573 research outputs found

    Interactive ant colony optimization (iACO) for early lifecycle software design

    Get PDF
    Finding good designs in the early stages of the software development lifecycle is a demanding multi-objective problem that is crucial to success. Previously, both interactive and non-interactive techniques based on evolutionary algorithms (EAs) have been successfully applied to assist the designer. However, recently ant colony optimization was shown to outperform EAs at optimising quantitative measures of software designs with a limited computational budget. In this paper, we propose a novel interactive ACO (iACO) approach, in which the search is steered jointly by an adaptive model that combines subjective and objective measures. Results show that iACO is speedy, responsive and effective in enabling interactive, dynamic multi-objective search. Indeed, study participants rate the iACO search experience as compelling. Moreover, inspection of the learned model facilitates understanding of factors affecting users' judgements, such as the interplay between a design's elegance and the interdependencies between its components. © 2014 Springer Science+Business Media New York

    Affordance-based Design Product Evolution Using Customer Feedback

    Get PDF
    Designers can benefit from involving the user in the product development process. Understanding how users perceive products can help designers make decisions that better accommodate user needs. Though several methods have been created that involve the user at different stages of the design process, there is still no clear connection between user perceptions and product improvements. Affordance Based Design (ABD) provides the theoretical background needed to explore such connections. ABD is a systematic de-sign method that uses the concept of affordances to describe the interactions between users and products. The integration of ABD and genetic algorithms (GAs) is proposed as a way to capture the perceptions from users in the form of affordance quality evaluations. This research investigates how those user perceptions can be used to improve or evolve product variants. A design tool is developed to test product evolution with the proposed ABD/GA integration. The affordance based interactive genetic algorithm (ABIGA) lets designers capture user perceptions of products. In this tool, designers must specify the design pa-rameters of the product as well as some of its affordances. Users can access design exper-iments from their computers or smart phones and are shown a representation of the prod-uct they evaluate. A set of six experiments were carried to test the evolution of a steering wheel. Three of these experiments were done with real users while the rest were done us-ing a random number generator as the input. Two additional experiments were done with real users to test the evolution of a compact digital camera. Results show that product form can be evolved toward better solutions based on the perceptions of users. The results can also link user perceptions with the form of the product. Designers can extract relationships between affordance evaluations and design parameters. Such relationships can be used to predict how changes in the design parameter values can affect user percep-tions of affordance quality. Product evolution through affordance evaluations could eventually be used to not only improve the external geometry of products, but also certain internal aspects of prod-ucts. Such a tool could be used in multiple stages of the design process, taking advantage of optimization tools linked to the concept of affordance to automate aspects of the prod-uct development process

    Evolutionary Computation

    Get PDF
    This book presents several recent advances on Evolutionary Computation, specially evolution-based optimization methods and hybrid algorithms for several applications, from optimization and learning to pattern recognition and bioinformatics. This book also presents new algorithms based on several analogies and metafores, where one of them is based on philosophy, specifically on the philosophy of praxis and dialectics. In this book it is also presented interesting applications on bioinformatics, specially the use of particle swarms to discover gene expression patterns in DNA microarrays. Therefore, this book features representative work on the field of evolutionary computation and applied sciences. The intended audience is graduate, undergraduate, researchers, and anyone who wishes to become familiar with the latest research work on this field

    Developing collaborative planning support tools for optimised farming in Western Australia

    Get PDF
    Land-use (farm) planning is a highly complex and dynamic process. A land-use plan can be optimal at one point in time, but its currency can change quickly due to the dynamic nature of the variables driving the land-use decision-making process. These include external drivers such as weather and produce markets, that also interact with the biophysical interactions and management activities of crop production.The active environment of an annual farm planning process can be envisioned as being cone-like. At the beginning of the sowing year, the number of options open to the manager is huge, although uncertainty is high due to the inability to foresee future weather and market conditions. As the production year reveals itself, the uncertainties around weather and markets become more certain, as does the impact of weather and management activities on future production levels. This restricts the number of alternative management options available to the farm manager. Moreover, every decision made, such as crop type sown in a paddock, will constrains the range of management activities possible in that paddock for the rest of the growing season.This research has developed a prototype Land-use Decision Support System (LUDSS) to aid farm managers in their tactical farm management decision making. The prototype applies an innovative approach that mimics the way in which a farm manager and/or consultant would search for optimal solutions at a whole-farm level. This model captured the range of possible management activities available to the manager and the impact that both external (to the farm) and internal drivers have on crop production and the environment. It also captured the risk and uncertainty found in the decision space.The developed prototype is based on a Multiple Objective Decision-making (MODM) - á Posteriori approach incorporating an Exhaustive Search method. The objective set used for the model is: maximising profit and minimising environmental impact. Pareto optimisation theory was chosen as the method to select the optimal solution and a Monte Carlo simulator is integrated into the prototype to incorporate the dynamic nature of the farm decision making process. The prototype has a user-friendly front and back end to allow farmers to input data, drive the application and extract information easily

    The 1995 Goddard Conference on Space Applications of Artificial Intelligence and Emerging Information Technologies

    Get PDF
    This publication comprises the papers presented at the 1995 Goddard Conference on Space Applications of Artificial Intelligence and Emerging Information Technologies held at the NASA/Goddard Space Flight Center, Greenbelt, Maryland, on May 9-11, 1995. The purpose of this annual conference is to provide a forum in which current research and development directed at space applications of artificial intelligence can be presented and discussed

    Coevolutionary algorithms for the optimization of strategies for red teaming applications

    Get PDF
    Red teaming (RT) is a process that assists an organization in finding vulnerabilities in a system whereby the organization itself takes on the role of an “attacker” to test the system. It is used in various domains including military operations. Traditionally, it is a manual process with some obvious weaknesses: it is expensive, time-consuming, and limited from the perspective of humans “thinking inside the box”. Automated RT is an approach that has the potential to overcome these weaknesses. In this approach both the red team (enemy forces) and blue team (friendly forces) are modelled as intelligent agents in a multi-agent system and the idea is to run many computer simulations, pitting the plan of the red team against the plan of blue team. This research project investigated techniques that can support automated red teaming by conducting a systematic study involving a genetic algorithm (GA), a basic coevolutionary algorithm and three variants of the coevolutionary algorithm. An initial pilot study involving the GA showed some limitations, as GAs only support the optimization of a single population at a time against a fixed strategy. However, in red teaming it is not sufficient to consider just one, or even a few, opponent‟s strategies as, in reality, each team needs to adjust their strategy to account for different strategies that competing teams may utilize at different points. Coevolutionary algorithms (CEAs) were identified as suitable algorithms which were capable of optimizing two teams simultaneously for red teaming. The subsequent investigation of CEAs examined their performance in addressing the characteristics of red teaming problems, such as intransitivity relationships and multimodality, before employing them to optimize two red teaming scenarios. A number of measures were used to evaluate the performance of CEAs and in terms of multimodality, this study introduced a novel n-peak problem and a new performance measure based on the Circular Earth Movers‟ Distance. Results from the investigations involving an intransitive number problem, multimodal problem and two red teaming scenarios showed that in terms of the performance measures used, there is not a single algorithm that consistently outperforms the others across the four test problems. Applications of CEAs on the red teaming scenarios showed that all four variants produced interesting evolved strategies at the end of the optimization process, as well as providing evidence of the potential of CEAs in their future application in red teaming. The developed techniques can potentially be used for red teaming in military operations or analysis for protection of critical infrastructure. The benefits include the modelling of more realistic interactions between the teams, the ability to anticipate and to counteract potentially new types of attacks as well as providing a cost effective solution

    Search-based system architecture development using a holistic modeling approach

    Get PDF
    This dissertation presents an innovative approach to system architecting where search algorithms are used to explore design trade space for good architecture alternatives. Such an approach is achieved by integrating certain model construction, alternative generation, simulation, and assessment processes into a coherent and automated framework. This framework is facilitated by a holistic modeling approach that combines the capabilities of Object Process Methodology (OPM), Colored Petri Net (CPN), and feature model. The resultant holistic model can not only capture the structural, behavioral, and dynamic aspects of a system, allowing simulation and strong analysis methods to be applied, it can also specify the architectural design space. Both object-oriented analysis and design (OOA/D) and domain engineering were exploited to capture design variables and their domains and define architecture generation operations. A fully realized framework (with genetic algorithms as the search algorithm) was developed. Both the proposed framework and its suggested implementation, including the proposed holistic modeling approach and architecture alternative generation operations, are generic. They are targeted at systems that can be specified using object-oriented or process-oriented paradigm. The broad applicability of the proposed approach is demonstrated on two examples. One is the configuration of reconfigurable manufacturing systems (RMSs) under multi-objective optimization and the other is the architecture design of a manned lunar landing system for the Apollo program. The test results show that the proposed approach can cover a huge number of architecture alternatives and support the assessment of several performance measures. A set of quality results was obtained after running the optimization algorithm following the proposed framework --Abstract, page iii

    The enhanced best performance algorithm for global optimization with applications.

    Get PDF
    Doctor of Philosophy in Computer Science. University of KwaZulu-Natal, Durban, 2016.Abstract available in PDF file
    • …
    corecore