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Abstract

In real world applications, the path-planning problem is one that is multi-criteria 

in nature though given the complexity of the task is one that is often condensed to a 

single criterion issue, either by the consideration of only a single objective or 

condensing several criteria into a single metric through aggregation or weighting. The 

thesis describes research that has led to the development and application of heuristic 

techniques in order to optimise shortest paths where more than one single criterion is to 

be evaluated. The techniques are described and demonstrated, and their effectiveness 

established by testing them using synthetic and real world datasets. The scalability of 

the heuristics to increasing numbers of criteria is demonstrated.

Heuristic techniques are able to solve the Multi Objective Shortest Path Problem 

(MSPP). In several cases, the performance of the techniques outperform traditional 

algorithmic methods by over 30-50% in terms of runtime, whilst returning a good 

approximation of the optimal set of paths. Promising alternative methods for candidate 

path generation are presented. These offer a much faster runtime for the evolutionary 

algorithm approach, which is able to complete a run on larger graphs in around five 

seconds. Further, several potentially more promising methods have been identified for 

future work, these would lead to increased performance of the mechanisms with a 

decreased runtime whilst returning a more complete set of optimal solutions.
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Chapter One: Introduction



1. Introduction

The following chapter introduces the background to the research undertaken, 

namely the application of meta-heuristic algorithms to the multi objective shortest path 

problem (MSPP). An overview of how and why people often select what are perceived 

to be sub optimal routes is provided together with a brief introduction to the principles 

of multi objective optimisation. The chapter then introduces the aims and objectives of 

the research before closing with a description of the remainder of the thesis.

1.1. Background

Every day of their lives people make decisions - some of which are made 

consciously while others are made unconsciously. Examples of decision-making range 

from the personal and (more often than not) insignificant task of deciding what clothes 

to wear through to the more complicated professional task of product design. The first 

of these two tasks usually requires little effort. The latter however can take years and 

involve changing priorities over time. Whilst the level of complexity differs in an order 

of magnitude the fact remains that they can both be considered examples of an 

optimisation process. The first optimises a person's appearance whilst the second 

optimises the price, functionality and ergonomics of the product.

The process of optimisation will involve the weighing up of various alternatives, 

the resolution of conflicts between the criteria and the discarding of invalid options in 

order to arrive at the optimum solution. A classic example of this can be seen in the 

knapsack problem (Kellerer et al, 2004). The knapsack problem derives from various 

fields and can be stated in single criteria form as "Given a set of items, each with a cost 

and a value, determine the number of each item to include in a collection so that the 

total cost is less than some given cost and the total value is as large as possible". When 

the problem is considered as one of multi criteria each item might be assigned an



additional factor such as 'appeal' and stated as "Given a maximum weight limit and 

physical collection size, together with a series of objects with criteria such as weight, 

size and appeal. What is the optimal set, measured as the number of items having the 

most appeal, of objects that may be carried without breaking the maximum weight limit 

or physical size of the collection?" Other examples of theoretical objective optimisation 

problems can be seem in the travelling salesman's scenario (Applegate et al, 2007) 

which states that "Given x number of cities, which is the shortest route, that visits each 

city only once then returns to the source". Variations remove the requirement to return 

to source.

The travelling salesman problem can be described as a single objective path 

problem with constraints. The shortest distance is the objective and single city visit (or 

avoidance of repeat visits to the same city) being the constraint. Humans normally 

tackle decision problems like the two examples given above by attempting to find the 

solution representing the best compromise between the criteria. As multiple criteria are 

being evaluated such problems are considered "Multiple Objective Problems" (MOPS). 

While across applications the variables to be optimised change the basic task of 

optimisation does not. It "will involve the application of a great deal of experience, 

knowledge and an ability to weigh up potentially large numbers of possibilities. This 

process becomes harder and often intractable as the number of decisions required and 

the system or product complexity increases." (Todd, 1997 p.2). As the number of 

criteria that require optimisation increases so does the time, effort and complexity in 

doing so using traditional computing algorithms. Although any given solution to such a 

problem may be verified quickly there is often no known efficient way to locate a high 

quality solution in the first place (Garey and Johnson, 1979). During the process of 

optimisation an assessment as to the quality of a given solution has to be made. As an 

example in the product design problem, a change might reduce the weight of the 

product but increase the size and cost whilst in order to decrease the cost of the product 

both the size and weight may need to be varied. Suman (2004, p. 1849) states that "a 

good multi-objective optimisation algorithm must find a set of solutions without biasing 

any objective". Luger (2002) suggests that one of the key factors in any multi-objective



analysis is having the ability to distinguish between a good, useable solution and a poor 

one. Goldberg (1989) highlights that historically several approaches to the solution of 

multiple objective problems have been identified including enumerative, deterministic 

and stochastic methods.

Algorithmic methods such as linear programming have long been used for solving 

mathematically based problems such as the shortest path problem. However, these 

techniques lack the robustness and capacity required for effectively solving problems 

with multiple criteria (Coello-Coello and Lamont, 2005). Where such techniques are 

used in a "brute force" manner the time required to optimise the problems becomes 

infeasible. Alternative methods involve the simplification of the process such as 

reducing the problem from multiple criteria problems into single criteria problems. 

Techniques from artificial intelligence however allow for the production of a set of 

"compromise" solutions for a given optimisation problem. The work undertaken aims to 

investigate some of these techniques when applied to the path planning process.

1.2. The Path Planning Problem

The task of path planning is the process of finding the most effective route from 

a given start point to an end point. Traditionally this has been based upon the least cost 

or shortest path and generated using linear algorithms such as the Dijkstra (1959) 

shortest path algorithm where a single criterion, typically distance or travel time is used 

to determine the "shortest" path through a network. Martins and de Santos (1999) 

highlight that whilst single criteria algorithms such as the Dijkstra (1959) algorithm 

have been the focus of a great deal of research comparatively little attention has been 

focused on the optimisation of the path planning process when more than a single 

criterion is involved. Where such work has been undertaken the typical view has been 

that the optimal path will simply be the shortest path with the lowest total cost across 

the sum of the individual criterion or importance suggested through the use of 

weightings to give preference to a criterion. Figure 1.1 and Figure 1.2 present a graph 

with single criterion associated with each edge and the same graph with three criteria



values associated with each edge. Table 1.1 and Table 1.2 demonstrate the single 

criterion and three criteria shortest path from the vertices 1 to 4 respectively. Table 1.3 

demonstrates the effect of the application of various weightings on each criterion in 

order to suggest the application of relative importance to each criterion on the ranking 

of results. In Equation 1.1 the simple multi criteria weight system is highlighted. It 

should be noted of course that in many cases the application of weightings to a multi 

objective function might be more than adequate. However, the reduction in effort 

involved in the implementation may often be outweighed by the effort involved in 

generating ideal weights which have the potential to vary from person to person.

Z
D 

C i W i 
i=l

Equation 1.1 Simple Weighting

Where D is the number of criteria, C is the fitness cost associated with a given solution 

objective and Wis the weighting assigned to that objective.

Figure 1.1 Simple Example of a Single Criteria Graph



Figure 1.2 Simple Example of a Multi Criteria Graph

Path Vertices

1,5,4

1,2,5,4

1,2,3,4

Total Cost

11

18

21

Table 1.1 Shortest Path Across Single Criteria Graph

Path Vertices

1,2,3,4

1,2,5,4

1,5,4

Total Cost

78

84

106

Table 1.2 Shortest Path Across Total Sum Graph



Path Vertices

1,2,5,4

1,2,3,4

1,5,4

Weights

{10,0.3,11}

{10,0.3,11}

{10,0.3,11}

Criteria Cost

{180,6,506}

{210,3.9,484}

{110,10.8,649}

Total Cost

692

697.9

769.8

Table 1.3 Shortest Path Across Weighted Sum Graph

1.3. Applications of Path Planning

The field of path planning has attracted researchers from a wide range of 

disciplines due to the wide range of applications benefiting from the process of network 

optimisation. Ahuja et al (1993) argue that networks can be seen in virtually every 

aspect of day-to-day life in the form of transportation networks, telecommunications 

networks and even social networks. A brief scan of the literature on the process of 

network optimisation has identified several application areas, notably:

1.3.1. Transportation Networks

Many automotive manufactures now offer integrated GPS and GIS systems for 

vehicles to provide on board routing information. Cities have linked GPS systems with 

the public transport systems via real time displays at bus stops and the World Wide Web 

(Cardiff 2007). Coutinho-Rodrigues et al (2012) present a multi criteria GIS based 

application for the evacuation of city areas during emergencies. Saadatseresht et al 

(2009) present a similar system for evacuation of building groups such as a campus. 

Apple (2012) has proposed the use of crowd-sourced information to detect traffic 

congestion and allow rerouting along less congested routes. Solutions to the urban 

transit network design problem (UTNDP) are presented in Fan and Mumford (2010) 

where the authors present solutions to the urban transit problem by applying a weighting 

function to the total distance and number of transfers required to complete a journey 

using public transport.



1.3.2. Computer Networks

The ability to provide quick and reliable network routing information across 

modern computer networking facilities can be seen as central to the optimal 

performance of wide area networks such as the internet. This is especially true given the 

dynamic nature of these networks where the presence and cost of traversing certain 

links can change rapidly (Wen et al 2007; Kauer et al 2003). The work of Chitra and 

Subbaraj (2012) makes use of a Genetic Algorithm for multi objective path planning in 

computer networks. Gen et al (1997, p.401) produce a Genetic Algorithm approach to 

the dynamic routing problem on networks stating "The purpose is not, of course, to 

compare the Genetic Algorithms with conventional algorithms, because Genetic 

Algorithms will be unable to compete". In that work the authors are handling single 

criteria shortest paths using a Genetic Algorithm. The authors report reasonable levels 

of success of graphs of limited size (vertices 70, edges 211).

1.3.3. Fighting Organized Crime

Furtado et al (2009) combine heuristic techniques with graph theory to develop 

a crime analysis model. Xu and Chen (2004, p.473) also demonstrate how network 

analysis can be used to identify associations in criminal networks. That work attempts 

to model the connections between offenders such as "kinship, friendship, co-workers or 

business associates". Flores et al (2012) highlight the use of social networks during the 

'Arabic spring' of 2011. The authors question whether graph centrality measures could 

be used to prevent unwanted 'collective action' such as terrorism. Zengen and Mao 

(2007) review the issue of money laundering.



1.3.4. Medical Applications

Aittokallio and Schwikowski (2006) apply graph-based algorithms to the 

identification of networks and clusters in cell biology. Chen et al (2009) present 

semantic graph operations based upon directed graphs to identify disease-causal genes. 

They highlight links between elements on a semantic graph.

1.4. Decision Making in Path Planning

Many real world networks such as roads can be based on geographical data with 

the cost metric being considered as an accurate measure of actual distance between 

vertices. Additional costs can be associated with any number of metrics including, but 

not limited to, the maximum speed limit of the road, monetary cost of traversal, 

estimated COi output and the number of traffic lights or junctions encountered. The 

ability of software based algorithms to quickly process the connectivity information 

contained within graph structures and calculate the least cost path is something which 

when completed manually could take many orders of magnitude longer to compute to 

the same level of accuracy. Ahuja et al (1993), together with a great number of 

introductory texts on software engineering and computer based data structures provides 

an overview of the basic methodology and algorithms used to calculate a least cost path.

The historic, that is to say least cost, approach to the route optimisation process 

fits well with the generally argued view that at an instinctive level people will attempt to 

follow the shortest path forming a route. However this contrasts with the view of 

Duckham and Kulick (2003 p.3) who state "several cognitive studies have shown that 

people prefer the simplest path". Rickter and Duckham (2008) present an algorithm 

based upon the simplification of instructions rather than the route itself. Burgess and 

Darken (2004 p.l) state that there is a clear preference for "lines of drift" indicating that 

whilst people prefer a shorter route they are fully prepared to travel further for a 

perceived simpler route. Liu et al (1994) suggests that in many cases the shortest path



algorithm is not always the best method of route planning with the authors suggesting 

that using only these algorithms may also produce solutions that are not suitable for 

human drivers, "For example, human drivers would normally like to drive on major 

roads" (Liu, 1996 p.2). Car (1997) presents a hierarchical routing algorithm to assist in 

routing optimisation systems in order to achieve such solutions where preference is 

derived to higher speed and capacity road links such as motorways or dual 

carriageways. Bailenson et al (1998) highlight that users often choose routes consisting 

of the longest and straightest road links while Li et al (2010) suggests that drivers prefer 

a 'simple driving' route which may be longer in time, distance or any other factor but is 

perceived to easier to travel along at certain times. Later in Liu et al (1994) it is argued 

that in many cases the optimal route is often dependant on the individual. A user's 

empirical knowledge of the route they are going to be travelling defines the routes 

optimality. Li et al (2005) find that 60% of tested users regularly choose between 

travelling along multiple routes connecting the same locations depending on levels of 

congestion. Lyons et al (2008) present a 2 dimensional caricature of decision makers 

identifying two groups, those who would like as much information as possible (the Mr. 

Spock approach) through to those who believe that provided the destination is reached 

the route itself is not an issue (the Homer Simpson approach). People have highly 

embedded travel habits and the nature of these habits may limit or enhance the need for 

travel information. SRA (2005) suggest that too much emphasis is given to the notion 

that travel choices are made as a 'staged approach' and instead highlight that a person 

may base a decision on personal needs or circumstances. Davies and Lingras (2003, p. 

31) state "A person not only relies on a single favourite route, but also several 

alternatives. At any given time, an appropriate route may be chosen by splicing together 

sections of all routes in mind, depending on the network conditions at that time. 

Without the aid of an algorithm and ability to process the entire network information a 

person may not use the optimal path". Bonsall (1992) undertakes an analysis into the 

effectiveness of route guidance systems on individuals' behaviour. Decisions regarding 

journey choice in that work highlight that only 35% of all journeys complied with the 

advice given and in part depend on a range of other factors such as age or number of 

miles driven per annum and the perceived quality of advice received in the past.
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The work of Bonsall (1992) links to a phenomenon in the field of discrete choice 

theory: satisficing behaviour (Miller and Star, 1967). This is not a new theoretical 

phenomenon but it is now being acknowledged in more recent travel information 

literature (Chorus et al, 2006; Lyons, 2006). Satisficing behaviour concerns an 

individual being prepared to select a travel option that meets their minimum 

requirements (is 'good enough'), even if other options exist which may be better (but 

which could require additional effort to identify). Papinski et al (2009) introduce the 

work of Golledge and Stimpson (1997) in which the concept of a 'knowledge base' is 

considered. Route choice decisions are largely based on existing knowledge and 

experience that shapes the evaluation of choice alternatives and develops into concept of 

what is perceived to be an optimal route or set of optimal routes. Papinski et al (2009) 

highlight how route selection is often a two stage or issue process. The first issue 

involves route learning through the identification of key landmarks prior to the trip. A 

second set of route choice decisions are made while en-route which involves 

information processing. Duckham et al (2010) introduce an algorithm which relays 

local landmark information as part of the selected journey routing information with 

selected landmarks made part of the instruction set. Papinski and Scott (2011) 

introduce a geographical information system based analysis into how routes users 

actually travelled differ from those suggested based on criteria a single criterion such as 

shortest distance or time. The authors present several cases where the route travelled 

varies significantly to those produced based on path analysis with users spending more 

time on highways than was suggested based on either the optimisation of time or 

distance confirming the previously discussed proposition by Liu et al (1996). Quattrone 

and Vitetta (2011) perform a similar study where the authors make use of GPS acquired 

route information to determine the validity of a fuzzy route choice model. Azaria et al 

(2012) present a reward based mechanism which attempts to 'trick' a driver into 

following the optimal rather than the preferred routes.

Acuna and Parada (2010 p.l) make a direct comparison between 

computationally derived solutions to an NP-Hard path planning problem (in the form of 

the travelling salesman problem) to those solutions produced by human participants. 

The authors state "Humans need to solve computationally intractable problems such as

11



visual search, categorization, and simultaneous learning and acting, yet an increasing 

body of evidence suggests that their solutions to instantiations of these problems are 

near optimal". Bekhor et al (2006, p. 235) suggest that in the 'real world' the selection 

of sub optimal paths is logical given that drivers "have imperfect knowledge of traffic 

conditions and limited information processing abilities".

Recent years have seen a huge increase in the availability of navigation 

information. In 2006 Google  introduced online a mapping application with the ability 

to provide point-to-point directions to users. Mayer (2011) suggests that 12 billion miles 

of routing information are provided by the application every year. Of importance to this 

work given the previously discussed approaches to path planning is the applications' 

ability to allow users to manually redirect a route to match their particular preferences 

and manually update the associated routing information in line with those user selected 

route changes. Simultaneous to increased availability of online mapping has been the 

use of global positioning system (GPS) based hardware. Berg-Insight (2012) suggest 

that as of 2011 there are over 340 million GPS enabled devices in use world-wide with 

33 million personal navigation devices being sold in 2011 alone. A US based study by 

Harris Interactive (2007) suggested that 81% of respondents found the ability to 

automatically recalculate routes taking into account driver error useful with real time 

traffic updates being 'useful' to 75% of users. It should be noted that the routes 

provided by both on-line mapping applications and personal navigation devices (PND) 

will often be contrary to the models of path choice seen in the literature. The provided 

routes represent optimal routes in terms of travel time, distance or road choice but as 

shown by Papinski and Scott (2011) are not considered optimal by users.

The discussion regarding route choice has to this point considered only personal 

travel. However for freight transport the emphasis on fastest (either in terms of distance 

or time) routes is not always in the interest of the driver and may negative consequences 

when the routes run through built-up area. Existing road data sets often lack the 

completeness required for freight management where a larger vehicle may not be able to

12



navigate certain turns or bridges etc and so 'off the shelf navigation devices are 

unsuitable for use in the freight industry. A study by Arentze (2012) suggests that 

drivers of larger sized trucks avoid urban areas due to the difficulty in navigating busy 

streets while the drivers of smaller vehicles often, as is the case with car drivers, follow 

what they consider to be a shorter path regardless of the fact that it may not in reality be 

the case. Hubschneider (2012 p. 494) presents a routing model specifically aimed at 

freight transport that produces routes "which are often are longer but comparable in 

time and fuel consumption".

1.5. Research Definition

There are many well understood algorithms that can be used to generate the 

shortest path between any two points on a network including the Dijkstra (1959) 

algorithm and the A* algorithm. However despite the amount of research that has been 

carried out into the single criterion problem comparatively little effort has been placed 

on the problem of route optimisation that involves more than a single criterion. Where 

research into the topic has been undertaken it has frequently involved the condensing of 

multiple criteria into a single criterion or involved a limited number of criteria.

The research undertaken focuses on the development and comparison of a 

number of AI based techniques including Genetic Algorithms, the Tabu Search 

technique and Simulated Annealing in an attempt to provide a wider range of 

techniques to be used in the process of multi-criteria graph optimisation. This area of 

work covers a myriad of issues but attempts to address two core issues, namely the 

analysis of the multi-criteria algorithms and methodologies when considering the 

optimal path problem together with the development and analysis of techniques to 

achieve these optimal solutions(s). As has been indicated throughout this chapter, it is 

agreed that the route and path planning process is one that is inherently multi objective 

in nature. However little work has been undertaken in the use of various optimisation
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processes with the aim of solving such problems in a truly multi objective way. Mooney 

(2004) provides one of the few exceptions to this, developing a substantial study into 

evolutionary algorithms applied to the process of multi objective shortest path analysis.

1.6. Research Aims

The shortest path problem where multiple criteria are considered is an example 

of a problem that is NP-Hard (Granat and Garrerio, 2003). The identification of optimal 

solutions on anything but very small graph using brute force techniques is not viable 

given the intractability of the problem. Mooney (2004) addresses the issue using 

heuristic functions in the form of evolutionary algorithms as do Saadatseresht et al 

(2009), Liu et al (2012) and Cheikh et al (2010). However there has been a lack of 

research interest in applying other heuristic approaches such as Hill Climbing (Russell 

and Novig, 2003), the Tabu Search (Glover and Laguna, 1987) or Simulated Annealing 

(Kirkpatrick et al, 1983) to the Multicriteria shortest path problem (MSPP). This is 

despite the fact that other heuristic approaches have been applied to graph related 

problems in the past such as the metro map layout problem (Stott et al, 2011) and the 

variations (in the form of multiple objectives) to the travelling salesman problem. It is 

the principle aim of this work to consider alternative heuristic techniques in the solution 

of the MSPP.

The aims and objectives of the research are:

 To develop alternative (to the Genetic Algorithm) heuristic techniques for the 

solution of the MSPP
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 Assess the ability of those heuristic techniques to solve the MSPP against real 

world and synthetic graphs

 Compare the alternative heuristic approach with algorithmic methods for the 

solution of the MSPP

1.7. Thesis Format

The remainder of this thesis is separated into six chapters. Chapter Two reviews 

the terminology used in graph and network theory. It then proceeds to review the data 

structures and algorithms that can be used in the processing of graph connectivity 

information. One of the principle algorithms for the calculation of single criteria 

shortest paths in the form of the Dijsktra shortest path algorithm is presented together 

with a brief description of the various data structures used to enhance the performance 

of that algorithm. Other shortest path algorithms are briefly introduced. The chapter 

then attempts to formalize the issue of the MSPP before discussing the various existing 

methods that can be seen in the literature.

Chapter 3 reviews the various heuristics under consideration as part of this 

thesis. Genetic Algorithms, the Tabu Search and Simulated Annealing are introduced 

and existing methodologies for solving multi objective problems are considered. The 

chapter concludes with a discussion of the various quality metrics applied to multi 

objective problems. Chapter 4 introduces the algorithms used in the experimental phase 

of the research problem. The test data sets employed in study the assessment of those 

algorithms are discussed as are the method used in the acquisition and preparation of 

those datasets for the experimental phase of the project. In Chapter 5 the runtimes seen 

in the algorithms are considered together a summary of the quality results. The chapter 

ends with a consideration of the optimal choice of algorithm under various 

circumstances. Chapter 6 presents a more detailed analysis of the mode of operation for
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each of the algorithms. Possible limitations of the experimental phase of the work are 

also considered. Finally, Chapter 7 concludes the project and discusses potential 

avenues of future work.

16



Chapter Two: Graph Theory and Shortest

Path Analysis
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2. Graph Theory and Shortest Path Analysis

The chapter opens with an introduction to graph properties before moving to 

provide an overview of the basic terminology relating to graphs. The chapter then 

proceeds to introduce single criteria path optimisation and in doing so discusses 

variations to the shortest path problem such the K shortest path problem. More recent 

methods for the solution of shortest path analysis, in effect those forming the state of the 

art in shortest path analysis, are then considered before considering the analysis of 

social networks. The chapter then turns its attention to the concepts of Pareto optimality 

introduced through a worked example of the MSPP before discussing existing methods 

for the solution of the MSPP.

2.1. Background

Graph based structures can be found in many real world applications ranging 

from transportation through to chemistry and increasingly on-line gaming and social 

networking (Newman et al, 2002). Other examples of graph-based structures exist in the 

form of computer networks where the network presented is often dynamic in nature. 

Ahuja et al. (1993, p.2) argue that graphs and networks can be seen "Everywhere we 

look". Table 2.1 overleaf provides examples from real world networks. Pallotino and 

Scutella (1997) claim that since the end of the 1950s over 2,000 pieces of literature on 

the process of graph optimisation have been published.

Figure 2.1 (Sedgewicke, 2003) presents an overview of various graph types 

highlighting the variations in the connectivity and geometric properties of the different 

graph structures. In Figure 2.1 a series of graph types ranging from complete, random, 

grid, real world and small world graphs are presented. Due to the general pervasiveness 

of graph optimisation in the literature this work will not delve into the matter in any 

great detail. A comprehensive study into the field can be found in Ahuja et al (1993).
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Other notable works can be seen in Merris (2000), Ford and Fulkerson (1962) and 

Begre (1973). The following section briefly introduces the graph terminology used 

throughout the remainder of this work. The chapter then proceeds to provide an 

overview of both the single and multi criteria path optimisation process.

Applications

Communication Systems

Hydraulic Systems

Integrated Computer 

Circuits

Mechanical Systems

Transportation

Physical 

Vertices

Telephone 

exchanges

Computers 

Satellites

Pumping Stations 

Lakes

Gates 

Registers

Joints

Airports 

Rail Yards

Physical edges

Cables 

Fiber optic links 

Relay links

Pipelines

Wires

Rods

Highways 

Airlines Routes

Flow

Voice Messages 

Data

Water 

Oil

Electricity

Heat 

Energy

Passengers 

Vehicles

Table 2.1 Applications of Graphs (Ahuja et al, 1993)
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Complete Graph Random Graph Grid Graph Real Worid Graph Small World Graph 

Figure 2.1 Various Graph Types (Sedgewicke, 2003)

2.2. Terminology

The following section introduces the terminology used throughout the remainder 

of this work. The terminology will then remain constant throughout.

Definition 1: Graphs

A graph G = (V,E) consists of two sets, V and E. The elements of set V are 

called vertices (or nodes). The elements of set E are called edges (or arcs). Each edge 

has a set of one or two vertices associated with it that are called its endpoints. An edge 

is said to join its end points. A self-loop is an edge which joins a single endpoint to 

itself in a loop.

If vertex v is an endpoint of the edge e, then v is incident to e and e is incident on 

v. A vertex v is adjacent to vertex u if they are joined by an edge. Two adjacent vertices 

are considered neighbours. Adjacent edges are those edges with share a common 

endpoint. A simple edge occurs when only a single edge occurs between two endpoints. 

A multi-edge is a collection of two or more edges sharing the same endpoints. The 

degree, d(v), of a vertex v is the number of edges in set E that have v as an endpoint. A 

degree sequence is a non- increasing sequence of vertex degrees. The density of a graph
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is the ratio of the number of vertices and edges. Figure 2.2 presents an example of a 

simple graph in visual form.

Figure 2.2 Simple Graph Without Costs

A directed graph (or digraph) consists of a number of directed edges. A directed 

edge is an edge e(i,j) £ E one of those endpoints is designated the tail while the other is 

designated as the head of the edge. The edge leads from the tail to the head. Figure 2.3 

presents a directed view of the graph presented in Figure 2.2. A weighted graph has 

attribute information associated with each edge in the graph called the edge costs and is 

shown in Figure 2.4

Figure 2.3 Simple Directed Graph
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Figure 2.4 Simple Directed Graph with Costs

Definition 2: Walks and Paths

A walk in the graph G = (\ V\, \E[) is a sub graph of G consisting of a sequence of 

vertices leading from one vertex (w) to another (v) such that for w=l,....,n, the vertices 

Vw-l and Vw are adjacent endpoints of edge e.

W = {WQ = u,wi,....,, wn =v}

A valid path in the graph G = (\ V\, \E\) is a walk without the repetition of any 

vertex in that walk. The length of a path is given by the number of edges making up that 

path. A geodesic path across is the shortest path (in terms of edges traversed) between 

two vertices. The diameter of a graph is the largest geodesic path seen. The radius of a 

graph is the shortest geodesic. A Path Description Vector (PDV) details the costs of 

traversing a path. Element A: of a path description vector for path WSit indicates the total 

sum value of the criteria k E D over the path Ws,t from s to t where D is the number of 

costs or weighting associated with an edge. Figure 2.5 shows a PDV between the 

vertices one and five using the graph presented in Figure 2.4 as its basis where the value
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of D = 1. A formal presentation of the PDV where multiple criteria are considered is 

given in Equation 2.1 where D=4.

0

©
Path = {1,2,4,5}, PDV = 9 = (3+2+4)

Figure 2.5 Example Path Description Vector (PDV)

PDV =

C2 =

Ck = 

CD =y
t—' (tj)ew(s,t)

Equation 2.1 The Path Description Vector

Where e(7j^ is an edge present in the path W(s,t)

And C?j is the weight associated with an edge in criteria k.
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Definition 3: Random Walks

A random walk consists of a walk through the graph G. Random walks are 

generated using a random selection mechanism where the number of outgoing edges 

from a vertex is greater than one. The process of iteration at each vertex in the walk 

continues until the target vertex is reachable. Aldious and Fill (1999) undertake an in 

depth study into the principles of random walking. Of particular interest to this thesis is 

the application of repeating random walks to enumerate paths across the graphs. Zijpp 

and Catalano (2005) suggest a possible alternative to the random method of 

enumerating paths. In their study a constraint-based approach to the k-shortest paths 

algorithm is used where limitations of the upper and lower PDV values act as 

constraints. In recent years random walks have been proposed in the context of querying 

and searching (Avin and Bretto, 2004), routing and self-stabilization in wireless ad-hoc 

networks (Dolev et al, 2002, Servetto and Barrenechea, 2002) and peer-to-peer 

networks (Gkantsidis et al 2004). Elsasser et al (2011) study the time taken to cover a 

graph using multiple instances of a random walk as do Alon et al (2008). Both works 

attempt to run several walk instances in parallel. Alon et al (2008) report a linear 

increase in coverage time to the number of walk instances initiated.

Definition 4: Multi Objective Shortest Path Problem

The aim of the multi objective shortest path (MSPP) problem is to identify those 

paths between two vertices in a graph (G = (V,E) in the set p(s, t) of valid paths 

between two vertices where the PDV is minimised. Equation 2.2 shows the formal 

function of the MSPP.

Minimize (PDV{C\ C 2 , Ck ,.... C D }VW(S:t} e p(s, t))

Equation 2.2 The Multi Objective Shortest Path Problem (MSPP)
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With the following constraints:

W(s,t) is a path with no repeating vertices

W(s,t) is valid with each edge

D = The number of criteria

Definition 5: Centroid

The term Centroid is used to describe the centre point of a feature. Figure 2.6 

presents a visualization of a Centroid as used in later sections of this work (see Chapter 

4) where a real world coordinate is used to describe the centre point of a regular 

geographic area.

Figure 2.6 Centroid of a Rectangle

2.3. Random Graph Generation

Random networks are frequently generated to investigate the effects of model 

parameters on network properties to test the performance of network analysis 

algorithms. Chapters 5 and 6 of this work make use of such graphs to analyse the 

performance of various meta-heuristic algorithms when solving the MSPP. An in-depth 

study of random graph generation techniques is beyond the scope of this work however
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this section introduces a series of prominent approaches to random graph generation 

seen in the literature. The following methods graph generation are introduced:

  The Erdos and Renyi Model

  The Gilbert Model

 The Barabasi-Albert scale free model

2.3.1. The Erdos and Renyi Model

The theory of random graphs was founded simultaneously in Erdos and Renyi 

(1959) and in Gilbert (1959). What sets both works apart is the probabilistic approach to 

random graph generation employed.

Erdos and Renyi set out to investigate what a typical graph with V labelled 

vertices and E edges 'looks' like. In Fowler et al (2009) the model is used to generate 

sample datasets to test the connectivity between individuals in social networks where 

the model is used to produce highly connected networks. loannides (2006) also 

considers the networks produced by the model as being the upper bound set of 

connectivity in models of social networking. Both the works of Fowler et al (2009) and 

loannides (2006) highlight that the models produced are not realistic models of those 

seen in the real world. Algorithm 2.1 introduces the model in high level (and simplistic) 

pseudo-code form.

The model considered by Erdos and Renyi is an appropriate method for 

generating random graphs with a fixed number of vertices and edges where the 

likelihood of an edge between any two vertices in the set V being inserted into the graph 

being of equal probability to any other pair of vertices. Variations to the model 

introduced in Austin et al (1959) allow for the introduction of parallel edges in the 

graph. Figure 2.7 presents an example graph G - (5,8). The graph structure included in 

Appendix A.
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Algorithm: Erdos-Reyni Random Graph Generation Model
Input: V= Number Of Nodes In Graph 
_________E = Number Of Edges In Graph
Output: ____ A Graph G=(|V|,|E|)
EDGES = List Of Existing Edges = {} 
e(ij) = An Edge Between Two Vertices

FOR (i = 0; i < |E|; i
{

s = Select Edge Source At Random From {1,2,..|V|} 
t = Select Edge Target At Random From { 1,2,.. |V|}

WHILE ((e(s,t) MEMBER OF EDGES)
{

s = Select Edge Source At Random From {1,2,..|V|} 
t = Select Edge Target At Random From { 1,2,.. |V|}

EDGES = EDGES + e(s,t)

Algorithm 2.1 Erdos-Reyni Random Graph Generation Model

Figure 2.7 Example Graph Generated using Erdos-Reyni Model
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2.3.2. The Gilbert Model

Unlike the model of Erdos and Renyi the Gilbert model of random graph 

generation does not guarantee any pre-designated number of edges will be present in the

graph. In Gilberts' model, the potential edges of a simple undirected graph

with \V] vertices are included with the probability 0 < p < 1. As demonstrated in 

Algorithm 2.2 the Gilbert model is from a computational perspective a simple process. 

Despite the computational simplicity of the model Batagelj and Brandes (2005) 

highlight that the methodology is unsuitable for the generation of large, sparse graphs. 

The model operates with a run time in the order of 0(n2). Many works in the literature 

refer to the Gilbert model as a variation on that of Erdos and Reyni with the later 

introducing the model in their work of 1959 simultaneously with Gilbert. The model is 

referred to here as the Gilbert model for clarity purposes only.

Algorithm:___Gilbert Random Graph Generation Model
Input: V= Number Of Nodes In Graph 

__________P = Edge Probability 0 < p < 1
Output:_____A Graph G=(|V|.|E|)
EDGES = List Of Existing Edges = {} 
e(i j) = An Edge Between Two Vertices

FOR(/=1TO|FL> 
{

s = i
FOR(/ = /TO|F])

Generate a uniform random number 0 £ {0, 1};

IF (G < P)
EDGES = EDGES + e(s,t) 

} 
}

Algorithm 2.2 Gilbert Random Graph Generation Model
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Figure 2.8, Figure 2.9 and Figure 2.10 demonstrate the output of the Gilbert 

model of graph generation with three probability values, those being 0.1, 0.6 and 0.8. 

The number of nodes in each graph (|V|) is set to five prior to the generation of the 

graph. The aim is not to produce instances of large complex graph but rather to show 

the effect of the probability value on the graph output. As the probability value p 

increases from 0.0 to 1.0 the likelihood of encountering a disconnected vertex 

decreases. The graphs structures are included in Appendix A. As seen in Figure 2.8 at 

low probability values there are a limited number of edges presents in the graph.

©

© 0
Figure 2.8 Example Graph Generated using the Gilbert Model (p=0.1)

Figure 2.9 Example Graph Generated using the Gilbert Model (p=0.6)
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Figure 2.10 Example Graph Generated using the Gilbert Model (p=0.8)

2.3.3. The Barabasi-Albert Scale Free Model

Milgram (1967) introduced the concept of small worlds. The work highlighted a 

limited sized path could be found to connect any two individuals in differing US cities. 

Watts and Strogatz (1998, p.440) suggest that similar properties can be seen in a variety 

of other real world graphs or networks stating, "Ordinarily, the connection topology is 

assumed to be either completely regular or completely random. But many biological, 

technological and social networks lie somewhere between these two extremes". Watts 

and Strogatz highlight two structural properties of what are commonly referred to as 

'small world' graphs, firstly the typical path length connecting any two graph vertices 

will be low and secondly that the graphs will demonstrate a high level of 'cliquishness' 

where a subset of the vertices in a graph will demonstrate a higher degree than others. 

Newman (2001) highlights a limited community structure between US based scientists 

as being an example of a small world network.

Watts and Strogatz introduce a model for generating small world graphs. The 

model is initialized with what may be able to be visualised as a ring lattice consisting of 

| V\ nodes. Each node connects to K neighbours (K/2 on either side). The model then 

proceeds to rewire, at random, each edge of the lattice with probability p such that self- 

connections and duplicate edges are excluded. This process introduces long-range edges 

which connect nodes that would otherwise be part of alternative 'neighbourhoods'. The 

variation of/? through 0.0 - 1.0 enables the modification of the graph between ordered
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(0.0) and randomised (1.0). Albert and Barabasi (2002) highlight that the model of 

Watts and Strogatz introduces an unrealistic vertex degree distribution. Figure 2.11, 

Figure 2.12 and Figure 2.13 present a simple graph with V = 10 nodes with varying 

values of p = 0.0, 0.5 and 0.9 respectively. K=4 in all three examples. The graph 

structures have been included in Appendix A.

Figure 2.11 Example Graph Generated using the Watts and Strogatz Model (p=0.1)

Figure 2.12 Example Graph Generated using the Watts and Strogatz Model (p=0.5)

Figure 2.13 Example Graph Generated using the Watts and Strogatz Model (p=0.9)
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The model of Barabasi and Albert (1999) seen in Algorithm 2.3 in pseudo-code 

form aims to overcome the issue of an unrealistic degree distribution seen in the Watts 

and Strogatz model. The authors argue in Albert and Barbasi (2002 p. 71) that models 

such as the Watts and Strogatz model are limited by the definition of a predefined 

number of vertices. The model generates the small-world property through the rewiring 

of the graph at random and without considering the creation of new vertices in the graph 

or the degree of existing edges in the graph. The 'scale-free' graph generation model of 

Barabasi and Albert starts with a small number (m0) of nodes in the graph. At each 

iteration (x), the model adds a new node with m(< m0) edges that link the new node to 

m edges already present in the network. The probability of an edge generation in the 

network is equal to the probability outlined in Equation 2.3 where di is the existing 

degree of vertex /.

Equation 2.3 Barabasi and Albert Probability Value

After x iterations the model will have developed a network consisting of V = x + md 

vertices and mx edges. Albert and Barabasi (2002) highlight that over time the degree 

distribution will start to decay or the graph will become completely connected. Figure 

2.14 (the initial graph) and Figure 2.15 (following the graph growth procedure provide 

an example of a simple graph generated using the Barabasi and Albert model with mO 

= 4 and V= 10.

Figure 2.14 Example Graph Generated using the Barabasi and Albert Model (mO=4)
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Figure 2.15 Example Graph Generated using the Barabasi and Albert Model (v=10) 

2.3.4. Alternative Methods of Random Graph Generation

The methods of graph generation considered to this point can be considered 

seminal works in the field of random graph generation. The introduction to the current 

review of random graph generation highlighted that a detailed study of the research area 

is beyond the scope of this work to consider completely however in the current section a 

number of other methods of graph generation are briefly considered.

Tobita and Kasahara (2002) introduce the 'Layer-by-Layer' method of random 

graph generation. In many ways is an extension of the Gilbert model where edges are 

added to the graph with a pre-designated probability. The method splits the graph into a 

number of separate layers with the number of vertices in each layer being equal
y

to LV = -. Nodes are randomly assigned to a specific layer with edges between layers
Li

generated using the probability method developed by Gilbert. The graphs produced by 

the structure have been used in critical path analysis. Bayati et al (2007) introduce a 

random generation model for graphs with a prescribed degree sequence. The model 

starts with an empty graph structure and is initialized by being a passed the prescribed 

degree sequence. For the purposes of clarity Figure 2.16 presents a example network 

with the degree sequence {5,3,2,2,2,1,1,1,1,1,1} and vertices labelled with the degree of 

that vertex.

33



Algorithm:___Barabasi and Albert Scale Free Graph Generation Model

Input: IV= Initial Number Of Nodes In The Graph
K= Number Of Vertex To Create In The Graph 
E = Edges To Add To The Graph________

Output: A Graph G=(|V|,|E|)

EDGES = List Of Existing Edges = { } 
eftj) = An Edge Between Two Vertices 
D = List Of Edge Degrees = {} 
X = Edges Added To Network = 0

// Generate The Initial Seed Network. 
FOR (z = 1 TO IV)
{

FOR (/ = i TO IV)
{

EDGES = EDGES + e(i,j) 
D[i]=D[i]+\ 
D[j]=D[j]+\ 
X=X+\

A = Number Of Edges Added = 0 
IGNORE = Degree Of Edges Ignored =0.0

FOR (m = 0 TO E)
{

R = Random Number = {0.0-1.0}
p = Probability Of Accepting An Edge = 0.0

FOR (j = \ TO 0 
{

IF (Edge Does Not Exist (EDGES(E(i,j))))
{

p = (p+DQJ I ((2*X)-IGNORE))
}

IF (R <=p)
{

EDGES = EDGES +e(i,j) 
IGNORE = IGNORE + =djj] 
ADDED = ADDED + 1

Break From Loop

X=X+l
}

Algorithm 2.3 Barabasi and Albert Random Graph Generation Model
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Figure 2.16 Example Network with Prescribed Degree Sequence

Having been passed the prescribed degree sequence the methodology creates j V\ 

disconnected vertices in the graph. The model then sequentially adds edges between two 

vertices with the probability that an edge is added between nodes z andy proportional to

d ld] (l — -^) where d, and d, represent the remaining degree of vertices z and j4m •"

respectively. The remaining degree of a vertex z is equal to dL minus its current degree, 

m, the number of edges in the graph is given by m = -£j dj, half the total sum of the 

degree sequence.

Bach et al (2012) develop an evolutionary approach to random graphs 

generation. The approach considers the parameters used in the graph creation process as 

values to be optimised by an evolutionary algorithm. Rath and Toth (2009) make use 

the Erdos-Reyni model to generate a graph. They then simulate forest fires caused by 

lightning strikes to remove clusters of connectivity in the graph. The simulation of fire 

spreads through the graph with a calculated probability removing random edges based 

on the probability value. Pennock et al (2002) introduces "Winners don't take all" 

method. The method extends that of Barabasi and Albert (1999) making use of both
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preferential attachments as in the Barabasi and Albert method with a uniform 

attachment method as an extension. McGlohon et al (2008) propose the 'Butterfly' 

model. The butterfly model joins a new vertex to a graph (a), with a randomly assigned 

variable (Pstep)- An existing vertex (Z>) on the graph is chosen with the global probability 

Phost- A new edge on the graph (a,b) between the newly generated vertex and the 

existing vertex is created with an additional global probability Punk. The model then 

traverses Pstep edges to vertex c (moving via a random walk) before creating a new edge 

on the graph (a,c).

A wide variety of either open source and public domain random graph libraries 

can be found. The Cytoscape graph visualization package contains a number of 'add-on' 

libraries written in the Oracle  JAVA  programming language. The models include 

those of Gilbert and Erdos and Renyi discussed here. The Graph-Stream open source 

project includes a number of random graph generators. GTgraph was written for the 

DEVIACS 9th challenge on shortest path analysis and includes small world and Erdos- 

Reyni model. The Networxx library contains a large number of methods in addition to 

those detailed in this section. The library has the ability to generate over 80 different 

graph types. The SPRAND library detailed in Cherkassky et al (1996) has been used 

widely in a number of seminal works into the application of single criteria shortest. The 

general approach of SPRAND model is given in Algorithm 2.4. A simplified view is 

presented where no error checking based on user input or user specified weight ranges 

are provided. The algorithm outlines the basic approach where the user specifies just the 

number of edges and vertices present in the graph together with a seen value for the 

random number generator.
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Algorithm:___SPRAND Random Graph Generator
Input: N = The Number Of Nodes In The Graph 

M= The Number Of Edges Of The Graph 
SEED = The Seed Value For A Random Number Generator

Output: A Series Of String Detailing Edges In Graph In The Format: 
a source target weight

Initialize a random number generator with SEED value

Generate a edge from I To 2 with a random weight 
Generate a edge from Nlo ] with a random weight 
EDGES = 2

FOR (/ =2 TON-1)
{

IF (EDGES == M)
Break; // Exit The For Loop 

ELSE
{

Generate a edge from / To 1+1 with a random weight 
EDGES++

WHILE (EDGES < M)
{

E = Generate a new edge between random vertices with random weight 
WHILE (Els Duplicate Of Existing)

E = Generate a new edge between random vertices with random weight

EDGES++ 

}

Algorithm 2.4 SPRAND Random Graph Generator Model

2.4. Single Criteria Path Optimisation

Shortest path analysis on graphs has been studied for many years with notable 

and widely used algorithms being seen in the form of those of Dijkstra (1959), Bellman- 

Ford (1957) and Johnson (1977). As already indicated Pallotino and Scutella (1998) 

highlight the large research effort that has been undertaken on the single criteria shortest 

path problem. Figure 2.17 presents the results returned from a ScienceDirect key word 

search containing 'Shortest AND Path AND Analysis'. Since the turn of the century a 

further 1,618 papers have been published on the subject.
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Papers Published On Shortest Path 
Analysis Between 2000 and 2012

I Papers Published

Figure 2.17 Papers on Shortest Path Analysis Published Between 2000-2012

The shortest path problem is one of the most widely studied graph and network 

optimisation problems. It has attracted researchers from a wide variety of fields and 

disciplines. These fields include, but are not limited to, transportation, logistics, 

computer networking and the utilities. Managbanag et al (2008) presents a high-level 

study into the use of shortest path analysis to determine longevity further indicating the 

widespread and cross-disciplinary adoption of graph optimisation theory. Cherkassky et 
al (1994) argue that despite the amount of published literature advances in the field of 

shortest path analysis continue to be made. It should be noted however that those 

advances come not in improving the effectiveness of the various algorithms which have 

been proven correct, but rather the efficiency with which the calculation is performed, 

hi Cormen et al (2001, p.597) it is stated "The algorithm does indeed compute the 

shortest path" when discussing the Dijsktra shortest path algorithm.

Several complete and comprehensive studies of the shortest path problem can be 

found in the literature. Notable examples of these can be seen in Ahuja et al (1993) and 

the previously cited study by Pallotino and Scutella (1997). Zhan and Noon (2000)
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present a study into the use of shortest path algorithms on real world road networks. 

Zhan (1997) argues that many of the studies of the shortest path problem on real road 

networks will consist of networks made up of perhaps several thousand vertices. The 

study undertaken by Cherkassky et al (1994) involved the development of a library of 

both random graph generators (SPRAND) and shortest path analysis algorithms 

(SPLIB). These codes provided the basis of the graphs analysed by the studies of 

shortest path problems undertaken by Pallotino and Scutella (1997). The works of Zhan 

and Noon (2000), Cormen et al (2001) and Ahuja et al (1993) present a series of 

typologies for the style of problems that can be solved using shortest path algorithms. 

The nature of graph-based problems can be seen in the following typologies: a) the one 

to all problem; b) the one to some problem; c) the one to one problem.

The outputs from the studies of Pallotino and Scutella (1997) and Cherkassky et 

al (1994) highlight that no algorithm can be said to suit all kinds of problems under all 

circumstances. There is no 'best' single criteria shortest path algorithm and-that the 

performance of any algorithm is likely to depend on the size of the network being 

studied together with the data structure used by the algorithms. Jacob et al (1999) take 

this argument further stating that the connectivity associated with real world graphs 

tends to be lower than that of some of the graphs studied as part of other reviews. Jacob 

et al (1999) argue that a density ratio of around 2.6 is more likely to be seen in the real 

world. They compare those levels of density with those analysed in the work of 

Pallotino and Scutella (1997) who use an edge/vertex ratio up to 10. The authors also 

highlight that real world graphs are likely to differ in their structure (as in Figure 2.1) 

from their randomly generated counterparts. The general view that there is no singularly 

optimal algorithm is agreed upon by Cherkassky et al (1994, p.516) who state 

"Although our research does not produce a single best code for the shortest path 

problem, two codes we developed are very competitive in their domains". The authors 

report that the Dijsktra algorithm with double buckets produced high quality results on 

graphs with non-negative edge lengths with the topological algorithm of Goldberg and 

Radzik (1993) being optimal of graphs where negative edge costs are present.
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In order to ensure brevity and succinctness the various algorithms covered are 

not in detail although key observations are made. It should be noted that given the 

'classical' nature of the problem the majority of text books reviewing data structures 

include a section on shortest path problems, notably Dijkstra's algorithm (Weiss 1994, 

Rosenstein 1988 and Melhom and Saunders 2008). Shortest path algorithms can be 

separated into two distinct but related groups, the label-correcting algorithms and the 

label-setting algorithms. The key differences between the two formations relates to how 

the algorithm converges towards the optimal solution. Label-setting algorithms can 

terminate when the destination vertex has been scanned and finalized. Label correcting 

must continue until all vertices making up the graph have been scanned and finalized. 

The Dijsktra shortest path algorithm is probably the most widely considered single 

criterion shortest path algorithm and can be seen to be a member of the label setting 

family. The algorithm itself is outlined below.

The Dijsktra approach to the solution of shortest path problems is unable to 

handle edges where there may be a negative cost or weight. It is commonly accepted 

that the performance of the algorithm is limited in the above Algorithm 2.5 in the line 

'Vertex v = Element From L With Shortest Distance' where 0(|F]2) in line comparisons 

must be made. More advanced data structures and mechanisms may be used to vastly 

improve the performance of the algorithm. Binary heaps (Figure 2.18) have been shown 

to be successful in accomplishing this task.

The binary heap maintains an ordered structure where the minimum vertex is 

always the root. Use of the structure therefore leads to improvements in the runtime of 

Dijkstra's algorithm resulting in a runtime of O(|E| * log |V|). Fredman and Tarjan 

(1987 p.597) introduce the Fibonacci heap suggesting "For situations where the number 

of deletions is small in relation to the total number of operations, F-Heaps are 

asymptomatically faster than binominal queues". Kingston (1998) suggests that the 

Fibonacci heap is the most efficient implementation of the full complement of priority 

queue operations that is currently known. Figure 2.19 (Ahuja, 1993) presents a view of 

Fibonacci heap while Figure 2.20 demonstrates the complexity introduced with the 

structure.
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Algorithm: Dijsktra Shortest Path Algorithm

Input: S = Source Point Of Shortest Path 

T= Target Point Of Shortest Path

G = (\ V\, \E\) - A Graph Representing The Network Topology 

C[\E\J = Costs Associated With Each Graph Edge

Output: Shortest Path Tree From S

D[\ V\] II Array Storing Shortest Distances From S
P[\ y\] II Array Storing Predecessor Information For Each Node
L II List Of Unsettled Nodes

D[S] = oo 
P[S] = 0 
1=1 + 5

WHILE L NOT EMPTY
{

Vertex v = Element From L With Shortest Distance 
Remove v From L

IF (DfvJ == oo,) 
Break;

FOREACH neighbour u OF v
{

TEMP = D[u] + C[v,u]
IF (TEMP<D[u])
{

D[u] = TEMP 
P[u] = v

Algorithm 2.5 Dijkstra's Shortest Path Algorithm

Cormen et al (2001) highlight the relative complexity of the Fibonacci heap 

raising a question as to whether the complexity involved in the implementation of the 

algorithm outweighs the benefits of using it. Table 2.2 presents an analysis of the run 

time of various binary and Fibonacci heap operations. It should be noted however that 

Ahuja et al (1993) suggest that the Fibonacci heap was optimal on the networks used in 

their study. Dial et al (1979) introduce the use of the Single Bucket structure to the 

Dijkstra (1959) shortest path algorithm. In Goldberg and Silverstein (1995) a
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comprehensive study into the use of buckets to improve the efficiency of the Dijkstra 

shortest path algorithm is performed. The bucket structure is further considered in 

Cherkassky et al (1994) where a comparison of buckets and other structures, including 

the previously discussed heaps is undertaken. Figure 2.21 represents the single bucket 

structure taken from the implementation of Dial et al (1979).

Figure 2.18 Basic Binary Heap Structure (Cormen et al, 2001)

Figure 2.19 Basic Fibonacci Heap Structure (Ahuja et al, 1993)
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Figure 2.20 Organisation of Heap in Figure 2.19
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Procedure
Make Heap

Insert
Minimum

Extract-Min
Union

Decrease
Delete

Binary Heap
0(1)

©(log |V|)
0(1)

©dog |V|)
0(|V|)

©(log |V|)
©(log |V|)

Fibonacci Heap
0(1)
0(1)
0(1)

0(log |V|)
0(1)
0(1)

e(iog IVD
Table 2.2 Heap Operation Times (Cormen et al, 2001)

C-l

C-2

Figure 2.21 Single Bucket Structure (Dial, 1979)

In Dial's implementation an array of 'buckets' is maintained with the ith bucket 

containing all vertices v where d(v) = i. When the distance label of a vertex is updated 

it is removed from its old 'bucket' and inserted into the bucket corresponding to the 

updated distance value. The implementation maintains an index M. Initially M — 0 and 

has the property that i < M buckets are empty. The next vertex to be scanned is 

removed from the bucket M, or if the bucket is empty, M is incremented. One of the 

major issues associated with the use of the single bucket as a data structure can be seen 

in the memory requirements of the algorithm when dealing with large graph structures 

consisting of potentially millions of vertices and edges with a large range of edge
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lengths. Suggestions to remedy the memory requirements issue are given in Cherkassky 

et al (1994). The authors make use of an 'overflow' bag to reduce the amount of 

memory occupied by the main structure.

The empirical study undertaken by Cherkassky et al (1994) concluded that the 

results obtained from the implementation of the Dijsktra algorithm in conjunction with a 

double bucket structure were optimal stating that the implementation was "best in most 

situations". Zhan and Noon (2000) in their study of the shortest path problem on real 

roads confirm these results. A total of D buckets in the low-level bucket set are used. A 

bucket i in the high-level buckets contains all vertices whose distance labels are within 

the range of {i*d, (i+1)* d-1}. In addition, a non-empty bucket with the smallest index L 

is also maintained in the high-level buckets. A low-level bucket d(j)-L*d maintains 

vertices whose distance labels are within the range of {L*d, (L+l)* d-1}. Vertices in the 

low-level buckets are examined during the scanning process. After all vertices in the 

low-level buckets are scanned the value of Z, is increased. When the value of L increases 

all vertices in the nonempty high-level buckets are moved to its corresponding low-level 

buckets and the next cycle of the scanning process begins (Cherkassky et al, 1994). In 

order to retrieve the distance associated with a given vertex from the graph the 

algorithm first finds the top-level bucket associated with that vertex. In Cherkassky et al 

(1994) they conclude that Dijkstra's algorithm with double buckets provided optimal 

performance on all problems except in the case of small grid graphs. Zhan (1997) 

undertakes a comprehensive study into shortest path problems on real world graphs 

implementing tests with a variety of shortest path algorithms and data structures. The 

runtimes suggested in that study are reproduced in Figure 2.22.
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Abbreviation

BF
BFP

DIKQ 
DIKB

DIKBM

DIKBA

DIKED

DIKF

DIKH

DIKR

PAPE

TWO.Q

THRESH
GOR
GOR1

Implementation Description

Bellman-Ford-Moore basic implementation

Bellman-Ford-Moore with parent-checking

Dijsktra's Native implementation 
Dijsktra's using buckets structure - basic 
implementation

Dijsktra's using buckets structure - with 
overflow bag

Dijsktra's using buckets structure - with 
approximate buckets

Dijsktra's using buckets structure - double 
buckets

Dijktra's using heap structure - Fibonnaci 
heap

Dijktra's using heap structure - k-array heap

Dijktra's using heap structure - R-heap

Incremental Graph - Pape-Lewit 
implementation

Incremental Graph - Pallotino 
implementation

Threshold Algorithm

Topological Ordering - basic implementation

Topological Ordering - with distance updates

Complexity

0(|V|,|E|)
0(|V|,|E|)

0(|V|2) 
0(|V|2)

0(|E|+|V|C)

0(|E|+|V|(C/|A|+|A|))

O(|E|B + 
|V|(B+C/B))

0(|E|+|V| log(|V|))

0(|E| log(|V|))

0(|E|+|V| log(C))

0(|VD

0(|V|2E)

0(|V|,|E|)
0(|V|,|E|)
0(|V|,|E|)

Notation: 

V is the number of network vertices. E is the number of network arcs 

C is the maximum arc length in the network A and B are input parameters

Figure 2.22 Runtime of Shortest Path Algorithms (Zhan, 1997)
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2.4.1. Alternative Shortest Path Algorithms

The Bellman-Ford algorithm (1958) does not require positive edge values. The 

algorithm is in general structure very similar to that of the Dijsktra algorithm. However, 

instead of selecting the connected vertex with the minimum value (' Vertex v = Element 
From L With Shortest Distance"1 } the algorithm performs the relaxation process on all 

connected edges. The iteration of the process cause this to be performed \V \ - 1 times 

where | V\ is the number of vertices in the graph. Despite being able to handle negative 

edges the algorithm fails to handle scenarios where negative cycles may be found. With 

regard to negative edge capability of the Bellman-Ford algorithm, the Johnson 

algorithm (1977) also allows edges with negative weights. The algorithm makes use of 

both the Bellman-Ford algorithm to handle scenarios where there may be negative edges 

before applying the Dijsktra shortest path algorithm. The Floyd-Warshall algorithm 

(1962) computes the shortest paths between all pairs of vertices on a graph and is able 

to do so with the worse case performance of © (|V| 3 ) where \V\ is the number of 

vertices in the graph. In un-extended form the algorithm only returns lengths of the path 

and requires a modification, albeit a simple one to return the paths themselves.

The A* algorithm (Hart et al, 1968) is widely studied in Artificial Intelligence 

(AI). Originally conceived as an extension to the Dijsktra algorithm it is suited to real 

world problems through the use of distance based heuristics. When applied to the 

shortest path problem the term heuristic describes the introduction of a function to 

estimate the distance from the current vertex i to the destination vertex. Within 

algorithms such as the A* algorithms the heuristic typically used can be identified as:

/(O = (0(0 + MO)

Equation 2.4 A* Heuristic Mechanism
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Where g is the distance travelled from the source vertex to the current vertex i. 
The value h(i) is an estimated (heuristic) value from the current vertex to the end vertex. 

hi a GIS based systems where the actual coordinates of the current position and the end 

point are known this can be as simple as:

Equation 2.5 Distance Calculation

Where {xl,yl} and {x2,y2} each represents a two dimension location coordinate.

hi Jacob et al (1999) a study based on a comparison between the Dijsktra 

algorithm with a number of data structures is undertaken together with the A* algorithm 

and an extended A*. The study is devoted to a transport simulation modeller. The 

heuristic nature of the A* results in the algorithm being featured in various texts on 

artificial intelligence including Luger (2002) and Russell and Norvig (2003). Although 

used to identify the optimal path(s) through a graph these texts introduce the algorithm 

in the context of games and game theory. It should be noted that the A* algorithm will 

often return near optimal results unlike the Dijsktra algorithm which has been proven to 

be correct as highlighted in Cormen et al (2001). Deckter and Pearl (1995 p. 505) find 

the optimality of the algorithm dependent on the heuristic function used stating "if the 

performance tests are confirmed to cases in which the estimates are also consistent, then 

A* is indeed optimal".

The current section has sought to introduce the basic concepts of shortest path 

analysis and basic methods used to introduce performance increases to the problem. The 

traditional methods used to increase performance of point to point queries are often no 

longer suitable for the scale of graphs used in the real world, such as continent wide
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road networks or large scale social networks. Gubichev et al (2010) highlight that a 

straightforward implementation of the Dijkstra algorithm will take more than 500 

seconds on a graphs sized 3,000,000 X 220,000,000. Sections 2.5 and 2.6 introduce 

state of the art methods used in shortest path analysis and social network analysis.

2.4.2. K Shortest Paths

The K shortest path problem can be considered a generalisation of the more 

traditional shortest path problem where not only the single shortest path must be 

returned but several (K) shortest paths. Eppstein (1997, p.2) states that "The K shortest 

paths problem, for a given K and a given source-destination pair in a digraph, is to list 

the K paths in the digraph with minimum total length". The problem was originally 

examined in Hoffman and Pavley (1959). In Epstein's methodology, generally repeated 

in other works, the Dijsktra shortest path algorithm is used on a reverse of the graph, i.e. 

the shortest path from the destination to every other vertex is calculated and paths of 

increasing length derived from the resulting shortest path tree. Eppstein (1997) cites 

many reasons where the calculation of the K shortest paths may be preferable to the 

calculation of a single path such as problems with associated additional constraints that 

may be difficult to define. Examples are provided in problems such as the routing of 

power cables into areas or communities where there may be opposition to their 

installation for example. Aldious and Fill (1999) suggest the method may be useful in 

enumerating a series of paths across a graph, as is random walking. Davies and Lingras 

(2003) also highlight the feasibility of using the K shortest path as a means of 

generating possible paths for the Genetic Algorithm approach.

The K Shortest path problem may be further categorized based on the 

plausibility of loops on a path. The introduction to this work suggested that people 

prefer to travel along paths which they consider to be short, quick but also simple. They 

may prefer a slightly longer trip (both in terms of speed and time) provided that the 

journey has some added benefit such as requiring less turns or avoids certain features 

etc. However, it almost goes without saying that the development of loops within a path
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makes little or no sense. Exceptions to this can be seen in scenarios where path turns are 

prohibited such as 'No left turns' etc. The calculation of K paths where loops are not 

allowed feature in the works of Chen (1994), Yen (1971), Lawler (1972) and Lawler 

(1977). The requirement for solution paths to remain 'perfect' or 'loopless' makes the 

problem considerably more difficult to compute (Eppstein, 1997). The Yen (1971) 

implementation of the problem features a runtime of 0(&|K|(|£|+|F| log \V\)). Yen 

(1972) presents a variation of his earlier version of the K shortest path algorithm which 

introduces performance increases. Further increases to the Yen approach are presented 

in Pascoal and Martins (2003) where the runtime is reported as O(k|V|(|E|+|V| log |V|)). 

Despite having the same theoretical worse bounds as the original implementation of 

Yen the Pascoal and Martins' approach in practice demonstrates substantial increases in 

performance. Pascoal and Martins make use of a Fibonacci structure to sort candidate 

paths and generate deviation paths from the destination node. Yen (1971 and 1972) 

operate in the reverse generating candidate paths from the source. Brander and Sinclair 

(1995) present a comparative analysis of K shortest path algorithms. In their (Brander 

and Sinclair) study the authors attempt to identify bottlenecks in the algorithm notably 

highlighting additional calls to a shortest path algorithm (Dijkstra's algorithm) in order 

to derive successive paths in the Yen (1972) algorithm. Brander and Sinclair suggest a 

number of'acceleration mechanisms' to increase the performance of the algorithm. The 

methodologies are similar to those of Pascoal and Martins who highlight a 300% 

increase in performance over the Yen approach across a series of graphs using the 

procedure highlighted above.

Fox (1975) presents an implementation of the K shortest path problem. Eppstein 

(1997 p.3) suggests that the algorithm was the best "previously known ^-shortest-paths 

algorithm". In Eppsteins' work results are obtained which improve upon those of Fox. 

Where the Fox algorithm is able to perform in O(\E\ + k\V\ log \V\) time the 

methodology proposed by Eppstein reduces this to O(\E\ +\V\ log \ V\ +k). Hersberger et 

a! (2007) present a solution that makes use of the Fibonacci heap structure alongside 

Dijkstra's algorithm. The algorithm is tested on real road and random networks. In the 

case of the real road networks they employ relatively low-resolution road networks 

consisting of around 5 - 6000 vertices and 12 - 15,000 edges. They report improved 

results over the Yen (1971) algorithm although the extents of which vary dependent on
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the geographical spread of the source and destinations. The methodology makes use of a 

path replacement strategy which it is suggested operates faster than traditional deviation 

methods although it is prone to failure. Where failure occurs and is detected a traditional 

deviation mechanism is performed. The authors report that failure occurs rarely and 

where it does performance is no slower than that of Yen.

Santos (2006) introduces a K shortest path algorithm which builds on the 

algorithms presented in Eppstein (1997). The algorithm maintains the path deviation 

approach of Eppstein but introduces edge cost sorting and effective data structures. The 

authors report that their algorithm can generate 1,000,000 paths in less than three 

seconds on random graphs and less than 10 seconds in real world graphs based on the 

US road network. Hamed (2010) presents a Genetic Algorithm solution to a subset of 

the K shortest path problem using a novel chromosome representation. The aim of 

Hameds work is to generate K paths of increasing length in terms of the number of 

vertices making up those paths. However, the graphs employed in the tests are of 

limited size ranging from 9 vertices and 13 edges to 20 vertices (edges unknown). In 

addition the author does not make any comparisons with existing algorithms and thus it 

is difficult to make any real comparisons with other algorithms.

2.5. State of the Art in Single Criteria Shortest Path Analysis

In the following section a series of methods used to optimize the run time of 

shortest path queries on large graphs (defined as consisting of several million vertices 

and edges such as continent sized road networks) are considered. As previously 

highlighted the Dijsktra shortest path algorithm can solve shortest path queries between 

two nodes in sub linear time where the algorithm terminates when the target vertex has 

been scanned. However on very large graphs consisting of several million vertices and 

edges the application of advanced data structures is not in itself enough to enable the 

performance of real time queries. Methods such as heap structures or bucket structures 

will increase the performance of the algorithms but the performance of the algorithms
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will remain unsatisfactory for either large numbers of queries or real time systems. 

Recent work has seen road hierarchies, pre-processing and bi-directional searching as 

detailed in works such as Mohring et al (2005), Mohring et al (2007), Hilger et al 
(2006), Geisberger (2008) and Bauer and Belling (2010) and Efentakis et al (2011) 

used to increase the perform of shortest path analysis. The use of a combination of such 

techniques has been shown (Holzer et al, 2005; Abraham et al, 2011) to reduce the run 

time of shortest path queries to levels that enable real time analysis of shortest path 

queries to be performed on large-scale graphs. Here a brief review of these techniques is 

undertaken.

2.5. /. 1 Bi-directional Searching

The bi-directional search is reasonably straightforward extension of the standard 

shortest path approach. Assuming that two vertices are selected from a graph and 

referred to as the source (s) and the target (t) of the query the bidirectional approach 

scans forward from vertex s (to t) and backwards from vertex t (to s). The algorithm 

requires the generation of a reverse graph from vertex t. The generation of the reverse 

graph is not however a difficult proposition with modern computing techniques such as 

object orientation and the use of such techniques is performed in various other graph 

algorithms including a number of approaches to the K-shortest path problem. The 

bidirectional approach alternates between the two graphs (forward and reverse) with an 

iteration performed in each direction. Let df (u) be the distance labels of the forward 

search and db(u) the labels of the backward search respectively of a given vertex (u) 
The algorithm can be allowed to terminate when one vertex has been designated to be 

finalised by both forward and reverse searches. Then the length of shortest path is 

determined by the vertex u with minimum value df(u)+db(u) and the path itself can be 

composed from the concatenation of the shortest path from the start vertex s to u (found 

by the forward search) and the shortest path from u to the destination / (found by the 

reverse search). Goldberg and Harrelson (2005) introduce a similar bidirectional 

mechanism to the A* algorithm together with the introduction of landmarks. The ALT* 

(A*, Landmark and Triangulation) method pre-computes the shortest distance from
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each node to a selection of vertices considered landmarks. Landmarks are generated 

either randomly or through some other more complex selection method. The landmarks 

selected are then used as the basis for the heuristic functionality of the A* algorithm. 

Consider the simple graph presented in Figure 2.23. Assume that the vertex labelled v is 

assigned landmark status - that is to say, the shortest path between it and every other 

node has been calculated during an earlier pre-processing phase. An accurate heuristic 

'distance' can be gathered using the following equation:

dist(l,u} > (dist(v,u) - dist(v,l)

Equation 2.6 ALT* Heuristic Equation

The algorithm operates bi-directionally and as is the case with the Dijsktra algorithm 

terminates when the target node has been scanned and finalized.

Figure 2.23 ALT* Triangulation Graph

2.5.1.2 Hierarchical Methods

Sanders and Schultz (2005) introduce the notion of highway hierarchies to 

decrease the runtime of point-to-point shortest path quires through an extension of a 

multi- level graph model first introduced in Schultz et al (2002). The basic idea of the 

highway hierarchies approach is that outside some local areas (the vertex radius) around 

the source and the target vertices only a limited subset of 'important' edges have to be 

considered to find the shortest path. A pre-processing step is performed at which 

additional edges representing shortest paths between certain vertices are added to the
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graph. The additional edges can be seen as shortcuts for Dijkstra's algorithm. These 

additional edges act as gateways to higher graph levels that coarsen the graph. To find a 

shortest path between two nodes 5 and t using a hierarchy it is possible for Dijkstra's 

algorithm to consider a relatively small sub-graph of the hierarchical graph. The 

hierarchical structure entails that a shortest path from s to t can be represented by a 

certain set of upward and of downward edges and a set of level edges passing at a given 

higher level.

Geisberger et al (2008) introduce contraction hierarchies, an approach that like 

that of Sanders and Schultz (2005) introduces shortcuts between two vertices. The 

shortcut operation deletes (temporarily) a vertex v from the graph; then for any 

neighbours of v where (u, v) • (v, z) is the only shortest path between u and z it adds a 

shortcut edge (u,z) with the weights w(u, z) = w(u, v) + w(v, z) thus preserving the 

shortest path information. To demonstrate the principle of shortcutting in practice 

Figure 2.24 and Figure 2.25 are introduced. Figure 2.24 is a simple network of four 

nodes. Figure 2.25 shows the removal of node four and the introduction of shortcuts 

with the updated weight information as a result of the mechanism.

Figure 2.24 Simple Test Graph for Hierarchies

Figure 2.25 Simple Test Graph from Figure 2.24 After Shortcut Mechanism

53



A contraction hierarchy pre-processing routine defines a total order among the 

vertices and shortcuts them sequentially in this order until a single vertex remains. 

Algorithm 2.6 presents a simplified view of the method employed to construct a 

contraction hierarchy. The algorithm is passed the graph to be contracted together with a 

priority queue giving the order in which nodes are to be processed. Geisberger (2008) 

highlights that the order in which vertices are processed may have a substantial effect on 

the runtime of the pre-processing methodology and perhaps more importantly the 

resulting queries. Geisberger presents two models with regard to the ordering of nodes:

The aggressive variant
The main consideration is the performance of the queries, with little regard made 

to the time spent generating the contraction hierarchy.

The economical variant

The product of the average query time and the amount of time spent pre­ 

processing the contraction hierarchy

The selection of various control parameters can be used to manipulate the 

performance of hierarchy construction between the two variants. The various control 

parameters form the basis of heuristics to estimate how "important" each vertex is based 

on local graph properties (such as the number of shortcuts added if the vertex were 

contracted).
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Algorithm: Simplified Contraction Hierarchy Construction

Input: A Populated Graph G=(\ V\, \E\) 
P = A Priority Queue Of Nodes

Output: A Modified Graph GMod=(\ V\, \EMod\)

FOREACH (u 6 V ordered by P)
{

FOREACH (e(v,u) 6E) with v > u)
{

FOREACH (e(u,w) SE) with w > u)
{

IF (u, v, w)

= EMod(J(u,w} 
Cost(u,w) = Cost(u,v) + Cost(v,w)

Algorithm 2.6 Simplified Contraction Hierarchy Construction

Following the construction of the contraction hierarchy point-to-point queries 

are performed on the modified graph structure using a bi-directional variant of 

Dijkstra's shortest path algorithm. Goldberg (2011) reports exceptional increases in 

performance seen in the runtime of point-to-point queries using both highway and 

contraction hierarchies. Table 2.3 provides the average runtime seen on a graph of the 

Western European road network, a graph consisting of 18 million vertices and 42 

million edges with the costs based around travel time as reported in Goldberg (2011). It 

should be noted that the times given in table report only the time taken to calculate the 

shortest path. The retrieval of the complete path requires the use of a recursive 

"unpacking" procedure. The unpacking procedure may take longer than the 

identification of the shortest distance itself. This is true of both the highway and 

contraction hierarchies. The tests performed in Table 2.3 utilised a high-end server 

hence extremely low runtime for the Dijkstra approach relative to the graph size.
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Algorithm

Runtime 
(Seconds)

Dijsktra

2.008

Highway 
Hierarchy

0.0004

Contraction 
Hierarchy

0.000094

Table 2.3 Comparison of Hierarchy Based Approaches

Delling et al (2011 a) introduce the PHAST algorithm (parallel hardware- 

accelerated shortest path trees) which makes use of the additional computational power 

available via the use of multi-core technology and/or GPU (graphical processing unit) 

processing power to increase the performance levels seen in calculating shortest paths 

using contraction hierarchies. Of particular interest in the work is authors' suggestion 

that because of hierarchal and related structures the speed at which the performance of 

shortest path queries are performed is no longer limited by the power of the CPU but 

rather the memory bandwidth available. By moving to GPU based searches the results 

produced in Delling et al (2011 a) indicate that despite the lower processing power of 

GPUs the ability to process multiple vertices in parallel together with increased memory 

bandwidth available can lead to extreme performance increases. Before discussing the 

runtime reported for the PHAST algorithm it is worth highlighting that the results 

reported in Table 2.3 relate to the analysis of point-to-point queries whereas the PHAST 

algorithm aims to produce the shortest path tree - that is to say the shortest path from a 

single node to all other nodes. The authors report that when using a GPU based 

technique they were able to generate 16 shortest path trees simultaneously with an 

average runtime of 2.2ms. Finally the authors report being able to produce an all-pairs 

shortest path analysis on Western European roads in a little over 11 hours.

Abraham et al (2010) introduce an algorithm based upon contraction hierarchies 

that has particular relevance to the work conducted in this thesis. The authors highlight 

the multi-criteria nature of path planning and aim to generate alternative paths (to the 

shortest). The graph is firstly pre-processed using contraction hierarchies and the 

shortest path between two nodes acquired using the "unpacking" methodologies 

previously highlighted. The authors then attempt to generate an alternative path with the 

properties that the similarity (number of vertices shared) must be low and that the path
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must be 'reasonable' with a limited number of unnecessary detours. In order to find 

alternative paths the authors use a principle of local optimality of sub paths where each 

sub path will also be the shortest path between the source and destinations of the sub 

path. Therefore the algorithm requires multiple shortest path calls, the number of which 

will increase as the number of nodes making up the shortest path increases. The authors 

find report promising results based on speed with the algorithm finding one alternative 

path in 3.1ms and three alternative paths in 3.9ms using contraction hierarchies. The 

success rate of the algorithm using the contraction hierarchies is limited with the 

algorithm returning a valid alternative path in only 58% of cases. A bi-directional 

variant of Dijsktra's algorithm is seen to have a much higher success rate (94% for one 

alternative, 62% for three alternatives) but completes a processing run much more 

slowly at between 26 and 33 seconds dependant on the number of alternative paths 

sought between one and three.

2.5.1.3 Transit Node Approach

Bast et al (2006) introduce the transit node methodology. The method takes 

advantage of the small world phenomenon that exists in real world road networks. That 

is to say for any given region there exists a small number of vertices such that any 

shortest path to a distant vertex will pass through a member of that small number of 

vertices. The algorithm segregates the graph into regions (based upon a regular grid) at 

multiple levels. Bast et al (2006) find that the US road network can be adequately 

separated into two grid levels with the first level consisting of a grid of 128x128 and a 

lower level of 256x256. For the sake of clarity Figure 2.26 is introduced. It consists of 

an upper level grid (OUTER) of size 9x9. INNER is a lower level grid sized 5X5 that is 

placed within OUTER. Cell C occupies the centre of INNER in this example although 

during processing cell C will move around the grid INNER assisting the calculation of 

transmit nodes. The edge set Ec consists of those edges that have only a single vertex 

within cell C. For the purposes of the transit node approach edges where both vertices 

are within cell C are considered a local search and handled separately to the transit node 

methodology. The set Vc refers to those vertices in the cell C that are present in set EC-
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The set of transit nodes for the cell C is the set of vertices v from VINNER with the 

property that there exists a shortest path from some vertex in Vc to some vertex in 

VOUTER that passes through v. In order to compute the set of transit vertices for C it is 

required to compute all-pairs shortest paths between Vc and VOUTER, marking all vertices 

present in VINNER as being transit nodes. An iterative process considers each cell C in 

INNER, with the union of all transit vertices for each and every cell being considered 

the set of transit nodes for the entire graph. The use of the grid structure reduces the 

number of all-pairs shortest path calculations required. Bast et al (2006) find that in the 

US road network with the grid sized previously highlighted (128 x 128 and 256 x 256) 

there are around 8,000 transit nodes. Following the identification of each transit vertex 

in a graph a further all-pairs shortest path analysis is carried out between each transit 

vertex. The production of the shortest path between any two non-local vertices is then 

the relatively straightforward task of concatenating a series of pre-calculated shortest 

path, as shown in Algorithm 2.7 .

Where both the source and target are considered local the shortest path is 

identified using standard shortest path analysis techniques such as contraction 

hierarchies. For non-local searches the calculation of the shortest path becomes a series 

of look-up table searches as all the information required has been pre-calculated (the 

distance of each vertex to its nearest transit node and the distance between each transit 

node). The authors report a longer pre-computation time (around 20 hours) but an 

exceptional level of performance when carrying out point-to-point queries. Searches 

complete in around 1.2 microseconds for distant searches and 5112 microseconds for 

local searches on the US road network. For local searches the authors make use of 

highway hierarchies but other techniques such as contraction hierarchies are legitimate. 

In addition using alternative methods would decrease both the pre-computation phase 

and speed at which local searches are performed as seen in Table 2.3 if comparing 

highway hierarchies to contraction hierarchies. As with other hierarchy based methods 

determining the shortest path travelled increases the processing time required with Bast 

et al (2006) reporting an increase from 1.2 microseconds to 5 microseconds for full path 

retrieval with non local searches.
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Figure 2.26 Example grid model of Bast et al (2006)

Abraham et al (2011) introduce a hub labelling approach. The technique shares 

certain features with that of Bast et al (2006) in that both reduce the shortest path 

problem to a series of table lookups. In the Abraham et al (2011) methodology a graph 

is subjected to a pre-processing mechanism using the contraction hierarchies approach. 

The work stores a large amount of information (the shortest paths to other vertices) 

within a label structure associated with a vertex. Each vertex directly provides the 

details of shortest paths to around 85 other vertices following pruning. The authors 

report being able to retrieve least cost distance between any two vertices on continental 

sized graphs in 276 nanoseconds on a graph of Western Europe roads and 266 

nanoseconds on a graph of US roads. The work is sparse on details hence the limited 

discussion here. The authors highlight that in many cases they are able to retrieve the 

shortest distance in five clock cycles. The fast performance comes with the cost of 

higher storage requirements associated with the additional information stored within 

labels. Retrieval of the full path description would take longer as with other methods. 

The method is extended in Abraham et al (2012) to enable the development of queries
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from SQL databases. Following the pre processing stage of Abraham et al (2011) the 

resulting graph structure is stored in a database. The work highlights how the retrieval 

of not only the shortest path is possible but information that may be related to the 

shortest path such as points of interest along the route. In Abraham et al (2012) the 

authors report being able to retrieve the full path distance of random point to point 

queries in 10 - 25ms on the Western European road network (as used in Abraham et al, 

2011). Retrieving the distance only is possible in an average of 4-5ms. The wide range 

in average time is seen as a result of the underlying database technology. Where only a 

limited number of queries are made the system has limited possibilities to take 

advantage of cache (for SQL queries) memory. As the number of queries increases then 

more use is made of cache hence the lower average runtime seen when the number of 

queries is increased.

Algorithm: Shortest Path Calculation Using Transit Nodes

Input: S = Source Point Of Shortest Path

T= Target Point Of Shortest Path

TSRC= Transit Nodes Of Cells Surrounding S

TTRG = Transit Nodes Of Cells Surrounding T

73V = 2 Dimensional Array of Shortest Paths Between Each Transit Node 

Output: SPD = Shortest Path Distance Between S and T

IF (!LOCAL_SEARCH)
{

Ds= Calculate Cost To Nearest Transit Node To SII Pre-computed So Table Lookup Search
Dt = Calculate Cost To Nearest Transit Node To Til Pre-computed So Table Lookup Search
Dtn = Calculate Shortest Path Between TN[S] and TN[D]
SPD = Ds + Dtn + Dt
P = Unpack Path Using Recursive Mechanism 

} 
ELSE
{

P = Shortest Path Computed Using Highway Hierarchies // Or other high performance method 
}

Algorithm 2.7 Calculation of Shortest Path Using the Bast et al (2006) Model
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2.5.1.4 Multi Level Pre-processing

Delling et al (201 Ib) describe a methodology for generating 'customizable' 

route plans enabling 'virtually' real time cost updates. The method segregates the road 

network into two distinct groups. The first consists of the road topology and remains 

relatively static. Graph related aspects related to the topology are the connectivity of the 

road network and associated attribute information such as road type and speed limit. 

The second group consists of the metrics used in identifying the shortest path. Delling et 

al suggest that the metrics such as travel time or distance may change frequently or that 

more than one metric may exist in parallel. A one-to-many relationship exists between 

the topology of the road (one) and the metrics used in computing the shortest path 

(many). The methodology proposed by Delling et al (201 Ib) separates the path planning 

process into three distinct groupings. The first involves the pre-processing of the 

relatively static road network. This initial stage of the process will exhibit a longer run 

time. It is however, run infrequently, as the underlying road topology will change 

infrequently. The phase is characterised by a longer run time with a large amount of 

additional data (comparable to the size of the graph) being created. The second phase of 

the process optimizes each cost on the graph (travel time or distance) and operates in a 

matter of seconds. Their work aims to minimize the amount of pre-processing required 

when metrics are updated enabling real time traffic congestion information to redirect 

users to alternative routes.

The methodology makes use of the PUNCH (Partitioning Using Natural Cut 

Heuristics) method indemnified in Delling et al (2010) that splits the graph into a 

number of partitions referred to as cells. A cell may be of an irregular geographic shape. 

Given an input parameter U that represents the maximum size of the cell in terms of the 

number of edges contained in that cell PUNCH partitions the graph into cells of size at 

most U while minimizing the number of edges between cells. A shortcutting procedure 

is then used to assist in the generation of an additional graph hierarchy or level (//). The 

graph H contains the shortest paths between vertices forming an edge where either 

endpoint is not in the same cell as the other endpoint. A shortcut edge in H is used to
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represent the shortest path for each boundary edge in a cell. The similarities to transit 

nodes should be clear from the description. To perform a query between s and /, a 

bidirectional version of Dijkstra's algorithm is performed on the graph consisting of the 

union of H, Cs (the cell containing the source), and Ct (the cell containing the target). 

The authors further refine the method through the introduction multiple hierarchies in 

the graph H. The punch algorithm is applied to the graph with multiple U values (the 

maximum size of the cell). Determining which vertex sets to be included in the query 

search is then a case of calculating the graph levels to use based upon table lookups. In 

order to present the performance of the approach a subset of the results reported in 

Delling et al (20lib) are reproduced below in Table 2.4. The first column gives the 

method used (MLD-X is the developed algorithm with the graph separated into X 

number of levels or hierarchies. The second column gives the U size parameters used in 

the creation of the X levels. The third column gives the amount of time required to pre- 

process the cost metrics with the space required following the pre-processing phase. The 

final column gives the query time. The table also reports the information for the two 

models of contraction hierarchy previously highlighted. The test data is a graph of 

Western European roads with travel times the cost metric considered. Similar metrics 

are seen in the full paper (Delling et al (20lib) for the other metric considered - 

distance.

As seen in Table 2.4 the contraction hierarchy is able to perform queries much 

more quickly than the method developed by Delling et al. In contrast, however, 

processing time for the test data sets is much lower with the proposed algorithm with 

the additional benefit of a lower storage space requirement. The authors conclude that 

for the specific application the benefits (processing time, space) seen in the approach 

outweigh the costs of a reduced runtime. The runtimes seen by the approach are still 

extremely promising.
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Method

MLD-1

MLD-2

MLD-3

MLD-4

CH economical

CH generous

U Values

2 14

2l2.2'S

2io.2i5. 220

2^.212. 2i6.220

N/A

N/A

Processing 

Time 

(Seconds)

4.9

5.0

5.2

4.7

178.4

355.6

Space 

(MB)

10.1

18.8

32.7

59.5

151.3

122.8

Query Time 

(ms)

5.81

1.82

0.91

0.72

0.12

0.10

Table 2.4 Runtimes Seen in the Delling et al (2011) Approach

2.5.1.5 Practical Implementations

Having discussed the basic methodology of a series of what can be considered 

'state of the art' methods of computing shortest paths on graphs attention is now turns to 

how these can be translated to useable applications. Of primary interest would be the 

web based routing applications provided by Google  and Microsoft  Bing . In the 

case of Bing , Microsoft  has openly stated (Pendleton, 2012) that the methodology 

employed by the routing algorithm is that of Delling et al (20 lib) discussed previously. 

The use of the methodology is relatively recent - prior to the start of 2012, Bing  maps 

used a "modified Dijsktra algorithm" (Pendleton, 2012) although the exact nature of the 

modifications are not disclosed. The only comparison given is that the Delling et al 

(20lib) approach processes queries twice as fast as the modified Dijsktra search it 

replaced.
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Determining the shortest path methodology employed by Google  Maps is not 

possible with only scant information being available. Brummit (2007) made brief 

mention how large amounts of processing (taking 10 months) were required to generate 

the datasets required for routing. It is possible that previously the techniques involved 

the pre-computation and storage of results with encoding and decoding made possible 

using the Encoded Polyline Algorithm (Google, 2012). However, the use of such 

techniques would not realistically enable the introduction of real time traffic 

information a feature now (though not in 2007) considered an advantage of the 

Google  Maps application. An "educated guess" might be that the methodology is 

based the Transit Node approach of Bast et al (2006). Such a guess however would only 

be based upon the fact that the principle author of that work is employed in a research 

capacity at Google. Bast et al (2010) provide details of mechanisms to increase the 

performance of public transport search mechanism employed by Google. The method is 

based around the identification of hub stations, those stations or stops that are used 

frequently on public transport journeys. The authors however highlight that the shortest 

path on road networks is inherently different to that of public transport that relies on 

other factors such as travel time and the intersection of travel times with departure of 

potential connections.

ESRI (2005) describe the use of Hierarchal structures in their desktop routing 

solution (ESRI Network Analyst). They highlight that the hierarchal methods employed 

may return sub optimal paths when compared to the alternative "exact best" method, it 

is stated "The classical best route algorithm, best known as the shortest path algorithm 

cannot support real time queries on large network. Sophisticated performance enhancing 

techniques such as heuristics and hierarchal algorithms dramatically reduce the run time 

needed to perform the problem". A number of routing applications or code libraries are 

available that make use of OpenStreetMap (OSM) information. OpenRouteService 

(www.openrouteservice.com) is a web based application made available as a web page 

or a series of web services. The routing methodology is based upon the A* algorithm. 

Osmsharp (http://osmsharp.codeplex.com) is an open source desktop library written in 

the Microsoft C# language that enables the import and display of OSM data. The library
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includes a number of routing algorithms including basic forms of the contraction and 

highway hierarchy methods reviewed elsewhere in this section. Vetter (2010) 

developed the MoNav mobile routing application based around OSM data sets. The 

application makes use of contraction hierarchies to solve routing queries. Vetter 

highlights a runtime of 273 milliseconds on European datasets. The work is further 

highlighted in Luxen and Vetter (2011). The pgrouting project (http://pgrouting.org/) 

allows for the import of OpenStreetMap data. The project enables the application of 

generalized SQL (structured query language) queries to solve routing problem. The 

routing engine employed is based around the A* and Dijsktra shortest path algorithms.

2.5.1.6 Summary of the State of the Art in Shortest Path Analysis

Recent years have seen a range of high performance methods for decreasing the 

runtime of shortest path queries on very large-scale graphs. Due to these methods it is 

possible to perform continent level queries in fractions of second as seen in Abraham et 
al (2011) and Belling et al (201 Ib). The later of these is of particular interest given 

everyday use of the approach via the Microsoft Bing maps routing application. At the 

heart of the described improvements are methods such as the use of graph portioning (as 

seen the described transit node and customizable route planning methods previously 

described) and use of hierarchal structures such as contraction hierarchies, hi certain 

cases the performance of shortest path analysis is reduced to simply retrieving the path 

from one or more lookup tables.

2.6. Social Network Analysis

The previous section detailed a series of approaches that have been seen to 

increase the performance of the Dijsktra shortest path algorithm on large-scale graphs in 

the form of road networks, with the datasets representing the road networks of the US or 

Western Europe being dominant in the literature reviewed. Techniques developed in the 

transportation domain exploit properties of transportation networks such as their low
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degree and the presence of a hierarchy based on the importance of roads to achieve 

performance increases in point to point analysis for shortest paths. In this section 

alternative large-scale graphs are considered in the form of those seen in social 

networking.

Graphs seen in social networks vary in size to those seen in real world networks 

such as roads. Table 2.5 highlights the number of nodes and edges seen in a series of 

social networks analysed in the literature. The table highlights the network considered, 

the number of vertices and edges and the density seen in the graph. The final column 

provides the citation where the graph size is considered. It can be seen from Table 2.5 

that the size of the graphs considered is often larger than road networks with a number 

of sizes presented in the previous section. In addition, social networks exhibit a much 

higher density than can be seen in road networks. Jacob et al (1999) highlights that road 

networks will often have of a density of around 2.6. Analysis of continent level road 

networks studied as part of the 9th DDVIACS challenge confirm similar density levels 

with US networks having a directed density of 2.43 and European road networks having 

a density of 1.21 in undirected form. A loose assumption that the majority of those 

roads are directed would give a density of around 2.42. The test data sets used for this 

study and introduced in Chapter 4 have a density of 2.0 - 2.4. There are of course 

exceptions. The road network of New York is seen to have the highest density of road 

networks reviewed with a density of 2.78 in a graph sized 264,346 X 733,846.

The notion of what constitutes an edge on a graph appears to affect the average 

density of the reported graphs. For instance, in some cases an edge is considered the 

friendship between two individuals. In such cases, as seen in the studies of Table 2.5 

considering Skype, Flickr and Twitter the density is, although higher than that seen in 

road networks much lower than that seen in the studies reviewing Facebook and Orkut 

where an edge is considered by the authors as a contact between two users such as 

replying to a message, hi such cases the density of the graph is greatly increased.
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Social Network

Orkut
Skype
DBLP
Twitter
Flickr

Facebook

Vertices 

(Million)

3
454
0.77
12.9
2.57
0.06

Edges 

(Million)

220
3100
2.6
90.8
33.1
1.5

Density

73.3
6.8

3.37
7.03
12.87

25

Cited In

Gubichevefa/(2010)
Tretyakove/a/(2011)
Tretyakove/a/(2011)

Pobletee/a/(2011)
Mislove et al (2008)
DeMeoefa/(2012)

Table 2.5 Sizes of Various Social Networks

The levels of density seen in online social networks are generally closer to those 

seen in works such as that of Pallottino and Scutella (1997) that use a density of up to 

10. Therefore the analysis of social networks presents a different set of challenges to 

those of roads. Riberio and Towlsey (2010) highlight that even the seemingly simple 

task of acquiring accurate metrics as to the size of online social networks is one that is 

fraught with difficulties. Whilst social networks will highlight the absolute number of 

users those networks have (Forbes, 2012) acquiring lower levels of information 

regarding the network to any degree of certainty is a difficult proposition. In many cases 

(Flickr, 2012; Twitter, 2012), on-line social networks have public facing Application 

Programming Interfaces (API) to allow for the querying of the network. Such queries 

however are often restricted for reasons of network performance. User privacy settings 

will also often limit the availability of information regarding the network 

(Krishnamurthy and Wills, 2009). Valafar et al (2009) highlight that the concept of 

friendships in social networks are often not reciprocated with the result that graph edges 

are often not directed further increasing the difficulty in obtaining accurate graph 

topologies. In short, performing analysis regarding online social networks is difficult 

due to the size of the network together with acquiring accurate information regarding 

the formation of the network.

Gjoka et al (2010) make use of random walking to sample the characteristics of 

a number of social networks. The authors highlight that the use of random walking is 

not without its drawback. The graph structure can create distortions in the estimates by
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"trapping" the random walk inside a local sub graph. Where instances of the random 

walk becoming trapped are seen the estimates of graph characteristics may be seen as 

inaccurate if the structure of the sub graph in which the walker is trapped does not share 

the same characteristics as the entire graph. The work makes use of a number of random 

walkers to mitigate the risk that any single walker may become trapped in a local sub 

graph. In addition the work considers a "frontier sampling" technique. The frontier 

sampling methodology also makes use of a number of random walks with the 

distinction (to the multiple random walk strategy) that the frontier sampling 

methodology selects start points for the random walks uniformly from a selection rather 

than the simple selection of a vertex in the graph at random. The work highlights that 

frontier sampling provides more robust estimations than simple random walks.

A high proportion of research activity concerning social networks has to date 

concerned either the reach-ability of the network or the generation of other metrics to 

gauge the connectivity of the network. Whilst complete network information is not 

available subsets of social networks provide for an accurate model of real world 

behaviours. Shi et al (2008 p.61) suggests, "For a variety of online networks, small 

subsets of vertices are relevant for efficient algorithms and dominate various graph and 

statistical properties. Frequently, these smaller subsets or graph synopses are easier to 

study and to understand". De Meo et al (2012) study the centrality of social networks 

highlighting the use of 'betweenness centrality' in existing literature. Betweenness 

centrality relies on the notion that in social networks information flows along shortest 

paths. Therefore a node/edge has a high betweenness centrality if a large number of 

shortest paths cross it. In many ways the notion of betweenness centrality shares 

properties with that of the transit node (Bast et al, 2006) principle identified in the 

previous section where shortest path connecting distance locations pass through a 

limited subset of network vertices. Alahakoon et al (2011) highlight that existing 

methodologies for calculating betweenness centrality remain unsuitable for large graphs 

consisting of millions of vertices and edges. The work of De Meo et al (2012) makes 

use of random walking to calculate the betweenness centrality of edges in a social 

network. The authors propose using simple self-avoiding random walks of a maximum
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length. The use of a maximum length for the walk is used to replicate the notion that the 

greater the 'distance' separating two vertices the less likely those vertices are to 

influence each other. Equation 2.7 formulates the betweenness centrality metric on a 

graph G=(\V\,\E\) for node v. De Meo et al (2012) report that the approach they 

introduce is able to calculate the centrality metrics in O(k\E(G)\) time, where k is the 

maximum length of the random walk and \E(G)\ is the number of edges in a graph 

G=(\V\,\E\).

Equation 2.7 De Meo Centrality Metric

Where p(s t) is the number of shortest paths connecting s to t 

And p(S: t)(y} is the number of shortest paths connecting s to t passing through v 

s = The path source; t - The path target

The New York Times (2012) highlights that low latency requirements of online 

social network such as quickly identifying links between individuals etc; a task that 

involves shortest path analysis. Gubichev et al (2010) perform a analysis of shortest 

path methods on a number of social networks. The methodology employed in the work 

shares similarities with that of the ALT* method of Goldberg and Harrison (2005) 

introduced in a previous section. In a variation to the ALT* approach however the 

authors, during the pre-computation stage, store details of the entire path generated 

between a vertex and the selected landmark vertices. Gubichev et al suggest that the 

diameter of social networks is likely to be small and therefore the storing of such paths 

is feasible. Other variations are introduced to the basic approach of the ALT* algorithm. 

The authors highlight that the social networks are more likely to see cycles and 

therefore introduce a mechanism to remove them as and when they occur, hi a second 

modification the authors introduce shortcutting mechanism an approach seen in both the
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highway and contraction hierarchy approaches. Consider the basic approach of the 

ALT* algorithm. Several landmark vertices are selected and the shortest path between 

each node and every landmark generated. The shortcutting mechanism highlighted by 

Gubichev et al is to perform a simple check to determine if a direct link can be found 

between a vertex on the approximate shortest path and all vertices occurring later on the 

path. Where possible such shortcuts are introduced reducing the length of the path. The 

approach is tested against a series of graph representing on-line social network gathered 

using crawling techniques. The mechanism developed. As with the method of Goldberg 

and Harrelson will often return sub optimal results. That is to say, the paths produced 

will be considered approximations of the shortest paths.

Tretyakov et al (2011) highlight that the appeal in the use of landmark based 

algorithms lies the speed of processing and general scalability offered by the approach 

stating "they have been shown to perform well in practice, scaling up to graphs with 

millions or even billions of edges with acceptable accuracy and response times of under 

one second per query". The authors cite the work of Das Sharma et al (2010 p.406) who 

perform a web crawl of the Yahoo  web network in order to generate a graph with the 

dimensions of 65,581,675 X 2,371,215,893 where the vertices represent distinct URLs 

gathered during the web crawl and the edges represent the number of links connecting 

those vertices (or web pages). The authors (Das Sharma et al, 2010) aim to identify 

shortest paths in network in terms of the diameter of the path as opposed to a provided 

cost metric as identified in the previous section. Also highlighted is that the size of the 

graph limits the feasibility of on-line processing. Das Sharma et al do not provide 

detailed analysis of the performance of their algorithm in terms of run time instead 

choosing to concentrating on the quality of the approximation that their algorithm 

produces, they do however state "a disk seek takes several milliseconds while the 

subsequent processing of the sketches takes only microseconds". The size of the graph 

used requires the various lookup tables they use representing the lookup table between 

landmarks and other vertices to be stored on disk. Tretyakov et al (2011) make use of 

shortest path trees to reduce the cost of generating the shortest path after the calculation 

of the shortest distance. In effect, the work aims to remove the computational overhead
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that is prevalent in advanced shortest mechanism described in the previous section as 

the "unpacking" mechanism. They report being able to perform shortest path queries on 

the Skype graph highlighted in Table 2.5 in an average of 16.25 millseconds. The 

algorithm described makes use of shortcutting mechanisms similar to those of Gubichev 

ef fl/(2010)

Agarwal et al (2012) propose the use of "vicinity mechanisms" to identify 

shorter paths on large scale graphs representing social networks where the vicinity of a 

vertex is a carefully selected subset of its neighbours. During an offline phase, for each 

vertex u in the network information regarding a certain subset of vertices in the 

neighborhood of u is computed and stored. During a subsequent online phase those 

vicinities are used to compute the shortest paths using the idea of vicinity intersection. 

The authors give the exacting requirements for their definition of a vicinity, detailing 

three core requirements. First, vicinities must guarantee correctness. If vicinities of s 

and t intersect one of the nodes that lies in this intersection must be on the shortest path 

between s and t. Second, vicinities should be large enough so that most of the source- 

destination pairs have intersecting vicinities. Finally, vicinities should be small enough 

so that the memory requirements are reasonable. The identification of vicinities is far 

more complex then the identification of nearest neighbour nodes. The approach makes 

use of a modified all pairs shortest path algorithm identified in Thorup and Zwick 

(2005). Other than the PHAST approach detailed earlier all other approaches review 

attempt the point to point rather than the all pairs problem. The method of Throup and 

Zwick is similar to that of Abraham et al (2011) which the network split into a series of 

cell with each containing a maximum number of vertices. Where a vertex is common to 

the vicinity of two vertices the shortest path can be identified using lookup tables. In 

order to generate the vicinity a set of nodes (denoted by L) is generated by sampling 

each node in the network with a probability proportional to its degree. The vicinity of 

each node u to be the set of nodes v, such that distance between u and v is no more than 

the distance from u to its closest node in L. Equation 2.8 is used to generate the 

probability of a node being included in set L for a graph G - (\V\,\E\). The authors 

report results of 0.3 milliseconds on a Flickr based graph of 1.72 million vertices X
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22.61 million edges. However, it is interesting to note that no note is made of what 

happens when neither intersection process fails, i.e. there is no intersection between two 

vertices therefore making the identification of the shortest path impossible.

|g| 1\E\ ' i
Equation 2.8 Agarwal Probability Metric

Where |£| is the number of edges in the graph G 

And | V\ is the number of vertices in the graph G 

And d is a user defined parameter 

And d(u) is the degree of vertex u

This section has highlighted the scale of social networks. It has primarily been 

concerned with on-line social networks however it should be noted that similar 

challenges are faced when handling off line instances of social networks such as in the 

form of citation datasets such as the DBLP database (Tretyakov et al, 2011). hi many 

cases the analysis of social networks involves not only the calculation of the shortest 

paths between two vertices but also the generation of various graph centric metrics such 

as centrality. A major difficulty in performing analysis on social networks can be seen 

in the difficulties faced in obtaining the basic graph structures. Where obtained the 

networks are an order of magnitude larger than other real world instances such as road 

networks and in addition exhibit a higher density. The size and density properties of 

social network require alternative methods of analysis when compared to transportation 

network. Many algorithms (Das Sharma et al, 2010; Tretyakov et al, 2011; Gubichev et 
al, 2010) forego the calculation of exact shortest path and instead attempt to generate an 

approximation of the shortest path overcoming the issues that the increased size and 

density of the networks present.
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2.7. Multi Criteria Path Optimisation

The introduction to this thesis highlighted how the real world approach to path 

finding is multi criteria in nature. In reality individuals will forego travelling along a 

shortest or quickest route for any number of reasons be it knowledge of road conditions, 

simplicity of alternatives or reasons personal to the decision maker. In the following 

section an attempt is made to formalise the multi criteria path optimisation problem. 

The basic concepts of Pareto optimality are introduced and historical approaches to the 

problem identified from the literature highlighted and reviewed. Where more than a 

single criterion is under consideration rather than a single result or ordered set the result 

will be a set consisting of solutions where it can be said no other solutions in the search 

space can be considered as being superior to them "when all objectives are considered" 

Zitzler (1999 p. 5). Such solutions are considered "Pareto Optimal". A multi-criteria 

problem consists of a set of criteria or parameters that have to be maximized (or 

minimized) - that is a series of objectives that require optimisation.

The concept of Pareto dominance may be considered as being central to 

effective performance of multi-objective optimisation given the often conflicting nature 

of the problems. In such a case there is no single solution point that yields the "best" 

value for all objectives. Instead the best solutions, a Pareto optimal or non-dominated 

set, are a group of solutions such that selecting any one of them in place of another will 

always sacrifice quality for at least one objective while improving at least one other. 

The concept of Pareto optimality is illustrated in Figure 2.27. Pareto optimality may be 

described as 'the best that could be achieved without disadvantaging at least one 

group'. Any two of the solutions in a search space can be taken from the problem search 

and each checked for dominance against the other. For any pair of solutions it should be 

easy to detect which is the better solution or if the solutions are mutually indifferent. In 

terms of Pareto optimality accepting a dominating solution will mean admitting an
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inferior solution and as a result degrade the solution space. The key to this method of 

optimisation is that Pareto based non-dominated solutions are welcome whilst 

dominated solutions are unwelcome. Using Algorithm 2.8 the Pareto optimal front can 

extracted from the search space represented by a series of solutions.

Steuer (1986) suggests that for a problem having more than a single optimisation 

objective solution x1 is said to dominate the other solution x2 if both of the following 

conditions are true:

a) The solution x1 is no worse than x2 in all objectives

b) The solution x1 is strictly better than x2 in at least one objective

Steuer (1986)

If either of the above conditions is not met then the solution x1 does not 

dominate solution x2 and can be considered as an example of a solution that may be of 

possible interest to the decision maker. In Figure 2.28 a single four-solution search 

space is presented. In the suggested example solution x4 dominates solution x1, x2 and x 

as the solution x4 is better in both of the criteria. Solution x1 is also dominated by 

solutions x2 and x3 . Based on these solutions the feasibility set would consist of a single 

solution x4 . In the absence of x4 the feasibility set would consist ofx2 and x3 . Algorithm 

2.8 (Deb 1998) shows how the above conditions can be applied to a set of potential 

solutions in order to identify the Pareto optimal fronts. A given solution is said to 

strongly dominant over another when solution x1 is strictly better than solution x in 

each of the criteria being considered. Within a given set those populations that are not 

strongly dominated by another member of the population are said to be weakly

74



dominant. However the Pareto optimal front will always consist of those solutions that 

are non-dominated. On discovery of a dominated solution, that solution can safely be 

removed from the result set. Horn (1996) states that the Pareto set will be the optimal 

set of results - the best that can be achieved without biasing any objective. The contents 

of Figure 2.28 are provided in textual form in Table 2.6.

Fl (minimize)

PARETO DOMINATED 

POINTS

OPTIMAL

F2 (minimize)

Figure 2.27 Example Pareto Optimal Front and Space
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10

9

8

7

6

5

4

3

2

1

123456789 10

Criteria Cost A

Figure 2.28 Example of 2D Search Space with Four Solutions

Solution

Solution 1 (x1)

Solution 2 (x2)

Solution 3 (x3)

Solution 4 (x4)

Criteria Cost A

7

3

4

2

Criteria Cost B

6

4

3

2

Table 2.6 Criteria Costs of Solutions Provided in Figure 2.28
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Algorithm: Pareto Front Extraction

Input: S = Set Of Solutions To Be Checked For Dominance

Output: O = Set Of Optimal Solutions

O = Empty List Of Optimal Solutions
COUNT =\S\

FOR (/= 0 TO COUNT)
{

FOR (/ : = 0 TO COUNT)
{

IF (i !=/')

IF (S[iJ Is Dominated By SfiJ) 
Mark SfiJ As Dominated

FOR(Ar=OTOC0CW7)
{

IF (SfkJ Not Marked As Dominated) 
O = O + SfkJ

Algorithm 2.8 Pareto Front Extraction Algorithm

In Horn (1996) the author presents the following typology for multi-criteria analysis: 

Model 1: Decision before Search 

Model 2: Search before Decision 

Model 3: Iterative Search and Decision Process

The first of Horns' three models has already been considered as part of this 

work. In Chapter 1, the concepts of aggregation and weighting functions to reduce a 

multi criteria problem into a single criteria problem were introduced. The imperfections 

in doing so are clear. Corne et al. (2003) suggests that transforming a multi-criteria 

problem into a single-criterion problem is in many cases quite a radical simplification of 

the problem. Deb (2001) suggests that a Pareto optimal solution may be returned from
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such a technique, but not the entire set of possible solutions. Horn (1996) suggests that 

while such techniques may be useful in satisfying a single decision maker, satisfying all 

is unlikely. The second and third of Horn's models are closely aligned with the 

concepts of Pareto optimality. In these models the importance of any criteria will be 

unknown and instead a search is conducted for possible results before passing these to 

the decision maker (DM) for further analysis (search) or decision-making.

2.7.1. Worked Example of the MSPP

Having introduced the principles of Pareto optimality and dominance the 

following section applies those principles to the path planning problem. This is done 

initially through a worked example before the existing literature and methodologies for 

the solution are considered. Figure 2.29 introduces a simple graph that is used to 

demonstrate the principles of Pareto dominance and its application to the shortest path 

problem. The graph illustrates a directed graph with various bi-criteria edges. In the 

following example the edges are referred to as distance and time although these are 

human labels attached for clarity purposes only. No scale is inferred. Multiple edges 

between vertices are allowed. Assuming that the vertices A and D are the source and 

destination vertices respectively, numerous paths between those two vertices are 

present. Table 2.7 details each of those paths together with the cost along each of the 

criteria.

1.16

Figure 2.29 Example Two Criteria Graph
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Path
AD
AD
A_B_C_D
A_B_C D
A_B_C_D
A_B_C_D
A_B_C_D
A B_C D
A_B_C_D
A_B_C_D
A B_C_D
A_B_C_D
A_B_C_E_D
A B C_E D
A_B_C_E_D
A B_C E D
A B_C E D

Distance
1

17
3
4
4
4
4

5
5
5
5
6

141
142
142
143
143

Time
16
21
6
5
5
5
5
4
4
4
4
3

451
450
450
449
449

Table 2.7 All Paths Between Vertices A and D on Example Graph

Figure 2.30 demonstrates graphically what is made clear in Table 2.7 - Notably 

that there are two separate groupings - Those which passing through vertex E and those 

which do not. Those paths passing through vertex E are based on Steuers' (1986) 

definitions of Pareto optimality, dominated and therefore rejected. The removal of the 

dominating set of solutions results is highlighted in Table 2.8 and Figure 2.31. It is 

highlighted that several paths can be seen with the same traversal costs. Figure 2.31 

presents the path values seen in the graph excluding those paths that pass through the 

node E. The table has also been updated to number the paths travelling A_D. The first of 

those paths has the cost set {1,16}. The second has the set {17,21}. Based on the 

previously given definitions of dominance, path #2 is clearly dominated by each of the 

other paths. The following Table 2.9 and Figure 2.33 indicate the Pareto optimal paths 

and front. Figure 2.33 represents the example graph with non-optimal paths removed. 

Note that as indicated in Table 2.7 multiple solutions may occupy the same space and 

therefore are obscured in Figure 2.32. Figure 2.32 and Figure 2.33 present the optimal
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paths through the graph between the selected nodes. Any path chosen from Figure 2.33 

will have a value pairing shown in Figure 2.32. Table 2.8 and Table 2.9 have been 

updated to remove duplicate path costs as seen in Table 2.7.

Pareto search space of route table
^nn
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Figure 2.30 Pareto Search Space of Table 2.3

Path
A_D#1
A_D#2
A BCD
A_B_C_D
A BCD
A_B_C_D

Distance
1

17
3
4
5
6

Time
16
21
6
5
4
3

Table 2.8 Pareto Table with Paths Through Vertex E Removed
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Filtered pareto search space of route
table

25
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15
10

10 

Time

Candidate Solution
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Figure 2.31 Filtered Pareto Search Space

Path

A_D#1

A_B_C_D

A_B_C_D

A_B_C_D
A_B_C_D

Distance
1

3

4

5

6

Time
16

6

5
4

3
Table 2.9 Pareto Optimal Paths
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Figure 2.32 Pareto Optimal Solutions for Example Graph
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2.1 2,1

Figure 2.33 Pareto Optimal Paths Through Graph
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0

0
0

Figure 2.34 Individual Unique Paths Through Example Graph
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The worked example provided concludes by highlighting the Pareto optimal 

path A_D travelling directly between the vertices. The cost set of the path gives a search 

space location of {1,16}. It should be noted that it is cheaper than the other possible 

solutions in one of the criteria (distance) but more expensive in the other (time). The 

path is not dominated by the other solutions. The solution should be presented to the 

decision maker (DM) for the feasibility of that solution to be considered. Figure 2.34 

presents each of the unique paths highlighted in Figure 2.33. There are nine optimal 

paths present eight of which travel trough the set A_B_C_D.

2.7.2. Existing Work on the MSPP

Having presented the concepts of Pareto optimality and dominance, and having 

related the same to the path planning process attention now turns to existing work in the 

field of the multi objective shortest path problem (MSPP). The multi-criteria nature of 

the path planning process has been made clear elsewhere in this work most notably the 

introduction where an in-depth discussion in to the nature of decision-making in path 

planning was undertaken. Having seen that the process of path planning is one that is 

multi criteria in nature it is perhaps interesting to note the majority of research into the 

path optimization problem has considered only a single objective. The reasons for this 

are entirely logical. The process of path optimization where more than a single objective 

is to be considered is an example of a problem that is NP hard (Garey and Johnson, 

1979 and Hansen, 1979). Granat and Guerriero (2003) provide a detailed rationale for 

the NP-completeness of the issue.

Figure 2.17 highlighted that the amount of research undertaken into single 

criteria analysis has continued to grow since the turn of the century. Producing a 

similar diagram for the multi objective path optimization process would prove to be 

difficult. Firstly, whilst it may be possible to view the terms objective and criteria as
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having the same meaning the lack of standardization within the literature results in 

search queries returning differing and often-disparate results. Secondly, the term 

"shortest path" may have little meaning when considering path optimization where 

more than a single criterion is to be optimised given the nature of the problem. Many 

authors whilst looking for shorter paths do not consider the problem as being directly an 

example of shortest path problem and so terms such as "shortest path" are absent from 

any key word sections related to that piece of literature. Figure 2.35 attempts to present 

the number of publications seen in the ScienceDirect online repository regarding the 

multi objective path optimisation process. The following keyword terms were entered 

into the ScienceDirect search mechanism:

"Multi Criteria" AND Path 

"Multi-Criteria" AND Path 

"Multi-Objective" AND Path 

"Multi Objective" AND Path 

"Pareto" AND "Path"

The searches were performed both inside and outside quotations. The results of 

the above queries were then reviewed to extract those works where the either the 

shortest path or similar related problem is considered. The nature of what are considered 

similar problems is largely open to interpretation. For the purposes of this work similar 

works are considered any algorithms that attempt to perform routing or path finding are 

considered. Applications such as timetabling etc are not considered as routing 

applications for the purposes of this analysis, vehicle routing is however considered. 

The filtering step results in Figure 2.35 which highlights the number of publications 

related to multi objective path optimisation problems seen since the year 2000. Of the 

863 publications seen to match the search terms "Multi Objective" AND Path published 

in 2012 only 26 may be considered as related to the multi objective path planning
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process. In total across all key words terms 51 publications from 2012 are seen to be as 

related to the multi objective path planning process in its various forms. As has 

previously been suggested the exact nature of what is considered a related publication 

may be open to interpretation. However, Figure 2.35 highlights that when compared to 

Figure 2.17 considerably less research effort has been undertaken into the path planning 

when handling multiple objectives. Since the year 2000 approximately 325 research 

papers have been published on multi objective path optimization in comparison to 1,618 

where only a single criterion is considered. Of interest is the general growth in the level 

of interest seen in the multi objective path-planning problem with 15% of the 

publications since 2000 becoming available in 2012 compared with slightly less than 

3% in 2000. It should be noted at not all publications will consider the specific 

application of the MSPP.

p 
u

Papers published on multi objective path 
analysis between 2000 and 2012

m 
b

O

2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012

Year Of Publication

• Publications

Figure 2.35 Publication on Multi Objective Path Analysis Since 2000
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The work of Hansen (1979) was the first to formalize the problem of the MSPP 

and is referenced frequently in the literature. In that work he provides a label-setting 

algorithm for the MSPP problem. From the literature it is possible to identify three 

separate methodologies for the solution of multi objective shortest path problems 

following a typology introduced in Cohon (1978) each of these strategies will vary in 

how they search the problem space and are briefly discussed below.

Generating Methods

Methods utilizing generating methods will attempt to discover the complete 

Pareto optimal set or make a close approximation to it. When applied to the MSPP 

Hallam et al (2001, p. 134) state that the generating method may have limitations. They 

argue "However, they do not work well for large graphs as there may be a very large 

number of such paths, and the necessary computations are beyond the acceptable scope 

of most computers.", they present Climaco and Martins (1982), Hansen (1979) and 

Martins (1984) as examples of such methods. Bandyopadhyay (2008, p.270) suggests: 

"Note that theoretically, the number of PO solutions can be infinite. Since the ultimate 

purpose of an MOO algorithm is to provide the user with a set of solutions to choose 

from, it is necessary to limit the size of this set for it to be usable by the user".

Methods Based on Utility Functions

Utility functions aim to introduce some notion of the decision makers (DM) 

preferences into the MSPP. Granat and Guerriero (2003 p. 104) suggest that the use of 

utility functions reduces the problem into a single criteria methodology stating, "It is 

worth noting that in these methods the multi-criteria optimisation becomes a single- 

objective optimisation problem".
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Interactive Methods

Interactive Methods involve direct interaction with the decision maker. A set of 

solutions is offered to the DM, and through interaction their preferences are selected 

which leads to an iterative style process. Current et al (1990) suggest the goal of this 

approach is to assist the decision maker in selecting the preferred or best compromise 

solution from among the non-inferior solutions; they further highlight the appeal offered 

by interactive methods given the computational complexity of the problem. As only a 

subset of the optimal solutions are sought less processing time is required.

Based on the three solution methods previously given, users are presented with 

either a partial or complete set of solutions representing the Pareto optimal front. In the case 

of the latter, it is suggested the methodology appeals because:

"Although the calculation of the whole set of the non-dominated solutions in the bi- 

objective case can be done easily, it must be remarked that the number of the non- 

dominated solutions can be very large. So, this is not, in general, an effective way of 

presenting alternative choices to a decision maker "\ (Coutinho-Rodrigues et al,

1999,p.790).

Ziontis and Wallenius (1976, p.662) state that "managers seem to find it easier to respond to 

the trade-off questions in the context of a concrete situation (tradeoffs that are attainable 

from realizable situations) rather than in an abstract situation." i.e. they (managers) find it 

easier to select from options rather than defining parameters. Granat & Guerriero (2003 

p. 104) propose the generating and utility function methods are insufficient, for a number of 

reasons stating:

"First of all, generating the whole Pareto-optimal solution set may be 

computationally intractable, even in the case when a small number of criteria is 

considered. Furthermore, supposing the Pareto optimal solution set has been
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determined, it may not be easy for the decision maker to choose from a very large 

set the non-dominated path that he/she likes best, since the number ofPareto- 

optimal solutions may grow exponentially with the number of nodes. Secondly, it is 

difficult for the decision maker to define a utility function representing his/her 

preferences ".

Skriver (2000) presents the following (Figure 2.36) taxonomy of the various approaches 

to the MSPP that can be seen in the literature.

Figure 2.36 The Skriver Taxonomy of MSPP Techniques

Bezerra (2013, p.346) highlights that a number of exact algorithms can be 

identified for handling bi-criterion shortest path problems. The authors however proceed 

to highlight that attempts to move to numbers of criteria greater than two are limited 

stating, "this generalisation is not trivial". Bezerra et al make use of ant colony 

optimization for the solution of MSPP. The previously cited work of Hansen (1979) 

provides an example of the label setting approach to the solution of the MSPP. The 

Hansen (1979) methodology is extended in the works of Martins (1984) and Tung and 

Chew (1982). Skriver (2000) and Skriver and Anderson (2000) present an example of 

the label correcting approach. That work is heavily influenced by the work of 

Brumbaugh-Smith and Shier (1989). Brumbaugh-Smith and Shier introduce an
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algorithm in which multiple Pareto set merge operations are conducted as the graph is 

explored. Skriver and Anderson (2000) extend the algorithm highlighting the 

performance restriction that the multiple Pareto merge operation causes. The authors 

propose that inducing some simple domination conditions on the edge-candidates 

should make it possible to discard 'expensive' edges as soon as possible. Two methods 

to reach this goal are suggested. The first involves performing successive runs of 

Dijsktra's algorithm on each of the two criteria being considered. They also suggest the 

implementation of an 'over-take' method which appears to combine basic Pareto 

optimality checks with the relaxation method of Dijsktra's algorithm and is based upon 

the method highlighted by Tung and Chew (1982).

Climaco and Martins (1982) introduce the use of a combination of the Dijsktra's 

algorithm and the K Shortest path approach. The Dijsktra algorithm is applied to one of 

the two criteria under consideration (path cost D). An implementation of Lawler's K 

shortest path algorithm is then applied to the second criteria and paths of increasing 

value generated until the cost of the first criteria on Path K exceeds that of path cost D. 

Climaco and Martins (1982) propose that the methodology will return the entire set of 

Pareto optimal paths between two nodes. Skriver and Anderson (2000) contend that the 

K-shortest path (and indeed any path/tree method) approach will always be out 

performed by algorithms using the labelling approach, hi Rhaith and Erghott (2009), 

however this is demonstrated to be partially untrue. They demonstrate that in many 

cases the labelling method is out performed by an implementation of a near shortest 

path algorithm first suggested in Carysle and Wood (2005) in many cases of real world 

graph instances. It should be noted however that the test conducted by Rhaith and 

Erghott (2009) reported some 'failures', demonstrated by exceptionally long run times. 

The reverse is true on random graphs where the labelling method is always the optimal 

algorithm as proposed by Skriver and Anderson (2000).

A K shortest path algorithm is also utilized in the work of Coutinho-Rodrigues 

et al. (1999). The authors extend the previous work of Coutinho-Rodrigues and Climaco
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(1994) in which a logistics decision support system is introduced. The later work builds 

upon that decision support system. The system initially determines the first three non- 

dominated solutions which are presented to the user. The user is then given the option to 

search within any two of those points. Figure 2.37 presents the result of the initial 

search to the user. Having selected points 1 and 2 to search between, the users would 

then be presented with the results highlighted in Figure 2.38. Coutinho-Rodrigues et al. 

(1999 p.793) use a constrained K shortest path algorithm to identify "automatic 

calculation of the whole set of non-dominated solutions inside the gap". The constraints 

are formed from the minimum and maximum path costs required in each criteria. The 

interactive nature of the process also allows the search to terminate on user interaction. 

Granat and Guerriero (2003) make use of a 'reference point' interactivity model which 

has the same aspirations, hi both the work of Coutinho-Rodrigues et al. (1999) and 

Granat and Guerriero (2003) random graphs are used in the test case. In the latter work, 

the graphs are large and very well connected i.e. between 5,000 and 40,000 nodes and 

1,000,000 edges. However, it is also of interest with regard to the number of criteria 

where four and eight criteria sets are used. In the majority of cases covered the criteria 

sets are limited to bi-criteria problems or in limited cases tri-criteria (Pinta and Pascoal, 

2010).

Modesti and Sciomachen (1997 p. 495) make use of an interactive method to 

solve the MSPP when applied to multi-modal transport plans. The authors require users 

to specify preferences towards differing modes of transport that are combined with 

Dijsktra's shortest path algorithm in order to present a subset of the optimal front. The 

authors state that they make use of a utility measure "taking into a proper account the 

different users' propensities" in "order to overcome the multiplicity of Pareto optimal 

solutions".
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Figure 2.37 Initial Search Results (Coutinho-Rodrigues et al. (1994)
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Figure 2.38 Reflned Search Results (Coutinho-Rodrigues et al, 1994)
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Muller (2010) presents a constrained heuristic function for solving the problem 

of the vehicle routing problem. In that work the author makes use of an 'e-constraint' 

where one of the criteria is selected as the primary criteria with additional criteria then 

act as constraints. As an example considering a bi-objective problem, Criteria A would 

be subjected to optimisation; criteria B would then form the basis of a constraint model, 

hi the cited work an example of a vehicle routing problem is presented where the 

shortest distance travelled is required and certain delivery time constraints have to be 

met. Grabener et al (2010) extend the algorithm of Martins and Santos (1999) in order 

to present a time constrained multi modal transport planning tool. Delling and Wagnar 

(2009) employ a variation of the Dijsktra shortest path algorithm. The authors report 

very promising results on large-scale real road networks, they also highlight that a 

certain degree of pre-processing of the datasets is required, alongside higher memory 

requirements. In addition the authors highlight that their attempts at generating the 

complete Pareto set on a graph of Western Europe failed because "it turns out this input 

is too big for finding all Pareto routes". Instead they reduce the size of the graph and 

attempt to limit the size of the Pareto set. Delling and Wagnar extend Mohring et al 
(2007) to present improvements to the single criterion Dijsktra algorithm through graph 

partitioning. The algorithms effectively limit the amount of the graph being explored. 

Sauvanet and Neron (2010 p.616) introduce what is suggested to be a novel method for 

reducing the number of solutions offered to a user. In their work a variation of the A* 

shortest path algorithm is developed which presents users with a series of non- 

dominated cycling paths, with the criteria considered being the distance and the 

'insecurity' of the road link. The results of those experiments have been made available 

online (http://www.geovelo.fr/). The authors aim to produce a subset of optimal 

solutions stating "however computing all solutions can be time consuming and not 

necessarily helpful if the need is to obtain a compromise solution". The authors reduce 

the problem down to a single criterion function using preference weightings. The user 

selects a preference using a between shortest distance or increased safety and their 

preference then translated into single value to which the A* algorithm is applied.
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The work of Mandow and Perez de la Cruz (2010) presents the New Multi 

Objective A* (NAMOA*) algorithm, an extension of the work of Stewart and White 

(1991). In both of these works an implementation of the A* algorithm is presented in an 

extended form to solve the MSPP. Unlike the approach of Skriver and Anderson (2000) 

which may be described as a destructive technique (in that edges are removed from the 

graph until only the Pareto optimal paths remain) the NAMOA* approach maintains a 

separate graph structure, to which optimal paths are added. Manchua and Mandow 

(2012) present a study of the NAMOA* algorithm on a series of real world graphs made 

available as part of the ninth DIMACS (Discrete Mathematics and Theoretical 

Computer Science) challenge where time and distance may be combined to present bi- 

objective graphs. The graphs used are large scale, often of entire US states. The graphs 

used in that study are highlighted below in Table 2.10. The authors report varying 

results ranging from fractions of a second (0.12) to over 46 minutes on the same graph. 

Manchua and Mandow also apply a time limit of one hour and report a number of 

scenarios where that time limit is not met. The longest processing effort took over 40 

hours leading to the introduction of the previously stated time limit, hi Manchua et al 

(2012) the authors perform a comparison of various heuristic algorithms and heuristic 

values for the MSPP reporting that generally the NAMOA* is the most promising with 

certain heuristic functions.

Graph

New York City

San Francisco Bay

Colorado

Florida

Vertices

264,346

321,270

435,666

1,070,376

Edges

730,100

794,830

1,042,400

2,712,798

Table 2.10 NAMOA* Real World Test Graphs
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Saadatseresht et al (2009) combined single criterion shortest path algorithms 

together with empirical evidence regarding building hazard metrics to produce models 

of evacuation zones. Coutinho-Rodrigues et al (2012) extend such an application to the 

wider scale problem of urban evacuation zones where distance to safety and 

minimization of perceived risk are optimised. The distance to safety was considered as a 

single criterion network analysis problem. Where Saadatseresht et al cover a small 

group of buildings as an evacuation zone Coutinho-Rodrigues et al cover town and city 

level evacuation plans. Dell'Olmo et al (2005) integrate a multi objective shortest path 

algorithm (MSPA) into a GIS in order to identify dissimilar yet optimal paths. The 

MSPA is based upon that of Martins and Santos (1999). Having identified the optimal 

paths the proposed methodology prunes those paths into a disparate set.

2.7.2.1 Heuristic and Evolutionary Approaches to the MSPP

Having considered the traditional algorithmic methods of searching for a series 

of Pareto optimal 'shortest' paths this work now turns to evolutionary and heuristic 

approaches. Such approaches are reasonably recent in the literature and as such 

publications are sparse. The algorithmic methods described up to this point have 

evolved over the course of twenty-eight years and still comparatively rare. The same 

can be said of heuristic approaches with an even greater degree of certainty.

Mnuemoto et al (1998) and Ahn and Ramakrisma (2002) each make use of 

genetic and evolutionary strategies for the solution of the single criterion path problem. 

Mooney (2004) and Mooney and Winstanly (2006) however extend those underlying 

techniques for the multi objective shortest problem, as do Gen and Lin (2004) where an 

evolutionary algorithm is used in combination with a fuzzy logic based system. He et al 

(2007) make use of similar mechanisms to those employed by Mooney and Winstanley 

(2006) to solve the MSPP using genetic algorithms. Unlike the approach of Mooney and 

Winstanley where random walking is used to generate the populations He et al use 

depth first search based mechanisms. The algorithm also makes use of Pareto ranking
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and nicheing. Crichigno and Baran (2004) and Pangallinan and Janssens (2007) make 

use of a graph based implementation of the Strength Pareto Evolutionary Algorithm 

(SPEA) approach (discussed later in thesis) to solve the MSPP problem. Chakraborty et 

al (2005 p. 190) presents a Genetic Algorithm based approach to the car navigation 

problem, which attempts to produce "several alternate routes depending on different 

criterion according to driver's choice such as shortest path by distance, path which 

contains minimum number of turns, path passing through mountains or by the side of a 

river etc". Liu et al (2012a) presents an Genetic Algorithm approach, which attempts to 

make use of spanning trees to increase the Genetic Algorithm effectiveness. Amongst 

the works making use of Genetic Algorithm based approaches the concept of elitism 

appears to be universal. That is to say each algorithm implements a secondary 

population consisting of optimal solutions. In addition binary method of selection 

dominate the literature as a means of selecting candidate solution for cross over and 

mutation (introduced formally in Chapter 3).

Liu et al (2012b) present a development of Liu et al (2012a). In those works the 

authors make use of simulated annealing and genetic algorithms respectively to solve 

multi objective shortest path problems. The works are of particular interest for two 

reasons. Firstly, the use of simulated annealing is rare in any application of multi 

objective analysis where a reduction to single criteria analysis via aggregation is not 

performed. Secondly, other than this thesis, the work of Liu et al (2012b) is a rare 

example where simulated annealing has been used to solve multi objective path 

optimization problems and perhaps importantly a comparison of genetic algorithm 

based approaches with other techniques using the same datasets is performed. Both 

works make of spanning tress to represent paths through the graph. Both algorithms are 

tested against a limited set of synthetic graphs. In addition the simulated annealing 

approach is tested against small example graphs representing a section of the road 

network in mainland China with the sizes 70 X 207 and 581 X 954. Tests on synthetic 

graphs are performed on datasets consisting of a high vertex to edge ratio. The smallest 

graph tested consists of 2000 vertices and 10,000 edges. The largest graph consists of 

8,000 vertices and 76,069 edges. It should be noted that the ratio of the upper and lower
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bounds of the connectivity of the graphs varies greatly with a minimum of three 

outgoing edges seen on the largest of the graphs, and a maximum of 35. The authors 

report limited success of the simulated annealing approach on larger sized graphs. 

However it should be noted that the measure of success used might be considered very 

limiting with only an exact replication of the optimal set of solutions being considered. 

They authors report that the simulated annealing algorithm was able to identify the 

complete set of optimal solutions in just 3.3% of cases. The implementation of a 

Genetic Algorithm approach was unable to identify a single complete optimal set. 

Previous work cited in this work have highlighted that a limited set of optimal will often 

be considered satisfactory, and therefore a looser definition of success may be 

considered as being more appropriate in comparison to that used by Liu et al. hi 

addition the high ratio of vertices to edges used of the graph may be reduce the 

effectiveness of the simulated annealing technique. On smaller graphs (2,000 - 14,071) 

the Simulated Annealing approach slightly outperforms the Genetic Algorithm 

approach, with 53.33% of tests returning an exact match for the Simulated Annealing 

and 50% for the Genetic Algorithm. The high vertices to edge ratio seen in larger graphs 

is repeated in smaller graphs with a wide range of outgoing edges seen, with a minimum 

value of four and a maximum of 26. The nature of vertex to edge ratio seen in the 

synthetic test graphs is unlike that seen in real road networks in the form of roads as 

highlighted in Table 2.10.

Bezerra et al (2011) and Bezerra et al (2013) make use of ant colony 

optimization to assist in the solution of the MSPP. The authors were not the first to 

make use of ant colony optimization for routing applications with Baran and Schaerer 

(2003) making use of ant colony optimization (AGO) to assist in the solution of the 

vehicle routing problem with time windows, hi their work of 2011 the authors (Bezerra 

et al) develop an AGO technique they name GRACE. Ant Colony Optimization is a bio- 

inspired meta-heuristic that uses the concept of swarm intelligence originally proposed 

by Dorigo (1992). Dorigo and Socha (2006) discuss a number of techniques that may be 

employed to extend the single criteria optimization technique to one that is capable of 

handling multiple criterions. The GRACE technique follows a two-phase approach. In
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the first of the two stages the algorithm identifies the extreme ends of the optimal front 

using traditional shortest path analysis techniques. A process of iteration is then used to 

determine further possible solutions between the extreme solutions using ant colony 

simulation The approach is tested against a implementation of multi objective genetic 

algorithm based upon the approach of Deb et al (2002) introduced in the following 

chapter together with an alternative ant colony optimization approach to the MSPP 

introduced in Hackel et al (2008). Both Bazerra et al (2011) and Hackel (2008) employ 

multiple ant colonies when considering additional objectives. Each colony employed by 

the system considers a single criterion. The authors' present results demonstrating better 

quality results from the ant colony approaches when compared to the genetic algorithm 

approach and show better results obtained using the GRACE approach than from that of 

Hackel et al (2008). The datasets used in the study are formed from either grid based 

graphs or complete graphs. In either of the two types the size of the graph is quite 

limited in comparison with other works such as that of Liu et al (2012a, 2012b) and 

range from 25-200 vertices for the complete graphs, hi Bazerra et al (2013) the authors 

report that as the size of the graph increases then the underlying topology of the graph 

becomes less important to the comparative success of the methodology. The basic 

methodology algorithm used in Bazerra et al (2013) is that of the 2011 work by the 

same authors. A key difference in the 2013 work however is the analysis into the 

behaviours of the algorithms. Zhang et al (2012) make use of ant colony optimization 

technique for the solution of path planning problems for mobile robots in a discrete 

space.

Pahlavani et al (2012) make use of a technique they call 'invasive weed 

optimization' to assist in the solution of the MSPP. In the work the authors aim to solve 

the MSPP with two criteria where each criterion has been assigned a relative importance 

value. The technique of invasive weed optimization shares common goals with genetic 

algorithms formally introduced in the following chapter. The technique of Pahlavani et 
al (2012) generates a random set of solutions. The technique then calculates the fitness 

of each of solution. For each of the solutions in the population a number of 'seeds' is 

produced. The better the fitness of a solution the more seeds a given solution may 

produce. Each seed then gives rise to a related solution around the parent. Small
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changes to the selected member of the population are introduced mimicking the process 

of weed dispersal. Each of the related solutions is then added to the end of the 

population. At the end of each iterations the population is sorted based upon the fitness 

of the solutions and the population truncated to its maximum length. Given the use of 

assigned weightings for a preferred method of travel method reduces the problem to a 

single criteria solution based upon an aggregation method. The authors test the 

approach against a multi phase approach to the Dijsktra shortest path algorithm where 

each phase represents a run against a single criterion, a genetic algorithm approach and 

the invasive weed approach. The authors find the Dijsktra approach completed the tests 

in around 18 seconds compared with 56 and 44 seconds for the Genetic Algorithm and 

invasive weed approach respectively, hi addition to the use of the invasive weed 

approach the technique is novel due to the use of real world road networks as the basis 

for the test datasets. The road network is based upon that of Tehran, Iran and consists of 

30,880 vertices and 34,951 edges. The authors of the work do not describe whether the 

graph was considered bi-directional. The values of the graph particularly the ratio 

between the number of edges and vertices (1.13) would indicate a non-directional 

approach was used which may affect the performance of the algorithms though the 

substantial reduction in the number of possible paths between two points. The nature of 

the runtime gives the appearance that the implementation of the Dijsktra shortest path 

algorithm was not optimised using any heap or bucket structure.

Horoba (2010) undertakes a review into the runtime of evolutionary algorithms 

for the shortest path problem. Horoba highlights that all previous studies into the 

runtime of evolutionary approaches to the shortest path problem have primarily 

concentrated on single criteria problems and hence Horoba is the first to consider a 

formulization for the runtime of evolutionary approaches where more than a single 

criteria is under consideration. The algorithm analysed by Horoba is based upon that of 

Doerr et al (2008) though expanded to handle multiple criteria. The Doerr et al 
algorithm initializes a population consisting of all paths where the length will be equal 

to zero. The mutation operator either adds or removes a vertex to the end of the path at 

random. In many ways the approach taken by Horoba (2010) produces an algorithm that 

operates more like a simplified version of the Pareto Archiving Evolutionary Strategy 

(PAES) developed by Knowles and Corne (1999) introduced in the following chapter

99



rather than a traditional population based approach to the evolutionary algorithm. The 

algorithm retains the population approach of the traditional evolutionary algorithm but 

performs the selection and reproduction operators on only a single member of that 

population. Unlike Doerr et al (2008) Horoba makes no use of a crossover 

methodology.

Davoodi et al (2013) together with Bezerra et al (2011) make use of the NSGA- 

II evolutionary approach of Deb et al (2002) for solving the MSPP. In the case of 

Davoodi et al (2013) the algorithm developed attempts to solve shortest path planning 

problem for mobile robots although the authors highlight the feasibility of the 

techniques to act as a artificial intelligence control in entertainment game software. 

The search space of Davoodi et al (2013) is represented as a regular grid, with obstacles 

to be avoided in the search space removed from the grid. The genetic chromosome is 

represented by a linked list giving the x and y coordinates in the regular grid. The Deb 

et al NSGA-II approach appears to be commonly used when considering evolutionary 

approaches to the MSPP, featuring also in the work of Hung et al (2007), which also 

addresses the application of mobile robot path planning using evolutionary approaches. 

Chitra and Subbaraj (2012) make use of the NSGA-II based technique for multi 

objective path planning in computer networks.

Fang et al (2011) make use of any colony optimization to solve the evacuation 

problem. The authors develop an algorithm to assist in the planning of evacuation routes 

from a stadium in the event of an emergency with evacuation routes being represented 

as directed links in a graph. The algorithm is tested against a K shortest path approach 

and an implementation of the NSGA-II of Deb (2002). The authors do not produce any 

quantitative metrics in terms of runtime for each of the algorithms and instead produce a 

qualities assessment of the results seen from each approach. The report notable 

difference between the results seen in each algorithm with the K shortest path and 

genetic (NSGA) approach resulting in higher numbers of people evacuated from the test
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stadium but along more congested paths. The any colony based approaches produced a 

more even spread amongst the possible evacuation route.

2.8. Chapter Summary

The current chapter has discussed shortest and multi criteria path analysis. From 

the study of existing literature a series of significant facts may be drawn.

  Advances in single criterion path analysis continue to be made. These can be 

seen in methodologies such as graph partitioning and structural hierarchies. These 

have the effect of allowing continent wide shortest paths to be calculated extremely 

quickly (measured in nano seconds). The Santos (2006) algorithm allows large 

numbers of paths of increasing length to be generated in a matter of seconds on 

continent sized road networks.

  Existing literature has demonstrated the MSPP to have been the subject of 

sporadic research interest. Recent years have seen the renewal of interest in the 

subject area through the use of evolutionary algorithms. However, even where 

undertaken, research effort is often focused on the application of existing techniques 

to a given problem rather than the development of new solution mechanisms.

  Heuristic mechanisms for the solution of the MSPP have been limited to the 

use of evolutionary algorithms or techniques such as ant colony optimisation. Liu 

(2012 pp 3120) presents similar findings suggesting, "The SA has been widely 

applied in solving some route related problems such as VRP and TSP. To our 

knowledge, however, we do not find any approach for applying SA to MSPPs". An 

example of alternative routing applications making use of Simulated Annealing 

using multi objective optimization can be seen in Banos et al (2012) who use a
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simulated annealing technique for the vehicle routing problem, a variation of the 

travelling salesman application. Zidi et al (2011) present a variation to the same 

approach (Simulated Annealing for the vehicle routing problem).

  From an implementation perspective, algorithmic solutions to the MSPP 

appear relatively simple. Notable examples can be seen in the Skriver & Anderson 

(2000) method, and the approach taken by Climaco and Martins (1982). However in 

practice the solution of the MSPP is demonstrated to be intractable often requiring 

days (40 hours) to complete the generation of the optimal set where a single 

criterion problem may be solved in micro and nanoseconds.
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Chapter Three: Multi-Objective 

Optimisation
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3. Multi Objective Optimisation

The previous chapters have sought to formalize the problem under review. The 

current chapter will introduce the various algorithms that will form the basis for the 

experimental phase of this research. A comparison of Multi Objective Evolutionary 

Algorithms (MOEA) approaches is performed before moving on to consider the multi 

objective approaches to the Tabu Search and Simulated Annealing. The chapter ends 

with a brief review of various metrics used to review the quality of multi objective 

(MO) solutions.

3.1. Genetic Algorithms and Evolutionary Computation

Although conceived by Holland in 1975 it is the work of Goldberg (1989) that 

brought widespread awareness and acceptance of Genetic Algorithms to the fore. 

Goldberg (1989) highlights that Genetic Algorithms have been demonstrated to provide 

robust search in complex spaces and that Genetic Algorithms are increasingly finding 

their way into a wider range of applications. Holland (1975) presents Genetic 

Algorithms in terms of a simple binary string chromosome and population in the 

environment E in which the system has to survive. A fitness function is used in order to 

determine the acceptability of a solution with the fittest solutions being carried forward 

to successive generations. Back (1996) develops alternatives to the traditional genome 

representation methods (binary string) introducing other methods of representation, 

such as graphs, trees, and linked lists. In the MSPP the genome will represent a path 

from the source to destination.

Goldberg (1989) highlights that the mechanics of a simple Genetic Algorithm 

are surprisingly simple and involve nothing more complex than the copying and 

swapping of partial strings. Each generation creates a new, slightly modified set of the
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old using the 'fittest' elements of the previous generation. Periodically the algorithm 

seeks to increase the coverage of the search space in the form of a mutation operation on 

a random member of the population set. Figure 3.1 taken from Hoitkotter and Beasley 

(2000) outlines the typical operation of the Genetic Algorithm computation process. 

Raidl (2005) suggests that evolutionary algorithms have several advantages over other 

optimisation techniques:

  Simple Evolutionary Algorithms (EA) do not require any in-depth 

mathematical understanding of the problems to which they are applied

  Consequently, such EAs are relatively cheap and quick to implement

EAs are open to problem modifications and can in general cope well with

additional constraints, noisy, inaccurate, and incomplete data

Raidl (2005)

SELECTION

POPULATION

PARENTS

MUTATION & 

CROSSOVER

REPLACMENT

CHILD

Figure 3.1 Flow of the Basic Genetic Algorithm (Hoitkotter and Beasley, 2000)
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Deb (2001) highlights several drawbacks to the use of evolutionary algorithms, 

the most notable of which are the requirements for effective domain representation and 

parameter tuning for any given application. Mitchell (1996 p. 167) highlights the notion 

of premature convergence. If an individual presenting a higher fitness than most of its 

competitors emerges early on in the course of the run it may reproduce so abundantly 

that it drives down the population's diversity too soon, leading the algorithm to 

converge on the local optimum. Schwefel and Rudolph (1998) highlight that traditional 

algorithms will often outperform genetic approaches in terms of computational 

efficiency.

Rechenberg (1965) introduced variations to evolutionary algorithms in the form 

of "evolution strategies" to optimise the processes involved in the design of airfoils. 

Fogel et al (1966) developed a technique entitled "evolutionary programming". There 

has been a certain amount of debate in the literature regarding the typology and 

classification of the various evolutionary approaches in part dependant on the formation 

members of the chromosomes and therefore the population (Michalewicz and 

Michalewicz, 1997). That debate largely centres on the representation of genome 

structures, i.e. if a solution uses a method of representation other than a binary string is 

the process a Genetic Algorithm or an evolutionary strategy?. The fundamental concepts 

however remain the same. In this work even though the method of representation is not 

a binary string the algorithm is considered a Genetic Algorithm.

To date much of the work aimed at the solution of multi objective problems has 

concentrated on the use of evolutionary/Genetic Algorithms. Mitchell (1996) highlights 

the use of a population-based structure arguing the technique is able to cover a wide 

search area simultaneously. Forrest (1993) suggests that Genetic Algorithms are able to 

produce an optimal result even when sampling only small regions of a search space.
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Although based upon relatively simple search techniques the field of 

evolutionary computation has demonstrated on several occasions that they can be 

considered proven and reliable methods for solving search and optimisation problems. 

Oduwaga et al (2005 p.293) state "the most significant advantage of using evolutionary 

search lies in the gain of flexibility and adaptability to the task at hand". Genetic 

Algorithms also introduce the concept of genetic operations. The Genetic Algorithm 

makes use of two main genetic operations in the form of crossover and mutation in 

order to a) increase genetic diversity and b) mimic the evolutionary approach of 

'survival of the fittest'. Mitchell (1996) argues that the decision as to which genetic 

operators to use when solving a problem using Genetic Algorithms depends largely on 

the method of representation. The crossover operator is the most common genetic 

operator, and involves the selection of two candidate solutions which then divide, 

swapping components at a given point in order to produce new candidate solutions. The 

effect is that the child has inherent details from both parents.

Figure 3.2 demonstrates the process of crossover on chromosomes. Spears and 

DeJong (1990) study multipoint and uniform crossover operators when applied to 

Genetic Algorithms, reporting the work of Sysweda (1989) which indicated that the use 

of multipoint crossover might have advantages over single point under certain 

circumstances. Spears and DeJong (1990) state that larger population sizes are protected 

from the "disruption" caused by multipoint crossover. Schaffer and Eshelman (1991) 

empirically compare mutation and crossover, and conclude that mutation alone is not 

always sufficient. The mutation operator involves the selection of a given candidate 

solution and attempts to introduce a small random change to that candidate solution. As 

an example, in a binary string representation of a candidate solution the mutation 

operator may simply take a random bit and invert it. The approach is highlighted in 

Figure 3.3. Luger (2002) states that mutation is a key genetic operator as the initial 

candidate solutions generated may otherwise exclude an essential component of the 

solution. Mitchell (1996) agrees and highlights that many early forms of evolutionary 

computation techniques offered only the mutation operator and that the notion of the 

crossover operator was often absent. Having considered the basic terminology, form and
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function of the Genetic Algorithm attention now turns onto the multi objective 

implementations.

CROSSOVER POINT

Figure 3.2 Outline of General Crossover Procedure
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Figure 3.3 Outline of Mutation Operator
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3.1.1. Non-Pareto Approaches

Amongst these early methods is the VEGA (Vector Evaluated Genetic 

Algorithm) of Schaffer (1985). Figure 3.4 presents a general three criteria schematic of 

the VEGA approach to solving multi objective problems. The VEGA approach consists 

of a simple Genetic Algorithm with a modified selection mechanism. At each 

generation a number of sub-populations are generated by performing proportional 

selection according to each objective function in turn. Assuming the problem consists of 

C objectives to be optimised, the approach of Schaffer is to split the general population 

into C sub populations. The process applies a unique fitness function to each 

subpopulation optimizing each according to one of the criteria under consideration. A 

process of recombination then takes place in order to form a new general population. 

Coello-Coello (2000) suggests that the VEGA algorithm does come close to the 

production of non-dominated (Pareto) solutions but also highlights several criticisms of 

the approach, the most notable of which relates to its inability to retain solutions with 

acceptable performance, perhaps above average, but not outstanding for any of the 

objective functions. These solutions may have been good candidates for becoming non- 

dominated solutions but could not survive under the selection scheme of this approach. 

At any generation solutions that can be considered 'good' in all criteria may be 

discarded because that solution is not the best in any one criterion. Tamaki et al (1995) 

introduce a variation to the VEGA algorithm where at each generation non-dominated 

solutions are automatically carried over to the next generation. Deb (2001) highlights 

that the VEGA approach will produce solutions that are good for individual criteria. 

Coello-Coello (2000) states that the solution set returned by the algorithm achieve what 

is described as "non-dominated in a local sense".
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Figure 3.4 Outline of VEGA Algorithm

3.1.2. Population Based Approaches

Goldberg (1989) proposes the use of the Pareto based fitness ranking to assist in the 

solution of the problems that are present in the work of Schaffer (1985) as discussed in 

the previous section. The method favours those solutions that are non-dominated with 

respect to the current generation. Algorithm 3.1 provides a general overview of the 

ranking mechanism. Having a record of the number of solutions (TV) in the current 

population. The algorithm sets a local variable CURRENT_RANK =1. The process than 

checks the current population for non dominated solutions. These are assigned the value 

of CURRENT_RANK. Following an initial scan of the population any solutions with the 

rank of CURRENT_RANK are removed from the population and the value of 

CURRENT_RANK incremented. The process continues until all members of the 

population have been scanned. Figure 3.5 presents a view of an example population 

following the ranking operation. Srinivas and Deb (1995) proposed the Non-dominated 

Sorting Genetic Algorithm (NSGA). The algorithm makes extensive use of the ranking 

methodology suggested by Goldberg (1989). Solutions with a higher rank are more 

likely to be selected as candidates for the genetic operators and to be carried into 

successive generations.
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In Fonseca and Fleming (1993) an alternative ranking scheme to that of Goldberg 

(1989) is proposed. Fonseca and Fleming's MOGA (Multi-Objective Genetic 

Algorithm) approach ranks each member of the population in relation to the number of 

solutions it dominates although. Like the ranking method of Goldberg (1989) the 

method may be considered a simple extension of the single criteria Genetic Algorithm. 

The rank of solution(jc) is given by Equation 3.1 where rj is the number of solutions 

dominating solution(x) in a approximation set PjTRUE.

Rank(x) — r£

Equation 3.1 Fonseca and Fleming Ranking Equation

Algorithm: Goldberg Ranking Method

Input: S = Set Of Solutions To Be Checked For Ranking

Output: R[Solution,Rank] = Set Of Solutions With Ranking Information

R = Empty Set 
CURRENT_RANK=1 
COUNT =\S\

WHILE (\S\ > 0)

FOR (i= 0 TO COUNT)

[j = 0 TO COUNT)

IF (i !=y)

IF (S[i] Is Dominated By S/jJ) 
Mark SfiJ As Dominated

FOR(£=OTOCOtW7) 
{

IF (S[k] Not Marked As Dominated)
{

R = R + {S[kJ,CURRENT_RANK} 
Remove S[k] from S

CURRENT_RANK= CURRENT_RANK + 1
COUNT =\S\

Algorithm 3.1 Coldberg Ranking Method
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Figure 3.5 Visualisation of the Goldberg Ranking Methodology

Horn et al (1994) introduce the concept of nicheing in the 'Niched Pareto Genetic 
Algorithm' (NPGA). In this approach the size neighbourhood (or niche) is controlled 

through the ashare value. A count is made as to how many solutions are located within the 

diameter of that ashare value and the fitness value decreased proportionally to the number 

of individuals sharing the same neighbourhood. This aims to promote the generation of 

solutions in the least populated regions of the search space. The general concept of nicheing 

is given in Figure 3.6. Two solutions are presented both of which are indifferent with 

respect to each other. Solution A however is in a much more 'crowded' area of the optimal 

set of solutions, and so under the nicheing scheme of Horn et al (1994) would be assigned a 

lower fitness than solution B thereby encouraging diversity of solutions across the front. 

Difficulties arise in specifying an optimal size of the ashare parameter. Algorithm 3.2 

provides an overview of the NPGA. In Algorithm 3.2 two aspects are of particular interest 

those being the line 'Specialized Binary Tournament Selection' and 'Return Candidate 

with lower niche count'. The latter uses the methodology described above to increase 

the diversity and spread of solutions across the front. In the 'Specialised Binary 

Tournament' two individuals are chosen at random from the population. Those two 

solutions are then compared against a subset from the entire population. If one of the
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two candidate solutions is dominated by the subset of the population and the other is not 

then the non-dominated individual wins. Where the two solutions are indifferent the 

result of the tournament is decided through fittness sharing. If Figure 3.6 were selected 

as an example in the event of a tie solution B would be selected given its lower niche 

value. The specialised binary tournament scheme is provided in Algorithm 3.3.

Candidate Solution 

Existing Solution

Solution A

Solution B

Figure 3.6 Crowd Based Nicheing Example

113



Algorithm: NPGA Algorithm

Input: P = Population Of Candidate Solutions 

G = Number Of Generations To Perform

Output: PfAPPROX = Set Of Pareto Approximations

Initialize Population P 
COUNT = \P\

FOR (i = 0 TO COUNT)
Evaluate Objective Values

Perform Specialized Binary Tournament Selection Returning Solutions A and B and PSub

IF (A Is Dominated With Respect To PSub) 
Select B

IF (B Is Dominated With Respect To PSub) 
Select A

IF (A && B Are Dominated With Respect To PSub) \\ (A && B Are Indifferent With Respect To

Perform Specialized Fitness Sharing 
Return Candidate With Lower Niche Count

Perform Single Point Crossover 
Perform Mutation

FOR (k= COUNT)
Evaluate Objective Values

Algorithm 3.2 NPGA Outline
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Algorithm: NPGA Specialised Binary Tournament Selection

Input: P = Population Of Candidate Solutions

SUBSETNUMBER = Size Of Comparison Subset

Output: PSub = A Subset Of P

A = Candidate Solution From P

B = Candidate Solution From P != A
Psub ={}

WHILE ( IF5"*! < SUBSETNUMBER)
{

X= Select Solution From P At Random
WHILE OP5"* Contains X)

X= Select Solution From P At Random

pSub _ piub _|_ y

A = Select A Solution From P Not In P5"*
B = Select A Solution From P Not In P5"* && != A

Algorithm 3.3 NPGA Specialised Binary Tournament Selection

3.1.3. Elitist Based Methodologies

Earlier MOEAs such as the MOGA, NSGA, and the NPGA highlighted in the previous 

section can be criticized due to their simplistic handling of multiple criteria and lack of 

true methods for handling elitism. The following methods counter these criticisms 

through the use of methods such as external archiving of non-dominated solutions and 

methods to increase the coverage of the search such as the introduction of crowd density 

control functions. The discussion leads to the introduction of

Figure 3.7 which highlights the general properties of each of the three techniques 

discussed.

Knowles and Corne (1999) introduce the Pareto Archiving Evolutionary 

Strategy (PAES) algorithm that uses a 1+1 evolution strategy in conjunction with an 

external solution set that records the non-dominated solutions found. In addition the
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algorithm uses an adaptive grid in order to maintain the diversity of the solutions. 

Algorithm 3.4 highlights the running of the PAES algorithm. The technique mutates a 

single parent in order to create a single offspring. The mutation process is applied to the 

parent with a direct comparison between the costs or fitness of the child and the parent 

performed. If following dominance checks the mutated offspring is found to be a 

'better' solution than the parent a swap takes place with the mutated solution being 

accepted as the current solution and a copy of the solution placed into an external 

archive. Any subsequent mutation is performed on this new parent solution. The use of 

an external archive allows for the storage of the better solutions discovered to date, the 

contents of which represent the approximation of the optimal front (PJTRUE). The 

technique may allow indifferent solutions to enter the search process with the provision 

that those solutions indicate a move to a less crowded area of the search space.

Aggregation-based Criterion-based

©
O ,. " Oo "•••-,. 

o o "•••-.... o 
o o

Parameter orientated 

(Scale dependant)

Dominated Solution (Unwelcome) 

Q Non Dominated Solution (Welcome)

Dominance-based

O

O
o

o

Set orientated

(Scale independent)

Figure 3.7 Multi Objective Processing Types
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A key component of the PAES approach is the use of a crowding procedure 

based on recursively dividing the objective space in order to determine less populated 

areas. Knowles and Corne (1999) highlight that the procedure is designed to have two 

advantages over the nicheing methods used in some multi-objective GAs: Its 

computational cost is lower and requires little work to determine the parameters used. 

When each solution is generated its grid location in the solution space is determined. 

Assuming the range of the space is defined in each objective the required grid location 

can be found by repeatedly bisecting the range in each objective and finding in which 

half the solution can be found. The location of the solution is recorded as a binary string 

of 2(ld'1 where / is the number of bi-sections of the space carried out for each objective, 

and d is the number of criterion. Each time the solution is found to be in the larger half 

of the prevailing bisection of the space the corresponding bit in the binary string is set. 

A map of the grid is also maintained indicating for each grid location how many and 

which solutions in the archive currently reside there. The number of solutions present in 

a grid location is referred to as its population. With a maximum archive size of 100, for 

example, and a two-objective problem with /=5, the solution space is divided into 1024 

squares. However, the archive is clustered into a small region of this space representing 

the slowly advancing approximation to the Pareto front. Knowles and Corne (1999) 

suggest an / value of between three and six provides good results. They also provide 

(2*d*n + n*l*d) as the number of operations to update an archive and (a'l'd) operations 

to find the location of solution in the archive. Algorithm 3.5 provides a high level 

overview of the archive management functions.
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Algorithm: Basic PAES Algorithm

Input: ITERA TIONS = Number Of Iterations To Perform 

S = Maximum Size Of External Archive

Output: PfAPPROX = Set Of Pareto Approximations

PfAPPROX= Empty Set Of Optimal Solutions 
C = Generate Initial Solution 
Evaluate C

FOR (i =0 TO ITERATIONS)
{

M= Introduce Mutation To Solution C 
Evaluate M

IF ( C Dominates M)
Discard M 

ELSE IF (MDominates C)
{

C=M
PfApprox = PfApprox + M

}
ELSE IF (Mis Domiated By Any Member Of PfAPPROX)

Discard M 
ELSE

Perform TestArchive(C,M,P/4PP/?OY) To Determine C And PfAPPROX

Algorithm 3.4 Outline of the PAES Algorithm
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Algorithm: PAES TestArchive Procedure

Input: PfAPPROX = Set Of Optimal Solutions 

C = Current Optimal Solution 

M =Mutated Solution 

MS = Maximize Size Of PfApprox

Output: PfAPPROX' = Updated Set Of Pareto Approximations 

C' = Updated Current Solution II Cor M

IF (\PfAPPROX\ < MS)
{

PfAPPROX' = PfAPPROX + M
IF (Mis In A Less Crowded Region Of PfAPPROX)

C=M 
ELSE

ELSE

Identify Most Crowded Area Of PfAPPROX 
IF (M Would Occupy Less Crowded Area)
{

Remove A Solution From Most Crowded Area Of PfAPPROX' 
PfAPPROX' = PfAPPROX + M

IF (Mis In A Less Crowded Area Of PfAPPROX' Than Q
C' = M 

ELSE
C' = C

ELSE

IF (M Is In A Less Crowded Area Of PfAPPROX' Than Q
C' = M 

ELSE
G" = C

Algorithm 3.5 PAES Test Archive Procedure
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The Strength Pareto Evolutionary Algorithm (SPEA) proposed by Zitzler and 

Thiele (1999) is a simple and effective Genetic Algorithm that ranks solutions purely on 

dominance. An external archive of non-dominated solutions is maintained and a 

clustering method ensures that the archive does not grow larger than a predefined limit 

while maintaining the diversity within the archive. Parents for reproduction are selected 

from the union of the previous offspring and the archive through binary tournament 

selection with replacement where the quality of solutions is ranked by the proportion of 

solutions that they dominate or are dominated by. SPEA is an effective algorithm for 

multi-objective optimisation. However given its simplistic nature several enhancements 

can be seen in the literature.

Fieldsend et al (2001) introduce a number of extensions to the SPEA algorithm 

such as the maintenance of all non-dominated solutions discovered in the main 

population. The historical set of non dominated solutions become an active input to the 

search process. Zitzler et al (2001) introduces the SPEA2 algorithm. An update to the 

original algorithm that aims to resolve some of the perceived key failings of the SPEA 

algorithm that could under certain circumstances lose outer solutions. The SPEA2 

approach like the PAES algorithm of Knowles and Corne (1999) aims to maintain these 

solutions with the aim of ensuring that "a good spread of non-dominated solutions" 

(Zitzler et al, 2001 p.5) is maintained. The SPEA2 approach presents a modified elitist 

archive which is no longer purely elitist but which is made up of a fixed number of 

solutions, hi those cases where there is a shortage of solutions the archive is filled with 

dominated solutions. Where the size of the archive exceeds that specified as a maximum 

a clustering methodology ensures an even spread of solutions across the Pareto front. A 

final change between the two SPEA approaches can be seen in that the SPEA2 approach 

now limits the selection mechanism to the external archive of solutions. Algorithm 3.6 

and Algorithm 3.7 demonstrates the development of the original SPEA algorithm into 

the SPEA2 algorithm.
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Algorithm: SPEA Algorithm

Input: P = Size Of Population

G = Number Of Generations 

MPS = Size Of Mating Pool 

MS = Maximum Number Of Optimal Solutions

Output: PfAPPROX = Set Of Pareto Approximations

POPULATION = Generate Random Initial Population Sized P 
PfAPPROX = Empty Set Of Pareto Optimal Solutions 
MP = Mating Pool = { }

FOR (j = 0 TO G)
{

FOR (i = OTOP)
Evaluate Objective Function Of POP ULA TIONfiJ

PfAPPROX = Extract Non Dominated Solutions From POPULATION 
l¥(\PfAPPROX\>=MS)

Prune PfAPPROXUsing Clustering

FOR (i = 0 TO P)
Evaluate Objective Function Of POPULATION [i]

FOR (/ = 0 TO \PfAPPROX\)
Evaluate Objective Function Of PfAPPROX[i]

WHILE (\MP\ <=MPS)
Use binary tournament selection with replacement to select Solutions From POPULATION 
+ PfAPPROX adding candidates to MP

POPULATION = New Population Produced Using Mutation And Crossover From MP

Algorithm 3.6 SPEA Algorithm
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Algorithm: SPEA2 Algorithm

Input: P = Size Of Population

G = Number Of Generations 

MPS = Size Of Mating Pool 

MS = Maximum Number Of Optimal Solutions

Output: PfAPPROX = Set Of Pareto Approximations

POPULATION'= Generate Random Initial Population Sized P 
PfAPPROX = Empty Set Of Pareto Optimal Solutions 
MP = Mating Pool = { }

FOR(/ = OTOG)
{

FOR (i = 0 TO P)
Evaluate Objective Function Of POPULATION [i]

PfAPPROX = Extract Non Dominated Solutions From POPULATION 
IF (\PfAPPROX\ >= MS)

Prune PfAPPROX Using Truncation 
ELSE
{

WHILE (\PfAPPROX\ <= MS)
Copy A Dominated Solution From POPULATIONTo PfAPPROX

FOR (/ = 0 TOP)
Evaluate Objective Function Of POPULATION [i]

FOR (i = 0 TO \PfAPPROX\)
Evaluate Objective Function Of PfAPPROXfiJ

WHILE (\MP\ <=MPS)
Use binary tournament selection with replacement to select Solutions From POPULATION 
+ PfAPPROX adding candidates to MP

POPULATION = New Population Produced Using Mutation And Crossover From MP

Algorithm 3.7 SPEA2 Algorithm
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3.2. Multi Objective Simulated Annealing

Simulated Annealing is a generalization of a Monte Carlo method for 

"examining the equations of state and frozen states of n-body systems" (Metropolis et 

al, 1953). hi an annealing process a solid is first raised to a given temperature and then 

slowly cooled over time. At higher temperature the atoms making up the solid form a 

'chaotic' state with random jumps between various states being made. As the 

temperature lowers and the state of the solid becomes more ordered the atoms making 

up a solid become much more "controlled" and the ability to move limited, hi software 

form the temperature controls the ability to move to less optimal solutions, thus 

introducing the ability to escape from local optima. Single criterion Simulated 

Annealing has been widely applied to a number of applications including structural 

optimisation (Kolahan et al, 2007), map generalization (Ware et al, 2003) and labelling 

(Christensen et al 1995). Geman and Geman (1984) provide a proof that the method 

will when allowed sufficient time achieve a global optimum. Prior to introducing the 

multi objective approaches to Simulated Annealing seen in the literature the approach is 

first considered in single criterion form.

The Simulated Annealing algorithm is initialized through the generation of a 

random solution and by setting the temperature parameter T. Then the following is 

repeated until the termination condition is satisfied: A solution s' from the 

neighbourhood N(s) of the solution s is randomly sampled, hi effect s' is s with a change 

introduced. It is accepted as the new current solution depending on the fitness(/) or cost 

of the solutions f(s) andf(s') and T. s' replaces s iff(s') <f(s) or, in cases where f(s') > = 

f(s) with a probability which is a function of T and f(s') - f(s). The probability is 

generally computed following the Boltzmann distribution given in Equation 3.2. The 

terminating condition is usually specified as a small value such as 0.00001. The 

temperature T is decreased during the search process. Thus at the beginning of the 

search the probability of accepting 'inferior' moves is high yet over time the probability 

of accepting inferior solutions decreases as the value of T decreases. A basic 

implementation of the approach is given in Algorithm 3.8.
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Equation 3.2 Boltzmann Distribution

Where f(s) is the fitness of the current solution

Andf(s ') is the fitness of the mutated solution

And T is the current annealing temperature

And P, the result is the probability of accepting an inferior solution

Algorithm: Basic Simulated Annealing Search Algorithm

Input: T_0 = Starting Temperature 

T_C = Closing Temperature 

T_CR = Annealing Cooling Rate

Output: SBest = Optimal Solution Discovered // A Form Of Elitism

S = Generate Initial Solution
SBest = S
T=T_0

WHILE (T>=T_Q
{

S' = Select Alternative Solution From Neighbourhood Of S 
IF (f(5") < f(5)

S=S' 
ELSE

5 = 5" With Probability p(7;Fitness(5"),Fitness(5))

IF (f(5) < {(SBest)') 
SBest = S

T=T*T CR

Algorithm 3.8 Basic Outline of Simulated Annealing
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The concept of neighbourhood is important in a number of heuristic approaches 

and a key, problem-specific choice concerns the neighbourhood function definition. The 

efficiency of Simulated Annealing is highly influenced by the neighbourhood function 

used (Moscato, 1993). For instance, in the travelling salesman problem the 

neighbourhood is often considered the pair-wise swapping of any two city locations. 

Alizamir et al (2009 p. 15) suggest: "roughly speaking, a more complicated 

neighborhood structure may cover a wide range of the feasible region and has the 

potential of moving far away in a few number of iterations while a simple neighborhood 

structure needs far more iterations to move from one part of feasible region to another". 

Goldstein and Waterman (1988 p. 411) largely concur and in addition state: "The 

question now arises: what choice of neighborhoods N, will allow the algorithm to 

converge quickly? Intuitively, it seems that a neighborhood system that strikes a 

compromise between these extremes would be best". Alizamir et al (2009 p.4) proceed 

to list several criteria for effective neighbourhood selection:

Effectiveness: the power of the neighborhood structure in covering the whole feasible

space.

Efficiency: the efficiency of a neighborhood structure which is the quality of its

performance in covering the feasible region depends on several (contradictory ) factors: 

Speed: the number of moves needed to reach any arbitrary point in the feasible 

region

Computational Effort: the computations needed for each movement. 

Size (Number of Neighbors): the size of a neighborhood structure is defined as 

the number of solutions which are accessible in an immediate move from the 

current solution. A larger number is usually an advantage as any arbitrary 

solution can be reached in less number of moves.

Information Volume: the amount of information transformed. This information 

may be used to perform better moves through the feasible space. For instance, 

there are gradients, Hessian matrix, eigen values and convexity information for 

the continuous space and taboo list, function characteristics and lower & upper 

bounds for the discrete space.

Alizamir et al (2009)
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The discussion on Simulated Annealing as applied to single criterion algorithms 

is concluded in Algorithm 3.9. It shows the addition of an inner loop where multiple 

neighbour solutions are considered at each generation. The best solution from the 

neighbours obtained in the inner loop is recorded. Following the termination of the 

inner loop the algorithm continues as normal.

Algorithm: Simulated Annealing Search Algorithm With Multiple Neighbours 

Input: T_0 = Starting Temperature

T_C = Closing Temperature

T_CR = Annealing Cooling Rate

SN = Size Of Neighbourhood 

Output: SBest = Optimal Solution Discovered // A Form Of Elitism

N = Empty Set Of Solutions From Neighbourhood Of S. 
S = Generate Initial Solution 
SBest = S 
T=T_0

WHILE (T>=T_C)
{

FOR (i = 0 TO SN)
N=N+PS' II Select Alternative Solution From Neighbourhood Of S 

S' = Select Fittest Solution From N 
IF(f(5')<f(5)

5=5' 

ELSE
5 = 5" With Probability p(7T,Fitness(5'),Fitness(5)) 

IF (f(5; < f(SBest))
SBest = S 

T=T*T_CR 
N= {} II Empty The Neighbourhood Set

Algorithm 3.9 Simulated Annealing with Multiple Neighbours
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An early attempt at the solution of multi criteria problems using the Simulated 

Annealing approach can be seen in the work of Serafini (1992) in which a bi-objective 

methodology is developed, hi the approach of Serafini (1992) an initial solution (X) is 

generated randomly from within the search space. Following the perturb mechanism a 

solution (X1 } is generated from within the neighbourhood of the initial solution X. If the 

solution X1 is non-dominated when compared to solution X then the modified solution 

(X1} is added to an external archive of Pareto optimal solutions. That external archive 

will from now be known as PfAPPROX - the approximation of the Pareto front. The 

PfAPPROX set is extracted from this external archive set of solutions when the 

temperature has reached a terminating value. Serafini (1992) suggests that one of the 

major considerations is how and when to replicate the annealing process when dealing 

with multiple criteria. That is to say, how to deal with situations when solution X1 is 

either dominated or indifferent to the solution X. The traditional approach of the 

Simulated Annealing algorithm would involve the random acceptance of such a 

mechanism based upon the temperature at a given time together with a comparative 

fitness value. As the temperature decreases the probability of accepting a dominated or 

indifferent solution will decrease in line with the temperature. The approach taken by 

Sarafini (1992) is to combine the sum of all criteria into a single metric.

The work of Ulungu et al (1999) shares many similarities with that of Serafini 

(1992), in that both condense the multi objective problem into a single objective 

problem through aggregation. Ulungu et al (1998) present an interactive Simulated 

Annealing approach where users specify weightings for the considered criteria. The 

authors also discuss further the concepts of neighbourhood. Ray et al (1995) also make 

use of a weighted sum approach as part of the indifferent or dominated acceptance 

technique. Czyak and Jaskiewicz (1998) present a hybrid Simulated Annealing and 

Genetic Algorithm. The algorithm makes use of a "generating set" to assist in the 

management of weights, which are in turn used as the basis of the acceptability of a 

given solution based upon indifference or domination. At each iteration multiple 

assessments are made with various weightings replicating the population factor of the 

Genetic Algorithm.
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The Suppapitnarm et al (2000) approach makes use of a 'composite energy 

difference' for the acceptance criteria when reviewing indifferent solutions. Instead of 

weighting and summing the objectives to produce a composite energy difference for the 

acceptance criteria this algorithm uses a multiplicative function with individual 

temperatures for each objective with each weighting adjusted independently by the 

algorithm. These multiplicative energy functions are equivalent to a weighted sum of 

logs of the objectives. This removes the need for the assignment of weighting values to 

any of the objectives prior to the run. It should be noted however that the search process 

undertaken still limits the output to a single points on the front PfTRUE. Suppapitnarm 

et al (2000) also employ a 'return-to-base' scheme whereby the current solution is 

merged with another solution from the non-dominated archive to promote a better 

coverage of the front PfTRUE (the set of optimal solutions) and further increase the 

ability to escape local optima.

Suman and Kumar (2006) report on the increasing acceptance of SA for multi 

criteria analysis and suggest the following properties of Simulated Annealing for that 

acceptance noting that the methodologies will:

 find multiple solutions in a single run

 work without derivatives

 converge speedily to Pareto-optimal solutions with a high degree of accuracy

 handle both continuous function and combinatorial optimisation problems 

with ease

 be less susceptible to the shape or continuity of the Pareto front.

Suman and Kumar (2006)
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Suman (2005) makes an attempt to reduce the runtime required using the 

algorithms. Various stopping criteria are highlighted such as specifying the total number 

of iterations to be performed and a subset of that principle, the number of iterations at 

each temperature in the annealing process. The author proposes the 'FROZEN' 

mechanism. If the move does not find a better solution in a predefined number of 

iterations it is assumed that the algorithm will not generate further improvement and it 

is stopped. Suman (2005) highlights Pulido and Coello-Coello (2004) who apply a 

similar mechanism in evolutionary computation i.e. terminating after a fixed number of 

iterations with no improvement. Suman (2005, p. 1135) states:

"The total number of iterations required to obtain a good approximation of the 

true Pareto set, depends on many parameters like complexity, nature, feasible 

solutions, etc. of a problem. These parameters make the selection of total 

number of iterations, indeed, a difficult task. If less number of iterations is used, 

the quality of solutions generated in Pareto set will be bad. On the other hand, 

if an algorithm overruns towards the end no improvement in the quality of 

solutions is made as no solution has been placed in the Pareto set. But, the 

computational cost to obtain the solutions has increased. In either ways, it is 

related to Pareto set generated".

Smith et al (2008) propose the use of an 'energy measure' rather than a weight 

combination of criteria. In that work rather than using an aggregated weight the authors 

generate a vector between the current solution and the results of the perturb mechanism. 

Figure 3.8 presents a view of the energy measure value on an example Pareto optimal 

front.

129



\

V

Solution in PfApprox

Accepted Solution (Lower Energy State)

Discarded Solution (Higher Energy State)

Figure 3.8 Example Energy Measure Determination of Two Solutions

Smith et al (2008) report positive results using this method although the size of 

the front is large in the reported experiments. Bandyopadhyay et al (2008 p.270) 

propose a similar metric of "amount of dominance in order to determine the acceptance 

of a new solution". Bandyopadhyay et al (2008) suggest the use of multiple probability 

metrics the use of which depends on the domination relationship between the candidate 

solutions with indifferent solutions receiving a different acceptance probability to 

solutions where the mutated solution dominates the current solution. Singh et al (2010) 

highlight that the approaches of Bandyopadhyay et al (2008) and Smith et al (2008) 

introduce a complex number of checks performed to determine the dominance 

relationship between solutions. Singh et al proceed to introduce a methodology that 

extends that of Bandyopadhyay et al (2008) to better suit the introduction of constraints 

to objective values. It is of interest to note that Singh et al do not present any resolution 

to the complex dominance checks they highlight.
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In Li and Landa-Silva (2011) an algorithm making use of aspects of both 

evolutionary algorithms and Simulated Annealing approaches is proposed. The 

approach combines the selection scheme of the VEGA algorithm (Schaffer, 1985) with 

the probabilistic acceptance measures of Simulated Annealing. The methodology 

removes any genetic crossover procedure, replacing it with Simulated Annealing 

mechanisms. The authors report the works of (Merz, 2000; Krasnogor, 2002 and Hart et 

al, 2004) who adopt a similar approach when applied in single criterion optimisation. 

They make use of genetic search to explore the global search space while local search is 

used to examine locally optimal solution spaces. Nam & Park (2000) define several 

schemes for calculating the 'energy difference' controlling acceptance similar to 

Serafmi (1994). Based on a small empirical study of two-objective problems they 

suggest that the best is the average difference in objective values.

Ulbricht (2012) compares single and multi criteria approaches to Simulated 

Annealing and in addition provides a cross comparison with Genetic Algorithms in the 

form of the SPEA2 algorithm introduced in this chapter. The Simulated Annealing 

approach when handling multi objective is based on that of Bandyopadhyay et al 
(2008). The authors highlight a comparison of tests performed on a single objective 

Genetic Algorithm and Simulated Annealing together with multi objectives based on 

the SPEA2 based approach. Little difference is seen between single and multi objectives 

Genetic Algorithm approaches. The experiments undertaken are time based with the 

authors seeking the optimal results within a given period.

3.3. Multi Objective Tabu Search

The basic concept of Tabu Search as described by Glover (1986 p.541) is "a 

meta-heuristic superimposed on another heuristic". The technique attempts to enable 

escape from some local optima via the introduction of a memory function the purpose 

of which is to prevent the algorithm from revisiting recent solutions and so to try to seek 

new solutions with in the search space. This memory function forms the basis of the 

Tabu' of the method name. The method is actively researched and has been widely
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used in a variety of applications. Glover and Laguna (1998) attempt to formalize the 

nature of various levels of memory structure when applied to the Tabu Search algorithm 

as assisting in the formation of three distinct phases. These phases are referred to as the 

preliminary search, the intensification phase and the diversification phase. Figure 3.9 of 

Jaegii et al (2008) presents an outline of how the memory structure can be considered in 

terms of the application to multiple criteria problems.

The notion of memory is central to the Tabu Search. In order to improve the 

efficiency of the search process the technique aims not only to keep track of local 

information but also the search history. While other heuristic techniques limit the 

concept of memory to the fitness of the best solution s considered the Tabu Search 

maintains a historical record of the search process. The role of the memory will be to 

restrict the choice to some subset of N(i) by forbidding moves to those solutions that 

have recently been considered. An outline of the single criteria Tabu Search process is 

given in Algorithm 3.10. The notion of neighbourhood and the considerations for the 

optimal selection of the neighbourhood as seen in the Simulated Annealing algorithm 

also apply to the Tabu Search.
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Figure 3.9 Multi Level Memory Model (Jaeggi et al, 2008)
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Algorithm: Tabu Search Algorithm

Input: ITERATIONS = Number Of Iterations To Perform 

TABU_SIZE = Size Of The Tabu List 

SN= Size Of Neighbourhood

Output: SBest = Optimal Solution Discovered // A Form Of Elitism

N = Empty Set Of Solutions From Neighbourhood Of S.
S = Generate Initial Solution
SBest = S
TABUJ.IST = Set Of Solutions Considered Tabu

WHILE (i = 0 TO ITERATIONS)
{

FOR(i = OTOSN)
{

PS ' = Generate A Solution In The Neighbourhood Of S 
WHILE (TABU_LIST Contains PS')

PS ' = Generate A Solution In The Neighbourhood Of S

N=N+PS' II Select Alternative Solution From Neighbourhood Of S

S'= Select Fittest Solution From N

lF(f(S-)<f(S)
S = S' 

ELSE
S = S' With Probability p(T,f(S'),f(S))

IF (f(S) < f(SBest)) 
SBest = S

Prune TABU_LIST1o Size TABU_SIZE
i = i+l
N = { } II Empty The Neighbourhood Set

Algorithm 3.10 Single Criteria Tabu Search

The historically accepted approach taken to multi-criteria optimisation using the 

Tabu Search shares similarities with that of Simulated Annealing and has again 

involved the reduction from multi to single objective problem types. Notable works 

using the Tabu Search approach can be seen in the Multi Objective Tabu Search 

(MOTS*) approaches of Hansen (1997) and Gandibleux (1997). In the work of 

Gandibleux (1997) various weighting values are applied to the aggregating function. 

The algorithm introduces variations to these values independently to increase diversity
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in the search process. The work of Hansen (1997) also adopts the approach of applying 

weightings to give an indication of preference by the user to or against a given 

objective. Hansen discusses in depth the importance of the neighbourhood to the Tabu 

Search mechanism. Hansen (1997, p. 10) states: "With a neighborhood function which 

contains many neighbors for each solution, it can be more efficient to make moves 

based on a (probabilistic or systematic) sampling of the neighborhood, or in other ways 

reduce the neighborhood size". Later Hansen (p. 11) suggests, "With neighborhood 

functions well suited for Tabu Search, however, we may be able to locate the best 

neighbor without explicitly having to generate all the neighbors".

The work of Hertz (1994) compares three methods where multiple criteria are 

condensed into a single aggregated value. The work also introduces a hierarchy 

structure to the problem where lower "valued" criteria are used merely to indicate a 

priority where any series of solution may be considered indifferent. Applied to a real 

world MSPP three criteria are considered; distance, speed and road type. Where 

distance and speed solutions are indifferent a solution focused more on higher speed 

roads may be accepted. Jaeggi et al (2008) attempt to model the Tabu Search using a 

Pareto optimal approach rather than to treat the solution of such problems as a variation 

of an aggregation function. The approach taken here introduces the notion of short, 

medium and long term phases of memory (periods that solutions remain in Tabu) in 

order to intensify the search process. In the method suggested in the work medium term 

memory is represented by an external set of Pareto optimal solutions which form the 

seeds of a diversification method in the Tabu Search process. Short term memory 

consists of solutions recently covered. The authors make use of multiple neighbour 

generation methods and the random selection of indifferent solutions from within the 

locally non-dominated solutions.

hi Kulturel-Konak et al (2006) the "Multi nominal Tabu Search" (MTS) is 

proposed. The method described in that work selects an individual objective to be 

optimised at each iteration based upon a given probability vector with the authors 

stating the aim is to "remedy some general obstacles of the classical methods of multi-
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objective optimisation (i.e., weighting and scaling of each objective), while maintaining 

computational ease" (Kulturel-Konak et al, 2006 p.930). In order to assist in this the 

authors suggest several mechanisms including integrated constraints based acceptance 

or denial of solutions and the dynamic resizing of the Tabu list based upon the history 

of activity of a archive set of non-dominated solutions. Terano et al (2006) produce a 

hybrid Genetic Algorithm approach that combines a Tabu Search and Genetic 

Algorithm. They implement two tabu lists; one (long-term memory) represents the best 

solutions discovered during the run. While the short-term memory stores the optimal 

solutions discovered in a predefined number of iterations. Jaffres-Runser et al (2008, 

p.3900) directly compare aggregated function approaches to solving multi objective 

problems using the Tabu Search with multi objective approaches for designing wireless 

networks. They find that "In terms of computational time, the mono-objective search 

performs far better than the MO approach but the tuning of the mono-objective 

evaluation function parameters takes several launches to get the desired trade-off.

Grandinetti et al (2012) present an algorithm that is of interest due to its 

production of the Pareto optimal set and making use of Tabu Search. The work makes 

use of two phase approach. In the first phase a Tabu Search approach is used to 

generate candidate paths for the vehicle routing problem. As a second and separate stage 

the paths generated are subjected to analysis using multiple criteria for the production of 

the optimal front(s). The Tabu Search mechanism, based upon that of Brandao and 

Eglese (2008) is separate from that of the multi objective approach. The Brandao and 

Egelese approach performs a combination of several values into a single metric. 

Grandinetti et al (2012) highlight from the perspective of their work the important 

consideration is the method used to generate possible paths. Tabu search has commonly 

been used for the solution vehicle routing problems. A search of the literature reveals a 

large number of works including those of Cordeau and Maischberger (2012), Brandao 

and Mercer (2012) and Escober et al (2013) that meet three distinct requirements, 

firstly solving routing problems on graphs, secondly handling multiple objectives and 

finally making use of Tabu Search. However, all three and others reviewed either 

combined all objectives into a single value or handled each objective separately in a
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linear algorithm and considering certain objectives as constraints or limitation of service 

requests. Zhiping and Yuxing (2010) develop an approach based upon a parallel 

implementation of the Tabu Search. Their algorithm applies multi weights to criteria 

costs where rather than specific weights are select ranges for the weights are selected. 

The tabu process is then applied in parallel with the merger of all sets and the extraction 

of the optimal set.

3.4. Quality Measurement in Multi Criteria Based Optimisation

One of the principle difficulties of any experimentation performed on multi 

objective search problems can be seen in how to measure the completeness of the 

algorithms developed. Previous sections of this work (see Chapter 2) have sought to 

summarize how traditional approaches to path planning problems have been dealt with 

purely in terms of efficiency or effectiveness i.e. how effective is a particular data 

structure in decreasing the run time of algorithms such as the Dijkstra shortest path 

algorithm? If the problem considered is one where multiple objectives are to be 

evaluated then it is likely that there will be no single optimal solution or the alternative 

of an ordered set of solutions. Such problems are considered "comparative" problems. 

As there is no single 'best' solution to the question being asked the ideal answer will 

vary on any number of criteria. Zitzler et al (2003 p.2) suggest, "The notion of 

performance includes both the quality of the outcomes as well as the computational 

resources needed to generate this outcome". However, in order to effectively compare 

multi objective approaches such metrics do have substantial value.

Veldhuizen and Lamont (1999), Shaw et al (1999) and Ripon et al (2007) 

highlight several reasons why the definition of quality becomes much more difficult 

when dealing with problems that are multi criteria in their nature, hi those works it is 

stated that when dealing with criteria that may often be competing with each other the 

use of a single metric is unlikely to result in an effective analysis. One of the historic 

approaches of undertaking an analysis of multi objective problems has been based upon
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a visual inspection of the sets PfTRUE (the known complete answer) in conjunction 

with the output of any algorithms developed to add in the solution of the problems 

(PfAPPROX). When faced with a simple bi-criteria problem the spread and proximity of 

solutions to the Pareto front can be inspected on a simple line/scatter graph 

representation. A similar situation exists when the number of criteria is increased to 

three. Going beyond three dimensions/criteria increases the difficulty posed in 

undertaking an analysis.

Since the work of Veldhuizen and Lamont (1999) several other detailed studies 

have been undertaken into the problem of assessing the quality of such solutions. 

However the value that remains in the simple yet effective use of visualisation as an 

analysis technique into the quality of solutions should not be underestimated. Zitzler et 

al (2004, p.29) suggests, "That in general the quality of an approximation set cannot be 

completely described by a finite set of distinct criteria such as distance and diversity". 

The works of Deb (1999) and Shaw et al (1999) highlight that in order to reach an 

effective analysis of a multi objective problem it is necessary to measure factors such as 

spacing, diversity, and general search space coverage. The metrics used in the literature 

to assist in the solution of multi objective problems fall into two distinct categories; 

those that may be considered purely quantitative metrics and those which attempt to 

measure the 'quality' of the solution provided by the algorithm. It should become 

apparent when reading the following section however that a great deal of importance is 

placed upon having some pre-acquired knowledge of the front PfTRUE. The ideal (or 

close to it) answer should have been developed in order to judge the quality of the 

output from the algorithms. Figure 3.10 suggests an example of a front of PJTRUE and 

PfAPPROX. Table 3.1 gives the member variables for those two fronts. Both functions 

Fl and F2 are examples of minimization problems. When discussing quality measures 

frequent reference is made to both Figure 3.10 and Table 3.1.
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Table 3.1 Comparison of Sets P/TRUE and PfAPPROX Based on Figure 3.10

3.4.1. Convergence Measuring Metrics

The simplest performance metric is a simple count of the number of solutions that 

form a particular front. In the case of the example presented in Figure 3.10 and Table 

3.1 the values would be 6 for the front PfTRUE and 5 for the front PfAPPROX. The 

simplistic nature of the metric however gives no insight in the quality of the solution
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returned from any algorithm. The simple summation of the member(s) of any front 

leads onto the Overall Non-dominated Vector Ratio (ONVGR) metric that returns the 

ratio between the solutions known to be in PfTRUE and those discovered in PfAPPROX 

(Van Veldhuizen & Lamont, 1999).

\PfAPPROX\ ONVGR - —      - 
\PfTRUE\

Equation 3.3 ONVGR Metric

Where PfTRUE is the set of optimal solutions previously calculated.

And PfAPPROX is the of solutions generation representing the approximation of 

PfTRUE

In the case of the solution sets given in the examples provided (Figure 3.10 and 

Table 3.1) the ONVGR returned from any analysis would be 0.83 (5/6). Again, the 

ONVGR metric is simplistic in nature and adds little in the way of true meaning. A 

returned value of one indicates that in terms of quantity PfTRUE and PfAPPROX are 

equal. However, this does not indicate that the two fronts are equal using other factors 

merely that they contain the same number of points and so do not really reflect the 

'quality' of the solution and is therefore of limited value when used as the sole quality 

metric.

Where the ONVGR metric attempts to measure the relationship that exists 

between the contents of the front PfTRUE and PfAPPROX the error ratio (ER) metric 

(Van Veldhuizen, 1997) measures the number of solutions in PfAPPROX that are not 

present in PfTRUE.
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ER =
n

Equation 3.4 Error Ratio Metric

Where «is \PfAPPROX\

And et = 0 if the solution is an element of PfTRUE or = 1 if the solution is not a 

member of the set PfTRUE.

The metric obtained from the ER equation should be between zero and one. The 

closer the value is to zero then the closer to the front PfTRUE the set PfAPPROX is. 

Table 3.2 is reproduced from Table 3.1 with the addition of the highlighting of those 

solutions in PfTRUE that are not present in PfAPPROX. Taking the front shown in 

Figure 3.10 as an example only the solutions at either end of the front PfTRUE are also 

present in the front PfAPPROX indicating that for the example provided the value 

obtained from the error ratio calculation would be 0.4 as only two solutions present in 

PfRUE are also present in PfAPPROX. The generational non-dominated vector 

generation (GNVG) metric (Van Veldhuizen, 1997) simply lists the number of solutions 

in each generation and can be extended to form the non-dominated vector addition 

metric (NVA) which calculates the difference between two sets PfAPPROX between 

generations.
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Table 3.2 Error Ratio (ER) Table
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3.4.2. Metrics Coverage Distance, Coverage and Spread

Practitioners rarely use the ONVGR or ER metric described in the previous 

section as the sole quality metric. The metrics discussed so far are purely quantitative 

methods that do not measure the actual Pareto front. For instance Table 3.1 shows that 

PfTRUE has as a member a solution occupying the space at world coordinates {1.3,4}. 

There is no corresponding member with the set PfAPPROX but there is however a close 

neighbour located at world coordinates {1.4,4.1}. The following section details a series 

of heuristics that can be used to attempt to model the quality of solutions.

The error ratio metric may be extended in order to more accurately measure the 

true relation between the front PfTRUE and PfAPPROX. The general distance metric 

(GD) measures the distance between each member of the front PfAPPROX and the 

nearest neighbour (using Euclidian distance) in the front PfTRUE with the resultant 

metric being the average of those distances.

Equation 3.5 Generation Distance Metric

Where C = the number of criteria being considered 

And;? = 2

And d ( = the minimum distance between a member of PfAPPROX and a member of 

PfTRUE
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Table 3.3 extends Table 3.1 to match solutions present in the front PfAPPROX 

to the closest neighbour in the front PfTRUE. The Euclidian distance is also included. 

The vector information in the example would provide a generational distance of 0.26.

PfTRUE

F2

4.5

2.7

1.3

0.5

Fl

1.2

1.7

2.5

PfAPPROX

F2

2.9

1.4

0.5

Fl

1.2

2.4

2.9

4.1

Average Distance (GD)

0.00

0.86

0.45

0.14

0.00

0.26

Table 3.3 Generational Distance Measures

The maximum Pareto front error (MFE or MPFE) is another metric which 

attempts to measure the distance between solutions on the fronts PJTRUE and 

PfAPPROX. Where the generational distance metric attempted to measure the distance 

between the closest solutions on the front PfTRUE the MFE metric uses a reverse logic 

and presents the largest distance. In the example used elsewhere in this section the MFE 

error returned would be 0.86 between the solutions located at {4.5,1.7} on PfTRUE and 

{4,2.4} on PfAPPROX. A value of zero returned would indicate that the two fronts are 

equal. Deb et al (2002) propose the spacing metric which aims to measure the average 

distance between solutions.
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Equation 3.6 Spacing Metric Metric (Ripon, 2007)

Where n = \PfTRUE\ or \PfAPPROX\ (depending on the set being considered). 

And d = the mean value of all dt 

And di=mmy|/i OK)   _/j

Zitzler (1998) introduces the hyper-volume metric as a method of measuring the 

quality of a given solution space. Beume et al (2009) state that the hyper volume metric 

displays the ability to measure both the proximity of a solution to the front PfTRUE and 

the spacing along the front PfAPPROX. hi a solution space where two objectives are 

considered i.e. the solution space of both PjTRUE and PfAPPROX each member of the 

solution set can be measured as a rectangle covering the space from {0,0} to {f(x),f(y)}. 

Where f(x) andf(y) are (assuming a bi-criterion problem) the maximum values seen for 

each criteria Figure 3.11 and Figure 3.12 present the front PfTRUE previously shown in 

Figure 3.10 with the addition of the various hyper volume rectangles and complete 

hyper-volume indicated respectively.

As illustrated in Figure 3.11 and Figure 3.12 a comparative downside to the 

hyper-volume can be seen in the computational effort required in its calculation. For 

this reason various authors such While et al (2005), WTiile et al (2006) and Fonseca et 

al (2006) have sought to develop methodologies for reducing the complexity of the 

method. Auger et al (2012) investigate the use of the weighted hyper-volume metric as 

a method for generating user preference points. Bader and Zitzler (2008) generate an 

alternative method where the hyper-volume metric is used as the formation of a fitness 

function.
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•PfTRUE

Figure 3.11 Hyper Volume Rectangles

•PfTRUE

Figure 3.12 Hyper Volume Front
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3.5. Chapter Summary

This chapter introduced the various algorithms that have been used to solve 

multi-objective algorithms and to provide some insight into the complexities involved in 

measuring the completeness of solutions offered by those methodologies. Evolutionary 

approaches in the form of Genetic Algorithm dominate the literature regarding multi 

objective optimisation, though increasingly in recent years ant colony optimisation has 

become a popular technique. Little research has been undertaken into the use of 

techniques such as simulated annealing and the tabu search for multi objective 

optimisation. Where those techniques have been used then the principle methodology 

has historically been to reduce the multi objective problem into a single criterion using 

weightings. Only recently have fully Pareto based solutions been sought.

This chapter serves to lay the groundwork for the next chapter in which the 

primary aim of this work is undertaken, namely the solution of the multi criteria graph 

optimisation problem using those techniques (EA, the Tabu Search and Simulated 

Annealing). Reviewing the literature highlights that in many cases where multiple 

objectives are considered using the Tabu Search and Simulated Annealing, the 

overwhelming majority of those works use either aspects of the approaches in 

conjunction with evolutionary approaches (hybrid algorithms), or condense the problem 

into a single criteria problem using aggregation or weighting. The relatively few works 

where this is not the case use some form of energy measure or vector to measure the 

distance from a solution to the approximation of the Pareto front. Despite the fact that 

several alternative heuristic techniques have been applied to multi objective problems, 

no evidence of the application of the same techniques having been applied to the 

problem of the MSPP can be seen. The travelling salesman (Pancero and Mart, 2006), 

the vehicle routing problem (Banos et al, 2012; Zidi et al, 2011) and the knapsack 

problem (Gandibleux and Freville, 2000) are examples of where the various 

optimisation techniques have been applied to graph based problems. One of the central 

goals of this research is to attempt to develop these alternative mechanisms addressing 

specifically the MSPP.
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Chapter Four: Experimental Design
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4. Experimental Design

This chapter opens with an introduction the datasets against which the various 

algorithms will be tested. Following on from this brief introduction to the datasets the 

methodologies employed by the various heuristic algorithms are introduced. Algorithms 

for the extraction of the optimal front are presented and the mechanism used for path 

representation introduced. The format of the various datasets used by the algorithms is 

considered along with any steps involved in the translation from single to multi criteria 

or from alternative data formats such as geographic road network information. The 

heuristic methods are then introduced alongside a series of support algorithms. Prior to 

the introduction of the methodology, data and algorithms used in the study it is useful to 

reproduce the aims of the project from Chapter 1.

To develop alternative heuristic techniques (to the Genetic Algorithm) for the 

solution of the MSPP

Assess the ability of those heuristic techniques to solve the MSPP against real 

world and synthetic graphs

Compare the alternative heuristic approach with algorithmic methods for the 

solution of the MSPP

Three alternative techniques to the Genetic algorithm approach have been 

identified. Those techniques are the Simulated Annealing, the Tabu Search and PAES. 

The final of the three techniques identified, the PAES algorithm, is of interest given its 

background as the only method implemented for the study that was from conception 

designed to handle multiple criteria. The Simulated Annealing and Tabu Search 

techniques are selected due to their widespread use in alternative routing based
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applications such as vehicle routing and travelling salesman applications. The Genetic 

Algorithm has been used elsewhere (as detailed in Chapter 2) for the MSPP and is 

implemented here in order to provide a comparative base for the selected algorithms.

The requirements of the methodology were developed from an analysis of the 

existing work detailing the analysis of Genetic Algorithms for the solution of MSPP and 

as such the methodology employed in this work has been heavily influenced by those 

same existing works. Recent developments in the application of vector measurement 

when handling multiple criteria for Simulated Annealing heavily influenced the 

methodology and implementation of that (Simulated Annealing) approach, together 

with the Tabu Search. Prior to work detailing the approach vector measurement 

approaches initial developments for this work consisted of algorithms basic upon the a) 

selection of a preferred criteria which would act as a tie breaker in cases of indifference 

or b) combination of the costs into a single value.

4.1. Graph Data Structures

In the current section details of the implementation of the graph structure and 

algorithms are introduced. C# is an object-oriented programming language that makes 

it easy and logical to embed functionality regarding each of the "objects" in a graph to 

individual classes. Figure 4.1 presents a UML schematic of the core graph objects in the 

developed software. Appendix C includes further UML schematics of the developed 

system including the domination system, paths and random walking and finally an 

example of the heuristics in the form of the tabu search. The current section however 

focuses on the core aspects of graph implementation with a description of how the 

various objects or classes developed relate to each other and the algorithms developed.

First, we consider the importance of generics to the implemented software. In 

the simplest definition generic programming is a programming style in which
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algorithms are written in terms of to-be-specified-later types that are then instantiated to 

a given parameter type later as and when needed. The Graph and related classes make 

heavy use of generics. The use of generics in the development of the graph class 

enables, for all the graph related algorithms, the development the implementation of a 

single graph object with edge type defined as and when needed by the algorithms. The 

same graph class can handle edges with no costs, single costs or multiple costs with no 

amendment to the underlying Graph object.

Source 1 get; s«;J:rt 
Target { get; «t; } : ht 
To5h*nj() : strno,

TargeUget; wt;}:n
ToStmgO : strng
SOdg»0
5CEdge(p5our«: rt, pTarget: rt)
5CEdge(p5ourc<: tt, pTaget: «, oCost

MCTdge(pSource: nt, pTarget: rt)
MCEdge(pSource: int, pTarget: ht, pCosU; Co*Ust)

{ get; > : bod 
£numraUe<IEdge

VarbtK < gat; M IErunefabie<rt>
VertexCostiget;} rt
Contat»Vert«i(ID: rt) : bod
UOutEdowEmptvO : **

<IE(lge>
TryGetlrfdgesO ; IEnunwable<IEdge> 
TtrtetOutfdgeO • Erunerat4eCEoge;> 
TryGetf dge<p5oLrce: rt, pTarget: rt) : (Edge 
IrCdgefID: rt, Irtdei; rt) ; void 
OutEdgeflD: ht, lnde>: ft) : Edge

AddVertex««ige(VertRc: (Enumerable <rt>) : bool 
AddEdge(sourw: rt, target; rt) ; bod 
AddEdge(Edge [Edge) : bod 
R«moveNode(lD: rt) : bod 
Remcrv«Edge(pSource: rt, pTarget: rt) : bod

- flJo«P»*l {get; set; }: bod 
MMadfoet; }: bod

Figure 4.1 UML Diagram Representing the Graph Structure
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The lEdge interface is, alongside the Graph object, a key aspect of the 

implementation. The interface has member variables for the head and tail of the edge 

along with accessing properties for both which enable data validation (in the form of 

basic logic checks to take place). The Edge class is the most basic encapsulation of the 

behaviours of the lEdge interface and simply store details of the head and tail, interfaces 

in C# cannot become variables hence the creation of the separate class. The SCEdge 

class encapsulates the same behaviours but has an additional member variable for the 

weight or cost of the edge. SCEdge is used to represent the edge seen on a single criteria 

graph. The MCEdge also encapsulates the behaviour of the lEdge interface but in 

additional allows the storage of multiple costs through the use of the CostList class as a 

member variable. The CostList class inherits the basic behaviours of the List collection 

of the standard C# library. The EdgeList class is used to group together one or more 

edges from the graph. The EdgeList class encapsulates the behaviours of the standard 

List Collection in the form List<IEdge> therefore the EdgeList class can store details of 

each edge type without modification. The VertexEdgeDictionary inherits the basic 

properties of the C# Dictionary class in the form Dictionary><int,EdgeList>. Each 

vertex a graph has an associated entry in the VertexEdgeDictionary with the edges being 

linked to that vertex via the dictionary lookup structure. The Graph class stores the 

details of the incoming and outgoing edges associated with each graph vertex in the 

inEdges and outEdges class respectively. The use of the Dictionary requires the 

performance of a validity check prior to edge insertion but allows for fast extraction of 

incoming and outgoing edges. The GraphFactory class enables the reading of graph 

files from disk as shown in Algorithm 4.1. The factory class itself has two simple 

boolean member variables that indicate if the graph is directed and if parallel edges are 

allowed between nodes. The class aims to provide functionality rather than act as a 

storage mechanism with the entire graph returned from the graph loading mechanisms. 

The AlgortihmBase defines the basic properties of the algorithms used be it single 

criteria Dijsktra shortest path or multi criteria Simulated Annealing. Each algorithm 

inherits the basic properties of the AlgortihmBase class and therefore has an instance of 

both the Graph and GraphFactory classes as properties. The following brief sections of 

code demonstrate how the use of code generics allow the graph class to handle various 

edge types without modification.
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The remaining classes in the system such as those used to represent paths etc act 

in the same way, where possible making use of inheritance to reduce code duplication. 

A Path inherits from the List (List<int>) object with each element of the list 

representing a vertex visited. SCPath (representing a single criteria path) inherits the 

behaviours of Path and with the total cost stored as a member variable. MCPath 

(representing a multi criteria path) also inherits from Path but has a CostList as member 

variable. Population inherits from List in the form List<MCPath>. The tabu list 

(TabuLisf) inherits from Population but has additional functionality to control the size 

of the tabu memory. As stated further UML definitions are included in Appendix C but 

wherever possible software development process makes use of the basic principles of 

object-orientation. Full source code has been included on Compact Disc with this thesis.

Algorithm: Examples Of Graph Loading

Input: NONE

Output: NONE

bool IsDirected = false;

// In actual code this would be a algorithm, not AlgortihmBase as it is an interface 
AlgorithmBase AB = new AlgorithmBaseQ;

// Create an instance of a single criteria graph using external GraphFactory
GraphFactory GF = new GraphFactoryQ;
Graph<int,SCEdge> SingleCriteriaGraph = GF.LoadSmgleCriteriaGraph("TestSC.gr",IsDirected);
AB.Graph = SingleCriteriaGraph

// Create an instance of a multi criteria graph using external GraphFactory
GraphFactory GF = new GraphFactoryQ;
Graph<int,MCEdge> MultiCriteriaGraph = GF.LoadMultiCriteriaGraph("TestMC.gr",IsDirected);
AB.Graph = MultiCriteriaGraph

// Create an instance of a multi criteria graph (only reading two criteria if more than 2 exist) using internal
//method
AB.GraphFactory.LoadMultipleCriteriaGraph("TestMC.gr",IsDirected,2);

Algorithm 4.1 Examples of Graph Loading Procedures
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All algorithms are implemented using the Microsoft C# language. The 

experiments were conducted on a single system. This consisted of an Intel Quad core 

processer operating at 2.13 GHz and with 4 GB of RAM. The operating system on the 

machine was Microsoft Windows 7 (64).

4.2. Data Selection

The experimental phase of the project makes use of data sets from two sources. 

The SPRAND 1 software has been utilized in order to generate a number of random 

graphs. The edge/vertices ratios selected for those graphs are intended to mimic those 

that may be found in the real world in the form of roads (Jabob et al, 1999). A second 

set of data formed from real world road networks is also used. The real world road 

network(s) presented are sections of the UK road network.

4.2.1. Randomly Generated Graphs

The SPRAND software (Cherkassky et al 1996) was utilized to generate a series 

of random graph structures. A number of graph sizes are selected, these range from 100 

x 250 (100 vertices and 250 edges) through to 12000 x 36000. The edge/vertices ratios 

of the randomly generated graph were kept consistent with typical levels found in real 

world graph structures such as roads. Jacob et al (1999) highlight a ratio of around 2.6 

in road networks. In Chapter 2 (Section 2.6) the size of a variety of road datasets was 

considered when comparing road networks with social networks. A typical density ratio 

of 2.1 ~ 2.8 can be seen in road networks. In an effort to counteract the presence of any 

small world clustering five graphs at each size were produced. The SPRAND software 

was selected for use in this study due to its use in other graph optimization studies 

where both single and multiple criteria are selected.

SPRAND is the name of the program, and is not an abbreviation.
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The SPRAND program generates the underlying graph topology together with a 

single criterion cost. A further piece of software was developed which produced a user- 

defined number of additional criteria. The values for these additional criteria where 

based within a user defined bound range together with the value of the initial criteria 

generated by SPRAND. The software used to generate additional criteria costs does not 

manipulate the structure of the graph produced by SPRAND. The method of operation 

of the software is provided in 4.2.2 specifically Algorithm 4.3. Table 4.1 presents the 

complete set of graph sizes typically used during the experimental phase of the work. 

Where necessary for the purposes of a given experiment additional graphs were 

produced. Where this is the case, the experimental description highlights the fact.

Graph Name

100X150

100X200

100X300

200 X 300

200X400

500X1000

500 X 1500

750 X 1500

750 X2000

1000X 1500

1000X2000

1000X3000

2000 X 3000

2000 X 4000

2000 X 5000

3000 X 5000

3000 X 6000

3000 X 7000

5000 X 6000

5000 X 7000

|V|

100

100

100

200

200

500

500

750

750

1000

1000

1000

2000

2000

2000

3000

3000

3000

5000

5000

|E|

150

200

300

300

400

1000

1500

1500

2000

1500

2000

3000

3000

4000

5000

5000

6000

7000

6000

7000

Graph Name

5000 X 8000

5000 X 10000

5000X15000

5000 X 20000

5000X20000

6000 X 9000

6000 X 12000

6000 X 15000

8000 X 9000

8000 X 12000

8000X16000

8000 X 20000

10000X15000

10000X20000

10000X25000

10000X30000

12000X 15000

12000X24000

12000X36000

|V|

5000

5000

5000

5000

5000

6000

6000

6000

8000

8000

8000

8000

10000

10000

10000

10000

12000

12000

12000

|E|

8000

10000

15000

20000

20000

9000

12000

15000

9000

12000

16000

20000

15000

20000

25000

30000

15000

24000

36000

Table 4.1 Random Graph Sizes
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4.2.1.1 Calculation of Front PfTRUE

On anything but the smallest of graphs enumerating all of the paths between two 

vertices on a well-connected graph would prove difficult as there is no realistic 

methodology for quantifying the actual number of paths that exist between those 

vertices. Mooney (2004) advocates the use of geodesies suggesting that should the 

vertices exist in the same local neighbourhood then few optimal paths will exist. A 

geodesic path is the shortest path through the network from one vertex to another. 

Vertex pairings with a high geodesic value will theoretically be outside the local area 

and more likely to have the property of a large number of optimal paths. Taylor (1999) 

performs a similar action based upon visual analysis of the network. Algorithm 4.2 

from Newman (2001) is used to calculate the geodesic path (shortest number of edges 

traversed) from a source vertex to all other vertices. The source vertex is stored together 

with all other connected vertices (destinations) and the geodesic length of that path. The 

list is stored in reverse order with paths of the highest geodesic value coming first. The 

process is repeated for the required number of iterations, upon completion of which 

each of the lists is merged into a single 'master list', which is again sorted into 

descending order of geodesic length. The 'master list' forms the basis of vertex pairings 

which will be subjected to further analysis, in the hope that those paths will consist of 

fronts with a higher number of solutions being seen as optimal.

A brute force approach is used to acquire the fronts PfTRUE on random graphs 

on vertex pairings with a high geodesic value (taken from the 'master list'). The K 

shortest path methodology is performed with a high degree of K. That technique allows 

for the admission of a large number of paths between two vertices on the graph. In 

addition the random walk algorithm is allowed to operate over a long period (one hour) 

in order to produce a substantial number of paths between the two vertices. The Pareto 

optimal front (PfTRUE) is extracted from the combination of both sets of paths. Where 

\PjTRUE\ > 3 the source and destination vertices are stored together with the contents 

(path descriptions) of PfTRUE. The process was repeated until 5000 pairs of vertices 

where \PJTRUE\> 3 were discovered, or full graph exploration performed. A value of
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\PfTRUE\ > 3 has been selected for two related reasons. Prior to the introduction of a 

substantially automatic procedure for the extraction of the set of optimal solutions 

between two vertices on a graph, a lengthy period of manual extraction on real world 

graphs took place. For rural roads it became apparent that a large number of vertex 

pairings selected only have one or two paths present in the set of optimal solutions. It is 

logical that other road types will also have the same property, that is, only two optimal 

paths between a randomly selected pair of nodes but the property appears more 

frequently on rural roads. A value of three was selected to provide a form of filter to the 

search process. Without the filter (\PJTRUE\ > 3) any two vertex pairings could be 

selected. In order to introduce a 'challenge' for the heuristics the filter was introduced. 

In the work we are interested in testing the algorithms ability to seek out or evolve to 

optimal paths. If there is a limited number, say one or two paths then the challenge set 

to the algorithms may be illogical. Without the value of the filter put in place 

performing the analysis would simply be the case of applying any shortest path 

algorithm to the search process. As the aim of the heuristics employed is to identify 

high quality solutions yet not specifically the shortest paths in any criteria. Setting the 

filter value greater higher than the number of criteria increase the likelihood of the 

pairing providing a challenge to the heuristic algorithms.

4.2.2. Graph Format

The graphs created by the SPRAND software are stored as a series of flat files in a 

format extended from that used in the various DEVIACS (Discrete Mathematics and 

Theoretical Computer Science) challenges. The output of the SPRAND software 

presents a single criteria graph with the following properties:

  A graph contains n vertices and m edges

  Vertices are identified by a series of positive integers

  Graphs can independently considered directed or undirected

  Graphs can have parallel arcs and contain self loops
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  The costs associated with an edge may be positive or negative, although in the 

case of the graphs used in this study only positive edge costs are considered with 

the lower and upper bounds specified during the graph generation process.

Algorithm: Newmans' Geodesic Distance Calculation Algorithm 

Input: G = (\V\,\E\) = A Graph

S = The Source Vertex For Geodesic Analysis 

Output: D = Set Of\V\ Containing Geodesic Distances

P = Set Of |V| Containing Predecessor Vertices 

STILL_VERTICES_UNVISTED = true

D[i] = oo

P[S] = S 
D[S] = 0

WHILE (STILL_VERTICES_UNVISTED)
{

VERTICES JHTHJDISTANCE = Get Vertices With Distance WS

FOREACH (Vertex v In VERTICES WITH DISTANCE)
{

OUTGOING _EDGES = Get Outgoing Edges From v in G(E)

FOREACH (Edge e in OUTGOING _EDGE)
{

IF(Z)[HeadOfe]==oo)
{

£>[HeadOfe] = fFS+l 
P[HeadOfe] = v

}
ELSE IF (£>[Head Ofe] = (WS+\)) 

P[HeadOfe] = v
} 

}

WS= WS+ 1 

STILL_VERTICES_UNVISITED = false

STILL _VERTICES UNVISITED = true;

Algorithm 4.2 Geodesic Calculation Algorithm (Newman, 2001)
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The files output by the SPRAND software consist of five line types. Table 4.2 

presents a basic outline of those types, hi the work undertaken for this thesis the only 

line considered are the edge description lines (those starting with 'a'). The remaining 

line types are ignored by the developed software. Figure 4.3 presents a simple graph 

consisting of five vertices and eight edges generated by the SPRAND software while 

Figure 4.2 presents a visualisation of the same graph definition obtained from the 

SPRAND software.

Type
Comment Line

Graph 
Dimensions
Meta Information

Source Node
Edge Descriptor

Purpose
Comment lines can appear anywhere 
and are ignored by programs.
Indicates the number of nodes and edges 
in the graph
Gives background information about the 
graph
Indicates the number of arcs in the graph
Specify an edge, giving the source, 
target and weight of the edge in that 
order

Example
c This is a comment

p sp 5 8

trd_5_8_2147483647_

n 1
al 23

Table 4.2 SPRAND Attribute Types

Having acquired a basic random graph with single criteria edge costs a further 

piece of software developed for the study is run in order to generate a user-defined 

number of criteria. The software itself does not manipulate the graph structure obtained 

from the SPRAND, and instead merely generates criteria values based upon a user- 

defined bound set. Figure 4.4 presents the updated graph structure following the 

application of additional criteria using the software developed and is an example of the 

input information into the various heuristic algorithms developed for analysis during the 

experimental phase of this work. The "GraphFactory" class described in section 4.1 

reads graph information in the DIMACS format ignoring all lines other than edge 

descriptors. Other than the application of additional comment information, which is 

ignored by the developed algorithms, and the application of user specified weight 

information no changes are made to the basic graph structure are made. Algorithm 4.3 

highlights the conversion process.
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Figure 4.2 Visualisation of Simple SPRAND graph

c random network for shortest paths problem 
c extended DIM ACS format 
c 
trd_5_8_2147483647_ 
c
c
psp
c
n
c
a
a
a
a
a
a
a
a

1

1
5
2
3
4
3
5
3

5 8

2
1
3
4
5
4
3
5

4316
6093
9317
9126
5229
6283
3126
9568

Figure 4.3 Single Criteria Graph from SPRAND

c A Multi Criteria Graph
c Converted From "SmallExampleGraph.gr"
c With bounds 1-10
a!2 158
a51342
a23569
a34442
a4523 1
a34778
a53349
335218

Figure 4.4 Single Criteria Graph Following Multi Criteria Conversion
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Algorithm: Convert Single To Multi Criteria Graph Algorithm

Input: PATH = The Name Of The Input Graph Produced By SPRAND

OUPUT= The Name That The Multi Criteria Graph Will Be Saved As

MN= The Lower Bounds Of Each Arc Cost

MAX = The Upper Bounds Of Each Arc Cost

CRITERIA = Number Of Criteria To Create 

Output: A File On Disk Representing A Multi Criteria Graph

Reader = Open PATH For Reading 
Writer = Open OUTPUT For Writing 
R = Random Number Generator

Save Comment Information to Writer II A description of the graph - meta data only

Line = Read A Line From Reader 
WHILE (Line != Null)
{

WHILE (Line Contains " ") // Double Spaces
Replace Double Spaces In Line With Single Spaces

IF (Line Starts With 'a')
{

PARTS{} = Line Split By Spaces
// PARTS 0-2 Will be the Arc indicator, head and tail of the Edge. Ignore The Arc Indicator
// and existing costs in PARTS[3>]
NEWLINE = "a " + PARTSflJ + " " + PARTS[2] + " "

FOR (i = 0 TO CRITERA-1)
NewCriteria = Get A Random Integer Between MN && (MAX+l) From R 
NEWLINE = NEWLINE + NewCriteria + " "

Remove The Last Character From NEWLINE II It will be a space and not needed 
Use Writer To Save NEWLINE To Disk

}
Line = Read A Line From Reader 

} 
Dispose Of Reader and Writer____________________________________________

Algorithm 4.3 Conversion to Multiple Criteria Algorithm

4.2.3. Real World Graphs

Road networks for the UK were sourced and reviewed. The selected data forms part 

of the Integrated Transport Network (ITN) layer of the Ordnance Survey (OS) 

MasterMap information sets. A series of towns and cities in England and Wales have 

been selected as base points. Newcastle Emlyn in South West Wales, Cardiff in South 

East Wales and London in South East England. For each of these three locations a series
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of distance intervals ranging from 250 meters through to 6000 meters were selected 

(taken from the OS Centroid coordinate for that location) and the road network and road 

restriction information extracted for that distance interval. For certain experiments a 

given distance interval value may not be considered for a location, hi the following 

section the reason for selecting a particular location is presented together with a 

description of the data. The scale of the graphs used is 1:1250 for urban areas and 

1:2500 for rural areas. Other datasets of road network information have been considered 

for analysis. Alternatives reviewed consisted of the OS Strategi and Meriden products 

consisting of 1:250,000 and 1:50,000 data sets respectively. Those two products 

however lack the 'completeness' of the Mastermap ITN layers failing to include 

features such as alley ways and private roads. Table 4.3 provides details of the road 

types available via the OS ITN network layer.

International data sets can be found in the forms of US Tiger/LINE data, a set 

freely available for each of the 50 US States or the US National Highway planning 

networks, again freely available for each of the 50 US States at a scale of 1:100,000. 

Zhan and Noon (2000) make use of multiple resolutions of various US state road 

networks. The information sets used by Zhan and Noon are no longer available. The 

OpenStreetMap project allows for the export of crowd sourced (Brabham, 2008) data 

for various location around the world and for the extraction of sub sets of that 

information. Following a review of the available datasets, the stated areas were selected 

for analysis. A number of reasons provided a rational for this decision, largely notably 

the completeness of the datasets themselves and coverage of geography types.

The extraction of datasets from Mastermap tiles resulted in a regular shaped 

datasets in the form of a square of a set distance around the Centroid of the selected 

area. The regular shape of the data tiles retrieved may be considered unusual. The 

alternative would have been to consider human based boundary information such as 

those seen in local authority or census area outlines. Ease of use was the primary 

deciding factor when selecting the regular grid of Mastermap together with a greater

160



degree of control of the geographic area considered. The choice either of either 

approach would not have any effect on the performance of the algorithms.

Tabl

Road Type
Motorway

A road - dual carriageway
A road - single carriageway

B road
Minor road
Local street

Alley
Private road - publicly accessible

Private road - restricted access
Pedestrian Street

e 4.3 Road Types Available via the Mastermap ITN Layer

4.2.3.1 Newcastle Emlyn

Newcastle Emlyn (Castell Newydd Emlyn) is a town bordering the counties of 

Ceredigion and Carmarthenshire in West Wales and lying on the River Teifi. Data for 

the area has been selected due to the rural nature of the town and the area surrounding it. 

Table 4.4 gives the graph sizes selected. Figure 4.5 provide a high-level overview of the 

covered area. The information presented in Figure 4.5 is at a higher scale than the ITN 

layer and therefore not all structures are visualised in that figure.

OS Centroid Position (OSGB36): 230500, 240500

Graph 

Name

NE 1000

NE 2000

NE 4000

Distance (KM 

SQ)

1000 (4)

2000(8)

4000(16)

Features

146

219

618

Edges

2722

5420

16314

Vertices

1352

2692

8098

Density

2.01

2.02

2.01

Table 4.4 Newcastle Emlyn Statistics
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Figure 4.5 General Overview of Newcastle Emlyn (Crown Copyright, 2011)

4.2.3.2 Cardiff

Cardiff (Caerydd) is the capital and largest city of Wales and is located on the 

South Wales coast. The city is surrounded by a number of rural areas separated from 

urban areas by geographic features such as mountains and rivers. Large roads (the M4, 
the A47Q etc) act as connectivity corridors linking smaller pockets of urban 

environment. The sea forms a natural barrier for much of the city. The area has been 

selected due to the rural/urban mix in conjunction with the connectivity issues 

highlighted. Table 4.5 gives the graph sizes selected.

OS Centroid Position (OSGB36): 318500, 176500
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Graph 

Name

Cardiff 250

Cardiff 500

Cardiff 750

Cardiff 1000

Cardiff 1500

Cardiff 2000

Cardiff 4000

Cardiff 6000

Distance (KM 

SQ)

250(1)

500 (2)

750 (3)

1000 (4)

1500 (6)

2000 (8)

4000 (16)

6000 (24)

Features

75

318

666

1171

2555

4266

9486

16327

Edges

560

2288

4526

7278

14428

23762

62486

123428

Vertices

275

1076

2106

3366

6603

10798

29044

58383

Density

2.03

2.12

2.14

2.16

2.18

2.2

2.15

2.11

Table 4.5 Cardiff Statistics
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Figure 4.6 General Overview of Cardiff Area (Crown Copyright, 2011)
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Figure 4.7 General Overview of London Area (Crown Copyright, 2011)

4.2.3.4 Real World Data Observations

The aim of Figure 4.8 and Figure 4.9 is to highlight the comparative edge and 

vertex density between each of the three areas under consideration. The London based 

data sets exhibit a much higher level of density than the other locations. As is to be 

expected given its rural nature the Newcastle Emlyn data exhibits a much lower density 

of both vertices and edges.
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Edges in selected real world graphs

2000 
Distance From Centroid (Meters)

I Newcastle Emlyn • Cardiff a London

4000

Figure 4.8 Edges in Selected Real World Graphs

Nodes in selected real world graph
60000

1000 2000 
Distance From Centroid (Meters)

4000

I Newcastle Emlyn • Cardiff • London

Figure 4.9 Vertices in Selected Real World Graphs
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4.2.3.5 Calculation of Front PJTRVE

When calculating the front PJTRUE on real world graphs a subtly different 

approach is taken as when compared to when calculating PJTRUE on random graphs. 

On real world graphs a high geodesic value will not always correspond to the high 

admission of optimal paths into PJTRUE due to factors such as the sinuosity of the road 

(Balboa and Lopez, 2008 and Bagheri et al, 2005).

The nature of the translation of the road network to a digital model involves 

some process of digitization. Depending on the location and structure of the road the 

number of points making up a road link can vary. Slight turns in a road may result in a 

greater number of vertices representing the two lengths of road measuring the same 

straight-line distance. Hence, two road links of the same straight line distance may have 

substantially different geodesic levels. The principle is visualized in Figure 4.10 and 

Figure 4.11. The figures show how despite the direct distance between two vertices 

being the same the road topology can vary greatly resulting in a high degree of 

difference in the geodesic values. Further to that point Table 4.4, Table 4.5 and Table 

4.6 introduced the notion of road 'Features'. A road may be split up in several sections 

or road links known as 'Features'. Individual road links are generated when one (or 

more) of the following conditions (OS 2012) are met:

  The intersection or crossing of carriageways

  The location where a road name or number changes

  The location where a road name or number ceases to apply

  The start or end of a carriageway

  If a section of a road between junctions is subject to a 'one-way' restriction, that 

section will be given a start and end vertex and becomes in effect a new link.

OS (2012)
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In addition to the above rules regarding road geometry and feature makeup each link 

appears to end at some arbitrary value in terms of length. In Table 4.7 the degree to 

which the number of vertices varies between road link features in rural and urban 

environments is highlighted. The aim of the table is to demonstrate how the geodesic 

path length is not always a realistic model of an actual complexity when applied to real 

world graphs. Following Table 4.7 an alternative method is suggested for use on real 

world graphs.

Direct Path Length = 40M Geodesic Path Length = 3

Figure 4.10 Almost Straight-Line Path Requiring Few Links

Direct Path Length: 40M Geodesic Path Length: 9

Figure 4.11 Road Feature with High Geodesic Distance
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Graph

NE1000

NE2000

NE4000

London 1000

LondonlOOO

London4000

Features

146

219

618

1577

6170

20847

Vertices

1352

2692

8098

4610

16474

55496

Vertices Per 

Feature

0.11

0.08

0.76

0.34

0.37

0.37

Table 4.7 Feature and Vertex Ratios on Urban and Rural Roads

An alternative method of calculating PjTRUE has been developed. The aim of 

the new methodology is the same as that used on random graphs i.e. to identify vertex 

pairings with a higher number of optimal paths between those two vertices. The 

methodology developed makes use of the Dijsktra's shortest path algorithm. In the tests 

carried out for this work a high performance open source implementation based upon 

the Boost (2012) graph library has been used. The algorithm calculates the shortest path 

for each criterion (distance, travel time and road link type). In those cases where three 

paths for each of those criteria are not equal the vertex pairing is exported to disk 

together with each of the calculated paths. The procedure is performed until a user- 

defined number of edge-vertex pairings are considered or the entire graph has been 

explored. In this work that limit is set to fifteen million. For many of the smaller graphs 

full exploration was performed. It should be noted that where the shortest paths are not 

equal the front PjTRUE will always consist of at least n solutions where « is the number 

of criteria under consideration where the shortest paths differ.
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Having initially processed the graph using the Dijsktra shortest algorithm there 

is now a data source containing each pairing along with the shortest path for each 

criterion. The follow-up process is to calculate the path cost for each of the remaining 

criterion travelling the same path. For instance, where the path has been optimised for 

distance the costs of travelling the same path in terms of the additional criteria (travel 

time and road type) are generated and again stored. The absolute delta values (ADV) for 

each path are then generated and the list of vertex pairings sorted from highest to lowest 

in terms of those delta values. The procedure operates on the principle that where the 

delta value is larger there is a greater potential to admit a wider spread of Pareto optimal 

solutions. The absolute delta value is defined in Equation 4.1.

ADV = Vc e M:/(a) c -/O)c

Equation 4.1 Absolute Delta Calculation

Where c is the current criteria and Mis the total number of criteria. f(a) andf(b) 

are the costs of travelling a path using criteria c.

The process then moves to employ a method similar to that seen in the Climaco 

and Martins algorithmic approach to solving the MSPP. K shortest paths are generated 

until the value of a path on a selected criterion is greater than that of the shortest path on 

each of the remaining criteria. However, unlike the Climaco and Martins approach the 

process is repeated for each criterion. Each path generated by the K Shortest path 

algorithm is admitted to an external archive. When the process of path generation is 

completed the front PfTRUE can be extracted. The method allows the selection of a 

minimum number of solutions in the set PfTRUE. In this work only vertex pairings 

where a minimum of three members are present in PfTRUE are stored along with the 

paths and values of PjTRUE for future analysis during the experimental phase. This 

section has outlined a process of PfTRUE generation that operates in such a way as to 

ensure data is gathered within a comprehensive and robust framework. The process is
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continued until 5000 vertex pairings where \PfTRUE\ > 3 have been discovered or full 

graph exploration performed. The algorithm used to identify the exact set of optimal 

solutions between two nodes with three criteria is provided in Algorithm 4.4. A 

rationale for \PJTRUE\ > 3 has been provided in section 4.2.1.1.

4.2.3.6Data Extraction Process

The road information datasets were gathered from the DIGIMAP on-line 

service. Digimap is a web mapping and online data delivery service developed by the 

EDINA national data centre for UK academia. It offers a range of on-line mapping and 

data download facilities which provide maps and spatial data primarily from the OS but 

also includes other sources such as the British Geological service. The DIGIMAP 

service supplies the OS Mastermap datasets selected for this work in the Geographic 

Mark-up Language (GML) format. GML is a common standard format used for the 

exchange and transfer of spatial information sets that whilst being detailed is also 

difficult to interpret. In the interests of efficiency an existing piece of software, 

InterpOSe, was used to convert from the provided GML format into ESRI Shapefiles. 

The InterpOSe software is recommended by the OS for and conversion of simple data 

sets such as those used in this study. Each dataset was separately processed and stored. 

Having acquired the datasets and converted them into ESRI Shapefiles a separate piece 

of software was developed in order to translate the datasets into the extended DIMACS 

graphs. The developed software makes use of a number of open source libraries, 

notably the "SharpMap"2 mapping library and the "NetTopologySuite" (NTS) spatial 

analysis library. The SharpMap library is used to visualise the road network with NTS 

used to assist in the translation of the network information into a graph.

Declaration: The author of this work is a developer on the SharpMap library
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Algorithm: Extraction Of PfTRUE From Real Roads Using Three Criteria____________ 
Input: S = The Identifier of the source vertex

D= The Identifier of the target vertex
G = (\ V\, \E\) = The Graph To Be Analysed

_________FILTER = Minimum number of solutions required in PfTRUE // Default = 3_____ 
Output: PJTRUE = Exact Set Of Optimal Solutions Between S And D 
POTENTAILS = { } // Set Of Paths Between S and D

P° = Calculate the shortest path between S And D using Dijsktra algorithm using distance cost 
POTENTAILS = POTENTAILS + P°

Cf= Calculate the cost of traversing PD using the distance metric in G
CT = Calculate the cost Of traversing P D using the travel time metric in G
C" = Calculate the cost of traversing PD using the road type metric in G
KT = Calculate the shortest path between S and D using K shortest path algorithm using travel time cost
WHILE KT <= CT

KT= KT+1 II Calculate the next shortest path using travel time cost 
IF (\POTENTAILS. Contains^7))

POTENTAILS = POTENTAILS + KT

if = Calculate the shortest path between 5 and D using K shortest path algorithm using road type cost 
WHILE K*<=C*

if = KS+I II Calculate the next shortest path using travel time cost 
IF (\POTENTAILS.Contains(KR))

POTENTAILS = POTENTAILS + KR

PREFILTERED = Extract Optimal Solutions From POTENTAILS 

IF \PREFILTERED\ > FILTER

Return PREFILTERED = PfTRUE 
ELSE

Return NULL

Algorithm 4.4 Extraction of PfTRUE from Real Road Graphs

Figure 4.12 presents an overview of the software with one of the graphs used in 

this study (Cardiff250) displayed in the developed software. With minor modifications 

the system could be further enhanced to provide Google , Bing  or OpenStreetMap 

information as a backdrop to the road network. However the modifications would 

require the re-projection of the OSGB36 road networks into the format used by those 

online mapping service. In the interest of efficiency that activity was not undertaken as 

the modification would only serve as a visual aid.
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The software consists of three functions; the first of the three simply allows the 

Shapefile information to be accessed by the system. The second allows for the variation 

of various road network parameters. The third and final function translates the road 

network into the graph structures into a format compatible with the "GraphFactory" 

functionality described previously in this chapter (4.1). Figure 4.13 presents a view of 

the various graph parameters that may be controlled during the translation process. The 

system allows for the automatic removal of road types in addition to manually setting a 

travel speed overriding the built in defaults. A final option allows each road type to be 

given a preference value; setting motorways to high value would reduce the likelihood 

of optimal paths being seen to traverse road links matching that type; setting the 

preference rate to a lower value in comparison to other road types would increase the 

likelihood of optimal paths traversing motorways.

\\

Figure 4.12 Overview of Translation Software
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Figure 4.13 Parameter Setting for Translation Software

During the analysis on real road networks two criteria are the primary focus of 

attention, those being the distance of the path along the road network together with the 

time spent travelling the same path. The introduction of the preference attribute allows 

for the extension to three criteria as previously described. The ITN layer of the 

Mastermap datasets includes information related to the length of the road link together 

with the road type. The travel time cost is derived from the length of a road link 

together with its road type and speeds assigned for travelling a road of that type. During 

the data selection process data sets with accurate speed limit information was initially 

sought, however no such data sets could be identified. The OpenStreetMap road 

networks allow maximum speed limits to be included as attribute based information but 

such information is incomplete. The TIGER datasets previously described identify a 

travel time associated with each edge of the graph however the methodology used to 

produce the travel time value is the same as that used here i.e. the travel time value is a 

function of the road type and length of the edge.
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Figure 4.13 presents an example set of parameters. In the provided example the 

translation software would include all road types in the graph with the exception of 

those identified as alleyways and private streets. The translation would include 

pedestrian streets as being traversable although very slowly (5 MPH). Motorways and 

dual carriageways would be traversable at 70MPH. Local streets are traversable at 

30MPH. If three criteria were considered then the optimisation algorithms would 

theoretically limit the use of pedestrianised streets due to comparatively low preference 

value associated with it.

In order to translate the information contained in the Shapefile into a suitable 

graph structure a multi-pass procedure is used. The system first scans each road object 

in turn; storing the geographic coordinates in a lookup table with each assigned a unique 

identifier. Have stored each coordinate in the lookup table a second pass is made. 

During the second pass the methodology again scans each road feature. For each 

geographic node in the feature, it retrieves the unique identifier associated with a 

geographic coordinate along with that of the following coordinate in the road feature 

and creates an edge between those two identifiers. The software identifies the distance 

between the two nodes and associates that information with the edge details. It then 

calculates the travel time between the using the values retrieved from the user 

preferences as shown in Figure 4.13. A simple lookup table enables the preferences 

value for each road type to be retrieved. The algorithm then saves the complete edge 

(head, tail, distance, travel time and preference value) to disk using the DIMACS 

format. Algorithm 4.5 presents the methodology in a pseudo code form. In a final step, 

the algorithm saves the geographic information into a separate file on disk. Figure 4.14 

gives an example of the format used to when saving the coordinate information. A small 

example of the Cardiff 250 graph used in the study is provided. The information is 

saved in the format used by the ninth DIMACS challenge. Coordinate lines are of the 

form 'c X Y id' where X, Y and id are the x-coordinate, the y-coordinate and the 

identifier of the node respectively, c is used to identify a coordinate descriptor. A small 

subset of the Cardiff 250 graph information is given in Figure 4.15. The translation 

software will, as currently implemented, only convert MasterMap information sets
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translated from the original GML format to ESRI Shapefile using the InterpOSe 

software. The complete Cardiff250 graph and coordinate information is provided in 

Appendix D of this thesis as an example.

In addition to requiring the graphs to be converted from GML to Shapefile using 

the InterpOSe software the algorithm developed to convert the Shapefile to DIMACS 

format does not maintain vertex identifiers across graph sizes. In effect what constitutes 

a coordinate with the identifier of 1 in one translated graph files will not with any 

degree of certainty have the same identifier in a different graph file. This factor is 

ignored in the study as each graph is considered independent of another. It would be 

possible to maintain such node ordering by considering the graphs of each location in 

reverse ordering of size, processing the largest of the graphs first and terminating 

processing after the final and smallest of the Shapefiles has been processed. If further 

factors were of importance such as considering disk storage requirements or the 

requirement to store the graphs in an external database then the proposed additional 

processing step may be considered of benefit. The largest of the graphs converted for 

use in this study (Cardiff 6000) requires 3 megabytes of disk storage space. The 

conversion procedure performs quickly completing in 0.34 seconds for the largest of the 

graphs - Cardiff 6000. Therefore the additional processing step does not appear to offer 

any practical value.
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c318602 
c318585 
c318565 
c318555 
c318552 
c318515 
c318500 
c318487 
c318478 
c318403 
c318420 
c318457 
c318462 
c318467 
c318473

176273 1
1762592
909 176240.775 3
.029 1762304
176227 5
1761866
1761697
1761548
.306 176138.07 9
176266 10
.053 17623011
176152 12
176146 13
176142 14
.049 176139.901 15

Figure 4.14 Coordinate Information for CardifflSO Subset

c Graph Converted From Cardiff250.shp
a 1222.02 1.6529
a 2 3 26.39 1.98 9
a34 15.31 1.1489
a 4 5 4.26 0.32 9
a 5 6 55.23 4.142 9
a 6 7 22.67 1.79
a78 19.85 1.4899
a89 18.15 1.3619
a 10 11 39.83 4.481 10
all 1286.319.71 10
a 12 13 7.81 0.879 10
a 13 146.40.72 10
a 14 15 6.4 0.72 10
a 15 9 5.57 0.626 10

Figure 4.15 Graph Information for CardifflSO Subset
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Algorithm: ___ Convert Road Network To DIMACS Graph Algorithm _____________ 
Input: FILENAME = The Name Of The New Graph

FEATURES = A Set Of Geographic and Attribute Information Details Sections Of Road 
__________ PARAMETERS = The User Specified (May Be Default) Parameters For Graph 

Output: A File On Disk Representing A Multi Criteria Graph 
GraphWriter = Open OUTPUT For Writing
CoordinateFileName = Amend OUTPUT To Indicate Coordinate Information // Extension becomes .co 
CoordinateWriter = Opew CoordinateFileName For Writing
Save Comment Information to GraphWriter II A description of the graph - meta data only 
Save Comment Information to CoordinateWriter

COORDINATES = {} 
FEATURE_COUNT= \FEATURES\ 
CURRENTJfODEJD = 1

FOR (i = 0 TO FEATURE_COUNT)

{
NODE_COUNT = \FEATURES fi]\
FEATURE = FEATURE [ij 
FOR (/ = 0 TO NODEJCOUNT)
{

IF (COORDINATES Contains FEATURE!]] == false)
{

COORDINATES = COORDINATES + FEATURE [j] + CURRENT _NODE_ID 
CURRENT NODE ID = CURRENT NODE ID +1

FOR (i = 0 TO FEATURE _COUNT)
{

NODE_COUNT= \FEATURES [i]\
FEATURE = FEATURE[i]
SPEED = Gather Speed Information From PARAMTERS For FEATURE [i]
PRIORITY = Gather Priority Information From PARAMTERS For FEATURE [ij
FOR (/' = 0 TO NODE_COUNT-I)
{

EDGE_DISTANCE = Calculate Edge Distance Between FEATURE/]] + FEATURE[j+l] 
EDGEJIME = ((EDGE_DISTANCE/ 1.609344) /SPEED)
EDGE = "a " + COORDINATES[FEATURE[j]] + " " + COORDINATES[FEATURE[j+l]] 

+ " " + EDGE_DISTANCE + " " 
EDGEJIME + " " + PRIORITY 

Save EDGE To Disk Using GraphWriter

FOREACH (COORDINATE IN COORDINATES)
{

TEMP = "v " + COORDINATE.ID + " " + COORDINATED '+ " " COORDINATE. Y 
Save TEMP To Disk Using CoordinateWriter

Dispose Of GraphWriter And CoorindateWriter

Algorithm 4.5 Real Road Extraction Algorithm
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4.3. Path representation

In the algorithms considered for this thesis a path between two vertices in a graph 

is represented as a series of positive integers that indicate the identification number of 

the vertices through which a route will travel. The first vertex of the path is reserved for 

the source vertex; the last vertex is reserved for the destination vertex. The number of 

vertices making up a path is dynamic. Figure 4.16 presents a small graph with a path 

between two vertices (vertices 1 and 8) highlighted. Figure 4.17 presents the resulting 

path vector between the source and destination vertices.

.0 0
-0"

Figure 4.16 Simple Example Graph

Figure 4.17 Highlighted Path From Figure 4.16
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In the work of Larranga et al (1999) several methods of representing paths are 

reviewed. These include the binary structure where paths are represented by the bit 

patterns making up the ID value (Figure 4.18 presents the binary string view of the path 

shown in Figure 4.17), the simplicity of the tour based presentation is ideally suited to 

the MSPP problem (Larranga et al, 1999). The representation is computationally 

efficient with few computational resources being required for any encoding or decoding 

process. Larranga argues that the tour or path based representation is favourable stating 

that the most natural representation of one tour is dominated by path representation, and 

that fundamental reasons lie in its intuitive representation as well as the good results 

obtained by using it.

0001 0101 0100 1000

Figure 4.18 Binary String Path Representation

4.4. Random Path Generation

Each of the heuristic techniques used in this work requires the generation of 

paths between the source and destination vertices. Algorithm 4.6 provides an outline of 

the random walk used in the study to generate a random path between vertices s and t.

In the approach to the random walk taken in this work a walk starts at vertex s. 

A vertex is selected at random from the possible neighbours and added to the path 

description vector, the selected vertex is made current, its neighbour vertices examined 

and another randomly selected. The process is continued until the destination (vertex /) 

has been found to be a neighbour of a vertex at which point the target or destination 

vertex is added to the path description vector (PDV).
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Algorithm: Random Walk Algorithm

Input: G = (\V\,\E\) = A Graph

S = The Source Vertex For The Random Walk

T= The Target Vertex For The Random Walk

ATTEMPT_SELF_AVOIDENCE = Boolean Operator Indicating If The Path Should

Attempt to avoid itself where possible 

Output: P = A Random Walk Path Between S And T On Graph G

CURRENT ̂VERTEX = S

OUT JUDGES = Get Edges With Tail S
NEIGHBOURS = Head Vertices Of Edges In OUT_EDGES

WHILE (T Not In NEIGHBOURS)
{

IF (ATTEMPT _SELFAVOIDENCE)
{

IF (\NEIGHBOURS\ > 1)

PREVIOUS VERTEX = P-l
Remove PREVIOUS '_VERTEX From NEIGHBOURS
CURRENT_VERTEX= Randomly Select A Vertex From NEIGHBOURS
P=P + CURRENT _VERTEX
OUT_EDGES = Get Edges With Tail CURRENT _VERTEX
NEIGHBOURS = Head Vertices Of Edges In OUT EDGES

ELSE

CURRENT _VERTEX= Randomly Select A Vertex From NEIGHBOURS 
P = P + CURRENT_VERTEX
OUT JUDGES = Get Edges With Tail CURRENT VERTEX 
NEIGHBOURS = Head Vertices Of Edges In OUT_EDGES

P = P+T
P = Perform Remove Cycles Algorithm On P

Algorithm 4.6 Random Walk Algorithm

181



Following the discovery of the target vertex the PDV is examined for loops and 

cycles. If any loops are found they are removed and the final path returned from the 

random walk method. Algorithm 4.7 outlines the methodology for removing cycles and 

loops from the candidate path. The approach is classified as a 'self repairing' random 

walk where the walk is repaired after the target vertex is scanned. An alternative can be 

seen in the 'self avoiding' random walk where the algorithm make a 'conscious' effort 

to avoid the creation of loops. The aim of both is to produce a walk between vertices on 

a graph with no cycles or loops present.

Algorithm: Remove Cycles Algorithm

Input: P = Path To Remove Cycles From

Output: P' = P With Cycles Removed

P' = P
COUNT = Number Of Vertices InP'
HAS LOOPS = true

WHILE (HASJLOOPS)
{

COUNT = Number Of Vertices In P' 
HAS_LOOPS= false

FOR (z = 0 TO COUNT)
{

Vertex v = P'[i]
j = First Position Of v in P'
k = Last Position Of v in P'

IF (/ != k)

SUB_PA TH_J = Copy From P '[0] To P '[j]
SUBJPA TH_K = Copy From P '[k] To P '[Length Of P ']
REPLACEMENT ' = SUB _P ATH J + SUB PATH K

HAS_LOOPS =
P' = REPLACEMENT

Break // Exit From FOR Loop

Algorithm 4.7 Remove Cycles Algorithm
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In the experiments on the Genetic Algorithm an alternative path generation is 

tested in the form of the K geodesic where a K series of paths with increasing geodesic 

values are selected. The algorithm effectively sets the edge cost to one and aims to 

sacrifice the randomness of the walking technique whilst gaining computational 

efficiency.

4.5. A Genetic Algorithm for the MSPP

The approach taken to the Genetic Algorithm is heavily influenced by the work of 

Mooney (2004). The major variation can be seen in the approach taken with the random 

walk methodology. Mooney makes use of a random walk technique that can best be 

described as a 'self avoiding' methodology. In the current work use is made of a 'self 

repairing' random walk. It is suggested that the 'self-pairing' mechanism will offer a 

performance advantage over the 'self avoiding' method which will be particularly 

evident on real world graph data which will often include 'dead ends' which the 'self- 

avoiding' methodology will find difficult to cope with. The concept is illustrated 

through the use of Figure 4.19. Either random walk methodology may encounter 

vertices that would introduce dead ends (given in blue). The self-avoiding random walk 

would if any such vertices were encountered require the regeneration of the entire path. 

The 'self-repairing' random will accept the path after removing any loops present. The 

methodology does not make use of any shortest path algorithm, nor does it reduce the 

number of criteria into a single value. The algorithm is, when reduced to its component 

parts, very simple and can be seen to consist of an iteration (generations) of three stages; 

firstly the generation of candidate paths, secondly the application of generic modifiers 

and finally the selection of optimal paths. The basic outline of the algorithm is provided 

in Algorithm 4.8.
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0 Valid Vertex

End Point (Source Or Target)

Dead End Vertex

Figure 4.19 Example Graph with 'Dead Ends' Highlighted
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Algorithm: Genetic Algorithm Approach

Input: S = The ID Of The Source Vertex

T= The ID Of The Destination Vertex 

G = Number Of Generations To Perform 

P = Size Of The Population 

XOverRate = Rate Of Crossover 

MRate = Rate Of Mutation

Output: PfAPPROX = Approximation Of Optimal Solutions

PfAPPROX={}
CURRENT ̂POPULATION = Generate Population Of \P\ Solutions Between S And T Using Random
Walk
COUNTER = 0;

WHILE (COUNTER < G)
{

CURRENT _ARCHIVE = Extract Pareto Optimal Solutions From CURRENT _POPULATION
RESULTS = Perform Genetic Operations On CURRENT _POPULA TION Using XOverRate, MRate
RESULTS _ARCHIVE = Extract Pareto Optimal Solutions From RESULTS
TEMP_ARCHIVE = Merge Sets CURRENT _ARCHIVE, RESULTS, PfAPPROX
TEMP_ARCHIVE = Extract Pareto Optimal Solutions From TEMP ARCHIVE
PfAPPROX = TEMP ARCHIVE
CURRENT ̂POPULATION = TEMP ARCHIVE

IF (\CURRENT_POPULATION\ < P)
{

NUMBER_OF_PATHS ̂REQUIRED = P - \CURRENT_POPULATION] 
NEW_PATHS = Generate NUMBER OF_PATHS_REQ UIRED Using Random Walk 
CURRENT ̂POPULATION = CURRENT ̂POPULATION + NEW_PATHS

COUNTER = COUNTER + 1 
I

Algorithm 4.8 Basic Outline of GA Approach

An initial population (CURRENT^POPULATION) of unique paths is generated 

using the random walk technique. At each generation the local Pareto optimal front 

(CURRENT_ARCHIVE) is extracted from the population CURRENT_POPULATION. 

Genetic modifications are undertaken on a copy of that population giving the population 

(RESULTS). A Pareto merge technique is then performed CURRENT_ARCH1VE and 

the optimal solutions in RESULTS. Before a final Pareto extraction is performed giving 

TEMP_ARCHIVE. The resulting population of the final extraction is then expanded 

with new paths from the random walk methodology. The process is iterated until the
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required number of generations has passed. Mooney (2004) highlights the use of 

terminating conditions when final Pareto population has remained constant for a number 

of generations. These techniques are not used in this work although they do demonstrate 

an extremely positive effect on the run time of the algorithm. Practical implementation 

of the terminating conditions is not undertaken in this study due to their demonstrated 

success in existing work. Where the test is applied to the K-geodesic approach an 

estimate of the total number of paths required (given by the equation (population size * 

generations) *2) is produced and stored in an external set. When required by the 

algorithm a predefined number of solutions are extracted at random from that set.

4.5.1. Evolutionary Operators

This section details the application of the genetic operators used in approach. 

The implementation of the Genetic Algorithm relies on three genetic operators. The 

selection of a 'parent1 set, the crossover of parents in order to produce variations ('child' 

paths) and the mutation operator to introduce subtle changes into the population set. 

Algorithm 4.9 presents an overview of how these algorithms are performed when 

required by the main process (Algorithm 4.8).

4. 5. /./ Selection Operation

One of the key steps of any evolutionary approach is the selection of a suitable 

set of solutions from a generation that will proceed to act as the parents for the next 

generation of the population. Various methods have been suggested as possible 

selection operators. The various methods include, but are not limited to, tournament 

selection (Miller and Goldberg 1996), truncation selection (Baker, 1987) and linear 

ranking selection (Baker 1987). A requirement of the selection mechanism is that it is 

required to maintain a diverse range in the population set. Goldberg (1989) highlights 

this requirement whilst also highlighting the need to maintain an adequate level of 

'selection pressure'. Selection pressure can be considered the ratio between choosing a
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good solution in the space when compared to an average or worse performing solution. 

A low selection pressure will offer a wide genetic diversity, whilst a high pressure will 

quickly sacrifice genetic diversity.

Algorithm: Genetic Operations Algorithm

Input: CURRENT ̂ POPULATION = The Population Prior To Genetic Operations

XOverRate = Rate Of Crossover

MRate = Rate Of Mutation

P= Size Of Population

Output: UPDATED _POPULATION = Updated Population Following Genetic Operations 

WHILE (\CURENT _POPULATION\ < P)

PARENTJ = Select Solution From CURRENT POPULATION at Random 
PARENT _2 = Select Solution From CURRENT _POPULATION at Random

WHILE (PARENTJ && PARENTJ Are Equal)
PARENTJ. = Select Solution From CURRENT ̂ POPULATION at Random

R = Select Value Between {0,1.0} At Random 
l¥(R< XOverRate)
{

Perform Crossover Operation On PARENTJ AND PARENTJ
Insert Offspring Into CURRENT J>OPULAT1ON
Remove Duplicate Solutions From CURRENT J'OPULATION

IF (R < MRate)
{

Perform Mutation Operation
Insert Mutated Path Into CURRENT J'OPULATION
Remove Duplicate Solutions From CURRENT ̂POPULATION

UPDATED POPULATION = CURRENT POPULATION

Algorithm 4.9 Genetic Operators Outline

In the applied algorithm a pair-wise selection method is used. Deb (2001) 

highlights the feasibility of this approach stating that for almost every crossover 

operator two solutions are picked from the mating pool at random and some portions of
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the solutions are exchanged between the solutions to create a new solution. The use of 

schemes such as the tournament method would require the condensation of the multi 

criteria into a single criterion, an effect that the work is trying to avoid.

4.5.1.2 Crossover

The purpose of the crossover procedure is to exchange path information between 

two paths in order to create a series of new child paths. In an ideal world these two 

paths will produce better solutions than those offered by the parents, although logically 

it has to be accepted that this will not always be true.

hi the crossover method employed two paths are chosen at random. A list of 

vertices (other than the source and destination) present in both parents is produced. The 

contents of the list contain the potential crossover points for the parent paths. A member 

of the list is selected at random and the sub-paths from the source to the crossover point 

and the crossover point to the destination are generated and subjected to a 

recombination procedure to produce the offspring of the parent paths. If the offspring is 

not present in the general population and the path is valid then it is admitted to the 

population. Algorithm 4.10 provides an outline of the crossover procedure. Having 

provided an outline of the procedure the following section provides a practical example 

of the operation. Figure 4.20 provides an outline of a simple graph, with two selected 

paths highlighted in Figure 4.21 between vertices 1 and 4 on the graph.
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Figure 4.20 Simple Graph for Mutation Operation

Algorithm: Crossover Operation Algorithm

Input: PARENTJ = A Path Randomly Selected From Population 

PARENT 2 = A Path Randomly Selected From Population

Output: CHILD J = A Path Based On Crossover Of PARENTJ AND PARENTJ 
CHILD J = A Path Based On Crossover Of PARENTJ AND PARENTJ

SIZEJ = Length Of PARENTJ 
SIZEJ = Length Of PARENTJ 
CROSSOVERJ>OINTS = {}

FOR (i = 1 TO SIZE J -1)
FOR(/=1TO SIZEJ-l)

IF (PARENT Ifij = PARENTJfjJ)
CROSSOVER_POINTS = CROSSOVER J>OINTS + PARENTJ[i]

IF (\CROSSOVER_POINTS\ > 0)

CROSSOVER POINT = Randomly Select A Value From CROSSOVER_POINTS 
CHILD! = Sub Path Of PARENTJ From PARENT JfOJ To CROSSOVER_POINT' +

Sub Path Of PARENTJ From CROSSOVER _POINTTo PARENTJ [\PARENTJ\-1]

CHILD J = Sub Path Of PARENTJ From PARENT JfOJ To CROSSOVER J>OINT +
Sub Path Of PARENTJ From CROSSOVER _POINTTo PARENT J [\PARENTJ\-1]

CHILD 1 = Perform Remove Cycles Operation On CHILD J 
CHILD J = Perform Remove Cycles Operation On CHILD J

ELSE

// The Crossover Operation Would Not Be Possible 
CHILD 1 = PARENTJ 
CHILD 2 = PARENT 2

Algorithm 4.10 Outline of Crossover Procedure
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Figure 4.21 Selected Parent Paths Between Vertices 1 and 4

Other than the source and destination two other vertices are present in each path, those 

being vertex 9 and vertex 7. One of those two vertices is selected at random as the basis 

for the crossover operation. In the example vertex 7 is selected. Figure 4.22 shows the 

outcome of the crossover procedure. In place of the original two paths there are now 

four unique paths between the source and destination.
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Figure 4.22 Results of Crossover Procedure

If the child paths are not present in the general population then they are added to that 

set. If they are present then they are not added in order to prevent duplicate paths 

entering the genetic procedure. In Munemoto (1998) a variation to the selected 

procedure is given where the crossover points are limited to those occupying the same 

locus on the chromosome. It should be noted that the crossover procedure may result in 

paths with a lower geodesic value than the parent. This property is seen in Figure 4.22 

were a child path is generated with geodesic value of five is generated compared with 

six and seven for each of the parents.
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4.5.1.3 Mutation

The historic approach to the mutation operation has relied on the "flipping" (in a 

binary context) of a single element in a binary string in order to introduce a small, 

subtle, change into the chromosome. In the approach to the mutation operator taken here 

an alternative vertex is introduced into the path to mimic the mutation procedure. A 

single path is selected with a predefined probability (the mutation rate) from the main 

population. A vertex (SN) is then selected at random from the path. The only condition 

placed on the vertex selection is that it can be neither the start nor the end vertex of the 

path as such an operation would have no effect and thus be illogical. The graph 

topology is then searched in order to find any other vertex which have vertex SN~' 
connected to vertex SN along with a connection between vertex sNrePlacement anci vertex 

sN+1 . A list of these potential vertices is generated and stored. One vertex out of the 

potential vertex list is selected at random and creates a sub-path. The original vertex and 

the new vertex are switched resulting in a new path. The nature of the graph topology 

may result in their being no potential replacement vertices, with the probability of there 

being such a set reliant on the density of the graph. Figure 4.23 presents a view of a 

graph on which the mutation operator is to be performed. The graph itself is the same as 

that used in Figure 4.20 reproduced for clarity purposes only.

Figure 4.23 Example Graph for the Mutation Operator
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Figure 4.24 presents the input to the mutation operator. Figure 4.25 shows the 

path description vector of the outcome of the mutation operator. In the example vertex 

eight is selected at random. Vertices 9 and 7 can be seen as predecessor and successor 

vertices to vertex 8. A search reveals that vertex 3 has the same predecessor and 

successor vertices, hi the outcome of the procedure vertex 8 is replaced by vertex 3. If 

the output of the algorithm already exists in the population then the path prior to the 

mutation operation it is discarded.

1 2 9 8 1 4

Figure 4.24 Input PDV Into the Mutation Operator

1 2 9 3 1 4

Figure 4.25 Output PDV From the Mutation Operator

4.6. A PAES Based Approach to the MSPP

The Pareto Archived Evolution Strategy (PAES) is a multi objective based 

solution that operates on a simple (1+1) local search strategy. An external archive is 

used to maintain a record of Pareto optimal solutions discovered. In addition, the 

methodology makes use of functionality that attempts to increase the spread of solutions 

across the front PJTRUE.

The system is initialized with a single randomly generated solution between two 

vertices using the random walk technique and the "fitness" of that solution is calculated. 

The initial solution is always added to an external archive. All further solutions 

produced by the system are derived in some way from this initial path. The system 

enters a loop which runs until a pre-set number of iterations have been completed or 

potentially some other terminating condition has been met. During this run variations to 

the path are introduced which aim to improve the fitness of the solution. The first stage
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in the loop process is to develop some form of "mutation" into the initially generated 

path. A similar approach is taken in all the 1+1 systems such as the Tabu Search or 

Simulated Annealing. One of three approaches is selected at random; a) a new random 

path is generated from the start vertex to a randomly selected vertex; b) a new random 

path is generated from a randomly selected vertex to the end vertex or c) a sub-path 

from two randomly selected vertices on the path is generated. The process it iterated 

until a new path is produced ('new' as in not the same as the parent). Algorithm 4.15 

presents the mutation operator.

Following the application of the path mutation operator a dominance check 

between the parent(s) and child path(s) is performed. If s dominates 5' then no further 

action is taken until the next iteration is performed. If path s' dominates path s then path 

s' is added to the external archive of Pareto optimal solutions and made the new path s. 

Where the two solutions are indifferent the path s' is added to the external archive. If 

path s' is found to be a Pareto optimal solution then it is accepted as the current solution 

provided that is occupies a less crowded area than path s. Algorithm 4.11 presents an 

outline of the PAES and Algorithm 4.12 an outline of the crowding strategy. In the 

experiments undertaken a maximum size of the archive is not applied given the 

relatively low number of solutions being considered. Algorithm 4.13 and Algorithm 

4.14 are used by the PAES approach to manage the archiving strategy. Algorithm 4.14 

is used to identify the location on the Pareto optimal front where a solution can be found 

and is therefore used to identify crowded areas of the search front while Algorithm 4.13 

is used to resize the grid space following the addition to or removal of solutions from 

the archive of optimal solutions.
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Algorithm: PAES Algorithm

Input: MAXJTERA TION = Number Of Iterations To Perform

MAX_SIZE = Maximum Size Of PfAPPROX

GRID SIZE = The Size Of The Clustering To Use When Determining Crowded

Regions. 

Output: PfAPPROX= Set Of Approximations Of PfTRUE / Optimal Solutions

S = Generate A Initial Solution Using Random Walking 
Evaluate Fitness Of S 
PfAPPROX= PfAPPROX + S

CURRENT JTERATION = 1

WHILE (CURRENTJTERATION< MAXJTERATION)
{

S' = Perform Perturb Mechanism On Solution S 
Evaluate Fitness Of S'

IF (S Dominates 5")
Continue // There Is Nothing Left To Do This Iteration 

ELSE IF (5" Dominates 5)
{

S = S'
Perform Grid Updating Algorithm
PfAPPROX= PfAPPROX + S
PfAPPROX'= Extract Optimal Solutions From PfAPPROX

}
ELSE IF (5" Is Dominated By Any Member Of PfAPPROX)

Continue // There Is Nothing Left To Do This Iteration 
ELSE
{

S = Apply Archiving SiTategy(S,S',PfAPPROX,MAX_SIZE,GRID_SIZE)
Perform Grid Updating Algorithm
PfAPPROX= PfAPPROX + S
PfAPPROX= Extract Optimal Solutions From PfAPPROX 

}

CURRENTJTERA TION = CURRENTJTERA TION + 1 
}

Algorithm 4.11 Outline of the PAES Algorithm
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Algorithm: PAES Archiving Strategy Archive Algorithm

Input: MAX_SIZE = Maximum Number Of Optimal Solutions To Keep

C = Current Solution

M= Updated Solution

PfAPPROX= Set Of Current Optimal Solutions 

Output: PfAPPROX' = Updated Set Of Optimal Solutions 

REPLACEMENT_INDEX= -1

IF (\PfAPPROX\ < MAX_SIZE)
PfAPPROX' = PfAPPROX + M
Exit // No Need To Do Anything Else

IF (C Is Not Dominated By Any Solution On PfAPPROX)
{

M_LOC = Identify Grid Location Using Find Location Operation 
M_COUNT= Count Solutions In Grid Location M_LOC

FOR (z = 0 TO \PfAPPROX\)
{

TEMP = Identify Grid Location Of PfAPPROXfiJ Using Find Location Operation 
TEMP_COUNT= Count Solutions In Grid Location TEMP

IF (M COUNT > TEMP COUNT) 
REPLACEMENT 'INDEX= i

IF (REPLACEMENT _INDEX> -1)
PfAPPROX[REPLACEMENT_INDEX] = M 
C=M

PfAPPROX' = PfAPPROX

Algorithm 4.12 Outline of the PAES Archiving Strategy

195



Algorithm: Update Grid Algorithm

Input: PATH =The Find For Which The Location Is Sought

DEPTH= The Number Of Cells Into Which The Grid Has Been Divided 

OBJECTIVES = Number Of Objectives Being Considered 

PfAPPROX= Set Of Optimal Solutions

Output:

OFFSETS = {} 
LARGEST = {}

FOR (i = 0 TO OBJECTIVES)
OFFSETSfiJ = Get Smallest Value Of Each Objective 
LARGEST[i] = Get Largest Values Of Each Objective

FOR {/ = 0 TO OBJECTIVES)
IF (PATH.CostUJ < OFFSETfr]

OFFSET [k] = PATH.Cost[k] 
IF (PATH.Costft] > LARGEST[j]

LARGEST/]] = PATH. Cost/JJ

SSE= Calculate Difference Between Minima and Maxima Of Each Objective
IFCSS£>0.1)//10%
{

Renormalize The Space By 20%
Recalculate The Locations Of Each Solution In PfAPPROX Using Find Location Procedure 

}

Identify the Location Of PATH in Grid Space Using Find Location Procedure

Algorithm 4.13 PAES Update Grid Algorithm
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Algorithm: Find Location Algorithm

Input: PATH =The Find For Which The Location Is Sought

PfAPPROX= Set Of Optimal Solutions

DEPTH = Number Of Cells Into Which The Grid Has Been Separated

OBJECTIVES = Number Of Criteria Being Considered 

Output: LOCATION = The Location In The Grid Space

INC= { } 
WIDTH = { } 
N=l

FOR (z = 0 TO OBJECTIVES) 
INCfiJ = TV 
N = N*2 
WIDTHfiJ = Range For This Objective Based On PfAPPROX/l Largest Value - Smallest Value

FOR (j = 0 TO DEPTH)
FOR (k = 0 TO OBJECTIVES)

IF (PATH.Cost[k] < WIDTHfk] I 2 + Smallest Value For This Objective)
LOCATION = LOCATION + INCfiJ 

ELSE
Increase The Offset For This Location

FOR (/ = 0 TO OBJECTIVES)
INCfiJ = INCfiJ * (2 * OBJECTIVES) 
WIDTHfiJ = WIDTHfiJ 12

Algorithm 4.14 PAES Find Location Algorithm
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Algorithm: Mutation Algorithm

Input: PATH = The Current Solution

G = (\V\,\E\) = The Graph Which Is Being Analysed 

Output: PATH' = The Mutated Path

COUNT = \PATH\-l
M= Select At Random {1,2,3}

IF (Af=l)

MUTATION J>OINT= Select A Point On PATH > PATHfOJ And < PATH [\PATH\-1] At Random 
SP = Generate A Random Path From PATHfOJ To MUTATION JPOINT 
PAW = SP + (PATH[MUTATION_POINTJ, PATH / '\PATH\-1) 

} ELSE IF (M=2)

MUTATION _POINT = Select A Point On /M77/ > PATHfOJ And < PATH [\PATH\-1] At Random 
SP = Generate A Random Path From PATH [MUTATION _POINT] To PATH[\PATH\-1] 
PATH' = (PATH fOJ,PATHf MUTATION J>OINT) + SP

ELSE IF (M == 3)

M = Select At Random {1:2} 
IF (M=l)
{

POINT_A = Select A Point On PATH > PATHfOJ And < PATH [\PATH\-1] At Random 
POINT _B = Select A Point On PATH > PATHfOJ And < PATH [\PATH\-1] At Random 
SP = Generate A Random Path Between POINT A And POINT B 
PATH' = (PATHfOJ, PATH [POINT_A]) + SP + (PATH fPOINT_BJ, PATH f \PATH\-1)

}
ELSE IF (M=2)
{

POINT = Select A Point On PATH > PATHfOJ And < PATH [\PATH\-1] At Random 
SP_A = Generate A Random Path Between PATHfOJ And POINT 
SP_B = Generate A Random Path Between POINT And PATH [\PATH\-1) 
PATH' = SP_A + SP_B

Algorithm 4.15 1+1 Mutation Operator

4.7. Tabu Search Algorithm

In this implementation of the Tabu Search algorithm two Tabu' lists are 

employed. The first of these is considered to be 'long term memory' based solutions and 

consists of those solutions which are currently on the Pareto front (PfAPPROX). The 

second Tabu memory set is shorter term memory and consists of a set of solutions 

which do not require re-examination at this point in time. As the algorithm advances the
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Tabu list acts a FIFO (First In First Out) list. As new Tabu solutions are added, older 

Tabu solutions are taken from the list. It should be noted that the Tabu list is the set of 

solutions on PfAPPROX and a secondary list of solutions recently considered. Solutions 

present on PfAPPROX are never removed from the list of Tabu solutions, unless those 

solutions are found to be dominated in some way.

The strength of Tabu Search lies within its use of short-term memory to store 

previous moves. Unless recent moves are rendered inadmissible (or 'Tabu') the search 

process could make a 'best' (non-improving) move away from a local optimum and 

then fall back into the 'local best' when later moves are made. Algorithm 4.16 presents 

the methodology of the Tabu Search employed in this work. The algorithm first 

generates an initial path (CURRENT) using the random walk technique. The initial path 

is added to both the external archive and the Tabu list. A neighbour (MUTATED) of that 

path is generated using the methodology outlined in Algorithm 4.15. If MUTATED is 

not dominated by the current solution then it made the current solution and added to the 

external archive. In future iterations comparisons will be carried out on path MUTATED 

or successive versions of that path. Where the solutions are indifferent or CURRENT 

dominates MUTATED solution MUTATED will be accepted as current only when it 

allows a move that can be considered 'closer' to the Pareto optimal front as suggested 

by the front PfAPPROX. As that mechanism alone may cause the methodology to 

become 'stuck', the methodology randomly generates an entirely new path when an 

indifferent solution is not closer to PfAPPROX, i.e. if CURRENT is a member of 

PfAPPROX then P' may never be closer. Therefore CURRENT is randomly re­ 

initialized following the distance check. Algorithm 4.17 outlines the distance 

calculation method. Regardless of whether or not a solution is accepted as CURRENT it 

is added to the Tabu list. The Tabu list is 'pruned' in order to ensure that its maximum 

length is not exceeded before the next iteration is performed. If a solution is present on 

the Tabu list then it is not considered.
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Algorithm: Tabu Search Algorithm

Input: S = The Source Vertex 

T= The Target Vertex

G = (\V\.\E\) = The Graph Which Is Being Analysed 

TABU_SIZE = The Maximum Size Of The Tabu List 

MAXJTERA TIONS= The Number Of Iterations To Perform

Output: PfAPPROX = The Optimal Set Of Solutions

PfAPPROX = { }
TABU_LIST= { }
CURRENT = Generate A Path Between S And T At Random Using Random Walk
PfAPPROX= P/APPROX+ CURRENT
ITERATION =0

WHILE (ITERATION < MAXJTERATIONS)
{

MUTATED = Perform Mutation Algorithm On CURRENT
WHILE (MUTATED Is Tabu) // Present On PfAPPROX Or TABU_LIST 

MUTATED = Perform Mutation Algorithm On CURRENT

TABU_LIST= TABU_LIST + MUTATED
IF (MUTATED Dominates Any Member Of PfAPPROX)
{

CURRENT = MUTATED
PfAPPROX = PfAPPROX + CURRENT
PfAPPROX = Extract Optimal Solutions From PfAPPROX

ELSE

IF (MUTATED Dominates CURRENT) 
CURRENT = MUTATED 
PfAPPROX= PfAPPROX + CURRENT 
PfAPPROX "= Extract Optimal Solutions From PfAPPROX

ELSE IF (MUTATED And CURRENT Are Indifferent)
{

DCurrent = Calculate Average Distance From PfAPPROX To CURRENT 
DMutated= Calculate Average Distance From PfAPPROX To MUTATED

IF (DMutated< DCurrent)
CURRENT = MUTATED 
PfAPPROX = PfAPPROX + CURRENT 
PfAPPROX = Extract Optimal Solutions From PfAPPROX 

ELSE IF (DMutated = DCurrent) 
{

R = Random Value In {0.0,1 .0} 
IF (R < 0.5)

CURRENT = Generate A Path New Path Between S And T
PfAPPROX = PfAPPROX + CURRENT
PfAPPROX = Extract Optimal Solutions From PfAPPROX

ITERA TION = ITERA TION + 1 
IF (\TABU LIST] > TABU_SIZE)

Prune Oldest Solution From TABU_LIST

Algorithm 4.16 Outline of the Tabu Search
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Algorithm: Distance Calculation Algorithm

Input: PfAPPROX = Current Set Of Pareto Optimal Approximations

PATH = A Path Representing A Possible Solution 

Output AV_D = Average Distance Of A Solution To PfAPPROX

TOTAL_DISTANCE = 0 
SIZE = \PfAPPROX\ 
DISTANCES ={}

FOREACH (MEMBER Of PfAPPROX)
{

CRITERIA_COUNT= Number Of Criteria In (PATH && MEMBER)
D = 0 
DELTA = { }

FOR (i = 0 TO CRITERIA_COUNT)
DELTAfi] = MEMBER.Costs[i] = PATH.Costsfi]

FOR (/ = 0 TO CRITERIAJCOUNT)
DELTAfj] = DELTA/jJ * DELTA/jJ

TOTAL = 0
FOR (k= 0 TO CRITERIA COUNT) 

TOTAL = TOTAL = DELTA/jJ

DISTANCESfMEMBERJ = SQRT(TOTAL)

FOR (/ = 0 TO \DISTANCES\)
TOTAL_DISTANCE = TOTAL DISTANCE + DISTANCES[l]

AV_D = TOTAL_DISTANCE I \DISTANCES\

Algorithm 4.17 Distance Calculation for Indifferent Solutions

4.8. Simulated Annealing Algorithm

In this section an algorithm in introduced that aims to solve the MSPP based on a 

Simulated Annealing technique. The algorithm shares the basic properties of the work 

developed in Smith (2006) in which a Simulated Annealing approach is introduced with 

the basic property that the algorithm does not reduce the multi objective problem into a 

single criterion methodology through the use of weightings and an additive process for 

each criterion. The majority of schemes that adapt Simulated Annealing to more than
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one objective (Serafmi, 1994, Ulungu et al., 1999, Czyzak and Jaszkiewicz, 1998, Nam 

and Park, 2000, Hapke et al., 2000, Suppapitnarm et al., 2000, Tuyttens et al., 2003) 

have focused on a single solution, and determining the quality of perturbations to that 

single solution using a weighted sum of objectives.

The archive is initialised with the initial feasible path (CURRENT). The algorithm 

is also initialized with a starting temperature, cool rate and closing temperature. The 

initial path is added to an external archive. At each stage of the annealing process the 

current solution CURRENT is perturbed using the methodology presented in Algorithm 

4.15 to form the proposed solution MUTATED. If solution MUTATED dominates 

solution CURRENT then it is accepted as the new CURRENT and added to the external 

archive. Dominated solutions are removed from the external archive. If the solution is 

indifferent then the solution is accepted based on its distance to the front PfTRUE. 

Unlike the Tabu Search where solutions that are further away from the front PfTRUE 

are discarded in the Simulated Annealing approach they are accepted based on an 

annealing probability. Algorithm 4.19 presents an outline of the Simulated Annealing 

approach used in this work. Algorithm 4.18 is used to calculate the probability of 

acceptance of an indifferent solution.

Algorithm: Probability Of Acceptance Algorithm

Input: DCurrent = Average Distance Of The Current Solution To PfAPPROX 

DMutated = Average Distance Of The Mutated Solution To PfAPPROX 

TEMPRATURE = The Current Temperature Of The Annealing Process

Output: P = The Probability Of Accepting DMutated As The Current Solution

DELTA = DCurrent - DMutated 
TEMP = DELTA I TEMPRATURE 
P = EXP(TEMP)

Algorithm 4.18 Probability of Acceptance Algorithm
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Algorithm: Simulated Annealing Algorithm

Input: S = The Source Vertex 

T= The Target Vertex

G = (\V\,\E\)= The Graph Which Is Being Analysed 

STARTING_TEMPRATURE = The Starting Temperature 

COOLING_RATE = How Quickly The Temperature Cools 

CLOSING_TEMPRATURE = When Does The Algorithm Terminate

Output: PfAPPROX = The Optimal Set Of Solutions

PfAPPROX= { }
TABU_LIST= { }
CURRENT = Generate A Path Between S And T At Random Using Random Walk
PfAPPROX = PfAPPROX + CURRENT
TEMPRATURE = STARTING _TEMPRATURE

WHILE (TEMPRATURE > CLOSING TEMPRATURE)
{

MUTATED = Perform Mutation Algorithm On CURRENT 
IF (MUTATED Dominates Any Member Of PfAPPROX)
{

CURRENT = MUTATED
PfAPPROX = PfAPPROX + CURRENT
PfAPPROX= Extract Optimal Solutions From PfAPPROX

ELSE

IF (MUTATED Dominates CURRENT) 
CURRENT '= MUTATED 
PfAPPROX= PfAPPROX + CURRENT 
PfAPPROX = Extract Optimal Solutions From PfAPPROX

ELSE IF (MUTATED And CURRENT Are Indifferent)
{

DCurrent = Calculate Average Distance From PfAPPROX To CURRENT 
DMutated = Calculate Average Distance From PfAPPROX To MUTATED

IF (DMutated < DCurrent)
CURRENT = MUTATED
PfAPPROX = PfAPPROX + CURRENT
PfAPPROX= Extract Optimal Solutions From PfAPPROX

ELSE // Difference Between Tabu Search - Not Only Indifference Considered
{

P = Calculate Probability Of Acceptance
R = Random Value In {0.0,1.0}
IF (R < P)

CURRENT = MUTATED
PfAPPROX = PfAPPROX + CURRENT
PfAPPROX = Extract Optimal Solutions From PfAPPROX

TEMPRATURE = TEMPRATURE * COOLING _RATE

Algorithm 4.19 Outline of Simulated Annealing Algorithm
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4.9. Dominance and extraction ofPfAPPROX

Chapter Two of this thesis introduced the concept of Pareto optimality and 

dominance through a worked example. In this section the method the algorithms used 

are introduced briefly. Algorithm 4.20 represents the methodology used to detect the 

dominance relationship between two solutions while Algorithm 4.21 extends Algorithm 

4.20 into the extraction of the Pareto optimal set.

Algorithm:___Dominance Check Algorithm______________________________^^^ 
Input: CA = Costs Of Candidate Solution A

_________CB = Costs Of Candidate Solution B__________________________ 
Output: True If Solution A Dominates Solution B, False If Not

C=\CA\ 
£> = True 
i = 0

WHILE ((i<Q && D)
{

D = (D&& (CAfiJ >= CB[i]))
/•=;+! 

}
Algorithm 4.20 Dominance Check Algorithm

Algorithm:___Extraction Of Optimal Solutions Algorithm__________ 
Input:______P = Population Of Solutions___________________ 
Output:_____PfAPPROX= Non Dominated Solutions From Population P 
PfAPPROX= { } 
FOREACH (Path A in P) 
{

FOREACH (PathS in P) 
{

IF (A&&B Are Equal)
Continue 

ELSE
{

IF (A Dominates B)
Mark B As Dominated

FOREACH (Path C in P) 
{

If (C Is Not Marked As Dominated) 
PfAPPROX=PfAPPROX+ C 

}
Algorithm 4.21 Extraction of Pareto Optimal Front
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4.10. Support Algorithms

A number of support algorithms are used internally to the algorithms. These 

include methods to check if any two paths are equal, if a population contains a solution 

and other associated functionality. These are described here briefly. Given their support 

nature exact detail is not included beyond the high level pseudo code descriptions 

provided.

Algorithm 4.22 is used to determine if two paths are equal. A simple comparison 

will not identify equality between two paths and so additional checks are required. The 

procedure first counts the number of vertices in the two paths. If the length values are 

not equal then the paths themselves will not be equal and so the procedure exits 

indicating that fact. If the two paths do have the same number of vertices iteration over 

the cost values is performed. If all the costs are equal the path is assumed to be equal. If 

any cost is not the same between the two paths the paths will not be considered equal 

and the procedure is exited returning false. In order to reach this stage in the equality 

check the two paths will have to have the same lengths and criteria costs. The procedure 

therefore iterates the path descriptions themselves. If any two vertices at the same locus 

on the path are unequal the paths are considered unequal. If all the vertices at each locus 

are equal the paths are considered equal.

Algorithm 4.23 is used to determine if a population such as a generation of the 

Genetic Algorithm or the tabu list in the Tabu Search Algorithm already contains a path. 

The method iterates through each member perform Algorithm 4.22 to determine if the 

paths are equal. If at any point the method receives a value of true from that algorithm 

then it does already contain a path.

205



Algorithm 4.24 is an extension of Algorithm 4.21 that returns a set of non 

dominated solutions from the provided set. Algorithm 4.24 performs the same basic 

functionality with a series of minor variations. The method is passed a single candidate 

path in addition to a populated set of solutions. If the passed candidate solution would 

dominate any member of the provided population (i.e. it would be a member of that 

population) then the method returns true. Otherwise the method return false. Algorithm 

4.25 is used to identify the costs associated with a provided path. It looks up each costs 

for each criteria in the graph for each edge in the graph calculating a total sum for each 

criteria.

Algorithm:___Path Equality Algorithm
Input: A = Path Between Two Vertices 

B = Path Between Two Vertices
Output:_____True If The Paths A And B Are Equal, False If Not

Return False 
Else
{

COST_COUNT= \A.Costs\

ARE EQUAL = True
FOR (z = 0 TO COST_COUNT)
{

IF (A.Costsffl != B.CostsfiJ) 
ARE_EQUAL = False

IF (!ARE_EQUAL) 
Return False

FOR / = 0 TO

IF (A[j] \=B[jJ)
Return False

Return True

Algorithm 4.22 Path Equality Algorithm
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Algorithm: Population Contains Algorithm
Input: PfAPPROX = A Population Of Solution 

PATH = Path Between Two Vertices
Output: True If The PfAPPROX Contains PA TH, False If Not 
FOREACH (Path P in PfAPPROX}
{

IF (P && PATH Are Equal)
Return True

Return Fake
Algorithm 4.23 Population Contains Algorithm

Algorithm: Simple Dominates Algorithm

Input: P = Population Of Solutions

PATH = A Solution Being Check For Dominance Against P 

Output: True If The Solution

PfAPPROX=P
PfAPPROX = PfAPPROX + PATH 
PfAPPROXCopy ={} 
FOREACH (Path A in PfAPPROX)
{

FOREACH (Path B in PfAPPROX)
{

IF (A && B Are Equal)
Continue 

ELSE
{

IF (A Dominates B)
Mark B As Dominated

FOREACH (Path C in PfAPPROX) 
{

If (C Is Not Marked As Dominated)
PfAPPROXCopy = PfAPPROXCopy + C

IF (PfAPPROXCopy Contains PATH)
Return True 

ELSE
Return False__________________________________

Algorithm 4.24 Simple Population Domination Check
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JUgorithm: Calculate Path Description Vector Algorithm
Input: PATH = Path Between Two Vertices

G = (\V\,\E\) = The Graph Being Analysed
_________C = Number Of Costs Associated With edge e(ij) 6 E 
Output: PA TH With Path Description Vector Of C Costs 
PATH.Costs= { } 
SIZE=\PATH\

FOR(/ = OTo57ZE-l)
{

/ = PATH [I]
j = PATHfl+lJ 
Edge eftj) = G(e(ij)

FOR(A:=OTOC)
PATH.COSTS[k] = eftj).Costs [k]

Algorithm 4.25 Calculation of the Path Description Vector

4.11. Chapter Summary

This chapter outlined the various algorithms developed or used in the study for 

the solution to the MSPP. The data sets used to test the algorithms has been introduced, 

together with a rationale provided for their inclusion. The test data used in the study 

consists of both real world and synthetic graphs of a variety of sizes, ranging from what 

may be considered to be very small graphs through to larger graphs. The application of 

both data sets should provide a robust challenge to the techniques with each exhibiting 

differing qualities, such as real world graphs having the general property of a higher 

portion of links with only two connected vertices. Also introduced were mechanisms 

that provide robust approximations of the PfTRUE, against which the outputs (during 

the experimental phase of this work described in the following two chapters) of the 

algorithms will be compared.
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A review of the literature of alternatives to the Evolutionary/Genetic Algorithm 

approach to multi criteria optimisation has been undertaken in Chapter 3. The Methods 

developed as part of this study and described in this chapter attempt to build on the most 

promising aspects of those algorithms, where particular emphasis' has been placed on 

avoiding reducing the multi criteria optimisation process to a single criteria process 

through the application of weighting to each of the criteria.

As has been highlighted frequently elsewhere in this work, no existing examples 

of meta-heuristic methods other than the Genetic Algorithms can be seen when applied 

to the solution of the MSPP. In that regard, the algorithms developed are certainly 

novel. In the next chapter each of the developed approaches will be compared to the 

Genetic Algorithm approach and existing algorithmic methods on the test data.
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Chapter 5: Runtimes and Scalability
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5. Runtimes and Scalability

The current chapter reviews the performance of the algorithms. The chapter first 

considers the Dijsktra shortest path algorithm applied to multiple criteria in order to 

identify optimal paths in each criterion. The chapter then considers other algorithmic 

solutions to the MSPP in the form of the Skriver and Andersen algorithm before 

reviewing the effectiveness of the Climaco and Martins algorithm. Attention then turns 

to presenting an overview of the heuristics developed in terms of runtime and quality. 

At the end of the chapter an overview is provided to highlight scenarios where the 

application of any particular algorithm may be considered appropriate.

5.1. Algorithmic Solutions to the MSPP

Three algorithmic methods are reviewed in this section. The first is arguably 

the most primitive and merely involves applying the Dijsktra shortest path algorithm to 

a series of independent criteria. Attention then turns towards those methods that model 

the Pareto optimal front in its entirety (generating methods). The performance of the 

algorithm outlined in Skriver and Anderson (2000) is considered alongside the path/tree 

based strategy introduced in Climaco and Martins (1982). The generating algorithms are 

tested against a series of random and real world graphs.

5.1.1. Dijsktra Algorithm Using Multiple Criteria

In this section the performance of Dijkstra's shortest path algorithm when 

applied to multiple criteria is reviewed. The experiment effectively runs the Dijsktra 

shortest path algorithm D times where D would be equal to the number of criteria under 

consideration. The experiment was repeated 1000 times. Figure 5.1 presents the results 

graphically along with the base line figure for Dijsktra shortest path algorithm. The base
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line is the performance of the Dijsktra shortest path algorithm when calculating a single 

shortest path or when D = 1 For the purposes of the experiment considering multiple 

criteria D = 4.

The Dijsktra shortest path algorithm applied to multiple criteria offers limited 

insight into the front PfTRUE as the methodology merely calculates the extreme points 

of the Pareto optimal front and as such may offer little value for a large number of 

applications. However, referring to the descriptions in Chapter 1 as to the value of route 

planning and how route selection is performed then the technique may hold some, albeit 

limited, value. A similar view is presented in Hallam et al (2001 p. 134), who suggest: 

"it may be of little practical use to find all Pareto-optimal paths. For many applications 

it is sufficient to know at most one Pareto-optimal path in P(s, t) for each minimal cost 

vector". The test demonstrates that the extreme Pareto points can be identified quickly 

where it is considered of value.

Comparision of run approaches of 
Dijsktras 1 algortihm for multiple criteria

c
o 
m

P 
u
t ~- 
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i 

m
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Random Graph Size

I Single Criteria • Multiple Criteria

Figure 5.1 Graph of Multi Criteria Dijsktra Approach Runtimes
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5.1.2. Skriver and Andersen's Algorithm

At this point the runtimes of the Skriver and Anderson (2000) label-correcting 

algorithm are presented when applied to a subset of real world and random graphs. The 

algorithm aims to generate the complete set PjTRUE. Table 5.1 presents the runtimes of 

the algorithm when applied to real world graphs while Table 5.2 presents the results of 

the algorithm on random graphs. The runtimes of Table 5.1 and Table 5.2 are presented 

in chart form below in Figure 5.2 and Figure 5.3 respectively. The tests demonstrate 

how increasing the graph size has a substantial effect on algorithm runtime. This 

appears to be due to the requirement for edge costs to be sorted for each criterion in 

order for the over-take mechanism suggested by Skriver and Andersen to be effective. 

The experiment is performed between 100 randomly selected vertex pairings. The 

results of the experimentation provided in Table 5.1 and Table 5.2 should be used with a 

certain degree of caution due to differences in the size of the graphs with the smallest 

real world graph being much larger than the smallest random graph. However, the 

general structure of the graph appears to have a substantial effect on the runtime of the 

Skriver and Andersen algorithm. Taking as an example the smallest of the real world 

graphs, Cardiff 500 has 2288 edges and 1076 vertices. The Skriver and Andersen 

algorithm takes an average of 101.67 seconds to complete a processing run. hi 

comparison the largest random graph 1000 X 2000 completes a processing run 132 

seconds. It is believed that the difference in runtime is a due to the difference in the 

makeup of the graph. The real world graphs exhibit the property of having a large 

number of vertices with a low degree value, forming long isolated strings. The method 

of operation of the algorithm appears to often delete such edges early on in the 

processing run having a positive effect on the run time of the algorithm.
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Graph
Cardiff 500
Cardiff 750

Cardiff 1000
Cardiff 1500

Seconds
101.67
221.45

331.23

642.27
Table 5.1 Runtime of S&A Algorithm on Real World Graphs

Graph

100 X 200

200 X 400

500 X 1000

750X1500

1000 X 2000

Seconds

1.6

11.6

81

108

132

Table 5.2 Runtime of S&A Algorithm on Random Graphs

Runtime of Skriver & Anderson algorithm 
on real world graphs

700

R ~ 600

Cardiff 500 Cardiff 750 Cardiff 1000

Graph Size

• Runtime of Skriver and Anderson algorithm

Cardiff 1500

Figure 5.2 Runtime of S&A Algorithm on Real World Graphs
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Runtime of Skriver & Andersons algorithm 
on random graphs

100X200 200X400 500X1000 750X1500

Random Graph Size

• Runtime of Skriver and Anderson Algorithm

1000 X 2000

Figure 5.3 Runtime of S&A on Random Graphs 

5.1.3. Climaco and Martins' Algorithm

hi the following experiment, an implementation of Climaco and Martins MSPP 

algorithm is tested. Skriver and Anderson (2000) state that the labelling methodology 

should theoretically always outperform path or tree approaches as seen in the Climaco 

and Martins approach. The algorithm works by firstly calculating the shortest path (P*) 

between two vertices on a single criteria. It then calculates the cost of traversing the 

same path using the second criteria (P*). A K-shortest path algorithm is then used to 

iteratively optimise the second criteria until the cost of P42 exceeds the cost of traversing 

P*. When that condition has been met the algorithm will have discovered the complete 

setP/TRUE.

hi Raith and Ehrgott (2009) a study on both real world (road) graphs and 

random graphs is presented. Several scenarios are indentified where the proposition of 

Skriver and Anderson (2000) is demonstrated not to be true with a variation to the K 

shortest path algorithm presenting results that in many cases show the tree based

215



approach outperforming the results of the Skriver and Anderson approach when applied 

to real world graphs. In their work however Raith and Ehrgott also find several cases 

when the Skriver and Anderson approach dominates (outperforms by a factor of over 

10) the tree-based approach used by Raith and Ehrgott. hi the following experiment a 

study into the runtime of the Climaco and Martins approach is presented together with a 

hypothesis for the performance difference. An attempt is made to illustrate why vertex 

selection plays a vital role in the success of the Climaco and Martins approach. The 

experiment attempts to optimise the distance and travel time of real world networks, hi 

the data preparation stage vertex pairs are selected and split into two separate groupings. 

The first grouping contains a series of vertices where the delta of the distance and time 

between the optimal paths on each criterion is small; the second grouping consists of 

vertex pairings where the delta value is large.

For each vertex pairing two shortest path analysis are performed. The first 

optimises the distance values between the source and destination vertex. The second 

optimises the travel times between the same vertices. Following the calculation of each 

shortest path the corresponding cost is calculated for traversing the same path using the 

other criteria. Delta values are generated between the two shortest paths for each 

criterion. Two groups consisting of 100 vertex pairings are selected. The first consists of 

those solutions where the delta values are smaller, with an added filter applied to ensure 

that the distance delta is greater than 350 meters and the travel time delta greater than 20 

seconds. The second set consists of the 100 vertex parings with the highest deltas 

between the distance and travel time.

The first of the columns in Table 5.3 identifies the average number of optimal 

solutions that were present between the source and destination vertices on the selected 

graphs. For each vertex pairing the set PfTRUE was retrieved and the average value for 

\PjTRUE\ generated. The second of the three columns identifies the K number of 

iterations required to generate the set PfTRUE. The final column provides the runtime 

in milliseconds to generate the set PfTRUE, or alternatively expressed to perform a
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single run of Dijsktra shortest path algorithm on a criterion then produce the K paths 

required on the alternative criteria and finally extract the optimal set of solutions from 

the set (of Dijsktra and K paths) generated. The results indicate that in certain 

circumstances, notable with a small delta value, the algorithm will only be required to 

generate a limited number of K paths and will therefore be able to complete the process 

ofP/TRUE assembly reasonably quickly.

In Table 5.4 presents the results of a similar test where the difference between 

the shortest paths in terms of distance and time are larger, as opposed to smaller. The 

presence of larger delta values would indicate that a high number of paths will exist 

between two nodes and will therefore result in a higher number of K paths required 

(indicated in the second of four columns) and will result in a longer runtime. A time 

limit of 5 minutes was applied to the test as a terminating condition. The table provides 

the same information as Table 5.3 in the first three of the four columns, with the 

addition of the success rate of the algorithm in the fourth and final column. Only those 

graphs where more than 60% of the vertex pairings were acquired within the time limit 

are given. The experimentation using the Climaco and Martins algorithm is concluded 

with Table 5.5. The table includes the average K value for each vertex pairing together 

with standard deviation for the K value. It should be noted that the five minute 

terminating criteria was not chosen at random. During tests it became apparent that 

where the test could not be completed in less than five minutes in over 80% of cases the 

system would fail to complete the process and report that the amount of memory 

required exceeded that available. That increased to over 90% in cases where the 

terminating condition was set to 10 minutes. Figure 5.4 provides a visual analysis of the 

number of paths required while Figure 5.5 compares the runtimes seen.
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Graph

Cardiff 250

Cardiff 500

Cardiff 750

Cardiff 1000

Cardiff 1500

Cardiff 2000

Cardiff 4000

London 250

London 500

London 1000

London 2000

NE 1000

NE 2000

Average PJTRUE
3.3

4.1

4.3

4.5

4.3

6.3

8.2

3.8

4.1

4.3

7.8

2.08

2.6

Average K

14

48

54

65

73

143

160

34

41

156

415

2.26

3.12

Average Time (ms)

20

198

212

324

690

963

10836

34

310

1294

4654

86

94

Table 5.3 Performance of Climaco and Martins Algorithm with Low Delta Values

Graph

Cardiff250

Cardiff500

Cardiff750

London250

London500

NE1000

NE2000

Average 

PfTRUE

3.3

6.1

7.2

5.6

12.5

3.78

3.78

Average K 

Calculated

18

2276

3412

1056

12564

25

26

Average Time 

(ms)

22

11237

12072

2920

33937

1481

2791

Successfully 

Completed (%)

100

92

81

100

71

100

100

Table 5.4 Performance of Climaco and Martins Algorithm with High Delta Values
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Graph

Cardiff 250

Cardiff 500

Cardiff 750

London 250

London 500

NE 1000

NE 2000

Low Delta Spacing

Average K 

Value

14

48

54

34

41

2.26

3.12

Standard 

Deviation in K

4

12

14

8

13

1

1

High Delta Spacing

Average K 

Value

18

2276

3412

1056

12564

25

26

Standard 

Deviation in K

4

515

812

768

8634

1

3

Table 5.5 Comparison of Results Seen in Climaco and Martins Approach

Comparision of the number of paths 
required for CaM approach

Cardiff 
250

Cardiff 
500

Cardiff London London NE 1000 NE2000 
750 250 500 

Real World Graph

I Low Delta • High Delta

Figure 5.4 Comparison of the Paths Required for C&M Approach
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Comparision of runtimes for CaM 
approach

35000

Cardiff250 CardiffSOO Cardiff750 London250London500 NE1000 NE2000

Real World Graph

• Low Delta • High Delta

Figure 5.5 Comparison of the Runtime Required for C&M Approach 

5.1.4. Observation Regarding the Algorithmic Approach

hi this section the three algorithms for the solution of the MSPP are compared. 

As indicated previously the application of the Dijsktra algorithm to multiple criteria 

produces only the extreme points of the front PfTRUE. The Skriver and Anderson 

algorithm has been applied to both a series of real world and random graphs. The results 

obtained for that experiment indicate a substantial increase in processing time as the 

size of the graph increases. On medium sized real world graphs (Cardiff 1500) the 

algorithm took almost eleven minutes to process a solution. Due to the long run times 

offered by that algorithm on smaller graphs it was decided not to proceed on the larger 

graphs (considering that the Cardiff 1500 graph has the dimensions 6603 x 14428 while 

the Cardiff 4000 graph has the dimensions 29044 x 62486). Under certain 

circumstances the Climaco and Martins approach has the ability to substantially 

outperform that of Skriver and Anderson. Consider that on the Cardiff 500 graph the 

Skriver and Anderson algorithm will take around 101 seconds compared to // seconds
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for the Climaco and Martins approach in certain circumstances. The Skriver and 

Anderson approach is however able to complete runs regardless of the vertex selection a 

property not seen in the Climaco and Martins approach. The Dijsktra shortest path 

algorithm is able to return an extreme sub subset of PJTRUE very efficiently on real 

world graphs.

The tests on the Climaco and Martins approach show that the performance of the 

algorithm is entirely dependent on vertex pair selection. In some circumstances the 

methodology performs well with the algorithm quickly developing an accurate and 

complete set of PfAPPROX. In other situations the algorithm performs poorly with the 

methodology demonstrating poor run times. Without prior knowledge of both the graph 

and the vertex pairing there is no opportunity to detect such scenarios where the 

algorithm will perform poorly.
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5.2. Analysis of Runtimes of Heuristic Approaches

hi the experiments upon each of the algorithms it was originally the aim to 

develop parameter sets that would enable comparable runtimes across algorithms 

(excluding the K-Geodesic approach to the Genetic Algorithm) and graph sizes. It 

quickly became apparent however that such an approach would prove impossible. A 

rational for the discrepancy is detailed in section 5.3 . hi this section the runtimes of the 

algorithms are discussed. The time taken for the algorithms to perform the analysis on a 

subset of the graphs studied using the smallest of the parameter sets are captured. The 

results acquired using random graphs are provided in Figure 5.6 Comparable 

differences in run time performance can be seen across the parameter size sets. The 

parameters used are formally introduced in Chapter 6.

350

Runtime of heuristics on random graphs

Random Graph

IGA(RW) BGA(KG) • TS «5A • PAES

Figure 5.6 Runtime of Heuristics on Random Graphs
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The K-geodesic approach completes a processing operation extremely quickly, 

completing in 5.1 seconds on the largest of the graphs. The technique typically takes 

around one quarter of the time the random walk directed technique on the same graph 

and 1.5% of the time of the Simulated Annealing approach on graph size 12000 x 

24000. The comparative uniformity of the GA (both variants) approach when compared 

to the 1+1 series of algorithms is noted and discussed further in section 5.3.

It is perhaps worth highlighting a certain discrepancy between the runtime of the 

K shortest path algorithm when producing geodesic paths and the results seen in certain 

instances of the Climaco and Martins algorithmic approach. During the experiments 

performed on the Climaco and Martins approach, the algorithm is required to perform 

several dictionary lookups to retrieve the cost of a path. With the K-geodesic approach 

the cost value is fixed to one resulting in a reduced computational overhead. In addition 

although the output of the K shortest path algorithm may be seen as a simple path 

internal to the algorithm complex paths may be generated and then discarded. The 

application of the K-geodesic approach sees less generation of complex paths and hence 

a faster runtime. A test setting K to 1000 on a graph size 5000 x 15000 was performed 

using both the K Geodesic approach (edge cost set to 1) together with a single criteria 

cost associated with the graph. The K Geodesic approach internally required the 

computation of an average of 1006 paths compared with an average 1401 paths 

generated using the single criteria cost. Runtimes of 1162 milliseconds compared with 

1621 milliseconds using the K geodesic and single criteria edge cost respectively. The 

test was performed over 1000 randomly selected vertex pairings.

Figure 5.7 presents the run times achieved by the various algorithms on real 

world graphs. On the larger instances of the real world graph the Simulated Annealing 

and PAES algorithms failed to complete within two hours. For the Cardiff 2000 graph 

the random walk based Genetic Algorithm provides a solution to the MSPP task in 

around 24 minutes. The K geodesic approach performs much more quickly completing 

with a maximum runtime of 26.1 seconds; the Tabu Search completes in around 28 

minutes.
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Runtime of heursitics on real world 
graphs

2500

Real World Graph

GA(RW) BGA(KG) • TS BSA .. PAES

Figure 5.7 Runtime of Heuristics on Real World Graphs

The heuristic algorithms (with the exception of the K Geodesic approach) may 

appear to be disappointing. However when compared to existing methods the 

algorithms are seen to produce a reasonable approximation of PjTRUE in a useable 

period. The Cardiff 1000 graph for instance using the Genetic Algorithm with random 

walking produces a useable solution in 139.63 seconds compared to 331 seconds for the 

Skriver and Anderson approach. Where tree based approaches are compared the K- 

geodesic performs very well (in terms of runtime) compared to the Climaco and Martins 

approach. The approach is able to produce a reasonable approximation of the front 

PfTRUE on the Cardiff 1000 graph in 6.9 seconds where the Climaco and Martins 

approach fails to return a solution within five minutes (and would likely cause system 

errors).
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The results of runtimes gathered from the test performed on random graphs are 

certainly promising and exhibit a degree of comparability as the graph size increases. 

This comparability is not seen in existing work. Mooney (2004) reports a runtime of 

around 114 seconds on a graph sized (1000 x 2000) for a Genetic Algorithm approach. 

Using similar parameter values the methodology here performs much quicker (14 

seconds). The difference is believed to be due to the difference in random walk 

techniques employed in either study. In virtually all other aspects the algorithms are the 

same with our algorithm based upon that of Mooney (2004). A caveat is attached to this 

assertion however. The same increase in performance does not appear to be present on 

real world graph, at least with the same degree of comparability. However, due to 

differences in data sets an exact comparison is not possible.

The runtimes seen on the real world graphs when compared to their synthetic 

counterparts demonstrate how the makeup of the graph plays a vital role in the 

performance of the algorithms. The real world graphs exhibit a much higher degree of 

sparseness than the random graphs. The graph will tend to have a large number of 

vertices with only two connected edges one of which will already be present in the 

walk. The random walk however will still need to identify the number of outgoing 

vertices thus decreasing the performance of the mechanism.

5.3. Reviewing the Runtime Discrepancy

hi section 5.2 the runtime of the various algorithms were considered, hi that 

section it was highlighted the original aim of the work was to present the algorithms that 

run in a comparably similar time. It quickly became apparent that such an approach 

would prove impossible, hi this section two of the heuristic approaches, the Genetic 

Algorithm (with random walking) approach and the PAES are used to provide a 

rationale for the discrepancy. Figure 5.6 contains the run times of each of the 

algorithms on a subset of the randomly generated graph. The fact that the Genetic
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Algorithm approach maintains a comparatively similar operating time across the 

random graphs should be highlighted. In this section, a rationale for the comparability 

across random graph sizes for the Genetic Algorithm is proposed.

The Genetic Algorithm requires that at each generation (G) the population (P) 

only consist of unique paths, hi this thesis the same path is allowed to be readmitted at a 

later generation but for any specific generation each path must be unique. On a smaller 

graph there are likely to be less unique paths seen on the graph between any pair of 

vertices. As the size of the graph increases the number of feasible paths between any 

two vertices also increases reducing the number of attempts that are required to discover 

a complete set of unique paths. Table 5.6 contains the total number of calls required to 

the random walking mechanism when performing a run of the Genetic Algorithm on 

graphs at either end of the graph size extremes. For the smaller graphs each walk is 

performed exceptionally quickly, completing in around 0.06 milliseconds. However a 

large number of calls to the random walk mechanism are required in order to produce 

enough random walks to generate a series of unique populations. In contrast on the 

larger graph size less duplicate paths are found per generation but each of which (a 

path) takes longer to be generated taking around 5-8 milliseconds per walk.

Graph Size

100x200

12000 x 24000

Total Paths Generated

246,216

3911

Table 5.6 Total Paths Generated Per Run of Genetic Algorithm

The general effect is to balance out the run time of the Genetic Algorithm across 

the series of random graphs. The PAES algorithm together with the other heuristic 

algorithms in comparison will require less walks (iterations). This on the small graphs
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results in a quicker run time. However, the same number of walks are required on the 

larger graph sizes which results in an increasing run time due to the greater amount of 

time required for their generation. The review of runtimes is completed by a brief 

description of the admission of unique paths. Figure 6.3 demonstrates that the Genetic 

Algorithm will admit an average of 781 unique paths on the graph size 100 x 200. The 

PAES running on the same graph admits the lower number of 719 unique paths. On 

larger graphs (12000 x 24000) the PAES algorithm admits a much higher number 

(1365) of unique paths than the Genetic Algorithm (846), but the general difference in 

quality remains. This indicates that on larger graphs the performance of the algorithm is 

heavily influenced by the genetic operators of crossover and mutation.

5.4. Scalability of Criteria

In the next brief experiment the ability of the algorithms to scale to higher 

numbers of optimisation criteria is examined. The tests conducted so far have been 

limited in the number of criteria under consideration and consist of either two or three 

criteria, primarily two. The multi objective approach to the Dijsktra algorithm in which 

four criteria where considered is not included as tests using those datasets on the 

heuristic approaches were not considered. Figure 5.8 presents the runtimes achieved 

with higher numbers of criteria. For the purposes of brevity the discussion is limited to 

the results achieved from the Genetic Algorithm using random walking using parameter 

Set A, described in Chapter 6 (6.2.1). However, the logic of calculating and extracting 

the Pareto optimal path is relatively straightforward and comparable results can be seen 

across the range of algorithms considered. In the previous section a discussion as to the 

makeup of the algorithms runtimes was provided. The algorithms demonstrate a high 

degree of scalability with little difference being observed regardless of the number of 

criteria considered. It should be noted that in this particular experiment the sole test was 

to examine the performance in terms of runtime of the algorithms and not the quality of 

the solutions returned. Four graphs sizes stand out as being worthy of further analysis 

and discussion - the graphs 1000 X 2000, 2000 X 4000, 6000 X 2000 and finally 12000 

X 24000. The first of the four graphs exhibit very little variation in runtime regardless
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of the number of criteria (less than 1 hundredth of a second). The largest graph has a 

high difference between C=3, C=5 and C=10. Further analysis results in Table 5.7 that 

provides the average runtime seen for each graph across all criteria together with the 

difference from that average seen for each criteria group. The final column presents the 

typical difference from the average runtime for that graph size. Reviewing the graph 

sized 12000 X 24000 on Figure 5.8 reveals a wide range of runtimes across the number 

of criteria being considered with almost four seconds difference between C=3 and C=5 

on the largest graph. For the largest of the graph the typical difference from the average 

runtime seen is 1.18 seconds. The difference in runtime between C=3, C=5 and C=10 

on the largest graph is around +-8% of the runtime of the run where C=5. The 

difference is high but importantly the difference does not increase in line with the 

number of criteria being considered. This is consistent across all graphs. For instance on 

the 100 X 200 the average runtime returned from C=10 is quicker than C=5. On the 

graph 200 X 300 C=3 performs more quickly than both C=2 and C=5 as does C=10. 

An exact rational for the run time difference cannot be identified but could be either 

internal to the algorithms such as random walk finding a large number of identical paths 

or external and caused by the operating system background process.

Runtime of the genetic algorithm for 
various numbers of criteria (C)

Random Graph

C=2 BC=3 -C=5 «C=10

Figure 5.8 Runtime of the Genetic Algorithm for Various Numbers of Criteria
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100 X 200

200 X 400

500 X 1000

750 X 1500

1000 X 2000

2000 X 4000

3000 X 6000

5000 X 10000

6000 X 12000

8000 X 16000

10000 X 20000

12000 X 24000

Average 
Runtime 
(Seconds)

14.39

14.2275

15.14

15.3525

14.67

14.8

15.2925

15.3925

16.35

19.2525

20.7425

22.2

Difference From Average 
Runtime (Seconds)

O2

0.17

0.1225

0.55

0.6925

0

0

0.1725

0.2425

0

0.1525

0.4925

0.6

C=3

0.29

0.3375

0.95

0.8125

0

0

0.3725

0.0175

0

0.4625

0.5925

1.75

C=5

0.53

0.2325

1.68

0.4275

0

0

0.5975

0.0525

0

0.0225

1.2075

2.1

C=10

0.07

0.017
5

0.18

1.077
5
0

0

0.052
5

0.277
5
0

0.637
5

0.122
5

0.25

Average 
Difference 
(Seconds)

0.265

0.1775

0.84

0.7525

0

0

0.29875

0.1475

0

0.31875

0.60375

1.175

Table 5.7 Analysis of Runtime Differentials

5.5. Summary of Quality Tests

Figure 5.9, Figure 5.10 and Figure 5.11 provide a summary of the results seen 

during the experimental work conducted as part of this research. Figure 5.9 highlights 

for each of the algorithms studied as part the work the number of tests where the size of 

the approximation front is equal to or greater than that of the set of pre-determined 

optimal solution, or \PfAPPROX\ >= \PfTRUE\. Figure 5.10 highlights the number of 

tests where the difference between the two sets is equal to one (\PfAPPROX\ = 

\PjTRUE-l\), while Figure 5.11 presents the number of tests where the difference the 

PfAPPROX and PJTRUE is equal to or greater than 2 i.e. the approximation of the 

optimal solutions has two or more solutions missing or \PfAPPROX\ <= \PfAPPROX-

229



2\. The parameters selected for the experiments are discussed in detail in Chapter 6, 

along with a series of experiments considering multiple parameter values.

Number of tests where D(PfAPPROX, 
PfTRUE <=0)

Random Graph Size

IPAES • Simulated Annealing « Tabu Search • K-Geodesic • Random Walking

Figure 5.9 Tests Where D(PfAPPROX, PfTRUE <=0)
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Number of tests where D(PfAPPROX, 
PfTRUE =1)
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Figure 5.10 Tests Where D(PfAPPROX, PfTRUE =1)

Number of tests where D(PfAPPROX, 
PfTRUE >=2)
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Figure 5.11 Tests Where D(PfAPPROX, PfTRUE >=2)
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On smaller sized graphs the Genetic Algorithm approach is able to generate an 

approximation set equal to or larger than set of optimal solutions in the majority of 

cases. The Tabu search demonstrates a lower level of performance on those same graphs 

but is still able to return over a high quality approximation in over 85% of the tests 

performed. Including the tests where only a single solution is absent from the metrics 

increases the levels success seen to over 90% for each of the heuristics approaches. 

Increasing the size of the graph has a noticeable effect on the quality of the results for 

all the algorithms, although this is a reasonable behaviour not at all unexpected. The 

Genetic Algorithms are able to return a complete approximation in over 50% of cases 

on the largest of the graphs and are the only heuristic approaches that are able to offer 

this level of performance. The other heuristic approaches are able to offer the same 

levels of performance in around 46-48% of cases. The alternative approaches to the 

Genetic Algorithm however are often only missing a single solution from the 

approximation sets generated by each approach. Figure 5.12 presents the results where 

the both Figure 5.9 and Figure 5.10 are combined (\PfAPPROX\ >= \PjTRUE-l\) into a 

additional set considered as being of high quality. As seen in Figure 5.12, other than in 

isolated cases such those seen on the graph sized 5000 X 10000 where the Genetic 

Algorithm has a spike in the number of high quality solutions the algorithms are 

generally comparable. Excluding the isolated spike seen on the graph 5000 X 10000 

using the genetic algorithm the typical spread across all algorithms and graph sizes is 9 

with a maximum of 18 (750 X 2000) and minimum of 5 (graphs 3000 X 6000 and 

10000 X 20000). Chapter 6 provides an in-depth analysis of each of the heuristic 

approaches together with a description of the behaviour whilst performing the analysis.
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Number of tests providing high quality
results

Random Graph Size

I PAES • Simulated Annealing • Tabu Search • K-Geodesic • Random Walking

Figure 5.12 Tests Producing High Quality Results

5.6. Admission of Locally Optimal Paths

In this section, the admission of locally optimal paths into the front PfAPPROX 

is measured. The admission of such solutions would, from a purely theoretical 

standpoint indicate poor performance for each of the algorithms. However, when 

considering the MSPP and where an assessment is based upon how people select a route 

from the options provided the presence of such solutions does not necessarily indicate 

such a poor performance.

Figure 5.13 presents the number of instances where locally optimal paths are 

seen in those solutions where \PfTRUE\ <= \PfAPPROX\. For each of the algorithms 

the number of cases where locally optimal solutions are seen is provided. Appendix B 

contains complete result information in tabular form.

233



L 
o
c

N a

n I

m I p 
b y a 
e t 
r o h 

	P s

m 
a

Number of locally optimal paths produced by
heuristics
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60
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Random Graph Size

I Genetic Algorithm (K-Geodesic)

'Tabu Search

IPAES

I Genetic Algorithm (Random Walking) 

I Simulated Annealing

Figure 5.13 Number of Locally Optimal Solutions Produced by Heuristics

For each of the solutions where \PJTRUE\ <= \PfAPPROX\ the distance between 

each solution admitted into PfAPPROX and the closest corresponding neighbour in the 

front PfTRUE is measured. Table 5.8 presents a view of what may be considered high, 

medium and low quality results based on the bounds selected during the creation of the 

graphs for this study. The metrics are qualitative based upon the visual inspection of a 

large proportion of the fronts admitted. Figure 5.14 highlights the average distance seen 

where values close to zero would indicate a high quality approximation of the front. The 

distance metrics are domain specific and based upon the upper and lower bounds of the 

graph specified during generation. Attention is drawn to Figure 6.19 in the following 

chapter which provides an example of the scenario where six members are present in 

PfTRUE but the Tabu Search returns seven. A visual examination however highlights a 

good overall approximation with an average distance value of 2.25. Scenarios such as 

\PfAPPROX\ < \PJTRUE\ are not covered in the test.
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Although the quality tests concentrate on random graphs similar results are seen 

on real world graphs. Figure 5.15 highlights an example of a real world scenario where 

the front PfTRUE is larger than that seen in the front PfAPPROX. Visual examination of 

Figure 5.15 shows that the approximated front contains two members ofPfTRUE. There 

are three locally optimal paths discovered which are very close to two members of 

PjTRUE. Using real world metrics the approximations are within 2-3 meters of the 

length of the optimal paths with a travel time difference of around 2-4 seconds. The 

example is derived from the graph Cardiff 1000 using parameter set E of the Genetic 

Algorithm. The overall distance metric is 3.16 yielding a good approximation of the 

front. Exact details of the parameters used are provided in Chapter 6.

Quality

High

Medium

Low

Minimum

0

3.5

6

Maximum

3.49

5.99

Table 5.8 Comparative Qualities of Distance Metrics

Average distance of locally optimal solutions from
PfTRUE

• Genetic Algorithm (K Geodesic)

'Tabu Search

IPAES

Random Graph Size

I Genetic Algorithm (Random Walking) 

1 Simulated Annealing

Figure 5.14 Average Distance of Locally Optimal Solutions to PfTRUE
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Figure 5.15 Real World Example of \P/TRUE\ <= |Approx|

5.7. Cross Algorithm Analysis

The aim of the current section is to provide a higher-level analysis into the 

appropriate selection of the various approaches for solving the MSPP depending on 

factors such as the time available to perform the analysis or the quality required from 

the analysis. It is somewhat ironic that the process of experimentation undertaken has 

failed to identify a single optimal approach for the solution of the MSPP. That is to say 

there is no universal algorithm or methodology best suited to the solution of the MSPP 

across all graph sizes. The lack of optimality for any single method extends beyond the 

use of the various heuristic approaches and is inclusive of the non heuristic methods 

studied as part of this work. Here an attempt is to made to provide a general synopsis 

into what may be considered the appropriate algorithm dependant on two factors, firstly 

the amount of time available to perform the analysis and secondly the quality of the 

output required from that same analysis. Figure 5.16 is introduced in an attempt to 

highlight the disparate nature to the methods used in the solution of the MSPP 

considered for this work. The results obtained from the experimental phase of the work
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indicate highlight it is possible to obtain a complete and accurate set of optimal 

solutions if the algorithms are run until completion. Conversely, the extreme points of 

the Pareto optimal front can be acquired very quickly but may be considered a 

simplistic approximation of the optimal front.

Quality Required

Runtime Available

Figure 5.16 Diverging Properties of MSPP Approaches

In order to demonstrate the performance of the algorithms Figure 5.17, Figure 

5.18 and Figure 5.19 are introduced. Figure 5.17 presents the runtimes of a series of 

approaches undertaken in this work on a graph sized 100 X 200 while Figure 5.18 

presents the runtimes seen on a graph size 1000 X 2000. Each gives the runtimes of the 

Dijsktra shortest path algorithm run separately for each criteria, the runtimes for each of 

the four heuristic techniques considered for this work (the Genetic Algorithm, the Tabu 

Search, Simulated Annealing and PAES). Finally, we present the runtimes of the 

Skriver and Andersen (SaA) algorithmic approach. Figure 5.19 is introduced which 

presents the runtimes on a graph sized 10000 X 20000. hi terms of runtime the Skriver 

and Andersen approach often took over 30 minutes and is not included in Figure 5.19 

for clarity purposes. The inclusion of that method overpowers the remaining methods 

reducing the value of Figure 5.19. It should however be accepted that the method does 

return the complete optimal set of solutions.
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In terms of the methods considered the Climaco and Martins (CaM) algorithmic 

approach might be considered notable for its absence in Figure 5.17, Figure 5.18 and 

Figure 5.19 given that earlier in this work it has been highlighted that the in certain 

circumstances that approach has been shown to outperform that of SaA. The reason for 

its absence is largely due to the fact that without prior analysis of the graph structure it 

is not possible to determine if the CaM method will outperform that of SaA. hi addition 

the CaM algorithm outperforming the SaA approach occurs on only certain graph types 

and is not universal. For those reasons the CaM method is not considered here although 

attention is drawn to the fact that the approach may on real world graph examples 

outperform the SaA method. Algorithm 5.1 is introduced however which attempts to 

run both algorithms until either has been completed, thus enabling possible faster 

analysis to be completed. Due to the differential relating to the time scales between the 

graph sizes and algorithms the data for Figure 5.17, Figure 5.18 and Figure 5.19 is 

included in Table 5.9.

Runtime of considered approaches on 
random graphs sized 100 X 200

m 
s

Disktra GA (K GA Simulated Tabu 
Geodesic) (Random Annealing Search 

Walk)
MSPP Technique

• Runtime Of Approach

PAES Skriver
And 

Andersen

Figure 5.17 Runtime of Approaches on Small Sized Graphs
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Runtime of considered approaches on 
random graphs sized 1000 X 2000

140000 
R 120000 
u 100000 
n 80000 
t 60000 
j 40000

m 2000° 
0

m 
s

132000

Disktra GA (K GA Simulated Tabu 
Geodesic) (Random Annealing Search 

Walk)

MSPP Technique

• Runtime Of Approach

PAES Skriver
And 

Andersen

Figure 5.18 Runtime of approaches on a Medium sized graph

Runtime of considered approaches on 
random graphs sized 10000 X 20000

R 
u 
n 
t

m
e

m
s

400000
350000
300000
250000
200000
150000
100000
50000

0

348000

Disktra GA (K GA Simulated Tabu Search 
Geodesic) (Random Annealing 

Walk)

MSPP Technique

• Runtime Of Approach

PAES

Figure 5.19 Runtime of Approaches on a Large Graph
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Graph
100x200
lOOOx 2000
10000 x 20000

Runtime (ms) Of Various MSPP Techniques On Random Graphs
Dijsktra 
(Multi 

Objectives)
2

22

354

GA
(K 

Geodesic)
1800
3100
4900

GA
(Random 

Walk)
14220

14670

20500

Simulated 
Annealing

1700

7800

342000

Tabu 
Search
12560
23890
46510

PAES
1400

7900

348000

Skriver 
And 

Andersen

1600

132000

Table 5.9 Runtime of Various MSPP Techniques on Random Graphs

Figure 5.17, Figure 5.18 and Figure 5.19 show that the performance of the 
Dijsktra shortest path algorithm requires very little computational effort in comparison 
to the other techniques reviewed. On the largest of the graphs as shown in Table 5.9 the 
technique requires just 354 milliseconds despite handling additional criteria in those 
tests where four criteria are considered rather than two when considering the heuristics 
and the SaA approach. Taking the runtimes of the Dijsktra algorithm with multiple runs 
into consideration then it is possible to populate to regenerate Figure 5.16 to take into 
account the performance offered by the Dijsktra shortest path algorithm. Where 
computational performance is required rather than a high quality approximation of the 
optimal set the application of the Dijsktra shortest path algorithm is appropriate. Figure 
5.20 updates Figure 5.16 to take into account the appropriate selection of the Dijsktra 
shortest path algorithm.
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Figure 5.20 Highlighting Figure 5.16 with Multi Objective Dijsktra Approach

When considering the heuristic techniques considered for this work the 

optimally of their use over exact algorithms in the form of the SaA approach depends on 

the size of the graph being considered. On the smallest of the graphs, as shown in 

Figure 5.17 the SaA algorithm offers competitive levels of performance and completes a 

run in an average of 1.6 seconds compared with 1.8 for the Genetic Algorithm with K 

geodesies, 1.7 for the Simulated Annealing approach and 1.4 seconds for the PAES 

approach. The PAES algorithm outperforms the Skriver and Andersen (SaA) technique 

by 0.2 of second. However, the technique fails to return a complete set of optimal 

solutions even on graphs of this limited size (100 X 200). Given the limited success of 

the PAES algorithm the application of the technique is questionable. Figure 5.16 is 

updated to take into account a potential view of the techniques on small graphs in 

Figure 5.21. The absence of the Genetic Algorithm, the Simulated Annealing and the 

Tabu Search techniques from Figure 5.21 is deliberate given that the SaA technique 

outperforms those techniques in terms of run time and returns the exact set of optimal 

solutions. It is questionable in practice if on small graph sizes use of the PAES approach 

would be considered given the small difference in run time to the SaA and limited 

quality of the results obtained.
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Figure 5.21 Run Approach on Small Graphs

When considering medium sized graphs the complexity of the MSPP is brought 

into sharp relief. Where on the smallest of the graph sizes an exact set of optimal 

solutions would be gathered using the Skriver and Andersen approach in a similar 

timeframe to an approximate set using the heuristics the same is not true when 

considering larger graph sizes, even those which may still be considered medium sized 

in scale. Of the heuristic methods the Tabu Search takes the longest to complete a 

processing run and yet still completes in approximately 18% of the time of the SaA 

approach. The Genetic Algorithm with random walking operates much more quickly 

than the Tabu Search technique and completes in 11% of the time of the SaA approach. 

The Genetic Algorithm with K Geodesic completes a run in 2.3% of the SaA approach. 

On smaller sized graphs use of the selected heuristic (the PAES approach) was 

questionable over the use of the SaA given the similarity of the runtimes seen. On 

medium sized graphs the appropriateness of the heuristic becomes clear. The Genetic 

Algorithm with K-Geodesics operates much more quickly than the SaA approach and 

importantly returns a high quality approximation of the optimal set returning a set of 

solutions of equal size to PfTRUE or |PfTRUE-l| in 98% of cases. There may be cases 

when the application of the SaA approach is appropriate and therefore that technique is 

included in Figure 5.22. The use of Dijkstra's shortest path algorithm is appropriate
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where computational performance is considered more important than the optimal set of 

solutions.
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Figure 5.22 Run Model on Medium Sized Graphs

When considering larger graph sizes the performance advantage in terms of 

computational effort required of the Genetic Algorithm approaches over the other 

heuristic techniques becomes even more noticeable. The increase in runtime is 

highlighted in Figure 5.23. Figure 5.23 also reinforces the dramatic increase in runtime 

seen in the PAES and Simulated Annealing. Section 5.3 provides a rationale for the 

rapid increase in runtime seen in certain heuristics. Of importance from the graph is the 

relative stability of the Genetic Algorithm and the Tabu Search in comparison to the 

PAES and the Simulated Annealing approaches. In addition to both the relative stability 

in runtime the Genetic Algorithm is able to return more complete approximations of the 

optimal set on the larger graphs in comparison to the other techniques as demonstrated 

in Figure 5.24.
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Comparision of heuristic techniques
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Figure 5.23 Comparison of Heuristics on Random Graphs (Run Time)
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Figure 5.24 Comparison of Heuristic on Random Graphs (Quality)
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Considering Figure 5.23 and Figure 5.24 jointly it seems logical to discount to 

application of the Simulated Annealing and PAES when considering the analysis of 

larger sized graphs. Those two techniques, in terms of quality, offer similar levels of 

performance as each of the other methodologies but exhibit much greater run times. The 

Tabu Search also offers a similar level of performance in terms of quality but a greater 

run time though the increase in the runtime seen is lower than that of the PAES and 

Simulated Annealing approaches. Therefore, for larger graphs the use of the Genetic 

Algorithm would appear the optimal approach to use. Figure 5.25 presents a usage 

diagram for the algorithms on larger graph sizes. Of the Genetic Algorithm approaches 

the K-Geodesic approach able to complete a processing run more quickly that the 

random walk and offer similar level of performance and therefore the choice of any of 

those two approaches may be considered appropriate. However, a question is present 

regarding the scalability of the K-Geodesic approach for graph sizes beyond those 

tested. The use of the K-Geodesic will logically require higher values in terms of 

population size and number of generations as the size of the graph under consideration 

grows which may affect the K-Geodesic approach more than the random walking 

approach to the genetic algorithm, hi addition, comparing the increase in the runtime 

between the smallest (100 X 200) and largest (12000 X 24000) of the graphs used in the 

study highlights a much greater increase in runtime for the K-Geodesic (283%) than for 

random walking approach (66%). Where time is not a factor then logically the SaA 

method is still appropriate.
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Figure 5.25 Run Model on Large Graphs 

5.7.1. Summary Of Cross Algorithm Analysis

In summary, where a simplistic approximation of optimal solutions are required 

the approach of using multiple runs of Dijsktra shortest path algorithm is appropriate 

regardless of the size of the graph. The limitations of the technique are detailed at length 

elsewhere and will not be repeated here in the interests of brevity. On smaller sized 

graphs the exact algorithmic approach of Skriver and Andersen would appear to be 

appropriate. The algorithm offers a slightly higher runtime than that of quickest 

heuristic technique, the PAES approach, but has the advantage that it returns the exact 

and complete set of optimal solutions. For medium sized graphs then the Genetic 

Algorithm with K-Geodesic approach appears to the optimal in testing. For larger 

graphs the same appears to be true but a question remains regarding the graph sizes 

beyond those tested where the random walk approach appears to offer better levels of 

performance both in terms of scalability and, referring to section 5.5, quality. The 

section closes with that Algorithm 5.2 provides a possible selection model for the 

application of appropriate methods based on end user requirements.
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Algorithm: Simultaneous Performance Of Skriver and Andersen / Climaco and Martins MSPP 

__________approaches__________________________________________
Input: S - The Identifier of the source vertex 

D= The Identifier of the target vertex 
G = (\V\,\E\) = The Graph To Be Analysed 

_________SLEEPPERIOD = Amount Of Time to Wait Between Checks For Completion______
Output: PfTRUE = Exact Set Of Optimal Solutions Between S And £>
P*1 = { } II Set Of Optimal Paths Between S & D Using Skriver and Andersen Approach
PCM = { } II Set Of Optimal Paths Between S & D Using Climaco And Martins Approach

fA = Start A New Processor Thread 
TCM = Start A New Processor Thread

Perform Skriver And Andersen Approach In 7** Between S And D 
Perform Climaco And Martins Approach In TCM Between S And D

WHILE (fA Is Running And 7CM Is Running)
{

S\eep(SLEEPPERIOD) II Wait Until Either The Skriver and Andersen or Climaco And Martins
Approach Have Finished 

}

IF (f* Completed) 
PfTRUE = PSA

IF (TCM Completed) 
PfTRUE = PCM

Algorithm 5.1 Application of Both SaA and CaM Approaches
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Algorithm:___Run Model Or MSPP Algorithms
Input: S = The Identifier of the source vertex 

D= The Identifier of the target vertex 
G = (\V\,\E\) = The Graph To Be Analysed 
GRAPHSIZE = {SMALL, MEDIUM, LARGE, VERYLARGE} 

_ ________ PERFORMANCEREQUIRED = {FAST, APPROXIMATION, COMPLETE}
JJutput: PfAPPROX = Approximate Set Of Optimal Solutions Between S And D 
IF {PERFORMANCEREQUIRED == FAST}
{

PfAPPROX = Extreme Points Of Optimal Front Gathered Using Dijsktra Approach 
Return PfAPPROX

}
ELSE IF {PERFORMANCEREQUIRED == COMPLETE}
{

PfAPPROX = Perform Skriver And Andersen Approach // Acquires PfTRUE 
Return PfAPPROX

}
ELSE // Approximation Algorithm
{

IF (GRAPHSIZE = SMALL)
{

PfAPPROX = Perform Skriver And Andersen Approach // Acquires PfTRUE 
Return PfAPPROX

}
ELSE IF (GRAPHSIZE == MEDIUM Or GRAPHSIZE == Large)
{

PfAPPROX= Perform Genetic Algorithm Using K-Geodesics 
Return PfAPPROX

ELSE IF (GRAPHSIZE == VERYLARGE)
{

PfAPPROX = Perform Genetic Algorithm Using Random Walk 
Return PfAPPROX

Algorithm 5.2 Run Model of MSPP Approaches

5.8. Chapter Summary

The current chapter sought to review the algorithm in terms of the runtimes seen 

and provide a higher level analysis of the quality of the algorithms considering the 

optimal choice of approach. The methods employed can be seen in algorithmic 

approaches to the MSPP and the heuristic methods which have been developed. In 

addition the application of the Dijsktra shortest path algorithm was reviewed.

248



Hallam (2001) highlights that in many cases only the shortest path in each 

considered criteria may be needed for a decision maker to reach a viable solution as to 

the optimal path to choose. If that view is accepted as true then a methodology 

presented in this study (the calculation of shortest paths using the Dijsktra algorithm) 

shows that a series of solutions can be presented to the decision maker extremely 

quickly (around 555 ms on a graph sized 12000 x 24000). Where attempts are made to 

generate the complete Pareto optimal set a review of the runtimes for both remaining 

algorithmic methods demonstrate that the perceived difficulty in the MSPP problem is 

true. Both the Skriver and Anderson (2000) and Climaco and Martins (1982) 

approaches demonstrate an extreme increase in runtime as the size of the test graph is 

increased. It should be noted that in certain cases the Climaco and Martins approach is 

able to complete extremely efficiently. However, there is no way of predicating if such a 

scenario will be possible prior to any analysis being performed.

Each of the heuristic algorithms implemented is able to demonstrate a high 

degree of scalability with regard to the number of criteria under consideration. The 

calculation of the fitness of a solution, together with the extraction of the Pareto optimal 

fronts, is shown to be a relatively insignificant proportion of the runtime. The majority 

of the runtime can be seen to be occupied with the generation of candidate paths. 

Results indicate that on smaller graphs existing algorithmic techniques are best suited 

for the solution of the MSPP. As the size of the graph increases benefits seen in the use 

of heuristic approximations become more visible. A model based on the application of 

size of the graph together with a variety of user requirements has been produced.
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Chapter 6: Behaviour Analysis
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6. Behaviour Analysis

The previous chapter presented a comparison of the algorithms in terms of both 

runtime and quality. A model highlighting the possible usage of the various approaches 

where graphs of a certain size and performance requirements for the analysis was 

presented. The current chapter considers the behaviour of the various approaches when 

evolving towards the optimal set of solutions. The chapter starts by reviewing graph 

coverage achieved through the use of the random walk technique before considering the 

average lengths of paths seen in optimal sets compared with those produced by the 

random walk and the K-Geodesic approach. The chapter then considers the behaviour of 

heuristics individually, highlighting the effect of parameterisation on the algorithms.

6.1. Random Walking

The first phase of experimentation attempts to measure the effectiveness of 

random walking as a technique for exploring the graph. Emphasis is on the ability to 

generate a population of unique paths between a pair of randomly selected vertices on 

the graph. The outcome of the experiment is measured in the levels of graph coverage 

obtained by: a) a typical population set generated for a Genetic Algorithm and b) the 

levels of coverage obtained from a large number of random walks generated between 

two randomly selected vertices on the graph.

hi an ideal world the task of finding optimal paths between two vertices would 

simply involve the generation of a set consisting of all valid paths between those 

vertices and then extracting the Pareto optimal set. A basic attempt at this approach has 

been made when attempting to identify the set P/TRUE. As has previously been 

discussed there is little realistic option when attempting to produce an accurate metric as 

to the actual number of paths between two vertices on a graph. The random walk is used
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as a technique to overcome this, with the benefit that the random nature of the process 

should in theory allow a large degree of the search space, the graph, to be examined.

Figure 6.1 shows the a) number of unique edges and b) the number of unique 

vertices obtained by performing a series of 1000 random walks between 500 randomly 

selected vertex pairs. The chart provides a visualised view of what can be considered 

the 'graph coverage' and represent the amount of the search space (in this case a graph). 

Higher levels of graph coverage seen in higher levels of vertex and edge admission are 

required and indicate a higher proportion of the search space being considered, hi the 

event that two directly connected vertices were selected that pair was removed from the 

analysis and another selected in its place. The graphs utilized in this study are generated 

randomly using the SPRAND software. Note that in the experiment the focus of 

interest is the ability of random walking to achieve graph coverage. As a result loops 

may be present in the solution paths.

In the following experiment an attempt is made to measure graph coverage that 

may typically be seen in a run of the Genetic Algorithm approach. The number of 

unique vertices seen during a typical run of the Genetic Algorithm is measured. The test 

is performed against the following parameter set values: a population of 30 and 30 

generations; a population of 50 with 50 generations and finally a population of 90 with 

90 generations. No repeating paths are allowed to enter the solution at any given 

generation. The figures represent the average graph coverage seen over 500 vertex 

pairings selected at random. The results are shown in Figure 6.2. All parameter sets 

selected will admit a large proportion of the graph into the search process. At the lower 

parameter set and on larger graphs around 40% of the graph vertex will be visited by the 

random walk process. Using the larger parameter sets the probability of a vertex being 

visited by the random walk is substantially higher; as is to be expected.

Figure 6.3 presents the number of unique paths that will be typically generated 

by the random walk process within the Genetic Algorithm approach with the parameter 

sets 30 X 30 (population 30, generations 30) on a variety of graphs. The graph 

highlights that the random walk technique is able to generate and admit a large number
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of random paths between two vertices, a factor which will ultimately decide the success 

of the Genetic Algorithm and other techniques. The generation of a high number of 

walks indicates a high degree of coverage of the search space. Without the ability to 

adequately search the problem area then it is unlikely that the algorithms developed 

would be effective at solving the MSPP. A large percentage of the admitted paths 

discovered by the random walk algorithm are unique with the number of such paths 

increasing as the size of the graph increases. The experiment results are given in tabular 

form in Table 6.1.

Vertex and Edge admission obtained by random 
walkingwith a population of 1000 paths

Random Graph Size

(Vertices • Edges

Figure 6.1 Graph Admission Rates Achieved by Random Walking
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Vertex admission during a run of the 
genetic algorithm

8 8

Graph Size

130 X 30 • 40 X 40 90X90

Figure 6.2 Vertex Admission During a Run of the Genetic Algorithm
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Figure 6.3 Unique Paths Discovered by Random Walk
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Graph
100 X 200
100 X 300
100X400
200 X 300
200 X 400
200 X 500
200 X 600
200 X 800
500X1000
500X1500
500 X 2000
1000X1500
1000X2000
1000X3000
2000 X 4000
2000 X 5000
2000 X 6000
5000X15000
5000 X 30000

Unique Paths
785
710
780
781
699
737
775
810
764
827
843
806
828
844
858
851
867
876
877

Table 6.1 Number of Unique Paths Generated using Random Walk

The previous series of experiments sought to demonstrate the ability of random 
walking to achieve high levels of graph exploration. In the next the impact of the path 
generation technique on the typical path length is demonstrated. For the analysis 200 
random selections of vertex pairings are made on a subset of the real world graphs. The 
sets PfTRUE for those vertex selections are generated using the technique outlined in 
the Chapter 4 with the averages edges being recorded. Figure 6.4 presents the average 

path length of each vertex pairing.
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Path lengths of PfTRUE on real world 
graph sets
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Figure 6.4 Length of Optimal Paths on Road Networks

Having acquired a general overview of the path lengths of the front PfTRUE a 

further analysis was undertaken into the average path lengths returned from both 

random walking and the K-geodesic approach. A typical run size of an evolutionary 

algorithm was selected; for the purposes of this experiment the parameter sets selected 

were 60 generations with a population size of 50. Such a parameter set would require 

the production of a maximum of 3000 unique paths. The same vertex pairings were 

selected as when reviewing the lengths of paths making up PfTRUE. Figure 6.5 gives 

the typical path lengths obtained using the K-geodesic approach. Figure 6.6 presents the 

results obtained using random walking.

The results appear at first glance to be something of a 'mixed bag', with each 

method exhibiting properties which in some ways show promise, yet demonstrate 

properties which may be seen as negative. Considering firstly the K-geodesic approach. 

It can be seen that the typical minimum path length returned is lower than that which 

may be seen in the set PfTRUE. This property is to entirely be expected given that the 

geodesic value is representative of the lowest number of steps between the two vertices. 

The negative aspects of the methodology arise when reviewing the maximum path
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length values which for many of the data sets (such as Cardiff 4000 and London 4000) 

is lower than the maximum values of the paths making up PJTRUE. In comparison the 

result obtained using random walking demonstrate the opposite. The typical path length 

obtained using random walking is higher than that seen in the front PJTRUE across 

minimum, maximum levels yet similar when considering the average length. It is hoped 

to demonstrate that the evolutionary algorithm approach will still function adequately 

for the task. Indeed, in Costelloe et al (2001) random walking is demonstrated to be able 

to provide an adequate base for the evolutionary approach. The same should apply to 

the K-geodesic approach, with the evolutionary operators making up for any data issues 

such as those highlighted above. The experimentation on random walking is concluded 

by highlighting that such data issues are to be entirely expected. If it were not for their 

presence then computing PfAPPROX would be a simple matter of performing a series of 

random walks.

Average length of paths in geodesic set 
on real world graphs
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Figure 6.5 Path Lengths Obtained using K-Geodesics
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Average path length of random walks 
on real world graphs
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Figure 6.6 Path Lengths Obtained using Random Walking

6.2. Summary of Quality Tests on Heuristic Approaches

In this section an attempt is made to gather a quantitative overview of each of 

the heuristic algorithms abilities to approximate the front PjTRUE. For each heuristic, in 

this sense the genetic approach is considered as a heuristic technique, a series of one 

hundred tests are performed between two randomly selected vertices on a subset of 

random graphs. The same vertex pairings are used for each heuristic. The density of the 

graphs selected is approximated to that seen in real world graphs highlighted in section 

4.2.1 with the edge/vertex ratio ranging from 1.5 - 4. In each of the result tables in this 

section three metrics are presented. Firstly where the quantity of solutions offered in 

PfAPPROX is equal or greater than that of PJTRUE (\PfAPPROX\>=\PfTRUE\). 

Secondly where the difference is equal to \PjTRUE\-\ (indicating that the approach 

failed to fully evolve with a single solution absent); and finally where the difference is 

greater than two or \PfTRUE\-2.
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6.2.1. Summary of Quality Tests on the Genetic Algorithm

For the genetic approach both the random walking technique and the K-geodesic 
approach are investigated. In the test the following parameters are set:

• population size of 80 for the random walk

•generation count of 80 for the random walk

• population count of 160 for the K geodesies

• generation count of 160 for the K geodesies

• the random walking technique uses a crossover rate of 0.35.

• the k-geodesic approach uses a crossover rate of 0.80.

The rates of crossover and mutation were initially taken form Mooney (2004). A 
brief period of experimentation for this study finds that increasing the levels of mutation 
beyond 0.1 has a negative effect on runtime with no discernible benefits in terms of 
result quality. Increasing the rate of mutation to higher levels may also have the effect 
of defeating the purpose of the mutation operation, that being to randomly introduce a 
change. If the rate of mutation is set too high the aim of the operation may be lost. In 
contrast the crossover operation is computationally cheap to implement therefore 
increasing the rate of crossover may be beneficial. The selection of parameters is one of 
the limitations of the experiments undertaken for the work as detailed in section 6.4, 
however it is believed that increasing the level of mutation would only have negative 
consequences while increasing the level of crossover would only have positive 
consequence. A period of empirical experimentation performed prior to the experiment 
indicates that a much higher rate of crossover is required for the K-geodesic approach to 
make a good approximation of the front PfTRUE hence the higher rate. Figure 6.7

259



presents the results gathered from the tests using the random walking technique while 

Figure 6.8 presents the results gathered using the K-geodesic approach.

The result of both experiments shows the Genetic Algorithm based technique to 

be very promising. A slight behaviour difference may be seen between the two 

approaches with the K-geodesic approach acting subtly differently at either end of the 

graph sizes. On smaller graphs (consisting of up to 500 vertices) the K-geodesic 

technique admits slightly more paths into PfAPPROX than the random walking 

approach although it should be highlighted that in itself the random walk is 

demonstrated over those same graphs to be a highly promising technique with the 

general admission rate of over 98% of Pareto optimal paths. Over the same graphs the 

K-geodesic admitted 100% although in practice the difference can be seen in only two 

of the graphs. In one of the two instances the random walk approach failed to identify a 

single path and in another graph where the random walk approach failed to find two 

paths in the approximate front. For that reason on smaller graphs the results obtained are 

comparable.
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Figure 6.7 Summary of Quality Tests on Genetic Algorithm (Random Walking)

On larger graphs random walking is shown to be a more robust technique. The 

random walk based method still returns promising results with 74% of the tests either 

returning a set of the same size as PfTRUE or only having a single solution less on the 

largest graph reviewed. The random walk was able to approximate the front PfTRUE (in 

terms of size) in 61% of the tests compared with 52% as seen the K-geodesic approach. 

The K geodesic approach returns 70% of solutions have a front equal (or greater than) 

\PJTRUE\ or \PfAPPROX-\\.
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Summary of quality tests on the Genetic 
Algorithm with K-Geodesics
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Figure 6.8 Summary of Quality Tests on Genetic Algorithm (K-Geodesic) 

6.2.2. Summary of Quality Tests on the Tabu Search

hi this section the results obtained from the Tabu Search are reviewed. For the 

purposes of the experiment the following parameters are used:

• 6500 iterations of the Tabu Search

• Tabu size of 150

The results (Figure 6.9) using the Tabu Search show less promise than the 

genetic approach on the larger sized graphs. In the case of the smaller graphs, those up 

to 500 vertices, the process is able to find either PfTRUE or PfTRUE-l in around 90- 

95% of cases as opposed to over 99% across the same graphs using the Genetic 

Algorithm. On the larger sized graphs the difference is more highly pronounced with a 

substantial size difference between PfTRUE and PfAPPROX being seen in 14 of the
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selected cases. Typically the EA (RW) approach is able to identify a set \PfTRUE\ <= 

\PfAPPROX\ in 61% of cases. The Tabu Search is only able to do the same in 47% of 

cases on the largest of the graphs.

Summary of quality tests on the Tabu Search

Random Graph Size

I DfPfAPPROX; PfTRUE ) <= 0 • DfPfAPPROX; PfTRUE ) = 1 - DfPfAPPROX; PfTRUE ) >=2

Figure 6.9 Summary of Quality Tests on the Tabu Search
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6.2.3. Summary of Quality Tests on Simulated Annealing

For the Simulated Annealing tests the following parameter sets were used:

• a starting temperature of 125 is selected.

• the temperature is reduced by per anneal is 0.9997821

• the process is terminated when the temperature falls below 0.0001

The results from the Simulated Annealing algorithm are similar to those seen in 

the Tabu Search. In both experiments the methodology fails to identify a high quality 

approximation of the set PJTRUE in a large proportion of cases. The results from the 
Simulated Annealing methodology show that for the smaller set of graphs then the 

results are slightly more promising than the results those obtained from the Tabu 
Search. However, when compared to those obtained from the Genetic Algorithm the 

results of the Simulated Annealing approach are considerably less promising, as were 
the results from the Tabu Search. Results from the smallest of the graphs demonstrate 

that the Simulated Annealing approximates PJTRUE or PJTRUE-l in around 96% 
compared with 91% in the case of the Tabu Search. The same can be seen in the largest 

of the graphs where the technique obtained a complete approximation of PfTRUE in an 
additional two cases over the Tabu Search but remain less than the quantity obtained 

using the random walk which is able to identify up to an additional 12 complete cases of 
PJTRUE. Reviewing the results of the largest of the graphs indicates that Simulated 

Annealing and Tabu Search are more closely matched with the Tabu Search able to 

approximate PJTRUE or PFTRUE-l in only two tests less than Simulated Annealing.
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Summary of quality tests on Simulated Annealing
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Figure 6.10 Summary of Quality Tests on Simulated Annealing 

6.2.4. Summary of quality tests on the PAES

For the test on the PAES the number of iterations was set to 60,000. One 

interesting fact to arise from the tests of the PAES is the lack of effectiveness of the 

spread methodology for the MSPP. Due to the low number of solutions in the front 

PJTRUE it can be seen that the technique has little practical value for the MSPP despite 

the fact that in many cases the front PfTRUE may be clustered at either extreme with a 

concentration of solutions at either end of the front. The clustering of solutions is 

observed particularly on real world vertex pairings. In terms of the ability of the 

algorithms to identify PJTRUE similar results to those other algorithms that can be 

considered 1+1 methodologies (a parent subjected to modification producing an 

offspring) are demonstrated. The summary of the results is provided in Figure 6.11.

265



Summary of quality tests on PAES
100 

N go
u 80 
m 70 

60 
50 
40 
30 
20 
10 

0

b
e 

r

O
f i I i i 1 I I I 

I I I I
T 
e 
s 
t

000 
LT> O Ot-( rsi m 
XXX
O O O 
000

o o o o oo o o o oro «3" O LO LO

Q Q X X X

00000 rsi rsi o O LO

o o o o o o
O LO O 
rsj T-H rsi
XXX
000 
LO O Or- o o

000o o o
000 
no ro «3"
XXX
000o o o
000 
<H CM CM

o o o
LO

X X
o oo oo o

o o o
o o o
LO

X
o o_ oro ro

o oo oo oix> r-

o o o oo
XXX
000o o o
000
LO LO LO

o o o o o o
000o LO tn
T—I T—I ^

X X 0
o o o
000 
O O 00
LO LO

000o o o
000 CM LO O 
<H <-( rsi
XXX
000o o o
000 
00 O O

Random Graph Size

I D(PfAPPROX; PfTRUE ) = 0 • DfPfAPPROX; PfTRUE ) = 1 - D(PfAPPROX; PfTRUE ) >=2

Figure 6.11 Summary of Quality Tests on PAES

6.2.5. Observations Gathered from the Quality Tests

A general observation that can be gathered from the experiment is that the 1+1 
approaches are less successful than the population approach offered by the Genetic 
Algorithm at gathering a complete approximation of the set PfTRUE. A number of 
charts providing a visual presentation of the difference between the various heuristics 

has been provided in the previous chapter (Section 5.5). The choice of parameters 
should be reviewed; the aim of the experiment was to determine how well each of the 
algorithm types are able to produce a good approximation of the front PjTRUE in a 

comparable time frame. The algorithms considered here are fully capable of, given 
enough time, producing a complete approximation of PfTRUE. The factors leading to 

this assertion have been discussed in Chapter 3. Whilst being aware of this fact the aim 

of the experiments was to carry out a more limited comparison. The experiments may 

have been allowed to continue until the PJTRUE was fully calculated or an alternative
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parameter set selected which may have presented the methodologies in a better light. An 

alternative would have been the automatic termination of the algorithms after a set 

period, such as five or ten minutes, and to analyse the quality of solutions gathered at 

that point. In those situations however the ability to carry out a comparable analysis 

would have been lost. The starting point for the parameter sets arise from similar work 

where genetic algorithms have been shown to perform well for the MSPP on similar 

sized graphs. A further factor that has to be considered when reviewing the result is that 

in many cases despite the fact that the ability of the algorithms to discover the complete 

set PfTRUE may be limited that does not necessarily equate to a poor performance 

indicator for the algorithms. It should be noted that in many cases where the set 

PfTRUE is fully acquired or only a single solution missing the results obtained from the 

1+1 series of algorithms appear much more closely aligned with the Genetic Algorithm. 

Visualisation of Figure 5.12 in the previous chapter appear to confirm this. Considering 

graph 10000 x 20000 for instance. The PAES algorithm returns a value of 74% of cases 

where either the entire PfTRUE is acquired or only a single criteria is missing. This 

compares more favourable with the genetic algorithm based approach which 

demonstrate 70% acquisition levels using geodesies or 74% using random walking.

A final consideration is that in many cases the lack of convergence to the entire 

set PfTRUE may be considered a positive as opposed to a negative. In Chapter 2, 

various existing methodologies are highlighted in which the approach taken is to 

produce a subset of the PfTRUE front. The interactivity and utility function 

methodologies demonstrate this principle, hi addition, Chapter 1 presented various route 

selection concepts where it was highlighted that route selection is often based upon 

personal preference, hi that case, a subset of optimal solutions may be more than 

adequate.
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6.3. Analysis of Algorithm Operation

The previous experiment dealt with how well the various algorithms converge 

towards the front PfTRUE. hi this section, the aim is to consider a more detailed 
analysis into the behaviour of the algorithms with various behavioural patterns 

identified and subjected to a deeper forensic examination. As part of the experiment(s) 

the size and content of the front PfTRUE were captured at each iteration or generation 
of the algorithm. These were then subjected to review and analysis. The tests were 
repeated for a number of parameter sets in order to gauge the optimal parameterization 

required for the adequate solution of the MSPP.

6.3.1. Analysis of the Genetic Algorithm Operation

This section demonstrates how the Genetic Algorithm moves towards the 
optimal solution, hi doing so four distinct scenarios are discovered and presented. 
Before detailing the exact scenarios the parameters used are reviewed. The tests are 
performed on the same pairs of vertices with a variety of genetic parameter sets. The 
sets are detailed in Table 6.2. In the case of the K geodesies approach the population 
and generation count are always double and use a crossover rate of 0.8 compared with 
0.35 for the random walk.

Set

A

B

C

E

F

Population

30

30

40

50

60

Generations

30

50

50

50

50

Table 6.2 Parameter Sets Used in GA Analysis
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It is interesting to note how the use of the K-geodesic path generation effects the 

general run time of the algorithm. Figure 6.12 presents the behaviour of the Genetic 

Algorithm when using the random walk path generation technique. In comparison the 

K-geodesic approach shown in Figure 6.13 shows the majority of processing is front- 

loaded in the processing run. After the generation of the initial population set, the 

algorithm performs quickly; the random walk technique however is spread equally 

through the run. However, Figure 6.12 and Figure 6.13 demonstrate that component of 

the Genetic Algorithm that requires the greatest computational effort is the generation of 

Candidate paths. The genetic operations, together with the set merge and evaluation 

schemes are in comparison computationally inexpensive and require an average of only 

0.07 seconds per generation with a range of 0.02 seconds to 0.14 seconds. The 

behaviour is not limited to the Genetic Algorithm. In all the heuristics reviewed the path 

generation is where the majority of computational effort is undertaken.

Run time of random walking based GA
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Figure 6.12 Runtime of Random Walking Based GA
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Figure 6.13 Runtime of K-Geodesic Based GA

Figure 6.14 and Figure 6.15 present the general outcomes of the experiment in terms of 

the ONVGR metric. This gives the ratio of solutions present in PfTRUE also present in 

PfAPPROX. Figure 6.14 presents the results of the test when the experiments are 

performed on 2D graphs (2 criteria) while Figure 6.15 presents the results obtained from 

3D graphs. Sets A-E corresponds with the parameter selection given in Table 6.2.

ONVGR on 2D graphs using Genetic 
Algorithm
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Figure 6.14 ONVGR on 2D Graphs Using the GA (Random Walking)

270



ONVGR on 3D graphs using Genetic Algorithm
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Figure 6.15 ONVGR on 3D Graphs Using the GA (Random Walking)

The tables contain the average ONVGR obtained from the Genetic Algorithm 

when applied to 100 randomly selected vertex pairs for which the front PfTRUE has 

been calculated using a brute force technique based upon the K shortest path described 

in the previous chapter. Taking the results from Figure 6.14 and Figure 6.15 alone may 

give raise to the perception that the Genetic Algorithm is performing poorly; however, 

that is not necessarily the case. Considering the following case study identified:

Between the vertices {73, 3455} on graph size 5000x15000, brute force analysis 

indicates that the front PfTRUE will consist of 12 solutions. The Genetic 

Algorithm presents a PfAPPROX consisting of four solutions obtained using Set 

A before raising to 7 solutions when the algorithm is performed using Set E. 

Giving a ONVGR ranging from 0.33 to 0.58. The algorithm has generated a 

high number of optimal paths, which may be confirmed through visual 

inspection of the two fronts. The ONVGR ratio is, however, poor.

When Figure 6.7 is reviewed in conjunction with the ONVGR (Figure 6.14) then 

the Genetic Algorithm is shown to be much more promising. The number of solutions 

typically offered in the front PfTRUE tends to be limited with upper bounds on the 

random graphs of 14. Therefore, the Genetic Algorithm failing to discover even a small
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number of solutions, say two, three or four, has a dramatic effect on the ONVGR. The 
fact that the values demonstrated in Figure 6.14 and Figure 6.15 are as high as they are 
shows a great deal of promise.

6.3.1.1 Observations of the Genetic Algorithm Operation

This section attempts to demonstrate how the genetic algorithm moves towards 
the optimal solution. In doing so four distinct scenarios are discovered and presented. In 
the first of these four scenarios the Genetic Algorithm quickly evolves to a good 
approximation of the set PfTRUE. The second of the four scenarios highlights an 
increase in the quality of the front PfAPPROX during the course of an operational run. 
In the third scenario initial generations yield a poor approximation of the front PfTRUE 
before becoming more complete. In the fourth of the scenarios an attempt is made to 
establish that the Genetic Algorithm may not always return what can be described as a 
'good' scenario although as previously described the nature of the problem in the real 
world would prove to make such as assessment a difficult proposition. The quality of 
the solutions has been measured using a number of quality metrics (ONVGR, 
Generational Distance and Error Ratio) and visual comparison of the front PfTRUE and 
PfAPPROX.
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6.3.2. Analysis of the Tabu Search Approach

In this section the results obtained from the Tabu Search are reviewed. The same 

vertex pairings are selected, having been stored as part of the previous experiments. The 

size and contents of the front PfTRUE were recorded upon the completion of each 

iteration of the Tabu Search. For the purposes of the experimental phase the following 

numbers of iterations were selected:

1500 Iterations (Set A) 

2500 Iterations (Set B) 

3000 Iterations (Set C) 

5000 Iterations (Set D) 

7500 Iterations (Set E)

The experiment was repeated a number of times with a variety of Tabu list sizes 
ranging from 25 through to 500 with increments of 25, i.e. 25, 50, 75 etc. In the interests 

of brevity, not all results are included, though general observations are raised where 
needed. In the results highlighted, the Tabu list size is set to 400. Figure 6.16 presents 

the ONVGR metric values on a series of random graphs consisting of two criteria. 

Figure 6.17 highlights the effect on the ONVGR of increasing the size of the Tabu list 

on the graph 5000 X 15000 using the parameters in Set D (5000 iterations).
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6.3.2.1 Observations of the Tabu Search Operation

Upon the completion of the experiments on the Tabu Search algorithm the 

outputs of each vertex pairing were reviewed. The performance of the algorithm 

depends heavily on the size of the Tabu list, hi those cases where the list is set to a low 

value (0-100) the algorithm regularly fails to capture a high quality approximation of 

the front PfTRUE. hi many of the tests performed in such cases the algorithm often 

includes results in the set PfAPPROX that are locally but not globally optimum. 

Increasing the size of the Tabu list decreases the frequency of locally optimal solutions 

being seen but does not entirely remove their presence. Figure 6.18 demonstrates how 

the size of front PfAPPROX varies as the algorithm moves through the iterations in an 

example run. Figure 6.19 presents the front PfAPPROX returned from the algorithm 

when compared with the front PfTRUE in the same run as highlighted in Figure 6.18. 

hi the example given in Figure 6.18 and Figure 6.19 the number of iterations performed 

is 1500 (Set A) when the Tabu size is set to 25 and the graph is 1000 x 3000 with two 

criteria being considered.
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In the example just two of the seven solutions making up the front PfAPPROX 

are also present in the front PJTRUE. The remaining five solutions are not present and 

represent locally optimal solutions. As the size of the Tabu list increases the ability of 

the algorithm to both capture an accurate approximation of the PfTRUE increases while 

the presence of locally optimum solutions decreases. The analysis of the tests using the 

largest Tabu value (500) highlight that non-globally optimal solutions are less 

commonly present being seen in around 28% of cases when compared to 43% of cases 

where the Tabu list size is set to 100. Figure 6.20 presents an example of such a case 

taken from graph 500x1500 with two criteria being considered. In terms of the ONVGR 

the result appears to be poor given that the front PJTRUE consists of five solutions with 

the set PfAPPROX consisting of three solutions, one of which is not globally optimal, 

although as seen in Figure 6.20 the locally optimal solution is close to the front 

PfTRUE.
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Figure 6.20 Comparison of PJTRUE & PfAPPROX With Locally Optimal Solutions

Locally optimal paths are regularly found at the start of the Tabu Search run. As 
the algorithm begins to discover globally optimal solutions then the locally optimal 
solutions go through a gradual pruning process. Where the algorithm is able to identify 
a higher number of members of PJTRUE then there is less likelihood of locally optimal 
solutions being present. Where locally optimal solutions are present then the solutions 
provided may still be valid. Locally optimal solutions can be seen in 46 of the solutions 
on graph size 1000 x 3000 using a Tabu size of 100. For 26 of these 46 solutions the 
generational distance metric reports an error value of less than four indicating that 
although local optimal solutions are present the solution is still a reasonable 
approximation of PJTRUE. The solutions provided in Figure 6.19 and Figure 6.20 may 

be of value to a decision maker.
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6.3.3. Analysis of the Simulated Annealing Algorithm

In this experiment, the performance of the Simulated Annealing algorithm is 

reviewed. Table 6.3 gives the starting temperature and decline rates used in the 

experiment. Figure 6.21 gives the ONVGR metrics presented by the algorithm. It may 

also be useful to view the results given in Figure 6.21 in conjunction with those given in 

Figure 6.10. The purpose of Figure 6.21 is to provide a basic review of the ability of the 

algorithm to capture an approximation ofPfTRUE measured using the ONVGR metric. 

hi 14 cases as shown in Figure 6.10 the Simulated Annealing approach failed to find 

over two solutions on graph sized 1000 x 3000. The observation review of simulated 

annealing provides examples of what may be an extremely poor solution. It should be 

noted that such results are often seen in lower parameter sets and on larger graph for the 

other heuristics in addition to the Simulated Annealing algorithm. Such scenarios are 

however more prominent for the Simulated Annealing and PAES approach. The 

example is one that can be considered a worst case scenario.

Parameter Set

Set A

SetB

SetC

SetD

SetE

Starting Temperature

100

120

120

120

120

Decline Rate

0.9999301

0.9995521

0.9996421

0.9997101

0.9997721

Table 6.3 Simulated Annealing Parameters
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Figure 6.21 ONVGR on 2D graphs Using Simulated Annealing

6.3.3.1 Observations of the Simulated Annealing Operation

In a previous section (6.3.2.1) a practical example, shown in Figure 6.19, of a 

scenario is given where the Tabu search methodology returns what can be considered a 

very poor approximation of the front PfTRUE was given. Here a similar situation 

regarding the Simulated Annealing algorithm is considered. The graph size is 5000 x 

15000 with two criteria under consideration. There are 11 solutions in the set PJTRUE 

with only two returned in the set PfAPPROX. Figure 6.22 presents a visual comparison 

between the two sets.
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Figure 6.23 presents the general performance of the algorithm as it proceeds 

through the run. The basic behaviour is that the first path will be judged optimal and so 

it is added to the external archive. The algorithm then quickly determines a second 

locally optimal solution before entering a quiet period where little changes. The 

algorithm then finds a further two locally optimal solutions before finding a member of 

PJTRUE reducing PfAPPROXto a single member solution. A short while after this the 

algorithm finds a promising yet locally optimal solution. Few variations can then be 

seen until a second locally optimal solution is found. This is quickly followed by the 

identification of a second member of PJTRUE removing a locally optimal solution. No 

further changes are seen for the remainder of the algorithm run. The result is an 

ONVGR of 0.18. There are six instances seen using simulated annealing where what 

may be considered very poor results can be seen as in the example, i.e. the simulated 

annealing algorithm returning a very low approximation of PfTRUE consisting of at 

most two solutions resulting in an ONVGR of less than 0.2 for those six cases. The 

examples can largely be seen on larger graph sizes, hi such cases locally optimal but 

high quality solutions, as given in Figure 6.19, may be considered a very good overall 

solution despite the presence of those locally optimal solutions.

Table 6.4 highlights a trend that can be seen throughout the performance of the 

Simulated Annealing algorithm. It gives the number of tests where the count of 

solutions making up PfTRUE falls within a specific range. It then gives the number of 

cases where the Simulated Annealing algorithm fails to find two or more solutions. The 

final column gives average number of solutions for each of those cases found using 

parameter Set C. The figure in brackets gives the maximum value that could be 

achieved based on the contents ofPfTRUE. For the parameter set chosen there are thirty 

solutions where the difference between PjTRUE and PfAPPROX is equal to or greater 

than two. The results are based upon results using graph size 5000 x 15000 and 

parameter Set C. When compared to the results obtained by the Genetic Algorithm and 

Tabu Search, the results offered by the Simulated Annealing appear less robust. While 

both the Genetic Algorithm and Tabu Search algorithm offer both decreasing levels of 

performance as the size of the graph increases, the number of very poor solutions where 

the ONVGR is equal to or less than 0.5 is greater for the Simulated Annealing than the
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Tabu Search or Genetic Algorithm. The previous chapter, section 5.3, provided 

rational for the discrepancy.
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Range

3-5
6-8
8+

Instances

43
36
21

D(PfAPPROX; PjTRUE ) >=2

3
7

20

Solutions Found

3 (4.0)
4(7)
5(10)

Table 6.4 PJTRUE Counts Against Acquired Using Simulated Annealing

6.3.4. Analysis of the PAES Algorithm

In this section, the results obtained using the PAES are discussed. For the 

purposes of the experimental phase the following number of iterations were selected:

• 20000 Iterations (Set A)

• 30000 Iterations (Set B)

• 40000 Iterations (Set C)

• 50000 Iterations (Set D)

• 60000 Iterations (Set E)

The performance of the algorithm is not studied in detail for the following 

reasons: primarily the algorithm is seen to behave in a similar way to the Simulated 
Annealing algorithm, with similar levels of performance offered as suggested in Figure 

6.24. A review of the general behaviour of the algorithm, as it runs through the series of 
iterations required, demonstrates no major difference in behaviour. Secondly, as has 

been shown earlier, during the quantitative analysis phase, the major reason for the 

application of the algorithm, the crowding mechanism has little impact on the 

performance of the algorithm. Referring to Figure 6.24 the number of solutions in 

PJTRUE is limited when compared to the theoretical works in the literature. The lower
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number of solutions in the front PfTRUE highlights less clustering in the graphs 

reviewed, and therefore the crowding methodology has little impact.

6.3.5. Observations Regarding The Algorithms

Having completed the basic analysis of the algorithms the following 

observations are made regarding their performance. The overriding impact of the 

analysis is that the series of algorithms that have some form of 'memory' are able to 

provide a comparatively superior set of approximations of PfTRUE than those without 

the concept of memory. The Genetic Algorithm approach and the Tabu Search both 

include this concept of memory, in the form of a population and Tabu list respectively. 

The memory concept allows the algorithms to explore more of the search space and 

therefore leads to an increase in the quality of the solutions provided. The PAES and 

Simulated Annealing methodology forego this concept of memory and are able to solve 

the MSPP with only a limited degree of success. The nature of the graph-based 

structure at the heart of the MSPP degrades the nature of the PAES and Simulated 

Annealing heuristics to something approaching a brute force technique, where the 

problem is decomposed to, in effect, a large number of random walks across the graph.

ONVGR on 2D graphs using PAES

Random Graph Size

Set A HSetB «SetC BSetD «SetE

Figure 6.24 ONVGR on 2D Graphs Using PAES
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6.4. Limitations in Experiments Undertaken

In this section the limitations of the experiments undertaken are discussed. The 

primary limitation in the experimental work concerns the selection of parameters to use 

in each of the heuristic algorithms developed as part of the study. It has been previously 

highlighted in the thesis that the original aim of the experimentation was to generate 

parameters that would result in generally equal runtimes for each of the heuristics. This 

however proved impossible. The starting point for the parameter selection was the 

selection of parameters for the Genetic Algorithm approach. These are similar and in 

certain cases identical to those used in Mooney (2004). In the case of the K-Geodesic 

approach care was taken to prevent the mechanism becoming a simple extension of an 

exhaustive search. It is plausible to suggest that the approach was too cautious. Given 

the runtimes seen it is possible that higher parameter values, such as tripling or 

quadrupling the number generations and population size may have been selected that 

would have given more positive results in terms of quality whilst maintaining a runtime 

comparable to the random walk technique. A similar limitation can be seen in the 

parameters selected for the remaining techniques (PAES, Simulated Annealing and 

Tabu Search). The parameters selected for each of those algorithms are able to complete 

a processing run more quickly than the random walk based genetic algorithm on smaller 

graphs. As the size of the graph increases however, the performance advantage of the 

three other heuristics quickly dissipates. The view of Geman and Geman (1984) is also 

considered. Geman and Geman highlight that given enough computational time the 

heuristics employed would have been able to generate a more complete approximation 

of the front PfTRUE. However adjusting the parameters would have either increased the 

runtime of the methods or resulted in a lower quality outcome for the experiments. 

Therefore whilst accepting that the parameter selection is open to criticism it is believed 

that the parameters selected are valid when runtime and general result quality are 

considered.
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In the work undertaken no attempt has been made to apply early terminating 

scenarios to any of the algorithms implemented. This decision was made consciously 

and for what is believed to be a good reason. Early analysis of the 1+1 set of algorithms 

revealed there to be no discernible pattern as to when in a processing run the algorithm 

will acquire the final result set. hi several instances a high number of iterations can be 

seen with no change in the set PfAPPROX before seeing a sudden burst of activity. The 

application of terminating conditions to those algorithms would it is believed have a 

negative impact on the overall quality of the results. For this reason that terminating 

conditions have not been applied.

A potential limitation can be seen in Algorithm 4.17. The limitation does not 

apply to this work given the nature of the test data but would perhaps need to be 

considered if alternative datasets were being used. The distance metric used does not 

normalize the values for each criterion. For instance in one criteria the range of possible 

values may be {0.01...1}, in another criteria {0.01...1,000,000}. As currently performed 

the algorithm may produce an inaccurate metric for the actual distance. However as 

previously stated this does not apply in this work.

The remaining possible limitation in the work can be seen in the concept of 

neighbourhood selection. Each of the three 1+1 algorithms requires a move to a related 

path in the neighbourhood of the solution in order to increase the coverage of the search 

space. In relation to this work the concept of neighbourhood would mean any valid path 

between the source and destination vertices. It is possible that the neighbourhood move 

selected is too large and could be further refined. However, the introduction of a 

procedure to identify additional members of the neighbourhood would lead to a 

substantial increase in the number of paths generated. Given that analysis of the 

algorithms has indicated that candidate path generation occupies the majority of the 

runtimes of the algorithms, increasing the size of neighbourhood selection would have a 

substantial negative effect of on the runtime. Alizamir et al (2009) highlight that 

computational complexity must play an important role in the selection of an appropriate
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neighbourhood. This is in addition to the ability of the selected neighbourhood to cover 

search space.

6.5. Chapter Summary

The aim of this chapter was to review the heuristic approaches in terms of the 

quality of solutions provided. The 1+1 series of algorithms seen in the Tabu Search, 

Simulated Annealing and PAES approaches are certainly novel, with no existing 

literature regarding these methods application to the MSPP being seen in the literature.

The outcome of the experiments reveals that the Genetic Algorithm when 

applied with the random walk path generation technique being able to return the more 

complete set of optimal results. The remaining algorithms degrade more significantly 

and rapidly in the completeness of the approximations of the front PfTRUE. It should be 

noted however that in many cases the remaining alternative heuristics are still able to 

return a high quality approximation set of optimal solutions with no noticeable pattern 

of distance to PfTRUE being seen when compared with the Genetic Algorithm 

approach. In cases where only a single solution is missing (\PfAPPROX\ = \PfTRUE\-\) 

then the heuristic algorithms are comparable.
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Chapter 7: Conclusions and Future Work
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7. Conclusions and Future Work

This thesis has investigated the feasibility of using a range of heuristic 

algorithms in order to solve the multi criteria shortest path problem. The current chapter 

provides a brief overview of the ways the aims of the work have been achieved before 

introducing the key outcomes. A series of possible areas for future work are then 

discussed. The chapter ends with a series of closing remarks about the work undertaken.

7.1. Research Methodology

An analysis of existing work into path planning was undertaken; this involved 

the review of a number of factors, including the psychological aspects of the path 

planning process. The key outcome of the review can perhaps be condensed into the 

following statement: "There is no single optimal path for all users or situations". The 

nature of the individual and the approaches to the path planning process they undertake, 

together with the criteria they include in or exclude from the process ensures that there 

can be no single optimal solution. Historical approaches to the solution of single 

criterion shortest path problems were also considered with particular importance being 

placed on the application of data structures to increasing the performance of algorithms 

such as the Dijkstra shortest path algorithm. Various methods for achieving multi 

objective optimisation were considered including the works of authors such as Coello- 

Coello (2000) and Deb (2001). Metrics which have been developed as a means of 

measuring the effectiveness of the various approaches to the process of multi objective 

optimisation were also reviewed in this section of the work. Here the work of authors 

such as Zizler et al (1999) and Veldhuzien (1999) was highlighted.

The work then progressed onto the specific area of the research topic, namely 

the application of the various heuristics previously reviewed to the problem of the multi
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objective shortest path problem (MSPP). Algorithmic methods used to assist in the 

solution of the MSPP were reviewed in the form of techniques such as the Skriver and 

Anderson (2000) algorithm and the Martins and Climaco (1982) approach. The thesis 

then introduced the algorithms used in the study together with the test data selected. 

During the experimental work for the thesis Dijsktra's shortest path algorithm was 

extended to optimise several criteria. Existing heuristically driven techniques used to 

solve the MSPP were considered together with other heuristic techniques such as 

Simulated Annealing, the Tabu Search and PAES. Where the problem is not condensed 

into a single objective issue the Genetic Algorithm and ant colony optimisation 

dominate heuristics used to solve the MSPP. A recent exception can be seen in Liu et al 

(2012a) who apply a Simulated Annealing approach. In that regard the techniques 

developed in the thesis are certainly novel.

7.2. Summary of Research Outcomes

The solution of the MSPP is one that has been the subject of only a 

comparatively limited amount of scrutiny in the literature with research activity being 

sporadic and more often than not limited to algorithmic methods to solving the problem. 

Where Al based methodologies have been considered the primary mechanisms have 

been the Genetic Algorithm or more recently ant colony optimisation. It is worth 

perhaps reiterating the aims of the research. The three aims of the work are numbered 

for navigation purposes only with no importance implied in that ordering. General 

observations regarding each aim are then made.

AIM 1: To develop alternative heuristic techniques (to the Genetic Algorithm) 

for the solution of the MSPP
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AIM 2: Assess the ability of those heuristic techniques to solve the MSPP 
against real world and synthetic graphs

AIM 3: Compare the alternative heuristic approach with algorithmic methods 

for the solution of the MSPP

7.2.1. Research Aim 1

The principle aim of the project was the investigation of AI based heuristics to 

assist in the solution of the MSPP. Chapter two of this work highlights that shortest path 

based applications where multiple criteria are considered are rare when view against 

single criteria approaches which continue to gain widespread research attention. The 
literature regarding solutions for the MSPP was considered. Existing methods for the 

solution of MSPP problems were identified in the form of Genetic Algorithms and more 
recent 'nature' based optimization methods such as ant colony optimization and 

invasive weed optimization. Only a single piece (Liu et al, 2012a) of work has been 
identified where other traditional methods of optimization such the Tabu Search and 

Simulated Annealing are used. As Liu et al (2012a) highlight, the scarcity of methods 
for the solution of the MSPP using those alternative heuristic methods is notable given 

the prevalence of the those methods in other routing problems such as the travelling 
salesman or associated routing problems such as pickup and delivery scheduling. 

Reviewing the literature on those two applications however quickly identifies that in the 
overwhelming majority of cases the solution to the introduction of additional criteria is 

solved with the use of aggregation and weighting effectively reducing the problem from 
one that is multi criteria in nature to one that is a relatively simple extension of a single 

criteria problem. The definition of appropriate weightings for each criterion is often far 

from simple.
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Beyond the MSPP, literature regarding the application of multiple criteria to the 
heuristics of Simulated Annealing and the Tabu Search are rare and work which attempt 

model the multi criteria problem beyond that of simple extensions of single criteria are 
both rarer still and relatively recent. Notable example of extensions of the traditional 
approach can be seen in the works of Smith et al (2008) and Bandyopadhyay et al 
(2008) which attempt to make an assessment of the quality of a multi objective solution 

based upon some vector value between the fitness values of a solution and the current 
estimate of the Pareto optimal front. The general approach taken by Smith et al and 
Bandyopadhyay et al has been extended in this work to assist in the solution of the 
MSPP. In addition the vector difference technique has been applied to the Tabu Search 

approach. Finally an approach to the MSPP has been implemented based upon the 
PAES of Knowles and Come (1999) has been implemented. Due to the scarcity of the 
work found using the techniques of Simulated Annealing and the Tabu Search the 
alternatives developed for this work are certainly to be considered novel. The novel 
nature of the work is considered to hold true despite the development of recent work 
(Liu et al, 2012a) for this problem. Several key differences such as path representation 
and mutation operators ensure both that the work of Liu et al and this work can be 
considered novel. The first of the three research aims has been met with the 
development of the Simulated Annealing and Tabu Search approaches. The methods 
associated with random walking for the Genetic Algorithm also lead to improvements in 
the solution of MSPP problems such as a degree of stability in terms of run times not 

seen in other works.

7.2.2. Research Aim 2

The second of the three aims of the undertaken research concerned the 
assessment of the techniques introduced in the previous section against a range of 
datasets. The developed heuristic algorithms have been tested against the performance 
of an implementation of a Genetic Algorithm approach to the solution of the MSPP. The 

performance of each of the heuristic approaches and the Genetic Algorithm approach 

were measured against a series of real world and synthetic graphs. The real world
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datasets were acquired from Ordnance Survey datasets representing sections of the road 

network of the United Kingdom and range in size from 275 X 560 for the smallest of 

the graphs through to 58,583 X 123,248 for the largest. The synthetic datasets were 

generated using the SPRAND, a commonly used shortest path generator. The synthetic 

datasets ranged in size from 100 X 150 to 12,000 X 36,000.

The Genetic Algorithm using both a random candidate path generation method 

(random walking) and an algorithmic method in the form of a variation of the K shortest 

path algorithm are each able to generate complete or almost complete sets of the Pareto 

optimal front at lower graph sizes. Each of the other heuristics used are less able to 

return a complete set of optimal solutions regardless of the size of the graph being 

subjected to analysis. However, where |PfAPPROX| > = (|PfTRUE|-l) is considered a 

viable acceptance threshold then the general performance of the alternative heuristic 

approaches is seen to be much more positive where the quality of the approximated sets 

is largely equal regardless of the heuristic used.

The developed alternatives to the Genetic Algorithm are able to complete a 

processing run more quickly when considering smaller sized graphs. The speed 

differential is also true of the Genetic Algorithm with random walking on medium sized 

graphs with the heuristic approaches containing to operate more quickly. Both the 

heuristic approaches and Genetic Algorithm with random walking fall behind the 

performance of the Genetic Algorithm with K-Geodesic path generation on small to 

medium sized graphs. On larger sized graphs the performance of the Genetic Algorithm 

approach over the alternative heuristics continues to grow. As part of the research two 

promising walk mechanisms have been developed. The application of the procedures 

leads to decreased runtimes across graphs than can be seen elsewhere in the literature.
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7.2.3. Research Aim 3

The third and final of the principle research aims involved the comparison 

between algorithmic methods for the solution of the MSPP and the heuristics developed 

for analysis during the course of this study. Three algorithmic methods for the 

performance of the MSPP have been implemented and tested for the study undertaken. 

The methods implemented include the performance of multiple runs of the Dijsktra with 

each run being used to analysis an individual criteria. Other methods include the exact 

methods of Climaco and Martins and Skriver and Andersen. Both the methods of 

Climaco and Martins and Skriver and Andersen will return the complete Pareto optimal 

set of paths for point-to-point queries.

The application of multiple runs of Dijsktra's shortest path algorithm returns 
only a limited subset of Pareto optimal solution, notably the extreme endpoints of the 

Pareto front or the shortest path for each criteria. In many cases however, such a limited 

representation of the front may be of interest particularly on real world networks where 

additional information sets can be supplied visually in the form of geographical 

information visualised as maps. The method has the benefits in that it is scalable both in 
terms of the size of the graph being considered and the number of criteria. During the 

testing the algorithm has been seen to perform in a runtime of two milliseconds on a 

graph sized 100 X 200 before increasing to 354 milliseconds on a graph sized 10000 X 

20000 and when optimizing four criterion. The method outperforms all other 

techniques, whether algorithmic or heuristic based. The method has a worse case 

runtime of maxD C where D is the runtime of the Dijsktra shortest path algorithm and C 

is the number of criteria.

As highlighted in Chapter 5, the exact algorithmic methods of the Skriver and 

Andersen are Climaco and Martins outperform the average runtime seen in the heuristic 

methods on the smallest graph sizes. However, the average time seen in the heuristics 

does not reveal the extreme difference seen between the techniques. The PAHS
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algorithm for instance performs an analysis on smaller graphs (100 X 200) in an 

average runtime of 1.4 seconds compared to slightly more than 14 seconds for the 

Genetic Algorithm using random walking. The Skriver and Andersen method completes 

a processing run in 1.6 seconds. In terms of runtime the Skriver and Andersen operates 

close to that of the PAES (1.4 seconds), Simulated Annealing (1.7 seconds) and the 

Genetic Algorithm with K-Geodesics (1.8 seconds) approaches. The Skriver and 

Andersen technique however returns a more complete set of solutions. The Climaco and 

Martins approach may perform more quickly than the method of Skriver and Andersen 

or the heuristic methods. Like the Skriver and Andersen approach the method will 

return a complete set of optimal solution. There is however no methodology that can be 

employed prior to the analysis if faster runtimes (compared to the heuristics or Skriver 

and Andersen method) may be achievable. As the size of the graphs being subjected to 

analysis increases the performance advantage offered by the Skriver and Andersen over 

the heuristic approaches quickly dissipates. On a graph sized 200 X 400 (double the size 

of the 100 X 200 graph previously cited in this section) the Skriver and Andersen 

algorithm completes in a runtime of 11.6 seconds, an increase of over 700%. Amongst 

the heuristic methods employed in the study the highest increase in runtime seen in the 

runtimes is that of the PAES which increase from 1.4 seconds to 2.2 seconds between 

the graph sized 100 X 200 and 200 X 400, an increase of 57%. The Genetic algorithm 

sees the lowest increase from the heuristic approaches increasing in less than 1% (14.22 

and 14.35).

The runtimes seen of exact methods of solving the MSPP over increasing graph 

sizes quickly demonstrate the value of approximate methods demonstrated in the form 

of the various heuristic techniques considered here. Of the considered heuristics the 

Genetic Algorithm shows a higher runtime over smaller graph sizes but also 

demonstrates a degree of scalability not seen in other heuristic methods or exact 

algorithms in terms of graph size. The heuristic approaches, together with the multiple 

runs of Dijsktra shortest path algorithm are not limited to any number of criteria where 

the two other algorithms of Skriver and Andersen and Climaco and Martins are limited 

to the solution of bi-criterion problems.
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7.3. General Observations

This section offers a series of general observations regarding the research. These 

observations cover three areas: firstly, the importance of the concept of 'memory' is 

highlighted; secondly, a discussion on the scalability of the solutions is introduced. This 

relates to both the number of criteria and the size of the front. Finally, the methodology 

for the production ofPfTRUE is reviewed.

7.3.1. Observations Regarding the use of 'Memory'

The Genetic Algorithm and Tabu Search make use of memory structures in the 

form of the population and Tabu list. The series of algorithms that make use of some 

form of 'memory' outperform those solutions where no such structure is in place. The 

memory structure encourages the algorithm to seek out new areas to search for potential 

optimal paths. For the MSPP this is vital. Where it is absent then the heuristic functions 

will continue to admit the same path repeatedly and introduce a restriction of the search 

space examined leading to sub optimal solutions being returned.

7.3.2. Scalability

When applied to real world graphs the various attempts to solve the MSPP 

demonstrates poor scalability with respect to the graph size. This is due to the relative 

sparseness of real world graphs. It should be noted that the same condition applies to the 

algorithmic methods considered, including the approaches of Skriver and Andersen 

(2000) and Climaco and Martins (1982). The K-geodesic approach demonstrates an 

arguably acceptable level of scalability with a 300% increase between the smallest and 

largest graphs of London. The difference between the smallest and largest London 

graph using the random walk is around 5900%. However, the same is not true when 

applied to random graphs where much better levels of scalability can be seen with the
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runtime random walk only increasing by 35% between the graph 100 x 200 and 12000 x 

24000. This is despite the increase in the size of the graph being greater for the random 

graphs than the real world graph of London. In a later section future work has been 

suggested which may improve the scalability of the techniques to real world networks 

by reducing the sparseness of the graphs.

The MSPP when applied to real world graphs is practically demonstrated to be 

intractable. The graphs employed in the study undertaken are comparatively small, with 

a maximum size of fifty five thousand vertices and one hundred and twenty thousand 

edges. Table 7.1 presents the run times of some larger, countrywide example graphs. 

The table gives the vertex and edge count together with the source of the data. The 

runtimes achieved, taken together with the comparatively small sizes of the graphs 

employed, and the size increase to national level graphs require the introduction of the 

distinction between online and offline processing (Borodin and El-Yaniv, 1998). The 

runtimes shown demonstrate that online multi objective path planning is not from an 

end user perspective feasible for national level graphs. The problem however is feasible 

for large scale, off line processing. A limited subset of optimal paths can be developed 

quickly using extensions of single criteria approaches as demonstrated during the 

experimental work in this thesis.

Graph

UK

Belgium

Netherlands

US

Vertices

1,725,434

1,441,295

2,216,688

23,947,347

Edges

4,108,888

3,099,940

4,882,476

58,333,344

Source

OS (Meriden)

OSM

OSM

TIGER

Table 7.1 National Level Graph Sizes
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7.3.3. Development of PfTRUE on Real World Graphs

This work resulted in the development of a robust methodology for the 

discovery of the front PfTRUE on real world graphs. Geodesic path length has been 

demonstrated to be a useful tool when calculating PfTRUE on random graphs. However, 

on high scale real world graphs the geodesic value may not be an accurate measure of 

the real world distance between two locations (represented as vertices). An alternative 

method based upon the Dijkstra shortest path algorithm and K shortest path algorithm 

has been developed which enables a robust measure of PfTRUE to be acquired on real 

world graphs, regardless of the scale of the road network data.

7.4. Future Work

During the undertaking of this study several related, yet separate topics, arose. 

This section briefly highlights areas of future research related to the topic.

7.4.1. Graph Generalisation

During the experimental phase of this study care has been taken to ensure that 

the underlying graph structure is not amended in any way. Nor does it require any 

specialised pre-processing of the graph data structure. The results of the experimental 

work performed raise the question as to whether or not this approach is practically 

correct. Chapter Four of the thesis introduced the notion of road features where a 

section of road is split into sections starting and terminating at when some given 

condition has been met. One avenue of future research is the investigation of methods 

that maintain the integrity of the underlying topology whilst at the same time decreases 

the number of vertices and edges making up the graph resulting in a decrease in the 

sparseness of the graph and resulting in the speeding up of the optimisation process. To 

demonstrate one possible example Figure 7.1 is presented. It presents an extreme
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example of a road feature of the length d meters and consisting of seven edges and eight 

vertices.

Distance = d

Figure 7.1 View of a Simple Uncondensed Road Segment

The future research envisaged would perform an investigation into the feasibility of 

reducing the network to a similar edge given in Figure 7.2, whilst ensuring that criteria 

such as length, road type and travel time etc are maintained. An initial review of the 

Shape File technical specification (ESRI, 1988) indicates such work would be feasible 

for real world networks. For a single feature, such as the example provided, the segment 

size is reduced from seven edges and eight vertices to a single edge with two vertices.

Distance = d

Figure 7.2 View of a Simple Condensed Road Segment
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7.4.2. Analysis of Selection Methods

The central aim of the selection operator in evolutionary computation is to give 

preference to better individuals (those that are nearer to the solution) by allowing them 

to pass on their genes to the next generation and prohibit the entrance of worst fit 

individuals into the next generations. Reviewing the existing Genetic Algorithm 

methods for the solution of the MSPP demonstrates the dominance of a binary selection 

method. However, a wide range of alternative selection methods have been used 

elsewhere in the field of evolutionary computation. Alternative methods can be seen in 

the form of roulette wheel selection where solutions are selected according to their 

'fitness'. A variation on roulette wheel selection has been used elsewhere in multi 

objective analysis and can be seen the form of Pareto Ranking where the fitness of a 

solution of considered as the ranking that the method would occupy during an iteration 

of Pareto extraction. For the MSPP however binary selection dominates the literature. 

An interesting avenue of future would possibly be introduction and examination of 

alternative methods of selection specifically for the MSPP.

7.4.3. Hybrid Algorithms

The application of the K shortest path algorithm to the generation of the 

candidate paths for the Genetic Algorithm is arguably an example of the development of 

a hybrid approach to the solution of the MSPP with the cross over properties of the 

Genetic Algorithm utilized in conjunction with the faster path generation techniques of 

the K shortest path. A number of additional steps that may increase the performance of 

the techniques considered in this work have been identified such as the use of seed 

values generated using algorithmic methods such as the Dijsktra shortest path algorithm 

or K shortest path using the Yen algorithm. The use of either would allow the 

algorithms to determine the extreme points of the Pareto front, hi addition the use of the 

Yen algorithm for generating K=2 shortest paths should allow for the generation of a 

partially large number of paths related to the shortest path, hi the process of acquiring
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the second shortest path a large number of paths are generated but may be discarded. 

There may be some value in keeping these paths to check if they are of value. The 

model used by Yen ensures that there should be little additional overhead in generating 

the second shortest over generating just the shortest path.

Finally, a variation of the Climaco and Martins algorithmic method is proposed. An 

investigation is suggested where an upper limit on the maximum K value is set upon 

which the algorithm is terminated. The generation of the predefined K value of paths in 

each criterion may produce a high quality approximation of the optimal set. Given the 

high runtimes seen in certain tests on the heuristics of this study, the method certainly 

warrants further investigation.

7.5. Closing Comments

This work provides several original contributions in the field of multi-objective 

optimisation. Under limited circumstances traditional algorithmic methods, such as 

those presented by Martins and Climaco approach, can outperform all variations of the 

heuristic used in this study. The process is however entirely dependent on vertex 

selections and is certainly not universal. The evolutionary approach in the form of 

Genetic Algorithms is able to provide a general runtime much lower than that seen by 

the algorithmic approach of either Skriver and Andersen or Climaco and Martins, in 

certain cases, providing a high quality approximation of P/TRUE in 50% of the runtime 

of algorithmic methods.

The heuristic and evolutionary approach to the MSPP is in essence a graph 

exploration issue. The solution of the MSPP requires the analysis of a large number of 

unique paths between two vertices. Where only limited exploration is possible the 

solution presented to the MSPP is poor. This is entirely logical.
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This study has reviewed the feasibility of using heuristic based approaches to the 

multi objective shortest path problem. Results of the study show the heuristics 

presented, particularly the Genetic Algorithm approaches, present a good alternative in 

finding a subset of optimal solutions to the MSPP.
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Appendix A: Example Random Graphs

c Test Erdos-Reyni Random Graph
a!2
a 1 3
a25
a34
a41
a45
a42
a53

Table A.I Simple Example of Erdos-Reyni Random Graph (n=5, m=8)

c Test Gilbert Graph With P = 0.1 
a!4

Table A.2 Example of Gilbert Graph with p=0.1

c Test Gilbert Graph With P = 0.6
a!2
a 1 3
a23
a25
a34
a45

Table A.3 Example of Gilbert Graph with p=0.6

c Test Gilbert Graph With P = 0.8
a!2
a!3
a 14
al 5
a23
a24
a25
a34
a35
a45

Table A.4 Example of Gilbert Graph with p=0.8
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c Watts And Strogatz Graph {10,0.0,4}
a 12
a!3
a23
a24
a34
a35
a45
a46
a56
a57
a67
a68
a78
a79
a89
a 8 10
a910
a91
a 10 1
a 10 2

Table A.5 Watts and Strogatz Example Graph (p=0.0, k = 4, n=10)

c Watts And Strogatz Graph {10,0.5,4}
al 10
a!3
a23
a24
a34
a35
a48
a47
a59
a54
a69
a65
a78
a79
a89
a 8 10
a91
a9 10
a 107
a!02

Table A.6 Watts and Strogatz example graph (p=0.5, k = 4, n=10)
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c Watts And Strogatz Graph {10,0.8,4}
a!5
a!6
a27
all
a34
a 3 10
a47
a45
a52
a59
a62
a6 10
a75
a76
a 8 10
a84
a98
a92
a 10 7
a 10 4

Table A.7 Watts and Strogatz Example Graph (p=0.8, k = 4, n=10)

c Barabasi-Ablert Model Initial Network {3,10,2} 
a!2 
a!3 
a!4 
a23 
a24
a34_____________________________ 

Table A.8 Barabasi and Albert Initial Random Graph
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c Barbasi-Albert Graph {3,10,2}
a!2
a!3
a!4
a23
a24
a34
a53
a54
a65
a61
a73
a74
a84
a8 1
a94
a95
a 10 6
a 10 7

Table A.9 Barabasi and Albert Complete Random Graph
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Appendix B: Result Tables

100 X 200

200 X 400
500 X 1000
750 X 1500
1000 X 2000
2000 X 4000
3000 X 6000
5000 X 10000

6000 X 12000
8000 X 16000
10000 X 20000
12000 X 24000

Runtime In Seconds Of Heuristic Approaches
GA(RW)

14.22

14.35
14.59
14.66
14.67
14.80
15.12
15.15
16.35
19.1

20.25
21.6

GA (KG)
1.8

2.1
2.3
2.8
3.1
3.3
3.5
3.9
4.2
4.6
4.9
5.1

TS
12.56

15.89
18.89
21.34
23.89
25.21
28.78
32.13
35.78
38.32
43.21
46.51

SA
1.7

2.3
3.4
5.2
7.9
17.4
48.9
84.45

119
261
331
342

PAES
1.4

2.2
3.1
5.6
7.8
17.8
46.2
66.3
128
254
329
348

Table B.I Runtime of Heuristics on Random Graphs

Cardiff 500

Cardiff 750
Cardiff 1000
Cardiff 2000
London 500
London 1000

London 2000

NE 1000

NE 2000

Runtime In Seconds Of Heuristic Approaches
GA(RW)

21.1

55.91
139.63
1407
31.6

109.22

1845

10.9

45.54

GA(KG)
1.2

3.7
6.9

26.1
4.7
7.9
14.1

12.7

36.1

TS
27.3

73.35
181.34

1837.12
51.4

206.124

2388

14.5

56.54

SA
92.321

283.04
854.23

-

176.34
901.34

-

56.34

274.28

PAES
94.543

286.43
867.45

-

178.87
896.45

-

57.12

281.45
Table B.2 Runtime of Heuristics on Real World Graphs
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Graph

100X150
100 X 200
100X300
200 X 300
200 X 400
500 X 1000
500X1500
750X1500
750 X 2000
1000X1500
1000X2000
1000X3000
2000 X 3000
2000 X 4000
2000 X 5000
3000 X 5000
3000 X 6000
5000 X 6000
5000 X 7000
5000 X 8000
5000 X 10000
5000 X 15000
8000 X 9000
8000X12000
10000X15000
10000 X 20000

Tests

100
100
100
100
100
100
100
100
100
100
100
100
100
100
100
100
100
100
100
100
100
100
100
100
100
100

D(PfAPPROX; 

PfTRUE ) <= 0
100
100
99
100
100
98
99
96
95
91
90
94
88
87
87
83
81
80
79
74
76
77
70
67
63
61

D(PfAPPROX; 

PJTRUE ) = 1
0
0
1
0
0
0
0
1
2
4
3
1
2
5
4
6
4
9
7
5
12
11
15
9
16
13

D(PfAPPROX; 

PfTRUE ) >=2
0
0
0
0
0
2
1
3
3
5
7
5
10
8
9
11
15
11
14
21
12
12
15
24
21
26

Table B.3 Summary of Results using GA (Random Walk Based)
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Graph

100X150
100X200
100X300
200 X 300
200 X 400
500X1000
500X1500
750X1500
750 X 2000
1000X1500
1000X2000
1000X3000
2000 X 3000
2000 X 4000
2000 X 5000
3000 X 5000
3000 X 6000
5000 X 6000
5000 X 7000
5000 X 8000
5000X10000
5000X15000
8000 X 9000
8000 X 12000
10000X15000
10000X20000

Tests

100
100
100
100
100
100
100
100
100
100
100
100
100
100
100
100
100
100
100
100
100
100
100
100
100
100

D(PfAPPROX; 
PJTRUE ) <= 0

100
100
100
100
100
100
100
99
98
97
96
93
92
89
83
81
79
73
69
67
63
62
56
53
54
52

D(PfAPPROX; 
PJTRUE ) = 1

0
0
0
0
0
0
0
1
1
1
2
2
5
5
7
9
11
10
10
10
8
11
20
19
19
18

D(PfAPPROX; 
PJTRUE ) >=2

0
0
0
0
0
0
0
0
1
2
2
5
3
6
10
11
10
27
22
13
29
27
24
28
27
30

Table B.4 Summary of Results using GA (K Geodesic Based)
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Graph

100X150
100 X 200
100X300
200 X 300
200 X 400
500X1000
500X1500
750X1500
750 X 2000
1000X1500
1000X2000
1000 X 3000
2000 X 3000
2000 X 4000
2000 X 5000
3000 X 5000
3000 X 6000
5000 X 6000
5000 X 7000
5000 X 8000
5000 X 10000
5000X15000
8000 X 9000
8000 X 12000
10000X 15000
10000X20000

Tests

100
100
100
100
100
100
100
100
100
100
100
100
100
100
100
100
100
100
100
100
100
100
100
100
100
100

D(PfAPPROX; 

PJTRUE ) = 0

95
96
88
82
85
76
78
74
72
69
77
72
75
70
67
65
72
65
81
61
52
54
51
43
47
47

D(PfAPPROX; 

PfTRUE ) = 1

4
2
6
10
11
14
13
10
9
15
7
12
15
15
14
13
17
18
10
29
11
24
22
34
24
27

D(PfAPPROX; 

PJTRUE ) >=2

1
2
6
8
4
10
19
16
19
16
16
14
10
15
19
22
11
17
9
10
33
22
27
23
29
26

Table B.5 Summary of Quality Tests using PAES
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Graph

100X150
100 X 200
100X300
200 X 300
200 X 400
500X1000
500X1500
750X1500
750 X 2000

1000X1500

1000 X 2000
1000 X 3000
2000 X 3000
2000 X 4000
2000 X 5000
3000 X 5000

3000 X 6000
5000 X 6000
5000 X 7000

5000 X 8000
5000 X 10000
5000 X 15000
8000 X 9000
8000 X 12000
10000X15000
10000X20000

Tests

100
100

100

100

100
100
100
100
100

100

100
100
100
100

100
100
100

100
100
100
100

100

100
100

100
100

D(PfAPPROX; 

PJTRUE ) <= 0

85

86
84
86
82
76
78
73

72

70

71

70

74

69
67

63
71

66

58
61
52

54

51
47

43
47

D(PfAPPROX; 

PfTRUE ) - 1

6

7

5

8
11
14

13
10

9

14

14
13
16

15

18

15

18
17

15

29
13

24
21

31

26

27

D(PfAPPROX; 

PfTRUE ) >=2

9
7

11

6
7

10

9

17

19

16
15

17

10

16
15

22

11

19
27

10

35
22

28
22

31
26

Table B.6 Summary of Quality Tests Using Tabu Search
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Graph

100X150
100 X 200
100X300
200 X 300
200 X 400
500X1000
500 X 1500
750X1500
750 X 2000
1000X1500
1000 X 2000
1000 X 3000
2000 X 3000
2000 X 4000
2000 X 5000
3000 X 5000
3000 X 6000
5000 X 6000
5000 X 7000
5000 X 8000
5000 X 10000
5000X15000
8000 X 9000
8000 X 12000
10000X 15000
10000X20000

Tests

100
100
100
100
100
100
100
100
100
100
100
100
100
100
100
100
100
100
100
100
100
100
100
100
100
100

D(PfAPPROX; 

PJTRUE ) <= 0
91
88
87
84
82
76
78
73
72
69
71
72
75
69
66
65
71
65
65
61
52
54
53
45
46
49

D(PfAPPROX; 

PJTRUE ) = 1
5
6
7
6
11
14
13
10
9
15
14
12
15
15
18
13
15
18
19
29
11
24
20
32
24
26

D(PfAPPROX; 

PfTRUE)>=2
4
6
6
10
7
10
19
17
19
16
15
14
10
16
16
22
14
17
16
10
33
22
27
23
30
25

Table B.7 Summary of Quality Tests Using Simulated Annealing
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Graph

100X150
100X200
100X300
200 X 300
200 X 400
500X1000
500X1500
750X1500
750 X 2000
1000X1500
1000X2000
1000X3000
2000 X 3000
2000 X 4000
2000 X 5000
3000 X 5000
3000 X 6000
5000 X 6000
5000 X 7000
5000 X 8000
5000X10000
5000 X 15000
8000 X 9000
8000 X 12000
10000X15000
10000X20000

GA(K

Geodesic)

6 (100)
12(100)
9 (100)
7(100)
13 (100)
9 (100)
5 (100)
11(99)
7(98)
8(97)
15 (96)
8(93)
11(92)
4(89)
12 (83)
11(81)
14 (79)
21 (73)
16 (69)
11(67)
5(63)
8(62)
7(56)
12 (53)
10 (54)
14(52)

GA(RW)

6 (100)
9 (100)
11(99)
14(100)
8 (100)
21 (98)
3(99)
12 (96)
8(95)
11(91)
7(90)
15(94)
10 (88)
8(87)
13 (87)
12 (83)
9(81)
1 1 (80)
10(79)
13 (74)
6(76)
8(77)
11(70)
9(67)
15 (63)
8(61)

TS

7(85)
12 (86)
9(84)
14 (86)
11(82)
5(76)
8(78)
9(73)
13 (72)
12 (70)
13(71)
11(70)
8(74)
11(69)
12 (67)
14 (63)
10(71)
7(66)
8(58)
11(61)
9(52)
13 (54)
12(51)
12 (47)
4(43)
6(47)

SA

6(91)
13 (88)
12 (87)
16 (84)
9(82)
12 (76)
14 (78)
11(73)
12 (72)
12 (69)
11(71)
14 (72)
12 (75)
11(69)
13 (66)
12 (65)
15(71)
9(65)
12 (65)
13 (61)
11(52)
7(54)
8(53)
7(45)
11(46)
9(49)

PAES

11(95)
17 (96)
13 (88)
12 (82)
14 (85)
8(76)
1 1 (78)
8(74)
14 (72)
15 (69)
12 (77)
9(72)
9(75)
10 (70)
8(67)
12 (65)
11(72)
12 (65)
16(81)
14(61)
9(52)
9(54)
13(51)
14 (43)
9(47)
10 (47)

Table B.8 Presence of Local Optimal Paths for Each Algorithm
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Graph

100X150
100 X 200
100X300
200 X 300
200 X 400
500X1000
500X1500
750X1500
750 X 2000
1000 X 1500
1000 X 2000
1000 X 3000
2000 X 3000
2000 X 4000
2000 X 5000
3000 X 5000
3000 X 6000
5000 X 6000
5000 X 7000
5000 X 8000
5000 X 10000
5000 X 15000
8000 X 9000
8000 X 12000
10000X15000
10000X20000

GA(K

Geodesic)
3.25
3.2
2.2

6.21
4.73
3.27
5.28
3.21
2.26
6.67
1.98
2.6
2.8

4.14
3.89
2.34
1.58
3.21
3.44
2.3
6.34
3.23
5.21
3.52
4.77
2.29

GA(RW)

3.45
3.36
4.12
4.32

5
8.12
4.47
3.89

4
4.19
2.38
3.34
2.21
3.45
2.29

3
5.6

2.87
3.56
3.31
3.21
3.54
3.21
5.26
3.41
4.69

TS

4.13
3.17
5.53
7.86
5.26
4.31
5.32
2.34
2.38
5.03
2.21
2.23
3.38
6.23
3.21
3.29
2.21
3.31
4.21
1.98
2.32
4.03
3.45
2.26
4.32
5.12

SA

3.43
5.3
1.9

3.69
4.6
5.21
4.78
2.21
3.56
3.56
2.28
4.31
4.17
5.42
4.32
2.12
4.56
2.56
7.21
3.43
7.01
2.92
8.01
3.41
2.56
2.21

PAES

4.78
8.24
4.7
5.12
3.3

2.78
6.01
3.54
5.21
3.6
3.2

2.27
3.41
4.33
4.21
2.23
3.2

3.45
4.11
5.1

2.26
3.66
3.77
3.44
3.21
4.98

Table B.9 Average Distance of Locally Optimal Solutions from PfTRUE

B-350



Appendix C: UML Diagrams

tHCEdgeO
4-MCEdg*<p5oirce: rt, pTarget rt)
*HCTdge(p5<wce; rt, pTarget nt, pCosts: CostLbt) f Graph(itt»ected: b«J, d

4 get; > : boo) 

tEdga* •{ get; } : lBxmrable<IEdg» 

^ Vertices { get; J ; (Enumerable <tt> 

<• VertexCount { oM; } : rt 
f ContaraVertexdD: rt) : bod

f IrCegree<E): ft) : ttotijte 
fDevce<ID:H): double 

f TryGetEdgesO : lEnume>aUe<Cdge> 
f TryGetlrfdgMQ : IErxinerable<IEdQe>

; rt, pT««et: rt) : lEdge 

, Index: rt) : void

* OuttdgeflD: rt, Indti: rt) : Edge.

*AddNode<ID: rt) : boot
4-AddVerteif)ange(Vertoi: Crwne*aUe<rt>) : bod 

t AddEdgetsource: nt, t«oM: rt) : bod 

tAddEdgMEdge: Edge): bod

+ Remove£dge<p5oun;e: rt, pT«get: rt) ; bod 

t Remove£dge<Edge: (Edge) : bod

fOearlrCdgeOibod 
(•OearOutEdgedD: rt) : bod

Figure C.I UML Diagram For Graph Structure
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Figure C.2 UML Diagram for Domination System
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Figure C.3 UML Diagram for Random Walk System
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Figure C.4 UML Diagram for Example Algorithm (Tabu Search)
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