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Abstract

In real world applications, the path-planning problem is one that is multi-criteria
in nature though given the complexity of the task is one that is often condensed to a
single criterion issue, either by the consideration of only a single objective or
condensing several criteria into a single metric through aggregation or weighting. The
thesis describes research that has led to the development and application of heuristic
techniques in order to optimise shortest paths where more than one single criterion is to
be evaluated. The techniques are described and demonstrated, and their effectiveness
established by testing them using synthetic and real world datasets. The scalability of

the heuristics to increasing numbers of criteria is demonstrated.

Heuristic techniques are able to solve the Multi Objective Shortest Path Problem
(MSPP). In several cases, the performance of the techniques outperform traditional
algorithmic methods by over 30-50% in terms of runtime, whilst returning a good
approximation of the optimal set of paths. Promising alternative methods for candidate
path generation are presented. These offer a much faster runtime for the evolutionary
algorithm approach, which is able to complete a run on larger graphs in around five
seconds. Further, several potentially more promising methods have been identified for
future work, these would lead to increased performance of the mechanisms with a

decreased runtime whilst returning a more complete set of optimal solutions.
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Chapter One: Introduction



1. Introduction

The following chapter introduces the background to the research undertaken,
namely the application of meta-heuristic algorithms to the multi objective shortest path
problem (MSPP). An overview of how and why people often select what are perceived
to be sub optimal routes is provided together with a brief introduction to the principles
of multi objective optimisation. The chapter then introduces the aims and objectives of

the research before closing with a description of the remainder of the thesis.

1.1. Background

Every day of their lives people make decisions - some of which are made
consciously while others are made unconsciously. Examples of decision-making range
from the personal and (more often than not) insignificant task of deciding what clothes
to wear through to the more complicated professional task of product design. The first
of these two tasks usually requires little effort. The latter however can take years and
involve changing priorities over time. Whilst the level of complexity differs in an order
of magnitude the fact remains that they can both be considered examples of an
optimisation process. The first optimises a person’s appearance whilst the second

optimises the price, functionality and ergonomics of the product.

The process of optimisation will involve the weighing up of various alternatives,
the resolution of conflicts between the criteria and the discarding of invalid options in
order to arrive at the optimum solution. A classic example of this can be seen in the
knapsack problem (Kellerer et al, 2004). The knapsack problem derives from various
fields and can be stated in single criteria form as “Given a set of items, each with a cost
and a value, determine the number of each item to include in a collection so that the
total cost is less than some given cost and the total value is as large as possible”. When

the problem is considered as one of multi criteria each item might be assigned an



additional factor such as ‘appeal’ and stated as “Given a maximum weight limit and
physical collection size, together with a series of objects with criteria such as weight,
size and appeal. What is the optimal set, measured as the number of items having the
most appeal, of objects that may be carried without breaking the maximum weight limit
or physical size of the collection?” Other examples of theoretical objective optimisation
problems can be seem in the travelling salesman’s scenario (Applegate er al, 2007)
which states that “Given x number of cities, which is the shortest route, that visits each
city only once then returns to the source”. Variations remove the requirement to return

to source.

The travelling salesman problem can be described as a single objective path
problem with constraints. The shortest distance is the objective and single city visit (or
avoidance of repeat visits to the same city) being the constraint. Humans normally
tackle decision problems like the two examples given above by attempting to find the
solution representing the best compromise between the criteria. As multiple criteria are
being evaluated such problems are considered “Multiple Objective Problems” (MOPS).
While across applications the varnables to be optimised change the basic task of
optimisation does not. It “will involve the application of a great deal of expernence,
knowledge and an ability to weigh up potentially large numbers of possibilities. This
process becomes harder and often intractable as the number of decisions required and
the system or product complexity increases.” (Todd, 1997 p.2). As the number of
criteria that require optimisation increases so does the time, effort and complexity in
doing so using traditional computing algorithms. Although any given solution to such a
problem may be verified quickly there is often no known efficient way to locate a high
quality solution in the first place (Garey and Johnson, 1979). During the process of
optimisation an assessment as to the quality of a given solution has to be made. As an
example in the product design problem, a change might reduce the weight of the
product but increase the size and cost whilst in order to decrease the cost of the product
both the size and weight may need to be varied. Suman (2004, p.1849) states that “a
good multi-objective optimisation algorithm must find a set of solutions without biasing

any objective”. Luger (2002) suggests that one of the key factors in any multi-objective



analysis is having the ability to distinguish between a good, useable solution and a poor
one. Goldberg (1989) highlights that historically several approaches to the solution of
multiple objective problems have been identified including enumerative, deterministic

and stochastic methods.

Algorithmic methods such as linear programming have long been used for solving
mathematically based problems such as the shortest path problem. However, these
techniques lack the robustness and capacity required for effectively solving problems
with multiple criteria (Coello-Coello and Lamont, 2005). Where such techniques are
used in a “brute force” manner the time required to optimise the problems becomes
infeasible. Alternative methods involve the simplification of the process such as
reducing the problem from multiple criteria problems into single criteria problems.
Techniques from artificial intelligence however allow for the production of a set of
“compromise” solutions for a given optimisation problem. The work undertaken aims to

investigate some of these techniques when applied to the path planning process.

1.2. The Path Planning Problem

The task of path planning is the process of finding the most effective route from
a given start point to an end point. Traditionally this has been based upon the least cost
or shortest path and generated using linear algorithms such as the Dijkstra (1959)
shortest path algorithm where a single criterion, typically distance or travel time is used
to determine the “shortest” path through a network. Martins and de Santos (1999)
highlight that whilst single criteria algorithms such as the Dijkstra (1959) algorithm
have been the focus of a great deal of research comparatively little attention has been
focused on the optimisation of the path planning process when more than a single
criterion is involved. Where such work has been undertaken the typical view has been
that the optimal path will simply be the shortest path with the lowest total cost across
the sum of the individual criterion or importance suggested through the use of
weightings to give preference to a criterion. Figure 1.1 and Figure 1.2 present a graph

with single criterion associated with each edge and the same graph with three criteria









Path Vertices Weights Criteria Cost Total Cost

12,54 {10,03,11] | {180,6,506} 692
12,34 (10,03,11} | {210,3.9,484} 697.9
1,5.4 10,03,11} | {110,10.8,649} 769.8

Table 1.3 Shortest Path Across Weighted Sum Graph

1.3. Applications of Path Planning

The field of path planning has attracted researchers from a wide range of
disciplines due to the wide range of applications benefiting from the process of network
optimisation. Ahuja er al (1993) argue that networks can be seen in virtually every
aspect of day-to-day life in the form of transportation networks, telecommunications
networks and even social networks. A brief scan of the literature on the process of

network optimisation has identified several application areas, notably:

1.3.1. Transportation Networks

Many automotive manufactures now offer integrated GPS and GIS systems for
vehicles to provide on board routing information. Cities have linked GPS systems with
the public transport systems via real time displays at bus stops and the World Wide Web
(Cardiff 2007). Coutinho-Rodrigues et a/ (2012) present a multi criteria GIS based
application for the evacuation of city areas during emergencies. Saadatseresht ef al
(2009) present a similar system for evacuation of building groups such as a campus.
Apple (2012) has proposed the use of crowd-sourced information to detect traffic
congestion and allow rerouting along less congested routes. Solutions to the urban
transit network design problem (UTNDP) are presented in Fan and Mumford (2010)
where the authors present solutions to the urban transit problem by applying a weighting
function to the total distance and number of transfers required to complete a journey

using public transport.



1.3.2. Computer Networks

The ability to provide quick and reliable network routing information across
modern computer networking facilities can be seen as central to the optimal
performance of wide area networks such as the internet. This is especially true given the
dynamic nature of these networks where the presence and cost of traversing certain
links can change rapidly (Wen et al 2007; Kauer ef a/ 2003). The work of Chitra and
Subbaraj (2012) makes use of a Genetic Algorithm for multt objective path planning in
computer networks. Gen et al (1997, p.401) produce a Genetic Algorithm approach to
the dynamic routing problem on networks stating “The purpose 1s not, of course, to
compare the Genetic Algorithms with conventional algorithms, because Genetic
Algorithms will be unable to compete”. In that work the authors are handling single
criteria shortest paths using a Genetic Algorithm. The authors report reasonable levels

of success of graphs of limited size (vertices 70, edges 211).

1.3.3. Fighting Organized Crime

Furtado et al (2009) combine heuristic techniques with graph theory to develop
a crime analysis model. Xu and Chen (2004, p.473) also demonstrate how network
analysis can be used to identify associations in criminal networks. That work attempts
to model the connections between offenders such as “kinship, friendship, co-workers or
business associates”. Flores ef al (2012) highlight the use of social networks during the
‘Arabic spring’ of 2011. The authors question whether graph centrality measures could
be used to prevent unwanted ‘collective action’ such as terrorism. Zengen and Mao

(2007) review the issue of money laundering.



1.3.4. Medical Applications

Aittokallio and Schwikowski (2006) apply graph-based algorithms to the
identification of networks and clusters in cell biology. Chen et al/ (2009) present
semantic graph operations based upon directed graphs to identify disease-causal genes.

They highlight links between elements on a semantic graph.

1.4. Decision Making in Path Planning

Many real world networks such as roads can be based on geographical data with
the cost metric being considered as an accurate measure of actual distance between
vertices. Additional costs can be associated with any number of metrics including, but
not limited to, the maximum speed limit of the road, monetary cost of traversal,
estimated CO, output and the number of traffic lights or junctions encountered. The
ability of software based algorithms to quickly process the connectivity information
contained within graph structures and calculate the least cost path is something which
when completed manually could take many orders of magnitude longer to compute to
the same level of accuracy. Ahuja et al (1993), together with a great number of
introductory texts on software engineering and computer based data structures provides

an overview of the basic methodology and algorithms used to calculate a least cost path.

The historic, that is to say least cost, approach to the route optimisation process
fits well with the generally argued view that at an instinctive level people will attempt to
follow the shortest path forming a route. However this contrasts with the view of
Duckham and Kulick (2003 p.3) who state “several cognitive studies have shown that
people prefer the simplest path”. Rickter and Duckham (2008) present an algorithm
based upon the simplification of instructions rather than the route itself. Burgess and
Darken (2004 p.1) state that there is a clear preference for “lines of drift” indicating that
whilst people prefer a shorter route they are fully prepared to travel further for a

perceived simpler route. Liu ef a/ (1994) suggests that in many cases the shortest path



algorithm is not always the best method of route planning with the authors suggesting
that using only these algorithms may also produce solutions that are not suitable for
human drivers, “For example, human drivers would normally like to drive on major
roads” (Liu, 1996 p.2). Car (1997) presents a hierarchical routing algorithm to assist in
routing optimisation systems in order to achieve such solutions where preference is
derived to higher speed and capacity road links such as motorways or dual
carriageways. Bailenson ez a/ (1998) highlight that users often choose routes consisting
of the longest and straightest road links while Li et a/ (2010) suggests that drivers prefer
a ‘simple driving’ route which may be longer in time, distance or any other factor but is
perceived to easier to travel along at certain times. Later in Liu ef al (1994) it is argued
that in many cases the optimal route is often dependant on the individual. A user’s
empirical knowledge of the route they are going to be travelling defines the routes
optimality. Li e al (2005) find that 60% of tested users regularly choose between
travelling along multiple routes connecting the same locations depending on levels of
congestion. Lyons et al (2008) present a 2 dimensional caricature of decision makers
identifying two groups, those who would like as much information as possible (the Mr.
Spock approach) through to those who believe that provided the destination is reached
the route itself is not an issue (the Homer Simpson approach). People have highly
embedded travel habits and the nature of these habits may limit or enhance the need for
travel information. SRA (2005) suggest that too much emphasis is given to the notion
that travel choices are made as a ‘staged approach’ and instead highlight that a person
may base a decision on personal needs or circumstances. Davies and Lingras (2003, p.
31) state “A person not only relies on a single favourite route, but also several
alternatives. At any given time, an appropriate route may be chosen by splicing together
sections of all routes in mind, depending on the network conditions at that time.
Without the aid of an algorithm and ability to process the entire network information a
person may not use the optimal path”. Bonsall (1992) undertakes an analysis into the
effectiveness of route guidance systems on individuals’ behaviour. Decisions regarding
journey choice in that work highlight that only 35% of all journeys complied with the
advice given and in part depend on a range of other factors such as age or number of

miles driven per annum and the perceived quality of advice received in the past.
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The work of Bonsall (1992) links to a phenomenon in the field of discrete choice
theory: satisficing behaviour (Miller and Star, 1967). This is not a new theoretical
phenomenon but it is now being acknowledged in more recent travel information
literature (Chorus et al, 2006; Lyons, 2006). Satisficing behaviour concerns an
individual being prepared to select a travel option that meets their minimum
requirements (is ‘good enough’), even if other options exist which may be better (but
which could require additional effort to identify). Papinski et a/ (2009) introduce the
work of Golledge and Stimpson (1997) in which the concept of a ‘knowledge base’ is
considered. Route choice decisions are largely based on existing knowledge and
experience that shapes the evaluation of choice alternatives and develops into concept of
what is perceived to be an optimal route or set of optimal routes. Papinski er a/ (2009)
highlight how route selection is often a two stage or issue process. The first issue
involves route learning through the identification of key landmarks prior to the trip. A
second set of route choice decisions are made while en-route which involves
information processing. Duckham et a/ (2010) introduce an algorithm which relays
local landmark information as part of the selected journey routing information with
selected landmarks made part of the instruction set. Papinski and Scott (2011)
introduce a geographical information system based analysis into how routes users
actually travelled differ from those suggested based on criteria a single criterion such as
shortest distance or time. The authors present several cases where the route travelled
varies significantly to those produced based on path analysis with users spending more
time on highways than was suggested based on either the optimisation of time or
distance confirming the previously discussed proposition by Liu et al (1996). Quattrone
and Vitetta (2011) perform a similar study where the authors make use of GPS acquired
route information to determine the validity of a fuzzy route choice model. Azaria et al
(2012) present a reward based mechanism which attempts to ‘trick’ a driver into

following the optimal rather than the preferred routes.

Acuna and Parada (2010 p.1) make a direct comparison between
computationally derived solutions to an NP-Hard path planning problem (in the form of
the travelling salesman problem) to those solutions produced by human participants.

The authors state “Humans need to solve computationally intractable problems such as

11



visual search, categorization, and simultaneous learning and acting, yet an increasing
body of evidence suggests that their solutions to instantiations of these problems are
near optimal”. Bekhor ef al (2006, p. 235) suggest that in the ‘real world’ the selection
of sub optimal paths is logical given that drivers “have imperfect knowledge of traffic

conditions and limited information processing abilities”.

Recent years have seen a huge increase in the availability of navigation
information. In 2006 Google™ introduced online a mapping application with the ability
to provide point-to-point directions to users. Mayer (2011) suggests that 12 billion miles
of routing information are provided by the application every year. Of importance to this
work given the previously discussed approaches to path planning is the applications’
ability to allow users to manually redirect a route to match their particular preferences
and manually update the associated routing information in line with those user selected
route changes. Simultaneous to increased availability of online mapping has been the
use of global positioning system (GPS) based hardware. Berg-Insight (2012) suggest
that as of 2011 there are over 340 million GPS enabled devices in use world-wide with
33 million personal navigation devices being sold in 2011 alone. A US based study by
Harris Interactive (2007) suggested that 81% of respondents found the ability to
automatically recalculate routes taking into account driver error useful with real time
traffic updates being ‘useful’ to 75% of users. It should be noted that the routes
provided by both on-line mapping applications and personal navigation devices (PND)
will often be contrary to the models of path choice seen in the literature. The provided
routes represent optimal routes in terms of travel time, distance or road choice but as

shown by Papinski and Scott (2011) are not considered optimal by users.

The discussion regarding route choice has to this point considered only personal
travel. However for freight transport the emphasis on fastest (either in terms of distance
or time) routes is not always in the interest of the driver and may negative consequences
when the routes run through built-up area. Existing road data sets often lack the

completeness required for freight management where a larger vehicle may not be able to



navigate certain turns or bridges etc and so ‘off the shelf’ navigation devices are
unsuitable for use in the freight industry. A study by Arentze (2012) suggests that
drivers of larger sized trucks avoid urban areas due to the difficulty in navigating busy
streets while the drivers of smaller vehicles often, as is the case with car drivers, follow
what they consider to be a shorter path regardless of the fact that it may not in reality be
the case. Hubschneider (2012 p. 494) presents a routing model specifically aimed at
freight transport that produces routes “which are often are longer but comparable in

time and fuel consumption”.

1.5. Research Definition

There are many well understood algorithms that can be used to generate the
shortest path between any two points on a network including the Dijkstra (1959)
algorithm and the A* algorithm. However despite the amount of research that has been
carried out into the single criterion problem comparatively little effort has been placed
on the problem of route optimisation that involves more than a single criterion. Where
research into the topic has been undertaken it has frequently involved the condensing of

multiple criteria into a single criterion or involved a limited number of criteria.

The research undertaken focuses on the development and comparison of a
number of AI based techniques including Genetic Algorithms, the Tabu Search
technique and Simulated Annealing in an attempt to provide a wider range of
techniques to be used in the process of multi-criteria graph optimisation. This area of
work covers a myriad of issues but attempts to address two core issues, namely the
analysis of the multi-criteria algorithms and methodologies when considering the
optimal path problem together with the development and analysis of techniques to
achieve these optimal solutions(s). As has been indicated throughout this chapter, it is
agreed that the route and path planning process is one that is inherently multi objective

in nature. However little work has been undertaken in the use of various optimisation
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processes with the aim of solving such problems in a truly multi objective way. Mooney
(2004) provides one of the few exceptions to this, developing a substantial study into

evolutionary algorithms applied to the process of multi objective shortest path analysis.

1.6. Research Aims

The shortest path problem where multiple criteria are considered is an example
of a problem that is NP-Hard (Granat and Garrerio, 2003). The identification of optimal
solutions on anything but very small graph using brute force techniques is not viable
given the intractability of the problem. Mooney (2004) addresses the issue using
heuristic functions in the form of evolutionary algorithms as do Saadatseresht er al
(2009), Liu et al (2012) and Cheikh ef a/ (2010). However there has been a lack of
research interest in applying other heuristic approaches such as Hill Climbing (Russell
and Novig, 2003), the Tabu Search (Glover and Laguna, 1987) or Simulated Annealing
(Kirkpatrick et al/, 1983) to the Multicriteria shortest path problem (MSPP). This is
despite the fact that other heuristic approaches have been applied to graph related
problems in the past such as the metro map layout problem (Stott ef al, 2011) and the
variations (in the form of multiple objectives) to the travelling salesman problem. It is

the principle aim of this work to consider alternative heuristic techniques in the solution
of the MSPP.

The aims and objectives of the research are:

*To develop alternative (to the Genetic Algorithm) heuristic techniques for the
solution of the MSPP

14



*Assess the ability of those heuristic techniques to solve the MSPP against real

world and synthetic graphs

*Compare the alternative heuristic approach with algorithmic methods for the

solution of the MSPP

1.7. Thesis Format

The remainder of this thesis is separated into six chapters. Chapter Two reviews
the terminology used in graph and network theory. It then proceeds to review the data
structures and algorithms that can be used in the processing of graph connectivity
information. One of the principle algorithms for the calculation of single criteria
shortest paths in the form of the Dijsktra shortest path algorithm is presented together
with a brief description of the various data structures used to enhance the performance
of that algorithm. Other shortest path algorithms are briefly introduced. The chapter
then attempts to formalize the issue of the MSPP before discussing the various existing

methods that can be seen in the literature.

Chapter 3 reviews the various heuristics under consideration as part of this
thesis. Genetic Algorithms, the Tabu Search and Simulated Annealing are introduced
and existing methodologies for solving multi objective problems are considered. The
chapter concludes with a discussion of the various quality metrics applied to multi
objective problems. Chapter 4 introduces the algorithms used in the experimental phase
of the research problem. The test data sets employed in study the assessment of those
algorithms are discussed as are the method used in the acquisition and preparation of
those datasets for the experimental phase of the project. In Chapter 5 the runtimes seen
in the algorithms are considered together a summary of the quality results. The chapter
ends with a consideration of the optimal choice of algorithm under various

circumstances. Chapter 6 presents a more detailed analysis of the mode of operation for
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each of the algorithms. Possible limitations of the experimental phase of the work are
also considered. Finally, Chapter 7 concludes the project and discusses potential

avenues of future work.
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Chapter Two: Graph Theory and Shortest
Path Analysis



2. Graph Theory and Shortest Path Analysis

The chapter opens with an introduction to graph properties before moving to
provide an overview of the basic terminology relating to graphs. The chapter then
proceeds to introduce single criteria path optimisation and in doing so discusses
variations to the shortest path problem such the K shortest path problem. More recent
methods for the solution of shortest path analysis, in effect those forming the state of the
art in shortest path analysis, are then considered before considering the analysis of
social networks. The chapter then turns its attention to the concepts of Pareto optimality
introduced through a worked example of the MSPP before discussing existing methods
for the solution of the MSPP.

2.1. Background

Graph based structures can be found in many real world applications ranging
from transportation through to chemistry and increasingly on-line gaming and social
networking (Newman ef al, 2002). Other examples of graph-based structures exist in the
form of computer networks where the network presented is often dynamic in nature.
Ahuja et al. (1993, p.2) argue that graphs and networks can be seen “Everywhere we
look”. Table 2.1 overleaf provides examples from real world networks. Pallotino and
Scutella (1997) claim that since the end of the 1950s over 2,000 pieces of literature on

the process of graph optimisation have been published.

Figure 2.1 (Sedgewicke, 2003) presents an overview of various graph types
highlighting the variations in the connectivity and geometric properties of the different
graph structures. In Figure 2.1 a series of graph types ranging from complete, random,
grid, real world and small world graphs are presented. Due to the general pervasiveness
of graph optimisation in the literature this work will not delve into the matter in any

great detail. A comprehensive study into the field can be found in Ahwa et al (1993).
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Other notable works can be seen in Merris (2000), Ford and Fulkerson (1962) and

Begre (1973). The following section briefly introduces the graph terminology used

throughout the remainder of this work. The chapter then proceeds to provide an

overview of both the single and multi criteria path optimisation process.

o Physical )
Applications i Physical edges Flow
Vertices
Telephone ]
Cables Voice Messages

exchanges
Communication Systems Fiber optic links Data

Computers

) Relay links

Satellites

Pumping Stations Water
Hydraulic Systems Pipelines

Lakes Oil
Integrated Computer Gates

o Wires Electricity

Circuits .

Registers

Heat
Mechanical Systems Joints Rods
Energy

Airports Highways Passengers
Transportation

Rail Yards Airlines Routes Vehicles

Table 2.1 Applications of Graphs (Ahuja et al, 1993)
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Definition 3: Random Walks

A random walk consists of a walk through the graph G. Random walks are
generated using a random selection mechanism where the number of outgoing edges
from a vertex is greater than one. The process of iteration at each vertex in the walk
continues until the target vertex is reachable. Aldious and Fill (1999) undertake an in
depth study into the principles of random walking. Of particular interest to this thesis is
the application of repeating random walks to enumerate paths across the graphs. Zijpp
and Catalano (2005) suggest a possible alternative to the random method of
enumerating paths. In their study a constraint-based approach to the k-shortest paths
algorithm is used where limitations of the upper and lower PDV values act as
constraints. In recent years random walks have been proposed in the context of querying
and searching (Avin and Bretto, 2004), routing and self-stabilization in wireless ad-hoc
networks (Dolev et al, 2002, Servetto and Barrenechea, 2002) and peer-to-peer
networks (Gkantsidis et al 2004). Elsisser et al (2011) study the time taken to cover a
graph using multiple instances of a random walk as do Alon et a/ (2008). Both works
attempt to run several walk instances in parallel. Alon ef a/ (2008) report a linear

increase in coverage time to the number of walk instances initiated.

Definition 4: Multi Objective Shortest Path Problem

The aim of the multi objective shortest path (MSPP) problem is to identify those
paths between two vertices in a graph (G = (V,E) in the set p(s,t) of valid paths
between two vertices where the PDV is minimised. Equation 2.2 shows the formal

function of the MSPP.

Minimize (PDV{C?,C?,C¥, ...CPIWW € p(s, 1))

Equation 2.2 The Multi Objective Shortest Path Problem (MSPP)
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this section introduces a series of prominent approaches to random graph generation

seen in the literature. The following methods graph generation are introduced:

» The Erdos and Renyi Model
» The Gilbert Model
*The Barabasi—Albert scale free model

2.3.1. The Erdos and Renyi Model

The theory of random graphs was founded simultaneously in Erdos and Renyi
(1959) and 1n Gilbert (1959). What sets both works apart is the probabilistic approach to

random graph generation employed.

Erdos and Renyi set out to investigate what a typical graph with 7 labelled
vertices and E edges ‘looks’ like. In Fowler er a/ (2009) the model is used to generate
sample datasets to test the connectivity between individuals in social networks where
the model is used to produce highly connected networks. loannides (2006) also
considers the networks produced by the model as being the upper bound set of
connectivity in models of social networking. Both the works of Fowler ez a/ (2009) and
Ioannides (2006) highlight that the models produced are not realistic models of those
seen in the real world. Algorithm 2.1 introduces the model in high level (and simplistic)

pseudo-code form.

The model considered by Erdos and Renyi is an appropriate method for
generating random graphs with a fixed number of vertices and edges where the
likelihood of an edge between any two vertices in the set ¥ being inserted into the graph
being of equal probability to any other pair of vertices. Variations to the model
introduced in Austin ef al (1959) allow for the introduction of parallel edges in the
graph. Figure 2.7 presents an example graph G = (5,8). The graph structure included in
Appendix A.
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2.3.2. The Gilbert Model

Unlike the model of Erdos and Renyi the Gilbert model of random graph

generation does not guarantee any pre-designated number of edges will be present in the

graph. In Gilberts’ model, the M(I‘;’ﬁ)_ potential edges of a simple undirected graph

with |V] vertices are included with the probability 0 < p < 1. As demonstrated in
Algorithm 2.2 the Gilbert model is from a computational perspective a simple process.
Despite the computational simplicity of the model Batagelj and Brandes (2005)
highlight that the methodology is unsuitable for the generation of large, sparse graphs.
The model operates with a run time in the order of O(n?). Many works in the literature
refer to the Gilbert model as a variation on that of Erdos and Reyni with the later
introducing the model in their work of 1959 simultaneously with Gilbert. The model is

referred to here as the Gilbert model for clarity purposes only.

- 00|
™™™ ™—m—m——m——m—mm—e——em-

Algorithm: Gilbert Random Graph Generation Model
Input: ¥ = Number Of Nodes In Graph

P = Edge Probability 0 <p <1
Qutput: A Graph G=(|V|,|E|)

EDGES = List Of Existing Edges = {}
e(i,j) = An Edge Between Two Vertices

FOR (i=1TO |V)
{
s=1i
FOR (j=iTO |V))
{
1=)
Generate a uniform random number 8 € {0, 1};

IF(§<P)
EDGES = EDGES + e(s,1)

Algorithm 2.2 Gilbert Random Graph Generation Model
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Algorithm: Barabasi and Albert Scale Free Graph Generation Model

Input: IV = Initial Number Of Nodes In The Graph
¥ = Number Of Vertex To Create In The Graph
E = Edges To Add To The Graph

Qutput: A Graph G=(|V|,[E])
EDGES = List Of Existing Edges = {}
e(ij) = An Edge Between Two Vertices
D = List Of Edge Degrees = {}

X = Edges Added To Network =0

// Generate The Initial Seed Network.
FOR (i=1TO IV)

FOR (j=iTO IV)
{
EDGES = EDGES + ¢(i,j)
Dfi] = D[i] + 1
Dfj] = D[jj + 1
X=X+l

}

FOR (i=IVTO V)
{
A =Number Of Edges Added = 0
IGNORE = Degree Of Edges Ignored =0.0

FOR (m=0TO E)

{
R = Random Number = {0.0-1.0}
p = Probability Of Accepting An Edge = 0.0
FOR (j=1TO i)

IF (Edge Does Not Exist (EDGES(E(i,/)))
{

}

IF (R <=p)
{

p = p+D[j] 1 (2*X)-IGNORE))

EDGES = EDGES + e(i,j)
IGNORE = IGNORE +=dfj]
ADDED = ADDED + 1

Dfi] = Dfi]+1
Dfj] =Dfj] +1
Break From Loop
}
1
1
X=X+l

B
s
Algorithm 2.3 Barabasi and Albert Random Graph Generation Model
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preferential attachments as in the Barabasi and Albert method with a uniform
attachment method as an extension. McGlohon et al/ (2008) propose the ‘Butterfly’
model. The butterfly model joins a new vertex to a graph (a), with a randomly assigned
variable (Pyep). An existing vertex (b) on the graph is chosen with the global probability
Puost. A new edge on the graph (a,b) between the newly generated vertex and the
existing vertex is created with an additional global probability P, The model then
traverses Py, edges to vertex ¢ (moving via a random walk) before creating a new edge

on the graph (a,c).

A wide variety of either open source and public domain random graph libraries
can be found. The Cytoscape graph visualization package contains a number of ‘add-on’
libraries written in the Oracle™ JAVA™ programming language. The models include
those of Gilbert and Erdos and Renyi discussed here. The Graph-Stream open source
project includes a number of random graph generators. GTgraph was written for the
DIMACS 9™ challenge on shortest path analysis and includes small world and Erdos-
Reyni model. The Networxx library contains a large number of methods in addition to
those detailed in this section. The library has the ability to generate over 80 different
graph types. The SPRAND library detailed in Cherkassky et al (1996) has been used
widely in a number of seminal works into the application of single criteria shortest. The
general approach of SPRAND model is given in Algorithm 2.4. A simplified view is
presented where no error checking based on user input or user specified weight ranges
are provided. The algorithm outlines the basic approach where the user specifies just the
number of edges and vertices present in the graph together with a seen value for the

random number generator.
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Algorithm: SPRAND Random Graph Generator
Input: N = The Number Of Nodes In The Graph
M = The Number Of Edges Of The Graph
SEED = The Seed Value For A Random Number Generator
Output: A Series Of String Detailing Edges In Graph In The Format:
a source target weight

Initialize a random number generator with SEED value
Generate a edge from / To 2 with a random weight
Generate a edge from N to / with a random weight
EDGES =2

FOR (/=2 TO N-I)

IF (EDGES == M)
Break; // Exit The For Loop

ELSE
{
Generate a edge from / To J+] with a random weight
EDGES++
}
}
WHILE (EDGES < M)

{

E = Generate a new edge between random vertices with random weight
WHILE (E Is Duplicate Of Existing)
E = Generate a new edge between random vertices with random weight

EDGES++

Algorithm 2.4 SPRAND Random Graph Generator Model

2.4. Single Criteria Path Optimisation

Shortest path analysis on graphs has been studied for many years with notable
and widely used algorithms being seen in the form of those of Dijkstra (1959), Bellman-
Ford (1957) and Johnson (1977). As already indicated Pallotino and Scutella (1998)
highlight the large research effort that has been undertaken on the single criteria shortest
path problem. Figure 2.17 presents the results returned from a ScienceDirect key word
search containing ‘Shortest AND Path AND Analysis’. Since the turn of the century a
further 1,618 papers have been published on the subject.






present a study into the use of shortest path algorithms on real world road networks.
Zhan (1997) argues that many of the studies of the shortest path problem on real road
networks will consist of networks made up of perhaps several thousand vertices. The
study undertaken by Cherkassky et a/ (1994) involved the development of a library of
both random graph generators (SPRAND) and shortest path analysis algorithms
(SPLIB). These codes provided the basis of the graphs analysed by the studies of
shortest path problems undertaken by Pallotino and Scutella (1997). The works of Zhan
and Noon (2000), Cormen et al (2001) and Ahuja et a/ (1993) present a series of
typologies for the style of problems that can be solved using shortest path algorithms.
The nature of graph-based problems can be seen in the following typologies: a) the one

to all problem; b) the one to some problem; c) the one to one problem.

The outputs from the studies of Pallotino and Scutella (1997) and Cherkassky e?
al (1994) highlight that no algorithm can be said to suit all kinds of problems under all
circumstances. There is no ‘best’ single criteria shortest path algorithm and-that the
performance of any algorithm is likely to depend on the size of the network being
studied together with the data structure used by the algorithms. Jacob et al (1999) take
this argument further stating that the connectivity associated with real world graphs
tends to be lower than that of some of the graphs studied as part of other reviews. Jacob
et al (1999) argue that a density ratio of around 2.6 is more likely to be seen in the real
world. They compare those levels of density with those analysed in the work of
Pallotino and Scutella (1997) who use an edge/vertex ratio up to 10. The authors also
highlight that real world graphs are likely to differ in their structure (as in Figure 2.1)
from their randomly generated counterparts. The general view that there is no singularly
optimal algorithm is agreed upon by Cherkassky et a/ (1994, p.516) who state
“Although our research does not produce a single best code for the shortest path
problem, two codes we developed are very competitive in their domains”. The authors
report that the Dijsktra algorithm with double buckets produced high quality results on
graphs with non-negative edge lengths with the topological algorithm of Goldberg and
Radzik (1993) being optimal of graphs where negative edge costs are present.
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In order to ensure brevity and succinctness the various algorithms covered are
not in detail although key observations are made. It should be noted that given the
‘classical’ nature of the problem the majority of text books reviewing data structures
include a section on shortest path problems, notably Dijkstra’s algorithm (Weiss 1994,
Rosenstein 1988 and Melhom and Saunders 2008). Shortest path algorithms can be
separated into two distinct but related groups, the label-correcting algorithms and the
label-setting algorithms. The key differences between the two formations relates to how
the algorithm converges towards the optimal solution. Label-setting algorithms can
terminate when the destination vertex has been scanned and finalized. Label correcting
must continue until all vertices making up the graph have been scanned and finalized.
The Dijsktra shortest path algorithm is probably the most widely considered single
criterion shortest path algorithm and can be seen to be a member of the label setting

tamily. The algorithm itself is outlined below.

The Dijsktra approach to the solution of shortest path problems is unable to
handle edges where there may be a negative cost or weight. It is commonly accepted
that the performance of the algorithm is limited in the above Algorithm 2.5 in the line
“‘Vertex v = Element From L With Shortest Distance’ where O(|V®) in line comparisons
must be made. More advanced data structures and mechanisms may be used to vastly
improve the performance of the algorithm. Binary heaps (Figure 2.18) have been shown

to be successful in accomplishing this task.

The binary heap maintains an ordered structure where the minimum vertex is
always the root. Use of the structure therefore leads to improvements in the runtime of
Dijkstra’s algorithm resulting in a runtime of O(|E| * log |V|). Fredman and Tarjan
(1987 p.597) introduce the Fibonacci heap suggesting “For situations where the number
of deletions is small in relation to the total number of operations, F-Heaps are
asymptomatically faster than binominal queues”. Kingston (1998) suggests that the
Fibonacci heap is the most efficient implementation of the full complement of priority
queue operations that is currently known. Figure 2.19 (Ahuja, 1993) presents a view of
Fibonacci heap while Figure 2.20 demonstrates the complexity introduced with the
structure.
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Algorithm: Dijsktra Shortest Path Algorithm

Input: S = Source Point Of Shortest Path
T = Target Point Of Shortest Path
G = (|¥],|E|) - A Graph Representing The Network Topology
C[|E|] = Costs Associated With Each Graph Edge

Output: Shortest Path Tree From §

D{\V|] // Array Storing Shortest Distances From §
P[|¥|] // Array Storing Predecessor Information For Each Node
L // List Of Unsettled Nodes

D[S] =w
P[S]=0
L=L+S§

WHILE L NOT EMPTY

{
Vertex v = Element From L With Shortest Distance
Remove v From L

IF (D[v] == o)
Break;

FOREACH neighbour »# OF v
{
TEMP = Dfu] + C[v,u]
IF (TEMP < Dfu])

Dfu] = TEMP
Plu]=v
L=L+u

Algorithm 2.5 Dijkstra’s Shortest Path Algorithm

Cormen et al (2001) highlight the relative complexity of the Fibonacci heap
raising a question as to whether the complexity involved in the implementation of the
algorithm outweighs the benefits of using it. Table 2.2 presents an analysis of the run
time of various binary and Fibonacci heap operations. It should be noted however that
Ahuja er al (1993) suggest that the Fibonacci heap was optimal on the networks used in
their study. Dial et al (1979) introduce the use of the Single Bucket structure to the
Dijkstra (1959) shortest path algorithm. In Goldberg and Silverstein (1995) a
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lengths. Suggestions to remedy the memory requirements issue are given in Cherkassky
et al (1994). The authors make use of an ‘overflow’ bag to reduce the amount of

memory occupied by the main structure.

The empirical study undertaken by Cherkassky et a/ (1994) concluded that the
results obtained from the implementation of the Dijsktra algorithm in conjunction with a
double bucket structure were optimal stating that the implementation was “best in most
situations”. Zhan and Noon (2000) in their study of the shortest path problem on real
roads confirm these results. A total of D buckets in the low-level bucket set are used. A
bucket 7 in the high-level buckets contains all vertices whose distance labels are within
the range of {i*d, (i+1)* d-1}. In addition, a non-empty bucket with the smallest index L
is also maintained in the high-level buckets. A low-level bucket d(j)-L*d maintains
vertices whose distance labels are within the range of {L*d, (L+1)* d-1}. Vertices in the
low-level buckets are examined during the scanning process. After all vertices in the
low-level buckets are scanned the value of L is increased. When the value of L increases
all vertices in the nonempty high-level buckets are moved to its corresponding low-level
buckets and the next cycle of the scanning process begins (Cherkassky et al, 1994). In
order to retrieve the distance associated with a given vertex from the graph the
algorithm first finds the top-level bucket associated with that vertex. In Cherkassky ez a/
(1994) they conclude that Dijkstra’s algorithm with double buckets provided optimal
performance on all problems except in the case of small grid graphs. Zhan (1997)
undertakes a comprehensive study into shortest path problems on real world graphs
implementing tests with a variety of shortest path algorithms and data structures. The

runtimes suggested in that study are reproduced in Figure 2.22.
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Abbreviation Implementation Description Complexity

BF Bellman-Ford-Moore basic implementation O(IVLIE])

BFP Bellman-Ford-Moore with parent-checking O(|VLLIE])

DIKQ Dijsktra’s Native implementation O(IVI2)

DIKB Dijsktra’s using buckets structure — basic o(IVPH
implementation

DIKBM Dijsktra’s using buckets structure — with O([EHVIC)
overflow bag

DIKBA Dijsktra’s using buckets structure — with | O(EH|V|(C/|A[+HA[))
approximate buckets

DIKBD Dijsktra’s using buckets structure — double O(EB +
buckets [V|(B+C/B))

DIKF Dijktra’s using heap structure — Fibonnaci | O([E[+V/|log(|V])
heap

DIKH Dijktra’s using heap structure — k-array heap O(|E| log(|V])

DIKR Dijktra’s using heap structure — R-heap O(|E|+ V| log(C))

PAPE Incremental Graph - Pape-Lewit O(IVI'")
implementation

TWO.Q Incremental Graph — Pallotino O(IVI’E)
implementation

THRESH Threshold Algorithm O(|V},JED

GOR Topological Ordering — basic implementation O(|V|,IE])

GORI1 Topological Ordering — with distance updates O(IV|,IE])

Notation:

V is the number of network vertices. E is the number of network arcs

C is the maximum arc length in the network A and B are input parameters

Figure 2.22 Runtime of Shortest Path Algorithms (Zhan, 1997)
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2.4.1. Alternative Shortest Path Algorithms

The Bellman-Ford algorithm (1958) does not require positive edge values. The
algorithm is in general structure very similar to that of the Dijsktra algorithm. However,
instead of selecting the connected vertex with the minimum value (‘Vertex v = Element
From L With Shortest Distance’) the algorithm performs the relaxation process on all
connected edges. The iteration of the process cause this to be performed |V | — 1 times
where |V] 1s the number of vertices in the graph. Despite being able to handle negative
edges the algorithm fails to handle scenartos where negative cycles may be found. With
regard to negative edge capability of the Bellman-Ford algorithm, the Johnson
algorithm (1977) also allows edges with negative weights. The algorithm makes use of
both the Bellman-Ford algorithm to handle scenarios where there may be negative edges
before applying the Dijsktra shortest path algorithm. The Floyd-Warshall algorithm
(1962) computes the shortest paths between all pairs of vertices on a graph and is able
to do so with the worse case performance of © (|V|®) where |V] is the number of
vertices in the graph. In un-extended form the algorithm only returns lengths of the path

and requires a modification, albeit a simple one to return the paths themselves.

The A* algorithm (Hart ez al, 1968) is widely studied in Artificial Intelligence
(AD). Originally conceived as an extension to the Dijsktra algorithm it is suited to real
world problems through the use of distance based heuristics. When applied to the
shortest path problem the term heuristic describes the introduction of a function to
estimate the distance from the current vertex i to the destination vertex. Within

algorithms such as the A* algorithms the heuristic typically used can be identified as:

f@ = (g +h()

Equation 2.4 A* Heuristic Mechanism
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Where g is the distance travelled from the source vertex to the current vertex i.
The value k(i) is an estimated (heuristic) value from the current vertex to the end vertex.
In a GIS based systems where the actual coordinates of the current position and the end

point are known this can be as simple as:

h(i) = \/(xl —x2)*+ (y1 - y2)*

Equation 2.5 Distance Calculation

Where {x1,y1} and {x2,y2} each represents a two dimension location coordinate.

In Jacob et al (1999) a study based on a comparison between the Dijsktra
algorithm with a number of data structures is undertaken together with the A* algorithm
and an extended A*. The study is devoted to a transport simulation modeller. The
heuristic nature of the A* results in the algorithm being featured in various texts on
artificial intelligence including Luger (2002) and Russell and Norvig (2003). Although
used to identify the optimal path(s) through a graph these texts introduce the algorithm
in the context of games and game theory. It should be noted that the A* algorithm will
often return near optimal results unlike the Dijsktra algorithm which has been proven to
be correct as highlighted in Cormen ef al (2001). Deckter and Pearl (1995 p. 505) find
the optimality of the algorithm dependent on the heuristic function used stating “if the
performance tests are confirmed to cases in which the estimates are also consistent, then

A* is indeed optimal”.

The current section has sought to introduce the basic concepts of shortest path
analysis and basic methods used to introduce performance increases to the problem. The
traditional methods used to increase performance of point to point queries are often no

longer suitable for the scale of graphs used in the real world, such as continent wide

47



road networks or large scale social networks. Gubichev et a/ (2010) highlight that a
straightforward implementation of the Dijkstra algorithm will take more than 500
seconds on a graphs sized 3,000,000 X 220,000,000. Sections 2.5 and 2.6 introduce

state of the art methods used in shortest path analysis and social network analysis.

2.4.2. K Shortest Paths

The K shortest path problem can be considered a generalisation of the more
traditional shortest path problem where not only the single shortest path must be
returned but several (K) shortest paths. Eppstein (1997, p.2) states that “The K shortest
paths problem, for a given K and a given source-destination pair in a digraph, is to list
the K paths in the digraph with minimum total length”. The problem was origimally
examined in Hoffman and Pavley (1959). In Epstein’s methodology, generally repeated
in other works, the Dijsktra shortest path algorithm is used on a reverse of the graph, i.e.
the shortest path from the destination to every other vertex is calculated and paths of
increasing length derived from the resulting shortest path tree. Eppstein (1997) cites
many reasons where the calculation of the K shortest paths may be preferable to the
calculation of a single path such as problems with associated additional constraints that
may be difficult to define. Examples are provided in problems such as the routing of
power cables into areas or communities where there may be opposition to their
installation for example. Aldious and Fill (1999) suggest the method may be useful in
enumerating a series of paths across a graph, as is random walking. Davies and Lingras
(2003) also highlight the feasibility of using the K shortest path as a means of
generating possible paths for the Genetic Algorithm approach.

The K Shortest path problem may be further categorized based on the
plausibility of loops on a path. The introduction to this work suggested that people
prefer to travel along paths which they consider to be short, quick but also simple. They
may prefer a slightly longer trip (both in terms of speed and time) provided that the
journey has some added benefit such as requiring less turns or avoids certain features

etc. However, it almost goes without saying that the development of loops within a path
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makes little or no sense. Exceptions to this can be seen in scenarios where path turns are
prohibited such as ‘No left turns’ etc. The calculation of K paths where loops are not
allowed feature in the works of Chen (1994), Yen (1971), Lawler (1972) and Lawler
(1977). The requirement for solution paths to remain ‘perfect’ or ‘loopless’ makes the
problem considerably more difficult to compute (Eppstein, 1997). The Yen (1971)
implementation of the problem features a runtime of O(k|V|(|E|+|V] log [V])). Yen
(1972) presents a variation of his earlier version of the K shortest path algorithm which
introduces performance increases. Further increases to the Yen approach are presented
in Pascoal and Martins (2003) where the runtime is reported as O(k|V|([E+|V] log [V])).
Despite having the same theoretical worse bounds as the original implementation of
Yen the Pascoal and Martins’ approach in practice demonstrates substantial increases in
performance. Pascoal and Martins make use of a Fibonacci structure to sort candidate
paths and generate deviation paths from the destination node. Yen (1971 and 1972)
operate in the reverse generating candidate paths from the source. Brander and Sinclair
(1995) present a comparative analysis of K shortest path algorithms. In their (Brander
and Sinclair) study the authors attempt to identify bottlenecks in the algorithm notably
highlighting additional calls to a shortest path algorithm (Dijkstra’s algorithm) in order
to derive successive paths in the Yen (1972) algorithm. Brander and Sinclair suggest a
number of ‘acceleration mechanisms’ to increase the performance of the algorithm. The
methodologies are similar to those of Pascoal and Martins who highlight a 300%
increase in performance over the Yen approach across a series of graphs using the

procedure highlighted above.

Fox (1975) presents an implementation of the K shortest path problem. Eppstein
(1997 p.3) suggests that the algorithm was the best “previously known k-shortest-paths
algorithm”. In Eppsteins’ work results are obtained which improve upon those of Fox.
Where the Fox algorithm is able to perform in O(|E| + k|V] log [F]) time the
methodology proposed by Eppstein reduces this to O(|E| +|V| log |V] +k). Hersberger et
al (2007) present a solution that makes use of the Fibonacci heap structure alongside
Dijkstra’s algorithm. The algorithm is tested on real road and random networks. In the
case of the real road networks they employ relatively low-resolution road networks
consisting of around 5 - 6000 vertices and 12 - 15,000 edges. They report improved
results over the Yen (1971) algorithm although the extents of which vary dependent on
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the geographical spread of the source and destinations. The methodology makes use of a
path replacement strategy which it is suggested operates faster than traditional deviation
methods although it is prone to failure. Where failure occurs and is detected a traditional
deviation mechanism is performed. The authors report that failure occurs rarely and

where it does performance is no slower than that of Yen.

Santos (2006) introduces a K shortest path algorithm which builds on the
algorithms presented in Eppstein (1997). The algorithm maintains the path deviation
approach of Eppstein but introduces edge cost sorting and effective data structures. The
authors report that their algorithm can generate 1,000,000 paths in less than three
seconds on random graphs and less than 10 seconds in real world graphs based on the
US road network. Hamed (2010) presents a Genetic Algorithm solution to a subset of
the K shortest path problem using a novel chromosome representation. The aim of
Hameds work is to generate K paths of increasing length in terms of the number of
vertices making up those paths. However, the graphs employed in the tests are of
limited size ranging from 9 vertices and 13 edges to 20 vertices (edges unknown). In
addition the author does not make any comparisons with existing algorithms and thus it

is difficult to make any real comparisons with other algorithms.

2.5. State of the Art in Single Criteria Shortest Path Analysis

In the following section a series of methods used to optimize the run time of
shortest path queries on large graphs (defined as consisting of several million vertices
and edges such as continent sized road networks) are considered. As previously
highlighted the Dijsktra shortest path algorithm can solve shortest path queries between
two nodes in sub linear time where the algorithm terminates when the target vertex has
been scanned. However on very large graphs consisting of several million vertices and
edges the application of advanced data structures is not in itself enough to enable the
performance of real time queries. Methods such as heap structures or bucket structures

will increase the performance of the algorithms but the performance of the algorithms
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will remain unsatisfactory for either large numbers of queries or real time systems.
Recent work has seen road hierarchies, pre-processing and bi-directional searching as
detailed in works such as Moéhring et al (2005), Mohring et al (2007), Hilger et al
(2006), Geisberger (2008) and Bauer and Delling (2010) and Efentakis et a/ (2011)
used to increase the perform of shortest path analysis. The use of a combination of such
techniques has been shown (Holzer ef al, 2005; Abraham et al, 2011) to reduce the run
time of shortest path queries to levels that enable real time analysis of shortest path
queries to be performed on large-scale graphs. Here a brief review of these techniques is

undertaken.

2.5.1.1 Bi-directional Searching

The bi-directional search is reasonably straightforward extension of the standard
shortest path approach. Assuming that two vertices are selected from a graph and
referred to as the source (s) and the target (f) of the query the bidirectional approach
scans forward from vertex s (to t) and backwards from vertex ¢ (to s). The algorithm
requires the generation of a reverse graph from vertex ¢. The generation of the reverse
graph is not however a difficult proposition with modern computing techniques such as
object orientation and the use of such techniques is performed in various other graph
algorithms including a number of approaches to the K-shortest path problem. The
bidirectional approach alternates between the two graphs (forward and reverse) with an
iteration performed in each direction. Let df (1) be the distance labels of the forward
search and db(u) the labels of the backward search respectively of a given vertex (u)
The algorithm can be allowed to terminate when one vertex has been designated to be
finalised by both forward and reverse searches. Then the length of shortest path is
determined by the vertex u with minimum value df (1) +db(u) and the path itself can be
composed from the concatenation of the shortest path from the start vertex s to u (found
by the forward search) and the shortest path from u to the destination ¢ (found by the
reverse search). Goldberg and Harrelson (2005) introduce a similar bidirectional
mechanism to the A* algorithm together with the introduction of landmarks. The ALT*

(A*, Landmark and Triangulation) method pre-computes the shortest distance from
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A contraction hierarchy pre-processing routine defines a total order among the
vertices and shortcuts them sequentially in this order until a single vertex remains.
Algorithm 2.6 presents a simplified view of the method employed to construct a
contraction hierarchy. The algorithm is passed the graph to be contracted together with a
priority queue giving the order in which nodes are to be processed. Geisberger (2008)
highlights that the order in which vertices are processed may have a substantial effect on
the runtime of the pre-processing methodology and perhaps more importantly the

resulting queries. Geisberger presents two models with regard to the ordering of nodes:

The aggressive variant
The main consideration is the performance of the queries, with little regard made

to the time spent generating the contraction hierarchy.

The economical variant
The product of the average query time and the amount of time spent pre-

processing the contraction hierarchy

The selection of various control parameters can be used to manipulate the
performance of hierarchy construction between the two variants. The various control
parameters form the basis of heuristics to estimate how “important” each vertex is based
on local graph properties (such as the number of shortcuts added if the vertex were

contracted).
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Algorithm: Simplified Contraction Hierarchy Construction
Input: A Populated Graph G=(V],|E|)

P = A Priority Queue Of Nodes
Qutput: A Modified Graph GMod=(\V|,|EMod|)

FOREACH (u €V ordered by P)
FOREACH (e(v,u) €E) with v > u)

FOREACH (e(u,w) € E) with w> u)
{
IF (u,v,w)
{
EMod = EMod U{u, w}
Cost(u,w) = Cost(u,v) + Cost(v,w)

Algorithm 2.6 Simplified Contraction Hierarchy Construction

Following the construction of the contraction hierarchy point-to-point queries
are performed on the modified graph structure using a bi-directional variant of
Dijkstra’s shortest path algorithm. Goldberg (2011) reports exceptional increases in
performance seen in the runtime of point-to-point queries using both highway and
contraction hierarchies. Table 2.3 provides the average runtime seen on a graph of the
Western European road network, a graph consisting of 18 million vertices and 42
million edges with the costs based around travel time as reported in Goldberg (2011). It
should be noted that the times given in table report only the time taken to calculate the
shortest path. The retrieval of the complete path requires the use of a recursive
“unpacking” procedure. The unpacking procedure may take longer than the
identification of the shortest distance itself. This is true of both the highway and
contraction hierarchies. The tests performed in Table 2.3 utilised a high-end server

hence extremely low runtime for the Dijkstra approach relative to the graph size.



Algorithm Dijsktra | Highway Contraction
Hierarchy Hierarchy
Runtime 2.008 0.0004 0.000094
(Seconds)

Table 2.3 Comparison of Hierarchy Based Approaches

Delling et al (2011a) introduce the PHAST algorithm (parallel hardware-
accelerated shortest path trees) which makes use of the additional computational power
available via the use of multi-core technology and/or GPU (graphical processing unit)
processing power to increase the performance levels seen in calculating shortest paths
using contraction hierarchies. Of particular interest in the work is authors’ suggestion
that because of hierarchal and related structures the speed at which the performance of
shortest path queries are performed is no longer limited by the power of the CPU but
rather the memory bandwidth available. By moving to GPU based searches the results
produced in Delling ef a/ (2011a) indicate that despite the lower processing power of
GPUs the ability to process multiple vertices in parallel together with increased memory
bandwidth available can lead to extreme performance increases. Before discussing the
runtime reported for the PHAST algorithm it is worth highlighting that the results
reported in Table 2.3 relate to the analysis of point-to-point queries whereas the PHAST
algorithm aims to produce the shortest path tree - that is to say the shortest path from a
single node to all other nodes. The authors report that when using a GPU based
technique they were able to generate 16 shortest path trees simultaneously with an
average runtime of 2.2ms. Finally the authors report being able to produce an all-pairs

shortest path analysis on Western European roads in a little over 11 hours.

Abraham et al (2010) introduce an algorithm based upon contraction hierarchies
that has particular relevance to the work conducted in this thesis. The authors highlight
the multi-criteria nature of path planning and aim to generate alternative paths (to the
shortest). The graph is firstly pre-processed using contraction hierarchies and the
shortest path between two nodes acquired using the “unpacking” methodologies
previously highlighted. The authors then attempt to generate an alternative path with the

properties that the similarity (number of vertices shared) must be low and that the path
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must be ‘reasonable’ with a limited number of unnecessary detours. In order to find
alternative paths the authors use a principle of local optimality of sub paths where each
sub path will also be the shortest path between the source and destinations of the sub
path. Therefore the algorithm requires multiple shortest path calls, the number of which
will increase as the number of nodes making up the shortest path increases. The authors
find report promising results based on speed with the algorithm finding one alternative
path in 3.1ms and three alternative paths in 3.9ms using contraction hierarchies. The
success rate of the algorithm using the contraction hierarchies is limited with the
algorithm returning a valid alternative path in only 58% of cases. A bi-directional
variant of Dijsktra’s algorithm is seen to have a much higher success rate (94% for one
alternative, 62% for three alternatives) but completes a processing run much more
slowly at between 26 and 33 seconds dependant on the number of alternative paths

sought between one and three.

2.5.1.3 Transit Node Approach

Bast ef al (2006) introduce the transit node methodology. The method takes
advantage of the small world phenomenon that exists in real world road networks. That
is to say for any given region there exists a small number of vertices such that any
shortest path to a distant vertex will pass through a member of that small number of
vertices. The algorithm segregates the graph into regions (based upon a regular grid) at
multiple levels. Bast et al (2006) find that the US road network can be adequately
separated into two grid levels with the first level consisting of a grid of 128x128 and a
lower level of 256x256. For the sake of clarity Figure 2.26 is introduced. It consists of
an upper level grid (QUTER) of size 9x9. INNER is a lower level grid sized 5X5 that is
placed within QUTER. Cell C occupies the centre of INNER in this example although
during processing cell C will move around the grid /NNER assisting the calculation of
transmit nodes. The edge set E¢ consists of those edges that have only a single vertex
within cell C. For the purposes of the transit node approach edges where both vertices
are within cell C are considered a local search and handled separately to the transit node

methodology. The set V¢ refers to those vertices in the cell C that are present in set Ec.
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The set of transit nodes for the cell C is the set of vertices v from Viyyer with the
property that there exists a shortest path from some vertex in V¢ to some vertex in
Vourer that passes through v. In order to compute the set of transit vertices for C it is
required to compute all-pairs shortest paths between Vc and Vourer marking all vertices
present in Vivngr as being transit nodes. An iterative process considers each cell C in
INNER, with the union of all transit vertices for each and every cell being considered
the set of transit nodes for the entire graph. The use of the grid structure reduces the
number of all-pairs shortest path calculations required. Bast et a/ (2006) find that in the
US road network with the grid sized previously highlighted (128 x 128 and 256 x 256)
there are around 8,000 transit nodes. Following the identification of each transit vertex
in a graph a further all-pairs shortest path analysis is carried out between each transit
vertex. The production of the shortest path between any two non-local vertices is then
the relatively straightforward task of concatenating a series of pre-calculated shortest

path, as shown in Algorithm 2.7 .

Where both the source and target are considered local the shortest path is
identified using standard shortest path analysis techniques such as contraction
hierarchies. For non-local searches the calculation of the shortest path becomes a series
of look-up table searches as all the information required has been pre-calculated (the
distance of each vertex to its nearest transit node and the distance between each transit
node). The authors report a longer pre-computation time (around 20 hours) but an
exceptional level of performance when carrying out point-to-point queries. Searches
complete in around 1.2 microseconds for distant searches and 5112 microseconds for
local searches on the US road network. For local searches the authors make use of
highway hierarchies but other techniques such as contraction hierarchies are legitimate.
In addition using alternative methods would decrease both the pre-computation phase
and speed at which local searches are performed as seen in Table 2.3 if comparing
highway hierarchies to contraction hierarchies. As with other hierarchy based methods
determining the shortest path travelled increases the processing time required with Bast
et al (2006) reporting an increase from 1.2 microseconds to 5 microseconds for full path

retrieval with non local searches.
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from SQL databases. Following the pre processing stage of Abraham e a/ (2011) the
resulting graph structure is stored in a database. The work highlights how the retrieval
of not only the shortest path is possible but information that may be related to the
shortest path such as points of interest along the route. In Abraham et al (2012) the
authors report being able to retrieve the full path distance of random point to point
queries in 10 - 25ms on the Western European road network (as used in Abraham et al,
2011). Retrieving the distance only is possible in an average of 4-5ms. The wide range
in average time is seen as a result of the underlying database technology. Where only a
limited number of queries are made the system has limited possibilities to take
advantage of cache (for SQL queries) memory. As the number of queries increases then
more use is made of cache hence the lower average runtime seen when the number of

queries is increased.

Algorithm; Shortest Path Calculation Using Transit Nodes

Input: S = Source Point Of Shortest Path

T = Target Point Of Shortest Path

TSRC = Transit Nodes Of Cells Surrounding S

TTRG = Transit Nodes Of Cells Surrounding T

TN = 2 Dimensional Array of Shortest Paths Between Each Transit Node
Output: SPD = Shortest Path Distance Between S and T

IF (ILOCAL_SEARCH)
{

Ds= Calculate Cost To Nearest Transit Node To S // Pre-computed So Table Lookup Search
Dt = Calculate Cost To Nearest Transit Node To T// Pre-computed So Table Lookup Search
Din = Calculate Shortest Path Between TN/S] and TN/D]

SPD =Ds + Dtn + Dt

P = Unpack Path Using Recursive Mechanism

}
ELSE

{
P = Shortest Path Computed Using Highway Hierarchies // Or other high performance method

—;‘_ﬁ

Algorithm 2.7 Calculation of Shortest Path Using the Bast et al (2006) Model
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2.5.1.4 Multi Level Pre-processing

Delling et al (2011b) describe a methodology for generating ‘customizable’
route plans enabling ‘virtually’ real time cost updates. The method segregates the road
network into two distinct groups. The first consists of the road topology and remains
relatively static. Graph related aspects related to the topology are the connectivity of the
road network and associated attribute information such as road type and speed limit.
The second group consists of the metrics used in identifying the shortest path. Delling ef
al suggest that the metrics such as travel time or distance may change frequently or that
more than one metric may exist in parallel. A one-to-many relationship exists between
the topology of the road (one) and the metrics used in computing the shortest path
(many). The methodology proposed by Delling ef a/ (2011b) separates the path planning
process into three distinct groupings. The first involves the pre-processing of the
relatively static road network. This initial stage of the process will exhibit a longer run
time. It is however, run infrequently, as the underlying road topology will change
infrequently. The phase is characterised by a longer run time with a large amount of
additional data (comparable to the size of the graph) being created. The second phase of
the process optimizes each cost on the graph (travel time or distance) and operates in a
matter of seconds. Their work aims to minimize the amount of pre-processing required
when metrics are updated enabling real time traffic congestion information to redirect

users to alternative routes.

The methodology makes use of the PUNCH (Partitioning Using Natural Cut
Heuristics) method indentified in Delling er al (2010) that splits the graph into a
number of partitions referred to as cells. A cell may be of an irregular geographic shape.
Given an input parameter U that represents the maximum size of the cell in terms of the
number of edges contained in that cell PUNCH partitions the graph into cells of size at
most U while minimizing the number of edges between cells. A shortcutting procedure
is then used to assist in the generation of an additional graph hierarchy or level (H). The
graph H contains the shortest paths between vertices forming an edge where either

endpoint is not in the same cell as the other endpoint. A shortcut edge in H is used to
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represent the shortest path for each boundary edge in a cell. The similarities to transit
nodes should be clear from the description. To perform a query between s and ¢, a
bidirectional version of Dijkstra's algorithm is performed on the graph consisting of the
union of H, Cs (the cell containing the source), and Ct (the cell containing the target).
The authors further refine the method through the introduction multiple hierarchies in
the graph H. The punch algorithm is applied to the graph with multiple U values (the
maximum size of the cell). Determining which vertex sets to be included in the query
search is then a case of calculating the graph levels to use based upon table lookups. In
order to present the performance of the approach a subset of the results reported in
Delling et al (2011b) are reproduced below in Table 2.4. The first column gives the
method used (MLD-X is the developed algorithm with the graph separated into X
number of levels or hierarchies. The second column gives the U size parameters used in
the creation of the X levels. The third column gives the amount of time required to pre-
process the cost metrics with the space required following the pre-processing phase. The
final column gives the query time. The table also reports the information for the two
models of contraction hierarchy previously highlighted. The test data i1s a graph of
Western European roads with travel times the cost metric considered. Similar metrics
are seen in the full paper (Delling et al (2011b) for the other metric considered —

distance.

As seen in Table 2.4 the contraction hierarchy is able to perform queries much
more quickly than the method developed by Delling er al. In contrast, however,
processing time for the test data sets is much lower with the proposed algorithm with
the additional benefit of a lower storage space requirement. The authors conclude that
for the specific application the benefits (processing time, space) seen in the approach
outweigh the costs of a reduced runtime. The runtimes seen by the approach are still

extremely promising.
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Method U Values Processing Space Query Time
Time
(MB) (ms)
(Seconds)

MLD-1 2! 49 10.1 5.81
MLD-2 2208 5.0 18.8 1.82
MLD-3 210.215.0%0 5.2 32.7 0.91
MLD-4 28.212.916.%0 4.7 59.5 0.72
CH economical N/A 178.4 151.3 0.12
CH generous N/A 355.6 122.8 0.10

Table 2.4 Runtimes Seen in the Delling et al (2011) Approach

2.5.1.5 Practical Implementations

Having discussed the basic methodology of a series of what can be considered
‘state of the art’ methods of computing shortest paths on graphs attention is now turns to
how these can be translated to useable applications. Of primary interest would be the
web based routing applications provided by Google™ and Microsoft™ Bing™. In the
case of Bing™, Microsoft™ has openly stated (Pendleton, 2012) that the methodology
employed by the routing algorithm is that of Delling et a/ (2011b) discussed previously.
The use of the methodology is relatively recent - prior to the start of 2012, Bing™ maps
used a “modified Dijsktra algorithm” (Pendleton, 2012) although the exact nature of the
modifications are not disclosed. The only comparison given is that the Delling et al
(2011b) approach processes queries twice as fast as the modified Dijsktra search it

replaced.
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Determining the shortest path methodology employed by Google™ Maps is not
possible with only scant information being available. Brummit (2007) made brief
mention how large amounts of processing (taking 10 months) were required to generate
the datasets required for routing. It is possible that previously the techniques involved
the pre-computation and storage of results with encoding and decoding made possible
using the Encoded Polyline Algorithm (Google, 2012). However, the use of such
techniques would not realistically enable the introduction of real time traffic
information a feature now (though not in 2007) considered an advantage of the
Google™ Maps application. An “educated guess” might be that the methodology is
based the Transit Node approach of Bast e a/ (2006). Such a guess however would only
be based upon the fact that the principle author of that work is employed in a research
capacity at Google. Bast et a/ (2010) provide details of mechanisms to increase the
performance of public transport search mechanism employed by Google. The method is
based around the identification of hub stations, those stations or stops that are used
frequently on public transport journeys. The authors however highlight that the shortest
path on road networks is inherently different to that of public transport that relies on
other factors such as travel time and the intersection of travel times with departure of

potential connections.

ESRI (2005) describe the use of Hierarchal structures in their desktop routing
solution (ESRI Network Analyst). They highlight that the hierarchal methods employed
may return sub optimal paths when compared to the alternative “exact best” method, it
is stated “The classical best route algorithm, best known as the shortest path algorithm
cannot support real time queries on large network. Sophisticated performance enhancing
techniques such as heuristics and hierarchal algorithms dramatically reduce the run time
needed to perform the problem”. A number of routing applications or code libraries are
available that make use of OpenStreetMap (OSM) information. OpenRouteService
(www.openrouteservice.com) is a web based application made available as a web page
or a series of web services. The routing methodology is based upon the A* algorithm.
Osmsharp (http://osmsharp.codeplex.com) is an open source desktop library written in

the Microsoft C# language that enables the import and display of OSM data. The library
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includes a number of routing algorithms including basic forms of the contraction and
highway hierarchy methods reviewed elsewhere in this section.  Vetter (2010)
developed the MoNav mobile routing application based around OSM data sets. The
application makes use of contraction hierarchies to solve routing queries. Vetter
highlights a runtime of 273 milliseconds on European datasets. The work is further
highlighted in Luxen and Vetter (2011). The pgrouting project (http://pgrouting.org/)
allows for the import of OpenStreetMap data. The project enables the application of
generalized SQL (structured query language) queries to solve routing problem. The
routing engine employed is based around the A* and Dijsktra shortest path algorithms.

2.5.1.6 Summary of the State of the Art in Shortest Path Analysis

Recent years have seen a range of high performance methods for decreasing the
runtime of shortest path queries on very large-scale graphs. Due to these methods it is
possible to perform continent level queries in fractions of second as seen in Abraham et
al (2011) and Delling et al (2011b). The later of these is of particular interest given
everyday use of the approach via the Microsoft Bing maps routing application. At the
heart of the described improvements are methods such as the use of graph portioning (as
seen the described transit node and customizable route planning methods previously
described) and use of hierarchal structures such as contraction hierarchies. In certain
cases the performance of shortest path analysis is reduced to simply retrieving the path

from one or more lookup tables.

2.6. Social Network Analysis

The previous section detailed a series of approaches that have been seen to
increase the performance of the Dijsktra shortest path algorithm on large-scale graphs in
the form of road networks, with the datasets representing the road networks of the US or
Western Europe being dominant in the literature reviewed. Techniques developed in the

transportation domain exploit properties of transportation networks such as their low
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degree and the presence of a hierarchy based on the importance of roads to achieve
performance increases in point to point analysis for shortest paths. In this section
alternative large-scale graphs are considered in the form of those seen in social

networking.

Graphs seen in social networks vary in size to those seen in real world networks
such as roads. Table 2.5 highlights the number of nodes and edges seen in a series of
social networks analysed 1in the literature. The table highlights the network considered,
the number of vertices and edges and the density seen in the graph. The final column
provides the citation where the graph size is considered. It can be seen from Table 2.5
that the size of the graphs considered is often larger than road networks with a number
of sizes presented in the previous section. In addition, social networks exhibit a much
higher density than can be seen in road networks. Jacob et a/ (1999) highlights that road
networks will often have of a density of around 2.6. Analysis of continent level road
networks studied as part of the 9" DIMACS challenge confirm similar density levels
with US networks having a directed density of 2.43 and European road networks having
a density of 7.2/ in undirected form. A loose assumption that the majority of those
roads are directed would give a density of around 2.42. The test data sets used for this
study and introduced in Chapter 4 have a density of 2.0 — 2.4. There are of course
exceptions. The road network of New York is seen to have the highest density of road

networks reviewed with a density of 2.78 in a graph sized 264,346 X 733,846.

The notion of what constitutes an edge on a graph appears to affect the average
density of the reported graphs. For instance, in some cases an edge is considered the
friendship between two individuals. In such cases, as seen in the studies of Table 2.5
considering Skype, Flickr and Twitter the density is, although higher than that seen in
road networks much lower than that seen in the studies reviewing Facebook and Orkut
where an edge is considered by the authors as a contact between two users such as

replying to a message. In such cases the density of the graph is greatly increased.
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Vertices Edges
Social Network Density Cited In
(Million) | (Million)
Orkut 3 220 73.3 Gubichev et al (2010)
Skype 454 3100 6.8 Tretyakov et al (2011)
DBLP 0.77 2.6 3.37 Tretyakov et al (2011)
Twitter 12.9 90.8 7.03 Poblete et al (2011)
Flickr 2.57 33.1 12.87 Mislove ef al (2008)
Facebook 0.06 1.5 25 De Meo et al (2012)

Table 2.5 Sizes of Various Social Networks

The levels of density seen in online social networks are generally closer to those
seen in works such as that of Pallottino and Scutella (1997) that use a density of up to
10. Therefore the analysis of social networks presents a different set of challenges to
those of roads. Riberio and Towlsey (2010) highlight that even the seemingly simple
task of acquiring accurate metrics as to the size of online social networks is one that is
fraught with difficulties. Whilst social networks will highlight the absolute number of
users those networks have (Forbes, 2012) acquiring lower levels of information
regarding the network to any degree of certainty is a difficult proposition. In many cases
(Flickr, 2012; Twitter, 2012), on-line social networks have public facing Application
Programming Interfaces (API) to allow for the querying of the network. Such queries
however are often restricted for reasons of network performance. User privacy settings
will also often limit the availability of information regarding the network
(Krishnamurthy and Wills, 2009). Valafar et a/ (2009) highlight that the concept of
friendships in social networks are often not reciprocated with the result that graph edges
are often not directed further increasing the difficulty in obtaining accurate graph
topologies. In short, performing analysis regarding online social networks is difficult
due to the size of the network together with acquiring accurate information regarding

the formation of the network.

Gjoka et al (2010) make use of random walking to sample the characteristics of
a number of social networks. The authors highlight that the use of random walking is

not without its drawback. The graph structure can create distortions in the estimates by
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“trapping” the random walk inside a local sub graph. Where instances of the random
walk becoming trapped are seen the estimates of graph characteristics may be seen as
inaccurate if the structure of the sub graph in which the walker is trapped does not share
the same characteristics as the entire graph. The work makes use of a number of random
walkers to mitigate the risk that any single walker may become trapped in a local sub
graph. In addition the work considers a “frontier sampling” technique. The frontier
sampling methodology also makes use of a number of random walks with the
distinction (to the multiple random walk strategy) that the frontier sampling
methodology selects start points for the random walks uniformly from a selection rather
than the simple selection of a vertex in the graph at random. The work highlights that

frontier sampling provides more robust estimations than simple random walks.

A high proportion of research activity concerning social networks has to date
concerned either the reach-ability of the network or the generation of other metrics to
gauge the connectivity of the network. Whilst complete network information is not
available subsets of social networks provide for an accurate model of real world
behaviours. Shi et al (2008 p.61) suggests, “For a variety of online networks, small
subsets of vertices are relevant for efficient algorithms and dominate various graph and
statistical properties. Frequently, these smaller subsets or graph synopses are easier to
study and to understand”. De Meo ef a/ (2012) study the centrality of social networks
highlighting the use of ‘betweenness centrality’ in existing literature. Betweenness
centrality relies on the notion that in social networks information flows along shortest
paths. Therefore a node/edge has a high betweenness centrality if a large number of
shortest paths cross it. In many ways the notion of betweenness centrality shares
properties with that of the transit node (Bast e al, 2006) principle identified in the
previous section where shortest path connecting distance locations pass through a
limited subset of network vertices. Alahakoon er a/ (2011) highlight that existing
methodologies for calculating betweenness centrality remain unsuitable for large graphs
consisting of millions of vertices and edges. The work of De Meo et a/ (2012) makes
use of random walking to calculate the betweenness centrality of edges in a social

network. The authors propose using simple self-avoiding random walks of a maximum
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length. The use of a maximum length for the walk is used to replicate the notion that the
greater the ‘distance’ separating two vertices the less likely those vertices are to
influence each other. Equation 2.7 formulates the betweenness centrality metric on a
graph G=(|V|,|E|) for node v. De Meo et al (2012) report that the approach they
introduce is able to calculate the centrality metrics in O(k|E(G)|) time, where £k is the

maximum length of the random walk and |E(G)| is the number of edges in a graph

G=(V.|ED.

Pio (17)

Cbn(v) = P
st

SFEV#LEV
Equation 2.7 De Meo Centrality Metric

Where p(s ¢y is the number of shortest paths connecting s to ¢
And ps ¢y (v) is the number of shortest paths connecting s to ¢ passing through v

s = The path source; # = The path target

The New York Times (2012) highlights that low latency requirements of online
social network such as quickly identifying links between individuals etc; a task that
involves shortest path analysis. Gubichev ef a/ (2010) perform a analysis of shortest
path methods on a number of social networks. The methodology employed in the work
shares similarities with that of the ALT* method of Goldberg and Harrison (2005)
introduced in a previous section. In a variation to the ALT* approach however the
authors, during the pre-computation stage, store details of the entire path generated
between a vertex and the selected landmark vertices. Gubichev et al suggest that the
diameter of social networks is likely to be small and therefore the storing of such paths
is feasible. Other variations are introduced to the basic approach of the ALT* algorithm.
The authors highlight that the social networks are more likely to see cycles and
therefore introduce a mechanism to remove them as and when they occur. In a second

modification the authors introduce shortcutting mechanism an approach seen in both the

69



highway and contraction hierarchy approaches. Consider the basic approach of the
ALT#* algorithm. Several landmark vertices are selected and the shortest path between
each node and every landmark generated. The shortcutting mechanism highlighted by
Gubichev et al is to perform a simple check to determine if a direct link can be found
between a vertex on the approximate shortest path and all vertices occurring later on the
path. Where possible such shortcuts are introduced reducing the length of the path. The
approach is tested against a series of graph representing on-line social network gathered
using crawling techniques. The mechanism developed. As with the method of Goldberg
and Harrelson will often return sub optimal results. That is to say, the paths produced

will be considered approximations of the shortest paths.

Tretyakov et al (2011) highlight that the appeal in the use of landmark based
algorithms lies the speed of processing and general scalability offered by the approach
stating “they have been shown to perform well in practice, scaling up to graphs with
millions or even billions of edges with acceptable accuracy and response times of under
one second per query”. The authors cite the work of Das Sharma et a/ (2010 p.406) who
perform a web crawl of the Yahoo™ web network in order to generate a graph with the
dimensions of 65,581,675 X 2,371,215,893 where the vertices represent distinct URLs
gathered during the web crawl and the edges represent the number of links connecting
those vertices (or web pages). The authors (Das Sharma ez al, 2010) aim to identify
shortest paths in network in terms of the diameter of the path as opposed to a provided
cost metric as identified in the previous section. Also highlighted is that the size of the
graph limits the feasibility of on-line processing. Das Sharma et a/ do not provide
detailed analysis of the performance of their algorithm in terms of run time instead
choosing to concentrating on the quality of the approximation that their algorithm
produces, they do however state “a disk seek takes several milliseconds while the
subsequent processing of the sketches takes only microseconds”. The size of the graph
used requires the various lookup tables they use representing the lookup table between
landmarks and other vertices to be stored on disk. Tretyakov ef a/ (2011) make use of
shortest path trees to reduce the cost of generating the shortest path after the calculation

of the shortest distance. In effect, the work aims to remove the computational overhead
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that is prevalent in advanced shortest mechanism described in the previous section as
the “unpacking” mechanism. They report being able to perform shortest path queries on
the Skype graph highlighted in Table 2.5 in an average of /6.25 millseconds. The
algorithm described makes use of shortcutting mechanisms similar to those of Gubichev

et al (2010)

Agarwal et al (2012) propose the use of “vicinity mechanisms” to identify
shorter paths on large scale graphs representing social networks where the vicinity of a
vertex is a carefully selected subset of its neighbours. During an offline phase, for each
vertex u in the network information regarding a certain subset of vertices in the
neighborhood of u is computed and stored. During a subsequent online phase those
vicinities are used to compute the shortest paths using the idea of vicinity intersection.
The authors give the exacting requirements for their definition of a vicinity, detailing
three core requirements. First, vicinities must guarantee correctness. If vicinities of s
and f intersect one of the nodes that lies in this intersection must be on the shortest path
between s and ¢ . Second, vicinities should be large enough so that most of the source-
destination pairs have intersecting vicinities. Finally, vicinities should be small enough
so that the memory requirements are reasonable. The identification of vicinities is far
more complex then the identification of nearest neighbour nodes. The approach makes
use of a modified all pairs shortest path algorithm identified in Thorup and Zwick
(2005). Other than the PHAST approach detailed earlier all other approaches review
attempt the point to point rather than the all pairs problem. The method of Throup and
Zwick is similar to that of Abraham ef af (2011) which the network split into a series of
cell with each containing a maximum number of vertices. Where a vertex is common to
the vicinity of two vertices the shortest path can be identified using lookup tables. In
order to generate the vicinity a set of nodes (denoted by L) is generated by sampling
each node in the network with a probability proportional to its degree. The vicinity of
each node u to be the set of nodes v, such that distance between u and v is no more than
the distance from u to its closest node in L. Equation 2.8 is used to generate the
probability of a node being included in set L for a graph G = (|V],|E|). The authors

report results of 0.3 milliseconds on a Flickr based graph of 1.72 million vertices X
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22.61 million edges. However, it is interesting to note that no note is made of what
happens when neither intersection process fails, i.e. there is no intersection between two

vertices therefore making the identification of the shortest path impossible.

El 2B

P =
* vVl IV

d(u)l

Equation 2.8 Agarwal Probability Metric

Where |E| is the number of edges in the graph G
And |V] is the number of vertices in the graph G
And 0 is a user defined parameter

And d(u) is the degree of vertex u

This section has highlighted the scale of social networks. It has primarily been
concerned with on-line social networks however it should be noted that similar
challenges are faced when handling off line instances of social networks such as in the
form of citation datasets such as the DBLP database (Tretyakov et al, 2011). In many
cases the analysis of social networks involves not only the calculation of the shortest
paths between two vertices but also the generation of various graph centric metrics such
as centrality. A major difficulty in performing analysis on social networks can be seen
in the difficulties faced in obtaining the basic graph structures. Where obtained the
networks are an order of magnitude larger than other real world instances such as road
networks and in addition exhibit a higher density. The size and density properties of
social network require alternative methods of analysis when compared to transportation
network. Many algorithms (Das Sharma et al, 2010; Tretyakov et al, 2011; Gubichev et
al, 2010) forego the calculation of exact shortest path and instead attempt to generate an
approximation of the shortest path overcoming the issues that the increased size and

density of the networks present.
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2.7. Multi Criteria Path Optimisation

The introduction to this thesis highlighted how the real world approach to path
finding is multi criteria in nature. In reality individuals will forego travelling along a
shortest or quickest route for any number of reasons be it knowledge of road conditions,
simplicity of alternatives or reasons personal to the decision maker. In the following
section an attempt is made to formalise the multi criteria path optimisation problem.
The basic concepts of Pareto optimality are introduced and historical approaches to the
problem identified from the literature highlighted and reviewed. Where more than a
single criterion is under consideration rather than a single result or ordered set the result
will be a set consisting of solutions where it can be said no other solutions in the search
space can be considered as being superior to them “when all objectives are considered”
Zitzler (1999 p. 5). Such solutions are considered “Pareto Optimal”. A multi-criteria
problem consists of a set of criteria or parameters that have to be maximized (or

minimized) — that is a series of objectives that require optimisation.

The concept of Pareto dominance may be considered as being central to
effective performance of multi-objective optimisation given the often conflicting nature
of the problems. In such a case there is no single solution point that yields the "best"
value for all objectives. Instead the best solutions, a Pareto optimal or non-dominated
set, are a group of solutions such that selecting any one of them in place of another will
always sacrifice quality for at least one objective while improving at least one other.
The concept of Pareto optimality is illustrated in Figure 2.27. Pareto optimality may be
described as ‘the best that could be achieved without disadvantaging at least one
group’. Any two of the solutions in a search space can be taken from the problem search
and each checked for dominance against the other. For any pair of solutions it should be
easy to detect which is the better solution or if the soluttons are mutually indifferent. In

terms of Pareto optimality accepting a dominating solution will mean admitting an
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inferior solution and as a result degrade the solution space. The key to this method of
optimisation is that Pareto based non-dominated solutions are welcome whilst
dominated solutions are unwelcome. Using Algorithm 2.8 the Pareto optimal front can

extracted from the search space represented by a series of solutions.

Steuer (1986) suggests that for a problem having more than a single optimisation
objective solution x’ is said to dominate the other solution x’ if both of the following

conditions are true:

a) The solution x’ is no worse than x’ in all objectives

b) The solution x’ is strictly better than ¥’ in at least one objective

Steuer (1986)

If either of the above conditions is not met then the solution x' does not
dominate solution x’ and can be considered as an example of a solution that may be of
possible interest to the decision maker. In Figure 2.28 a single four-solution search
space is presented. In the suggested example solution x* dominates solution x', x* and x’
as the solution x’ is better in both of the criteria. Solution x’ is also dominated by
solutions x” and x’. Based on these solutions the feasibility set would consist of a single
solution x’. In the absence of x* the feasibility set would consist of x” and x’. Algorithm
2.8 (Deb 1998) shows how the above conditions can be applied to a set of potential
solutions in order to identify the Pareto optimal fronts. A given solution is said to
strongly dominant over another when solution x' is strictly better than solution X’ in
each of the criteria being considered. Within a given set those populations that are not

strongly dominated by another member of the population are said to be weakly
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Algorithm: Pareto Front Extraction

Input: S = Set Of Solutions To Be Checked For Dominance

Output: O = Set Of Optimal Solutions

0 = Empty List Of Optimal Solutions
COUNT = |S|

FOR (=0 TO COUNT)
FOR (j =0 TO COUNT)
{ IF (i =)
IF (S/i] Is Dominated By S/j/)
Mark S/i] As Dominated

}

FOR (k= 0 TO COUNT)

IF (S/k] Not Marked As Dominated)
0=0+ S(k]

Algorithm 2.8 Pareto Front Extraction Algorithm

In Horn (1996) the author presents the following typology for multi-criteria analysis:
Model 1: Decision before Search

Model 2: Search before Decision

Model 3: Iterative Search and Decision Process

The first of Horns’ three models has already been considered as part of this
work. In Chapter 1, the concepts of aggregation and weighting functions to reduce a
multi criteria problem into a single criteria problem were introduced. The imperfections
in doing so are clear. Come et al. (2003) suggests that transforming a multi-criteria
problem into a single-criterion problem is in many cases quite a radical simplification of

the problem. Deb (2001) suggests that a Pareto optimal solution may be returned from
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Path Distance Time
AD 1 16
AD 17 21
ABCD 3 6
ABCD 4 5
ABCD 4 5
ABCD 4 5
ABCD 4 5
ABCD 5 4
ABCD 5 4
ABCD 5 4
ABCD 5 4
ABCD 6 3
ABCED 141 451
ABCED 142 450
ABCED 142 450
ABCED 143 449
ABCED 143 449

Table 2.7 All Paths Between Vertices A and D on Example Graph

Figure 2.30 demonstrates graphically what is made clear in Table 2.7 - Notably
that there are two separate groupings - Those which passing through vertex £ and those
which do not. Those paths passing through vertex E are based on Steuers’ (1936)
definitions of Pareto optimality, dominated and therefore rejected. The removal of the
dominating set of solutions results is highlighted in Table 2.8 and Figure 2.31. It is
highlighted that several paths can be seen with the same traversal costs. Figure 2.31
presents the path values seen in the graph excluding those paths that pass through the
node E. The table has also been updated to number the paths travelling 4_D. The first of
those paths has the cost set {1,16}. The second has the set {17,21}. Based on the
previously given definitions of dominance, path #2 is clearly dominated by each of the
other paths. The following Table 2.9 and Figure 2.33 indicate the Pareto optimal paths
and front. Figure 2.33 represents the example graph with non-optimal paths removed.
Note that as indicated in Table 2.7 multiple solutions may occupy the same space and

therefore are obscured in Figure 2.32. Figure 2.32 and Figure 2.33 present the optimal
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The worked example provided concludes by highlighting the Pareto optimal
path A_D travelling directly between the vertices. The cost set of the path gives a search
space location of {1,/6}. It should be noted that it is cheaper than the other possible
solutions in one of the criteria (distance) but more expensive in the other (time). The
path is not dominated by the other solutions. The solution should be presented to the
decision maker (DM) for the feasibility of that solution to be considered. Figure 2.34
presents each of the unique paths highlighted in Figure 2.33. There are nine optimal
paths present eight of which travel trough the set 4_B_C_D.

2.7.2. Existing Work on the MSPP

Having presented the concepts of Pareto optimality and dominance, and having
related the same to the path planning process attention now turns to existing work in the
field of the multi objective shortest path problem (MSPP). The multi-criteria nature of
the path planning process has been made clear elsewhere in this work most notably the
introduction where an in-depth discussion in to the nature of decision-making in path
planning was undertaken. Having seen that the process of path planning is one that is
multi criteria in nature it is perhaps interesting to note the majority of research into the
path optimization problem has considered only a single objective. The reasons for this
are entircly logical. The process of path optimization where more than a single objective
is to be considered is an example of a problem that is NP hard (Garey and Johnson,
1979 and Hansen, 1979). Granat and Guerriero (2003) provide a detailed rationale for

the NP-completeness of the issue.

Figure 2.17 highlighted that the amount of research undertaken into single
criteria analysis has continued to grow since the turn of the century. Producing a
similar diagram for the multi objective path optimization process would prove to be

difficult. Firstly, whilst it may be possible to view the terms objective and criteria as
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having the same meaning the lack of standardization within the literature results in
search queries returning differing and often-disparate results. Secondly, the term
“shortest path” may have little meaning when considering path optimization where
more than a single criterion is to be optimised given the nature of the problem. Many
authors whilst looking for shorter paths do not consider the problem as being directly an
example of shortest path problem and so terms such as “shortest path” are absent from
any key word sections related to that piece of literature. Figure 2.35 attempts to present
the number of publications seen in the ScienceDirect online repository regarding the
multi objective path optimisation process. The following keyword terms were entered

into the ScienceDirect search mechanism:

» “Multi Criteria” AND Path
* “Multi-Criteria” AND Path
* “Multi-Objective” AND Path
* “Multi Objective” AND Path

* “Pareto” AND “Path”

The searches were performed both inside and outside quotations. The results of
the above queries were then reviewed to extract those works where the either the
shortest path or similar related problem is considered. The nature of what are considered
similar problems is largely open to interpretation. For the purposes of this work similar
works are considered any algorithms that attempt to perform routing or path finding are
considered. Applications such as timetabling etc are not considered as routing
applications for the purposes of this analysis, vehicle routing is however considered.
The filtering step results in Figure 2.35 which highlights the number of publications
related to multi objective path optimisation problems seen since the year 2000. Of the
863 publications seen to match the search terms “Multi Objective” AND Path published

in 2012 only 26 may be considered as related to the multi objective path planning
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The work of Hansen (1979) was the first to formalize the problem of the MSPP
and is referenced frequently in the literature. In that work he provides a label-setting
algorithm for the MSPP problem. From the literature it is possible to identify three
separate methodologies for the solution of multi objective shortest path problems
following a typology introduced in Cohon (1978) each of these strategies will vary in

how they search the problem space and are briefly discussed below.

Generating Methods

Methods utilizing generating methods will attempt to discover the complete
Pareto optimal set or make a close approximation to it. When applied to the MSPP
Hallam et al (2001, p.134) state that the generating method may have limitations. They
argue “However, they do not work well for large graphs as there may be a very large
number of such paths, and the necessary computations are beyond the acceptable scope
of most computers.”, they present Climaco and Martins (1982), Hansen (1979) and
Martins (1984) as examples of such methods. Bandyopadhyay (2008, p.270) suggests:
“Note that theoretically, the number of PO solutions can be infinite. Since the ultimate
purpose of an MOO algorithm is to provide the user with a set of solutions to choose

from, it is necessary to limit the size of this set for it to be usable by the user”.

Methods Based on Utility Functions

Utility functions aim to introduce some notion of the decision makers (DM)
preferences into the MSPP. Granat and Guerriero (2003 p.104) suggest that the use of
utility functions reduces the problem into a single criteria methodology stating, “It is
worth noting that in these methods the multi-criteria optimisation becomes a single-

objective optimisation problem”.
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Interactive Methods

Interactive Methods involve direct interaction with the decision maker. A set of
solutions is offered to the DM, and through interaction their preferences are selected
which leads to an iterative style process. Current et al (1990) suggest the goal of this
approach is to assist the decision maker in selecting the preferred or best compromise
solution from among the non-inferior solutions; they further highlight the appeal offered
by interactive methods given the computational complexity of the problem. As only a

subset of the optimal solutions are sought less processing time is required.

Based on the three solution methods previously given, users are presented with
either a partial or complete set of solutions representing the Pareto optimal front. In the case

of the latter, it is suggested the methodology appeals because:

“Although the calculation of the whole set of the non-dominated solutions in the bi-
objective case can be done easily, it must be remarked that the number of the non-
dominated solutions can be very large. So, this is not, in general, an effective way of
presenting alternative choices to a decision maker 1 (Coutinho-Rodrigues ef al,

1999, p.790).

Ziontis and Wallenius (1976, p.662) state that "managers seem to find it easier to respond to
the trade-off questions in the context of a concrete situation (tradeoffs that are attainable
from realizable situations) rather than in an abstract situation." i.e. they (managers) find it
easier to select from options rather than defining parameters. Granat & Guerriero (2003

p.104) propose the generating and utility function methods are insufficient, for a number of

reasons stating:

“First of all, generating the whole Pareto-optimal solution set may be
computationally intractable, even in the case when a small number of criteria is

considered. Furthermore, supposing the Pareto optimal solution set has been
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algorithm in which multiple Pareto set merge operations are conducted as the graph is
explored. Skriver and Anderson (2000) extend the algorithm highlighting the
performance restriction that the multiple Pareto merge operation causes. The authors
propose that inducing some simple domination conditions on the edge-candidates
should make it possible to discard ‘expensive’ edges as soon as possible. Two methods
to reach this goal are suggested. The first involves performing successive runs of
Dijsktra’s algorithm on each of the two criteria being considered. They also suggest the
implementation of an ‘over-take’ method which appears to combine basic Pareto
optimality checks with the relaxation method of Dijsktra’s algorithm and is based upon
the method highlighted by Tung and Chew (1982).

Climaco and Martins (1982) introduce the use of a combination of the Dijsktra’s
algorithm and the K Shortest path approach. The Dijsktra algorithm is applied to one of
the two criteria under consideration (path cost D). An implementation of Lawler’s K
shortest path algorithm is then applied to the second criteria and paths of increasing
value generated until the cost of the first criteria on Path K exceeds that of path cost D.
Climaco and Martins (1982) propose that the methodology will return the entire set of
Pareto optimal paths between two nodes. Skriver and Anderson (2000) contend that the
K-shortest path (and indeed any path/tree method) approach will always be out
performed by algorithms using the labelling approach. In Rhaith and Erghott (2009),
however this is demonstrated to be partially untrue. They demonstrate that in many
cases the labelling method is out performed by an implementation of a near shortest
path algorithm first suggested in Carysle and Wood (2005) in many cases of real world
graph instances. It should be noted however that the test conducted by Rhaith and
Erghott (2009) reported some ‘failures’, demonstrated by exceptionally long run times.
The reverse is true on random graphs where the labelling method is always the optimal

algorithm as proposed by Skriver and Anderson (2000).

A K shortest path algorithm is also utilized in the work of Coutinho-Rodrigues
et al. (1999). The authors extend the previous work of Coutinho-Rodrigues and Climaco
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(1994) in which a logistics decision support system is introduced. The later work builds
upon that decision support system. The system initially determines the first three non-
dominated solutions which are presented to the user. The user is then given the option to
search within any two of those points. Figure 2.37 presents the result of the initial
search to the user. Having selected points 1 and 2 to search between, the users would
then be presented with the results highlighted in Figure 2.38. Coutinho-Rodrigues ez al.
(1999 p.793) use a constrained K shortest path algorithm to identify “automatic
calculation of the whole set of non-dominated solutions inside the gap”. The constraints
are formed from the minimum and maximum path costs required in each criteria. The
interactive nature of the process also allows the search to terminate on user interaction.
Granat and Guerriero (2003) make use of a ‘reference point’ interactivity model which
has the same aspirations. In both the work of Coutinho-Rodrigues et al. (1999) and
Granat and Guerriero (2003) random graphs are used in the test case. In the latter work,
the graphs are large and very well connected i.e. between 5,000 and 40,000 nodes and
1,000,000 edges. However, it is also of interest with regard to the number of criteria
where four and eight criteria sets are used. In the majority of cases covered the criteria

sets are limited to bi-criteria problems or in limited cases tri-criteria (Pinta and Pascoal,
2010).

Modesti and Sciomachen (1997 p. 495) make use of an interactive method to
solve the MSPP when applied to multi-modal transport plans. The authors require users
to specify preferences towards differing modes of transport that are combined with
Dijsktra’s shortest path algorithm in order to present a subset of the optimal front. The
authors state that they make use of a utility measure “taking into a proper account the
different users' propensities” in “order to overcome the multiplicity of Pareto optimal

solutions”.
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Muller (2010) presents a constrained heuristic function for solving the problem
of the vehicle routing problem. In that work the author makes use of an ‘e-constraint’
where one of the criteria is selected as the primary criteria with additional criteria then
act as constraints. As an example considering a bi-objective problem, Criteria A would
be subjected to optimisation; criteria B would then form the basis of a constraint model.
In the cited work an example of a vehicle routing problem is presented where the
shortest distance travelled is required and certain delivery time constraints have to be
met. Grabener et al (2010) extend the algorithm of Martins and Santos (1999) in order
to present a time constrained multi modal transport planning tool. Delling and Wagnar
(2009) employ a variation of the Dijsktra shortest path algorithm. The authors report
very promising results on large-scale real road networks, they also highlight that a
certain degree of pre-processing of the datasets is required, alongside higher memory
requirements. In addition the authors highlight that their attempts at generating the
complete Pareto set on a graph of Western Europe failed because “it turns out this input
is too big for finding all Pareto routes”. Instead they reduce the size of the graph and
attempt to limit the size of the Pareto set. Delling and Wagnar extend Mohring et al
(2007) to present improvements to the single criterion Dijsktra algorithm through graph
partitioning. The algorithms effectively limit the amount of the graph being explored.
Sauvanet and Néron (2010 p.616) introduce what is suggested to be a novel method for
reducing the number of solutions offered to a user. In their work a variation of the A*
shortest path algorithm is developed which presents users with a series of non-
dominated cycling paths, with the criteria considered being the distance and the
‘insecurity’ of the road link. The results of those experiments have been made available
online (http://www.geovelo.fr/). The authors aim to produce a subset of optimal
solutions stating “however computing all solutions can be time consuming and not
necessarily helpful if the need is to obtain a compromise solution”. The authors reduce
the problem down to a single criterion function using preference weightings. The user
selects a preference using a between shortest distance or increased safety and their

preference then translated into single value to which the A* algorithm is applied.
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The work of Mandow and Perez de la Cruz (2010) presents the New Multi
Objective A* (NAMOA*) algorithm, an extension of the work of Stewart and White
(1991). In both of these works an implementation of the A* algorithm is presented in an
extended form to solve the MSPP. Unlike the approach of Skriver and Anderson (2000)
which may be described as a destructive technique (in that edges are removed from the
graph until only the Pareto optimal paths remain) the NAMOA* approach maintains a
separate graph structure, to which optimal paths are added. Manchua and Mandow
(2012) present a study of the NAMOA* algorithm on a series of real world graphs made
available as part of the ninth DIMACS (Discrete Mathematics and Theoretical
Computer Science) challenge where time and distance may be combined to present bi-
objective graphs. The graphs used are large scale, often of entire US states. The graphs
used in that study are highlighted below in Table 2.10. The authors report varying
results ranging from fractions of a second (0.12) to over 46 minutes on the same graph.
Manchua and Mandow also apply a time limit of one hour and report a number of
scenarios where that time limit is not met. The longest processing effort took over 40
hours leading to the introduction of the previously stated time limit. In Manchua et al
(2012) the authors perform a comparison of various heuristic algorithms and heuristic
values for the MSPP reporting that generally the NAMOA* is the most promising with

certain heuristic functions.

Graph Vertices Edges
New York City 264,346 730,100
San Francisco Bay 321,270 794,830
Colorado 435,666 1,042,400
Florida 1,070,376 2,712,798

Table 2.10 NAMOA?* Real World Test Graphs
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Saadatseresht et al (2009) combined single criterion shortest path algorithms
together with empirical evidence regarding building hazard metrics to produce models
of evacuation zones. Coutinho-Rodrigues ef a/ (2012) extend such an application to the
wider scale problem of urban evacuation zones where distance to safety and
minimization of perceived risk are optimised. The distance to safety was considered as a
single criterion network analysis problem. Where Saadatseresht er al cover a small
group of buildings as an evacuation zone Coutinho-Rodrigues ef al cover town and city
level evacuation plans. Dell’Olmo e7 al (2005) integrate a multi objective shortest path
algorithm (MSPA) into a GIS in order to identify dissimilar yet optimal paths. The
MSPA is based upon that of Martins and Santos (1999). Having identified the optimal
paths the proposed methodology prunes those paths into a disparate set.

2.7.2.1 Heuristic and Evolutionary Approaches to the MSPP

Having considered the traditional algorithmic methods of searching for a series
of Pareto optimal ‘shortest’ paths this work now turns to evolutionary and heuristic
approaches. Such approaches are reasonably recent in the literature and as such
publications are sparse. The algorithmic methods described up to this point have
evolved over the course of twenty-eight years and still comparatively rare. The same

can be said of heuristic approaches with an even greater degree of certainty.

Mnuemoto et al (1998) and Ahn and Ramakrisma (2002) each make use of
genetic and evolutionary strategies for the solution of the single criterion path problem.
Mooney (2004) and Mooney and Winstanly (2006) however extend those underlying
techniques for the multi objective shortest problem, as do Gen and Lin (2004) where an
evolutionary algorithm is used in combination with a fuzzy logic based system. He et a
(2007) make use of similar mechanisms to those employed by Mooney and Winstanley
(2006) to solve the MSPP using genetic algorithms. Unlike the approach of Mooney and
Winstanley where random walking is used to generate the populations He e al use

depth first search based mechanisms. The algorithm also makes use of Pareto ranking
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and nicheing. Crichigno and Baran (2004) and Pangallinan and Janssens (2007) make
use of a graph based implementation of the Strength Pareto Evolutionary Algorithm
(SPEA) approach (discussed later in thesis) to solve the MSPP problem. Chakraborty er
al (2005 p. 190) presents a Genetic Algorithm based approach to the car navigation
problem, which attempts to produce “several alternate routes depending on different
criterion according to driver's choice such as shortest path by distance, path which
contains minimum number of turns, path passing through mountains or by the side of a
river etc”. Liu ef al (2012a) presents an Genetic Algorithm approach, which attempts to
make use of spanning trees to increase the Genetic Algorithm effectiveness. Amongst
the works making use of Genetic Algorithm based approaches the concept of elitism
appears to be universal. That is to say each algorithm implements a secondary
population consisting of optimal solutions. In addition binary method of selection
dominate the literature as a means of selecting candidate solution for cross over and

mutation (introduced formally in Chapter 3).

Liu et a/ (2012b) present a development of Liu et a/ (2012a). In those works the
authors make use of simulated annealing and genetic algorithms respectively to solve
multi objective shortest path problems. The works are of particular interest for two
reasons. Firstly, the use of simulated annealing is rare in any application of multi
objective analysis where a reduction to single criteria analysis via aggregation is not
performed. Secondly, other than this thesis, the work of Liu et a/ (2012b) is a rare
example where simulated annealing has been used to solve multi objective path
optimization problems and perhaps importantly a comparison of genetic algorithm
based approaches with other techniques using the same datasets is performed. Both
works make of spanning tress to represent paths through the graph. Both algorithms are
tested against a limited set of synthetic graphs. In addition the simulated annealing
approach is tested against small example graphs representing a section of the road
network in mainland China with the sizes 70 X 207 and 581 X 954. Tests on synthetic
graphs are performed on datasets consisting of a high vertex to edge ratio. The smallest
graph tested consists of 2000 vertices and 10,000 edges. The largest graph consists of
8,000 vertices and 76,069 edges. It should be noted that the ratio of the upper and lower
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bounds of the connectivity of the graphs varies greatly with a minimum of three
outgoing edges seen on the largest of the graphs, and a maximum of 35. The authors
report limited success of the simulated annealing approach on larger sized graphs.
However it should be noted that the measure of success used might be considered very
limiting with only an exact replication of the optimal set of solutions being considered.
They authors report that the simulated annealing algorithm was able to identify the
complete set of optimal solutions in just 3.3% of cases. The implementation of a
Genetic Algorithm approach was unable to identify a single complete optimal set.
Previous work cited in this work have highlighted that a limited set of optimal will often
be considered satisfactory, and therefore a looser definition of success may be
considered as being more appropriate in comparison to that used by Liu et al. In
addition the high ratio of vertices to edges used of the graph may be reduce the
effectiveness of the simulated annealing technique. On smaller graphs (2,000 — 14,071)
the Simulated Annealing approach slightly outperforms the Genetic Algorithm
approach, with 53.33% of tests returning an exact match for the Simulated Annealing
and 50% for the Genetic Algorithm. The high vertices to edge ratio seen in larger graphs
1s repeated in smaller graphs with a wide range of outgoing edges seen, with a minimum
value of four and a maximum of 26. The nature of vertex to edge ratio seen in the
synthetic test graphs is unlike that seen in real road networks in the form of roads as

highlighted in Table 2.10.

Bezerra et al (2011) and Bezerra et al (2013) make use of ant colony
optimization to assist in the solution of the MSPP. The authors were not the first to
make use of ant colony optimization for routing applications with Baran and Schaerer
(2003) making use of ant colony optimization (ACQ) to assist in the solution of the
vehicle routing problem with time windows. In their work of 2011 the authors (Bezerra
et al) develop an ACO technique they name GRACE. Ant Colony Optimization is a bio-
inspired meta-heuristic that uses the concept of swarm intelligence originally proposed
by Dorigo (1992). Dorigo and Socha (2006) discuss a number of techniques that may be
employed to extend the single criteria optimization technique to one that is capable of

handling multiple criterions. The GRACE technique follows a two-phase approach. In
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the first of the two stages the algorithm identifies the extreme ends of the optimal front
using traditional shortest path analysis techniques. A process of iteration is then used to
determine further possible solutions between the extreme solutions using ant colony
simulation The approach is tested against a implementation of multi objective genetic
algorithm based upon the approach of Deb er al (2002) introduced in the following
chapter together with an alternative ant colony optimization approach to the MSPP
introduced in Hackel ef al (2008). Both Bazerra ef a/ (2011) and Hackel (2008) employ
multiple ant colonies when considering additional objectives. Each colony employed by
the system considers a single criterion. The authors’ present results demonstrating better
quality results from the ant colony approaches when compared to the genetic algorithm
approach and show better results obtained using the GRACE approach than from that of
Hackel et al (2008). The datasets used in the study are formed from either grid based
graphs or complete graphs. In either of the two types the size of the graph is quite
limited in comparison with other works such as that of Liu ez a/ (2012a, 2012b) and
range from 25-200 vertices for the complete graphs. In Bazerra et al (2013) the authors
report that as the size of the graph increases then the underlying topology of the graph
becomes less important to the comparative success of the methodology. The basic
methodology algorithm used in Bazerra et al (2013) is that of the 2011 work by the
same authors. A key difference in the 2013 work however is the analysis into the
behaviours of the algorithms. Zhang ef a/ (2012) make use of ant colony optimization
technique for the solution of path planning problems for mobile robots in a discrete

space.

Pahlavani et al/ (2012) make use of a technique they call ‘invasive weed
optimization’ to assist in the solution of the MSPP. In the work the authors aim to solve
the MSPP with two criteria where each criterion has been assigned a relative importance
value. The technique of invasive weed optimization shares common goals with genetic
algorithms formally introduced in the following chapter. The technique of Pahlavani et
al (2012) generates a random set of solutions. The technique then calculates the fitness
of each of solution. For each of the solutions in the population a number of ‘seeds’ is
produced. The better the fitness of a solution the more seeds a given solution may

produce. Each seed then gives rise to a related solution around the parent. Small
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changes to the selected member of the population are introduced mimicking the process
of weed dispersal. Each of the related solutions is then added to the end of the
population. At the end of each iterations the population is sorted based upon the fitness
of the solutions and the population truncated to its maximum length. Given the use of
assigned weightings for a preferred method of travel method reduces the problem to a
single criteria solution based upon an aggregation method. The authors test the
approach against a multi phase approach to the Dijsktra shortest path algorithm where
each phase represents a run against a single criterion, a genetic algorithm approach and
the invasive weed approach. The authors find the Dijsktra approach completed the tests
in around 18 seconds compared with 56 and 44 seconds for the Genetic Algorithm and
invasive weed approach respectively. In addition to the use of the invasive weed
approach the technique is novel due to the use of real world road networks as the basis
for the test datasets. The road network is based upon that of Tehran, Iran and consists of
30,880 vertices and 34,951 edges. The authors of the work do not describe whether the
graph was considered bi-directional. The values of the graph particularly the ratio
between the number of edges and vertices (1.13) would indicate a non-directional
approach was used which may affect the performance of the algorithms though the
substantial reduction in the number of possible paths between two points. The nature of
the runtime gives the appearance that the implementation of the Dijsktra shortest path

algorithm was not optimised using any heap or bucket structure.

Horoba (2010) undertakes a review into the runtime of evolutionary algorithms
for the shortest path problem. Horoba highlights that all previous studies into the
runtime of evolutionary approaches to the shortest path problem have primarily
concentrated on single criteria problems and hence Horoba is the first to consider a
formulization for the runtime of evolutionary approaches where more than a single
criteria is under consideration. The algorithm analysed by Horoba is based upon that of
Doerr et al (2008) though expanded to handle multiple criteria. The Doerr et al
algorithm initializes a population consisting of all paths where the length will be equal
to zero. The mutation operator either adds or removes a vertex to the end of the path at
random. In many ways the approach taken by Horoba (2010) produces an algorithm that
operates more like a simplified version of the Pareto Archiving Evolutionary Strategy

(PAES) developed by Knowles and Corne (1999) introduced in the following chapter
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rather than a traditional population based approach to the evolutionary algorithm. The
algorithm retains the population approach of the traditional evolutionary algorithm but
performs the selection and reproduction operators on only a single member of that
population.  Unlike Doerr er al/ (2008) Horoba makes no use of a crossover

methodology.

Davoodi et al (2013) together with Bezerra ef a/ (2011) make use of the NSGA-
II evolutionary approach of Deb er a/ (2002) for solving the MSPP. In the case of
Davoodi et al (2013) the algorithm developed attempts to solve shortest path planning
problem for mobile robots although the authors highlight the feasibility of the
techniques to act as a artificial intelligence control in entertainment game software.
The search space of Davoodi et al (2013) is represented as a regular grid, with obstacles
to be avoided in the search space removed from the grid. The genetic chromosome is
represented by a linked list giving the x and y coordinates in the regular grid. The Deb
et al NSGA-II approach appears to be commonly used when considering evolutionary
approaches to the MSPP, featuring also in the work of Hung et a/ (2007), which also
addresses the application of mobile robot path planning using evolutionary approaches.
Chitra and Subbaraj (2012) make use of the NSGA-II based technique for multi

objective path planning in computer networks.

Fang et al (2011) make use of any colony optimization to solve the evacuation
problem. The authors develop an algorithm to assist in the planning of evacuation routes
from a stadium in the event of an emergency with evacuation routes being represented
as directed links in a graph. The algorithm is tested against a K shortest path approach
and an implementation of the NSGA-II of Deb (2002). The authors do not produce any
quantitative metrics in terms of runtime for each of the algorithms and instead produce a
qualities assessment of the results seen from each approach. The report notable
difference between the results seen in each algorithm with the K shortest path and

genetic (NSGA) approach resulting in higher numbers of people evacuated from the test
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stadium but along more congested paths. The any colony based approaches produced a

more even spread amongst the possible evacuation route.

2.8. Chapter Summary

The current chapter has discussed shortest and multi criteria path analysis. From

the study of existing literature a series of significant facts may be drawn.

» Advances in single criterion path analysis continue to be made. These can be
seen in methodologies such as graph partitioning and structural hierarchies. These
have the effect of allowing continent wide shortest paths to be calculated extremely
quickly (measured in nano seconds). The Santos (2006) algorithm allows large
numbers of paths of increasing length to be generated in a matter of seconds on

continent sized road networks.

+ Existing literature has demonstrated the MSPP to have been the subject of
sporadic research interest. Recent years have seen the renewal of interest in the
subject area through the use of evolutionary algorithms. However, even where
undertaken, research effort is often focused on the application of existing techniques

to a given problem rather than the development of new solution mechanisms.

* Heuristic mechanisms for the solution of the MSPP have been limited to the
use of evolutionary algorithms or techniques such as ant colony optimisation. Liu
(2012 pp 3120) presents similar findings suggesting, “The SA has been widely
applied in solving some route related problems such as VRP and TSP. To our
knowledge, however, we do not find any approach for applying SA to MSPPs”. An
example of alternative routing applications making use of Simulated Annealing

using multi objective optimization can be seen in Banos et a/ (2012) who use a
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simulated annealing technique for the vehicle routing problem, a variation of the
travelling salesman application. Zidi ef al (2011) present a variation to the same

approach (Simulated Annealing for the vehicle routing problem).

» From an implementation perspective, algorithmic solutions to the MSPP
appear relatively simple. Notable examples can be seen in the Skriver & Anderson
(2000) method, and the approach taken by Climaco and Martins (1982). However in
practice the solution of the MSPP is demonstrated to be intractable often requiring
days (40 hours) to complete the generation of the optimal set where a single

criterion problem may be solved in micro and nanoseconds.
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Chapter Three: Multi-Objective

Optimisation
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3. Multi Objective Optimisation

The previous chapters have sought to formalize the problem under review. The
current chapter will introduce the various algorithms that will form the basis for the
experimental phase of this research. A comparison of Multi Objective Evolutionary
Algorithms (MOEA) approaches is performed before moving on to consider the multi
objective approaches to the Tabu Search and Simulated Annealing. The chapter ends
with a brief review of various metrics used to review the quality of multi objective

(MO) solutions.

3.1. Genetic Algorithms and Evolutionary Computation

Although conceived by Holland in 1975 it is the work of Goldberg (1989) that
brought widespread awareness and acceptance of Genetic Algorithms to the fore.
Goldberg (1989) highlights that Genetic Algorithms have been demonstrated to provide
robust search in complex spaces and that Genetic Algorithms are increasingly finding
their way into a wider range of applications. Holland (1975) presents Genetic
Algorithms in terms of a simple binary string chromosome and population in the
environment £ in which the system has to survive. A fitness function is used in order to
determine the acceptability of a solution with the fittest solutions being carried forward
to successive generations. Back (1996) develops alternatives to the traditional genome
representation methods (binary string) introducing other methods of representation,
such as graphs, trees, and linked lists. In the MSPP the genome will represent a path

from the source to destination.

Goldberg (1989) highlights that the mechanics of a simple Genetic Algorithm
are surprisingly simple and involve nothing more complex than the copying and

swapping of partial strings. Each generation creates a new, slightly modified set of the
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Deb (2001) highlights several drawbacks to the use of evolutionary algorithms,
the most notable of which are the requirements for effective domain representation and
parameter tuning for any given application. Mitchell (1996 p. 167) highlights the notion
of premature convergence. If an individual presenting a higher fitness than most of its
competitors emerges early on in the course of the run it may reproduce so abundantly
that it drives down the population's diversity too soon, leading the algorithm to
converge on the local optimum. Schwefel and Rudolph (1998) highlight that traditional
algorithms will often outperform genetic approaches in terms of computational

efficiency.

Rechenberg (1965) introduced variations to evolutionary algorithms in the form
of “evolution strategies” to optimise the processes involved in the design of airfoils.
Fogel et al (1966) developed a technique entitled “evolutionary programming”. There
has been a certain amount of debate in the literature regarding the typology and
classification of the various evolutionary approaches in part dependant on the formation
members of the chromosomes and therefore the population (Michalewicz and
Michalewicz, 1997). That debate largely centres on the representation of genome
structures, i.e. if a solution uses a method of representation other than a binary string is
the process a Genetic Algorithm or an evolutionary strategy?. The fundamental concepts
however remain the same. In this work even though the method of representation is not

a binary string the algorithm is considered a Genetic Algorithm.

To date much of the work aimed at the solution of multi objective problems has
concentrated on the use of evolutionary/Genetic Algorithms. Mitchell (1996) highlights
the use of a population-based structure arguing the technique is able to cover a wide
search area simultaneously. Forrest (1993) suggests that Genetic Algorithms are able to

produce an optimal result even when sampling only small regions of a search space.
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Although based upon relatively simple search techniques the field of
evolutionary computation has demonstrated on several occasions that they can be
considered proven and reliable methods for solving search and optimisation problems.
Oduwaga et al (2005 p.293) state “the most significant advantage of using evolutionary
search lies in the gain of flexibility and adaptability to the task at hand”. Genetic
Algorithms also introduce the concept of genetic operations. The Genetic Algorithm
makes use of two main genetic operations in the form of crossover and mutation in
order to a) increase genetic diversity and b) mimic the evolutionary approach of
‘survival of the fittest’. Mitchell (1996) argues that the decision as to which genetic
operators to use when solving a problem using Genetic Algorithms depends largely on
the method of representation. The crossover operator is the most common genetic
operator, and involves the selectton of two candidate solutions which then divide,
swapping components at a given point in order to produce new candidate solutions. The

effect is that the child has inherent details from both parents.

Figure 3.2 demonstrates the process of crossover on chromosomes. Spears and
DeJong (1990) study multipoint and uniform crossover operators when applied to
Genetic Algorithms, reporting the work of Sysweda (1989) which indicated that the use
of multipoint crossover might have advantages over single point under certain
circumstances. Spears and DeJong (1990) state that larger population sizes are protected
from the “disruption” caused by multipoint crossover. Schaffer and Eshelman (1991)
empirically compare mutation and crossover, and conclude that mutation alone is not
always sufficient. The mutation operator involves the selection of a given candidate
solution and attempts to introduce a small random change to that candidate solution. As
an example, in a binary string representation of a candidate solution the mutation
operator may simply take a random bit and invert it. The approach is highlighted in
Figure 3.3. Luger (2002) states that mutation is a key genetic operator as the initial
candidate solutions generated may otherwise exclude an essential component of the
solution. Mitchell (1996) agrees and highlights that many early forms of evolutionary
computation techniques offered only the mutation operator and that the notion of the

crossover operator was often absent. Having considered the basic terminology, form and
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3.1.1. Non-Pareto Approaches

Amongst these early methods is the VEGA (Vector Evaluated Genetic
Algorithm) of Schaffer (1985). Figure 3.4 presents a general three criteria schematic of
the VEGA approach to solving multi objective problems. The VEGA approach consists
of a simple Genetic Algorithm with a modified selection mechanism. At each
generation a number of sub-populations are generated by performing proportional
selection according to each objective function in turn. Assuming the problem consists of
C objectives to be optimised, the approach of Schaffer is to split the general population
into C sub populations. The process applies a unique fitness function to each
subpopulation optimizing each according to one of the criteria under consideration. A
process of recombination then takes place in order to form a new general population.
Coello-Coello (2000) suggests that the VEGA algorithm does come close to the
production of non-dominated (Pareto) solutions but also highlights several criticisms of
the approach, the most notable of which relates to its inability to retain solutions with
acceptable performance, perhaps above average, but not outstanding for any of the
objective functions. These solutions may have been good candidates for becoming non-
dominated solutions but could not survive under the selection scheme of this approach.
At any generation solutions that can be considered ‘good’ in all criteria may be
discarded because that solution is not the best in any one criterion. Tamaki et a/ (1995)
introduce a variation to the VEGA algorithm where at each generation non-dominated
solutions are automatically carried over to the next generation. Deb (2001) highlights
that the VEGA approach will produce solutions that are good for individual criteria.
Coello-Coello (2000) states that the solution set returned by the algorithm achieve what

is described as “non-dominated in a local sense”.
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In Fonseca and Fleming (1993) an alternative ranking scheme to that of Goldberg
(1989) is proposed. Fonseca and Fleming’s MOGA (Multi-Objective Genetic
Algorithm) approach ranks each member of the population in relation to the number of
solutions it dominates although. Like the ranking method of Goldberg (1989) the
method may be considered a simple extension of the single criteria Genetic Algorithm.
The rank of solution(x) is given by Equation 3.1 where r;{ is the number of solutions

dominating solution(x) in a approximation set P/TRUE.
Rank(x) = r}

Equation 3.1 Fonseca and Fleming Ranking Equation

Algorithm: Goldberg Ranking Method
Input: S = Set Of Solutions To Be Checked For Ranking
Output: R/Solution, Rank] = Set Of Solutions With Ranking Information

R =Empty Set
CURRENT RANK =1
COUNT = |S|

WHILE (/S| > 0)

{
FOR (i= 0 TO COUNT)

FOR (j =0 TO COUNT)

{
IF (i 1=))

IF (S[i] Is Dominated By S/j/)
Mark S/i] As Dominated

}

FOR (k= 0 TO COUNT)

{
IF (S/k] Not Marked As Dominated)

{
R=R+ {S[k],CURRENT RANK}
Remove Sfk] from §

}

CURRENT RANK = CURRENT RANK + 1
COUNT = |8

—

Algorithm 3.1 Goldberg Ranking Method
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Algorithm: NPGA Algorithm

Input: P = Population Of Candidate Solutions

G = Number Of Generations To Perform
Output: PfAPPROX = Set Of Pareto Approximations
Initialize Population P
COUNT = |P|

FOR (i=0 TO COUNT)
Evaluate Objective Values

FOR (j= 0 TO G)
{

Perform Specialized Binary Tournament Selection Retumning Solutions 4 and B and Pt

IF (4 Is Dominated With Respect To PSub)
Select B

IF (B Is Dominated With Respect To PSub)
Select 4

IF (4 &&bB Are Dominated With Respect To P™) || (4 && B Are Indifferent With Respect To
P

{
Perform Specialized Fitness Sharing

Return Candidate With Lower Niche Count
}

Perform Single Point Crossover
Perform Mutation

FOR (k= COUND)
Evaluate Objective Values

Algorithm 3.2 NPGA Outline
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Algorithm: NPGA Specialised Binary Tournament Selection

Input: P = Population Of Candidate Solutions
SUBSETNUMBER = Size Of Comparison Subset
Output: P = A Subset Of P

A = Candidate Solution From P
B = Candidate Solution From P = 4

P={}
WHILE ( |P**| < SUBSETNUMBER)

X = Select Solution From P At Random
WHILE (P* Contains X)
X = Select Solution From P At Random

pub— pSb  x
}

A = Select 4 Solution From P Not In P5*
B = Select 4 Solution From P Not In P && 1= 4

Algorithm 3.3 NPGA Specialised Binary Tournament Selection

3.1.3. Elitist Based Methodologies

Earlier MOEASs such as the MOGA, NSGA, and the NPGA highlighted in the previous
section can be criticized due to their simplistic handling of multiple criteria and lack of
true methods for handling elitism. The following methods counter these criticisms
through the use of methods such as external archiving of non-dominated solutions and
methods to increase the coverage of the search such as the introduction of crowd density

control functions. The discussion leads to the introduction of

Figure 3.7 which highlights the general properties of each of the three techniques

discussed.

Knowles and Corne (1999) introduce the Pareto Archiving Evolutionary
Strategy (PAES) algorithm that uses a 1+1 evolution strategy in conjunction with an

external solution set that records the non-dominated solutions found. In addition the
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A key component of the PAES approach is the use of a crowding procedure
based on recursively dividing the objective space in order to determine less populated
areas. Knowles and Corne (1999) highlight that the procedure is designed to have two
advantages over the nicheing methods used in some multi-objective GAs: Its
computational cost is lower and requires little work to determine the parameters used.
When each solution is generated its grid location in the solution space is determined.
Assuming the range of the space is defined in each objective the required grid location
can be found by repeatedly bisecting the range in each objective and finding in which
half the solution can be found. The location of the solution is recorded as a binary string
of 2% where / is the number of bi-sections of the space carried out for each objective,
and d is the number of criterion. Each time the solution is found to be in the larger half
of the prevailing bisection of the space the corresponding bit in the binary string 1s set.
A map of the grid is also maintained indicating for each grid location how many and
which solutions in the archive currently reside there. The number of solutions present in
a grid location is referred to as its population. With a maximum archive size of 100, for
example, and a two-objective problem with /=5, the solution space is divided into 1024
squares. However, the archive is clustered into a small region of this space representing
the slowly advancing approximation to the Pareto front. Knowles and Corne (1999)
suggest an / value of between three and six provides good results. They also provide
(2+d*n + nel*d) as the number of operations to update an archive and (a*/*d) operations
to find the location of solution in the archive. Algorithm 3.5 provides a high level

overview of the archive management functions.
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Algorithm: Basic PAES Algorithm

Input: ITERATIONS = Number Of Iterations To Perform

S = Maximum Size Of External Archive

Output: PfAPPROX = Set Of Pareto Approximations

PfAPPROX = Empty Set Of Optimal Solutions
C = Generate Initial Solution
Evaluate C

FOR (i =0 TO ITERATIONS)

{
M = Introduce Mutation To Solution C
Evaluate M

IF ( C Dominates M)
Discard M
ELSE IF (M Dominates C)
{
C=M
PfApprox = PfApprox + M
}
ELSE IF (M Is Domiated By Any Member Of P/APPROX)
Discard M
ELSE
Perform TestArchive(C, M, PfAPPROX) To Determine C And PfAPPROX

Algorithm 3.4 Outline of the PAES Algorithm
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Algorithm: PAES TestArchive Procedure
Input: PfAPPROX = Set Of Optimal Solutions

C = Current Optimal Solution
M =Mutated Solution
MS = Maximize Size Of PfApprox
Output: Pf4PPROX’ = Updated Set Of Pareto Approximations
C’ = Updated Current Solution // C or M

TF (|PfAPPROX] < MS)
{

PfAPPROX’ = PfAPPROX + M

IF (M Is In A Less Crowded Region Of PfAPPROX)
C=M

ELSE
c'=C

ELSE

Identify Most Crowded Area Of PAFAPPROX

IF (M Would Occupy Less Crowded Area)

{
Remove A Solution From Most Crowded Area Of P/APPROX’
PfAPPROX’ = PfAPPROX + M

IF (M1s In A Less Crowded Area Of PFAPPROX’ Than C)
C'=M

ELSE
C'=C

ELSE
IF (M 1s In A Less Crowded Area Of PfAPPROX’ Than C)
C'=M

ELSE
c'=cC

4

Algorithm 3.5 PAES Test Archive Procedure
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The Strength Pareto Evolutionary Algorithm (SPEA) proposed by Zitzler and
Thiele (1999) is a simple and effective Genetic Algorithm that ranks solutions purely on
dominance. An external archive of non-dominated solutions is maintained and a
clustering method ensures that the archive does not grow larger than a predefined limit
while maintaining the diversity within the archive. Parents for reproduction are selected
from the union of the previous offspring and the archive through binary tournament
selection with replacement where the quality of solutions is ranked by the proportion of
solutions that they dominate or are dominated by. SPEA is an effective algorithm for
multi-objective optimisation. However given its simplistic nature several enhancements

can be seen in the literature.

Fieldsend et a/ (2001) introduce a number of extensions to the SPEA algorithm
such as the maintenance of all non-dominated solutions discovered in the main
population. The historical set of non dominated solutions become an active input to the
search process. Zitzler et al (2001) introduces the SPEA2 algorithm. An update to the
original algorithm that aims to resolve some of the perceived key failings of the SPEA
algorithm that could under certain circumstances lose outer solutions. The SPEA2
approach like the PAES algorithm of Knowles and Corne (1999) aims to maintain these
solutions with the aim of ensuring that “a good spread of non-dominated solutions”
(Zitzler et al, 2001 p.5) is maintained. The SPEA2 approach presents a modified elitist
archive which is no longer purely elitist but which is made up of a fixed number of
solutions. In those cases where there is a shortage of solutions the archive is filled with
dominated solutions. Where the size of the archive exceeds that specified as a maximum
a clustering methodology ensures an even spread of solutions across the Pareto front. A
final change between the two SPEA approaches can be seen in that the SPEA2 approach
now limits the selection mechanism to the external archive of solutions. Algorithm 3.6
and Algorithm 3.7 demonstrates the development of the original SPEA algorithm into
the SPEA2 algorithm.
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Algorithm: SPEA Algorithm

Input: P = Size Of Population
G = Number Of Generations
MPS = Size Of Mating Pool
MS = Maximum Number Of Optimal Solutions

Output: Pf4PPROX = Set Of Pareto Approximations

POPULATION = Generate Random Initial Population Sized P
PfAPPROX = Empty Set Of Pareto Optimal Solutions
MP = Mating Pool = { }

FOR (j=0TO G)

FOR (i=0TO P)
Evaluate Objective Function Of POPULATION]i]

PfAPPROX = Extract Non Dominated Solutions From POPULATION
IF (|[PfAPPROX| >= MS)
Prune Pf4PPROX Using Clustering

FOR (i=0TO P)
Evaluate Objective Function Of POPULATIONYi]

FOR (i = 0 TO |PfAPPROX])
Evaluate Objective Function Of PfAPPROX[i]

WHILE (| MP| <=MPS)

Use binary tournament selection with replacement to select Solutions From POPULATION
+ PfAPPROX adding candidates to MP

POPULATION = New Population Produced Using Mutation And Crossover From MP

Algorithm 3.6 SPEA Algorithm
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Algorithm: SPEA2 Algorithm

Input: P = Size Of Population

G = Number Of Generations

MPS = Size Of Mating Pool

MS = Maximum Number Of Optimal Solutions
Output: PfAPPROX = Set Of Pareto Approximations

POPULATION = Generate Random Initial Population Sized P
PfAPPROX = Empty Set Of Pareto Optimal Solutions
MP = Mating Pool = { }

FOR (j=0TO G)

{

FOR (i=0TO P)
Evaluate Objective Function Of POPULATION(i]

PfAPPROX = Extract Non Dominated Solutions From POPULATION
IF (|PfAPPROX]| >= MS)

Prune PfAPPROX Using Truncation
ELSE

WHILE (|PfAPPROX| <= MS)
Copy A Dominated Solution From POPULATION To PfAPPROX

FOR(i=0TOP)
Evaluate Objective Function Of POPULATIONYi]

FOR (i=0TO |PfAPPROX))
Evaluate Objective Function Of PfAPPROX]i]

WHILE (| MP| <=MPS)

Use binary tournament selection with replacement to select Solutions From POPULATION
+ PfAPPROX adding candidates to MP

POPULATION = New Population Produced Using Mutation And Crossover From MP

Algorithm 3.7 SPEA2 Algorithm
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3.2. Multi Objective Simulated Annealing

Simulated Annealing is a generalization of a Monte Carlo method for
“examining the equations of state and frozen states of n-body systems” (Metropolis et
al, 1953). In an annealing process a solid is first raised to a given temperature and then
slowly cooled over time. At higher temperature the atoms making up the solid form a
‘chaotic’ state with random jumps between various states being made. As the
temperature lowers and the state of the solid becomes more ordered the atoms making
up a solid become much more “controlled” and the ability to move limited. In software
form the temperature controls the ability to move to less optimal solutions, thus
introducing the ability to escape from local optima. Single crterion Simulated
Annealing has been widely applied to a number of applications including structural
optimisation (Kolahan ez al, 2007), map generalization (Ware ef a/, 2003) and labelling
(Christensen et al 1995). Geman and Geman (1984) provide a proof that the method
will when allowed sufficient time achieve a global optimum. Prior to introducing the
multi objective approaches to Simulated Annealing seen in the literature the approach is

first considered in single criterion form.

The Simulated Annealing algorithm is initialized through the generation of a
random solution and by setting the temperature parameter 7. Then the following is
repeated until the termination condition is satisfied: A solution s’ from the
neighbourhood N(s) of the solution s is randomly sampled. In effect s’ is s with a change
introduced. It is accepted as the new current solution depending on the fitness(f) or cost
of the solutions f{5) and f{s') and T. s’ replaces s if f{s’) < f(s) or, in cases where f(s)) >=
f(s) with a probability which is a function of T and f{s’) - f{s). The probability is
generally computed following the Boltzmann distribution given in Equation 3.2. The
terminating condition is usually specified as a small value such as 0.00001. The
temperature 7T is decreased during the search process. Thus at the beginning of the
search the probability of accepting ‘inferior’ moves is high yet over time the probability
of accepting inferior solutions decreases as the value of 7 decreases. A basic

implementation of the approach is given in Algorithm 3.8.
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P =exp(=(f(s) = f(s))/T)

Equation 3.2 Boltzmann Distribution

Where f{s) is the fitness of the current solution
And f{s’) is the fitness of the mutated solution
And T is the current annealing temperature

And P, the result is the probability of accepting an inferior solution

Algorithm: Basic Simulated Annealing Search Algorithm

Input: T 0 = Starting Temperature
T C = Closing Temperature
T _CR = Annealing Cooling Rate

Output: SBest = Optimal Solution Discovered // A Form Of Elitism

§ = Generate Initial Solution
SBest= 8§
T=T0

WHILE (T>=T C)
{
§’ = Select Alternative Solution From Neighbourhood Of S
IF (f(S") < f(S)
§=9
ELSE
§ =5 With Probability p(7,Fitness(S),Fitness(S))

IF (f(S) < {(SBest))
SBest =S

T=T*T CR

L —

Algorithm 3.8 Basic Outline of Simulated Annealing
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The concept of neighbourhood is important in a number of heuristic approaches
and a key, problem-specific choice concerns the neighbourhood function definition. The
efficiency of Simulated Annealing is highly influenced by the neighbourhood function
used (Moscato, 1993). For instance, in the travelling salesman problem the
neighbourhood is often considered the pair-wise swapping of any two city locations.
Alizamir et al (2009 p.15) suggest: “roughly speaking, a more complicated
neighborhood structure may cover a wide range of the feasible region and has the
potential of moving far away in a few number of iterations while a simple neighborhood
structure needs far more iterations to move from one part of feasible region to another”.
Goldstein and Waterman (1988 p. 411) largely concur and in addition state: “The
question now arises: what choice of neighborhoods N, will allow the algorithm to
converge quickly? Intuitively, it seems that a neighborhood system that strikes a
compromise between these extremes would be best”. Alizamir ef a/ (2009 p.4) proceed

to list several criteria for effective neighbourhood selection:

Effectiveness: the power of the neighborhood structure in covering the whole feasible
space.
Efficiency: the efficiency of a neighborhood structure which is the quality of its
performance in covering the feasible region depends on several (contradictory ) factors:
Speed: the number of moves needed to reach any arbitrary point in the feasible
region
Computational Effort: the computations needed for each movement.
Size (Number of Neighbors): the size of a neighborhood structure is defined as
the number of solutions which are accessible in an immediate move from the
current solution. A larger number is usually an advantage as any arbitrary
solution can be reached in less number of moves.
Information Volume: the amount of information transformed. This information
may be used to perform better moves through the feasible space. For instance,
there are gradients, Hessian matrix, eigen values and convexity information for
the continuous space and taboo list, function characteristics and lower & upper
bounds for the discrete space.
Alizamir et al (2009)
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The discussion on Simulated Annealing as applied to single criterion algorithms
is concluded in Algorithm 3.9. It shows the addition of an inner loop where multiple
neighbour solutions are considered at each generation. The best solution from the
neighbours obtained in the inner loop is recorded. Following the termination of the

inner loop the algorithm continues as normal.

Algorithm: Simulated Annealing Search Algorithm With Multiple Neighbours

Input: T 0 = Starting Temperature
T _C= Closing Temperature
T CR = Annealing Cooling Rate
SN = Size Of Neighbourhood

Output: SBest = Optimal Solution Discovered // A Form Of Elitism

N = Empty Set Of Solutions From Neighbourhood Of S.
S = Generate Initial Solution

SBest= S

T=T0

WHILE (T>=T C)
{
FOR (i=0TO SN)
N=N+PS’ // Select Alternative Solution From Neighbourhood Of S
S’ = Select Fittest Solution From ¥
IF (f{S") < f(S)
§=§
ELSE
§=§" With Probability p(7,Fitness(S”),Fitness(S))
IF (f(S) < f(SBest))
SBest=§
T=T*T CR
N={}// Empty The Neighbourhood Set

Algorithm 3.9 Simulated Annealing with Multiple Neighbours
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An early attempt at the solution of multi criteria problems using the Simulated
Annealing approach can be seen in the work of Serafini (1992) in which a bi-objective
methodology is developed. In the approach of Serafini (1992) an initial solution (X) is
generated randomly from within the search space. Following the perturb mechanism a
solution (X*) is generated from within the neighbourhood of the initial solution X. If the
solution X’ is non-dominated when compared to solution X then the modified solution
(X" is added to an external archive of Pareto optimal solutions. That external archive
will from now be known as PfAPPROX - the approximation of the Pareto front. The
PfAPPROX set is extracted from this external archive set of solutions when the
temperature has reached a terminating value. Serafini (1992) suggests that one of the
major considerations is how and when to replicate the annealing process when dealing
with multiple criteria. That is to say, how to deal with situations when solution X” is
either dominated or indifferent to the solution X. The traditional approach of the
Simulated Annealing algorithm would involve the random acceptance of such a
mechanism based upon the temperature at a given time together with a comparative
fitness value. As the temperature decreases the probability of accepting a dominated or
indifferent solution will decrease in line with the temperature. The approach taken by

Sarafini (1992) is to combine the sum of all criteria into a single metric.

The work of Ulungu et al (1999) shares many similarities with that of Serafini
(1992), in that both condense the multi objective problem into a single objective
problem through aggregation. Ulungu ef a/ (1998) present an interactive Simulated
Annealing approach where users specify weightings for the considered criteria. The
authors also discuss further the concepts of neighbourhood. Ray ez al (1995) also make
use of a weighted sum approach as part of the indifferent or dominated acceptance
technique. Czyak and Jaskiewicz (1998) present a hybrid Simulated Annealing and
Genetic Algorithm. The algorithm makes use of a “generating set” to assist in the
management of weights, which are in turn used as the basis of the acceptability of a
given solution based upon indifference or domination. At each iteration multiple
assessments are made with various weightings replicating the population factor of the

Genetic Algorithm.
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The Suppapitnarm ef al (2000) approach makes use of a ‘composite energy
difference’ for the acceptance criteria when reviewing indifferent solutions. Instead of
weighting and summing the objectives to produce a composite energy difference for the
acceptance criteria this algorithm uses a multiplicative function with individual
temperatures for each objective with each weighting adjusted independently by the
algorithm. These multiplicative energy functions are equivalent to a weighted sum of
logs of the objectives. This removes the need for the assignment of weighting values to
any of the objectives prior to the run. It should be noted however that the search process
undertaken still limits the output to a single points on the front P/TRUE. Suppapitnarm
et al (2000) also employ a ‘return-to-base’ scheme whereby the current solution is
merged with another solution from the non-dominated archive to promote a better
coverage of the front P/TRUFE (the set of optimal solutions) and further increase the

ability to escape local optima.

Suman and Kumar (2006) report on the increasing acceptance of SA for multi
criteria analysis and suggest the following properties of Simulated Annealing for that

acceptance noting that the methodologies will:

+find multiple solutions in a single run

swork without derivatives

*converge speedily to Pareto-optimal solutions with a high degree of accuracy
*handle both continuous function and combinatorial optimisation problems
with ease

*be less susceptible to the shape or continuity of the Pareto front.

Suman and Kumar (2006)
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Suman (2005) makes an attempt to reduce the runtime required using the
algorithms. Various stopping criteria are highlighted such as specifying the total number
of iterations to be performed and a subset of that principle, the number of iterations at
each temperature in the annealing process. The author proposes the ‘FROZEN’
mechanism. If the move does not find a better solution in a predefined number of
iterations it is assumed that the algorithm will not generate further improvement and it
is stopped. Suman (2005) highlights Pulido and Coello-Coello (2004) who apply a
similar mechanism in evolutionary computation i.e. terminating after a fixed number of

iterations with no improvement. Suman (2005, p.1135) states:

“The total number of iterations required to obtain a good approximation of the
true Pareto set, depends on many parameters like complexity, nature, feasible
solutions, etc. of a problem. These parameters make the selection of ftotal
number of iterations, indeed, a difficult task. If less number of iterations is used,
the quality of solutions generated in Pareto set will be bad. On the other hand,
if an algorithm overruns towards the end no improvement in the quality of
solutions is made as no solution has been placed in the Pareto set. But, the
computational cost to obtain the solutions has increased. In either ways, it is

related to Pareto set generated”’.

Smith et a/ (2008) propose the use of an ‘energy measure’ rather than a weight
combination of criteria. In that work rather than using an aggregated weight the authors
generate a vector between the current solution and the results of the perturb mechanism.
Figure 3.8 presents a view of the energy measure value on an example Pareto optimal

front.
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In Li and Landa-Silva (2011) an algorithm making use of aspects of both
evolutionary algorithms and Simulated Annealing approaches is proposed. The
approach combines the selection scheme of the VEGA algorithm (Schaffer, 1985) with
the probabilistic acceptance measures of Simulated Annealing. The methodology
removes any genetic crossover procedure, replacing it with Simulated Annealing
mechanisms. The authors report the works of (Merz, 2000; Krasnogor, 2002 and Hart et
al., 2004) who adopt a similar approach when applied in single criterion optimisation.
They make use of genetic search to explore the global search space while local search is
used to examine locally optimal solution spaces. Nam & Park (2000) define several
schemes for calculating the ‘energy difference’ controlling acceptance similar to
Serafini (1994). Based on a small empirical study of two-objective problems they

suggest that the best is the average difference in objective values.

Ulbricht (2012) compares single and multi criteria approaches to Simulated
Annealing and in addition provides a cross comparison with Genetic Algorithms in the
form of the SPEA2 algorithm introduced in this chapter. The Simulated Annealing
approach when handling multi objective is based on that of Bandyopadhyay et a/
(2008). The authors highlight a comparison of tests performed on a single objective
Genetic Algorithm and Simulated Annealing together with multi objectives based on
the SPEA?2 based approach. Little difference is seen between single and multi objectives
Genetic Algorithm approaches. The experiments undertaken are time based with the

authors seeking the optimal results within a given period.

3.3. Multi Objective Tabu Search

The basic concept of Tabu Search as described by Glover (1986 p.541) is "a
meta-heuristic superimposed on another heuristic”. The technique attempts to enable
escape from some local optima via the introduction of a memory function the purpose
of which is to prevent the algorithm from revisiting recent solutions and so to try to seek
new solutions with in the search space. This memory function forms the basis of the

‘Tabu’ of the method name. The method is actively researched and has been widely
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Algorithm: Tabu Search Algorithm

Input: ITERATIONS = Number Of Iterations To Perform
TABU SIZE = Size Of The Tabu List
SN = Size Of Neighbourhood

Output: SBest = Optimal Solution Discovered // A Form Of Elitism

N = Empty Set Of Solutions From Neighbourhood Of S.
S = Generate Initial Solution

SBest= S8

TABU LIST = Set Of Solutions Considered Tabu

WHILE (i = 0 TO ITERATIONS)

FOR (i=0TO SN)
{
PS’ = Generate A Solution In The Neighbourhood Of §
WHILE (TABU _LIST Contains PS’)
PS’ = Generate A Solution In The Neighbourhood Of §

N= N+ PS’ // Select Alternative Solution From Neighbourhood Of §
/

S’ = Select Fittest Solution From &

IF (£(S") < S)
S=5
ELSE
S =5 With Probability p(7,f(5"),f(S))

IF (f(S) < f(SBest))
SBest= S

Prune TABU LIST To Size TABU SIZE
i=i+l
N={} // Empty The Neighbourhood Set

Algorithm 3.10 Single Criteria Tabu Search

The historically accepted approach taken to multi-criteria optimisation using the
Tabu Search shares similarities with that of Simulated Annealing and has again
involved the reduction from multi to single objective problem types. Notable works
using the Tabu Search approach can be seen in the Multi Objective Tabu Search
(MOTS*) approaches of Hansen (1997) and Gandibleux (1997). In the work of
Gandibleux (1997) various weighting values are applied to the aggregating function.

The algorithm introduces variations to these values independently to increase diversity
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in the search process. The work of Hansen (1997) also adopts the approach of applying
weightings to give an indication of preference by the user to or against a given
objective. Hansen discusses in depth the importance of the neighbourhood to the Tabu
Search mechanism. Hansen (1997, p. 10) states: “With a neighborhood function which
contains many neighbors for each solution, it can be more efficient to make moves
based on a (probabilistic or systematic) sampling of the neighborhood, or in other ways
reduce the neighborhood size”. Later Hansen (p.11) suggests, “With neighborhood
functions well suited for Tabu Search, however, we may be able to locate the best

neighbor without explicitly having to generate all the neighbors”.

The work of Hertz (1994) compares three methods where multiple criteria are
condensed into a single aggregated value. The work also introduces a hierarchy
structure to the problem where lower “valued” criteria are used merely to indicate a
priority where any series of solution may be considered indifferent. Applied to a real
world MSPP three criteria are considered; distance, speed and road type. Where
distance and speed solutions are indifferent a solution focused more on higher speed
roads may be accepted. Jaeggi ef al (2008) attempt to model the Tabu Search using a
Pareto optimal approach rather than to treat the solution of such problems as a variation
of an aggregation function. The approach taken here introduces the notion of short,
medium and long term phases of memory (periods that solutions remain in Tabu) in
order to intensify the search process. In the method suggested in the work medium term
memory is represented by an external set of Pareto optimal solutions which form the
seeds of a diversification method in the Tabu Search process. Short term memory
consists of solutions recently covered. The authors make use of multiple neighbour
generation methods and the random selection of indifferent solutions from within the

locally non-dominated solutions.

In Kulturel-Konak et al (2006) the “Multi nominal Tabu Search” (MTS) is
proposed. The method described in that work selects an individual objective to be
optimised at each iteration based upon a given probability vector with the authors

stating the aim is to “remedy some general obstacles of the classical methods of multi-
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objective optimisation (i.e., weighting and scaling of each objective), while maintaining
computational ease” (Kulturel-Konak ez al, 2006 p.930). In order to assist in this the
authors suggest several mechanisms including integrated constraints based acceptance
or denial of solutions and the dynamic resizing of the Tabu list based upon the history
of activity of a archive set of non-dominated solutions. Terano et a/ (2006) produce a
hybrid Genetic Algorithm approach that combines a Tabu Search and Genetic
Algorithm. They implement two tabu lists; one (long-term memory) represents the best
solutions discovered during the run. While the short-term memory stores the optimal
solutions discovered in a predefined number of iterations. Jaffrés-Runser et al (2008,
p-3900) directly compare aggregated function approaches to solving multi objective
problems using the Tabu Search with multi objective approaches for designing wireless
networks. They find that “In terms of computational time, the mono-objective search
performs far better than the MO approach but the tuning of the mono-objective

evaluation function parameters takes several launches to get the desired trade-off”.

Grandinetti et a/ (2012) present an algorithm that is of interest due to its
production of the Pareto optimal set and making use of Tabu Search. The work makes
use of two phase approach. In the first phase a Tabu Search approach is used to
generate candidate paths for the vehicle routing problem. As a second and separate stage
the paths generated are subjected to analysis using multiple criteria for the production of
the optimal front(s). The Tabu Search mechanism, based upon that of Brandao and
Eglese (2008) is separate from that of the multi objective approach. The Brandao and
Egelese approach performs a combination of several values into a single metric.
Grandinetti er al (2012) highlight from the perspective of their work the important
consideration is the method used to generate possible paths. Tabu search has commonly
been used for the solution vehicle routing problems. A search of the literature reveals a
large number of works including those of Cordeau and Maischberger (2012), Brandao
and Mercer (2012) and Escober et al (2013) that meet thr<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>