594 research outputs found

    Neural Model-Based Advanced Control of Chylla-Haase Reactor

    Get PDF
    The objective of this thesis is to develop advanced control method and to design advanced control system for the polymerization reactor (Chylla-Haase) to maintain the high accurate reactor temperature. The first stage of this research start with the development of mathematical model of the process. The sub-models for monomer concentration, polymerization rate, reactor temperature and jacket outlet/inlet temperature are developed and implemented in Matlab/Simulink. Four conventional control methods were applied to the reactor: a Proportional –Integral-Derivative (PID), Cascade control (CCs), Linear-Quadratic-Regulator (LQR), and Linear model predictive control (LMPC). The simulation results show that the PID controller is unable to perform satisfactorily due to the change of physical properties unless constant re-tuning takes place. Also, Cascade Control the most common control method used in such processes cannot guarantee a robust performance under varying disturbance and system uncertainty. In addition, LQR and linear MPC methods lead to better results compared with the previous two methods. But it is still under an assumption of the linearized plant. Three advanced neural network based control schemes are also proposed in this thesis: radial basis function RBF neural network inverse model based feedforward-feedback control scheme, RBF based model predictive control and multi-layer perception (MLP) based model predictive control. The major objective of these control schemes is to maintain the reactor temperature within its tolerance range under disturbances and system uncertainty. Satisfactory control performance in terms of effective regulation and robustness to disturbance have been achieved. In the feedforward-feedback control scheme, a neural network model is used to predict reactor temperature. Then, a neural network inverse model is used to estimate the valve position of the reactor, the manipulated variable. This method can identify the controlled system with the RBF neural network identifier. A PID controller is used in the feedback control to regulate the actual temperature by compensating the neural network inverse model output. Simulation results show that the proposed control has strong adaptability, robustness and satisfactory control performance. These advanced methods achieved the much improved control performance compared with conventional control schemes. The main contribution of this research lies in the following aspects. The MPC theory is realised to control Chylla-Haase polymerization reactor. Two adaptive reactor models including the RBF network model and MLP model are developed to predict the multiple-step-ahead values of the reactor output. Their modelling ability is compared with that of the models with fixed parameters and proven to be better. The RBF neural network and the MLP is trained by the recursive Least Squares (RLS) algorithm and is used to model parameter uncertainty in nonlinear dynamics of the Chylla-Haase reactor. The predictive control strategy based on the RBF neural network is applied to achieve set-point tracking of the reactor output against disturbances. The result shows that the RBF based model predictive control gives reliable result in the presence of some disturbances and keeps the reactor temperature within a tight tolerance range around the specified reaction temperature. Moreover, RBF neural network based model predictive control strategy has also been used to reduce the batch time in order to shorten the reaction period. RBF neural network is considered as a prediction model for control purpose which is based to minimize a cost function in order to determine an optimal sequence of control moves. The result shows that the RBF based model predictive control gives reliable result in the presence of variation of monomer and presence of some disturbances for keeping the reactor temperature within a tight tolerance range around the specified reaction temperature without harming the quality of the temperature control

    Machine Learning Based Applications for Data Visualization, Modeling, Control, and Optimization for Chemical and Biological Systems

    Get PDF
    This dissertation report covers Yan Ma’s Ph.D. research with applicational studies of machine learning in manufacturing and biological systems. The research work mainly focuses on reaction modeling, optimization, and control using a deep learning-based approaches, and the work mainly concentrates on deep reinforcement learning (DRL). Yan Ma’s research also involves with data mining with bioinformatics. Large-scale data obtained in RNA-seq is analyzed using non-linear dimensionality reduction with Principal Component Analysis (PCA), t-Distributed Stochastic Neighbor Embedding (t-SNE), and Uniform Manifold Approximation and Projection (UMAP), followed by clustering analysis using k-Means and Hierarchical Density-Based Spatial Clustering with Noise (HDBSCAN). This report focuses on 3 case studies with DRL optimization control including a polymerization reaction control with deep reinforcement learning, a bioreactor optimization, and a fed-batch reaction optimization from a reactor at Dow Inc.. In the first study, a data-driven controller based on DRL is developed for a fed-batch polymerization reaction with multiple continuous manipulative variables with continuous control. The second case study is the modeling and optimization of a bioreactor. In this study, a data-driven reaction model is developed using Artificial Neural Network (ANN) to simulate the growth curve and bio-product accumulation of cyanobacteria Plectonema. Then a DRL control agent that optimizes the daily nutrient input is applied to maximize the yield of valuable bio-product C-phycocyanin. C-phycocyanin yield is increased by 52.1% compared to a control group with the same total nutrient content in experimental validation. The third case study is employing the data-driven control scheme for optimization of a reactor from Dow Inc, where a DRL-based optimization framework is established for the optimization of the Multi-Input, Multi-Output (MIMO) reaction system with reaction surrogate modeling. Yan Ma’s research overall shows promising directions for employing the emerging technologies of data-driven methods and deep learning in the field of manufacturing and biological systems. It is demonstrated that DRL is an efficient algorithm in the study of three different reaction systems with both stochastic and deterministic policies. Also, the use of data-driven models in reaction simulation also shows promising results with the non-linear nature and fast computational speed of the neural network models

    Monitoring and Fault Diagnosis for Chylla-Haase Polymerization Reactor

    Get PDF
    The main objective of this research is to develop a fault detection and isolation (FDI) methodologies for Cylla-Haase polymerization reactor, and implement the developed methods to the nonlinear simulation model of the proposed reactor to evaluate the effectiveness of FDI methods. The first part of this research focus of this chapter is to understand the nonlinear dynamic behaviour of the Chylla-Haase polymerization reactor. In this part, the mathematical model of the proposed reactor is described. The Simulink model of the proposed reactor is set up using Simulink/MATLAB. The design of Simulink model is developed based on a set of ordinary differential equations that describe the dynamic behaviour of the proposed polymerization reactor. An independent radial basis function neural networks (RBFNN) are developed and employed here for an on-line diagnosis of actuator and sensor faults. In this research, a robust fault detection and isolation (FDI) scheme is developed for open-loop exothermic semi-batch polymerization reactor described by Chylla-Haase. The independent (RBFNN) is employed here when the system is subjected to system uncertainties and disturbances. Two different techniques to employ RBF neural networks are investigated. Firstly, an independent neural network is used to model the reactor dynamics and generate residuals. Secondly, an additional RBF neural network is developed as a classifier to isolate faults from the generated residuals. In the third part of this research, a robust fault detection and isolation (FDI) scheme is developed to monitor the Chylla-Haase polymerization reactor, when it is under the cascade PI control. This part is really challenging task as the controller output cannot be designed when the reactor is under closed-loop control, and the control action will correct small changes of the states caused by faults. The proposed FDI strategy employed a radial basis function neural network (RBFNN) in an independent mode to model the process dynamics, and using the weighted sum-squared prediction error as the residual. The Recursive Orthogonal Least Squares algorithm (ROLS) is employed to train the model to overcome the training difficulty of the independent mode of the network. Then, another RBFNN is used as a fault classifier to isolate faults from different features involved in the residual vector. In this research, an independent MLP neural network is implemented here to generate residuals for detection task. And another RBF is applied for isolation task performing as a classifier. The fault diagnosis scheme is developed for a Chylla-Haase reactor under open-loop and closed-loop control system. The comparison between these two neural network architectures (MPL and RBF) are shown that RBF configuration trained by (RLS) algorithm have several advantages. The first one is greater efficiency in finding optimal weights for field strength prediction in complex dynamic systems. The RBF configuration is less complex network that results in faster convergence. The training algorithms (RLs and ROLS) that used for training RBFNN in chapter (4) and (5) have proven to be efficient, which results in significant faster computer time in comparison to back-propagation one. Another fault diagnosis (FD) scheme is developed in this research for an exothermic semi-batch polymerization reactor. The scheme includes two parts: the first part is to generate residual using an extended Kalman filter (EKF), and the second part is the decision making to report fault using a standardized hypothesis of statistical tests. The FD simulation results are presented to demonstrate the effectiveness of the proposed method. In the lase section of this research, a robust fault diagnosis scheme for abrupt and incipient faults in nonlinear dynamic system. A general framework is developed for model-based fault detection and diagnosis using on-line approximators and adaptation/learning schemes. In this framework, neural network models constitute an important class of on-line approximators. The changes in the system dynamics due to fault are modelled as nonlinear functions of the state, while the time profile of the fault is assumed to be exponentially developing. The changes in the system dynamics are monitored by an on-line approximation model, which is used for detecting the failures. A systematic procedure for constructing nonlinear estimation algorithm is developed, and a stable learning scheme is derived using Lyapunov theory. Simulation studies are used to illustrate the results and to show the effectiveness of the fault diagnosis methodology. Finally, the success of the proposed fault diagnosis methods illustrates the potential of the application of an independent RBFNN, an independent MLP, an Extended kalman filter and an adaptive nonlinear observer based FD, to chemical reactors

    A Predictive Neural Network-Based Cascade Control for pH Reactors

    Get PDF
    This paper is concerned with the development of predictive neural network-based cascade control for pH reactors. The cascade structure consists of a master control loop (fuzzy proportional-integral) and a slave one (predictive neural network). The master loop is chosen to be more accurate but slower than the slave one. The strong features found in cascade structure have been added to the inherent features in model predictive neural network. The neural network is used to alleviate modeling difficulties found with pH reactor and to predict its behavior. The parameters of predictive algorithm are determined using an optimization algorithm. The effectiveness and feasibility of the proposed design have been demonstrated using MatLab

    Control of solution MMA polymerization in a CSTR

    Get PDF

    Novel strategies for process control based on hybrid semi-parametric mathematical systems

    Get PDF
    Tese de doutoramento. Engenharia Química. Universidade do Porto. Faculdade de Engenharia. 201

    Application of Artificial Neural Networks to Chemical and Process Engineering

    Get PDF
    The accelerated use of Artificial Neural Networks (ANNs) in Chemical and Process Engineering has drawn the attention of scientific and industrial communities, mainly due to the Big Data boom related to the analysis and interpretation of large data volumes required by Industry 4.0. ANNs are well-known nonlinear regression algorithms in the Machine Learning field for classification and prediction and are based on the human brain behavior, which learns tasks from experience through interconnected neurons. This empirical method can widely replace traditional complex phenomenological models based on nonlinear conservation equations, leading to a smaller computational effort – a very peculiar feature for its use in process optimization and control. Thereby, this chapter aims to exhibit several ANN modeling applications to different Chemical and Process Engineering areas, such as thermodynamics, kinetics and catalysis, process analysis and optimization, process safety and control, among others. This review study shows the increasing use of ANNs in the area, helping to understand and to explore process data aspects for future research

    Linear and Adaptive Controller Designs from Plant Data

    Get PDF
    Ph.DDOCTOR OF PHILOSOPH

    Nonlinear Autoregressive With Exogenous Input Model Based Control Strategy For Batch Esterification Reactor

    Get PDF
    Reaktor pengesteran kelompok kerap digunakan di dalam industri pemakanan dan farmasi. Kebiasaannya, pengesteran kelompok adalah proses yang kompleks kerana ia melibatkan kelakuan dinamik yang tak lelurus. Ini adalah disebabkan faktor pencirian kinetik dan proses yang tidak stabil. Oleh kerana itu, pemodelan dan kawalan reaktor pengesteran menjadi sukar dan penggunaan strategi kawalan termaju boleh menghasilkan prestasi kawalan yang lebih baik. Di antara semua strategi kawalan termaju, teknik kawalan berdasarkan model lebih banyak mendapat perhatian sepanjang dekad yang lalu. Sehubungan dengan itu, dalam kajian ini, kawalan berdasarkan model auto mundur tak lelurus dengan masukan luar (NARX-MBC) telah dibina bagi mengawal suhu reaktor pengesteran kelompok. Pembangunan strategi kawalan NARX-MBC dibahagikan kepada tiga bahagian penting iaitu proses, model dalaman dan pengawal. Batch esterification reactors are frequently used in the food and pharmaceutical industries. In general, batch esterification is a complex process since the system involves a nonlinear dynamic behavior due to its kinetic characteristics and unsteady state process. Due to these reasons, the modeling and control of the batch esterification reactor is difficult and the application of advanced control strategies often lead to a better control performance. Among all the advanced control strategies, model-based control techniques have been largely extended and have gained prominence during the past decades. In this work, a Nonlinear AutoRegressive with eXogenous inputs-Model Based Control (NARX-MBC) strategy was developed to control the reactor temperature of the batch esterification reactor. The development of the NARX-MBC strategy is divided into three important sections i.e. process, internal model, and controller
    corecore