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ABSTRACT 
Simulation studies on the on-line control of polymerization reactors are numerous, and have been 

extensively employed. Proportionai-integral-derivative (PD) controllers have been and continue to be in 

wide spread use throughout industry. This thesis work was to review the Iiterature on the control of 

polymerization reactors, and to experirnentally verify a novel PID controller tuning method on a well 

studied polymerization system. 

A continuous stirred tank reactor (CSTR) system for the solution homopolymerization of methyl 

methacrylate (MMA) in toluene was designed and built by a p s t  Ph.D. student (Chien, 1992). He dso 

developed a mechanistic model for the process. Several other students have studied system identification 

and control of this system. 

Recently, Wang, Barnes and CIuett ( 1995a) proposed a novel PID conuoller design method, which will be 

referred to as the W-C method from now on. The W-C method could be applied to a P D  conversion 

controller on the CSTR and compared to Chien's results. 

P D  control of conversion with differently tuned P D  controllers was first simulated. Next, P D  controtlers 

tuned using the interna1 model control (MC) tuning method and the W-C method were applied in a long 

experimental run to verify the simulation results. 

The CSTR process had changed little in the five years since Chien's work. The IMC tuned controller was 

fast and able to conuol conversion at the desirabIe setpoints and recover from disturbances. The W-C tuned 

controiIer had a controller output signal as predicted by the simulations, and also controlled and recovered 

from disturbances well. 
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INTRODUCTION 

Recent literature available on the on-line control of polymerization reactors is dorninated by simulations 

instead of experimental results. For polymer reactor control, effective algorithms require: 

a reliable mode1 

knowledge of the polymerization behaviour 

dependable on-line sensors 

good control theory and methods 

a process conuol data acquisition and computing system 

This thesis begins with a literature review in these areas. Chapter 2 is a survey of recent papers after 1992, 

specific to the control of polymerization reactors. It is fashioned as an update to the review papa  by 

MacGregor. Penlidis and Hamielec (1984) and builds on Chien (1992). 

Methyl methacrylate (MMA) polymerization has industrial importance, its kinetics have k e n  well studied 

and there is good documentation in the open literature. An on-line densitometer to rnectsure the conversion 

of monomer to polymer was available. Proportional-integral-derivative (PD) controllers continue to be in 

widespread industrial use. Therefore, on-line PID control of MMA solution polymerization was chosen for 

this study. 

The objective was to experimendly veriCy a novel P D  controller tuning technique proposed by Wang, 

Barnes and Cluett (1995a). but not yet tested with an on-line polymerization control system. The controlled 

variable would be monomer conversion - or product quantity. Product quality (mo1ecula.r weight) would be 

measured but not controlIed. 

Chapter 3 is a simulation study of the P D  tuning method applied to the CSTR to predict expected 

behaviour as well as identify comparable P D  tuning rnethods. 

Chapter 4 covers experimental verification of the proposed P D  controller tuning method as applied to 

conversion control of solution MMA polymerization in a CSTR. Simulations showed that the process could 

be controlled by a P D  controller tuned using the Wang et ai. method. Cornparisons were made with an 

M C  tuned PID controller. 



The laboratory, bench-scale, continuously s h e d  tank reactor (CSTR) system is used for studying solution 

polyrnerization of methyl methacrylate (MMA) in toluene with 22-azobisisobutyroniûile (AIBN) initiator. 

Four graduate students have simulated and experimentally verified modelling and control of the system. 

Chien (1992) completed theoreticai and practical work that has been the basis for much of the subsequent 

work. He conducted an extensive literatwe review and developed a mechanistic model for the solution 

polymerization of MMA in a CSTR that included reactive impurities and predicted polyrnerization 

behaviour and important polymer properties. He also designed and built the automated, lab-scale CSTR 

polyrnerization system to experimentally verify the promising control studies identified in his simulation 

runs. 

Conventional proportional-integrd-derivative (PD) and stochastic control strategies were explored. 

Conventional PID strategies also included Smith Predictor and Dahlin's conuol. Specific stochastic control 

strategies were: unconstrained minimum variance control (MVC), constrained MVC , and one-step optimal 

control. 

Ogunye ( 1994) emphasized cornputer-based linear algebra and simulation of different control strategies. 

He extended the previously single input single output (SISO) control of conversion by manipulated initiator 

feed rate, to multiple input multiple output (MIMO) control by including on-Iine molecular weight 

estimation and rnanipulating reactor temperature. Ogunye also formuIated a practical solution to input 

saturation and controller wind-up in advanced digital controllers. 

MultivariabIe controtlers studied were: Iinear quadratic Gaussian (LQG) which was ineffective and interna1 

model control (MC) which was more flexible. Both LQG and PID were effective in simulation runs and 

experirnents confirmed the results. 

Lawrence ( 1994) modelled the multivariable process and compared further application of SISO and MIMO 

control strategies. Her work in system identification and control investigated both open- and closed-loop 

behaviour of the reactor in terms of productivity (conversion) and quality (molecular weight). Two 

correlations were developed relating measured reactor variables: reactor or product temperature and 

solution viscosity to conversion and weight average molecular weight. 

Using the correlations Lawrence implemented two model-based control algorithms using initiator flow rate 

and reactor temperature as the manipulated variables. The two controllers were: generalized predictive 

conuol (GPC) and model predictive control (MPC). GPC and MPC were implemented at the simulation 



level and two SISO GPC controllers were verified experimentally. SISO GPC and MPC control prociuced 

similar results. The GPC control was Iess drastic and had smoother manipuIated variable action than the 

MPC. GPC performed better for both disturbance rejection and set-point changed. MPC was easier to 

implement in the multivariable case. 

Mutha (1996) presented a modified extended Kaiman filter (EKF) and a non-linear mode1 predictive control 

(NLMPC) algorithm. The fixed-lag smoothing-based EKF uses rneasurements multiple times to achieve 

good convergence and robustness to state and measurement noise. 

The NLMPC was developed for the more dificult case of control non-fine (CNA) systerns. Temperature 

affects the system nonlinearly through the Arrhenius relationship of the reaction rate constants so the system 

is CNA. 

Both techniques were applied to a simulated acryionitri1ehutadiene batch emulsion copolyrnerization 

(NBR) system and the experirnental continuous solution homopolymerization of methyl methacrylate 

(MMA) system. 

A new control program was run under QNX, a real-time, multi-processing, üNIX-based operating system. 

This impIernentation was different from the previous work which was done in DOS using a single 

QuickBASIC program. 



CHAPTER 2: CONTROL OF POLYMERIZATION REACTORS - 
AN UPDATED RI3VIEW 

2.1 Introduction 
This chapter is an updated review of polymer reactor control. It is modelled after MacGregor et al. (1984) 

and builds on Chien (1992). 

Polymerization systems are characterized by many complex, non-linear, interacting phenomena, and a great 

deal of effort has been invested in the development and application of modern control techniques that c m  

cope with the difficuIties inherent in such complex processes- 

With the advances in present-day computers. direct digital control (DDC) has  evotved to a more mature 

stage for practical applications. On-Iine monitoring of process variables coupled with state estimation 

techniques and controf laws that may have adaptive parts are examples of the complexity and capacity that a 

computer is called upon with which to deal. 

Numerous publications on rnodelling, optimization, and control of polymerization processes c m  be found in 

the open Iiterature, especialIy in the last twenty years or so. These can be further classified into papers 

dealing with homogeneous or heterogeneous polymerizations, inctuding various reactor types (batch, 

semibatch, and continuous). However, as mentioned earlier, the great majority of these papers deai with the 

simulation stage. 

There are only a few review papers on recent developments in the area of polymer reactor controt, which 

have appeared since the MacGregor et ai. (1984) review. These papers are surnmarized in Table 2.1 and 

discussed below. 

Ray (1985) illustrates the principal difficulties in achieving good control of polymerization reactors. These 

are related to inadequate, or even unavailable, on-line measurements, a lack of understanding of the 

dynarnics of the process, the overly sensitive and nonlinear behaviour, which is strongly dependent on the 

operating conditions of these reactors, and the lack of welldevetoped techniques for the control of 

nonlinear processes. 

Elicabe and Meira (1988b) emphasize the problems from the point of view of optimal control, in an attempt 

to classifi the tools that modern control theory has to offer. They cover in detail issues related to the 

formulation of meaningful control objectives, and discuss problems with process dynarnics and 



measurements. Then, a review of the solutions attempted with respect to state estimation and control is 

provided. in their review, considerable emphasis has been put on optima1 and adaptive control strategies. 

MacGregor (1986) is concemed more with the control of polymer quality and how it is related to other 

process variables. He points out that the presence of stochastic disttubances (usually varying amounts of 

reactive impurities) needs to be fully appreciated and somehow modelled, as to its final effect on polymer 

production and quality. 

An industrial perspective on reactor control has been presented by Sch~elle and Richards (1986) and 

Richards and Schnelle (1988). They point out that the trend in both Iiterature and industry is to view reactor 

control as a multivariable problem, while modelling and control system analysis are becoming standard 

parts of the general reactor control design rnethodology . 

Schork, Deshpande and Leffew (1993) have written a textbook on the control of polymerization reactors. 

They cover fiom basic kinetics of polymerization, through single-Ioop, multi-loop and non-linear control 

strategies to polymer processing. Important aspects of polymer reactor engineering. details of problerns 

with measurement and estimation, and control strategies are covered. 

Dimitratos, Eliçabe and Geogakis (1994) review the major issues related to control of emulsion 

polymerization - the process, modelling, sensors and control techniques. They place an emphasis on 

reviewing control relevant literature. 

Embiriçu, Lima and Pinto (1996) suweyed recent papers in advanced control of polymerization reactors. 

Emphasis was on optimal control theory, nonlinear control, adaptive control and predictive control. The 

review also covered optimization and state estimation for polymerization systems. 

Abbreviations and symbols in tables are explained in Appendix A. "Work" can be algorithmic, 

mathematical modelling, or other theoretical work (T), simuIation or cornputer prograrns (S), and 

experirnental, indusuial or applications O(). 



Table 2.1: Chronological Iist of past review papers on polymerization reactor control 

Re ference 
Amre hn ( 1977) 
MacGregor et al. (1984) 
Ray (1986) 
MacGregor ( 1986) 
SchneIle & Richards (1986) 
Eliçabe & Meira (1988b) 
Richards & Schnelle (1988) 
Ray ( 1989) 
Chien ( 1992) 
Schork et al. (1993) 
Dimitratos et al. (1994) 
Embiruçu et al. (1996) 

No tes 
emphasis on digital cornputer control for reactor environment 
large review; emphasis on polymer properties 
ACC 1985; difficulties in control & some techniques to apply 
polymer quality 
industriai perspec cive 
estimation and control; emphasis on optimal control 
hierarchical building block approach to indusuial reactor control 
computer-aided monitoring, design and control 
Chapter 6 in Ph.D. thesis 
textbook on control of polymerization 
control of emulsion polymerization reactors 
survey of advanced control of polymerization reactors 



2.2 Optimization 

Tieu, Cluett and Penlidis (1994) reviewed optirnization of potymer reactor operation. Table 2.2 lists recent 

work that updates the review with information genedly pubtished since 1994. 

There is some overlap of this section with the sections on ba'tchlsemi-batch and continuous control. Papers 

listed here are less specific to a patticular polyrner system or type of operation. 



Table 2.2: Recent work on optimization of polymer reactor systems 

Reference System Work Notes 
Brooks ( 1997) 

Chakravarthy et al. ( 1997) 

Choi & Butala (1989) 
Choi & Butala (1991) 
Cozewith ( 1988) 
Debling & Ray (1995) 

Fm et al. (1995) 
Fernandez-Sempere et ai. ( 1995) 
Fuchigami et al. ( 1996) 

Hugo & Steinbach (1986) 
Kataoka et ai- (1995) 
Keskinen ( 1993) 
Kim et al. (199 1) 

Kiparissides et al, (1994) 
KohIi et al. ( 1996) 

McAuley et al. ( 1990) 
McAuley & MacGregor ( 1992) 

McAuIey & MacGregor ( 1993) 

Mrkek et al. (199 1 )  
Pinto & Ray ( 1995a) 
Pinto & Ray (1995b) 
Pinto ( 1995) 
Rahman & Palanki ( 1996) 
Russo & Bequette ( 1995) 
Sajadi & Jahanzad ( 1994) 
Salaün et al. (1996) 

Secchi et al. ( 1990) 

Soroush & Kravaris ( l993b) 
Soroush & Kravaris ( 1993c) 
Tewiesch ( 1995) 

Tieu et ai. (1994) 
Tieu et al. (1995) 
Venvijs et al. (1996) 
Wu et al. (1982) 

MMA 

SAN batch 
-Ac 

olefins 

CSTR 
various reactors 
bulk MMA 

CSTR 
SB R/CSTR 
STYIemulsion 
PE 
es, 2 CSTRS 

LDPWtubular 
nylon 61 
semibatch 

LLDPEigas 
phase 
gas phase PE 

PVCIsuspension 
VA-MMA 
VA-MMA 
copolyrner 
batch 

styrenehatch 
terpolymer 

semi- batc h 
bulk PMMA 
batch 
batch, MMA 

various 
general 

polystyrene 

review of special aspects of polymer 
reactor design 

genetic algorithm. minimum tirne, gel 
effec t 

reactor optimization 
optimal open loop control strategy 
optimal start-uplchangeover policies 
dynamic modelling of product grade 

transitions (PP, LLDPE, HDPE, EPR) 
start-up residence time distribution 
residence time distribution 
short life initiator, rnixing effects and 

reactor scale-up 
safe operating limits 
Taylor vortex fl ow reactor 
high pressure; modetling and flowsheeting 
bifurcation study with binary initiator 

mixture 
online optimization procedure 
industrial batch time optimization 

modelling 
optimizing grade transition 

NL controller, global inputfoutput 
linearization, MI & density control. 
dynamic grade change optimization 

gradua1 initiator dosage study 
validating mode1 for bifurcation study 
bifurcation analysis 
bifurcation analysis in plant 
on-line end-time optimization 
CSTR multiplici ty behaviour 
minimum reaction time 
sequential method tendency rnodelling; 
optimizing for end use properties; 
industrial 

constained optimal control 

optimal design - theory 
optimal design - case study 
parameter switch from off-line to on-Iine 

optimization 
dynamic behaviour, stability , optimal 

start-up 
review and case studies 
cornparison of collocation methods 
start-up design, temperature, safety 
Pontryagin's Maximum Principle 



2.2.1 Periodic Operation 
Kim, Choi and Alexander (199 1) studied the simulated, free-radical, solution polymerization of styrene in a 

series of two CSTRs with a binary initiator mixture. They found many complex, periodic operating modes 

using different process parameters. 

Some recent work on dynarnic modelling and bifurcation has been done by Pinto and Ray (1995a,b) on the 

VA-MM4 copnlymr system and was tested industrially by Pinto in 1995. 

2.2.2 Steady-state Optimization 

Kiparissides, Verros and Pertsinidis (1994) developed an on-line rnulti-level optimizauon procedure for 

high pressure tubular LDPE (low-density polyethylene) reactor based on a comprehensive steady-state 

model of the process. 

Tieu, Cluett and Penlidis (1994) reviewed optimization of batch, semi-batch, and continuous polyrnerization 

reactors. The OPTPAC software package by Tieu was evaluated against experimentai results from 

litcrature. 

Tieu, Cluett and Penlidis ( 1995) compared an end-point collocation method with the simultaneous 

optimization and collocation (SOCOLL) method for dynarnic optimization problems. They found that their 

method yielded state estimates with smaller overall deviation than the SOCOLL method. They also found 

that the method gave a better solution than previous literature values for a terminai state constraint example. 

3.2.3 Optimal Start-up1Changeover Policies 

McAuley and MacGregor (199 1, 1992, 1993) studied an industrial polyethylene reactor. They modelled 

the system, studied nonlinear control and optimized grade changes. The industrial setting had product 

parameters measured by melt index and density instead of the more acdemic molecular weight distribution 

and copolymer composition. 

Fan, Shen and Chou (1995) have modelled transient residence time distributions for the study of reactor 

start-up. They derived a mathematical model for the residence time distribution (RTD) of a CSTR during 

process start-up. They used stochastic population balances to visualise the fiuid flow as a system of discrete 

entities such as molecules. 

Verwijs, van den Berg and Westerterp (1996) present a procedure for an industrial adiabatic chernical 

reactor to achieve an initiai temperature profile. They emphasise the safety of any strategy. 



2.2.4 Reactor Design 

Soroush and KMvaris (1992) modelled the continuous fiee radicd solution polymerization of MMA as a 

two layer system. Their first model was a reduced order model based on KeIley (1964) that was used for 

the dynamic single index optimization for batch time and product concentration at the end of the batch 

cycle. The second model was the overall model used for assessrnent of feasibility, flexibility, safety and 

controllability as described in depth in the article. The control problem and a control law were formulated 

with a nonstationary, MIMO, non-linear dynamic model. They propose use of globally stabilising control 

(GLC) to handle MIMO, nonlinearities, and modelling errors and disturbances. 

Soroush and Kravaris (1993b,c) published two articles on the theoretical Frarnework and a case study on the 

optimal design and operation of single-stage or serni-batch reactors. The first paper deals mostIy with the 

equations and requirements of optimization of their inner and outer system. The second paper follows the 

case study of solution polymerization of MMA in toluene with an AIBN initiator. Their objectives are low 

PDI, high conversion, and MW of 4OO,Oûû. Their process uses the typical free-radical homopoIymerization 

assumptions. They also take the gel effectlauto-acceleration and volume shrinkage into account. From their 

process model, they design a reactor, assess for feasibiiity, flexibility, controllability, and safety of the 

design and formulate a control law for the system - PI control for the SIS0 temperature regulation problern. 

Keskinen (1993) proposed flowsheeting and design optimization practice using various polymeflzation 

processes such as high pressure polyethylene production as examples. 

Russo and Bequette (1995) reviewed and studied the influence of design parameters on the multiplicity 

behaviour of the classic continuous stirred tank reactor model when a third state, cooling jacket dynarnics, is 

included. They Found that certain design parameter changes that remove multipIicities in the two-state 

model can not remove multiplicities in the three-state model. 

Pinto (1995~) anatyzed the dynarnic behaviour of the solution polymerization of AIBN initiated vinyl 

acetate - MMA copolymerization in tert-butanol in a CSTR. They found the dynamic behaviour of a hl1 

scale reactor had complex behaviour when pressure was increased beyond those analyzed experirnentally. 

Fuchigarni, Nagai and Sugiyarna (1996) studied CSTR scale-up to an industrial scale from a novel 

operational design. They used a very short life initiator, and empirically modelled mixing effecis they had 

developed (Fuchigami and Inami, 1995) to design a safer reactor operating mode. 

2.2.5 Batch Optirnization 

Semibatch optimization typically is the minimization of batch time while attaining a specified molecular 

weight distribution (Chen and Jeng, 1978). 



Secchi, Lima and Pinto (1990) studied constnined optimal control for the bulk polymerization of MMA 

initiated by tert-bucyl peroxide in a semi-batch polymer reactor. They defined a performance criterion 

based on squared errors of conversion and molecular weight averages from target values. They used the 

coordinate-transformation method solve some of the numerical problerns. Conversion was Iimited to 70% 

to avoid the gel effect- 

Soroush and Kravaris (1993b) proposed a framework for the optimal design and operation of batch reactors 

using polymerization reactors as some of their examples. Typical quality indices such as flow and strength 

properties were tied to performance indices such as polydispersity index (PDI) and average molecular 

weight which could be optimized dong with other performance indices Iike end time and conversion drift 

by varying operating conditions such as temperature and initiator concentration. Key areas of modelling, 

dynarnic optimization, design, feasibility, and control schemes were discussed. 

They also presented an example of a MMA batch reactor case study (Soroush and Kravaris, 1993c) that 

showed the steps in modelling to optimizing the reactor design and operation for building a feasible , 

flexible, controllable and safe system. 

Sajjadi and Jahanzad ( 1994) optimized the simulated, isothermal, bulk, free radicai polymerization of 

styrene for minimum reaction time. The final product had conversion and number average chah length 

(NACL) targets. 

Terwiesch ( 1995) proposes a single scalar panmeter to cautiously switch from an off-line optimized input 

profile to on-line optimization for batch process control. This parameter is used to estimate uncertainty of 

mode1 mismatch, and measurement and parameter error. 

KohIi, Sareen and Gupta (1996) have studied optimal vapour reIease rate (pressure) histories for batch time 

minimisation in industrial semi-batch nylon-6 reactors, with end-point constraints. Optimal pressure 

histories were qualitatively simiIar to standard operating conditions but quantitatively different and 

predicted up to 50% irnprovement. 



2.3 Modeliing in Polymer Reactor Control 
Modelling issues for various polymerization reactors are reviewed here. ModelIing and reviews of modeIs 

of polymerization systems abound. A comprehensive review was published by Gao and Penlidis (1996). 

This section covers the last decacie or so, since it is not the primary focus of the review, but is strongly 

related to controller design. 

Table 2.3 summarizes some recent literature on modelling issues specific to polymer reactor controi. 

Several recent representative pieces of work from the literature, in which poiymerization rnodels have been 

developed in order to aid the polymer reactor control stage, are Iisted in Table 2.4. Detailed reviews can be 

found in Penlidis et al. (1985a), Hamielec el al. (1987a), Tirrell et ai. (1987) and Rawlings and Ray 

(1 987a, b). 

Fundamental models play a very important role for the control of polymerization processes. This is due to a 

number of reasons: the Iack of available on-line sensors, the complexity of the poiymerization processes, the 

highly sensitive and nonlinear behaviour of these reactors, and the lack of well-developed techniques for the 

control of nonlinear processes. Therefore, if a model can provide reliable information about the process 

States from the measured operating conditions, it can be used for process simulation, design (scale-up), 

optimization and control. 

The primary objective of polymer reactor modelling is to develop mathematical equations that are capable 

of explaining the polymerization rate behaviour and predict polymer or latex properties accurately. Since 

polymerization reactions are extremely complex, involving interactions between species of different chah 

lengths, a rigorous mathematical analysis will result in an infinite number of differential-algebraic equations 

(DAE). The mathematical description becomes even more complicated due to diffusion-controlled 

reactions. Therefore, if one's basic objective is to develop mathematicai models to account for various 

kinetic and thermodynarnic factors involved in polymerization reactors, then the model should take al1 of 

these factors into account. 

However, in deveioping models for control studies, the motivation is different from that of pure 

mathematical mode11ing as practised in basic science and engineering (Franklin and Powell, 1980). In 

control studies, one is more interested in understanding and appreciating the effect of different input 

variables on the properties of the polymer product, so that one can devise a strategy suitable for controlIing 

these properties. Furthemore, it is desirable to develop models that are simple in mathematical structure; 

this facilitates the solution of the control or optimization problem, and hence the subsequent on-line 

implementation of the optimal control policies. 



There are a number of different approaches that have been taken in developing expressions for the 

molecular weight part in polymerization (e.g. statistical methods, instantaneous property balances, 

transfonn methods and the method of moments). From the viewpoint of reactor control, one useful 

description is via a set of differentiai equations descnbing the low order moments of MWD. From these 

moment States the number and weight average molecular weights are easily calculated. 

For free radical polymerization mathematical models appear to be teasonably well developed (e-g. 

Hamielec and MacGregor, 1984; Hamielec et al., 1987b). The major uncenainties lie in obtaining 

reasonable estimates of the termination rate parameters (including the gel effect parameters) and the rate 

constants for transfer reactions, especially the ones that represent transfer to large polymer molecules. 

Obtaining good estimates of these parameters is far from straightforward. Systematic kinetic investigations 

are required. and often the type of data required (GPC, NMR) is very difficult to obtain due to poor 

precision, lack of well-developed procedures, and frequently practical problems like the insohbility of 

branched polymers in common solvents, etc. 

Seth and Gupta (1995t96) improved on an earlier semi-empirical model to predict the Trommsdorff effect 

on the rate constants in a non-isothermai semibatch reactor for the polymerization of MMA. The newer 

model was less sensitive to small variations in the parameters. Systems were benzoyl peroxide (BPO) and 

AiBN initiator with MMA in benzene. 

Nair, Chaumont and Colombani (1995) proposed a kinetic model for the free-radical polymerization in the 

presence of added initiator and an addition-fragmentation agent. Their model accounts for chain 

termination by primaq radicals but excludes the mutual termination of primary radical. Their generd 

model was applied to MMA polymerization in the presence of an addition-fragmentation agent. The agent 

retarded the reaction up to 70°C beyond which, the thermal decomposition of the peroxy group in the agent 

increased the reaction rate. This study discusses the reactions and control of chah transfer in free-radical 

polymerization. 

For Ziegler-Natta (ZN) systems the understanding of the molecular weight development is much less well 

understood. Again, modelling ionic systems involves a more detailed understanding of the nature of the 

active cataiyst sites, and of the effect of impurities. Diffusional effects in solid catalyzed gas phase 

reactions may aIso play an important role, which makes the overall picture even more complicated. 

In heterogeneous polymerization such as emulsion or dispersion systems where the particie size distribution 

plays an important role in both the final product quaiity and the rate of reaction, population balances 

accounting for the birth, death and growth of polymer particles constitute an important part of the model. 

Penlidis et al. (1986a,b) and Rawlings and Ray (1987a.b) have summarized the population balance and age 

distribution approaches. Major uncertainties still lie in modeIlhg the particle nucleation and coagulation 



phenomena, particularly in the presence of non-ionic stabilizers. Usually these phenomena are so 

unpredictable and occur so rapidly that Iittle cm be done to actively control them during a polymerization. 

The best that can be done is to try to avoid having to deai with them by using seeded emulsions, and an 

adequate amount of stabilizer. 

Semino and Ray (1995) analyzed the modelling and control of systems described by population balances. 

Their examples were human populations, emulsion polyrnerization, and crystdlisation. Control of particle 

size distribution by rnanipülating the feed concentrations is suggested as a practical solution. 

Chen, Lee and Chiu (1996) developed a generai mathematical mode1 to estimate the particle concentration 

during the course of soapless emulsion polymerization of methyl methacrylate (MMA). Rate of 

polymerization, number of radicals in each particle, instantaneous average molecular weight, and 

termination rate constants were calcuiated and agreed with experimental results. 

Over the last quarter century or so, Ray (I972), Ray and Lawrence (1977), Hamer, Akramov and Ray 

(198 l ) ,  Ray (1983). Arriola and Ray (1987), Stevens and Ray (1989) and Congalidis, Richards and Ray 

(1989) have developed extensive mathematical models to describe various polymerization systems: step and 

addition homo- and multi-component polymerization and polyolefin systems. Multiplicity in continuous 

reactors is a phenomenon of continuous polymerization systems that has also k e n  modelled. Predictions of 

conversion, molecular weights. composition and sequence length are some properties that are predicted by 

these models. Some recent work is summarized in Hutchinson and Ray (1987), and de Carvalho et al. 

(1990). CoyIe et al. (1 985) discussed the high conversion free radical polymerization of methyl 

methacrylate (MMA) using a finite element analysis, and Gonzalez-Romero and Rodriguez (1987) 

presented an alternative using orthogonal coIIocation solutions. Hamielec el al. (I987b) presented 

mathematical models for multicomponent polymerization in order to control composition, chab 

microstructure, molecular weight, and long chah branching and crosslinking. 

Litvinenko ( 1996) reviewed chain transfer reactions in batch and continuous non-terrninating catdytic 

polymerization reactions. The effect of chain transfer to solvent, monomer and polymer on molecular 

weight distributions were discussed. 

As an exarnple of a recent, practical and direct application of modelting, PoIacco, Semino and Rizzo (1994) 

used modelling of suspension poIymerization of MMA to study acrylic bone cernent applications. PMMA 

is used to join the bone and metallic joint with a polymerization process in the surgery room. In a new 

process, a suspension of monomer in agarose and water in the form of a gel is used to hold the monomer in 

place. Modelling of the reaction was done to analyze the influence of system geometry and the temperature 

distribution. Monorner droplets were treated as small batch reactors. Mass balances were determined for 



each drop and an o v e d l  energy balance applied. Benzoyl peroxide was the initiator. Mechanistic models 

developed by Chiu, Carratt and Soong (1983) were used with empirical rate constants. 

One of the most widely applicable techniques used to denve a simpler model for control purposes is mode1 

reduction. During mode1 reduction one's aim is to simpliCy a higher order detailed model by a lower order 

simpler mode1 such ttiat the simpler model captures the essential features of the original process adequately. 

Mode1 reduction is a cornmon procedure in engineering practice. Its main objectives are to simplify the 

analysis and simulation of the original complicated system, to reduce the computationai load in the design 

of controllers, and finaily, to derive simpler control system structures (Paraskevopoulos, 1986). 

Penlidis, Ponnuswarny, Kiparissides and O'Driscoll(1992) reviewed modetling specifically for reactor 

control. They simplified the polymerization model in five steps, starting with the basic kinetic equations and 

assumptions. They next used the method of moments, applied the quasi-steady state approximation, 

simplified with an order of magnitude study, and convened from continuous to discrete time. Thus, for 

control studies in polymer reaction engineering purposes, this simplified model adequately described the 

effect of input variables on the process and final polymer properties as required. 

Another area of modelling, is to ernpirically model only the required area of study. Fuchigami and Inarni 

(1995) modelled the solution polymerization in a CSTR using very short life initiators of 2 to 30 seconds 

for an industrial reactor, They continued the work (Fuchigarni. lnami and Sugiyama, 1996) to study mixing 

effects to evaluate a double helical impeller design at the pilot plant stage. 

They first studied continuous bulk polymenzation of methyl methacrylate using very short-life initiators 

( c l 0  sec). Their pilot plant study was for the experimental verification of initiator and mixing effects for a 

commercial plant. They combined initiator and mixing effect in an effectiveness factor. 

Higher mixing speed resulted in higher conversion and was more pronounced for shorter life initiators. It 

was easier to control conversion with a shorter life initiator with initiator concentrations over 45 ppm, 

where increased temperature decreased conversion (key !) and increased the F-value. With initiator half- 

lives shorter than mixing times, initiator decomposes before complete mixing. As temperature increases, 

the half-life decreases and conversions decrease. This technique was used as a bais for a plant producing 

6000 tondyr of PMMA that was constructed in June 199 1. 

Feliu, Sottile, Bassani, Ligthart and Maschio (1996) have investigated the thermal behaviour and 

parameters for bulk MMA polymenzation. Correlations and mathematical models were proposed to predict 

the dynamic behaviour which emphasis on safety. 



ChemicaI processes are often modelled by a combination of aigebraic and ordinary differential equations 

(ODE). These differential algebraic equations (DAE) describe a wider range of systems. The differentid 

index is the minimum number of differentiation operations required to convert the DAE system to a purely 

ODE systern. Kumar and Daoutidis (1995) discuss output feedback control of high index, multivariate, non- 

linear DAES. They developed an algorithmic procedure to denve a state space realisation, and then control 

with state feedback and state observes. A two phase reactor simulation was used as an example. 

The intent here is not to form a detaded review on the mathematical modelling of polymerization processes, 

but to simpIy mention a few representative recent efforts. Detailed reviews can be found in Ray (1972). 

Penlidis et al. (1985a) and Hamietec et al. (1987a). 



Table 2.3: Recent work on modelling issues related to polymer reactor control 

Re ference System Work Notes - 
Burke et ai. (1995) copol ymer S mode1 discrimination 
Burke et ai. (1997) 

Canu & Ray (199 1) 

Chien & Penlidis (1994b) 
Chylla et al. (1997) 

Debling et al. (1997) 
Dubé et al. (1997) 

Fuchigami et al. ( 1996) 
Harismiadis et al. ( 1996) 
Hong ( 1997) 
Kanuas & Kalogerakis (1996) 

Kwag & Choi (1994) 
Litvinenko ( 1996) 

Palavajjhala et ai. ( 1996) 
Penlidis et ai. ( 1992) 
Powell & Brooks (1995) 

Russo & Bequette ( 1995) 
Russo & Bequette ( 1996) 
Srhivas et ai. (1996) 
Teymour ( 1997) 
To bita ( 1997) 

Yamamoto et al. (1996) 
Yang & Suspene (199 1) 
Zacca et al. ( 1996) 
Zacca et ai. ( 1997) 

copol ymer 

MMA 
SR-amethyl- 
STY - AA 
PP 
general 

MMA/csTR 
general 
polymer/solvent 
pol yole fin 

PE 
batch & 
continuous 
black box 
general 
vinyihemibatch 

jacketed CSTR 
jacketed CSTR 
semibatch 
semibatch 
CSTR 

batch 
polyester 
olefins 
PP. PE 

discriminating between terminal and 
penultimate models 

discrete weighted residuds method 
(DWRM) for large sets of discrete DAE 

effect of impurities 
dynarnics of semibatch 

residence time distribution effects 
multicomponent chah-growth 
polymerization modelling review 

mixing effects 
miscibility models 
estimate Free volume parameters 
fluidization characterisation using x-ray 
cornputer assisted tomography scanning 

initiator characteristics at high T & P 
steady-state model of conversion, PDI, 
and MW, with chain transfer 
PRBS signal design 
rnodelling for control, review 
steady & stationary state assumptions, 
reactor performance 

process design impact on multiplicity 
cooling jacket dynamics 
gel effect 
analysis of dynamics 
LCB control using chain transfer 
monomer 

mixing effects on T distribution 
viscosity gt gel point of curing study 
residence tirne distri bu tion 
residence time distri bution effects 



Table 2.4: Recent work on modelling specific polymer reactor systems 

Reference S ystem Work Notes 
B hagwat et al. (1994) 

Chen et al. ( 1996) 
Dairanieh (199 1) 

Dubé et al. (1996) 

Feliu et d. (1996) 
Fuchigami & Inami (1995) 

Gao & Penlidis (1996) 
Gao et al. ( 1997) 
Jacob et al, ( 1997) 
Kiparissides ( 1996) 
Kiparissides et al. ( 1997) 
Lei et al. (1992) 
Madras et al. (1996) 
Maschio et al. (1994) 

McKenna et al. ( 1996b) 
Mutha ( 1996) 

Nair et al. ( 1995) 
Pinto ( 1990) 

Pinto & Ray (1996) 
Polacco et al. (1994) 

Polacco et al. (1996) 

Roy & Devi ( 1996) 

Sayer et al. ( 1997) 

Semino & Ray (1995a) 
Seth & Gupta ( 1995/96) 
Soares & Hamielec (1996a) 

Soares & Harnielec ( 1996b) 
Soares & Hamielec ( 1996~)  
Sun et al. (1997) 
Vega et al. (1997) 
Vivaldo-Lima et al. ( 1997) 

Wolff & Bos (1997) 
Xie et al. (1994) 

MMA 
condensation 

Acrylonitrile- 
Butadiene 
MMA 
MMA-EA 

generai 
PET 
PMA 

PVChatch 
PET 
PMMA 
MMA 

PE/slurry 
NBR, MMA 

VA-MMA 
MMA 
suspension 
MMA 
suspension 
MMA 
emulsion 
SBR 
emulsion 
emutsion 
MMA 
olefins 
CSTR uain 

PE 
PP 
butadiene 
NBR 
styreneddivinyl- 
benzene 
PS 
gas phase PE 

solid Z-N catalyst; MW, PDI; mass 
transfer explmation for high PD1 with 
single-site 

soapless emulsion, particle formation 
viscosity buildup of suffonated 

melamine-formaldehyde resins 
modelling of emulsion copolymerization 

thermokinetic parameters, stability 
steady-state CSTR model of reaction 

rates and mixing effects using short life 
initiator 

review 
rnodelling solid state polycondensation 
microwave polyrnerization 
review 
predictive mode1 
CSTR and extruder modelling 
degradation 
batchisuspension and tubular/çolution 

rnodels to study MWD control 
transfer phenomena, hetero 2-N catalyst 
model conversion, composition, and 

MW 
reaction rates 
continuous suspension & bulk systems, 

study of multiple steady States 
inhibitor effect 
bulk suspension, temperature profile 

temperature profile during reaction 

mechanisrn in emulsion and 
microemulsion 

dynarnic modelling of cold emulsion 
polymerization 

population balance model 
gel effect in semi-batch 
dynamic modelling with 

copolymerization, Z-N & metallocene 
catalysts 

catalyst pre-polymerization effect 
kinetics, effect of hydrogen 
gas phase, particle growth 
modelling an industriai reactor 
review of suspension polymerization 
modelling for PSD 

modelling MWD 
review 



2.4 Online Monitoring 

An integrai element in the control of polymerization processes is that the controlled properties of the 

process be measured or at Ieast estimated. Some of the rnost common measuring instruments include 

thermocouples, densitometers, and gel permeation chromatographs for temperature, conversion, and 

molecular weights, respectively. Sensors can in general be implemented in two ways: on-line and off-Iine. 

It is desirable, particularly for control purposes, to choose sensors which can take rapid measurements of 

changes occuring in the process. In other words, delay times should be small. These types of 

measurements are available through on-line sensors, and typically reflect the openting conditions of the 

process. However, for processes in which it is necessary to also maintain a particular quality of the product, 

other measurements are usually needed, However, since these measurements are performed off-Iine, 

significant delays rnay result. From a control point-of-view, this is undesirable because delays rnay cause 

instability to a controlled process and. ufiless very good state estimation (or prediction) schemes can be 

implemented, the control objectives should be reconsidered. A concise review of on-line sensors for 

polymerization reactors was prepared by Chien and Peniidis (1990). This section updates this review and 

discusses the technology available for on-line monitoring of polymer reactor operation and polyrner 

properties (quality). Also, a brief discussion is given on several promising off-iine techniques that sorne 

day may be implemented on-line. 

Monitoring cm be broken down into sensors of reactor operation and polymer property estimation. 

Monitoring techniques For reactor operation are typical of chernical engineering measurements: 

temperatures, pressures, flows, levels and heat balances. 

On-line polyrner and latex property measurernent inchdes density, viscosity, gas chromatography (GC), 

hydrodynamic chromatography (HDC), turbidity spectra, and surface tension. Off-line measurements c m  

aIso supplement the on-line measurements to give better measurement for control purposes such as fast 

feedback, robus tness and accuracy: 

O gravirnetry for conversion 

O gel permeation chromatography (GPC) for molecular weight distribution 

nuclear magnetic resonance (NMR) for composition, sequence tength, and structural information 

O low angle laser light scattering (LALLS) for precise measurement of weight average molecular 

weights 

O hydrodynamic (HDC) or size exclusion chromatography (SEC) for particle size distributions 



Table 2.5 summarizes recent work on monitoring techniques for reactor operation and on-line monitoring of 

poIymer product properties. Polymer property measurement requires state estimation and data filtering 

techniques due to lack of on-line sensors. Literature on these topics is sumrnarized in Table 2.6. 



Table 2.5: Recent work on monitoring polyrner reactor operation and on-line polymer property 
measurements 

Reference System Work No tes 
Arola et al. ( 1997) 
Chatzi et al. ( 1997) 

Chien & Penlidis ( 1990) 
Dumoulin et al. (1995) 
Dumoulin et ai. (1996) 
Gagliano ( 1996) 
Ginesi (199 1) 
Gossen & MacGregor ( 1993) 
Gretzinger et al. ( 1995) 
Hansen & Khettry (1995) 
Kim et ai. ( 1992) 

Kourti et al. ( 1990) 
Martin ( 1992) 
McKenna et al. (1996a) 
NicoIi et al. ( 1990) 
Nomikos & MacGregor (1994) 

Nomikos & MacGregor ( 1995) 
Pabedinskas et al. (1  99 1 ) 
Pabedinskas & Cluett ( 1992) 

Schlenoff et al. (1995) 

Schuler & Schmidt (1992) 

Tham & Parr ( 1994) 
Thomas & Dimonie (1990) 

Urretabizkaia et al. ( 1993) 

copolymer 
/ernulsion 
al1 

VMatex 

MMA 
batch 

various 
copolymer 

SBR 

batch 
extruder 
extruder 

ernulsiod 
bulk 

X 
X 

X 

X 

news 
X 

T,S 

T,X 
X 

T 
emulsion X 

copotymer 
batch 

NPvlR as a viscorneter 
micirange IR optical fibre probe for 
conversion measurement 
review of online sensors 
techniques for rd-t ime measurement 
ultrasound 
tape ievei sensor for viscous systems 
flow measurement 
online particle size measurement 
optimal sensor selection 
probes for inline polyrner melt analysis 
EKF to monitor heat uansfer coefficient 

particle size from tubidity 
near-infrared re flec tance spectroscop y 
cdorimetry , densimetry , gravimetry 
remote sensor for particle sizing 
batch process monitoring through 
principal component analysis 
SPC 
in-line rheometer development 
signal processing of pressure 
measurements 
fibre optic Raman spectroscopy 

review of caIorimetric state estimation for 
reactor diagnosis and control 
validation & reconstruction of data 
fibre optic dynarnic light scattering; 
measures particle size during Iatex 
emulsion polymen7ation 
conversion & cumulative composition 
monitoring via calorimetric measurements 



Table 2.6: Recent work on state estimation and data filtering for polymer reactors 

Reference System Work Notes 
output feedback control Adebe kun ( 1996) 

Albuquerque & B iegler ( 1995) 

Appelhaus & Engell(1996) 

Brandolin & Garcia-Rubio (1990) 
Chang & Chen (1995) 

Choi et al. (1997a) 
Dong & McAvoy (1996b) 

ElIis et al. (1994) 

Karjala & Himmel blau ( 1996) 
Kim et al. (1992) 

Kozub & MacGregor ( 1992) 
MacGregor et al. (1994) 
McAuIey & MacGregor ( 199 1) 
McKenna et al. (1996) 
Mutha et al. (1997) 

Myers et al. (1996) 
Nomi kos & MacGregor ( 1994) 

Régnier et al. (1996) 

Robertson et al. ( 1996) 
Schuler & Schmidt (1992) 

Schuler & Schmidt (1993) 

Shyichuk (1996) 
Soroush (1997) 
Tan et al. ( 1996a) 
Tatiraju & Soroush (1997) 

Terwiesch (1 995) 
Terwiesch & Agarwal(1995b) 
Tham & P m  (1 994) 

Tsen et al. (1996) 
Valluri & Soroush ( 1996) 
Vie1 et al. (1995) 

Wang et al. (1997a) 

nonlinear 

PET 

faul t 
diagnosis 
olefin 
SBR 

MMA 
batch 

MMA 
batch 

PE 

batch 
copolymer 

SBR 

MMANA 
& MMA; 
batch 

general 

general 

MMA 

batch 

general 

VAfbatch 
CSTR 
STY 

nonlinear 

decomposition algorithm for on-line 
es tirnation 

design and implementation of an extended 
observer 
PSD measurement 
implementation issues with EKF-based 

estimation of kinetic parameters 
batch tracking, NL,-PCA monitoring 
SBR example 
M W '  estimation with EKF and SEC; 
experiments with on-line SEC and density 

general RNN, EKF data rectification 
EKF to infer MW 

muItiblock PCNPLS 
MI and density inference From on-line data 
calorimetry , densimetry , gravimetry 
multirate-measurement-based estimator 

EKF, delayed off-line measurement 
batch process monitoring through principal 
component analysis 
EKF, temperature control 

MHE comparison 
calorimetric state estimator review and 
application 

state estimation review with example in 
polymerization 

degradation index from viscometry 
NL, state observer design 
Smith predictor 
nonlinear state estimator for initiator and 
solvent concentrations and leading moments 
of MWD 

on-line correction mechanism 
EKF state-space grid 
filtering and intelligent reconstruction from 
noisy plant data 

hybrid ANN models 
nonlinear, inadequacy of linear observers 
stability using Il0 linearization and high gain 
observer 

sliding observer 



2.4.1 Monitoring Polymer Reactor Operation and Measuring Polymer Properties On-line 

Sensors to monitor reactor operation (temperature, pressure, fIows, level) are similar to sensors for other 

chemicai processes although high viscosity polymeric streams may have mixing, clogging, reaction run- 

away, heat removd and other problems that are specific to polymer reactors. For example, a resistance tape 

sensor can be used to track tank Ievels for sticky or viscous fluids as descnbed by Gagliano (1996). Ginesi 

( 199 1 ) descrïbed some flow measurement techniques. 

Marten ( 199 1) reviewed advances in near infrared reflectance spectroscopy (NIR). It could be used to 

measure moisture, as welI as end and functional groups. 

Gossen and MacGregor (1993) outlined the design and testing of an anaiyzer system for poly(viny1 acetate) 

that measures solid fractions and mean particle diameters. They measured changes in solids fraction of Iess 

than 5% of the vaiue (0.5% to 10% solids range). Changes in the particle diameter of 10 nm were also 

measured. 

However, most papas refer to some form of estimation or inference of the polyrner properties from 

measured values. A fundamentiil problem with polymer property measurements is that end-use product 

specifications are not aIways reIated to rnolecuiar architecture. Ray (1985) reviewed pofymer property 

observability and detectability with various sensors. 

2.4.2 Product Property Trajectory Tracking 

Since most polymer properties must be estimated and inferred from available on-line and off-line 

measurernents, state estimation is important. State estimation, date validation, diagnosis, and other topics 

not as clearly categorized into the Iater sections have been covered in this section. 

Kozub and MacGregor ( 1992) have applied a non-Iinear estimator to infer copolymer properties in a 

simulated styrenehutadiene rubber (SBR) polymerization. Optimal open loop control strategies based on 

established conditions were used and feedforward control trajectories recomputed with updated state 

estimates. Feedback control was added to correct copolymer properties. 

Schuler and Schmidt (1992, 1993) have published reviews on calorimetric state estimation and application 

to various chernical processes including polymerization. 

MacGregor, Jaeckle, Kiparissides and Koutoudi (1994) extended process monitoring of large continuous 

reactors using multivariate statisticai projection methods by btocking the system into subsections. 

Multiblock projection to latent structures (PLS) was developed. Faults and events in blocks were identified 



earlier and with more precision than zithout blocking. The technique was applied to a simulated multi- 

section tubular reactor for the production of low density polyethylene. 

Ellis, Taylor and Jensen (1994) developed a mode1 for the batch polymerization of MMA in ethyl acetate 

with AiBN initiator. The emphasis was on the prediction of MWD with periodic size exclusion 

chrornatography (SEC) readings. This mode1 would then be used for feedback control of the MWD. Their 

mode1 was tested on an experimental system with an on-line SEC and on-line density meter. The 

manipulated variables were batch temperature, monomer addition, or both. The model performed welI and 

was used in a PID scheme to control molecular weigh~ 

Terwiesch and Agarwal(1995b) advocate use of a state-space grid of the Bayes' rule over the extended 

Kalman filter (EKF) for state estimation of non-normal probabiIity distributions or non-Iinear processes. 

Chang and Chen (1995) presented multi-parameter EKFs designed to detect and identify faults. They 

addressed the problems in identifying multiple fault origins. Their procedure to evaluate the performance 

of a given systern was tested via simuIation studies. 

Valluri and Soroush ( 1996) showed the inadequacy of the Luenberger observer and the extended 

Luenberger observer with constant gain for state estimation of non-linear detenninistic processes. The 

globai asyrnprotic convergence of a non-Iinear design rnethod was proposed. The example process was a 

classic exothermic CSTR with multiple steady States. 

Dong and McAvoy ( 1996b) showed application of non-linear principal component analysis (NL-PCA; 

Dong and McAvoy, 1996a) to monitor a batch process. Their first example was the monitoring of the 

ernulsion polymerization of an SBR process described by Nomikos and MacGregor (1994). 

Tan, Wang, Lee and Bi (1996) reviewed the Smith predictor. It has structure similar to the intemal model 

control (MC) structure (Morari and Zafiriou, 1989). They use the area enclosed within the Nyquist curve 

of the feedback elernent to assess the achievable closed loop performance and formulate an optimization 

objective function. 

Adebekun (1996) analyzed output feedback control of a CSTR. Input-output linearization was used to 

control conversion and temperature. A reduced order state estimator was used to estimate conversion. 

Even with an arbitrary initialization of the state estimator, convergence to the desired equilibnurn point was 

achieved. 

McKenna, Fevotte, GraiIlat and Guillot (1996) studied cdorimetry, densimetry, and gravimetry in 

rnodelling batch and semi-batch poIyrnerization reactots. They found that heat balances and caiorimetry 

combined with off line gravimetry gave satisfactory on-Iine estimation of individual monomer conversions. 

The combination of densimetry and calorimetry was reponed as not satisfactory. They further noted that 



densirnetry measurements to 3 or 4 significant digits of accuracy would be required for satisfztorj 

estimation. 

Myers, Kang and Lueke (1996) applied EKF state estimation for a system with delayed off-Iine 

measurements. 

Robertson, Lee and Rawlings (1996) presented the general formuiation of the moving horizzn &iiriior. It 

is compared to the extended Kalman filter EKF), iterated EKF, Gaussian second-order filter ,and the 

statistically linearized filter. 

Karjala and HimmelbIau (1996) proposed the use of recurrent neural nets (RNN) and the extended Kaiman 

filter (EKF) for the dynamic rectification of measurement data. The two are used for data rectification of 

badly autocorrelated measurement data as well as to estimate measurement bias. 

Mutha, Cluett and Penlidis (1997) proposed a fixed-lag smoothing-based extended Kalman filter algorithm 

for systerns with multimte measurements. Their estimator was evaluated through simulation studies of an 

acrylonitnle/butadiene emulsion copolymerization batch process. The proposed estimator had robustness to 

state and measurement noise and couid handle systems with large measurement delays. Performance of the 

algorithm using delayed measurements was superior to that of the standard extended Kalman filter. 



2.5 Batch and Semibatch Reactor Control 
Control policies for batch and semibatch reactors are surveyed with respect to the propew being c o n t d e d  

(molecular weight, branching, composition, conversion, particle size, etc.). 

Batch and semibatch polymerization systems have been the most widely investigated from the conuol point 

of view, and their major advantages, great flexibility and rapid response to changing market conditions, are 

well-known. In contrast to continuous manufacture of cornmodity products, batch processes are 

characterized by both a very different manufacturing environment and a different dynamic behaviour. For 

example, the multiple product environment of batch processes requires that ingredients, control ~ O O P  set- 

points, and tuning parameters must be changed frequently (Shaw, 1983). The fiequent product and process 

changes associated with a batch chemical manufacturing facility also present some special challenges for 

controI system design (Smith, 1984). For exarnple, the requirement for startup and shutdown regulatory 

control in batch polymerization processes demands good dynamic response over the entire operating range 

of the controlled variable. This contrasts with the precise control over a small range that is required in 

many continuous processes. 

The wide openting ranges and nonstationacy behaviour that cause difficult sensor problems in batch 

reactors also influence control system design (Juba and Harner, 1986). For exarnple, during process 

identi tlcation. the Iinearized approximate models, so common for continuous processes, are not applicable, 

because of the lack of a nominal steady state about which the process can be Iinearized. As a result, non- 

linear models based on actual values rather than deviation variables must be used. SimiIar difficulties are 

encountered dunng controller design, where variable-gain controllers are often required to compensate for 

tirne-varying process dynamics. The controller design is further complicated by asyrnrnetric penalties, such 

as in composition control where the formation of unwanted byproducts is irreversibIe. This contrasts with 

continuous processes, where upsets eventualIy wash out of the system and the process may return to the 

desired steady-state. 

In batch polymerization, the optimization problem is identified as the time dependent control actions which 

maxirnize product quaiity and minimize production time (Amrehn, 1977). Different techniques have been 

suggested and applied to calculate and control to the optimal or  sub-optimal trajectories. 

Some opimization problems should not be solved using controllers and controller trajectories aione but by 

using reactor design. Recent papers on batch optimization, reactor design and selection were reviewed in 

Tieu et aI. (1994, 1995). Some more papers were discussed in Sec. 2.2. 

MacGregor et al. (1984) reviewed batch polymerization control divided into five categories: 



molecular weight distribution (MWD) control 

conversion and composition control 

Iong chah branching (LCB) control 

particle size distribution (PSD) control 

temperature control 

Recent literature on control of batch and semibatch potymerization reactors is summarized in Table 2.7. 



Table 2.7: Recent work on control of batch and semibatch polymer reactor systems 

Re ference System Work Notes 
Arzamendi & Asua (199 1) 

Chang et ai. ( 1996) 
Choi et al. (I997b) 
Davidson ( 1987) 

de Buruaga et al. (1996) 
de Buruaga et al. (1997) 

Defaye et al. (1993) 

Ellis et al. (1994) 
Gcidnev ( 1992) 
Hidalgo & Brosilow ( 1990) 
Infante et al. (1996) 

Kim et al. (1992) 

Kiparissides et al. (1390) 

Kozub & MacGregor ( 1992) 

Maschio et al. (1994) 
Mayer et al. ( 1995) 
Nagy & Agachi ( 1997) 
Ni et al. (1997) 

Peterson et al. (1992) 

Powell & Brooks (1995) 

Rawlings et al. (1989) 
Sajjadi & Jahanzad (1994) 
Soares et al. (1997) 
Soroush & Kravaris ( 1992) 

Tsen et al. (1996) 

van Doremaele et al. (1992) 

Yabuki & MacGregor (1997) 

VAc/MMA 
emui 

emulsion 
VAc/BuA 

VA&-e thyl- 
hexyl acrylate 
MMA 
MMA 
STY 
VA. 

MMA 

bulk MMA 

semi batc h 
SBR 
MMA 
STY 
PVC 
acrylamide 

free radical 
MMA 
PS 

STY 
PE 
batch MMA 

STYIMMA 
emulsion 
SBR 

copolymer composition control; optimal 
monomer feed rate; limited heat removal 

temperature trajectory 
prediction of MW and PD1 
intelligent temperature controller for 
jacketed reactor 

on-line calorimetric control 
calorimetric rneasurement 
optimize feed profile versus conversion 

adaptive-predictive temperature control, 
data filtering 

estimation with EKF, MWD control 
cobaloximes and BPO CTA, MWD 
NL-MPC at unstable points 
temperature control in microemulsion 
batch reactor 
EKF to estimate changing heat transfer 
coefficient and improve temperature 
controf 

DMC and ESTR applied for conversion 
and number average MW trajectories 

inferential FB control of polyrner quality 

suspension polymerization, MWD 
large scale commercial, high conversion 
NL-MPC, temperature control 
f u q - h  y brid-PID, high exothermic 
temperature control 
NL-MPC @MC) applied to simulated 
jacketed CSTR, unconstrained 
filling policy, conversion and cumulative 
MWD effects, styrene example 

endpoint control 
minimum reaction tirne 
rneasurement & control of MWD & CCD 
modelling and application of global 
linearizing control (GLC) 

hybrid ANN models, predictive control, 
MIKD control 

composition control by optimal addition 
profile 

practical approach to product quality 
control 



2.5.1 Molecular Weight Distribution Control 

Perhaps the single most significant property that directiy influences the end-use characteristics of a polymer 

is its MWD. For instance, the MWD of the poiymer can be an important variable as far as M e r  

processing is concemed. Ultimately, many of the rnechanicai properties of the polyrner, such as strength 

and impact resistance (Ray, 1985). are directiy related to the MWD. For the majority of chernical processes 

the requirements are to simply maintain specified operating conditions, such as temperature and conversion 

(ie., production rate). However, with polymerization processes, it is necessary to control product quality 

also (ie., MWD) in addition to process operating conditions. Although the process operating conditions 

reflect the economic aspects of the process (production rate, energy consumption, etc.), it is the ûgtit control 

over the MWD that determines not only product quality but whether or not the product is suitable for the 

intended end-use. The initiai step towards control of the product quaiity is to have some understanding and 

subsequently access to the variables which govern the M W .  

The paper by Choi and Butala (1987) describes a new method to synthesize open-loop control policies for 

composition and MWD for batch and semibatch polyrnerization reactors in which no on-line sensors exist- 

The method is based on the observation that the time varying trajectories of the manipulated variables 

obtained from a fictitious feedback control system are equivaient to the trajectories of the control variables 

required for control in open-loop systems in which no on-line sensors are available. The fotlowing 

sequence of events is proposed. First, dynamic simulation of the process model plus controller (fictitious 

feedback control system) is perforrned until the best (most desirable) closed-loop response is obtained. At 

the sarne time the transient path of the manipulated variables is recorded. Then, using this control trajectory 

in the actual open-loop process, will hopefully result in sirniiar (if major disturbances do not enter the 

system) performance as in the fictitious feedback (closed-loop) control system. The advantages of this type 

of controller development are several: more elaborate process models can be used in the closed-loop 

simulations; the effect of various operating conditions can readily be evaluated by dynarnic model 

simulations and, there is no need to introduce any weighting factors when more than one control variables 

are involved. 

The papers by Gonzalez et al. (1986), Taylor et ai. (l986), Ellis et al. (1987), Ellis et al. (1988a), and EIlis 

et al. (1988b) al1 deal with essentially fie same subject matter. These authors present an innovative 

procedure by which continuous on-line estimation of the MWD is possible- The particular system analyzed 

is the isothermai solution polymerization of MMA in a batch reactor. The polyrnerization (kinetic) model 

employed in their investigation was developed by Tulig and Tirrell(198 1, 1982) and Tulig (1983) and is 

used to estimate the compIete MWD from simple on-line measurements of temperature, density, and off- 

line delayed GPC measurements. In addition, the mode1 is valid over the entire conversion range. The 

polymerization model utilizes chain length as the spatial parameter, which includes a chah length 

dependent termination rate constant, so that the entire MWD of both living and dead polymer may be 



evaluated even in the case of strong gel effect. In this way it is possible to observe or detect multimodal or 

skewed distributions, which is not possible if one considers only the moments of the distribution. Put it 

differently, it is not possible to infer the structure of the MWD fiom knowing onIy the moments of the 

distribution if the actual MWD is multimodal or skewed. Only if we know the MWD to be approximately 

normally distributeci (unimodal) can we consider the moments of the distribution to be an accwate 

representation of the Ml%?>. The moments of the MWD represent important characteristics of the MWD. 

For instance, the rnost frequently specified first two moments of the MWD are the number- and weight- 

average molecular weights. 

Ray (1985) has classified the reactor operating variables as either observable or detectable. For example, 

monomer and initiator conversion are readily observable from temperature measurements, whereas 

molecular weight properties are only detectable. With temperature and bulk viscosity (or GPC) 

measurements, the weight-average moIecular weight becomes observable. Interesting examples of state 

estimation techniques, pertaining to styrene polymerization in both batch and continuous stirred tank 

reactors, are presented by SchuIer (1980) and SchuIer and Zhang (1985). The aim in these papers is to infer 

the polymer chah length distribution from ternperature and refractive index measurements. 

Thomas and Kiparïssides (1984a) and Secchi et al. (1990) used optimai control theory to andyze the 

performance of a batch PMMA potymerization reactor. Their formulation was based on Pontryagin's 

Minimum Principle, which leads to a mixed initiaMina1 value optimization probIem. Optimal dynamic 

profiles of temperature, initiator feed rate and initiator concentration in the reactor are generated in order to 

obtain specified conversion. number-average rnolecular weight and polydispersity of the final product. 

Thomas and Kiparissides ( 1984b) subsequentiy performed a sensitivity study of a batch polymenzation 

reactor. They considered the free radical polymerization of MMA and their analysis focused on the 

sensitivity of several output variables (conversion, zeroth and second moments of the dead polyrner 

distribution) subject to uncertainties in kinetic parameters and initiai conditions. The sensitivity coefficients 

which result can provide insight into the cases for which parameters can and cannot be estimated. It would 

aiso seem reasonable for control purposes that one could obtain information about input/output interactions 

chat would enable one to select suitable input/output pairings. 

Couso et al. (1985) apptied an open-loop control strategy to obtain the desired MWD by periodically 

cycling the monomer solution feed in a semibatch 'living' anionic polymetization reactor. In theu 

simulation study, two techniques were developed. In the direct form of the technique, the monomer 

solution flow rate and an intentional 'killing' agent flow rate are simultaneously added to the initiator 

solution. Alternatively, by controlling the reactor outlet flow instead of the 'killing' agent feed, an external 

deactivation of 'living' ends can be implemented. The attempt is to obtain polymers with a pre-specified 

MWD shape. 



Later, Alassia et al. (1988) experimentally verified the above techniques by using two pumps to maintain 

the necessary flow profile of monomer and solvent in order to control the molecular weight distribution. 

They showed that it is impossible to eliminate the impurities present in the rnonomer solution. For this 

reason, they proposed a theoreticai technique to allow the attainment of polymers with any "tailor made" 

MWD shape. The main difficulty was the estimation of the initial moles of initiator and of the 

concentration of irnpurities in the monomer solution. 

Louie and Soong (1985) proposed a solvent injection program for controlling the average molecular weight 

and narrowing the polydispersity of products fiom a free radical polymerization process with an inherent 

tendency to exhibit strong gel and glass effects. Their experimentai verification of this idea on MMA 

showed that the product MWD was indeed narrowed- 

Kumar and Sainath (1987) investigated the polycondensation stage of polyethylene terephthaiate (PET) 

formation. In this stage, many side reactions are known to take place, in addition to the main 

polymerization reaction, and the quality of polymer produced is largely dependent on the various side 

products formed. A flexible objective function was proposed with temperature and pressure as the control 

variables. Three weighting parameters were used to represent the relative importance of diethylene glycol 

in the product, number-average chain length of the product, and the arnount of side products formed. Since 

water and perhaps other volatile components are naturaily produced species of polycondensation reactions, 

it is necessary to Vary the pressure within the reactor as the polymerization proceeds in order to drive the 

polymerization reaction to completion. On the other hand, to obtain a polymer quality variable such as 

number-average molecular weight with a desired value, the temperature of the reactor will have to follow 

sorne specific uajectory. In their paper, the authors perfomed optimization studies using the gradient 

method or control-vector iteration procedure in which bath temperature and pressure were considered as the 

control variables. The results show that the pressure falls first and settles down to a preset lower limit, only 

after which the temperature begins to be adjusted. In view of this, the analysis is simplified by considering 

temperature as the only control variable, while carrying out the polymerization reaction at the lowest 

possible pressure. 

Huang and Lee (1989) used a set of parabolic differential equations to seek the optimal wall temperature in 

order to minimize either reaction time or MWD polydispersity for the free radical polymerization of styrene 

in a casting process. 

Peterson et al. (1992) developed a nonlinear model-predictive conaot (MPC) strategy using an enhanced 

version of the dynarnic matrix control (DMC) algorithm for a semibatch MMA polymerization reactor. 

Their simulation results show bat, with proper manipulation of initiator flow rate and cooling jacket 

temperature, the reactor temperature cm be effectively regulated and the number average molecuIar weight 

c m  be forced to meet a target value at the end of the batch despite strong nonlinearities due to the reaction 

rates and the gel effect. 



Maschio, Bello and Scali (1994) extended the model for buIk and suspension polymerization of MMA to 

solution polymerization and verified this rnodel experimentaily. Their objective was to model the 

polymerization well enough to control it to minimise the broadening of the MWD and achieve an assigned 

MW Their modelling and control of the MWD was successfuI in suspension polymerization with batch 

reactors. Their solution potymenzation was in concentrated fom (515% of solvent) and solvent addition 

during the course of reaction was necessary to offset the gel effect which broadened the MWD. 

Powell and Brooks (1995) compared filling policies for simulated, fiee-radical, solution in semibatch 

reactors. The regions of validity for stationary state assumptions were determined. Results were presented 

on the effect of filling policies and initiator stability on the conversion and cumulative molecular weight 

distribution for a styrene example process. 

Tsen, Jang, Wong and Joseph (1996) studied the use of an mificial neural network (ANN) as a model for 

product disparity and molecular weight distribution in a batch reactor for emulsion polymerization of vinyl 

acetate. The hybrid ANN was constructed using both experirnental information and knowledge frorn a 

:nathematical model. It performed better than a parameter fitting theoretical model when used in model 

predictive control of MWD, both in simulation and experiments. 

2.5.2 Conversion and Composition ControI 

Copolymer composition govems physicaVmechanicaVoptical properties and determines the economic uses 

to which a copolymer ma;. Sc applid. Due to the fact that in a copolyrnerization reaction the monomers 

involved react at unequal rates, the rnonomer mixture is progressively depleted in the faster monorner, 

whereas the copolymer formed becomes saturated simultaneously in the slower monomer. This 

phenomenon, described as "Composition Drift", is usually unacceptable. 

Budde and Reichert (1988, 199 1) presented an on-line measurernent scheme for conversion, viscosity, and 

MWD via density, viscosity, and GPC data for the batch and semibatch solution polymerization of MMA. 

Both open- and closed-loop initiator addition policies were evaluated for controI of conversion under the 

constraint of a constant reaction rate. 

Chen and Lee (1987) utilized initiator addition policies and temperature as the two manipulated variables to 

obtain a copolymer with pre-specified values for the final conversion of the less reactive monomer and for 

the cumulative copolymer composition of the more reactive monomer in the minimum time under the 

constraint that the copolymer composition is mainhined constant. The policy was experimentaIly verified 

using the acrylonitrile/styrene system. The optimal initiator addition policy for the nonisothermal case is to 



make the rate of initiation constant and for the isothermal situation the nurnber of moles of initiator in the 

reactor must be maintained constant, 

Choi (1989) presents a soIution to the copolymer composition control problem which seeks to find the 

monomer(s) addition rate for two cases: varying initiator concentration and constant initiator concentration. 

The theoretical development is based on a general copolymerization system involving vinyl monomers. 

A very thorough treatment of emulsion polymerization systems in general is presented by Dimitratos et al. 

(1989). The theoretical deveiopment of the dynarnic modelling and state estimation schemes for an 

emulsion copolymerization in a semibatch reactor is explained in great detail, The control of copolymer 

composition for a vinyl acetateh-butyl acrylate system is investigated. An extended Kalman filter (EKF) is 

used for the nonlinear state estimation problem, which is based on local Iinearization of the process model 

around the suboptimal filter estimates, 

Kravaris et al. ( 1989) developed a nonlinear feedforward/feedback controller to obrain constant copolymer 

composition for the solution copoIyrnerization of styrene/acrylonitrile in a batch reactor. Two different 

control policies are evaluated: the temperature profile is computed for a batch reactor and the feed policy 

of the more reactive monomer is determined for an isothermal reactor. In both cases above. the objective is 

to keep the copolymer composition constant. 

Houston and Schork (1987) employed a time series mode1 CO study adaptivelpredictive control schemes on a 

simulated methyl methacrytate semi-batch reactor. Their conuols are optimal for the current controI only, 

subject to the constraints of the process model and objective function. Both temperature regdatory control 

and uajectory tracking were implemented to reduce initiator consumption, batch time, and product 

polydispersity . 

Ponnuswarny et al. (1985) investigated (by simulation only) linear feedback control policies in a MMA 

batch reactor, derived from a quadratic performance criterion. These policies maintain the state variables 

(ie., monomer concentration in the reactor and the zeroth and second moments of the dead polymer 

distribution) along desired trajectories in the presence of disturbances (deviation of the initiator 

concentration in the reactor from iis nominal (optimal) condition). The manipulated variable was the reactor 

(polymerization) temperature. 

Later, Ponnuswamy et al. (1987) applied linear quadratic feedback control to the above system. 

Temperature was utilized to conbol conversion and the zeroth and second moments of the molecular weight 

distribution. The initial initiator concentration was treated as a disturbance. This algorithm was found to 

give good MWD control. In their paper, three different optimization problems are proposed and analyzed: 

minimum-time optimal initiator policy; minimum-time optimal temperature policy; and the minimum 

polydispersity ternperature policy. These policies are al1 derived based on the Maximum Principle applied 

to the process model. 



Simutation of the solution polymerization of MMA in a batch reactor during the final stages of the reaction 

was performed by O'Driscoll et al. (1988). The objective was to minimize the residual monomer 

concentration as fast as possible, using a time optimal problem formulation. Both isothemA and 

nonisothermal cases were studied. An extension to this work was presented Iater by O'Driscoll and 

Ponnuswamy (1990). including molecular weight considerations. 

Tzouanas and Shah (1985) applied an adaptive pole-placement controller to control the conversion of a 

batch polymer reactor. In their work, the flow rate of the reactor cooling water was adjusted in a cascade 

control configuration, in such a way that the reactor temperature was kept close to a desired one specified 

by the master controller such that the monomer conversion followed a desired trajectory. A PID controller 

was used as the slave controller. The adaptive pole-placement controller was used as the master coniroller. 

Tzouanas and Shah (1989) implemented their adaptive pole-placement controller to a batch reactor for the 

solution polymerization of MMA. By manipulating the reactor temperature, they forced the monomer 

conversion to follow a particular trajectory in simulation and experimental studies. The adaptive controllet's 

performance was similar to that of a generalized minimum variance controller and a P D  controller. 

Cawthon and Knaebel(1989) analyzed semibatch copolymerization systems using vector-objective 

techniques to detemine the tradeoffs between the different goals of narrowing copolymer composition and 

pdydispersity, and minimizing the reaction time. 

Anamendi and Asua (1991) presented a method to determine the optimal monomer addition strategy to 

produce homogeneous copolymer under conditions in which the reactor has limited capacity for heat 

removal. This method ailowed for time dependent heat removal rates to be specified as well. The emulsion 

polymerization of MMAfVAc in an artifÏciaIly heat removal limited, laboratory reactor produced 

homogeneous copolymer when the monomer feed rate profile was calculated with the heat transfer 

limitations taken into account. On the other hand, significant composition drift was observed if the feed rate 

policy had been calculated assuming al1 the reaction heat could be removed. 

Mayer, Meuldijk and Thoenes (1995) reported on the procedure to control emulsion polymerization to 

complete conversion while operating at relatively Iow temperatures and isothermal operation. This 

technique applied in large scale commercial reactors was described in a short communication. 

2.5.3 Long Chain Branching Control 
For polymers in which any of the reactions, radical transfer to polymer, terminai double bond 

polymerization, or internai double bond polymerization, are important, then branched polymers will be 

formed. Since the branching frequency (i.e., average number of branch points per molecu~e) usually has a 

pronounced effect on the polymer properties and particularly polymer processability, it is desirable to 

investigate policies for controlling it. The effect of a number of reactor operating policies on branching 



frequencies has been reported by Hamiclec and MacGregor (1983) for styrenehutadiene and vinyl 

acetatdvinyl chIoride copolymers. In general, a batch (or plug-flow) reactor operation will minimize 

branching frequencies compared to a CSTR or semibatch operation at the sarne conversion. In fact, one 

should be aware that different semibatch coplymer composition control policies may give widely different 

branching behaviour. Further details and examples can be found in Hamielec et al. (1987a). 

2.5.4 Particle Size Distribution (PSD) Control 

In general, the particle size distribution in semibatch emulsion polymerization can be controlkd through 

seeding of the reactors, or through controlling particle nucleation by manipulating the emulsifier andlor 

initiator feedrates, Some policies using both of these methods have been investigated. Min and Gostin 

(1979) used initial seeding of the reactor, followed by a controlled emulsifier feedrate to produce a 

secondary particte generation. The bimodai PSDs obtained in a pilot pIant reactor for polyvinyl chloride 

emulsion polymerization were well predicted by their population balance model. The effects of the 

following variables on the final latex PSD were investigated: seed particle size, quantity of seed, solid 

contents of the seed, and the initial amount of initiator. 

Gordon and Weidner (198 1) used the ideas of Min and Gostin to control the PSD in the emulsion 

polymerization of vinyl chloride by manipulating the emulsifier feedrate as a function of conversion. An 

on-line mesure of conversion was obtained from an unsteady-state heat balance and then used as the 

feedback variable to control the emulsifier feedrate. 

Emulsifier feedrate policies which produce multiple particle generations, or extend the pend of particle 

genention have been studied by Penlidis (1986) for vinyl acetate emulsion polymerization. These policies 

significantly broaden the resulting PSD over that of a batch reactor operation. In a similar study, Lin and 

CO-workers (1980) tried to control the particle size in vinyl chloride polymerization by varying the ratio of 

monomer to water at the beginning of the polymerization. 

2.5.5 Temperature Control 
Poiymerization reactions are exothermic in nature. The amount of heat released as monomer is converted to 

polymer is considerable. Temperature variations greatly affect the kinetics of polymerization processes, 

and through the kinetics they have a strong impact on the way the produced polymer is stnictured and thus, 

on its physical properties and quaiity characteristics. Temperature control is, therefore, critical in the 

production of high quality polymers and specialty products of desired molecular structures. 

Temperature control of a large, highly exothermic, batch or semi-batch, chernical or polyrner reactor can be 

an involved problem. The reaction may be auto-accelerating. Heat transfer rates c m  Vary during the 



process. Random disturbances can enter the process from many sources. Changes in reactant feed rate 

often produce an inverse temperature response, since the cooling effect of the increased feed precedes the 

increase in the reaction rate. This is especially tnie for polymerizations. Changes in temperature can alter 

the reaction rate. resulting in poor molecular weight control, and, in severe cases, an entirely different 

polymer product. If control deteriorates badly enough, the tendency to autoacceleration can result in an 

uncontrolled and extrernely hazardous runaway polymerization. Since temperature control can be criticai to 

safety and quaiity, highly trained operators are often assigned to control the polymerization process. 

Control of reactor temperature is aiso critical from a purely operational point of view. If the polyrnerization 

temperature is aliowed to increase. rnonomer conversion increases and more polymer is produced. Hence, 

the polymerization mixture becomes more viscous and heat removal becomes difficult. Therefore, reactor 

temperature must be kept within the limits that allow one to carry out a safe polymerization, ie., within the 

system's heat removal capabilities. 

Many papers have been published from both the acadernic and industrial view on temperature control of 

polymerization reactors. 

Garcia (1984) applied quadratic dynarnic matrix control to regdate the temperature of a synthetic mbber 

process in a semibatch reactor. This method used a Iinearization of a predetermined process model to 

predict the reactor temperature over a time horizon. The model was linearized around each point and 

optimal cooling applied to control the temperature dong the desired trajectory. Control was effective and 

minimal on-line tuning was required. 

Cluett et al. (1985) applied an adaptive-predictive control scheme with a dead-zone to temperature control, 

temperature set-point tracking and constant reaction rate control of a simulated batch suspension poly(viny1 

chloride) (PVC) reactor. The adaptive controller compared favourably with the self-tuning controller of 

Astrom and Wittenmark (1973) and with a well-tuned PID controller. 

Niederlinski et al. (1987) implemented a self-tuning temperature controller on an industrial poly(viny1 

chloride) batch reactor. Modelling of the process was performed by empirical on-line system identification. 

The manipulated variable was the jacket temperature. 

Takamatsu et al. (1986a.b) proposed two kinds of model-teference adaptive control schemes for the control 

of a batch suspension styrene polymerization reactor. At the simulation level, the two schemes seemed 

promising for the control of reactor ternperature and average degree of polymerization. 

Later, Takamatsu et al. (1988) used an adaptive version of the internai model control of Garcia and Morari 

(1982) for a temperature profile tracking problem in a simulated batch suspension styrene polymerization. 

Their approach was to maintain the reactor temperature and initiator concentration dong predetermined 

profiles. so that the final polymer product had a desired average chah length and polydispenity. The effect 



of increased viscosity at high conversion levels on the heat transfer characteristics of the system was 

simulated by reducing the vaiue of the overail heat transfer coefficient d o m  to 50% of its initial value. 

An approach based upon time-series and stochastic control methods (Dougherty et al.. 1988) was developed 

to generate a simple PID controller to control reaction temperature. They used time-senes identification 

techniques to generate a transfer function relating the control variable (reactor temperatue) to the 

manipulated one (jacket coolant fiow rate), with the manipuIated variable subject to a Pseudo-random 

Binary Sequence (PRBS). Then, ihey developed their control scheme by minirnizing an objective function 

similar to that of a constrained minimum variance control algorithm and recast the controller into a PID 

form. 

Louie et al. ( 1985b) proposed a programmed oxygen injection method for curbing the gel effect and 

manipulating the system temperature in a batch MMA emulsion polymerization reactor. The primary 

application of oxygen control is to rapidly alter existing reaction conditions with respect to radical 

populations inside the reactor. To minimize possible detrimental effects on product molecular weights, they 

suggested pulse oxygen control to determine the effects of controller set point changes on molecular 

weights. 

Choi and Ray (1985) studied the steady state behaviour of a fluidized bed reactor for ethylene 

polymerization as a function of catalyst injection and demonstrated that close temperature control is 

important for safety and reactor runaway problems. 

Davidson (1987) described an intelligent microprocessor-based temperature control system for jacketed 

reactors. The intelligence was based on logic used by skilled operators and implemented using simple 

algorithms. This controller based on a logical model was advocated as easier to install and maintain than 

one using a mathematical model based on dynamics which may have modelling errors. 

Kiparissides, Sidiropoulou, Voutetakis and Frousakis (1990) demonstrated the application of dynamic 

matrix control (DMC) and extended self-tuning regulator (ESTR) to buik polymerization of MMA in a 

batch reactor under strong diffusion limitations of termination and propagation reactions. They controlled 

conversion and number average molecular weight (NAMW) dong a state trajectory using temperature. in 

the face of impunties in the polymerization kinetics, product variations were considerabty reduced by 

operating the reactor under closed-Ioop control. Performance was compared to a linear quaciratic controtler 

(LQC) and tuning parameters for DMC and ESTR were investigated in a simulation study. 

Defaye, Renier, Chabanon, Caralp and Vidal (1993) showed that adaptive-predictive temperature control 

was workable on a moderateIy exothermic pilot plant copolymerization reactor. The system was the free 

radical, solution copolymerization of vinyl acetate and 2-ethyl-hexyl acrylate in ethyl acetate solvent. The 

initiator was benzoyl peroxide. Data filtering in the estimation mode1 was important especially to deal with 

dynamic effects associated with reactant addition. 



Chang, Hsu and Sung (1996) proposed a method for optimization and control of batch reactors. The system 

studied was for the syntfiesis of hexyl monoester of maleic acid reaction. A SIS0 modified globalIy 

Iinearizing control (MGLC) structure was proposed for temperature trajectory tracking. The 

heatingkooling system was shown to effectively control the highly exothermic reaction. 

Polacco, Semino and Paila (1996) anaiyzed batch polymerization of MMA in an agarose suspension. Theu 

focus was on the sensitivity of the system to operating conditions, the kinetic parameters, and the heat 

transfer properties. Maximum temperature was a key concem for this biomedicai application. initiai 

initiator concentration and other parameters that increased the rate of polymerization did not affect much 

the maximum temperature but rather the time at which the maximum temperature appeared, 



2.6 Continuous Reactor Control 
This section discusses literature on continuous reactors with respect to the operating policies, the design of 

stabIe reactor systems, the estimation of unmeasured States, and the on-Iine closed-loop control of polymer 

or latex properties. 

There has been an increasing number of publications in the literatue on the controI of continuous 

polymerization reactors. Increased cornpetition and emphasis on product quality, together with 

improvements in control hardware and advances in control theory have provided rnany new tools to attack 

the continuous polymerization control problem. Our survey shows that most of the articles are from 

academia; only a few come from industry. Also, theoretical work greatly outnurnbers experimental 

applications, and the continuous stirred tank reactor (CSTR) is the clear favourite for testing reactor control 

strategies at the simulation level. 

MacGregor et al. ( 1984) divided continuous reactor control into the following viewpoints: 

steady-state optimization 

dynamic optimization 

reactor design optimization 

state estimation 

on-line control 

Optimization papers have ken  reviewed in Sec. 2.2 and state estimation has been covered in Sec. 2.3. 

Table 2.8 summarizes recent work on the on-line control of continuous polymerization reactors. 



Table 2.8: Recent work on control of continuous polymer reactor systems 

Alvarez et al. (1993) 
Alvarez (1996) 

Adebekun ( 1996) 
Assala et al. ( 1997) 
Brandolin et ai. (1991) 
Broadhead et al. (1 996) 
Chien & Penlidis ( 1994b,c) 
De Souza et ai. ( 1996) 

Dittmar et al. (199 1) 

Dunia & Edgar (1996) 
Gazi et al. (1996) 
Han-Abedekun et al. ( 1997) 

IngIis et al. (199 1) 

Ishida et al. (1996) 

Lee et al. (1996) 

Lie & Balchen (1992) 
Maner et al. (1996) 
Maner & Doyle III (1997) 

Maschio et al. ( 1994) 
Jiang et al. (1997) 
Mendoza-Bustos et al. (1990) 
Meziou et al. (1996) 

Mrazek et al. (199 1) 
Mutha ( 1996) 

Padilla & Alvarez (1997) 

Qarnmar et al. ( 1996) 
Semino & Ray (199Sa) 
Semino & Ray (1995b) 

Soroush & Kravaris (1994) 

Soroush (1996) 
Soroush & Kravaris (1996a) 
Soroush & Kravaris (1996b) 
Smith & Malone (1997) 
Tan et al. (1996a) 

CSTR 

CSTR 
STY/CSTR 
PE 
extrusion 
MMA 
VA 

STY 
olefins, 
copol ymer 
MMAfCSTR 

MMA 
PE 
MMA 
EPDM 

VUsuspension 
MMA 

VA-MMA 
copol ymer 

ernulsion 

MMA 

NL-MIMO 
MIMO 

PMMA 

- - -  - -- 

Re ference System Work Notes 
stabilization with saturated Feedback 
output feedback control; free radical 
hornopolymerization, example 
input-output Iinearization 
stabilization with input constraints 
optimal policy comparison 

conversion control, effect of impurities 
ANN (IMC) mode1 predictive compared 
to P D ;  T control 
compares T control by Pa), GPC and 
W C  on open-loop unstable reactor 
linear system; GMC 
evaluation of controllers 
design and control for kinetic studies 

long range GPC conversion control, also 
experimental T control in batch 
neuraI network; dynamic state prediction 
and control 
uncertain delay; robust stability, Smith 
predictor 
comparison of controllers 
NL-MPC; 2nd order Volterra models 
autoregressive+Volterra based MPC 
2 polymerization reactor case studies 
suspension polymerization 
heat removal in supercondensed mode 
adaptive conversion control 
DMC control of composition & Mooney 
viscosity 
gradua1 initiator dosage 
simulation NBR, experimental MMA; 
con trol nonaffine NL-MPC algorithm 
control study - linear interaction 
compensator, MIMO reactor control 
chaotic; linear and nonlinear controllers 
population balance; controIlabiIity study 
constrained control action; 
control of oscillations 
nonlinear GLC, singuIar characteristic 
matrix 
evaiuation of achievable control quality 
state feedback, non-Iinear, GLC 
MPC formulation of GLC 
attainable regions for design of systems 
analysis and design, Smith predictor 



2.6.1 Steady Sbte Optimization 
Farber (1986) applied multiobjective optirnization to study aspects of the steady state optimality of 

continuous methyl methacrylate-vinyl acetate and styrene-acrylonitrile copolymerization systems. He made 

use of the concept of Pareto optimality to enable the determination of non-inferior sets, which perrnits a 

ciear decision on tradeoffs related to operating conditions and product specifications. 

Das and Rodriguez (1990) studied the solution copolymerization of 2-ethylhexyl acrylate with vinyl 

chloroacetate in a CSTR. Based on physicochemical and diffusional considerations, they were able to 

model the steady state rates. However, their attempt to model the transient behaviour of the reactor was 

unsuccessful due to the rapid composition drift as the system approaches steady state. 

2.6.2 Dynamic Optimization 

Many papers have demonstrated that for certain polymerization processes forced penodic operation of 

continuous reactors is sometimes beneficial in improving the performance and/or the quality of the final 

product. Meira (198 1) reviewed most of the papers that have appeared on this subject. There are only a 

few more recent papers which demonstrate the application of optimal periodic forcing of the feed flows on 

continuous "living" (nonterminated) anionic polymerization reactors to obtain a prespecified value of the 

MWD. These are summarized below: 

Frontini et al. ( 1986, 1987) carried out simulations of a living anionic solution homopolymerization in an 

isothermal CSTR under optimal periodic forcing of the initiator and monomer flow rates in order to obtain 

prespecified number average chah length and polydispersity. When such a polymerization is operated at 

steady-state, two situations arise: the number-average chain length (or weight-average chain length) may be 

changed simply by adjusting the flow ratio between the monomer and initiator feed; the polymer produced 

exhibits a Schultz-Flory distribution (ie., polydispersity is close to 2). AItemativeIy, periodic operation of 

the CSTR can provide added flexibility in the quaiity of the average polymer produced. That is, by 

maximizing (minimizing) an objective functiond, a range of the average polydispersity around the steady- 

state value of 2 can be obtained. It is possible then to produce poiymers with any average polydispersity 

within this range. 

The papers by Couso and Meira (1984) and Elicabe and Meira (1989) also examine the effects of periodic 

operation on several system variables, specificaily those related to the MWD. Gugliotta et al. (199 1) 

theoretically and experimentally investigated the effect of forced-feed oscilIations of an intentionally added 

chain transfer agent on isothemai free-radical polyrnerizations in a CSTR. They found that under certain 

conditions it is possible to broaden the average MWD without affecting other properties. 

Pinto and Ray (1995a,b) have published a numerous papers on the modelling. control and characteristics of 

the continuous solution copolymerization of vinyl acetate (VA) and methyl methacrylate (MMA) in tert- 



butanol (TB). In 1995, they built a dynamic model to describe the system. They used experimental results 

to validate their kinetic parameters and proçeeded to draw bihircation diagrams for the dynamic behaviour 

of their system (Pinto, 1995a). Their next article (Pinto and Ray, 1995b) reported the ciramatic effects of 

feed composition and studied the full bifurcation model. The following year, (Pinto and Ray, 1996). they 

showed theoretically and experimentally that small amounts of inhibitors in the feed Stream may lead to 

unstable operation. 

2.6.3 Start-Ups and Change of Grades 

In many industrial free-radical polyrnerization processes, a reactor can be very sensitive to small changes in 

the concentration of the radical generator. Therefore, particular care should be paid to the effects of start-up 

procedures on reactor behaviour. 

Accounts of expenmental investigations, in which continuous-flow back-mixed reactors have been used, do 

not always describe the details of start-up procedures. However, some early studies have indicated that the 

dynarnic behaviour upon start-up can be very interesting (Brooks, 198 1). In the start-up regime the 

following problems are to be considered: 

The reaction can run away so rapidly that the safety of the operation is not guaranteed. 

As a consequence of the variation of concentrations and temperature, polymers produced in a non- 

optimum start-up regime are very heterogenous with respect to the molecular and chernical 

composition. These polymers possess bad properties. 

The first problem crin be solved either by starting with pure solvent in the reactor or by operating the reactor 

in the batch mode with an excess of solvent in the fint pend of the start-up regime. The second problem 

can be solved with a product-optimum start-up policy with temperature prograrnming and feed ratio controt. 

Based on the above strategies, Thiele (1986) developed an optimum start-up policy for a bulk styrene- 

acrylonitrile copolymerization reactor. 

It was shown that changes in the start-up procedure during the continuous emulsion polymerization of 

styrene (Baddar and Brooks, 1984) and MMA (Brooks and Raman, 1987) affected both the transient and 

long-term behaviour. From their experiments, Brooks and CO-workers found that reactor behaviour, 

particularly with respect to conversion, particle size distribution and particle nucleation rate, can be 

controlled by the choice of the initial conditions. 

2.6.4 Reactor Design Optimization 

Carrat. Sherwin and Soong (1984) developed a two-stage continuous reactor system for bulk methyl 

methacrylate polymerization. This process utilizes a CSTR as a fmt-stage prepolymerizer and a spray 



tower as the second-stage finishing reactor. Use of a CSTR offers good temperature control and product 

uniformity during the early stage. Spraying the partially polymerized mixture into the tower as fine droplets 

prior to the onset of the gel effect eIiminates the problems of transporting, agitating, and mixing a reacting 

system with a npidly increasing viscosity. Based on their experirnental work and simulation model, the 

authors came up with a practical design procedure for such systems. 

Taylor and Reichert (1985) investigated the eflects of micro- and macromixing and reactor type (batch 

reactor (BR), segregated CSTR (SCSTR), and homogeneous CSTR (HCSTR)) with respect to the breadth 

of the MWD in a vinyt acetate polymerization system- Their simulation results showed that the MWD in 

the three reactor types is not fixed, but instead is a strong function of reactant concentrations and 

predominantly of chah branching. As the monomer concentration is increased or polymer transfer and 

terminal double bond polymerization become more important, the MWD wilI become broader in the 

HCSTR than in the BR or SCSTR.. 

MacGregor (1986) and Penlidis et al. (1989b) have shown that by not considering reactor stability and 

control at the design stage, it is possible to have a situation in which the process behaviour can not be 

optimized by the application of any control theory. Redesigning the process, on the other hand, cm lead to 

a well-behavcd controllable process, and hence to a rather simplified control problem. Similar results have 

also been shown by Poehlein, Schork and CO-workers (e.g., Temeng and Schork, 1987, 1989). 

Ferrero and Chiovetta (1990) developed a short-cut method for the preliminary design of a tubular loop 

reactor for buIk propylene polymerization. A relationship between the average particle size in the reactor 

and the particle size at both inlet and outlet was obtained. 

Kataoka, Ohmura, Kouzu, Shimamura and Okubo (1995) studied continuous emulsion polymerization of 

styrene in a continuous Taylor vortex flow reactor which has characteristics of a plug flow reactor (PR). 

Steady state conversion, average molecular weight and size distribution of latex particles could be 

controlled by the flow condition or reactor temperature. 

Russo and Bequette (1996b) studied the effect of assuming that the cooling jacket dynarnics are negligible 

for a CSTR. They demonstrate areas of unfeasibility in reactor scale-up or operation. 

2.6.5 Temperature Control 

Problems often encountered in industrial polymerizations are associated with the heat released by the highly 

exothermic reactions which, combined with iowered thermal diffusivity through the increased viscosity of 

the reacting media over the course of polymerization, can cause thermal mnaway. Onset of the gel 

(Trornmsdorff) effect can cause excessive temperature rise, rapid increase in conversion, and plugging of 

equipment 



For a typical addition polyrnerization, the heat of polymerization ranges from 10 to 20 KcaVmole, which 

c m  result in an adiabatic temperature rise of 200 to 400°C. This large generation of heat, coupled with the 

low thermal diffusivity of the reacting system, often leads to thermal runway. Therefore, control of the 

process is difficult. A temperature rise generally causes a lowering of the degree of polymerization. Hence, 

Iarge temperature variations during the course of the reaction broaden the product molecular-weight 

distribution, with accompanying deterioration of the mechanical properties of the polymer. Another serious 

problem o c c h n g  is the Trommsdorff or "gel" effect. The onset of the gel effect frequently causes 

uncontrolIable reactions, resulting in excessive temperature rise, rapid conversion rise, and plugging of 

equipment. 

Several publications tackied the temperature control problem. Henderson and Cornejo (1989) considered 

three different mechanisms of removing the heat of reaction (cooling coils and jacket, vaporization of 

monomer and solvent, and circulation of reaction mixture through an external heat exchanger) for 

temperature control of the continuous production of polystyrene by thermal polyrnerization. Their results 

are based on the simulation of a 5000 gal reactor. Using a model of the process, simulations were perforrned 

and the following process variables were es timated as a function of steady-state reaction temperature: 

conversion, weight-average molecular weight, zero-shear viscosity, Reynolds number, agitator shaft 

horsepower, and the heat generated due to the agitator only (ie., the heat of agitation). This work illustrates 

some of the problems encountered in the industriai operation of polymerization reactors. 

Liptak (1986) discussed different temperature and pressure controI strategies to maintain constant 

concentrations and safety. He pointed out tiiat in Iarge polymerization reactors having low heat-transfer 

coefficients and large changes in heat evolution, the conventional temperature cascade control loop is not 

fast enough. On the other hand, pressure measurements give an almost instantaneous indication of changes 

in temperature. Based on this observation, he proposed that a pressure-compensated temperature control 

system can be applied to a reactor with both jacket and overhead condenser cooling. The net result is the 

ability to operate the reactor at a much higher reaction rate, and thereby obtain higher productivity than is 

possible with temperature control alone. 

In studying the dynamic behaviour of fluidized bed reactors for ethylene and propylene polymerization, 

Choi and Ray (1985) showed that even in closed-loop, temperature runaway in the reactor can occur in 

some situations in which the rate of heat removed from the recirculating gas becomes lower than the rate of 

heat generated in the reactor. 

Kwalik and Schork (1985) applied the adaptive multivariable self-tuning regulator of Vogel and Edgar 

(1982) to a simulated continuous solution polymerization of MMA to control monomer concentration and 

temperature in the reactor. The effect of monomer impurities was simulated by a step change in the initiator 

efficiency factor. Manipulation of the reactor jacket temperature and initiator concentration in the feed 

proved successful in the regions where only unique steady-states occurred. Their results show that slight 



variations in the manipulated variables produce unacceptabIe fluctuations in the controlled variables- Also, 

they found that in the region of multiple steady-states the interactions of the multivariable system are 

magnified and for this reason a multivariable controller without proper decoupling may not be suitable. 

Whatley and Pott (1984) applied an adaptive gain strategy for temperature control by manipulating the 

circulation oil temperature. This technique was used to provide the necessary dnving-force compensation 

in the oil-circulation Ioop temperature controller for the following situations: 1) many grades of polymer 

were made which required different sets of tuning constants for the controller, 2) if tuned without the 

adaptive gain strategy, the system response to upsets was very poor; and 3) set point changes must be made 

extremely slowly to preserve system stability. 

Marini and Georgakis (1984) studied the temperature control of a continuous Iow density polyethylene 

reactor at the simulation stage. From a linearized model, they developed a reaction rate controfler (a type of 

variable gain PI controller) which exhibited superior performance to that of constant gain classical PI 

controllers. 

2.6.6 State Estimaticn / Filtering 

State estimation techniques have been developed to provide acceptable estimates of state variables despite 

the fact that some of the polymer or latex properties of interest may not be directly measurable andlor may 

be subject to stochastic measurement error and process disturbances. The interest is in sequential estimates 

which can be used for on-line control schemes, ie., the estimates must be continuously updated by recursive 

algorithms. The best current (filtered) estimates rnay then be used in control applications. 

Fundarnentdly, state estimation considers the problern of detemining the values of states from the 

knowledge of the outputs (data) and the inputs (control, disturbances). For the estimation to be successful, 

the input-output information must provide a unique state estimation, which irnplies system observability 

and/or reachability (Ray, 198 1). 

Observability plays an important role in state estimation for polymerization processes. In general, the 

rnolecular weight states are non-observabIe from measurements on the matenal balance or the particle 

population balances states of the model. Since on-line measurements for the latter states are more readily 

available, this means that tracking the moIecular weight developrnent of a polymerization process is often 

very difficult. 

Ray (1985) presents a table where the observability of monomer conversion, initiator conversion, and other 

variables or parameters related to the molecular structure is considered. Several typical measurernents and 

combiiiations of measurements such as temperature, density, intrinsic viscosity, etc., are reviewed. 



Several papers have been published dealing with state estimation via Kalman Filtering methods. 

MacGregor et al. (1986) tracked the material and population balance states in emulsion polymerization 

using information from on-line densitometers. They also stressed the importance of modelling the effect of 

impurities, and of incorporating nonstationaxy stochastic states into the mode1 of the process in order to 

obtain reaiistic state estimators that are capable of tracking an industrial process. This work was later 

extended in the very interesting papers by Kozub and MacGregor (1989) and Gagnon and Macgregor 

(1991) . 

In other applications, Papadopoulou and Gilles (1986) applied the K h a n  filtering method for continuous 

estimation of the chah length distribution in a polymerization reactor using on-line gel-permeation 

chromatographic measurements. 

Adebekun and Schork (1989b) applied Kalman filter techniques to solution polymerization of MMA in a 

CSTR in combination with open-loop dynamic simulations. They showed that, even in the event of 

incomplete state observability, the open-loop performance of these estimators could still be acceptable. 

Then, they employed these estimates in closed-loop nonlinear model reference control schemes. In order to 

motivate realistic evaluations, an extended Kalman filter was incorporated for reconstruction of unavailable 

(andor infrequently mesurable) state variables (e.g., molecular weight distribution) from the available 

measurements (monomer, temperature, initiator, and solvent levels). They proposed that if a MWD 

measurernent is available, then the measurernent can be used to update the current estimates of MWD 

through a two-time scale filtering aigorithm (Ellis et al., 1988). This is achieved by reinitializing the MWD 

estimates to the filtered estimates at the time the process sample was taken and then, resimulating the MWD 

subsystem to real time. 

Daoutidis and Christofides ( 1995) tried to develop feedfonvard/static state feedback combined with state 

observers in a way similar to their pure output feedback system. The developed control methodology was 

applied to an exothermic CSTR in simulations. 

Vie1 et al. (1995) showed global asyrnptotic stability of a polymerization reactor, high gain observer, and 

controller system after applying inputloutput linearization. They modelled solution polymerization of 

styrene in toluene using the standard free-radical kinetic mechanism and defined their system with a model 

consisting of three mass balances, one heat balance and the zeroth and second moments of dead polymer. 

Linearization was done for a MIMO conîroller with reactor temperature and feed monomer weight fraction 

as the control variables. The observer used measured temperature and density of the mixture. 



2.6.7 Recent Efforts Towards On-Line Control 

Although maintaining a stable process operation was possibly the only objective of control systems in the 

past, there is an increasing demand for modern control systems to satisfy one or more of the following 

performance criteria (Garcia et al., 1989): 

Economic - These can be associated with either maintaining process variables at the targets dictated by 

the optimization phase or dynarnicaily minimizing an operating cost function. 

Safety and environmental - Sorne process variables must not viofate specified bounds for reasons of 

personnel or equipment safety, or kcause of environment regulations. 

Equipment - The control system must not drive the process outside the physical limitations of the 

equipment. 

Product quality - Specifications on products must be satisfied. This is probably the most difficult 

performance criterion. 

Human preference - There exist levels of variable oscillations or jaggedness that the operator will not 

tolerate. There can aiso be preferred modes of operation. 

The whole spectnirn of process control methodologies is faced with the solution of the above problems. In 

an effort to satisQ al1 these integrated performance criteria, many recent pieces of work have shown 

promise in on-line control of polymerization reactor systerns. The objective is to design a control system 

which can on-fine update the manipulated variables to sari@ multiple. changing petformance criteria in 

the face ofchanging plant characreristics. 

In this section, different on-line controI methodologies that have been published for controt of continuous 

polymerization reactors are reviewed. Based on a rather lwse classification of the techniques involved in 

the controller design, the schemes are reviewed in 7 parts, namely, adaptive control, inferential control, 

linear quadratic Gaussian control, model predictive control, model reference conmol, muItivariable control 

and nonIinear model based control. Several of these schemes can be cast in the general interna1 model 

control (MC) Frarnework. One should note that, in some cases, there is no clear-cut distinction on the 

classification followed and hence, considerable overlapping is found in the design and implementation of 

these controllers, which makes the classification extremely difficult. This is also partty due to the fact that, 

up to now, there is still no "unified classification of the many control theories and techniques published to 

date, which often may be slight variations on the same theme with a different name. Therefore, the purpose 

of our classification is basically to refiect the main structure of the control system and convenience in 

reviewing the papers found. 

Adaptive Control 

There has been IateIy a growing interest in the application of adaptive and self-optimizing control to 

polymer reactor systems. The reason for this trend is clear. Most commercial polymer reactors exhibit 



complex, nonlinear dynamics, and the stability characteristics of the system may change drastically 

throughout the period of operation. These changes are especially large during start-up and set point 

changes. A poor control system rnay then lead to runaway situations and subsequent loss of production time 

and valuable raw materials. 

Many different approaches to adaptive control of nonlinear systems have been proposed. Two schemes in 

particular have attracted most interest: model reference adaptive control (MRAC) and self-nining regdators 

(STR). Both schemes actuaily turn out to be speciai cases of a more general design philosophy (Goodwin 

and Sin, 1984)- A detailed review of the structure of the above controllers and their applications by earlier 

researchers has been provided by Elicabe and Meira (1988). 

Takamatsu et al. (1986b) employ an adaptivelinferential control system for the control of weight-average 

molecular weight in the presence of detenninistic disturbances. In particular, two polymerization systems 

are investigated at the simuIation level; solution polyrnerization of isobutylene and styrene in a CSTR. In 

the first polymerization system either initiator concentration in the feed or total feedrate is used as the 

manipulated variable and the reactor temperature becomes a secondary output frorn which the unknown 

deterministic disturbances could be estimated. With the styrene polyrnerization the reactor temperature is 

kept constant and the weight-average moIecular weight is controlled by manipulating the total feednte. In 

this case the monomer concentration in the reactor is utilized a s  the secondary output. 

Mendoza-Bustos et al. (1990a,b) present an adaptive controller to control monomer conversion in the 

presence of stochmtic disturbances for the solution polymerization of MMA in a CSTR a: the simulation 

level. The controller has the stability and robustness features that are essential in dealing with unmodelled 

dynarnics and unmeasured disturbances. The disturbances are drifting concentration levels of reactive 

impurities in the feed to the reactor. The manipulated variable that is chosen to control the rnonomer 

conversion at its target value is the initiator concentration in the feed. Simulation results of this adaptive 

scheme are cornpared to those of the minimum variance and self-tuning controllers. 

Inferential Control 
A major difficulty with controlling product quality in industrial polymerization reactors is the lack of 

suitable on-line measurement technology for polymer quality varÎables (MacGregor et ai., 1984; Elicabe 

and Meira, 1988). While temperature, pressure, flow rate and gas composition are routinely measured on- 

line, key quaiity variables such as molecular weight and copolymer composition must usually be measured 

off-line in quality control laboratories (Richards and Schnelle, 1988). These delayed and infrequent quaiity 

measurements provide essential feedback for both process conrrol and model updating purposes. 

Combination of information from on-line and off-line measurements with process models can lead to 

improved estimates of quality variables between samples and to improved product property control. 



McAuley and MacGregor (1991) developed a scheme to predict melt index and density in an industriai 

fluidized-bed ethylene copolymerization reactor. They used theoreticaily-based models to predict quality 

variables from on-line temperature and gas composition measurements. The adjustable parameters in these 

rnodels were updated on-line using infrequent laboratory meastuements and a recursive parameter 

estimation technique. It was shown that both melt index and density could be successfully predicted. 

Linear Quadratic Gaussian (LQG) Control 

In the past decade, several internal model-based control methods have been developed: Model Algorithrnic 

Control (MAC); Dynarnic Marrix Control (DMC); Quadratic Dynarnic Matrix Control (QDMC); Internai 

Model Control (IMC); and Quadratic Programming internal Model Control (QPIMC). These methods have 

been quite successful in industria1 applications, especially From the petrochemical industry, because they 

provide a high degree of flexibility and allow for on-line tuning. Garcia and Morari (1982) gave an unified 

review of DMC, MAC and MC, pointing out conunon Features and noting analogies with classicaI forms of 

optimal control. 

A shoncorning of the MC-type methods is that an open-loop stable system is required; the nonminimum 

phase characteristics need to be "factored out" in advance in the IMC design procedures. The well-studied 

linear quadratic (LQ) feedback controt method (e.g., MacGregor and TidwelI, 1980; Astrom and 

Wittenmark, 1984) can stabilize an open-loop unstable process and is applicable directly to processes with 

nonminimum-phase characteristics. 

An excellent illustration of the empincal modelling approach was recentîy given in Kelly et al. (19871, 

concerning the linear-quadratic (LQ) control of a continuous industrial polymerization reactor train for the 

production of stereoregular butadiene rubber based on the use of quaIity control laboratory data. Their 

models were identified in the closed-loop mode and then used to design minimum variance type control 

strategies for monomer conversion and Mooney viscosity of the final product. To ensure identifiability 

under closed-loop conditions independent pseuderandom binary sequence (PRBS) perturbations were 

introduced into al1 inputs. These controllers manipulate the flowrates of the Ziegler-Natta catalyst 

components and a chemicai transfer agent. The design of these controllers via spectral factorization, and 

their robustness/performance trade-off properties have been discussed thoroughly by Harris et al. (1982), 

Bergh and MacGregor ( l987), and Harris and MacGregor ( 1987). 

Chien (1992) are critically evaiuated and experimentally verified the robustness/performance of LQ (e.g., 

minimum variance, constrained minimum variance and one-step optimal) controllers for controlling the 

conversion level of a continuous MMA polymerhtion reactor system. The results show that these LQ 

controllers provide better robustness and performance as compared to the conventional PD-class 

controIlers. 



Chien and Penlidis (1994~)  studied the effect of impurities on the polymerization of MMA in toluene in a 

CSTR. The modeIline and control objectives for conversion and molecular weight. In this second of two 

papers, they evaluate PID controllers: PID, Smith predictor, and Dahiin's control, and stochastic control 

strategies: minimum variance (MVC), constrained MVC, and one-step optimal. Simulations were used to 

identib promising scenarios and 2-3 day experimental runs were used to verifj them. Conversion was 

controlled, impurity effects matched theoretical predictions, and controllers were implemented to work, 

Model Predictive Control 
Model predictive control (MPC) is a family of controIlers in which there is a direct use of an explicit and 

separately identifiable model. Most of the design techniques emanating from MPC use some kind of a 

dynamic mode1 to predict the effect of future control actions on the process output. Some example models 

are: step response (dynamic matrix control - DMC), impulse response (model algorithmic control - MAC), 

and transfer function (generalized predictive control - GPC). The future manipulations of the input are 

determined by an optimization step which minimizes a horizon of predicted errors between the process 

outputs and the desired outputs (set-points) subject to operating constraints. 

Farber and Ydstie (1986) used a parameter-adaptive regulator algorithm similar to the dynamic matrix 

controller (DMC) (Cutler and Ramaker, 1978) in their simulation studies of the controt of a continuous 

solution polymerization of styrene in ethylbenzene in the presence of AIBN initiator. To improve 

adaptation, they applied a variable, forgetting-factor estimator to enable adaptation. Also, an extended 

horizon controller, with a horizon larger than the expected delay ùme of the system, was used to enhance 

controller robustness in the presence of time-varying delays and non-minimum-phase system characteristics. 

In this way, they were able to trade off the difficulties in controlling non-minimum phase systems against 

the use of a higher order model. 

Hidalgo and Brosilow (1990) used a combination of model predictive control (MPC) and coordinated 

control strategies to control a simulated, open-lwp unstable, free-radical solution polymerization of styrene 

in a CSTR. The controls are the flowrate of cooIing water supplied to the CSTR jacket and the flowrate of 

monomer to the reactor. They assumed that modelling errors are due to changes in the unmeasured initiator 

level in the reactor. By adjusting the initiator level, stable control and exact tracking of the set point at 

steady state c m  be accomplished. One practical problem of such a control strategy is the variation of 

monomer flowrate which will result in varying residence times or differing levels of monomer soluble 

impurities in the reactor. Also, their assumption ihat the process is a fourth-order nonlinear process was not 

jus tified. 

The economic operation of a polymerization process usually requires that unreacted species be recovered 

and fed back into the process. Associated with this unreacted monomer recycle is also recycle of impurities. 



Impurities are known to consume free radicals and therefore prevent polymer generation and growth. Only 

upon introduction of additiond initiator to consume these impunties will the reaction proceed as desired. 

Polymer productivity is directiy related to monomer conversion (concentration) in the reactor. Therefore, a 

reasonable control objective would be to minimize the variance of the predicted process outputs from the 

set-point trajectory. The optimal design may be implemented via long-range predictive controllers such as 

GPC (Inglis et ai., 1991) by relating the observer polynomial to the disturbance dynarnics. In practice, the 

observer polynomial can be used more effecuvely as a detuning tool to reduce the magnitude of the control 

action and improve robustness of the controller to modelting mors in the same way as  the weighing 

parameter does in constrained minimum variance, or linear-quadratic output controllers. 

Lawrence (1994) applied MPC and GPC to simulation and experimental studies of a continuous, solution 

polymerization of MMA in toluene. SISO MPC and GPC were applied to simulations and since GPC 

performed better, two SISO GPC controllers were chosen for experimental verification. The experimental 

work on the bench scale CSTR supported the simulation results. 

Model Reference Control 

In model reference control, one is interested in deriving a control law to enable a nonlinear process to 

follow some desired reference model. To do this, a mechanistic model is generally converted into 

dimensionless model equations. Thus, these control schemes are sufficiently general for most types of 

polymerization reactors. For example, it is possible for the dimensionless heat transfer coefficient to be a 

function of the reactor medium viscosity. Therefore, as long as such correlations have been properly 

identified, the control SC hemes are quite feasible. 

Elicabe and Meira (1989) proposed a cascade model reference adaptive aigorithm to conuol a continuous 

living anionic polymerization reactor, under forced oscillation of its feeds. According to their control 

scheme, the first two moments of the number chain length distribution were forced to follow predetermined 

periodic trajectories. The major limitation of this method was that a relatively simple mode1 for a living 

anionic polymerization was chosen; and that the control method was strictly applicable to continuous 

systems without dead times. In real situations, a process size exclusion chromatograph would be required to 

measure monomer concentration and the MWD moments, and this would clearly imply discontinuous and 

lagged measurements. 

Adebekun and Schork (1989a,b) applied a nonlinear reference model control algorithm on a simulation of a 

continuous methyl methacrylate polyrnerization reactor. Based on the full rnodel of Tanner et al. (1987), 

they used bifurcation theory and "catastrophe" sets to demonstrate the importance of reactor 

"psychoanalysis" in design applications. Their simulation results showed that input multiplicity is a 

property of the system and not of the controller. The leading moments of the MWD were estimated using 

mode1 reduction techniques as described in Schuler and Zhang (1985). 



Md tivariable Control 

Interna1 model control (MC) design techniques were discussed by Garcia and Morari (1982), but the 

philosophy of including process models in control system design has been used since the 1950s. The Smith 

Predictor is one of the fmt widefy discussed applications of simple linear process models internai in a 

control system. It contains one element of the basic philosophy of M C  I, the inverse of the process model. 

Another characteristic of M C  is the form of the controller, which consists of an approximation to the 

process inverse and a filter to provide a desired process variable trajectory. Inverting the process forces the 

controller to follow the trajectory in an optimal fashion. 

There are a number of publications (outside the scope of this review) on the successful application of M C  

in the petrochemicai (e-g., packed bed reactor (Kozub et al., 1989)) and pulp and paper industry (e-g., 

Matsko, 1985). Direct applications of M C  to controlling polymerization reactots are forthcoming. 

Tanner et al. (1987) discussed a rnultivariable optimal Proportional-Integral control structure with local 

linearization for controlling the MWD in a continuous methyl methacrylate reactor. The poIymerization 

mode! used in the simulations is that deveIoped by Schmidt and Ray (1981). Monorner conversion, initiator 

concentration, and reactor temperature were arnong the controlied variables. The performance of the 

controller was evaluated for cases involving start-up, disturbance rejection, and set-point tracking. 

Kwalik and Schork (1985) and Temeng and Schork (1987, 1989) proposed a similar multivariable control 

policy for the isothermal emulsion polymerization of MMA in a seeded CSTR. The rnultivariable pole-zero 

placement, dead-time compensator developed by Vogel(1982) was utilized to control monomer conversion 

and average particle diarneter in the presence of unknown disturbances (inhibitor concentration in the feed). 

The manipulated variables were the flowrate of a concentrated initiator solution and the split of the water 

fl ow between the tubular reactor (seeding pre-reactor in which particle nucleation takes place) and the main 

CSTR. Their simulation results indicate good control of both conversion and particle size. The 

effectiveness of using the tubular reactor to eliminate the oscillations in the CSTR was vetified in an open- 

loop experiment. 

Richards and Congaiidis (1987) proposed a control structure to regulate polymer production, copolymer 

composition, rnolecutar weight and reactor temperature in a simulated methyl methacrylate/vinyl acetate 

continuous solution copolymerization system. Their strategy combines a feedforward ratio control of 

recycle streams to maintain constant composition and fiow to the reactor, and rnultivariable feedback PI 

controt for polymer rate, composition, rnolecular weight, and reactor temperature. Several combinations of 

control variables were analyzed and evaiuated. Subsequently, Congalidis et al. (1989) applied an 

inputloutput pairing approach to identiQ the fundamentai structure of the solution copolymerization 

problem. Their design procedure was based on ranking various candidate smctures according to the 



condition number, minimum singular value and relative gain array of the process transfer hnction for the 

specific structure. They used flow ratios as manipulateâ variab1e.s and implemented PI controllers to 

control conversion, molecular weights and composition. The attractive part of their control strategy is its 

ease of tuning. However, a more complex controller rnay be needed to improve robustness. 

Ogunye (1994) developed multivariable control schemes for set-point tracking and disturbance rejection for 

the continuous soIution MMA polymerization. These schemes were investigated experimentally in the 

control of both conversion and average molecular weight using the initiator flow rate and the reactor jacket 

cooling water flow rate (i-e., reactor temperature) as the manipulated variables. Both constrained minimum 

variance control and one-step optimal control strategies were studied, dong with GPC and DMC. 

Sernino and Ray ( 1995b) continued their modelling of the emulsion polymerization of MMA as a 

population balance system. Osciliatory and unstable behaviour were previously identified as problerns that 

couId be controlled with feed rate. They proposed to control the polymerization in a CSTR by manipulating 

surfactant, initiator or inhibitor feed. They applied frequency domain tuning techniques to control the non- 

linear unstable process with SIS0 PI or P D  controllers. Various combinations of manipulated and 

controlled variables were evaluated. When the dynamics were sufficiently slow, derivative action was 

unnecessary to guarantee stability. Seven combinations within the three manipulated anci six output 

variables were successful control strategies, and conversion/initiator and total particle number/surfactant 

control were suggested as experimentally feasible. Constraints on the controller and measurements of 

outputs closely related to the onset of oscillations were identified as important issues. 

Nonlinear Mode1 Based Control 

Cardner (1984). Fox et al. (1984). and Tatkar et al. (1985) considered the anionic polymerization of styrene 

in a simulated CSTR. The controlled variables were the number average molecular weight and the polymer 

production rate. The control scheme included the following: a) a state variable feedback to reduce the 

transient response, b) a decoupling first order lag to minimize interaction between controlled variables, and 

C) a PI controller for regulation against load changes. 

Alvarez et ai. ( 1990) attempted to apply a feedforwardlfeedback (FFIF'B) control scheme on the MMA 

polymerization in a CSTR. Their simulation was based on the simplified mode1 of Chiu et al. (1983). in 

their control scheme, conversion and temperature set points were regulated by manipuiating initiator feed 

rate and heat removal rate. Upon measuring input disturbances, they were able to adopt the FF/FB control 

scheme by using single-loop tuning with conventional linear techniques. In a similar fashion, Daoutidis et 

al. (1990) dso  tried to apply multivariable FF/FB control schemes to reject step changes of two 

disturbances (inlet MMA concentration and inlet temperature) so as to control reactor temperature and 

number average molecuIar weights. 



Alvarez et al. ( 1993) studied the saturated state-feedback stabilisation for a Free-radical polymerization 

reactor operating around an open-loop unstable point. Thei. work was on numerical dynamic simulation 

models. Necessary and sufficient conditions were derived. Generally, this was a control study in non-linear 

feedback control. 

Soroush and Kravaris (1994) applied nonlinear multivariable control CO a pilot plant MMA solution 

polymerization reactor. The choice of residence tirne and jacket heat input as manipulated variables for 

controlling conversion and temperature created a singular characteristic matrix. An inputIoutput lineaizing 

controller was calculated and successfully used to control reactor startup and setpoint tracking. 

Mutha ( 1996) developed a new NL-MPC algorithm for control nonaffine (CNA) systerns. The algorithm 

was tested in simulations, including a semi-batch nitrile rubber (NBR) polymerization reactor. The 

algorithm was further tested experimentaily on an experimental, continuous solution MMA polymerization 

reactor. When compared to a control affine NLMPC dgorithm from literature, the CNA NL-MPC 

algorithm was observed to have superior performance. 

Maner and Doyle iïI (1997) studied autoregressive-plus Volterra-based MPC control of two simulated 

polymerization reactors. The nonlinear MPC outperformed both PI and Iinear MPC both in setpoint 

tracking and disturbance rejection. The stated advantages to their method were: (a) "plant-friendly" four- 

level input sequence that is less demanding than a continuously distributed disturbance, (b) computationally 

less intense nonlinear program to be solved at each sampling interval, and (c) semi-global stability in chat 

globai bounded-input bounded-output (BIBO) stability exists for the Volterra plus autoregressive mode1 

structure. 



CHAPTER 3: PID CONVERSION CONTROL -- CONTROLLER 
TUNING AND SIMULATLON STUDY 

3.1 Introduction 

This chapter presents the PID tuning method proposed by Wang, Barnes and Cluett (1995a) which will be 

referred to as the W-C method from now on. The PID tuning technique is based on a frequency domain 

design method that uses a Ieast-squares fit of the actual to the desired open-loop Nyquist plot. The novel 

ideas lie in the closed-loop performance specification: the desired response of the control signal and two 

process frequency response points. 

In terms of application of this to a CSTR, the polymer conversion was modelled as  a single input single 

output (SISO) first order plus deIay system with initiator feed rate as the manipulated variable and monomer 

to poIymer conversion as the controlled variable. 

Simulations show how the W-C tuning method was applied, and how its performance compares to other 

well known P D  tuning methods. 



3.2 Literature Survey of P D  Controller Design 
The ciassic, single-loop, proportional-integrai-derivative (PD) controller is well documented in process 

control rextbooks (Shinksey, 1979; Stephanopoulos, 1984; Seborg et al.. 1989; Aswm and Wittenmark, 

1990; Ogunnaike and Ray, 1994). 

Standard performance criteria, selection mies, and tuning methods, are well estabtished, but some recent 

literature in these areas exists. Tuning is a major part of the Iiterature. Ogunnaike and Ray's (1994) 

background, with tuning methods categonzed by model type used has been adopted in Sec. 3.2.3 through 

Sec. 3.2.6. 

Bnefly surnrnarizing the "approximation" models for processes that are either stable (proportional, self- 

regulating, approaching steady state) or unstable (integrating): 1- A common process mode1 for stable 

processes is the first order plus dead timddelay model (FO-tD) given in Eq. 3.1. 2 - Integrating processes, 

such ris level control and some thermal and electromechanicai processes, rnay be modelled as integrator plus 

some function, Iike integrator plus delay (I+D), or integrator plus fmt order (I+FO), even both I+FO+D. 

The I+D and I+FO models are given in Eq. 3.2a-b respectively. 

Here, the Laplace transfer function for the process, G(s) , is 

(dominant) time constant, and 8 the dead time (time deIay). 

(3.2a) 

(3.2b) 

described by K. the process gain, 7 the 

Ziegler-Nichols (2-N), Cohen-Coon (C-C) and interna1 mode1 control (IMC) based tuning methods are 

likely the best known. 

Table 3.1 summarizes recent work on design and implementation of PID controllers. Many papers attempt 

to improve or extend on Astrom & Hàgglund (1984). 



Table 3.1: Recent literature on the design and implementation of PID controllers 

Re ference System Work Notes 
h o m  & Hagglund (1984) 
h t r o m  & Hagglund (1988) 
ktfirn et al. (1992) 
Barnes et ai. (1993) 
Bobd (1995) 
Cluett & Wang (1996) 
Cluett & Goberdhansingh 
( 1990) 
Goberdhansingh et al. (1992) 

Hagglund & Asuom (199 1) 

Hom et ai. (1996) 
Huang et al. (1996) 

Jacob & Chidambaram (1996) 
Jerome & Ray (1986) 
Loron ( 1997) 
Luyben (1996) 
Park et al. ( 1997) 

Puleston & Mantz (1995) 

Rivera & Gaikwad ( 1996) 

Tan et al. (1996a) 
Tan et al. (1996b) 
Tham & Parr ( 1994) 
Tuffs & Clarke ( 1985) 
Voda & Landau ( 1995a) 

Voda & Landau ( 1995b) 

Wang et al. (I995a) 
Wang et aI. (1997b) 

gened 

general 
Laplace 
generai 
Laplace 

generai 

general 
Laplace 

FO+D 
delayed 
I+FO 
I+D 
CSTH 

Mm0 

FO+D 
I+D 

general 
general 
general 
integrating 

integrating 

general 
general 

automated 2-N tuning rnethod "auto-nining" 
auto-tuning 
P D  controller selection, tuning and evaluation 
fiequency dornain PID design method 
self-tuning Z N  PID 
P D  tuning mles 
practicai auto-nining P D  controller 

robust controller design from frequency 
response 
industriai adaptive FF and FB controllers; 

frequency response techniques 
filter design for IMC tuned PID systems 
extension to auto-tuning to estimate FO+D 

parame ters 
design for unstable systerns 
multivariable control strategies 
nonsymmeuical optimum method (NSOM) 
tuning rule proposa1 
on-line identification with Laguerre series, 

auto-tuning P D  
anti-wind-up for PI controller, tuning and 
dealing with saturation 
digital P D  design, uses Matlab ARX 
estimation 
design of Smith Predictors 
auto tuning procedure for PWID 
filtering and data reconstruction 
elirninating offset in self-tuning control 
P D  auto-cdibration by symmetricai optimum 

method 
PI auto-calibration by 2 frequency 
measurements 
frequency domain PID design rnetfiod 
frequency domain PID design method 



3.2.1 Performance Measures 

Performance criteria include (Ogunnaike and Ray, 1994): 

1. Stability Criteria - ctosed loop process mut  be stable 

2. Steady State Criteria - process must have close to no offset (zero error) at steady state 

3. Dynamic Response Criteria 

Although the first two criteria are fundamental, quantitatively evaluating the third one is not absolute. One 

way to evaluate dynamic controller performance is through some direct measures of maximum or minimum 

of the process output response curve: 

overshoot 

settiing time 

rise timdsiew rate 

decay ratio 

Often an integrated function of the feedback error from desired setpoint cari be used as welt. Common error 

criteria are integrais of the absolute value of the error (IAE), squared error (ISE), time-weighted absolute 

error (ïïAE), and time-weighted squared error (ITSE), given in Eq. 33a-d respectively. 

ITSE = JOw te2(t)dt (3.3d) 

Alternatively, the controlZer output instead of the process output can be used in the above equations. 

Chien (1992) evaluated controllers by summation of the input and output variance over equal time intervals. 

This corresponds to apptying ISE to both the controller output, u(t), (=process input) and the process 

output, y(t) and adding them. 



3.2.2 Controiier Selection 

Astrorn, Hang. Persson and Ho (1992) made recomrnendations on coniroller selection for stable and 

integrating processes (approximate rnodels) with monotone step response. They suggest four dimensionless 

quantities, easily determined, that can be used to assess the achievable performance as well as selecting the 

correct form of PI or P D  controllers. This also indicates if a more sophisticated control law would be 

suitable. The four values were normatised deadtirne (divided by the dominant time constant), norrnalised 

process gain (multiply proçess gain and ultimate gain), process load disturbance error and norrnalised 

closed-loop rise time (divided by the dominant time constant). 

Tan, Lee and Wang (1996b) applied normalised dead time as part of their rule-based automatic selection of 

PI or PID control in an auto-tuned P D  controller. 

3.2.3 Tuning with Fundamentai Models 
Given any process, the performance criteria given in Sec. 3.2.1 cm be minimized as an optimisation 

problem and let the solution be the P D  controller tuning parameters. 

Andytical methods can be applied to low-order models with few parameters. This includes direct synthesis, 

pole placement and intemal mode1 control (IMC) design methods. 

The 2-N continuous cyding (loop tuning, ultimate gain, or quarter decay) methoci applied to a process 

simulation is also tuning with fundamental modeIs. 



3.2.4 Tuning with Approximate Models 

ktrorn et al. (1992) have studied these models (FO+D and L+FO+D) and made recommendations on 

selection and tuning methods. They recommended against using Z-N for a FO+D when the ratio of delay to 

tirne constant is greater than 1. The CSTR process has a 0.7 ratio. 

Z-N and C-C quarter decay methods, time integral tuning rules, direct synthesis and IMC tuning mies have 

al1 k e n  applied to first order plus dead time modeIs. Ogunnaike and Ray (1994) suggest ITAE and 

IMCIDirect synthesis settings as the best choice for the approximate mode1 approach. 

Voda and Landau (I995a) applied a "symmetrical optimum method" to auto-calibrate a PID controller on 

an integnting pIant process using one frequency measurement. This was followed by auto-calibration of a 

PI conuoller using two frequency measurements (Voda and Landau, I995b) to extend vdidity limits. 

Loron (1997) presented the "non-symrnetric optimum method" for tuning P D  conuollers on I+FO 

processes, as an extension to the work by Voda and Landau. 



3.2.5 Tuning 6 t h  Frequency Response ModeIs 

The majority of the indusuial regdators are tuned using frequency response methods because modelling 

errors and application specifications can be expressed directiy in the frequency domain (Tang and Onega. 

1993; Loron, 1997). 

Tan et aI. (19966) enhanced auto-tuning by estirnating the process fiequency response at two specified 

phase lags on the Nyquist curve. They estimate the second point by placing a delay elernent on the relay 

controller. They then apply rules based on dynamics and normaiised dead time to select PI or P D  control. 

Simulation and experimental results show that this enhanced method has better performance than the 

standard auto-tuned PD.  

Barnes, Wang and Cluett (1993) proposed an interesting new algonthm for designing PI. controI1ers in the 

frequency domain. It was based on an optimisation problem using the frequency domain process response. 

The principle was to minimize the sum of squared errors between the actual and desued Nyquist plots of the 

open Ioop process. The problem was solved anaiyticalty. A more general non-Iinear control structure 

would require numerical solution. 

Since the algorithm was solved on the open-loop Nyquist plot, the stability of the solution could be 

evaluated using the Nyquist stability criteria. Assessing robust stability was possible. 

Wang, Barnes and Cluett (1995) applied this algorithm to formulate a novel PID tuning methoci. This 

method required minimal information about the process to be controlled. Specifically. 

1. self-regulating (approaches steady state) or integrating process 

2. frequency response at two frequencies related to the closed loop settiing time of the process 

3. overall process gain -- amount of change in the output with a given step in the input 

The two advantages of rhis method were: 

1. use of frequency domain data in the form of the process Nyquist plot at a limited nurnber of points, 

required less structural information about the process 

2. performance specification in time domain 

The novelty in the new method was this closed Ioop performance specification of the desired controller 

output signai in time dornain. A smooth control signal and process output is produced. 

The key performance specification variable was îX in Eq. 3.4. 



where u(t )  is the controller output with respect to time, 1 . The ratio yK of setpoint change. r . to 

overail process gain. K gives the final required controller output for the new setpoint. The expression in 

the square brackets applies the smooth shape to the control signal and CII is the performance parameter - 
larger values making this controller more aggressive (typically in the range of 0.5 to 15). T is the process 

time constant. 

Cluett and Wang ( 1996) also presented a simplified set of tuning rules using normalised parameters and 

PID tuning constants. The key measure of the difficulty in controlling a process was given as the ratio 

L = T/d . where T was the process time constant and d was the delay or dead tirne in the process. Srnail 

L with a long delay (large d ) or fast process (srnall T ) would indicate a process that is dinicult to 

control. 

PID conuoller tuning constants. K, . T, and 'tD were normalised by multiplying the controller gain by the 

process gain, and dividing the controller time constants by the process dead time. Tables of normalized 

tuning constants for first order plus dead time and integrating processes, at various level of performance, 

were presented. 

Wang, Hang and Bi (1997b) proposed a fiequency domain controIler design method that minimizes the 

closed loop response between the actual and desired process frequency response. They admit that their 

method is similar to Bames et al. (1993). however they point to the lack of information on how to set the 

desired loop frequency responses, how to deal with unstable processes and how to obtain the multiple 

frequency response points. They propose using relay feedback auto-tuning data to generate an F'Fï-based 

process frequency response. 



3.2.6 Tuning without Models 
The Z-N continuous cycling method applied directly to the process by using a proportional controller fails 

into this category. However, applying this method is difficult in practice since oscillating (Le. marginal 

stability) behaviour is required - not always applicable for the CSTR process. 

Astrom and Hagglund (1984) presented "auto-tuning" of PID controllen. Their technique relies on a relay 

controller to add small amplitude perturbation to the process instead approaching instability. The ultimate 

gain and ultimate period are used to tune the PID controller 

Bobd (1995) described a self-tuning digital P D  convolIer with an adaptive second order regression model. 

It used Z-N tuning rules but instead of oscillating the process output like k t rom and Hagglund (1984). it 

specified placing the closed loop control response on the stability boundary using a proportional controller. 

Key parameters were criticai gain and critical period of oscillation. Simulations showed that it could 

control proportional systems with or without minimum phase. and integmting systems. 

Huang, Chen, Lai and Wang ( 1996) refined auto-tuning to better estimate FO+D models so that 

approximate model tuning methods could be applied to relay feedback results. They proposed that the 

magnitude of the perturbations could be made asymmetrical, that the relay could be automatically shut off 

once constant oscillations were observed, and that a test stoppage criterion could be applied. These changes 

allowed for model-based controllers more robust to error yet with better performance. 

Park, Sung and Lee (1997) proposed using an under-damped, step or pulse change in setpoint with a nomai 

P, PI or PID controller to perturb the process, and a Laguerre series to estimate a second order plus time 

delay mode1 from the output. They use ITAE tuning based on this model to calculate the parameters for the 

P D  controller. Simulation and expenmental results are reported to be effective. 



3.3 Theoretical Background 

3.3.1 Process Description 

The process is a solution, homopolymerization of methyl methacrylate (MMA) monomer in toluene solvent. 

The reaction is initiated by 2,î'-azobisisobutyronitrile (AIBN), a thermaily decomposing fiee radical source. 

The continuously stirred tank reactor (CSTR) operates isothermally with a constant feed of rnonomer, 

solvent and initiator. A constant reactor volume is maintained by product overfiow out of the vesset. 

A PID controller was implemented to control percent conversion of MMA to poly-methyl methacryiate 

(PMMA) polymer by manipulating the AIBN initiator flow rate. Increasing the initiator flow rate into the 

reactor increases conversion. 

A first order plus dead-time, discrete time, transfer function mode1 for the CSTR in terrns of initiator fiow 

rate to percent conversion was previously identified by Chien (1992) as Eq. 3.5. 

where u, is the AIBN pump flow rate (mumin) and is weight percent conversion of monomer to 

polymer in the reactor. Bath variables are in deviation from steady state form. The time interval was one 

minute. 

In order to impIement P D  controlier tuning methods, bis z-transform was converted to a continuous tirne 

Laplace transfer function, Eq. 3.6. 

This transfer function has an overall process gain of -4.143, a dead time of 25 minutes, and a process time 

constant of 35.7 minutes. The process is stable, however, it has a long delay and large time constant - 
indicating a relatively slow process. 



3.3.2 Wang and Cluett (W-C) Tuning Method 

The genenl first order plus time delay process transfer function (Eq. 3.1)- for fiequency response is given in 

Eq. 3.7. 

If the desired closed loop transfer function is given as Eq. 3.8, 

then the red and imaginary parts of the process frequency response are Eq. 3.9a-b respectively. 

w here 

The ctosed loop time constant is determined frorn the choice of a using Eq. 3.1 1. 

r, = d a  (3.1 1) 

The real and imaginary parts of the process fiequency response. Y ,  are required at two Frequencies, q 

and &, and are calculated using Eq. 3. t2a-b. 

(3. I2a) 

(3.1 Sb) 

The closed loop settiing time. q ,  was estimated as five process time constants and the delay, Eq. 3-13. 

T, =52+d (3.13) 

Accual tuning constants are given in terms of three intermediate variables (Eq. 3.14a-c): 



So the final PID tuning constants are given by Eq. 3.15a-c. 

Wang et al. (1995a) used a values of 0.5, 1 .O and 1.5 in their exarnple of tuning a P D  controller for a 

FO+D process using their method as compared to IMC, 2-N and another method. Tuning of the P D  

controller with a values in the range of 0.5 to 1.5, as well as more aggressive values yields tuning 

parameters as given in Table 3.2. 

Table 3.2: Tuning constants for P D  controller tuned using W-C d e s  

Parmeter W-C W-C W-C W-C W-C W-C 



3.3.3 ControiIer Tuning 

For cornparison, the conversion controller will a150 be nined using ZN, C-C, RAE minimized, and XMC 

briçed tuning methods on the same first order plus dead ûrne process malel. Numerical results are given in 

Table 3.3. 

Ziegler-Nichols (2-N) Tuning 

Z-N approximate mode1 tuning rules for PID controllers are given in Eq. 3.16a-c. 

Cohen-Coon (C-C) Tuning 
C-C tuning rules are given in Eq. 3.17a-c. 

ITAE Tuning 
Minimum iTAE tuning rules for P D  controllers using approximate models are optimised for setpoint 

tracking and disturbance rejection, given by Eq. 3.18a-c and Eq. 3.19a-c, respectively. 



M C  Tuning 

Tuning rules based on M C  are given by Eq. 3.20a-c. 

The tiiter parameter, . is the tirne constant for the desired closed Ioop first order response. It must satisfy 

A > 0.27 and the recommended choice is given by Eq. 3.21. 



Table 3.3: Tuning constants for P D  controller tuned by various tuning rules 

Parame ter 2-N C-C rr" IT AE M C  M C  
setpoint disturbance Ut3 = 0.25 U0 = 0.9 

K c  -0.4 136 -05 t 99 -0.3 129 0.4590 -0.3723 -0.2448 
Zr 50. 48.66 51.51 32.59 48.2 48.2 
70 12.5 6.048 0.22 1 1 9.538 9.2583 9.2583 



3.3.4 PID Simulation 

The classical PID controller is described by Eq. 3.22, where the contmller output, ~ ( t )  , is calculated as a 

function of the enor, e( t )  . The enor is detined as the difference between the desired process output, 

r( t )  . and the rneasured output. y( t )  , in Eq. 3.23. 

Velocity Form 
A simple digital implementation using the velocity (or deviation, or incremental) form of this equation is 

discretized using finite differences as in Eq. 3.24. The subscript. k . indicates the sarnple nurnber in time. 

and At is the sampling interval. 

Using the velocity form avoids problems related to the integrator term: 

integntor windup 

m bumps for parameter changes when offset is zero 

bumps switching frorn manual to automatic with zero offset 

Astrom and Wittenmark (1990) point out that a good P D  controller is no< a simple digital implementation 

of the "textbook" analog PID controller given above. They explain that the derivative action should be 

limited to avoid amplifying measurement noise, and separated for setpoint and measurement effects on 

e ( t )  

Integrai or reset windup can occur to a PID controller in position fom. For the velocity form, a saturated 

signal can cause problems when the proportional and derivative term negate the integral term as the 

controller output leaves the saturated region back to nomal operating regions. 

When a large control signai output saturates the actuator action, integral or reset windup results. The error 

signal wilI continue to accumulate. 

Ogunnaike and Ray (1994) presented a simple scheme to prevent m e t  windup using feedback from the 

actuator to the controller. The difference between the actuator input (requested by the controller) and 



output (achieved by the actuator) is fed back to the integrator at a rate determined by a tracking time 

constant. 

Integral Action 

For incremental improvement, the integral tenn of the digital controller can be calculated using a 

trapezoidai instead of a rectangular approximation as in Eq. 3.25. 

Astrom and Wittenmark (1990) relate how using 24 bits of precision in internai computation is frequentiy 

used to avoid integration offset due to quantization error. 

Derivative Action 

Derivative kick is the large change in the controlter output that resulrs when a step change is made in the 

setpoint. This be can be avoided by applying derivative action only to the measurement error using 

Eq. 3.26, or by ramping any setpoint changes over urne. 

Sampling Intewal 

Astrom and Wittenmark (1990) give a rule of thumb for choosing sampling frequency based on continuous 

tirne arguments. If the phase margin can be decreased by 5" to 15". then, Eq. 3.27 cm be used to choose the 

sampling fiequency. h . based on the crossover fiequency, 0,. in radians per second. 

h o ,  = 0.15-05 

F i l t e ~ g  

A first order or low-pus filter (also exponential or aipha) can be implemented in digital form as Eq. 3.28, 

where yk is the k th filtered measurement and rk is the k th raw reading. 01 is the filtering factor between 

O and 1, where O applies no filtering and 1 uses only historical values. 



Using a fmt order filter delays dynamics and will tend to make the control system sluggish. 

Tham and Parr (1994) outlined a simple procedure based on statisticai theory to validate and reconstnic: 

data using a combination of low pass filters, spike filters and heuristics. This filters out noise and spikes 

without masking the dynamics or introducing significant delays characteristic of simple fmt order filters. 



3.4 Simulation Results 

3.4.1 Open Loop Results 
Figure 3.1 shows the open loop pmcess response to a step change in the process input. The control variable 

is conversion. y ( t )  in percent, in the top plot. The manipulated AiBN flow rate. ~ ( t )  in ml/min. is on the 

bottom plot. Both variables are given in deviation form from initia1 steady state vdues, 

At time 50 minutes, the AIBN flow rate was increased from the initial steady-state value by 2 d m i n .  The 

conversion rose by about 8%. Although not shown on the plot, when the AIBN flow rate was decreased, 

the convenion decreased back to the original value. The time required to complete 95% of the step in the 

process was about 132 minutes, including 25 minutes of delay. 

At time 300 minutes, a large, unmeasured, first order disturbance in the conversion was introduced for 20 

minutes. after which. the process was allowed to retum to steady state. The convenion dropped about 6 9% 

and then recovered back to the higher level. 
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Figure 3.1: Simulated open Ioop process response to a 2 mumin increase in AIBN flow rate 



3.4.2 Closed Loop Results 
Figures 3.2 through 3.4 show representative plots of the simulated, closed loop process response with the 

controller tuned with W-C tuning rules at a = 0.5, 1.5 and 10.0- Figures 3.5 and 3.6 show the same loop 

with 2-N and C-C tuning rules for approximate first order and delay rnodeIs, Figures 3.7 and 3.8 show 

simulated closed loop response for the controller tuned with ITAE minimized for setpoint change and 

disturbance rejection. Figures 3.9 and 3. IO show the ciosed loop response with the controller tuned by M C  

tuning rules with values of 0.25 and 0.9. The top plois show the percent conversion, y ( t )  , and the 

bottom plots show the rnanipulated AIBN flow rate. u(t) in rnlhin. Both conversion and AIBN fiow rate 

are in deviation fom, so that the initial steady state is reference zero. 

Al1 the closed loop simulations were started in closed loop controI with the PID controller tuned according 

to the selected method. The process was started at steady state on the fust conversion setpoint. At tirne 

50 minutes, the setpoint was increased from the steady-state vdue by 10 5%. At time 300 minutes, a large, 

unmeasured, first order disturbance was introduced into the conversion for 20 minutes, after which, the 

process was allowed to retum to its previous state. 

Al1 the controtlers were stable and able to change the conversion to the new setpoint, as well a s  recover 

from the disturbances. 
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Figure 3.2: Simulated closed loop process response with W-C tuned (a = 0.5) controtler 

(- simulation, --• setpoint) 
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Figure 3.3: Simulated closed ioop process response w t h  'X-C tuned ( a = 1.5) conuoller 

(- simulation, - - -  setpoint) 
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Figure 3.4: Simulated closed loop process response with W-C tuned ( a = 10.0) controller 

(- simulation, --a setpoint) 
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Figure 3.5: Simuiated closed loop process response with 2-N tuned controller 

(- simulation, - - -  setpoint) 
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Figure 3.6: Sirnulated closed Ioop process response with C-C tuned controller 

(- simulation, .-• setpoint) 
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Figure 3.7: Simulated closed loop process response with ïïAE tuned (setpoint change) controller 

(-simulation, - - -  setpoint) 
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Figure 3.8: Simulated closed loop process response with rI'AE tuned (disturbance rejection) controller 

(- simulation, -.- setpoint) 
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Figure 3.9: Sirnulated closed loop process response with M C  ( = 0.25) tuned controller 

(- simuIation, - - -  setpoint) 
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Figure 3.10: Simulated closed bop process response with M C  tuned ( % = 0.9) controller 

(- simufation, --• setpoint) 



3.4.3 Evaluation 

Al1 the controllers were closed Ioop stabIe, satisbing the stability critena. 

Although W-C ( d . 5 )  tuned response in Figure 3.2 did not reach steady state in 2SO minutes, there is clear 

indication that it is approaching the setpoint and further simulations showed that it achieved the 9.9% of the 

setpoint change after 465 minutes. Therefore, al1 the controllers satisfied the steady state d te r i a  

Integral error performance measures given in Eq. 3.3a-d were calculated for al1 the controllers. Table 3.4 

sumarizes numerical results of iAE,  ISE, ITAE and iTSE for the closed loop response with the different 

controller tuning methods. The four functions are subdivided into whether the test was a setpoint step 

change or a load disturbance 

Table 3.4: Time-integral performance measures of the simulated closed loop responses 
to setpoint change and Ioad disturbances 

setpoint distur- 
bance 

W-C a = 0.5 995 329 
W-C a = 1 .O 659 324 
W-C a = 1.5 534 3 14 
W-C a = 2.0 470 307 
W-C cx = 5.0 446 287 
W-C a = 10.0 462 278 

ISE 

setpoint distur- 
bance 

6479 1061 
4698 920 
4160 899 
39 17 89 1 
3569 892 
35 15 928 

lTAE 
(thousands) 

setpoint distur- 

ITSE 
(thousands) 

setpoint distur- 
bance 

28 15 367 
1276 366 
94 1 348 
S 15 335 
673 313 
673 33 1 

C-C 67 1 423 4 17 1 1523 40 1 282 1310 752 

ITAE - setpoint 539 344 3783 1151 236 20 1 844 494 
ITAE - 567 325 3978 1177 245 175 1025 486 

disturbance 

IMC Al8 = 0.25 445 278 351 1 884 133 143 653 306 
M C  Al0 = 0.9 53 1 289 4007 806 180 176 879 277 



3.5 Discussion of Simulation Results 
Figure 3.1 1 compares the various controllers by their ISE after setpoint changes and load disturbances. 

Since the ISE does not weigh errors over time, if a controller takes a long tirne to reach steady state at a new 

setpoint, it would not be so heavily penalized. However, since error is squared, large deviations from 

setpoint are penalized. This would indicate which controllers are better at minimizing offset. 

M C  appears to be the best controller for setpoint changes and disturbance rejection by ISE performance 

measures, with the W-C (1.5) and W-C (2.0) k ing very close. 

A clear trend can be seen as the a parameter was increased from 0.5 to 5.0 for the W-C tuned controller - it 
performed better, and ISE decreased. The irnprovement in performance using more aggressive control 

(higher a) was more pronounced for changes in setpoint than for disturbance rejection (about half as much, 

percentage-wise as for setpoint changes). As a increased to 10.0, ISE for disturbance rejections increased. 

This was visible in Figure 3.4 with agressive tuning, the controller output overshot the setpoint after the 

disturbance, and oscillated More returning to the desired setpoint. 

Z N  tuned controllers and those tuned to minimize ITAE performed poorer than W-C controlIers. Their 

aggressive, oscillatory process response was penalized by the squared error in ISE. Z-N and iTAE 

minimized for setpoint changes both performed better than W-C for setpoint changes for the same reasons. 

C-C tuned control did not perform well. 

Cornparison of the controllers by ITAE is shown in Figure 3.12. Since ITAE penalizes more than ISE for 

slow approaches to setpoint, slow reacting and oscillatory controllers performed poorly with this test. 

MC was again the best controller by iTAE criteria with W-C being close. 

For the W-C tuned controller, increasing values of a from 0.5 through 10.0 improved performance. The 

trend was very clear. IMC with a time filter constant equal to the process urne constant ( X = so - 1.428) 

having performance somewhere between W-C with a between 1.0 and 1.5 is evident and in agreement with 

comment5 by Wang et al. (199Sa). 

Z-N tuning appeared to have performance somewhere between W-C with a of 1.0 and 1 S. However, 

cornparison of the simulation plots for -1.0 and -1.5 (Figure 3.3) shows that Z-N has faster response but 

a larger overshoot that does poorly when the error is squared in ISE (Figure 3.1 1). 

ITAE tuned controllers appeared to perform better than W-C methods in disturbance rejection, especially 

the one tuned for such. However, they suffered from oscillatory response and fared poorly in the ISE test. 

C-C tuned control did not perform well by ITAE measures either. 



I better 
disturbance 
rejection 
performance 

lTAE ITAE 
W-c ( W m  . (dist) 
(1 0.0) 

' 1 (0.9) 
WC 

W-C 
(5.0) 

(2.0) 

O 1 O00 2000 3000 4000 5000 6000 7000 

ISE (setpoint change) 

1600 

200 

O 

Figure 3.1 1: Cornparison of closed toop controller performance by ISE 
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Figure 3.12: Cornparison of closed Ioop controlfer performance by ITAE 



3.6 Concluding Remarks 
M C  appears to be the best type of controller tuning rnethod for tuning the Fust order ptus dead time mode1 

of the CSTR process when compared with ISE or ITM performance criteria. 

Using ISE and ZTAE performance critena was a good compromise for evaluating controllers. ISE weighter 

the cornparison against controllers with large deviations from setpoint, such as with overshoot. ITAE 

weighted the cornparison against controllers with long term offset. The results could be compareci in a 

quick, visual, plot using the two mesures as axes. 

M C  couId be expected to give good performance for the control of the experimental CSTR process. This 

would be a good choice for comparison with W-C tuning. 

If W-C tuning with a vdues of 0.5 are to be used, a long waiting period will be required for the process to 

reach steady state. 



CHAPTER 4: EXPERIMENTAlL VERIFICATION OF A PID 
CONTROL TUNING MElTHOD FOR CON'Vi3RSION IN A 
SOLUTION MMA CSTR 

4.1 Introduction 
The experimental system consists of a heated 1 L reactor in which MMA was polymerized in solution. 

Monomer, toluene solvent and AiBN initiator dissolved in toluene were fed in at controlled rates. 

Conversion was controtled in the range of 20 to 35%. Setpoints were changed both up and down. 

Disturbances were introduced by a pulse injection of 2,Z-diphenyl- 1-picrylhydrazyl hydrate (DPPH) into 

the feed Stream, that consumed free radicals and slowed down the reaction. 

This system exhibits significant time delays of about half an hou. Based on the feed rate, the average 

residence time is 25 minutes. Roduct flowing out of the reactor, through a cooling system, and through the 

on-Iine instruments ais0 delays the measurements by about 10 minutes. 

Conversion is measured using an on-line densitometer. The increase in density as monomer is converted to 

polymer is converted to a weight conversion that is fed back to the P D  controller running on a PC. This 

was a significant source of measurernent noise. Air bubbles entrained in the product Stream passed through 

the densitometer causing occasionally a momentary drop in the density reading. 

Resulis show that the P D  controller tuned using the W-C tuning technique and an approximate process 

transfer function controIled the conversion to desired changes in the setpoint and recovered from process 

disturbances. 

An IMC tuning based PID controller was also tested. This controller was more aggressive, and tended to 

saturate the controller signal. Because of its aggressive tuning, setpoint changes were effected more 

quickly, but at the cost of an oscillating controller signai. 



4.2 Experimental System 
The CSTR laboratory holds the 1 litre continuous stirred tank reactor (IL-CSTR), and the control system 

composed of a desktop PC, and OPTOMUX OPTO-22 digital and analogue inputIoutput controller. 

The CSTR is used for control studies on a continuous free radical solution polymerization process. The 

monomer is M.4, the solvent is toluene, and the initiator is AiBN. Typical reaction conditions are: 

temperature around 50 to 90°C 

atmospheric pressure 

60 % toluene. 40 % MMA in the feed 

Poly(methy1 methacrylate) of between about 20,000 and 40,000 weight-average molecdar weight ( M W  is 

produced at approximately 20 to 40 % conversion. 

Small quantities of DPPH can be used to "poison" the reaction. 

The apparatus and procedures for the IL-CSTR are described in detail in "Operating Procedure for I-Litre 

Continuous Stirred Tank Reactor" (Chien and Penlidis, 1994a). 

A review of the apparatus, chemicals, and operational procedures was wcitten in the "Hedth and Safety 

Assessrnent Report: Polymer CSTR Laboratory E 1-2550A" (Tanaka, 1995). 

A demonstration run was completed by R.K. Mutha on November 1. 1995. where severai control strategies 

were evaluated. 

Figure 4.1 shows a schematic diagram of the experimental apparatus. The system consists of three feed 

lines, the reactor, heating and cooling equipment, on-Iine sensors, data collection system, and a process 

control cornputer. The system was developed and described in detail in Chien (1992). A brief overview of 

the equipment and procedures follows. 
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Figure 4.1 : Schematic of experimenial apparatus 



4.2.1 Apparatus and Materials 

Feed 

The three feed lines are MMA monomer, toluene solvent, and AIBN initiator dissolved in toluene. Each 

species is pumped from a drum or flask by a computer controlled, ProMinent EXtronic (model 

BX2A1006SB for pump #1 and pump #3, externally pulsed model BXSElûû6SB for AiBN pump #2) 

diaphragm-type metering pump, through stainless steel tubing, and into the reactor. The whole feed system 

operates at room temperature. 

Toluene (Aldrich Chemicd, commercial grade 99% toluene) is delivered in 18 L drums. It is not purified 

before use. ToIuene is fed directly from the drums, through 118" tubing into metering pump #3. The 

solvent pulses out, through a Nupro 20 Ib. check valve and along 1/8" tubing into a feed header on the 

reactor. 

Mcthyl methacrylate inhibited with 10 ppm MEHQ (Aldrich Chemical, commercial grade 99% MMA) is 

delivered in 17 L drums. It is not purified before use. MMA is fed by a srnall, variable speed positive 

displacement pump (FMI Lab pump, 114" piston) through 1/8" stainless steel tubing into a magnetically 

stirred 2 L aspirator bottle. Nitrogen gas is bubbled slowly through monomer in the bottle to remove 

dissolved oxygen. Metering pump #3 pulses MMA thtough a Nupro 3-50 Ib. relief valve (rnanually 

adjusted to 15 Ib.), dong 1/8" tubing and into the reactor feed header. 

AIBN (Dupont, VAZO-64) is delivered in 10 Ib fibre drums. 43.794 g (47.892gJL in Chien, 1992) of the 

white crystals are dissolved in 1 L of toluene at room temperature to make 0.032 moVL initiator solution. It 

is held in a magnetically stirred, 2 L aspirator botde. Nitrogen gas is bubbled slowly through the solution to 

remove dissolved oxygen. 1/4" tubing connects the bottle to the pump. Metering pump #2 pumps solution, 

through a Nupro 20 lb. check valve, along 114" tubing, and into the reactor feed header. 

DPPH (Aldrich Chemical) is delivered in 2 g vials. It is dissolved in 200 ml of MMA and injected into the 

monomer feed line in place of the regular MMA feed, 

Reactor 

The reactor is a Chemineer mini-reactor series Iûûû ml model. The 3 16 stainless steel vessel has an inner 

diameter of 4.25" and approximate 1309.5 ml volume. A spargddip tube, a finned thermowell-baffle, 114" 

coil and an agitator shaft al1 descend through the vessel head. 

The agitator consists of a six blade, -2.25" diameter turbine attached 4.25" beIow the top of the reactor and 

driven by a 112 hp air motor. Agitator speed is set by manually adjusting the air pressure, measured by a 

tachometer, and is recorded on the process computer. Normal operating speed is about 300 rpm. 

Cooling water flows through the coil. The coil is made of 114" O.D. tubing with a 2.25" LD. and 37 in.' 

surface area. Cooling water flow from utility into the coil is controlled by a needle valve on computer 



controf. Water temperature as it leaves the vesse1 is measured by a transducer and is recorded by the 

process computer. The thermowell is empty. 

An electric heating mantle heats the reactor. The heater is controlled by proportionating the onfoff cycle 

time with a signal from the process computer. For al1 the experiments, the duty cycle was maintained at 

65% on, except during startup and shutdown. For the beginning and the end of the run, the heater duty was 

changed to 100% and O%, respectively. 

Product 

Product from the reactor overfiows through 1/4" tubing through a cooling water bath, bypass valve, 

deaerator, on-tine viscometer, on-line densitometeriflow meter, and into a waste drum. 

The cooiing water bath is fdled with utility cold water at approxirnately 25 O C .  The bypass valve can send 

reactor effluent directly to the waste without passing through the sensitive on-line instruments. The 

deaerator removes bubbles of gas: most likely nitrogen formed from the decomposition of AIBN as wefl as 

entrained nitrogen gas and toluene and MMA vapours, which can cause problems in the densitometer. 

Viscosity is measured by a Contraves Covimat (CVM 105-DC40E) in-Iine rotational viscometer. It 

measures bnking torque between a rotating measuring bob (cylinder) and drive motor which is converted to 

viscosity. 

The densitometer consists of a Micromotion Mass Flow Meter (Mode1 D012S 100) and support equipment 

(Rernote Flow Tnnsmitter RFT-97 12; Rosemount 268 Smart Family interface) that measures fluid mass 

flow rate as it passes through an oscillating "ü" shaped tube. Rated accuracy is about +/- 0.2% of rate and 

the measurement range was configured to 0.256 kglmin. Temperature is also measured as part of the 

information required to calcutate density/flow. 

Measurements taken from on-line instruments are converted and read through the OPTOMUX Opto-22 

interface. Communication is through an RS-485, The Opto-22 is interfaced to a 486DX33 Intel CPU based 

personal computer mnning the MS-DOS 5.0 operating systern and a custom process control program. 



4.2.2 UO Interface and Process Cornputer 

The OPTOMUX Opto-22 data acquisition system comtcted to the reactor consists of one 16 position 

analog mounting rack (PB 16AH) with a "brain" board (B2) and another digital 16 channel "quad-pak" 

mounting rack (PB 16HQ), RS-485 communication Iink to the PC, and some support circuitry (power 

supply, wiring, etc.). The input and output modules plugged into the boards are summarized in Table 4.1. 

The original reactor control program was written in Microsoft QuickBASIC version 4 5  (Chien, 1992). The 

control program was updated and revised for multivariate control. as well as adding new controllers 

(Ogunye, 1994; Lawrence, 1994). Conversion control manipulating ADN flowrate was reprograrnrned and 

the whole program was cleaned up in QuickBASIC version 7.0. The program flow diagram for the updated 

program is shown Figure 4.2. 

Table 4.1: Opto-22 V 0  module summary 

Position Module Description Function 
O ADST (type f )  thennocouple input reactor temperature 
1 AD5T (type I) thermocouple input jacketfmantie temperature 
2 ADST (type J) thermocouple input cooling water outlet temperature 
3 AD3T 4 - 20 rnA input cooling water valve position 
4 DA4 O - +5 V output 4.858 V supply to read CW pot. 
5 
6 AD7 O - 10 V input product temperature 
7 AD3T 4 - 20 mA input density 
8 AD20 mass £iow 
9 
10 DA5 O - 10 V input jacket voltage 
1 1  AD7 O - 10 V input agitator RPM 
12 AD6T O - 5 V input viscometer 
13 DA3 4 - 20 mA ouput MMA pump fiow 
14 DA3 4 - 20 mA ouput AIBN pump flow 
15 DA3 4 - 20 mA ouput toluene pump flow 
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Figure 4.2: CSTR control program flow sheet 



4.2.3 Operating Conditions and Procedures 

Detailed descriptions of equipment. operating conditions and procedures are given in Chien (1992) and rhe 

1-litre CSTR Operating Manual (Chien and Penlidis. 1994a). Nomind operating conditions are tabulated in 

Table 4.2. 

Level control is by ovedow out of the reactor into the product lines. Pressure is at atmosphenc level plus 

the back pressure in the product lines and on-line instrumentation. 

Table 4.2: Nominal operating conditions 

State Nominai Value Normal Operating Range 
reactor mixture temperature 80 OC isothermal70-90 OC 
feed monorner:solvent ratio 
monomer feed rate 
solvent feed rate 
initiator solution feed rate 
residence tirne 
m a s  conversion monomer to polymer 

40:60 by vol. cons tant 
13.33 mumin constant 
14.00 d m i n  5-20 m h i n  
4.00 mumin O- 1 1 mumin 
39.3 min constant 
30 96 20-40 % 



4.2.4 Temperature Controfler 

One problem with temperature control is that the reactor is heated and cooled by multiple sources. This is a 

multipIc input, single output (MISO) control problem. Heat sources are the heating jacket, and heat 

released by the exothermic polymerization reaction. Heat is removed by the cold water (CW) flowing 

through the intemal coil, and via heat losses from the reactor and jacket, and through the product. 

Mutha (1996) studied the heat balance around the reactor. He implemented a thermocouple on the CW 

outlet to better predict the heat load. 

The current temperature controlIer varies the CW flow rate whiIe maintaining a constant heating jacket 

power input. The constrained minimum variance control (CMVC) temperature controller imptemented by 

Ogunye (1994) was used with a smdl modification. It calculates a CW valve position in order to maintain a 

reactor temperature. The percentage is converted to a CW valve position which is implemented separately 

by turning the needIe valve clockwise or counter-clockwise a number a seconds. Previously, the fraction of 

maximum flow rate was given in instrument units (rnA). It was converted to a percentage of maximum. 

The duntion. dur .  to tum the valve is given by the following method. It is recalculated at every iteration 

at 15 second intervais. The present and setpoint values (PV and SP) are valve position in mA as measured 

by the potentiometer. 

sum = sum + vo 

T, dur = K, x v 0  +-xsum 
I;, 

Minimum and maximum valve position measuremenrs are hard-coded into the control program and used as 

the 0% and 100% Iimits of the manipulated (MV) controller output. 



4.2.5 Conversion Controlier 

The conversion controller is a digitai P D  conû.olIer in vefocity form. It manipulates AIBN flow into the 

reactor to achieve a desired conversion setpoint. Tuning and implementation of this type of singie input 

single output (SISO) controller was discussed in detail in Chapter 3. 

Figure 4.3 is block diagram for this controller. 

Figure 4.3: Conversion control block diagram 

The setpoint, r, is compared with the measured output, y, and input into the controller, G,. The controller 

calculates a required output, c, that is clamped within the physical limits of the pump output, Gv, and a 

physically achievable output, u, is sent to the process. A measured disturbance, dm, inhibitor injection 

(DPPH), can be introduced at this point. The process, Gp and any unmeasured disturbances, du, are 

measured together and fom the perceived output, y. 



4.3 Methodology 

4.3.1 Experimental Run Objectives 

One experimentd run was completed to ver@ the performance of the W-C tuned PID conversion 

controller. The run consisted of three parts: an open loop segment without the controller, a closed Ioop 

segment with the controller tuned using W-C tuning rules, and a finai closed loop segment with the 

controller tuned using M C  tuning niles. 

The open loop segment verified that the process mode1 previously identified and used in the simulation 

studies was a good representation of the actual process. The segment had three tests, consisung of a step 

change in the initiator flow rate from a high value to a low value, and then back up to the high value, 

followed by a pulse disturbance. 

The first closed loop segment verified chat the W-C tuned P D  controller performed according to the 

specification and as predicted by the simulations. The three tests were: a controlled conversion change 

irom a high setpoint to a low setpoint, a move back up to the high setpoint, and recovery from a pulse 

disturbance. A conservative case was chosen as a safe exarnple since the behaviour of the P D  

controller had not been recently tested. 

The second closed loop segment compared the W-C tuned P D  controller with a P D  controller tuned using 

IMC tuning rules, a well known and industridly accepted tuning method. This segment also consisted of 

three tests: a controlled conversion setpoint step down, a step up, as well as recovering from a pulse 

disturbance. The controller was tuned with a more aggressive UM.9 since this would be the second 

closed Ioop test and would make a good contrast to the conservative W-C tuned controller. 



43.2 Experimentd Run Procedures 

The proposed experirnentsil run procedure steps are summarized in Table 4.3. 

The mn was divided into three segments: open loop, closed Ioop with W-C tuning, and closed Ioop with 

M C  tuning. Each segment consisted of t h e  tests: a conversion step down, another step up, and recovery 

from a pulse disturbance. 

The run started with the reactor initialIy charged with a 40:60 monomer:solvent solution to match the 

constant feed mix ratio. There was no initiator in the reactor at the beginning of the run. The reactor 

temperature was raised to 80 OC and maintained within 0.5 OC of the target temperature for the duration of 

the run. Al1 three feed pumps were started. Once at steady state with 4 Wmin initiator mix feed rate, the 

first, open loop, segment tests were started. 

For open loop mode, the AIBN fl ow rate was manuaily set to either a high (4 mumin) or low (2 mlhin) 

rate. For closed loop mode, the AIBN flow rate was on computer control. and automatically adjusted by the 

computer. For closed loop mode, the conversion setpoint was manually set to the high or low value. 

DPPH was manually added into the MMA feed strearn as a pulse injection. Flow was either on (1) or 

off (O). 

Table 4.3: Run procedure summary 

Time Conversion Manipulation Target (wait for) 
[min] Conuoller 

O open Ioop start heating, and initiator flow steady state 
180 AIBN flow rate step down steady state at low conversion 

4 + 2 mUmin 
300 AIBN flow rate step down steady state at high conversion 

2 + 4 mumin 
420 DPPH injection recovery to high conversion 
660 closed Ioop conversion setpoint step down steady state at low conversion 

W-C tuning 40 -, 30 % 
780 conversion setpoint step up steady state at high conversion 

30+40% 
900 DPPH injection recovery to high conversion 

and steady state 
1 140 closed loop conversion setpoint step down steady state at low conversion 

M C  tuning 40 + 30 % 
1260 conversion setpoint step up steady state at high conversion 

30 +4O % 
1380 DPPH injection recovery to high conversion 

and steady state 
1560 open loop shut down heating and AIBN flow arnbient conditions 



4.3.3 On-iine Data Couection 
Temperature readings are taken every 15 seconds, and trended on the screen. Every minute, they are used 

by the temperature controller to control reactor temperature. 

Flow rates for the metering pumps are set every minute. 

Density measurements are taken every 15 seconds and converted to conversion based on Eq. 4.1. These 

values are trended on the screen. Every minute, the conversion controller uses this measurement as the 

input. Readings are stored to disk every minute as well. 

P conversion = - 
P P  1-- 

fi, is the density of the feed (constant 4 0 8  monomer, 60% solvent), P is the measured product density. 

p, is the pure moncmer density and P,, is the pure MMA polymer density. 

Viscosity measurements are taken every 15 seconds. They are saved to disk every minute. Lawrence 

(1994) obtained parameter estimates for the viscosity to molecular weight correlation given in Eq. 4.2. 

where is the solution viscosity in cP, T is the product temperature in OC. X is the conversion. and 
- 
MW is the weight average molecular weight in thousands. The 95% confidence intervals for the 

parameters are (Lawrence, 1994): 

Sarnples of the product were collected every 30 minutes, inhibited with hydroquinone, and stored in a 

freezer. 



4.3.4 Off-tine Measurements 

Gravimetry as descnbed by Chien ( 1992) and Lawrence ( 1994) was used to ven@ the measurement of 

conversion off-line using the simples that were colIected during the mn. 

Briefly, part of each sample was weighed   mas^,,"^), vacuum oven dried, and weighed again (massdry). 

Conversion was caiculated using Eq. 4.3. 

where X, and x, are the mass fraction monomer and solvent in the feed, and Pm and P, are the densities 

of the pure monomer and solvent. 

Gel permeation chromritography (GPC) was used to determine molecular weight characteristics of some of 

the samples that were collected during the mn. 



4.4 Experimental Results 
Experimental data was divided into the three segments of the experimental run, The results fiom the fmt 

segment. operation in open Ioop mode, is described in Section 4.4.1. 

Section 4.4.2 describes the results from the second and third segments. The second segment was closed 

loop operation with the W-C (@.5) tuned controller. The third and final segment was closed loop 

operation with the JMC ( ~ / @ = 0 . 9 )  tuned controller. 

Off-line conversion and molecular weight measurernent results are presented in Section 4.4.3. 

4.4.1 Open Loop Results 

Figure 4.4 shows the resuIts from the open loop mode of the run. The three plots, from top to bottom, are 

the conversion (%), AIBN flow rate ( d m i n )  and DPPH flow (onfoff) trends fkom the 153" to 523" 

minutes of data collection. DPPH flow was either "on" (1) or "off' (O). 

Steady state conversion with the initial 4 mVrnin AIBN flow rate was approximately 3 1%. When the 

initiator flow rate was dropped to 2 mYmin, the conversion dropped to about 24%. It took about 2 to 3 

hours to achieve steady state. The AIBN flow was increased to 4 mYmin. When the system had stabilized 

back to about 32% conversion, DPPH dissolved in MMA was injected into the monomer feed line. 

Conversion dropped about 8% before recovering to its original value. 



Figure 4.4: Open loop response of conversion process 
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4.4.2 Ciosed Loop R d t s  

Figure 3.5 shows the results frorn the second segment, closed loop mode with the W-C (a=0.5) tuned 

controIIer. The three plots, from top to bottom, are the conversion (%), AIBN flow rate (mV~n) and 

DPPH fIow (odoff) trends from the 636" to 1028~ minutes of data collection. DPPH flow was either 

"on" (1) or "off" (O). 

The process was first allowed to reach steady state at about 32% conversion with 4 mi/min AIBN flow at 

the open loop mode. Then, the controiler was tumed on with the W-C tuned parameters and a setpoint at 

the steady state vdue (32%). 

The conversion setpoint was decreased by 10% to 22%. The controller decreased the AD3N flow rate and 

was able to control conversion down to about 22% after approximately two hours. 

Once more at steady state, the conversion setpoint was increased 10% to 32% and the conversion was 

controlled back up to 30%. The reluctance to rise to 32% even though the process response curve might 

suggest that it should, and the sudden jump to 32% just before the disturbance injection suggest plugging or 

smdl pockets of poor mixing in the reactor apparatus. 

At the high 32% conversion levei, under closed loop control, DPPH dissolved in MMA was injected into 

the feed. The conversion dropped approximately 7% before being controlled back up to the setpoint. 



Figure 4.5: Conversion controt with W-C tuned controller 
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Figure 4.6 shows the conversion control with the IMC (UW.9) tuned controller. The three plots, Eiom top 

to bottom. are the conversion (%). AiBN flow rate ( rnh in )  and DPPH flow (onfoff) trends h m  the 1 156' 

to 1525' minutes of data collection. DPPH flow was either "on" (1) or "off  (O). 

The procedures was similar to the W-C tuned controller tests but the results were quite different. The initial 

steady-state was higher, so the high and low setpoints of 35% and 25% were used for this controller. 

The controlfer was able to manipulate the AIBN flow rate to control conversion to the oew setpoints faster 

than with the W-C controller (about 15 hours versus 3 hours). There were less problerns with what may 

have k e n  hysteresis in the conversion measurement, although another exptanation may be that the system 

response at 22% conversion is different from that at 32% (ie. nonlinear). 

The AiBN flow n t e  adjusunents were very noisy, probably accentuateci by the noisy conversion 

rneasurernent. On a number of occasions. considerable spikes up appear in the AIBN flow rate settings 

when the conversion measurement spiked down and the controller tried to cornpensate. These low 

conversion spikes were caused by gas bubbles entrained in the product sueam that give fdsely low density 

reading in the densitometer (Chien, 1992). Saturation of the flow rate was then due to the combined 

measurement noise and aggressive IMC tuning. 



Figure 4.6: Conversion control with M C  tuned controllet 
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4.43 Off-line Results 

Figure 4.7 shows the gravimetry results superimposed on the conversion versus time graph of the whole run. 

Since conversion is cdculated directiy from density, even with temperature compensation in the densities, 

the two show exactly the same information. 

We compared on-line conversion predictions with off-line gravimetry anaiysis. Although the agreement in 

trends is good, the off-line measurements are systematically higher than the on-line predictions. This may 

have been caused by a number of factors. The most likely is that unreacted monomer, solvent, or some 

impurities were still unevaporated and trapped in the dried polymer samptes and in weighing the sampfes, 

the excess was incorrectly rneasured as PMMA. Although Lawrence did report that not fmt precipitating 

the polymer before drying still gave accurate results, it may have been a factor hem. 

Figure 4.8 shows number and weight average molecular weights of the samples as measured by GPC. The 

correlation used (Eq. 4.2) was reported to be systematicalIy off with molecular weights below 35,000 

(Mucha, 1996). However, Mutfia's correction would not correct the measurernents enough to give good 

agreement. 

Another possible explanation is a high molecular weight tail, caused by poor local mixing in areas of the 

reactor and lines. Since the molecular weight correlation uses weight average molecular weight and yet 

even the number average molecular weights are higher than predicted, there may be a systematic error 

elsewhere. 



Figure 4.7: Off-line conversion rneasurement 
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Figure 4.8: Off-line moIecular weight measurement 

(- on-line estimation from viscosity, O off-line GPC measurement) 



4.5 Discussion of Results 

45.1 Cornparison of Chien (1992) Model with Experimental Results 
Chien (1992) identified a discrete time transfer function for the open loop process relating the initiator ffow 

rate to conversion. This model was described in Section 3.3.1 and the transfer function was given in 

Eq. 3.5. The model was compared to the open loop experirnental results. Conversion offset was caiculated 

from a steady state conversion of 32 % and AIBN flow rate was deviation from 4 d m i n .  

Figure 4.9 is a plot of the mode1 prediction and the open loop experimental results. The t h e  graphs show 

the simultaneous trends of conversion ieveI, AIBN flow and DPPH injection. There is good agreement 

between simulation and experimental data, indicating this model is a good process model and that there was 

little change in the process between 1992 and 1997. The sum of squared errors between simulation and 

expenmental data was 177.7 over 37 1 minutes or 0.479lmin. 

Figure 4.10 is a plot of the model prediction and the W-C tuned segment of the closed loop expenmental 

results. The three graphs show the simultaneous trends of conversion tevel, AIBN flow and DPPH 

injection. There is good agreement between simulation and experimental data. The sum of squared errors 

between simulation and expenrnentaf data was 652.3 over 392 minutes or 1.664/min. 

Figure 4. t 1 is a plot of the mode1 prediction and the M C  tuned segment of the closed loop expenmental 

results. The three graphs show the simultaneous trends of conversion Ievel, A B N  flow and DPPH 

injection. There is good agreement between simulation and experimentd data. There is a visibly larger 

deviation of the model prediction from the expenmental results than for the two previous figures. The surn 

of squared errors between simulation and experimentd data was 2635.2 over 369 minutes or 7.14/min. 
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Figure 4.9: Cornparison of simulation with Chien (1992) mode1 with open loop expenmental results 

(- expecimental, . . . simulation) 
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Figure 4.10: Comparison of simulation with Chien ( 1992) mode1 with W-C segment of closed loop 
experimental results 

(- experimental, . . . simulation) 
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Figure 4.1 1 :  Cornparison of simulation with Chien (1992) mode1 with M C  segment of closed loop 
experimental results 

(- experimentai, . . . simulation) 



4.5.2 Transfer Function Model Parameters 

Each of the parameters in the model onginally estimated by Chien (1992) were recalculated base on the new 

experimental data. Simulations based on the new parameter values were compared with the experimentai 

results. 

Chien (1992) Model 
Figure 4-12 combines the conversion trends for the Chien (1992) model predictions and experimental 

results for dl three segments. Sum of the difference ktween the simulation predictions and experimental 

results are tabulated in Table 4.4. 

Open Loop Estimated Model 

A FO+D mode1 was estimated using the open loop experimental results. Matlab was used to estimate the 

parameters for the general linear model. The estimated model is described by Eq. 4.4. 

where is the percent conversion. u, is the AIBN tlow rate (mUmin). and D, is whether the DPPH 

injection is on ( 1 )  or off (0). Steady state conversion was assumed to be 32%, dead time 25 minutes, and 

AIBN flow rate was calculated as deviation From 4 mumin. Figure 4.13 compares the simulation based on 

this open Ioop fitted model with the sanie set of experimental results as Figure 4.12. The sums of squared 

errors between simulation and experimental data are included in Table 4.4. 

When the sums of squared errors between simulation and experimental results are compared for the open 

loop and two closed loop segments we note the following: 

open loop and M C  tuned closed loop segments, this model gives better agreement then Chien's model 

W-C tuned closed loop segment, this model does not predict behaviour as well as Chien's model 

Mean Conversion Estimate 

The steady state conversion leve1 was estimnted from the conversion in open loop mode with constant 

4 mumin AIBN flow rate. Since process drift may have caused this value to change, the mean conversion 

was varied from 30 to 35% for each segment to estimate the mean for minimal discrepancy between model 

predictions and experimental data. Figure 4.14 shows the effect of estimated mean conversion on the 

simulation predictions. The mean conversion was varied from 30 to 36%. The Iowest band on the smooth 

lines is 30% and the upper smooth line is 36%. 

The best estirnates for mean conversion were chosen based on minimizing the sums of squared errors for 

each of the segments. The minima for the open loop, W-C tuned closed loop and IMC tuned closed loop 



segrnen ts were w ith 32.0.3 I .4 and 32.3% mean conversion respectively . . The minimum sums of squared 

errors between simulation and experimental data are summarized in Table 4.4. 

Gain Estimate 
A FO+D model was fitted separately to each segment of the experimentd results. Matlab was used to 

estimate the parameters for the general linear model. The estimated model for the open loop segment was 

given earlier in Eq. 4.4. For the W-C and M C  tuned closed loop segments, the models could not be 

accurately identified so the gains were estimated fiom the low and high steady state values, 

For al1 segments, steady state conversion was assumed to be 32%. dead time 25 minutes, and AIBN flow 

rate was calculated as deviation from 4 mumin. Figure 4.15 shows the simulation and experimentai data for 

the three segments. 

Steady state process gains for the AIBN flow to conversion rate are 3.83,4.77 and 4.M for three segments 

respectively. Chien (1992) estimated 4.14, and Lawrence (1994) estimated 2.39 for the same process. 

Dead T i e  Estimate 

The dead tirne for the AiBN to conversion process transfer function in Chien's model was varied fiom 23 

through 37 minutes. For al1 segments, the steady state conversion was assumed to be 32%, and AIBN flow 

rate was calculated as deviation from 4 mumin. 

The minimum sum of squared errors for the open loop and W-C tuned cIosed loop segments were with 

24 min and 32 min dead times. For the IMC tuned cIosed loop segment, the dead time could not be 

minimized since the model prediction was tao far removed from the experimental data and sum of squared 

errors were an order of magnitude greater than the other test. Dead time estimates for open loop and W-C 

tuned closed loop segments also depended on the range of data points chosen, process gain and the choice 

of steady state conversion. Mode1 predictions using 24 min, 32 min, and 37 min are given in Figure 4.16 

The DPPH disturbance had best fit with a 14 minute dead time. 



Table 4.4: Sum of squared errors for different parameter estimates for the mode1 

Open Loop W-C Tuned IMC Tuned 
Closed Loop Closed Loop 

Chien (1992) 178 652 2635 

open loop estimated mode1 123 852 2235 

mean conversion adjusted mode1 178 524 2606 

gain adjusted mode1 123 398 885 

dead time adjusted mode1 175 570 1584 

The results in Table 4.4 show how variability in the process rnodei gain may have a significant effect on the 

prediction errors. The gain is related to the efficiency in increasing conversion by increasing the AIBN 

flow rate. The variabiliv of the.eficiency with which the AIBN is initiating the reaction may not be 

constant over tirne or at different conversion IeveIs. This is problematic since this is directly reIated to the 

manipulated A-Il3N flow rate. 

Factors that may be affecting the efficiency of initiation are: batch-to-batch variability as the AIBN initiator 

solution is being made. non-uniform mixing of initiator and reactants, decomposition rate varying with 

temperature. A possible solution is adaptively modifying the gain, 
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Figure 4.12: Cornparison of the Chien ( 1992) mode1 with experimental results 

(- experimentai, . . . simulation) 
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Figure 4.13: Cornparison of the open loop estimated mode1 with experimental results 

(- experimentai, . . . simulation) 
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Figure 4.14: Cornparison of the mean conversion adjusted mode1 with experimentai results 

(- experhental, . . . simulation) 
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Figure 4.15: Cornparison of gain adjusted mode1 with experimental results 

(- experimentai, . . . simulation) 
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Figure 4.16: Cornparison of dead time adjusted mode1 with experirnental results 

(- experirnental, . . . simulation) 



4.5.3 Quality of Control 
As discussed eadier in Section 3.2.1, the controller performance includes stability, steady state, and 

dynamic response criteria For the two closed loop mode segments, the process was visibly stable. The 

steady state criteria, that there should be zero offset From setpoint, was achieved with both the W-C tuned 

and M C  tuned controller. Witb W-C tuning, there appears to be a srnall offset from setpoint, but this can 

be attributed to conversion measurement error, a slow responding controller, and not alIowing the systern to 

settie (for 4-5 time constant intervals) - as was previously identified in Chapter 3 as a possibIe problem if 

W-C (-0.5) is not allowed sufficient time to reach steady state. 

For dynamic response performance measures, the same ISE and ïïAE rneasures used in Chapter 3 were 

applied. However, since there is noise in the measured conversion, this must be taken into consideration 

when directly comparing with simulation results. 

Figure 4.17 shows the closed Ioop data plots of conversion versus time. The top plot is for W-C tuned 

control and the bottom is for IMC tuned control. The solid line trends rire experimental data, the dotted 

Iines are setpoints, and the vertical lines are demarcation lines between, in order, steady state, setpoint 

down, setpoint down, and disturbance rejection regions. 

Table 4.5 surnmarizes the ISE and ïïAE results. 

Integral error for setpoint down and up were averaged, and both controllers were compared with 

simulations. Figures 4.18 and 4.19 are scatter-plots of the experimental points dong with the simulation 

predictions lrom Chapter 3. W-C(exp8t) is the point for segment two and iMC(exptt) is the point for 

segment three. 

The controllers evaluated by ISE measures had good agreement with simulation predictions. The W-C 

tuned controller was in the vicinity of W-C (0.5). The IMC tuned controller was close to the M C  (0.9) 

predicted point. 

With ïTAE rneasures, the controllers did not have as good agreement with simulation predictions. Both 

W-C and IMC tuned controllers had poor performance by ITAE measures. 
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Figure 4.17: Closed Ioop data regions for performance measurc 
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Table 4.5: CIosed Ioop mode experimental performance measures 

ControlIer Test minutes ISE IT AE 
W-C steady state 12 cl 1 

setpoint down 157 
setpoint up 13 1 
disturbance rejection 93 

M C  steady state 39 29 
setpoint up 118 4489 
setpoint down 135 4319 
disturbance rejec tion 78 569 - P 

total 370 9407 
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Figure 4.18: Cornparison of closed loop controlIer performance by ISE 
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Figure 4.19: Cornparison of closed loop controller performance by IT& 



4.5.4 Control Signal Specification 

Figure 420 compares the simulation prediction for the control signal and the actuaI experimental AIBN 

flow rate signal. The top plot is the conversion setpoint (9%) and the bottom plot is the AiBN flow rate 

(mumin). The simulation for AIBN fiow rate was based the W-C (&5) controller reguiating the FO+D 

z-transform mode1 given in Chapter 3. The control signal necessary for the setpoint changes in the top plot 

were calculated and supenmposed on the experimental AIBN flow rate settings. The sudden rise in the 

experimental AlBN flow rate at about 935 minutes was causai by the experimental system being disturbed 

by the DPPH injection. 

There is very good agreement with the predicted controller output. 
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Figure 4.20: Cornparison of predicted control signal with experimental results 

(-- experimental, . . . simulation) 



4 5 5  Off-line Gravimetry 

Off-line gnvimetq showed that the conversion estimates fiom on-line densitometer readings were 

systematicaily lower than by gravimetry. Although the accuracy of both the conversion measurements may 

be in question, the trends are the same and for the objective of controlling conversion to an arbitmy state, 

had good precision. 

4.5.6 Molecular Weight Measurement 

Molecular weight measurements from off-line GPC showed that the higMow molecular weight trends were 

correctiy detected by the on-line viscometer. Further work may be required to yield better accuracy in the 

molecular weight estimates from viscosity measurements. Although Lawrence (1992) conducted extensive 

system identification in this area, the results had a large variability. Mutha (1996) used an empirical 

correlation to correct for lower molecular product because his results differed so much from Lawrence. 

However, his correlation does not work with this data set in improving the agreement between on-line and 

off-line measurements. 



4.6 Concluding Remarks 
There was very good agreement between the open loop experimental results with the previously identified 

z-transforrn transfer function mode1 of the system by Chien (1992) that related initiator flow rate to 

monomer conversion in the reactor. 

With cIosed Ioop control, the mode1 was not as closely matched with the simulations. Refitting a fmt order 

plus delay model with the current open loop experimental results, the new model still was unabIe to predict 

the closed loop behaviour better than the previous model, 

Varying three parameters of the model, mean conversion, overall process gain, and dead tirne. showed that 

the reaction rate may have changed during the course of the experimental run, causing a change in the 

overall process gain and steady state mean conversion. Severai factors may have contributed, inciuding 

variance between initiator batch make-ups and initiator efficiency. Since the experimental run was so long, 

there were many opportunities for the process to change or the operator to have erred. 

Quantifying the of quality of control by integral error performance mesures showed that the experimentai 

results were not as good as the simulations. This was expected since the experimental results included noise 

which would Iower the integral error performance. 

The W-C tuned controller was easy to tune and behaved as predicted by simulations. 

The MC tuned controller was similarly easy to tune and behaved as predicted by simulations. 



CHAPTER 5: CONCLUSIONS AND RECOMMENDATIONS 

Some conclusions were drawn from the results of the simulation runs. 

AI1 the P D  controllers tuning methods, W-C ( d . 5 -  10.0). Z-N, C-C, ITAE (setpoint, disturbance), 

and M C  (U0=0.25,0.9) produced controllers chat met minimum performance criteria for closed loop 

stability and steady state offset. 

M C  tuned P D  appeared to have better closed loop performance for conversion control than Z-N, C-C, 

or W-C (ac1.0) tuned versions when compared by ISE and ï ï A E  measures. However, the W-C 

method had close to the same level of performance as M C  when tuned with a values greater than 1 .O. 

C-C and W-C ( d . 5 )  tuned controllers stood out as performing worse than most of the other 

controllers; C-C because it was more aggressive and oscillated the output signal, and W-C (&.5) 

because it was slower approaching a new setpoint or returning to a setpoint after a disturbance. 

From the on-line experimental results, a number of conclusions were drawn. 

Predictions using the z-transform model of CSTR process and open loop experimental results were in 

good agreement. The assumption that the process had not significantly changed since Chien (1992) 

was vaiidated. The significance was that Chien's expenmentai runs testing other P D  controllers (Smith 

predictor, Dahlin's control) could be directiy compared with data from this experimental run. 

The W-C (-0.5) tuned controller performed as expected during the experimental run. with good 

agreement with simulation predictions. This included the prediction that the system would not be at 

steady state, even after 250 minutes, still exhibiting a slight offset fiom the desired setpoint as the 

controller was slow to react. 

The controller output signal for the W-C (CY=(I.S) tuned controiler was almost identical to that predicted 

by simulations based solely on the setpoint changes and first order plus delay (FO+D) transfer function 

model. This result verifies that, with the W-C tuning method using a FO-t-D model, the controller 

output signal could be used accurately for the specification for the desired level of performance. 

IMC tuned P D  control did not perform as closely to its simulation predictions as W-C (ce4I.5) had 

done to its own. The process output was not as accurately predicted by the transfer function model, and 

the controller output had many, regular spikes. An aggressively tuned controller was expected to 



perform with a noisy controller output as previously seen in Chien (1992). However. performance was 

worse than expected when compared using lTAE measms. Process drift may have been a cause. 

S. On-Iine conversion measurements were systematicalIy lower than off-line gravimetry measurements 

taken &ter the experimental run. Samples had k e n  regularly collected during the experimentai mn, 

and analyzed days later. 

6. On-Iine molecuiar weight estimates were about half of the measured weight average molecular weights 

calculated off-line using GPC. Samples collected during the expenmentai run were inhibited and 

analyzed days Iater. 

Recommendations for Future work include the following. 

1. Since the W-C tuning method has k e n  verified to work as specified, it could be used to tuned the 

controller for better performance. The experimental work was not to compare W-C against M C  tuned 

controllers' performance. However, that would be a Iogical next step since the experimental 

verification was successful. Some simulations had shown much better performance. Further runs could 

show what is the best possible performance given the noisy conditions. 

2. Extending the control study to higher levels of conversion, where diffusional limitations become more 

significant, has been recommended by previous researchers. However, in order to deal with the non- 

linearities and ensure safe operation, tighter, guaranteed control would be desirable. Having a well 

understood P D  controlIer with predictable behaviour and reliability would be required. 

3. The M C  and W-C tuned controllers were run at different steady state conversions. The process may 

have different gains at these tevels and caused the M C  tuned controlIer to behave noisily. More runs 

at the other conversions could verify this. 

The following are suggestions for consideration before future work, based on experience gained during this 

thesis work. 

1. The review of polymer reactor control had a large number of references, including many articles that 

had relevance in several areas of study. This made it difficuIt to categorize them. Organization into a 

general database format, with searchable indices and continual updates would be useful. Since many 

search indices are already available, having general interfaces to convert information from others would 

be advantageous. 



2. Although Mutha (1996) developed NL-MPC control program that a n s  in a "real-time" UMX 

environrnent, the use of a proprietary operating system is not necessarily better. Problems coding 

control programs and interfaces (man-machine and PC-process) were often a major problem 

encountered here. The NL-MPC algorithm could be inchdeci in the current, easier to understand, 

QuickBASIC program or in a simiIarly simple development environment, 



APPENDM A: ABBREVIATIONS AND NOMENCLATURE 

A.l Generai Abbreviations and Acronyms 
- - - - -  

Abbreviation Full Narne 
ANN 
C-C 
CCD 
CLD 
CSTH 
CSTR 
DAE 
DLS 
DMC 
EKF 
ESTR 
FI3 
FF 
FFT 
FO+D 
GC 
GLC 
GPC 
HDC 
I+FO 
IAE 
iMA 
M C  
ISE 
ITAE 
ITSE 
KF 
LALLS 
LCB 
LO 
LQC 
MHE 
MI 
MIMO 
MW 
MWD 
M n  

M W  

NACL 
NCLD 
m 
NL 
NL-PCA 
NN 
NMR 
ODE 

artificial neural network 
Cohen-Coon (tuning method) 
chernical composition distri bu tion 
chah length distribution 
continuous stirred tank heater 
continuous s h e d  tank reactor 
differential algebraic equations 
dynarnic light scattering 
dynarnic matrix control 
extended Kaiman filter 
extended self-tuning regulator 
feed back 
feed forward 
fast Fourier transfonn 
first order plus delay or deadtime (process) 
gas chromatograph y 
global linearizing control 
gel perrneation chromatography 
hydrodynamic chromatography 
integrating plus first order (process) 
integral absolute error 
integrated moving average (process) 
intemal rnodel control (tuning method) 
integrai square error 
integral time-weighted absolute error 
integral tirne-weighted squared error 
Kalman filter 
Iow angle laser Iight scattering 
long chah branching 
Luenberger observer 
linear quadratic controlIer 
moving horizon estimator 
melt index 
multiple input multiple output 
molecular weight 
molecular weight distribution 
number average molecular weight 
weight average molecular weight 
number average chah tength 
number chah lengtb distribution 
near-infared refiectance spectroscopy 
nonlinear 
nonlinear principal component analysis 
neural network 
nuclear magnetic resonance 
ordinary differential equations 



Abbreviation Full Narne 
PCA principal cornponent analysis 
PD1 pol ydispersi ty index 
PFR plug flow reactor 
PI proportional integral (controller) 
PID proportionai integrai derivative (controller) 
PRBS pseudo-random binary sequence 
PSD particle size distribution 
Qc quality cr\u;d 
RNN recurrent neural net 
SEC size exclusion chromatography 
SIS0 single input single output 
SPC statistical process control 
SS steady-state 
TE glass transition temperature 
UNlPOL potyethylene production process (Union Carbide) 
W-C Wang and Cluett tuning method 
WCLD weight chah length distribution 
2-N Ziegler-Nichols tuning method 



A.2 hitiator, Monomer, Polymer, and Other Chemical Species' Abbrevîations 
- - - - -. - 

Abbreviation Full Name 
ACN 
AIBN 
AVN 
BDN 
BPO 
BuA 
BUAc 
DPPH 
EHA 
EPM 
EPDM 
H I P S  
LDPE 
LLDPE 
LPO 
MEHQ 
MMA 
MSTY 
NBR 
N M R  
PE 
PET 
PMMA 
PP 
PS 
PVC 
SAN 
SB 
SBR 
STY 
VA 
VC 
VCLAC 
2-N 

acrylonitrile 
2,Z-azobisisobutyronitrile 
2,2',4,4'-tetramehy1-2,S'-azovderonitnle 
butadiene 
benzoyl peroxide 
buty 1-acrylate 
n-butyl acrylate 
2,2-diphenyl- 1-picrylhydrazyl hydrate 
2-ethylhexyl acrylate 
ethyiene/propylene monomer 
ethylene/propylene/butadiene monomer 
high impact polystyrene 
Iow density polyethylene 
Iinear low density polyethylene 
dilauroy Iperoxide 
mono methyl ether hydroquinone 
methyl methacrylate 
p-methylstyrene 
(acrylonitrile) nitrile-butadiene rubber 
nuclear magnetic resonance (imaging) 
polyethylene 
poly(ethy1ene terephthalate) 
polymethyl rnethacrylate 
poI ypropy lene 
polystyrene 
polyvinyl chloride 
styrene-acryfonitrile copolymer 
styrene-butadiene latex 
styrenehutadiene rubber 
styrene 
vinyl acetate 
vinyl chloride 
vinyl chloroacetate 
Ziegler-Natta (catalyst) 



APPENDM B: PROGRAM LISTINGS 

A copy of the QuickBASIC control prognm can be obtained from: 

Professor A. Peniidis 

Department of Chernical Engineering 

University of Waterloo 

Waterloo, Ontario 

Canada N2L 3G I 
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