodes (Alice and Bob are not end-users but full ILP nodes):

Each ILP node is connected to at least one overlay relay node. Each overlay relay node is

connected to multiple Internet Service Providers (ISP) / Internet Exchange Points (IXP) /

Autonomous Systems (AS). At ILP level, a payment originated from Alice for Bob, is routed

through the ”ILP connector” in the middle. However at data packet level, the two hops

(Alice <-> Connector and Connector <-> Bob, are routed through redundant paths on the

95

overlay network (thick arrows on the middle layer of Figure 5.2). Further, each overlay link

benefits from disjoint, redundant paths at the Internet level below.

Need for intrusion-tolerant overlays. Overlay networks can improve latency because

they can reduce re-transmissions [159, 160] and can provide resilience to benign faults by

routing around them. However, the introduction of the overlay of relay nodes in the system

design changes the trust model. First, the overlay itself risks being compromised since a

software node is easier to compromise than a hardware router. Compromised overlay nodes

can significantly impact the system performance as a whole, or target specific connectors or

ledgers and discriminate against some clients conducting payments. Second, the nature of

the overlay requires different payment streams to share the same logical structure which can

allow some clients to create denial of service against competitor clients conducting payments

through the same link(s) on the relay network. Such overlays need to be centrally managed

to prevent topology related attacks. We set the following goals for our overlay of relays:

O1 Resilience to attacks from compromised forwarding relays: We want to prevent

compromised relay nodes from being able to divert or stop traffic.

O2 Resilience to denial-of-service from malicious clients: In the presence of the

overlay, payment flows from different competitor clients can potentially compete to

each other at networking level to the point where one can generate a targeted denial

of service for the other by saturating the link(s). We would like all payment flows to

be treated fairly by the relay nodes, i.e. all payment streams receive the same share of

available network bandwidth.

5.3.2 Threat Model

We assume that the overlay of relay nodes is centrally managed and the communication

between the relay nodes is authenticated with Public Key Infrastructure (PKI): the admin-

istrator of the system has a public/private key pair with each of the overlay nodes, and they

know all the other public keys. All overlay nodes are aware of the topology, that can be

changed only by the administrator.

We also assume that overlay relay nodes can be compromised. A compromised node

96

can exhibit Byzantine behavior such as arbitrary dropping, delaying, or incorrect forwarding

of packets. We assume that overlay nodes have enough processing resources to handle all

incoming messages in due time, but their buffers for storing the messages are limited.

We do not assume a specific bound on the number of compromised relays in the overlay

network. Instead we assume that the adversary cannot partition the sender from the receiver,

i.e. there is a path from the sender to the receiver where all relays are not controlled by the

adversary.

We assume the attacker has amounts of bandwidth and processing power large enough

for DDoS attacks like [157, 158].

ILP network

Overlay network

“Internet” network

ILP connector

Overlay node

Internet node

Alice
(sender)

Bob
(receiver)

K disjoint paths
K = 2

PAY

Figure 5.2: Communication mapping for Ledgers, Overlay, and Internet.

5.3.3 SPON Design and Implementation

We implemented SPON using ILP and the Spines overlay. Below, we first give a description

of aspects of ILP and Spines relevant to our design, then describe our system, SPON.

To remind, the ILP environment consists of the below stack of main protocols, which are

listed in order top-to-bottom:

• The Simple Payment Setup Protocol (SPSP), ensuring the exchange of credentials re-

quired to establish a STREAM payment, which for specific reasons works over HTTP.

97

• The Streaming Transport for the Realtime Exchange of Assets and Messages (STREAM)

protocol, implementing the concept of streaming value (money) and data over ILP (en-

capsulated in ILP packets). This concept offers a series of advantages over sending a

transaction in full.

• The Interledger Protocol (ILP) itself, ensuring the value transfer across ledgers. The ILP

packet offers a data field in size of 32k, where different information and sub-protocols

can be encapsulated.

• Bilateral Transfer Protocol (BTP), responsible of establishing a link between two peers.

Spines is an open source overlay network [160, 5] that provides availability, resiliency, and

timed-delivery, achieved by making use of multi-homing at multiple ISPs and deploying the

nodes in strategically located datacenters (connectivity). The nodes are centrally managed

and resilient overlay routing such as multiple disjoint paths and flooding [153]-p6 are used

to ensure resilience to forwarding attacks. Buffer management like round robin is used to

ensure that each node evenly processes packets per sender in case of priority sending, or per

flow (sender-receiver pairs) in case of reliable sending.

Spines 1

“Adaptor” app

Spines socket:
sock_STREAM
sock_DGRAM

Physical interface
NIC 1

ILP Connector 1

spsp stream ilp btp

TUN 1
interface

ALICE

Spines 2

“Adaptor” app

Spines socket:
sock_STREAM
sock_DGRAM

Physical interface
NIC 2

TUN 2
interface

ILP Connector 2

stream ilp btp spsp

BOB

virtual ILP connectors connection
 192.168.3.1 <-> 192.168.3.2

Spines overlay network

IP 1 <- -> IP 2Internet

By using an adapter app and a TUN interface,
we make the connectors agnostic of the
overlay network. Moreover, we can easily
attach any app at the end of the tunnel.

Start parameters:
-P <0, 1, 2, 8>] : overlay links
-D <0, 1, 2, 3>] : dissemination alg
-k <0 …….6>] : k-paths

Figure 5.3: SPON Architecture.

98

We show the architecture of SPON in Figure 5.3. There are 3 network layers: the base

internet layer, the Spines overlay, and the ILP network, each featuring their own addressing

schemes and protocols. Each ILP node connects to a Spines node using the stack illustrated

in Figure 5.3. The connector applications connect through a tunnel, agnostic of the overlay

below. An adapter application makes the connection to the spines socket exposed by the

Spines node, and sends it the different parameters to use in order to forward data. We use

the Priority Messaging (PRI) and Reliable Messaging (REL) communication services, shown

and explained in Table 5.1.

Table 5.1: SPON services (via Spines).

Service Details

PRIORITY (PRI)

Source-based routing with timeliness guarantees,

i.e. packets are sent based on their priority,

each node forwards packets fairly across all sources.

RELIABLE (REL)

Source-based routing with reliability guarantees,

i.e. packets are sent with end-to-end reliably,

each node forwards packets fairly across all sender-receiver pairs.

One advantage of SPON is that the service can be selected per ILP packet, because

Spines provides its reliable or priority services on a per packet basis. Our design exposes this

functionality to ILP payments and other ILP tools such as ILP-ping. As such, for example,

the risk of fulfillment failure specific to ILP, could now be alleviated by prioritizing the

fulfilling over the prepare packets1. As needed, any ILP related flow can be prioritized or

sent reliably, for example routing updates or SPSP data could use the reliable protocol.

Because the connectors are agnostic of the overlay below, our design also allows for a

partial deployment, where some connectors choose to join the network and others do not.

This involves the existence of some bridge connectors, having connections both outside and

inside SPON.

5.4 Experimental Results

In this section we describe the evaluation of SPON. We seek to answer the following questions:

1https://interledger.org/rfcs/0018-connector-risk-mitigations/, valid in January 2023

99

Q1 What are the latency improvements of SPON when compared with an approach that

does not use relays?

Q2 How does SPON react to more severe network events such as network meltdowns?

Q3 How does SPON handle denial of service attacks where some clients try to overload the

links with payments?

Q4 How does SPON react to severe network events such as route misdirections and BGP

hijacking attacks?

5.4.1 Methodology

We conduct our experiments using Mininet [161] to better control the network topology, links

and their properties. The Mininet testbed implemented and used is illustrated in Figure 5.4:

each SPON node is implemented in Mininet on machines h1...hn, and runs a Spines instance

shown on the Figure in red (S1...Sn). They communicate via s1...sn represented in blue

on the same Figure. To ensure the connectors are able to perform their ILP settlement,

external access to XRPL is provided via s6 through the main host machine NIC. The SPON

architecture shown in Figure 5.3 is represented here on Mininet hosts 1 and 5, which also run

ILP connector instances in order to provide the ILP service required for the experiments.

We used the ”reference” ILP connector2 and a private XRP ledger deployed in our lab.

Topologies. We used 3 topologies for our evaluations, and a fourth to demonstrate BGP

resilience. The first, referred as Chain Topology (Figure 5.5) is a demonstrative topology

allowing to investigate different path capabilities of our overlay. The second, referred as

Global Topology (Figure 5.6) is a real-life topology spanning the Internet and obtained from

[10] which allows to demonstrate the performance and resilience of SPON in a more realistic

scenario. Link latencies were obtained from specialized websites3. Third setting, shown in

Figure 5.12 helps answer Q3, while Q4 is discussed using Figure 5.14.

Systems. We compare the following configurations:

• Baseline: payments are sent via the ILP nodes, without SPON.

2https://github.com/interledgerjs/ilp-connector, valid in January 2023
3https://ipnetwork.windstream.net/, https://wondernetwork.com/pings, valid in January 2023

100

ILP 1 ILP 5ILP ping / STREAM
Tunnel Tunnel

Adapter Adapter

NAT 0

Host VM’s NIC

S5S1Spines S2 S3 S4

host 1 host 5
ETH 0 - 10.0.10.5

ETH 1

ETH 0

ETH 1

192.168.3.1

10.0.10.1

10.0.0.1 10.0.0.5

10.0.10.2 10.0.10.3 10.0.10.4

10.0.0.10

172.168….

192.168.3.5

s6

ILP packets ILP packets

Settlement
(XRP Ledger)

Settlement
(XRP Ledger)

sockaddr_un 1
“/tmp/spines1”

sockaddr_un 5
“/tmp/spines5”

PING

INTERNET

Figure 5.4: General diagram of the Mininet testbed.

• Priority (PRI): payments use SPON configured with source-based routing and timeli-

ness delivery [153].

• Reliable (REL): payments use SPON configured with source-based routing and reliable

delivery [153].

For both Priority and Reliable settings, we evaluated Flooding (FLD) and k-path as com-

munication mechanisms. Q1 and Q2 are answered by comparing the Baseline with SPON’s

behavior in PRI and REL mode.

Metrics. We use Round Trip Time on ILP (RTTILP), as reported by the ILP Ping tool

4 to evaluate the communication between ledgers via SPON. For larger payments which are

broken into a number of ILP packets and sent via STREAM, we use Payment Latency as the

total time to complete a payment.

4https://github.com/martinlowinski/ilp-ping, valid in January 2023

101

4ms

4ms 4ms

4ms

5ms 7ms
5ms3ms

4ms
6ms8ms

6ms

6ms

7ms 7ms

8ms

10ms

10ms

10ms

ILP

2 3 4

6 7 8

9 10 11

12 13 14

1 51 5

Figure 5.5: Chain Topology.

5.4.2 Performance

Here we investigate how the latency over the overlay compares with the latency over the

baseline topologies defined below under different levels of network loss. In each setting we

also include for reference the case with no loss on links, for which the results are illustrated

in Figures 5.7a, 5.8a, 5.9a.

5.4.2.1 Chain topology

As illustrated in Figure 5.5, we use two ILP nodes (5 and 1) acting as sender and receiver,

to send 100 ILP ping packets at a rate of 1 packet/s, using the ILP-PING tool. The baseline

(RTTILP) is 32ms and equivalates the two connectors paired directly on the fastest path

from the figure.

ILP RTT. To evaluate latency under loss, we introduce variable loss of 2, 5, and 10% on

link S12-S13, chosen because it’s on the fastest topology path, so it has high chances to have

a visible impact on results, illustrated in Figures 5.7b, 5.7c, 5.7d. Solid grey bars represent

baseline averages, grey striped bars represent Priority messaging with flooding (FLD), 1 or

2-paths [153], and dark grey bars represent Reliable messaging with FLD, 1 or 2-paths. While

not shown experimentally, we appreciate that introducing loss on slower paths (9-10, 6-7, 2-3)

would advantage SPON by enabling it to use the fastest path at full capability. We isolate

102

76

96

77

116

5

14

34

16

32

16

23
9
22

11

9
4 5 41

36

8

38
43

12

11

17

8

11

7
10

47

47

2

ILP

1 5

Figure 5.6: Global Topology.

Spines’ processing overhead by setting the loss to 0%; as shown in Figure 5.7a, SPON does

fare a little bit worse than the baseline (5% or 6s in our case). This overhead however is small

and does not prevent SPON from performing better than the baseline in realistic situations

with loss: at 2% loss, Figure 5.7b shows that SPON already offers an advantage of 10%

latency over the baseline when working in FLD mode. As loss increases, SPON’s advantage

increases, and at 5% loss the gain over same baseline is 33%, as depicted in Figure 5.7c. The

error bars also point out that the service is more stable under loss, if using SPON.

0
10
20
30
40
50
60
70
80
90

100

Av
g.

 IL
P

RT
T

(m
s)

FLD = overlay flooding; 1/2P = 1/2 paths

(a) Loss 0%

0
20
40
60
80

100
120
140
160
180

Av
g.

 IL
P

RT
T

(m
s)

FLD = overlay flooding; 1/2P = 1/2 paths

(b) Loss 2%

0

50

100

150

200

250

300

Av
g.

 IL
P

RT
T

(m
s)

FLD = overlay flooding; 1/2P = 1/2 paths

(c) Loss 5%

0
50

100
150
200
250
300
350
400

Av
g.

 IL
P

RT
T

(m
s)

FLD = overlay flooding; 1/2/3P = 1/2/3 paths

(d) Loss 10%

Figure 5.7: Average ILP ping RTT on the Chain topology in a network loss scenario, Priority
(PRI) or Reliable (REL) messaging.

103

0
5

10
15
20
25
30
35
40
45
50

FLD = overlay flooding; 1P/2P = 1/2 paths

Av
g.

 IL
P

pa
ym

en
t l

at
en

cy
 (s

ec
.)

(a) Loss 0%

0

10

20

30

40

50

60

FLD = overlay flooding; 1/2P = 1/2 pathsAv
g.

 IL
P

pa
ym

en
t l

at
en

cy
 (s

ec
.)

(b) Loss 2%

0
10
20
30
40
50
60
70
80

FLD = overlay flooding; 1P/2P = 1/2 paths

Av
g.

IL
P

pa
ym

en
t l

at
en

cy
 (s

ec
.)

(c) Loss 5%

0

20

40

60

80

100

120

FLD = overlay flooding; 1P/2P/3P = 1/2/3 pathsAv
g.

 IL
P

pa
ym

en
t l

at
en

cy
 (s

ec
.)

(d) Loss 10%

Figure 5.8: Payment latency on the Chain topology in a network loss scenario, Priority (PRI)
or Reliable (REL) messaging.

Payment latency. We evaluate the latency of ILP payments under similar scenarios

with network loss. On the topology in Figure 5.5 we sent 20 ILP STREAM payments. The

amount per ILP payment was 100000 drops (1 drop = 0.000001 XRP)5; each STREAM packet

was 100 drops. Thus, for each payment we sent 1000 ILP STREAM micro-transactions. We

used Priority and Reliable messaging with FLD (k=0), 1 and 2-paths (k=1,2). The loss

was set again on link S12-S13. In Figures 5.8a,5.8b,5.8c,5.8d we compare the time taken to

complete the transactions over SPON, with the baseline: under ideal conditions (no loss on

the links), the payment latency over SPON is a little bit larger than over the baseline (under

5%, or 2s in this case), while at 2% loss, SPON already offers a gain of 10% (5s) in FLD

mode. At 5% loss, all SPON modes show 15-33% gains.

5.4.2.2 The Global topology

To demonstrate the behavior in a more realistic scenario, we repeat the experiments above

on the Global topology; inspired from [10], it offers increased link redundancy while using

well-chosen real-world, global locations spanning US, EU and Asia. Each circle represents an

overlay node deployed on our Mininet testbed. As baseline, we sent STREAM ILP payments

between two connectors paired directly over a single link with delay 148ms - equivalent to

the fastest path from Figure 5.6. On the global topology, the connectors were attached to

the overlay nodes FRA and HKG, and sent a total of 16 ILP payments directly through

the STREAM protocol (no SPSP). The total transaction amount was 100000 drops per ILP

payment, and each STREAM packet was 500 drops (200 STREAM micro-transactions). The

5https://xrpl.org/xrp.html, valid in January 2023

104

0
10
20
30
40
50
60
70
80

FLD = overlay flooding; 1P/2P = 1/2 paths

Av
g.

 IL
P

pa
ym

en
t l

at
en

cy
 (s

ec
.)

(a) Loss 0%

0
10
20
30
40
50
60
70
80

FLD = overlay flooding; 1P/2P = 1/2 paths

Av
g.

 IL
P

pa
ym

en
t l

at
en

cy
 (s

ec
.)

(b) Loss 2%

0
10
20
30
40
50
60
70
80
90

FLD = overlay flooding; 1P/2P = 1/2 paths

Av
g.

IL
P

pa
ym

en
t l

at
en

cy
 (s

ec
.)

(c) Loss 5%

0

20

40

60

80

100

120

FLD = overlay flooding; 1P/2P/3P = 1/2/3 paths

Av
g.

 IL
P

pa
ym

en
t l

at
en

cy
 (s

ec
.)

(d) Loss 10%

Figure 5.9: Payment latency on the Global topology in a network loss scenario, Priority (PRI)
or Reliable (REL) messaging.

loss was introduced between HKG and SJC because the link belongs to multiple low latency

(possible) paths, and as such, with chances to impact multiple possible flows.

The results in Figure 5.9a,5.9b,5.9c,5.9d show that in ideal conditions, except for sending

on 1-path, SPON adds only 1.5% to the total payment duration, compared to baseline; at

2% loss, SPON offers a gain of 5%; while at 5%, the gain is 16%.

In summary, in all scenarios we experimented with, the additional processing introduced

by SPON and identified at loss 0 was small, and the payment system offered better perfor-

mance under a link loss of 2, 5, 10%.

5.4.3 Resilience to Network Melting

Here we investigate how individual ILP packet latencies and the total duration of payments

sent over the baseline versus SPON compare in more severe situations like node crashes. At

least one path should remain available between the sender and receiver, such that there is

still a way for the payment to physically go through.

5.4.3.1 The Chain topology

We want to see how an ILP payment sent over SPON behaves when all paths but one, fail.

We set all links to loss zero. Because the baseline would obviously fail in this scenario, we can

only assess how SPON’s performance would compare with a functional baseline. As such, on

the baseline, we send a payment between two connectors paired over a link of 20ms latency

- equivalent to the remaining path 1-9-10-11-5 from Figure 5.5, if all other paths fail.

We send an ILP payment of 100000 drops, and packet size 10 drops. Thus, for each

105

Time (seconds)

La
te

nc
y

(m
s)

0

10

20

30

40

50

0 40 80 120 160 200 240 280 320 360 400 440 480

S2, S7, S14 ON latency

(a) Flooding

Time (seconds)
La

te
nc

y
(m

s)

0

10

20

30

40

50

0 40 80 120 160 200 240 280 320 360 400 440 480

Latency S2, S7, S14 ON

(b) 1-path

Time (seconds)

La
te

nc
y

(m
s)

0

10

20

30

40

50

0 40 80 120 160 200 240 280 320 360 400 440

S2, S7, S14 ON Average Latency

(c) 2-paths

487.6 478.5 495.9 473.9 478.7 482.1

0

100

200

300

400

500

600

Baseline PRI-FLD PRI-1P PRI-2P PRI-3P PRI-4P

Av
g.

 IL
P

pa
ym

en
t l

at
en

cy
 (s

ec
.)

FLD = overlay flooding; 1P/2P = 1/2 paths

(d) E2E payment la-
tency.

Figure 5.10: Payment latency on the Chain topology in a network meltdown scenario, Priority
messaging (PRI).

payment we sent 10000 ILP micro-transactions, for a total STREAM duration of 480s. While

the STREAM is sent, we take down the communication of the overlay nodes 2, 7, 14 using

IPtables on the respective machines, at a 40s interval, in a five-count cycle. This procedure

completely melts and brings back every 40s, all the possible paths but the green one (nodes

1-9-10-11-5) from Figure 5.5.

In Figures 5.10a, 5.10b, 5.10c we plot individual ILP packet latencies. We observe that,

if one of the currently active transmission paths is the actual path to remain unaffected by

the network melt, then the system can offer optimal protection against the melt starting

even from 2-paths; on 1-path, the minimal drawback comes due to the re-routing time to a

better path after the network becomes available again. Even when all paths but one vanish,

SPON’s service continues reliably, with no packets lost during the experiment.

With respect to the total duration of payments sent over the baseline versus SPON, even

when the latter was subjected to the severe path flipping above, it still performed slightly

better than the baseline (3%), as shown in Figure 5.10d. This is because the baseline is able

to send only on the 20ms link, while at times, SPON can also use the fastest path of 16ms.

5.4.3.2 The Global topology

Through our two connectors attached to the Spines nodes FRA and HKG, we sent a payment

of 80000 drops, and packet size 50 drops (1600 ILP micro-payments), during a total time of

500s. While the STREAM is sent, we cut the communication of nodes SJC, NYC, LON,

106

Time (seconds)

IL
P

 p
ac

ke
t l

at
en

cy
 (m

s)

100

125

150

175

200

0 40 80 120 160 200 240 280 320 360 400 440 480

ILP packet latency All paths ON

(a) Flooding

Time (seconds)
IL

P
 p

ac
ke

t l
at

en
cy

 (m
s)

125

150

175

200

225

0 40 80 120 160 200 240 280 320 360 400 440

ILP packet latency All paths ON

(b) 1-path

Time (seconds)

IL
P

 p
ac

ke
t l

at
en

cy
 (m

s)

100

125

150

175

200

0 40 80 120 160 200 240 280 320 360 400 440

ILP packet latency All paths ON

(c) 2-paths

501.4 502.0
563.3

514.8 510.8

0

100

200

300

400

500

600

Baseline PRI-FLD PRI-1P PRI-2P PRI-3P
FLD = overlay flooding; 1P/2P = 1/2 paths

Av
g.

 IL
P

pa
ym

en
t l

at
en

cy
 (s

ec
.)

(d) E2E payment la-
tency.

Figure 5.11: Payment latency on the Global topology in a network meltdown scenario, Pri-
ority messaging (PRI).

WAS, JHU, DFW, ATL using IPtables on the respective machines, at a 40s interval, in a

five-count cycle. This procedure completely melts and brings back every 40s, all the possible

paths but FRA-CHI-DEN-LAX-HKG from Figure 5.6. The baseline is two ILP connectors

paired over a single link with delay 151ms - equivalent to the remaining path (FRA-CHI-

DEN-LAX-HKG) from Figure 5.6, after all other paths go down. To compare the time taken

to complete the transactions over the overlay versus baseline, we repeat the experiment five

times, average the results for each case, and finally represent them in Figure 5.11d. The

individual ILP packet latencies are obtained after unique, single runs of the experiment with

Priority messaging over 1, 2, 3-paths or FLD (Figures 5.11a, 5.11b, 5.11c). Results for 3-paths

were similar to flooding and are not illustrated. We notice that in the case of a complete

network melt up to 1-path, SPON’s service continues, while the baseline completely fails.

The end-to-end payment latency over SPON, illustrated in Figure 5.11d, is similar to the

baseline (502 vs 501s).

5.4.4 Resilience to Denial of Service from Malicious Clients

With the aim to assess how an ILP flow sent over the overlay at maximum link capacity

behaves in the presence of a second malicious flow trying to take over the channel Bandwidth

(BW), we attach four ILP Connectors (1, 2, 5 and 6) to the overlay nodes 1, 2, 5 and 6

respectively (from the topology illustrated in Figure 5.12), and then we create two ILP flows.

Connector 5 is paired with, and sends an ”honest” flow to Connector 2 while Connector

6 is paired with, and sends a ”malicious” flow to Connector 2. To each connector we can

107

ILP Flow 1 - up to 15Mbps

LINK BANDWIDTH 15 Mbps

ILP SendILP Receive

2

1 1

3 4

5

62 6

5
ILP Flow 2 - up to 15Mbps

ILP SendILP Receive

Figure 5.12: Network topology for the flow fairness.

Figure 5.13: Legitimate and malicious flows contending for BW.

attach progressively, at 1s interval, up to 100 clients each sending over eight streams. We

are thus able to generate for each flow a maximum traffic of 15Mbps, and as such, on our

topology, we set maximum link capacity to 15Mbps. For this experiment we set all links to

loss zero and as a metric, we used the flow size in Mbps. The experiment is carried as follows.

While the first, legitimate flow (C5 to C1) is sent at maximum capacity, we progressively

increase the malicious, contending flow, trying to fill the available channel BW up to the

maximum capacity. Both flows were sent with Priority messaging over 1-path. As illustrated

in Figure 5.13, the legitimate flow decreases progressively, but only up to its fair share of

1/2 channel capacity. Although the malicious flow tried to increase its flow and send at its

108

maximum capacity of 15Mbps, it was not able to do so beyond its fair share of BW and

hence, it could not take over the channel or stop the legitimate flow. While for the particular

case of ILP we experimented with only two sources, related experiments which demonstrate

the behavior of Spines in the case of multiple sources can be found in [153].

5.4.5 BGP Hijacking Attacks and Benign Route Misdirections

BGP is a core Internet protocol which handles inter-AS routing. Its vulnerabilities stem

from its very design, born at the ”beginnings” of Internet: there is no mechanism to protect

the integrity and authenticity of p2p BGP messaging, no way to check an AS’ authority to

announce prefixes and relay route information, or to verify the authenticity of path attributes

in a prefix announcement [162]. Causes of BGP routing misdirections range from accidental

BGP advertisement leaks to full blown attacks, and while generally they last from seconds to

hours, there have been cases where the abnormal situation lasted for months or even years

[163, 164, 165, 166].

BGP routing attacks have been widely explored in literature. Hijacking attacks followed

by double spending on Ethereum have been discussed by [154] for private, consortium or

public deployments. A successful attack on ILP would enable the attacker to control the ILP

packets flow inside the ILP network. As such, the attacker could:

• Partition the payment network and create a situation similar to a DoS, which can result

in revenue loss for ILP nodes and their customers (open attack).

• Delay all/chosen packets, while attacker’s packets would be forwarded at normal rate

(covert attack).

• Hairpin drop packets from/to a certain ILP node/endpoint (covert attack).

• At will, the attacker can be the only one able to send/receive ILP transactions in/from

both partitions.

• Impact on Privacy The attacker can divert, store, map and analyse the traffic: get

geo-location information of ILP providers/customers, gather/infer information about

payments volumes per ILP node (average value carried by an ILPv4 packet at the

109

attack moment is x XRP). This data can further be used to focus an attack towards

the most relevant ILP infrastructure.

An experimental topology for public networks has been illustrated in [154], and we use it

as a working example to show how on the same topology, SPON can defend against AS-level

BGP routing attacks, through a careful design of the network.

AS1

AS2

AS3

AS4

AS5

SPON
6

SPON
1

SPON
2

SPON
4

SPON
5

SPON
3

ORIGINAL ROUTE

HIJACKED
ROUTE

HIJACKED
ROUTE

router router router router

Figure 5.14: BGP attack mitigation with SPON.

ILP nodes in light blue; overlay links between SPON nodes in dashed curvy lines; SPON connections
to different ASes/ISPs in straight colored lines. Part of figure from [154].

As represented in Figure 5.14, by deploying the SPON nodes in IXPs (Internet Exchange

Points) and thus benefiting from access to say two or three ASes of interest, SPON nodes are

able to ensure connectivity in spite of BGP attacks. For example, while the route between

AS2 and AS4 is controlled by the adversary AS3 who partitioned AS2 from AS4, AS4 can

still be reached from AS2 through SPON nodes placed appropriately in IXPs, with reduntant

connections to multiple ASes, and thus still being able to relay traffic for their ILP clients

located in AS2 and AS4, regardless of the hijacked route.

5.4.6 Results summary.

Synthesizing the results, in the scenarios and topologies we experimented with, SPON demon-

strated:

110

1) Reasonable additional processing, measured as variation in latency of payments

sent in ideal conditions (over links with no loss), as shown in Table 5.2:

Table 5.2: SPON additional processing.a

Payment latency variation Best config. Worst config.

Global topology (%) +1.63 +5

Chain topology (%) +5 +10

a”config.” means e.g. PRI-1P, REL-FLD,.., and lower values are better.

2) Performance gains in real-life conditions, measured as variation of the latency

of payments sent over lossy links, as shown in Table 5.3:

Table 5.3: SPON gains in real-life conditions.a

Link loss 2% 5% 10%

Payment latency variation Best config. Worst config. Best config. Worst config. Best config. Worst config.

Global topology (%) -5.53 -2.36 -16.42 -13.74 -32.7 -31.16

Chain Topology (%) -10.07 +3.21 -33.6 -18.28 -53.7 -43.3

a”config.” means e.g. PRI-1P, REL-FLD,.., and lower values are better.

3) Fault tolerance (resilience to node and path failure): The payment latency

variations observed in the experimental conditions described in section 5.4.3 were situated

between -2.59 to +3%.

5.5 Discussion

Overlay Construction. The construction and deployment of overlay nodes significantly

impact the performance and resilience of the application using them. The overlay allows

the operator to deploy nodes to avoid some geographical areas, or to improve performance.

However, in order to provide the resilience properties discussed in Section 5.3 the overlay needs

to be carefully constructed as described in [153]. For example several properties require the

overlay to provide multiple disjoint paths to ensure message delivery: in case some paths

would fail, the remaining ones could still be able to deliver the messages. The overlay should

be constructed such as the disjointness in the overlay topology is backed also by a disjointness

at the lower level of the physical network infrastructure. If several overlay paths overlap at

111

the underlying internet level there is an increased risk that a failure in an internet link will

affect several overlay paths. To avoid this risk, it is recommended that nodes are deployed in

strategic, carefully chosen locations. The usage of multiple network providers should increase

resilience to ISP complete outages. Each SPON overlay node can connect to multiple ISPs

to further improve the resilience of the SPON system. If, moreover, the same ISP is used

at both ends of a link, the respective link will not be affected by an eventual BGP routing

misdirection or attack.

Incremental Deployment. We do not expect the transition towards an overlay based

system to occur in one single phase. In an operational environment, payment nodes will

gradually join the overlay and thus incremental deployment is required. Because connections

to an overlay node can be mapped to virtual tunnels and virtual interfaces [167], this multi-

phased process can be implemented using standard tools for instrumenting a system level

network stack.

Incentivization. The incentivization and monetization of nodes taking part in the over-

lay network is of paramount importance. Several business models are possible and technically

viable. A service provider could run the nodes in several and well selected disjoint clouds and

be monetized in a traditional pay-as-you-go or subscription based price model. Moreover,

this deployment can be very cost-efficient with server-less implementations that do not re-

quire the permanent availability of a virtual machine. The dependence on a service provider

might either require a trust based relationship or additional system level trusted execution

environments [168]. Pay-as-you-go schemes can be easily implemented on top of ILP itself

whereby client’s data is admitted in the overlay as long as the former is paying to his overlay

account. A service provider is though not required. ILP nodes and Spines nodes can be

piggybacked and thus ILP connectors operate also as overlay nodes. In this scenario, the

ILP routing stack coincides with the Spines overlay routing stack and incentivization and

monetization is based on the ILP fee mechanism.

Different from solutions like Falcon, Fibre, bloXroute or SABRE to name a few, which

act on the networking level supporting PoW DLTs - namely BTC for the aforementioned

solutions, to improve the flooding speed or security of block propagation, and while it could

technically do this also, SPON though acts on the networking level supporting global payment

112

Network (Internet)

Blockchain 1
Po… | consensus

Payment
channels

Blockchain N
Po… | consensus

SPON

bloXroute, SABRE, Falcon, … bloXroute, SABRE, Falcon, …

I N T E R L E D G E R

Payment
channels

Figure 5.15: Positioning of SPON.

flows (e.g. Interledger, which is (sometimes) on top of payment channels, which are on

top of possibly different DLTs) to improve the speed, resilience and security of data flows

supporting global payments, like ILP STREAM. For more clarity, the positioning of SPON

in this landscape is illustrated in Figure 5.15.

Moreover, all the above solutions but SPON are vulnerable to BGP failures.

To conclude, SPON Enables Resilient Inter-Ledgers Payments, by offering improved i)

real-life performance, ii) service availability, and iii) resilience to BGP hijacking attacks

through means of overlay relay nodes strategically deployed in chosen data center locations.

113

6
Discussion and Perspectives

6.1 Discussion

The research work presented here is focused on improving the security, resilience and efficiency

of intra- and inter-ledger communication, with the concrete working case being the XRP

ecosystem, which is payments-oriented. The payment systems are complex systems, with a

network and a system component, and both of them have been investigated and discussed

here.

6.1.1 The network component

The protocols and the architecture used in the network component play a major role, and

they have been addressed in this thesis. More specifically, it was showed how specific ad-

vantages offered by overlay networks can be leveraged to improve the security, efficiency and

resilience of network traffic for consensus-validation based blockchains and for blockchain

inter-operability.

115

The consensus-validation blockchains have a flooding mechanism that lacked peer-reviewed

research, with most related work having focused on other aspects like for example the con-

sensus mechanism.

Therefore, this work investigated and showed how the dissemination of messages can

be optimized using an overlay based on Named Data Networking with a minimal impact

on security (a thorough security analysis was not performed and is future work). NDN

is a promising overlay candidate because of its well-researched and optimized caching and

flooding mechanisms. This work i) showed how the blockchain consensus messaging can be

ported to use Named Data Networking message propagation and how can it be used, by

proposing multiple mapping models for the transmission of the consensus-related messages,

and ii) investigated the advantages and disadvantages of each of these models according to

the specific needs of the blockchains using a consensus-validation system. The performance

of the proposed solution, called ”XRP-NDN overlay”, was evaluated in Chapter 3.

While the solution showed good results, a lot of engineering was required to divert the

consensus messages to the overlay. Also, it was not evident how the mapping to NDN

could be done and this involved design solutions and decisions. The solution proposed suits

consensus-validation based blockchains because it leverages the small size of the consensus

messages involved to piggyback them over the interest messages. However the size of the

NDN interest message payload is limited, so for PoW-based blockchains where the block size

is much larger, NDN-based pull solutions could be more suitable. ”XRP-NDN overlay” [169]

was accepted at ”IEEE/IFIP Network Operations and Management Symposium” (NOMS),

8-12 May 2023.

The topic of distributed ledger interoperability was also investigated to see how the se-

curity, resilience and performance of communication can be improved at networking level, in

the special context of inter-ledger connectors implementing the Interledger protocol. Aim-

ing to see to what extent an overlay could improve the security at the networking level,

”Secure Payments with Overlay Networks” was proposed as an architecture for a global

payment system that uses a reliable, intrusion-tolerant overlay network based on Spines, a

concept well-known and studied in literature 1. Interledger was investigated and mapped to

1https://www.cnds.jhu.edu/publications.html, valid in January 2023

116

Spines, then evaluated. The performance of the overlay architecture was evaluated and the

advantages and disadvantages have been discussed. SPON provides (1) improved payment

latency, (2) fault tolerance to benign failures such as node failures and network partitions,

(3) resilience to routing attacks, while only incurring a small overhead.

The experimental results show that overlay networks are a viable solution for making

global payment systems a reality by increasing their service availability and improving latency.

SPON was presented at the ”IEEE Conference on Communications and Network Secu-

rity” (CNS), 2021 [170].

6.1.2 The system component

The system component was also interesting to study, and the contribution of this thesis

centers around methodologies to evaluate the system performance of a node and increase

the security from the system level. The complexity of undertaking performance evaluations

for containerized user-space applications, even when using Linux based profiling and tracing

tools, was explained. The rationale behind the aim of performing non-intrusive performance

monitoring was also discussed, and the added value of eBPF-based tools for performing non-

intrusive performance monitoring of containerized user-space applications was demonstrated.

It was shown how eBPF can be used to achieve this on two Interledger implementa-

tions: Rafiki and the Reference Connector. The approach helped reveal for example how

the processing of settlement was decoupled from the packet processing in Rafiki. As such,

this thesis additionally explored the topic of blockchain interconnectivity at the system level:

different architectures of Interledger implementations have been studied, with the goal to

find performance bottlenecks in the different architectures and a solution for non-intrusive

instrumentation at the eBPF level was proposed and implemented. Security wise, eBPF’s

added value also resides in its capability to enable the ILP connectors to better mitigate the

Fulfillment Risk by packet filtering through white-listing or denial of service protection, and

redundant instances - the difficulty to interfere with the program instance(s).

As researchers, we are always interested to perform precise measurements for our exper-

imentation and this can be achieved with a better observability of the kernel. For system

engineers, this offers the possibility to better point out the critical behavior of the appli-

117

cations, and for administrators this is the opportunity to better secure infrastructure and

profile third-party applications.

This work involved experimentation with a Linux subsystem to monitor containerized

user-space applications, and was published and presented at ”IEEE Symposium on Network

Operations and Management” (NOMS) 2020 [152]. The experiments were carried in the

context of the work on Interledger where the capability to monitor the software stack (i.e.

ILP connectors) in production is a must-have. The tool landscape created to support eBPF

was explored and assessed, and the contribution encompasses:

• The use of eBPF/XDP programs with one of the industry standard tools, Performance

co-Pilot.

• Experimentation of the tools on Interledger connectors.

A monitoring and evaluation of two XRPL versions featuring different message dissemina-

tion capabilities were also performed on a real testbed deployed on Grid 5000. This confirmed

the feasibility of the squelching solution performance-wise. Nevertheless the robustness and

security of the approach should also be confirmed.

6.1.3 Conclusion

The scalability of the consensus-validation based blockchains is challenged by the flooding

mechanism currently used in intra-ledger communication. XRP-NDN overlay showed how

the efficiency of the message dissemination can be improved using an NDN-based overlay.

At system level, there is a need for live performance investigation and added security, in

the case of running containerized applications treated as black-boxes. Taking as a working

case the Interledger connectors, it was shown how these can be achieved by leveraging eBPF

capabilities. This work contributes to improving the security and resilience of inter-ledger

communication from the system level.

Blockchain interoperativity solutions, in particular the Interledger protocol enabling world-

wide inter-ledger payments, can suffer from lossy links and vulnerability to routing hijacks

or benign routing mis-directions. The proposed solution, SPON, uses a carefully designed

overlay to solve these challenges.

118

6.2 Future work

With respect to the XRPL-NDN Overlay, larger and more life-like topologies could be in-

vestigated to also assess security aspects like for example resilience to poisoning attacks and

the robustness of the chosen solution versus flooding. A cost analysis would be interesting to

perform as well, and the analysis of different behaviors of the validators on the default UNL

on the live XRP network with machine learning tools is also on the roadmap.

SPON -related experiments can be extended to include larger scenarios for the fairness

of bandwidth allocation per overlay client (ILP connector), when more than two sources

(overlay clients) are contending for bandwidth. Experiments could also include a throughput

assessment.

The audit control packets sent in bloXroute could be implemented in SPON at the ILP

level using STREAM. The incentivization of overlay operators proposed by bloXroute and

Falcon could also potentially be implemented in SPON as future work. However, the mone-

tization of SPON is still an open question and possible solutions to evaluate could be :

• Generating tokens that should be bought.

• Classic payment.

• A central operator of SPON, which raises the question of consensus between the inter-

ested parties.

During the work with eBPF, only the reference ILP connector and the Rafiki implementa-

tions were tested, however, multiple ILP connector architectures are available at this moment,

and it would be interesting to see what the related results would be. Nowadays, in complex

n-tier architectures, the challenge is to trace a request all along its journey. Future work could

also assess how this type of tools can create an end-to-end view of a distributed system.

With respect to governance, on the other hand, it could also be argued that if the control

of a network is placed in the hands of one or more entities, then the network is indirectly

put in the hands of the government where those entities reside, and as such it could be,

in extremis, controlled and censored. Hence, it may be desirable that, like blockchain p2p

119

networks, overlays are operated and controlled by the entire respective community (decen-

tralized). This might be a stronger foundation for an overlay, because any (small) group

controlling it could at any time decide for various reasons to withdraw its support and shut it

down. For example, Falcon domain www.falcon-net.org appears at the time of writing having

been sold to a logistics-shipping company.

This work was supported by the Luxembourg National Research Fund through grant

PRIDE15/10621687/SPsquared. In addition, we thankfully acknowledge the support from

the RIPPLE University Blockchain Research Initiative (UBRI)2 for our research.

2https://ubri.ripple.com/, valid in January 2023

120

List of Publications, Tutorials and

Achievements during PhD Thesis Work

Publications. The work done in [171] and [172] was awarded the Grand Prize at the UBRI

2020 Hackathon and it was also presented at UBRI Connect 2020. The event spanned over

a two-weeks period, with top US teams taking part. The work done in [173] was awarded an

XRPL grant in 2021, and was also presented at UBRI Connect 2022 in London, UK.

[173] Lucian Trestioreanu, Wazen M. Shbair, Flaviene Scheidt de Cristo, and Radu State.

“Blockly2Hooks: Smart Contracts for Everyone with the XRP Ledger and Google

Blockly”. In: (Accepted at:) 2023 IEEE/DAPPS International Conference on Decen-

tralized Applications and Infrastructures. 2023. url: http://hdl.handle.net/10993/

54819 (visited on 03/2023).

[174] Lucian Trestioreanu, Wazen M. Shbair, Flaviene Scheidt de Cristo, and Radu State.

“XRP-NDN Overlay: Improving the Communication Efficiency of Consensus-Validation

based Blockchains with an NDN Overlay”. In: NOMS 2023 - 2023 IEEE/IFIP Net-

work Operations and Management Symposium. 2023. arXiv: 2301.10209 [cs.NI].

(Visited on 03/2023).

[175] Lucian Trestioreanu, Cristina Nita-Rotaru, Aanchal Malhotra, and Radu State. “SPON:

Enabling Resilient Inter-Ledgers Payments with an Intrusion-Tolerant Overlay”. In:

2021 IEEE Conference on Communications and Network Security (CNS). 2021, pp. 92–

100. doi: 10.1109/CNS53000.2021.9705048.

[176] Cyril Cassagnes, Lucian Trestioreanu, Clement Joly, and Radu State. “The rise of

eBPF for non-intrusive performance monitoring”. In: NOMS 2020 - 2020 IEEE/I-

121

http://hdl.handle.net/10993/54819
http://hdl.handle.net/10993/54819
https://arxiv.org/abs/2301.10209
https://doi.org/10.1109/CNS53000.2021.9705048

FIP Network Operations and Management Symposium. 2020, pp. 1–7. doi: 10.1109/

NOMS47738.2020.9110434.

[177] Lucian Andrei Trestioreanu, Cyril Cassagnes, and Radu State. Deep dive into In-

terledger: Understanding the Interledger ecosystem. Tech. rep. University of Luxem-

bourg, Interdisciplinary Centre for Security, Reliability and Trust (SnT), 2019.

[171] Flaviene Scheidt de Cristo, Wazen M. Shbair, Lucian Trestioreanu, Aanchal Malhotra,

and Radu State. “Privacy-Preserving PayString Service”. In: 2021 IEEE International

Conference on Blockchain and Cryptocurrency (ICBC). 2021, pp. 1–3. doi: 10.1109/

ICBC51069.2021.9461076.

[172] Flaviene Scheidt De Cristo, Wazen M. Shbair, Lucian Trestioreanu, Radu State, and

Aanchal Malhotra. “Self-Sovereign Identity for the Financial Sector: A Case Study of

PayString Service”. In: 2021 IEEE International Conference on Blockchain (Blockchain).

2021, pp. 213–220. doi: 10.1109/Blockchain53845.2021.00036.

[178] Flaviene Scheidt De Cristo, Wazen M. Shbair, Lucian Trestioreanu, and Radu State.

“Pub/sub Dissemination on the XRP Ledger”. In: (Under review at:) 2023 IEEE

Global Communications Conference: Communication QoS, Reliability and Modeling.

2023.

Tutorials. The tutorial [179] follows from the Technical Report [177].

[179] Lucian Trestioreanu, Cyril Cassagnes, and Radu State. “Deep Dive into Interledger:

Understanding the Interledger Ecosystem”. In: 2020 IEEE International Conference

on Blockchain and Cryptocurrency (ICBC). 2020. url: https://icbc2020.ieee-

icbc.org/tutorial-6.html (visited on 01/2023).

[180] Lucian Trestioreanu, Shbair Wazen, Cyril Cassagnes, and Radu State. “Ripple XRP

Ledger: from Theory to Practice”. In: 2020 IEEE International Conference on Blockchain

and Cryptocurrency (ICBC). 2022. url: https : / / icbc2022 . ieee - icbc . org /

program/tutorials.html (visited on 01/2023).

122

https://doi.org/10.1109/NOMS47738.2020.9110434
https://doi.org/10.1109/NOMS47738.2020.9110434
https://doi.org/10.1109/ICBC51069.2021.9461076
https://doi.org/10.1109/ICBC51069.2021.9461076
https://doi.org/10.1109/Blockchain53845.2021.00036
https://icbc2020.ieee-icbc.org/tutorial-6.html
https://icbc2020.ieee-icbc.org/tutorial-6.html
https://icbc2022.ieee-icbc.org/program/tutorials.html
https://icbc2022.ieee-icbc.org/program/tutorials.html

Acronyms

API Abstract Programming Interface. 15, 18, 22, 25, 125

BGP Border Gateway Protocol. 4–6, 33, 109

BTC Bitcoin. 10, 22

BTP Bilateral Transfer Protocol. 26, 29, 78, 79

BW Bandwidth. 107, 108

CCC Cross Chain Communication. 16

DLT Distributed Ledger Technology. 8, 9, 11, 15, 16, 33

ETH Ethereum. 10, 14, 22

FBA Federated Byzantine Agreement. 11, 14

HTLC Hashed TimeLock Contract. 15, 16

ICN Information Centric Networking. 4

ILP Interledger Protocol. 2, 4, 16, 22–29, 78, 79

ISP Internet Service Provider. 98

NDN Named Data Networking. 3–5, 14, 15

pBFT Practical Byzantine Fault Tolerance. 9, 11

123

PoA Proof of Authority. 9–11

PoS Proof of Stake. 9, 10

PoW Proof of Work. 9, 10, 14

SPSP Simple Payment Setup Protocol. 26, 27, 29, 97

STREAM Streaming Transport for the Realtime Exchange of Assets and Messages. 22,

26–29, 98, 101

UNL Unique Node List. 12

XRPL XRP Ledger. 2, 11–13, 15

124

Glossary

AS An autonomous system is a large network (or group) with a unified routing scheme. 110

CCC The exchange of information between one or more blockchains. 16

dApp Applications residing and running on a distributed network (e.g. blockchain). 18, 20

DeFi Financial technologies using distributed ledger technology. 21

Ethereum The decentralized blockchain which forms and uses a peer to peer network to

verify and securely execute smart contract code. 109

IXP The Internet Exchange Points enable participant Internet Service Providers to exchange

data between their networks. The Internet Exchange Points are usually placed in

locations (datacenters) benefiting from connections to multiple networks, and operate

physical infrastructure to interconnect the participants (ISPs). 110

Moneyd An ILP end-point, allowing all applications on an end-user computer to use funds

on the live ILP network. 22, 28

Switch API A SDK for cross-chain trading between BTC, ETH, DAI and XRP with In-

terledger Streaming. 22

XRP XRPL’s digital payment asset which is used for Interledger payments. 22

125

References

[1] Leslie Lamport, Robert Shostak, and Marshall Pease. “The Byzantine Generals Prob-

lem”. In: ACM Transactions on Programming Languages and Systems (July 1982),

pp. 382–401. url: https://www.microsoft.com/en-us/research/publication/

byzantine-generals-problem/ (visited on 03/2023).

[2] David Schatsky and Craig Muraskin. Beyond bitcoin: Blockchain is coming to dis-

rupt your industry. Deloitte University Press. 2022. url: https://www2.deloitte.

com/us/en/insights/focus/signals-for-strategists/trends-blockchain-

bitcoin-security-transparency.html (visited on 01/2023).

[3] Stefan Thomas and Evan Schwartz. A Protocol for Interledger Payments. 2016. url:

https://interledger.org/interledger.pdf (visited on 03/2023).

[4] Alexander Afanasyev et al. “A Brief Introduction to Named Data Networking”. In:

MILCOM 2018 - 2018 IEEE Military Communications Conference (MILCOM) (2018),

pp. 1–6.

[5] Yair Amir et al. Spines. Mar. 2020. url: http://spines.org (visited on 01/2023).

[6] Dimitris Vyzovitis, Yusef Napora, Dirk McCormick, David Dias, and Yiannis Psaras.

GossipSub: Attack-Resilient Message Propagation in the Filecoin and ETH2.0 Net-

works. July 2020. url: https://arxiv.org/abs/2007.02754 (visited on 03/2023).

[7] Nate Brawn and Ryan Huber. Nebula. 2019. url: https://github.com/slackhq/

nebula (visited on 01/2023).

126

https://www.microsoft.com/en-us/research/publication/byzantine-generals-problem/
https://www.microsoft.com/en-us/research/publication/byzantine-generals-problem/
https://www2.deloitte.com/us/en/insights/focus/signals-for-strategists/trends-blockchain-bitcoin-security-transparency.html
https://www2.deloitte.com/us/en/insights/focus/signals-for-strategists/trends-blockchain-bitcoin-security-transparency.html
https://www2.deloitte.com/us/en/insights/focus/signals-for-strategists/trends-blockchain-bitcoin-security-transparency.html
https://interledger.org/interledger.pdf
http://spines.org
https://arxiv.org/abs/2007.02754
https://github.com/slackhq/nebula
https://github.com/slackhq/nebula

[8] A. Rodriguez-Natal et al. “Programmable Overlays via OpenOverlayRouter”. In: IEEE

Communications Magazine 55.6 (June 2017), pp. 32–38. issn: 1558-1896. doi: 10.

1109/MCOM.2017.1601056.

[9] Y. Rekhter, T. Li, and S. Hares. A Border Gateway Protocol 4 (BGP-4). 2006. url:

https://www.rfc-editor.org/rfc/rfc4271 (visited on 03/2023).

[10] A. Babay, E. Wagner, M. Dinitz, and Y. Amir. “Timely, Reliable, and Cost-Effective

Internet Transport Service Using Dissemination Graphs”. In: 2017 IEEE 37th Inter-

national Conference on Distributed Computing Systems (ICDCS). June 2017, pp. 1–

12. doi: 10.1109/ICDCS.2017.63.

[11] Bengt Ahlgren, Christian Dannewitz, Claudio Imbrenda, Dirk Kutscher, and Borje

Ohlman. “A survey of information-centric networking”. In: IEEE Communications

Magazine 50.7 (2012), pp. 26–36. doi: 10.1109/MCOM.2012.6231276.

[12] Interledger Foundation. Interledger Protocol V4. 2019. url: https://interledger.

org/rfcs/0027-interledger-protocol-4/ (visited on 03/2023).

[13] M.T. Ozsu and P. Valduriez. “Distributed database systems: where are we now?” In:

Computer 24.8 (1991), pp. 68–78. doi: 10.1109/2.84879.

[14] Ali Sunyaev. “Distributed Ledger Technology”. In: Internet Computing: Principles

of Distributed Systems and Emerging Internet-Based Technologies. Cham: Springer

International Publishing, 2020, pp. 265–299. isbn: 978-3-030-34957-8. doi: 10.1007/

978-3-030-34957-8_9. url: https://doi.org/10.1007/978-3-030-34957-8_9.

[15] CCSF Luxembourg. Distributed Ledger Technologies (DLT) and blockchain. Whitepa-

per. 2022. url: https://www.cssf.lu/en/Document/white-paper-distributed-

ledger-technologies-dlt-and-blockchain/ (visited on 03/2023).

[16] Santeri Paavolainen, Tommi Elo, and Pekka Nikander. Interledger: Theory and prac-

tice. IEEE ICBC 2019 tutorial. 2019. url: http://site.ieee.org/icbc-2019/

files/2019/05/ICBC-2019-Tutorial-4-Interledger.pdf (visited on 01/2023).

127

https://doi.org/10.1109/MCOM.2017.1601056
https://doi.org/10.1109/MCOM.2017.1601056
https://www.rfc-editor.org/rfc/rfc4271
https://doi.org/10.1109/ICDCS.2017.63
https://doi.org/10.1109/MCOM.2012.6231276
https://interledger.org/rfcs/0027-interledger-protocol-4/
https://interledger.org/rfcs/0027-interledger-protocol-4/
https://doi.org/10.1109/2.84879
https://doi.org/10.1007/978-3-030-34957-8_9
https://doi.org/10.1007/978-3-030-34957-8_9
https://doi.org/10.1007/978-3-030-34957-8_9
https://www.cssf.lu/en/Document/white-paper-distributed-ledger-technologies-dlt-and-blockchain/
https://www.cssf.lu/en/Document/white-paper-distributed-ledger-technologies-dlt-and-blockchain/
http://site.ieee.org/icbc-2019/files/2019/05/ICBC-2019-Tutorial-4-Interledger.pdf
http://site.ieee.org/icbc-2019/files/2019/05/ICBC-2019-Tutorial-4-Interledger.pdf

[17] Satoshi Nakamoto. “Bitcoin: A Peer-to-Peer Electronic Cash System”. In: Cryptogra-

phy Mailing list at https://metzdowd.com (Mar. 2009). url: https://bitcoin.org/

bitcoin.pdf (visited on 01/2023).

[18] Fahad Saleh. “Blockchain without Waste: Proof-of-Stake”. In: The Review of Financial

Studies 34 (July 2020). doi: 10.1093/rfs/hhaa075.

[19] Janno Siim and Micha l Zajac. Proof of Stake. Research Seminar in Cryptography.

2017. url: https://courses.cs.ut.ee/MTAT.07.022/2017_fall/uploads/Main/

janno-report-f17.pdf (visited on 03/2023).

[20] Stefano De Angelis, Leonardo Aniello, Federico Lombardi, Andrea Margheri, and V.

Sassone. “PBFT vs proof-of-authority: applying the CAP theorem to permissioned

blockchain”. In: Italian Conference on Cybersecurity. Jan. 2017.

[21] Caixiang Fan, Changyuan Lin, Hamzeh Khazaei, and Petr Musilek. “Performance

Analysis of Hyperledger Besu in Private Blockchain”. In: 2022 IEEE International

Conference on Decentralized Applications and Infrastructures (DAPPS). IEEE. 2022,

pp. 64–73.

[22] Stefano Dalla Palma, Remo Pareschi, and Federico Zappone. “What is your Dis-

tributed (Hyper)Ledger?” In: 2021 IEEE/ACM 4th International Workshop on Emerg-

ing Trends in Software Engineering for Blockchain (WETSEB). 2021, pp. 27–33. doi:

10.1109/WETSEB52558.2021.00011.

[23] Xodex. Flawless, Decentralized Innovation. 2022. url: https://www.xo-dex.com/

assets/images/whitepaper.pdf (visited on 01/2023).

[24] Miguel Castro and Barbara Liskov. “Practical Byzantine Fault Tolerance”. In: 3rd

Symposium on Operating Systems Design and Implementation (OSDI 99). New Or-

leans, LA: USENIX Association, Feb. 1999. url: https://www.usenix.org/conference/

osdi-99/practical-byzantine-fault-tolerance (visited on 01/2023).

[25] Ignacio Amores-Sesar, Christian Cachin, and Jovana Mićić. Security Analysis of Ripple

Consensus. 2020. doi: 10.48550/ARXIV.2011.14816. url: https://arxiv.org/abs/

2011.14816 (visited on 01/2023).

128

https://bitcoin.org/bitcoin.pdf
https://bitcoin.org/bitcoin.pdf
https://doi.org/10.1093/rfs/hhaa075
https://courses.cs.ut.ee/MTAT.07.022/2017_fall/uploads/Main/janno-report-f17.pdf
https://courses.cs.ut.ee/MTAT.07.022/2017_fall/uploads/Main/janno-report-f17.pdf
https://doi.org/10.1109/WETSEB52558.2021.00011
https://www.xo-dex.com/assets/images/whitepaper.pdf
https://www.xo-dex.com/assets/images/whitepaper.pdf
https://www.usenix.org/conference/osdi-99/practical-byzantine-fault-tolerance
https://www.usenix.org/conference/osdi-99/practical-byzantine-fault-tolerance
https://doi.org/10.48550/ARXIV.2011.14816
https://arxiv.org/abs/2011.14816
https://arxiv.org/abs/2011.14816

[26] David Schwartz, Noah Youngs, and Arthur Britto. The Ripple Protocol Consensus

Algorithm. 2014.

[27] Gabriel Antonio F. Rebello, Gustavo F. Camilo, Lucas C. B. Guimarães, Lucas Airam

C. de Souza, and Otto Carlos M. B. Duarte. “Security and Performance Analysis

of Quorum-based Blockchain Consensus Protocols”. In: 2022 6th Cyber Security in

Networking Conference (CSNet). 2022, pp. 1–7. doi: 10.1109/CSNet56116.2022.

9955597.

[28] Frederik Armknecht, Ghassan O. Karame, Avikarsha Mandal, Franck Youssef, and

Erik Zenner. “Ripple: Overview and Outlook”. In: Trust and Trustworthy Computing.

Ed. by Mauro Conti, Matthias Schunter, and Ioannis Askoxylakis. Cham: Springer

International Publishing, 2015, pp. 163–180. isbn: 978-3-319-22846-4.

[29] Lara Mauri, Stelvio Cimato, and Ernesto Damiani. “A Formal Approach for the

Analysis of the XRP Ledger Consensus Protocol”. In: Feb. 2020. doi: 10.5220/

0008954200520063.

[30] Chuanwang Ma et al. “Ripple+: An Improved Scheme of Ripple Consensus Protocol

in Deployability, Liveness and Timing Assumption”. In: Computer Modeling in Engi-

neering & Sciences 130.1 (2022), pp. 463–481. issn: 1526-1506. doi: 10.32604/cmes.

2022.016838. url: http://www.techscience.com/CMES/v130n1/45706 (visited on

03/2023).

[31] Brad Chase and Ethan MacBrough. “Analysis of the XRP Ledger Consensus Proto-

col”. In: CoRR abs/1802.07242 (2018). arXiv: 1802.07242. url: http://arxiv.org/

abs/1802.07242 (visited on 01/2023).

[32] Sebastián Facundo D’Agostino and Juan Pablo Timpanaro. “Ripple Protocol perfor-

mance improvement: Small world theory applied to cross border payments”. In: XIX

Simposio Argentino de Ingenieŕıa de Software (ASSE) (Sept. 2018), pp. 143–154.

[33] Rameez Yousuf, Zubair Jeelani, Dawood Khan, Owais Bhat, and Tawseef Teli. “Con-

sensus Algorithms in Blockchain-Based Cryptocurrencies”. In: International Confer-

ence on Advances in Electrical, Computing, Communication and Sustainable Tech-

nologies (ICAECT). Feb. 2021, pp. 1–6. doi: 10.1109/ICAECT49130.2021.9392489.

129

https://doi.org/10.1109/CSNet56116.2022.9955597
https://doi.org/10.1109/CSNet56116.2022.9955597
https://doi.org/10.5220/0008954200520063
https://doi.org/10.5220/0008954200520063
https://doi.org/10.32604/cmes.2022.016838
https://doi.org/10.32604/cmes.2022.016838
http://www.techscience.com/CMES/v130n1/45706
https://arxiv.org/abs/1802.07242
http://arxiv.org/abs/1802.07242
http://arxiv.org/abs/1802.07242
https://doi.org/10.1109/ICAECT49130.2021.9392489

[34] Marijn Roelvink, Mitchell Olsthoorn, and Annibale Panichela. Log inference on the

Ripple Protocol: testing the system with an empirical approach. Delft University of

Technology. June 2020. url: http://resolver.tudelft.nl/uuid:ee55a433-e514-

4507-8912-4196f0a9ba1c (visited on 03/2023).

[35] Crystal Andrea Roma and M. Anwar Hasan. “Energy Consumption Analysis of XRP

Validator”. In: 2020 IEEE International Conference on Blockchain and Cryptocur-

rency (ICBC). 2020, pp. 1–3. doi: 10.1109/ICBC48266.2020.9169427.

[36] Hideaki Aoyama, Yoshi Fujiwara, Yoshimasa Hidaka, and Yuichi Ikeda. “Cryptoasset

networks: Flows and regular players in Bitcoin and XRP”. In: PLOS ONE 17 (Aug.

2022). doi: 10.1371/journal.pone.0273068.

[37] Pedro Moreno-Sanchez, Navin Modi, Raghuvir Songhela, Aniket Kate, and Sonia

Fahmy. “Mind Your Credit: Assessing the Health of the Ripple Credit Network”. In:

WWW ’18: Proceedings of the 2018 World Wide Web Conference. Apr. 2018, pp. 329–

338. isbn: 978-1-4503-5639-8. doi: 10.1145/3178876.3186099.

[38] Marios Touloupou, Klitos Christodoulou, Antonios Inglezakis, Elias Iosif, and Marinos

Themistocleous. “Benchmarking Blockchains: The case of XRP Ledger and Beyond”.

In: Hawaii International Conference on System Sciences. Jan. 2022. doi: 10.24251/

HICSS.2022.730.

[39] Vytautas Tumas, Sean Rivera, Damien Magoni, and Radu State. “Centralized or not

Centralized? Topology Analysis of the XRP Ledger”. In: The 38th ACM/SIGAPP

Symposium On Applied Computing. Mar. 2023.

[40] Wolf Bubberman and S. Roos. TLS MITM attack on the Ripple XRP Ledger. online,

TU Delft. 2020. url: http://resolver.tudelft.nl/uuid:393083dc-a364-477a-

afc8-faaca0a244c6 (visited on 03/2023).

[41] Gleb Naumenko, Gregory Maxwell, Pieter Wuille, Alexandra Fedorova, and Ivan Beschast-

nikh. “Erlay: Efficient Transaction Relay for Bitcoin”. In: Proceedings of the 2019 ACM

SIGSAC Conference on Computer and Communications Security. CCS ’19. London,

United Kingdom: Association for Computing Machinery, 2019, pp. 817–831. isbn:

130

http://resolver.tudelft.nl/uuid:ee55a433-e514-4507-8912-4196f0a9ba1c
http://resolver.tudelft.nl/uuid:ee55a433-e514-4507-8912-4196f0a9ba1c
https://doi.org/10.1109/ICBC48266.2020.9169427
https://doi.org/10.1371/journal.pone.0273068
https://doi.org/10.1145/3178876.3186099
https://doi.org/10.24251/HICSS.2022.730
https://doi.org/10.24251/HICSS.2022.730
http://resolver.tudelft.nl/uuid:393083dc-a364-477a-afc8-faaca0a244c6
http://resolver.tudelft.nl/uuid:393083dc-a364-477a-afc8-faaca0a244c6

9781450367479. doi: 10.1145/3319535.3354237. url: https://doi.org/10.1145/

3319535.3354237 (visited on 03/2023).

[42] Yifan Mao, Soubhik Deb, Shaileshh Bojja Venkatakrishnan, Sreeram Kannan, and

Kannan Srinivasan. “Perigee: Efficient Peer-to-Peer Network Design for Blockchains”.

In: Proceedings of the 39th Symposium on Principles of Distributed Computing. PODC

’20. Virtual Event, Italy: Association for Computing Machinery, 2020, pp. 428–437.

isbn: 9781450375825. doi: 10.1145/3382734.3405704. url: https://doi.org/10.

1145/3382734.3405704 (visited on 03/2023).

[43] Joao Leitao, Jose Pereira, and Luis Rodrigues. “Epidemic Broadcast Trees”. In: 2007

26th IEEE International Symposium on Reliable Distributed Systems (SRDS 2007).

2007, pp. 301–310. doi: 10.1109/SRDS.2007.27.

[44] Miguel Castro et al. “SplitStream: High-Bandwidth Content Distribution in Coop-

erative Environments”. In: Peer-to-Peer Systems II. Ed. by M. Frans Kaashoek and

Ion Stoica. Berlin, Heidelberg: Springer Berlin Heidelberg, 2003, pp. 292–303. isbn:

978-3-540-45172-3.

[45] Divya Saxena. “Named Data Networking: A Survey”. In: Elsevier Computer Science

Review 19 (Jan. 2016). doi: 10.1016/j.cosrev.2016.01.001.

[46] Jiang Guo et al. “Enabling Blockchain Applications Over Named Data Networking”.

In: ICC 2019 - 2019 IEEE International Conference on Communications (ICC). 2019,

pp. 1–6. doi: 10.1109/ICC.2019.8761919.

[47] Quang Tung Thai, Namseok Ko, Sung Hyuk Byun, and Sun-Me Kim. “Design and

implementation of NDN-based Ethereum blockchain”. In: Journal of Network and

Computer Applications 200 (2022), p. 103329. issn: 1084-8045. doi: https://doi.

org/10.1016/j.jnca.2021.103329. url: https://www.sciencedirect.com/

science/article/pii/S1084804521003143 (visited on 03/2023).

[48] George Sedky and Amr El Mougy. “BCXP: Blockchain-Centric Network Layer for

Efficient Transaction and Block Exchange over Named Data Networking”. In: 2018

IEEE 43rd Conference on Local Computer Networks (LCN). 2018, pp. 449–452. doi:

10.1109/LCN.2018.8638229.

131

https://doi.org/10.1145/3319535.3354237
https://doi.org/10.1145/3319535.3354237
https://doi.org/10.1145/3319535.3354237
https://doi.org/10.1145/3382734.3405704
https://doi.org/10.1145/3382734.3405704
https://doi.org/10.1145/3382734.3405704
https://doi.org/10.1109/SRDS.2007.27
https://doi.org/10.1016/j.cosrev.2016.01.001
https://doi.org/10.1109/ICC.2019.8761919
https://doi.org/https://doi.org/10.1016/j.jnca.2021.103329
https://doi.org/https://doi.org/10.1016/j.jnca.2021.103329
https://www.sciencedirect.com/science/article/pii/S1084804521003143
https://www.sciencedirect.com/science/article/pii/S1084804521003143
https://doi.org/10.1109/LCN.2018.8638229

[49] Tong Jin, Xiang Zhang, Yirui Liu, and Kai Lei. “BlockNDN: A bitcoin blockchain

decentralized system over named data networking”. In: 2017 Ninth International Con-

ference on Ubiquitous and Future Networks (ICUFN). 2017, pp. 75–80. doi: 10.1109/

ICUFN.2017.7993751.

[50] Wentao Shang, Alexander Afanasyev, and Lixia Zhang. “VectorSync: Distributed

Dataset Synchronization over Named Data Networking”. In: Proceedings of the 4th

ACM Conference on Information-Centric Networking. ICN ’17. Berlin, Germany: As-

sociation for Computing Machinery, 2017, pp. 192–193. isbn: 9781450351225. doi:

10.1145/3125719.3132106. url: https://doi.org/10.1145/3125719.3132106

(visited on 03/2023).

[51] Zhenkai Zhu and Alexander Afanasyev. “Let’s ChronoSync: Decentralized dataset

state synchronization in Named Data Networking”. In: 2013 21st IEEE International

Conference on Network Protocols (ICNP). 2013, pp. 1–10. doi: 10.1109/ICNP.2013.

6733578.

[52] Minsheng Zhang, Vince Lehman, and Lan Wang. “Scalable name-based data synchro-

nization for named data networking”. In: IEEE INFOCOM 2017 - IEEE Conference

on Computer Communications. 2017, pp. 1–9. doi: 10.1109/INFOCOM.2017.8057193.

[53] Philipp Moll, Varun Patil, Nishant Sabharwal, and Lixia Zhang. A brief introduction

to state vector sync. url: https://named-data.net/wp-content/uploads/2021/

07/ndn-0073-r2-SVS.pdf (visited on 03/2023).

[54] Gavin Wood. “Polkadot: Vision for a heterogeneous multi-chain framework”. In: White

paper 21.2327 (2016), p. 4662.

[55] Jae Kwon and Ethan Buchman. “Cosmos whitepaper”. In: A Netw. Distrib. Ledgers

(2019), p. 27.

[56] Kürsat Aydinli. “Performance Assessment of Cardano”. In: Independent Study Com-

munication Systems Group (2019), pp. 1–39.

[57] Guido Barbian and Florian Mellentin. The Cardano Proof-of-Stake Protocol “Ouroboros”.

url: https://www.researchgate.net/profile/Florian-Mellentin/publication/

132

https://doi.org/10.1109/ICUFN.2017.7993751
https://doi.org/10.1109/ICUFN.2017.7993751
https://doi.org/10.1145/3125719.3132106
https://doi.org/10.1145/3125719.3132106
https://doi.org/10.1109/ICNP.2013.6733578
https://doi.org/10.1109/ICNP.2013.6733578
https://doi.org/10.1109/INFOCOM.2017.8057193
https://named-data.net/wp-content/uploads/2021/07/ndn-0073-r2-SVS.pdf
https://named-data.net/wp-content/uploads/2021/07/ndn-0073-r2-SVS.pdf
https://www.researchgate.net/profile/Florian-Mellentin/publication/358677239_Ouroboros_Cardano's_Proof-of-Stake_Consensus_Protocol/links/620edf6af02286737ca82524/Ouroboros-Cardanos-Proof-of-Stake-Consensus-Protocol.pdf
https://www.researchgate.net/profile/Florian-Mellentin/publication/358677239_Ouroboros_Cardano's_Proof-of-Stake_Consensus_Protocol/links/620edf6af02286737ca82524/Ouroboros-Cardanos-Proof-of-Stake-Consensus-Protocol.pdf
https://www.researchgate.net/profile/Florian-Mellentin/publication/358677239_Ouroboros_Cardano's_Proof-of-Stake_Consensus_Protocol/links/620edf6af02286737ca82524/Ouroboros-Cardanos-Proof-of-Stake-Consensus-Protocol.pdf

358677239_Ouroboros_Cardano’s_Proof-of-Stake_Consensus_Protocol/links/

620edf6af02286737ca82524/Ouroboros-Cardanos-Proof-of-Stake-Consensus-

Protocol.pdf (visited on 03/2023).

[58] Joseph Poon and Vitalik Buterin. “Plasma: Scalable autonomous smart contracts”.

In: White paper (2017), pp. 1–47.

[59] Gilbert Verdian, Paolo Tasca, Colin Paterson, and Gaetano Mondelli. “Quant overledger

whitepaper”. In: Release V0 1 (2018), p. 31.

[60] Vitalik Buterin. “Chain interoperability”. In: R3 Research Paper (2016).

[61] T. Koens and E. Poll. “Assessing interoperability solutions for distributed ledgers”. In:

Pervasive and Mobile Computing 59 (2019), p. 101079. issn: 1574-1192. doi: https:

//doi.org/10.1016/j.pmcj.2019.101079. url: https://www.sciencedirect.

com/science/article/pii/S1574119218306266 (visited on 01/2023).

[62] Rafael Belchior, André Vasconcelos, Sérgio Guerreiro, and Miguel Correia. “A Survey

on Blockchain Interoperability: Past, Present, and Future Trends”. In: ACM Comput.

Surv. 54.8 (Oct. 2021). issn: 0360-0300. doi: 10.1145/3471140. url: https://doi.

org/10.1145/3471140 (visited on 03/2023).

[63] Vasilios A Siris, Dimitrios Dimopoulos, Nikos Fotiou, Spyros Voulgaris, and George C

Polyzos. “Interledger smart contracts for decentralized authorization to constrained

things”. In: IEEE INFOCOM 2019-IEEE Conference on Computer Communications

Workshops (INFOCOM WKSHPS). IEEE. 2019, pp. 336–341.

[64] Joseph Poon and Thaddeus Dryja. The bitcoin lightning network: Scalable off-chain in-

stant payments. 2016. url: https://nakamotoinstitute.org/research/lightning-

network/ (visited on 03/2023).

[65] Alexei Zamyatin et al. “SoK: Communication Across Distributed Ledgers”. In: IACR

Cryptology ePrint Archive. 2019.

[66] Jonas Nick, Andrew Poelstra, and Gregory Sanders. “Liquid: A bitcoin sidechain”. In:

Liquid white paper. (2020). url: https://blockstream.com/assets/downloads/

pdf/liquid-whitepaper.pdf (visited on 03/2023).

133

https://www.researchgate.net/profile/Florian-Mellentin/publication/358677239_Ouroboros_Cardano's_Proof-of-Stake_Consensus_Protocol/links/620edf6af02286737ca82524/Ouroboros-Cardanos-Proof-of-Stake-Consensus-Protocol.pdf
https://www.researchgate.net/profile/Florian-Mellentin/publication/358677239_Ouroboros_Cardano's_Proof-of-Stake_Consensus_Protocol/links/620edf6af02286737ca82524/Ouroboros-Cardanos-Proof-of-Stake-Consensus-Protocol.pdf
https://www.researchgate.net/profile/Florian-Mellentin/publication/358677239_Ouroboros_Cardano's_Proof-of-Stake_Consensus_Protocol/links/620edf6af02286737ca82524/Ouroboros-Cardanos-Proof-of-Stake-Consensus-Protocol.pdf
https://www.researchgate.net/profile/Florian-Mellentin/publication/358677239_Ouroboros_Cardano's_Proof-of-Stake_Consensus_Protocol/links/620edf6af02286737ca82524/Ouroboros-Cardanos-Proof-of-Stake-Consensus-Protocol.pdf
https://www.researchgate.net/profile/Florian-Mellentin/publication/358677239_Ouroboros_Cardano's_Proof-of-Stake_Consensus_Protocol/links/620edf6af02286737ca82524/Ouroboros-Cardanos-Proof-of-Stake-Consensus-Protocol.pdf
https://doi.org/https://doi.org/10.1016/j.pmcj.2019.101079
https://doi.org/https://doi.org/10.1016/j.pmcj.2019.101079
https://www.sciencedirect.com/science/article/pii/S1574119218306266
https://www.sciencedirect.com/science/article/pii/S1574119218306266
https://doi.org/10.1145/3471140
https://doi.org/10.1145/3471140
https://doi.org/10.1145/3471140
https://nakamotoinstitute.org/research/lightning-network/
https://nakamotoinstitute.org/research/lightning-network/
https://blockstream.com/assets/downloads/pdf/liquid-whitepaper.pdf
https://blockstream.com/assets/downloads/pdf/liquid-whitepaper.pdf

[67] Paolo Bellavista, Christian Esposito, Luca Foschini, Carlo Giannelli, and Nicola Maz-

zocca. “Interoperable Blockchains for Highly-Integrated Supply Chains in Collabora-

tive Manufacturing”. In: Sensors 21 (July 2021), p. 4955. doi: 10.3390/s21154955.

[68] World Economic Forum. Bridging the Governance Gap: Interoperability for blockchain

and legacy systems. Whitepaper. 2020. url: https://www.weforum.org/whitepapers/

bridging-the-governance-gap-interoperability-for-blockchain-and-legacy-

systems/ (visited on 03/2023).

[69] Ghareeb Falazi et al. “Smart Contract Invocation Protocol (SCIP): A Protocol for

the Uniform Integration of Heterogeneous Blockchain Smart Contracts”. In: Advanced

Information Systems Engineering. Ed. by Schahram Dustdar, Eric Yu, Camille Sali-

nesi, Dominique Rieu, and Vik Pant. Cham: Springer International Publishing, 2020,

pp. 134–149. isbn: 978-3-030-49435-3.

[70] E. Fynn, A. Bessani, and F. Pedone. “Smart Contracts on the Move”. In: 2020 50th

Annual IEEE/IFIP International Conference on Dependable Systems and Networks

(DSN). Los Alamitos, CA, USA: IEEE Computer Society, July 2020, pp. 233–244.

doi: 10.1109/DSN48063.2020.00040. url: https://doi.ieeecomputersociety.

org/10.1109/DSN48063.2020.00040.

[71] H. Abbas, M. Caprolu, and R. Di Pietro. “Analysis of Polkadot: Architecture, In-

ternals, and Contradictions”. In: 2022 IEEE International Conference on Blockchain

(Blockchain). Los Alamitos, CA, USA: IEEE Computer Society, Aug. 2022, pp. 61–70.

doi: 10.1109/Blockchain55522.2022.00019. url: https://doi.ieeecomputersociety.

org/10.1109/Blockchain55522.2022.00019.

[72] Alfonso Cevallos and Alistair Stewart. “Validator election in nominated proof-of-

stake”. In: CoRR abs/2004.12990 (2020). arXiv: 2004.12990. url: https://arxiv.

org/abs/2004.12990 (visited on 03/2023).

[73] Hanaa Abbas, Maurantonio Caprolu, and Roberto Di Pietro. Analysis of Polkadot:

Architecture, Internals, and Contradictions. 2022. doi: 10.48550/ARXIV.2207.14128.

url: https://arxiv.org/abs/2207.14128 (visited on 03/2023).

134

https://doi.org/10.3390/s21154955
https://www.weforum.org/whitepapers/bridging-the-governance-gap-interoperability-for-blockchain-and-legacy-systems/
https://www.weforum.org/whitepapers/bridging-the-governance-gap-interoperability-for-blockchain-and-legacy-systems/
https://www.weforum.org/whitepapers/bridging-the-governance-gap-interoperability-for-blockchain-and-legacy-systems/
https://doi.org/10.1109/DSN48063.2020.00040
https://doi.ieeecomputersociety.org/10.1109/DSN48063.2020.00040
https://doi.ieeecomputersociety.org/10.1109/DSN48063.2020.00040
https://doi.org/10.1109/Blockchain55522.2022.00019
https://doi.ieeecomputersociety.org/10.1109/Blockchain55522.2022.00019
https://doi.ieeecomputersociety.org/10.1109/Blockchain55522.2022.00019
https://arxiv.org/abs/2004.12990
https://arxiv.org/abs/2004.12990
https://arxiv.org/abs/2004.12990
https://doi.org/10.48550/ARXIV.2207.14128
https://arxiv.org/abs/2207.14128

[74] Polkadot. Open Source Polkadot Stack. 2022. url: https://wiki.polkadot.network/

docs/build-open-source (visited on 01/2023).

[75] Carlos Toro, Wei Wang, and Humza Akhtar. Implementing Industry 4.0 The Model

Factory as the Key Enabler for the Future of Manufacturing. eng. 1st ed. 2021. Intelli-

gent Systems Reference Library, 202. Cham: Springer International Publishing, 2021.

isbn: 9783030672706.

[76] XRPL Foundation. Payment Channels. 2019. url: https://xrpl.org/payment-

channels.html (visited on 03/2023).

[77] Kincaid O’Neil. Settlement Architecture. 2019. url: https://github.com/interledger/

rfcs / blob / master / deprecated / 0024 - ledger - plugin - interface - 2 / 0024 -

ledger-plugin-interface-2.md (visited on 01/2023).

[78] Interledger Foundation. Settlement Architecture. 2019. url: https://interledger.

org/rfcs/0038-settlement-engines/ (visited on 01/2023).

[79] Ben Sharafian. Moneyd - payment channels explanation. 2019. url: https://forum.

interledger.org/t/moneyd-payment-channels-explanation/374/3 (visited on

01/2023).

[80] Evan Schwartz. Protocol Stack Deep Dive - Boston Interledger Meetup. url: https:

//www.slideshare.net/Interledger/interledger-protocol-stack-deep-dive-

boston-interledger-meetup (visited on 01/2023).

[81] Adam Langley et al. “The QUIC Transport Protocol: Design and Internet-Scale De-

ployment”. In: SIGCOMM ’17: Proceedings of the Conference of the ACM Special

Interest Group on Data Communication. 2017.

[82] Evan Schwartz. Thoughts on Scaling Interledger Connectors. 2019. url: https://

medium.com/interledger-blog/thoughts-on-scaling-interledger-connectors-

7e3cad0dab7f (visited on 01/2023).

[83] Interledger Foundation. Simple Payment Setup Protocol (SPSP). 2019. url: https:

//github.com/interledger/rfcs/blob/master/0009-simple-payment-setup-

protocol/0009-simple-payment-setup-protocol.md (visited on 01/2023).

135

https://wiki.polkadot.network/docs/build-open-source
https://wiki.polkadot.network/docs/build-open-source
https://xrpl.org/payment-channels.html
https://xrpl.org/payment-channels.html
https://github.com/interledger/rfcs/blob/master/deprecated/0024-ledger-plugin-interface-2/0024-ledger-plugin-interface-2.md
https://github.com/interledger/rfcs/blob/master/deprecated/0024-ledger-plugin-interface-2/0024-ledger-plugin-interface-2.md
https://github.com/interledger/rfcs/blob/master/deprecated/0024-ledger-plugin-interface-2/0024-ledger-plugin-interface-2.md
https://interledger.org/rfcs/0038-settlement-engines/
https://interledger.org/rfcs/0038-settlement-engines/
https://forum.interledger.org/t/moneyd-payment-channels-explanation/374/3
https://forum.interledger.org/t/moneyd-payment-channels-explanation/374/3
https://www.slideshare.net/Interledger/interledger-protocol-stack-deep-dive-boston-interledger-meetup
https://www.slideshare.net/Interledger/interledger-protocol-stack-deep-dive-boston-interledger-meetup
https://www.slideshare.net/Interledger/interledger-protocol-stack-deep-dive-boston-interledger-meetup
https://medium.com/interledger-blog/thoughts-on-scaling-interledger-connectors-7e3cad0dab7f
https://medium.com/interledger-blog/thoughts-on-scaling-interledger-connectors-7e3cad0dab7f
https://medium.com/interledger-blog/thoughts-on-scaling-interledger-connectors-7e3cad0dab7f
https://github.com/interledger/rfcs/blob/master/0009-simple-payment-setup-protocol/0009-simple-payment-setup-protocol.md
https://github.com/interledger/rfcs/blob/master/0009-simple-payment-setup-protocol/0009-simple-payment-setup-protocol.md
https://github.com/interledger/rfcs/blob/master/0009-simple-payment-setup-protocol/0009-simple-payment-setup-protocol.md

[84] Interledger Foundation. Payment Pointers and Payment Setup Protocols. 2019. url:

https://github.com/interledger/rfcs/blob/master/0026-payment-pointers/

0026-payment-pointers.md (visited on 01/2023).

[85] Evan Schwartz. STREAMing Money and Data Over ILP. 2019. url: https : / /

medium.com/interledger-blog/streaming-money-and-data-over-ilp-fabd76fc991e

(visited on 01/2023).

[86] Interledger Foundation. STREAM: A Multiplexed Money and Data Transport for ILP.

2019. url: https://interledger.org/rfcs/0029-stream/ (visited on 01/2023).

[87] The Interledger Foundation. Case Study: COIL. 2022. url: https://interledger.

org/case-studies/coil/ (visited on 01/2023).

[88] Interledger Foundation. Relationship between Protocols. 2019. url: https://interledger.

org/rfcs/0033-relationship-between-protocols/ (visited on 01/2023).

[89] Interledger Foundation. Interledger Architecture. 2019. url: https://interledger.

org/rfcs/0001-interledger-architecture/#protocol-layers (visited on 01/2023).

[90] M. Apostolaki, A. Zohar, and L. Vanbever. “Hijacking Bitcoin: Routing Attacks on

Cryptocurrencies”. In: 2017 IEEE Symposium on Security and Privacy (SP). May

2017, pp. 375–392. doi: 10.1109/SP.2017.29.

[91] Maria Apostolaki, Gian Marti, Jan Müller, and Laurent Vanbever. “SABRE: Protect-

ing Bitcoin against Routing Attacks”. In: 26th Annual Network and Distributed System

Security Symposium, NDSS 2019, San Diego, California, USA, February 24-27, 2019.

The Internet Society, 2019. url: https://www.ndss-symposium.org/ndss-paper/

sabre-protecting-bitcoin-against-routing-attacks/ (visited on 01/2023).

[92] Adem Efe Gencer, Soumya Basu, Ittay Eyal, Robbert van Renesse, and Emin Gün

Sirer. Decentralization in Bitcoin and Ethereum Networks. Springer Berlin Heidelberg,

2018. doi: https://doi.org/10.1007/978-3-662-58387-6_24.

[93] Matt Corallo. FIBRE Fast Internet Bitcoin Relay Engine. url: https://bitcoinfibre.

org/ (visited on 01/2023).

136

https://github.com/interledger/rfcs/blob/master/0026-payment-pointers/0026-payment-pointers.md
https://github.com/interledger/rfcs/blob/master/0026-payment-pointers/0026-payment-pointers.md
https://medium.com/interledger-blog/streaming-money-and-data-over-ilp-fabd76fc991e
https://medium.com/interledger-blog/streaming-money-and-data-over-ilp-fabd76fc991e
https://interledger.org/rfcs/0029-stream/
https://interledger.org/case-studies/coil/
https://interledger.org/case-studies/coil/
https://interledger.org/rfcs/0033-relationship-between-protocols/
https://interledger.org/rfcs/0033-relationship-between-protocols/
https://interledger.org/rfcs/0001-interledger-architecture/#protocol-layers
https://interledger.org/rfcs/0001-interledger-architecture/#protocol-layers
https://doi.org/10.1109/SP.2017.29
https://www.ndss-symposium.org/ndss-paper/sabre-protecting-bitcoin-against-routing-attacks/
https://www.ndss-symposium.org/ndss-paper/sabre-protecting-bitcoin-against-routing-attacks/
https://doi.org/https://doi.org/10.1007/978-3-662-58387-6_24
https://bitcoinfibre.org/
https://bitcoinfibre.org/

[94] Uri Klarman, Soumya Basu, Aleksandar Kuzmanovic, and Emin Gün Sirer. “bloXroute:

A Scalable Trustless Blockchain Distribution Network WHITEPAPER”. In: IEEE In-

ternet of Things Journal. 2018.

[95] Wei Bi, Huawei Yang, and Maolin Zheng. “An Accelerated Method for Message Prop-

agation in Blockchain Networks”. In: ArXiv abs/1809.00455 (2018).

[96] Y. Amir, C. Danilov, S. Goose, D. Hedqvist, and A. Terzis. “An Overlay Architecture

for High-Quality VoIP Streams”. In: IEEE Transactions on Multimedia 8.6 (Dec.

2006), pp. 1250–1262. issn: 1941-0077. doi: 10.1109/TMM.2006.884609.

[97] Paolo Bellavista, Christian Esposito, Luca Foschini, Carlo Giannelli, and Nicola Maz-

zocca. “Interoperable Blockchains for Highly-Integrated Supply Chains in Collabora-

tive Manufacturing”. In: Sensors 21 (July 2021), p. 4955. doi: 10.3390/s21154955.

[98] CryptoEQ Analysts Team. Polkadot core report. online, Houston, TX. 2022. url:

https://www.cryptoeq.io/corereports/polkadot-abridged (visited on 01/2023).

[99] Gavin Wood. Gov2: Polkadot’s Next Generation of Decentralised Governance. online.

2022. url: https://polkadot.network/blog/gov2-polkadots-next-generation-

of-decentralised-governance/ (visited on 03/2023).

[100] Peter Somogyvari and Azahara C. Cactus Governance. online. 2021. url: https://

github.com/hyperledger/cactus/blob/main/GOVERNANCE.md (visited on 01/2023).

[101] Lihao Zhang, Taotao Wang, and Soung Chang Liew. “Speeding up Block Propagation

in Bitcoin Network: Uncoded and Coded Designs”. In: Comput. Netw. 206.C (Apr.

2022). issn: 1389-1286. doi: 10.1016/j.comnet.2022.108791. url: https://doi.

org/10.1016/j.comnet.2022.108791.

[102] Kai Otsuki, Yusuke Aoki, Ryohei Banno, and Kazuyuki Shudo. “Effects of a Simple

Relay Network on the Bitcoin Network”. In: Aug. 2019, pp. 41–46. isbn: 978-1-4503-

6849-0. doi: 10.1145/3340422.3343640.

[103] Sen Yang et al. SoK: MEV Countermeasures: Theory and Practice. 2022. doi: 10.

48550/ARXIV.2212.05111. url: https://arxiv.org/abs/2212.05111 (visited on

01/2023).

137

https://doi.org/10.1109/TMM.2006.884609
https://doi.org/10.3390/s21154955
https://www.cryptoeq.io/corereports/polkadot-abridged
https://polkadot.network/blog/gov2-polkadots-next-generation-of-decentralised-governance/
https://polkadot.network/blog/gov2-polkadots-next-generation-of-decentralised-governance/
https://github.com/hyperledger/cactus/blob/main/GOVERNANCE.md
https://github.com/hyperledger/cactus/blob/main/GOVERNANCE.md
https://doi.org/10.1016/j.comnet.2022.108791
https://doi.org/10.1016/j.comnet.2022.108791
https://doi.org/10.1016/j.comnet.2022.108791
https://doi.org/10.1145/3340422.3343640
https://doi.org/10.48550/ARXIV.2212.05111
https://doi.org/10.48550/ARXIV.2212.05111
https://arxiv.org/abs/2212.05111

[104] Kaihua Qin and Arthur Gervais. An overview of blockchain scalability, interoper-

ability and sustainability. url: https : / / www . eublockchainforum . eu / sites /

default/files/research- paper/an_overview_of_blockchain_scalability_

interoperability_and_sustainability.pdf (visited on 01/2023).

[105] Gianmaria Del Monte, Diego Pennino, and Maurizio Pizzonia. “Scaling Blockchains

without Giving up Decentralization and Security: A Solution to the Blockchain Scal-

ability Trilemma”. In: Proceedings of the 3rd Workshop on Cryptocurrencies and

Blockchains for Distributed Systems. CryBlock ’20. London, United Kingdom: As-

sociation for Computing Machinery, 2020, pp. 71–76. isbn: 9781450380799. doi: 10.

1145/3410699.3413800. url: https://doi.org/10.1145/3410699.3413800.

[106] Damien Magoni. “Network Topology Analysis and Internet Modelling with Nem”. In:

International Journal of Computers and Applications 27.4 (2005), pp. 252–259. doi:

10.2316/Journal.202.2005.4.202- 1540. url: https://hal.science/hal-

00344484.

[107] G. Tsipenyuk and N. D. Bougalis. Message routing optimizations, pt. 1: Proposal

& validation relaying. 2021. url: https://xrpl.org/blog/2021/%20message-

routing-optimizations-pt-1-proposal-validation-relaying.html (visited on

03/2023).

[108] Saurab Dulal and Lan Wang. “Adaptive Duplicate Suppression for Multicasting in a

Multi-Access NDN Network”. In: Proceedings of the 9th ACM Conference on Information-

Centric Networking. ICN ’22. Osaka, Japan: Association for Computing Machinery,

2022, pp. 156–158. isbn: 9781450392570. doi: 10 . 1145 / 3517212 . 3559480. url:

https://doi.org/10.1145/3517212.3559480.

[109] Van Jacobson et al. “Networking Named Content”. In: Proceedings of the 5th Interna-

tional Conference on Emerging Networking Experiments and Technologies. CoNEXT

’09. Rome, Italy: Association for Computing Machinery, 2009, pp. 1–12. isbn: 9781605586366.

doi: 10.1145/1658939.1658941. url: https://doi.org/10.1145/1658939.

1658941.

138

https://www.eublockchainforum.eu/sites/default/files/research-paper/an_overview_of_blockchain_scalability_interoperability_and_sustainability.pdf
https://www.eublockchainforum.eu/sites/default/files/research-paper/an_overview_of_blockchain_scalability_interoperability_and_sustainability.pdf
https://www.eublockchainforum.eu/sites/default/files/research-paper/an_overview_of_blockchain_scalability_interoperability_and_sustainability.pdf
https://doi.org/10.1145/3410699.3413800
https://doi.org/10.1145/3410699.3413800
https://doi.org/10.1145/3410699.3413800
https://doi.org/10.2316/Journal.202.2005.4.202-1540
https://hal.science/hal-00344484
https://hal.science/hal-00344484
https://xrpl.org/blog/2021/%20message-routing-optimizations-pt-1-proposal-validation-relaying.html
https://xrpl.org/blog/2021/%20message-routing-optimizations-pt-1-proposal-validation-relaying.html
https://doi.org/10.1145/3517212.3559480
https://doi.org/10.1145/3517212.3559480
https://doi.org/10.1145/1658939.1658941
https://doi.org/10.1145/1658939.1658941
https://doi.org/10.1145/1658939.1658941

[110] Junxiao Shi. NDNts: Named Data Networking libraries for the Modern Web - codebase.

https://github.com/yoursunny/NDNts. (Visited on 01/2023).

[111] Junxiao Shi. NDNts: Named Data Networking libraries for the Modern Web - home-

page. https://yoursunny.com/p/NDNts/. (Visited on 01/2023).

[112] Teemu Toivola. Vnstat. online. url: https : / / humdi . net / vnstat/ (visited on

01/2023).

[113] The Wireshark Foundation. tshark. online. url: https://www.wireshark.org/docs/

man-pages/tshark.html (visited on 01/2023).

[114] Wazen M. Shbair, Mathis Steichen, Jérôme François, and Radu State. “BlockZoom:

Large-Scale Blockchain Testbed”. In: 2019 IEEE International Conference on Blockchain

and Cryptocurrency (ICBC). 2019, pp. 5–6. doi: 10.1109/BLOC.2019.8751230.

[115] Betsy Beyer and Rob Ewaschuk. Monitoring Distributed Systems. Ed. by O’Reilly.

O’Reilly Media, Inc., 2016.

[116] G. Liu and T. Wood. “Cloud-Scale Application Performance Monitoring with SDN and

NFV”. In: Proceedings of the IEEE International Conference on Cloud Engineering

(IC2E). Mar. 2015, pp. 440–445. doi: 10.1109/IC2E.2015.45.

[117] Dirk Merkel. “Docker: Lightweight Linux Containers for Consistent Development and

Deployment”. In: Linux Journal 2014.239 (Mar. 2014). issn: 1075-3583.

[118] Elazar Gershuni et al. “Simple and Precise Static Analysis of Untrusted Linux Kernel

Extensions”. In: Proceedings of the 40th ACM SIGPLAN Conference on Programming

Language Design and Implementation. PLDI 2019. Phoenix, AZ, USA: ACM, 2019,

pp. 1069–1084. isbn: 978-1-4503-6712-7. doi: 10.1145/3314221.3314590.

[119] Luca Deri, Samuele Sabella, and Simone Mainardi. “Combining System Visibility and

Security Using eBPF”. In: Proceedings of the Third Italian Conference on Cyber Se-

curity (ITASEC). Vol. Vol-2315. ITASEC’19. 2019, pp. 50–62.

[120] Cilium Authors community. BPF and XDP Reference Guide. https://docs.cilium.

io/en/v1.6/bpf. 2019. (Visited on 03/2023).

139

https://github.com/yoursunny/NDNts
https://yoursunny.com/p/NDNts/
https://humdi.net/vnstat/
https://www.wireshark.org/docs/man-pages/tshark.html
https://www.wireshark.org/docs/man-pages/tshark.html
https://doi.org/10.1109/BLOC.2019.8751230
https://doi.org/10.1109/IC2E.2015.45
https://doi.org/10.1145/3314221.3314590
https://docs.cilium.io/en/v1.6/bpf
https://docs.cilium.io/en/v1.6/bpf

[121] Dominik Scholz et al. “Performance Implications of Packet Filtering with Linux eBPF”.

In: 2018 30th International Teletraffic Congress (ITC 30). Vol. 01. Sept. 2018, pp. 209–

217. doi: 10.1109/ITC30.2018.00039.

[122] T. Nam and J. Kim. “Open-source IO visor eBPF-based packet tracing on multiple

network interfaces of Linux boxes”. In: 2017 International Conference on Information

and Communication Technology Convergence (ICTC). Oct. 2017, pp. 324–326. doi:

10.1109/ICTC.2017.8190996.

[123] Kun Suo, Yong Zhao, Wei Chen, and Jia Rao. “vNetTracer: Efficient and Programmable

Packet Tracing in Virtualized Networks”. In: 2018 IEEE 38th International Con-

ference on Distributed Computing Systems (ICDCS). July 2018, pp. 165–175. doi:

10.1109/ICDCS.2018.00026.

[124] S. Baidya, Y. Chen, and M. Levorato. “eBPF-based content and computation-aware

communication for real-time edge computing”. In: IEEE INFOCOM 2018 - IEEE

Conference on Computer Communications Workshops (INFOCOM WKSHPS). Apr.

2018, pp. 865–870. doi: 10.1109/INFCOMW.2018.8407006.

[125] Zaafar Ahmed, Muhammad Hamad Alizai, and Affan A. Syed. “InKeV: In-kernel

Distributed Network Virtualization for DCN”. In: SIGCOMM Comput. Commun. Rev.

46.3 (July 2018), 4:1–4:6. issn: 0146-4833. doi: 10.1145/3243157.3243161.

[126] Thomas Graf. “Accelerating Envoy with the Linux Kernel”. In: CloudNativeCon Eu-

rope and KubeCon Europe. 2018.

[127] Toke Høiland-Jørgensen et al. “The eXpress Data Path: Fast Programmable Packet

Processing in the Operating System Kernel”. In: Proceedings of the 14th International

Conference on Emerging Networking EXperiments and Technologies. CoNEXT ’18.

Heraklion, Greece: ACM, 2018, pp. 54–66. isbn: 978-1-4503-6080-7. doi: 10.1145/

3281411.3281443.

[128] Simon Jouet and Dimitrios P. Pezaros. “BPFabric: Data Plane Programmability for

Software Defined Networks”. In: 2017 ACM/IEEE Symposium on Architectures for

Networking and Communications Systems (ANCS). May 2017, pp. 38–48. doi: 10.

1109/ANCS.2017.14.

140

https://doi.org/10.1109/ITC30.2018.00039
https://doi.org/10.1109/ICTC.2017.8190996
https://doi.org/10.1109/ICDCS.2018.00026
https://doi.org/10.1109/INFCOMW.2018.8407006
https://doi.org/10.1145/3243157.3243161
https://doi.org/10.1145/3281411.3281443
https://doi.org/10.1145/3281411.3281443
https://doi.org/10.1109/ANCS.2017.14
https://doi.org/10.1109/ANCS.2017.14

[129] Luca Deri and Samuele Sabella. “Merging System and Network Monitoring with BPF”.

In: Open Source Developers’ European Meeting (FOSDEM). 2019.

[130] Jibum Hong, Seyeon Jeong, Jae-Hyoung Yoo, and James W. Hong. “Design and Im-

plementation of eBPF-based Virtual TAP for Inter-VM Traffic Monitoring”. In: 2018

14th International Conference on Network and Service Management (CNSM). Nov.

2018, pp. 402–407.

[131] C. B. Hauser and S. Wesner. “Reviewing Cloud Monitoring: Towards Cloud Resource

Profiling”. In: Proceedings of the IEEE 11th International Conference on Cloud Com-

puting (CLOUD). July 2018, pp. 678–685. doi: 10.1109/CLOUD.2018.00093.

[132] Yu Gan et al. “An Open-Source Benchmark Suite for Microservices and Their Hardware-

Software Implications for Cloud & Edge Systems”. In: Proceedings of the Twenty-

Fourth International Conference on Architectural Support for Programming Languages

and Operating Systems. ASPLOS ’19. Providence, RI, USA: ACM, 2019, pp. 3–18.

isbn: 978-1-4503-6240-5. doi: 10.1145/3297858.3304013.

[133] Evan Schwartz. “A Payment Protocol of the Web, for the Web: Or, Finally En-

abling Web Micropayments with the Interledger Protocol”. In: Proceedings of the 25th

International Conference Companion on World Wide Web. WWW ’16 Companion.

Montréal, Québec, Canada: International World Wide Web Conferences Steering Com-

mittee, 2016, pp. 279–280. isbn: 978-1-4503-4144-8. doi: 10.1145/2872518.2889305.

[134] Brendan Gregg. “Performance Superpowers with Enhanced BPF”. In: Proceedings of

USENIX Annual Technical Conference (ATC). Santa Clara, CA: USENIX Associa-

tion, July 2017.

[135] Mohamad Gebai and Michel R. Dagenais. “Survey and Analysis of Kernel and Userspace

Tracers on Linux: Design, Implementation, and Overhead”. In: ACM Comput. Survey

51.2 (Mar. 2018), 26:1–26:33. issn: 0360-0300. doi: 10.1145/3158644.

[136] Matheus Marchini. “Enhancing User Defined Tracepoints”. In: Linux Plumbers Con-

ference (LPC). 2018.

141

https://doi.org/10.1109/CLOUD.2018.00093
https://doi.org/10.1145/3297858.3304013
https://doi.org/10.1145/2872518.2889305
https://doi.org/10.1145/3158644

[137] Brendan Gregg. “System observability with BPF”. In: Linux Storage, Filesystem, and

Memory-Management Summit (LSFMM). 2019.

[138] Brendan Gregg. BPF Performance Tools. Addison-Wesley Professional, 2019. doi:

9780136588870.

[139] Alastair Robertson. bpftrace. 2023. url: https://github.com/iovisor/bpftrace

(visited on 01/2023).

[140] Toke Høiland-Jørgensen and Jesper Dangaard Brouer. “XDP - Challenges and Future

Work”. In: Linux Plumbers Conference (LPC). 2018.

[141] Viet-Hoang Tran and Olivier Bonaventure. “Making the Linux TCP stack more ex-

tensible with eBPF”. In: Netdev 0x13. 2019.

[142] Zhiming Shen et al. “X-Containers: Breaking Down Barriers to Improve Performance

and Isolation of Cloud-Native Containers”. In: Proceedings of the Twenty-Fourth In-

ternational Conference on Architectural Support for Programming Languages and Op-

erating Systems. ASPLOS ’19. Providence, RI, USA: ACM, 2019, pp. 121–135. isbn:

978-1-4503-6240-5. doi: 10.1145/3297858.3304016.

[143] Jianbin Wei and Cheng-Zhong Xu. “sMonitor: A Non-intrusive Client-perceived End-

to-end Performance Monitor of Secured Internet Services”. In: Proceedings of the An-

nual Conference on USENIX ’06 Annual Technical Conference. ATEC ’06. Boston,

MA: USENIX Association, 2006, pp. 21–21.

[144] M. Wagner, J. Doleschal, A. Knüpfer, and W. E. Nagel. “Selective runtime moni-

toring: Non-intrusive elimination of high-frequency functions”. In: Proceedings of the

International Conference on High Performance Computing Simulation (HPCS). July

2014, pp. 295–302. doi: 10.1109/HPCSim.2014.6903698.

[145] Tianwei Sheng et al. “RACEZ: A Lightweight and Non-invasive Race Detection Tool

for Production Applications”. In: Proceedings of the 33rd International Conference on

Software Engineering. ICSE ’11. Waikiki, Honolulu, HI, USA: ACM, 2011, pp. 401–

410. isbn: 978-1-4503-0445-0. doi: 10.1145/1985793.1985848.

142

https://doi.org/9780136588870
https://github.com/iovisor/bpftrace
https://doi.org/10.1145/3297858.3304016
https://doi.org/10.1109/HPCSim.2014.6903698
https://doi.org/10.1145/1985793.1985848

[146] B. Sengupta, N. Banerjee, A. Anandkumar, and C. Bisdikian. “Non-intrusive transac-

tion monitoring using system logs”. In: Proceedings of the IEEE Network Operations

and Management Symposium (NOMS). Apr. 2008, pp. 879–882. doi: 10.1109/NOMS.

2008.4575237.

[147] C. E. T. de Oliveira and R. F. Junior. “A transparent and centralized performance

management service for CORBA based applications”. In: Proceedings of the IEEE Net-

work Operations and Management Symposium NOMS (IEEE Cat. No.04CH37507).

Vol. 1. Apr. 2004, 439–452 Vol.1. doi: 10.1109/NOMS.2004.1317684.

[148] Alban Crequy. “bpftrace meets Kubernetes with kubectl-trace”. In: Open Source De-

velopers’ European Meeting (FOSDEM). 2019.

[149] Interledger Foundation. The Bilateral Transfer Protocol. 2019. url: https://interledger.

org/rfcs/0023-bilateral-transfer-protocol/ (visited on 01/2023).

[150] Adrian Hope-Bailie and Stefan Thomas. “Interledger: Creating a Standard for Pay-

ments”. In: Proceedings of the 25th International Conference Companion on World

Wide Web. WWW ’16 Companion. Montréal, Québec, Canada: International World

Wide Web Conferences Steering Committee, 2016, pp. 281–282. isbn: 978-1-4503-4144-

8. doi: 10.1145/2872518.2889307.

[151] Lucian Andrei Trestioreanu, Cyril Cassagnes, and Radu State. Deep dive into In-

terledger: Understanding the Interledger ecosystem. Tech. rep. University of Luxem-

bourg, Interdisciplinary Centre for Security, Reliability and Trust (SnT), 2019.

[152] Cyril Cassagnes, Lucian Trestioreanu, Clement Joly, and Radu State. “The rise of

eBPF for non-intrusive performance monitoring”. In: NOMS 2020 - 2020 IEEE/I-

FIP Network Operations and Management Symposium. 2020, pp. 1–7. doi: 10.1109/

NOMS47738.2020.9110434.

[153] D. Obenshain et al. “Practical Intrusion-Tolerant Networks”. In: 2016 IEEE 36th

International Conference on Distributed Computing Systems (ICDCS). June 2016,

pp. 45–56. doi: 10.1109/ICDCS.2016.99.

143

https://doi.org/10.1109/NOMS.2008.4575237
https://doi.org/10.1109/NOMS.2008.4575237
https://doi.org/10.1109/NOMS.2004.1317684
https://interledger.org/rfcs/0023-bilateral-transfer-protocol/
https://interledger.org/rfcs/0023-bilateral-transfer-protocol/
https://doi.org/10.1145/2872518.2889307
https://doi.org/10.1109/NOMS47738.2020.9110434
https://doi.org/10.1109/NOMS47738.2020.9110434
https://doi.org/10.1109/ICDCS.2016.99

[154] P. Ekparinya, V. Gramoli, and G. Jourjon. “Impact of Man-In-The-Middle Attacks on

Ethereum”. In: 2018 IEEE 37th Symposium on Reliable Distributed Systems (SRDS).

2018, pp. 11–20. doi: 10.1109/SRDS.2018.00012.

[155] ILP Torrent - The technical deep dive. https://coil.com/p/sabinebertram/ILP-

Torrent-The-technical-deep-dive/S2cdTMKby/. (Visited on 01/2023).

[156] Terri Friedline, Sruthi Naraharisetti, and Addie Weaver. “Digital Redlining: Poor Ru-

ral Communities’ Access to Fintech and Implications for Financial Inclusion”. In: Jour-

nal of Poverty 24.5-6 (2020), pp. 517–541. doi: 10.1080/10875549.2019.1695162.

eprint: https://doi.org/10.1080/10875549.2019.1695162. url: https://doi.

org/10.1080/10875549.2019.1695162.

[157] Ahren Studer and Adrian Perrig. “The Coremelt Attack”. In: Computer Security –

ESORICS 2009. Ed. by Michael Backes and Peng Ning. Berlin, Heidelberg: Springer

Berlin Heidelberg, 2009, pp. 37–52. isbn: 978-3-642-04444-1.

[158] Min Suk Kang, Soo Bum Lee, and Virgil D. Gligor. “The Crossfire Attack”. In: 2013

IEEE Symposium on Security and Privacy. 2013, pp. 127–141. doi: 10.1109/SP.

2013.19.

[159] Claudiu Danilov. “Performance and Functionality in Overlay Networks”. PhD thesis.

Baltimore: The Johns Hopkins University, Sept. 2004. url: http://www.dsn.jhu.

edu/~yairamir/Claudiu_thesis.pdf (visited on 03/2023).

[160] A. Babay et al. “Structured Overlay Networks for a New Generation of Internet Ser-

vices”. In: 2017 IEEE 37th International Conference on Distributed Computing Sys-

tems (ICDCS). June 2017, pp. 1771–1779. doi: 10.1109/ICDCS.2017.119.

[161] B. Heller, N. McKeown, C. Kozyrakis, G.M. Parulkar, and Stanford University. Com-

puter Science Department. Reproducible Network Research with High-fidelity Emu-

lation. Stanford University, 2013. url: https://books.google.lu/books?id=

_EFzAQAACAAJ.

144

https://doi.org/10.1109/SRDS.2018.00012
https://coil.com/p/sabinebertram/ILP-Torrent-The-technical-deep-dive/S2cdTMKby/
https://coil.com/p/sabinebertram/ILP-Torrent-The-technical-deep-dive/S2cdTMKby/
https://doi.org/10.1080/10875549.2019.1695162
https://doi.org/10.1080/10875549.2019.1695162
https://doi.org/10.1080/10875549.2019.1695162
https://doi.org/10.1080/10875549.2019.1695162
https://doi.org/10.1109/SP.2013.19
https://doi.org/10.1109/SP.2013.19
http://www.dsn.jhu.edu/~yairamir/Claudiu_thesis.pdf
http://www.dsn.jhu.edu/~yairamir/Claudiu_thesis.pdf
https://doi.org/10.1109/ICDCS.2017.119
https://books.google.lu/books?id=_EFzAQAACAAJ
https://books.google.lu/books?id=_EFzAQAACAAJ

[162] Aggelos Koukounas, Eleni Vytogianni, and Marnix Dekker. 7 Steps to shore up the

Border Gateway Protocol (BGP). https://www.enisa.europa.eu/publications/7-

steps-to-shore-up-bgp. Accessed: January 2023.

[163] C. Demchak and Y. Shavitt. “China’s Maxim – Leave No Access Point Unexploited:

The Hidden Story of China Telecom’s BGP Hijacking”. In: Military Cyber Affairs.

Vol. 3. 1. Oct. 2018.

[164] Pablo Moriano, Raquel Hill, and L. Jean Camp. “Using bursty announcements for

detecting BGP routing anomalies”. In: Computer Networks 188 (2021), p. 107835.

issn: 1389-1286. doi: https://doi.org/10.1016/j.comnet.2021.107835. url:

https://www.sciencedirect.com/science/article/pii/S1389128621000207.

[165] Rob Portman and Tom Carper. “THREATS TO U.S. NETWORKS: OVERSIGHT

OF CHINESE GOVERNMENT-OWNED CARRIERS”. In: United States Senate,

Committee on Homeland Security and Governmental Affairs. June 2020, p. 31.

[166] Doug Madory. Oracle Confirms Research: China Telecom Misdirected U.S. Internet

traffic thru China. https://techblog.comsoc.org/2018/11/07/oracle-confirms-

research-china-telecom-misdirected-u-s-internet-traffic-thru-china/.

Accessed: January 2023.

[167] Rami Rosen. Linux Kernel Networking: Implementation and Theory. 1st. USA: Apress,

2013. isbn: 143026196X.

[168] Frank McKeen et al. “Intel® Software Guard Extensions (Intel® SGX) Support for

Dynamic Memory Management Inside an Enclave”. In: Proceedings of the Hardware

and Architectural Support for Security and Privacy 2016. HASP 2016. Seoul, Republic

of Korea: Association for Computing Machinery, 2016. isbn: 9781450347693. doi:

10.1145/2948618.2954331. url: https://doi.org/10.1145/2948618.2954331.

[169] Lucian Trestioreanu, Wazen M. Shbair, Flaviene Scheidt de Cristo, and Radu State.

XRP-NDN Overlay: Improving the Communication Efficiency of Consensus-Validation

based Blockchains with an NDN Overlay. 2023. arXiv: 2301.10209 [cs.NI]. (Visited

on 03/2023).

145

https://www.enisa.europa.eu/publications/7-steps-to-shore-up-bgp
https://www.enisa.europa.eu/publications/7-steps-to-shore-up-bgp
https://doi.org/https://doi.org/10.1016/j.comnet.2021.107835
https://www.sciencedirect.com/science/article/pii/S1389128621000207
https://techblog.comsoc.org/2018/11/07/oracle-confirms-research-china-telecom-misdirected-u-s-internet-traffic-thru-china/
https://techblog.comsoc.org/2018/11/07/oracle-confirms-research-china-telecom-misdirected-u-s-internet-traffic-thru-china/
https://doi.org/10.1145/2948618.2954331
https://doi.org/10.1145/2948618.2954331
https://arxiv.org/abs/2301.10209

[170] Lucian Trestioreanu, Cristina Nita-Rotaru, Aanchal Malhotra, and Radu State. “SPON:

Enabling Resilient Inter-Ledgers Payments with an Intrusion-Tolerant Overlay”. In:

2021 IEEE Conference on Communications and Network Security (CNS). 2021, pp. 92–

100. doi: 10.1109/CNS53000.2021.9705048.

146

https://doi.org/10.1109/CNS53000.2021.9705048

	List of Figures
	List of Tables
	Introduction
	Research Questions
	Contributions

	State of the Art
	The Distributed Ledger Technology
	Overview of DLT
	The XRP Ledger (XRPL)
	NDN data synchronization protocols

	DLT interconnectivity
	DLT interconnectivity landscape
	DLT interconnectivity examples
	The Interledger protocol stack

	XRP-NDN Overlay: Improving the Communication Efficiency of Consensus-Validation Based Blockchains with an NDN Overlay
	Introduction
	Background
	Named Data Networking (NDN)
	The XRP Ledger

	Design and Implementation
	Evaluation
	Results
	Production validators on the XRPL Livenet
	Baseline - private network of unmodified XRPL validators
	The "Piggibacking on Interest" model
	The "Polling" model
	The "Announce-pull" model
	The "Advanced-request" model

	Discussion

	Performance Monitoring and Evaluation
	Network monitoring for the XRP Ledger
	Using eBPF for non-intrusive performance monitoring
	Background and related work
	Profiling and Tracing tools

	Non-intrusive monitoring and profiling
	Container isolation
	eBPF integration

	Profiling and tracing of Interledger
	Interledger Connector
	Performance analysis and flamegraph analysis
	New eBPF program created

	Conclusion

	SPON: Enabling Resilient Inter-Ledgers Payments with an Intrusion-Tolerant Overlay
	Introduction
	Motivation
	Limitations of ILP Payment Systems over the Internet

	SPON Design and Implementation
	Design Goals and High-level Approach
	Threat Model
	SPON Design and Implementation

	Experimental Results
	Methodology
	Performance
	Chain topology
	The Global topology

	Resilience to Network Melting
	The Chain topology
	The Global topology

	Resilience to Denial of Service from Malicious Clients
	BGP Hijacking Attacks and Benign Route Misdirections
	Results summary

	Discussion

	Discussion and Perspectives
	Discussion
	The network component
	The system component
	Conclusion

	Future work

	List of Publications, Tutorials and Achievements during PhD Thesis Work
	References

