77 research outputs found

    Activity Inference for Ambient Intelligence Through Handling Artifacts in a Healthcare Environment

    Get PDF
    Human activity inference is not a simple process due to distinct ways of performing it. Our proposal presents the SCAN framework for activity inference. SCAN is divided into three modules: (1) artifact recognition, (2) activity inference, and (3) activity representation, integrating three important elements of Ambient Intelligence (AmI) (artifact-behavior modeling, event interpretation and context extraction). The framework extends the roaming beat (RB) concept by obtaining the representation using three kinds of technologies for activity inference. The RB is based on both analysis and recognition from artifact behavior for activity inference. A practical case is shown in a nursing home where a system affording 91.35% effectiveness was implemented in situ. Three examples are shown using RB representation for activity representation. Framework description, RB description and CALog system overcome distinct problems such as the feasibility to implement AmI systems, and to show the feasibility for accomplishing the challenges related to activity recognition based on artifact recognition. We discuss how the use of RBs might positively impact the problems faced by designers and developers for recovering information in an easier manner and thus they can develop tools focused on the user

    Designing for interaction immediacy to enhance social skills of children with autism

    Full text link
    Children with Autism Spectrum Disorder often require therapeutic interventions to support engagement in effective social interactions. In this paper, we present the results of a study conducted in three public schools that use an educational and behavioral intervention for the instruction of social skills in changing situational contexts. The results of this study led to the concept of interaction immediacy to help children maintain appropriate spatial boundaries, reply to conversation initiators, disengage appropriately at the end of an interaction, and identify potential communication partners. We describe design principles for Ubicomp technologies to support interaction immediacy and present an example design. The contribution of this work is twofold. First, we present an understanding of social skills in mobile and dynamic contexts. Second, we introduce the concept of interaction immediacy and show its effectiveness as a guiding principle for the design of Ubicomp applications

    Animal Welfare Assessment

    Get PDF
    This Special Issue provides a collection of recent research and reviews that investigate many areas of welfare assessment, such as novel approaches and technologies used to evaluate the welfare of farmed, captive, or wild animals. Research in this Special Issue includes welfare assessment related to pilot whales, finishing pigs, commercial turkey flocks, and dairy goats; the use of sensors or wearable technologies, such as heart rate monitors to assess sleep in dairy cows, ear tag sensors, and machine learning to assess commercial pig behaviour; non-invasive measures, such as video monitoring of behaviour, computer vision to analyse video footage of red foxes, remote camera traps of free-roaming wild horses, infrared thermography of effort and sport recovery in sport horses; telomere length and regulatory genes as novel biomarkers of stress in broiler chickens; the effect of environment on growth physiology and behaviour of laboratory rare minnows and housing system on anxiety, stress, fear, and immune function of laying hens; and discussions of natural behaviour in farm animal welfare and maintaining health, welfare, and productivity of commercial pig herds

    Telemedicine

    Get PDF
    Telemedicine is a rapidly evolving field as new technologies are implemented for example for the development of wireless sensors, quality data transmission. Using the Internet applications such as counseling, clinical consultation support and home care monitoring and management are more and more realized, which improves access to high level medical care in underserved areas. The 23 chapters of this book present manifold examples of telemedicine treating both theoretical and practical foundations and application scenarios

    Design for energy-efficient and reliable fog-assisted healthcare IoT systems

    Get PDF
    Cardiovascular disease and diabetes are two of the most dangerous diseases as they are the leading causes of death in all ages. Unfortunately, they cannot be completely cured with the current knowledge and existing technologies. However, they can be effectively managed by applying methods of continuous health monitoring. Nonetheless, it is difficult to achieve a high quality of healthcare with the current health monitoring systems which often have several limitations such as non-mobility support, energy inefficiency, and an insufficiency of advanced services. Therefore, this thesis presents a Fog computing approach focusing on four main tracks, and proposes it as a solution to the existing limitations. In the first track, the main goal is to introduce Fog computing and Fog services into remote health monitoring systems in order to enhance the quality of healthcare. In the second track, a Fog approach providing mobility support in a real-time health monitoring IoT system is proposed. The handover mechanism run by Fog-assisted smart gateways helps to maintain the connection between sensor nodes and the gateways with a minimized latency. Results show that the handover latency of the proposed Fog approach is 10%-50% less than other state-of-the-art mobility support approaches. In the third track, the designs of four energy-efficient health monitoring IoT systems are discussed and developed. Each energy-efficient system and its sensor nodes are designed to serve a specific purpose such as glucose monitoring, ECG monitoring, or fall detection; with the exception of the fourth system which is an advanced and combined system for simultaneously monitoring many diseases such as diabetes and cardiovascular disease. Results show that these sensor nodes can continuously work, depending on the application, up to 70-155 hours when using a 1000 mAh lithium battery. The fourth track mentioned above, provides a Fog-assisted remote health monitoring IoT system for diabetic patients with cardiovascular disease. Via several proposed algorithms such as QT interval extraction, activity status categorization, and fall detection algorithms, the system can process data and detect abnormalities in real-time. Results show that the proposed system using Fog services is a promising approach for improving the treatment of diabetic patients with cardiovascular disease

    Human-Computer Interaction

    Get PDF
    In this book the reader will find a collection of 31 papers presenting different facets of Human Computer Interaction, the result of research projects and experiments as well as new approaches to design user interfaces. The book is organized according to the following main topics in a sequential order: new interaction paradigms, multimodality, usability studies on several interaction mechanisms, human factors, universal design and development methodologies and tools

    Advances in Human Factors in Wearable Technologies and Game Design

    Get PDF
    • 

    corecore