236 research outputs found

    Optical fiber sensors and sensing networks: overview of the main principles and applications

    Get PDF
    Optical fiber sensors present several advantages in relation to other types of sensors. These advantages are essentially related to the optical fiber properties, i.e., small, lightweight, resistant to high temperatures and pressure, electromagnetically passive, among others. Sensing is achieved by exploring the properties of light to obtain measurements of parameters, such as temperature, strain, or angular velocity. In addition, optical fiber sensors can be used to form an Optical Fiber Sensing Network (OFSN) allowing manufacturers to create versatile monitoring solutions with several applications, e.g., periodic monitoring along extensive distances (kilometers), in extreme or hazardous environments, inside structures and engines, in clothes, and for health monitoring and assistance. Most of the literature available on this subject focuses on a specific field of optical sensing applications and details their principles of operation. This paper presents a more broad overview, providing the reader with a literature review that describes the main principles of optical sensing and highlights the versatility, advantages, and different real-world applications of optical sensing. Moreover, it includes an overview and discussion of a less common architecture, where optical sensing and Wireless Sensor Networks (WSNs) are integrated to harness the benefits of both worlds.This work was supported by FCT—Fundação para a Ciência e Tecnologia within the R&D Units Project Scope: UIDB/00319/2020

    Distributed, Advanced Fiber Optic Sensors

    Get PDF
    India is poised to use nuclear energy in a big way. The safety of these systems depends upon monitoring various parameters in hazardous environment like high radiation, high temperature exceeding 1000°C, and gas/coolant leakages. In this chapter, we shall dwell on basics of distributed sensing, related instrumentation, device fabrication, and actual advanced field applications. Techniques like Raman scattering, resonance response of fiber gratings, and selective absorption are employed for design, development, and fabrication of distributed sensors and devices. Raman distributed sensors with advanced data processing techniques are finding increasing applications for fire detection, coolant leak detection, and safety of large structures. The systematic investigations related to portable systems developed at the author’s lab have been described. Wavelength-encoded fiber gratings are the attractive candidate for high gamma radiation dose measurements in environment such as particle accelerators, fission reactors, food processing facilities, and ITER-like installations. The basics of fiber gratings, their operational designs, and devices based on fiber gratings have been described with advanced applications like high temperature sensing, strain measurements at cryogenic temperatures, and strain in nuclear environment. Finally, novel approaches are described for distributed hazardous gas monitoring for large areas such as airports, train stations, and reactor containment buildings

    Fiber optics in structural health monitoring

    Get PDF
    Structural Health Monitoring (SHM) has assumed a significant role in assessing the structures safety and integrity. SHM can be understood as the integration of sensing intelligence and possibly also actuation devices to allow the structure loading and damaging conditions to be recorded, analyzed, localized and predicted in such a way that non-destructive testing becomes an integral part of the structure. SHM sensing requirements are very well suited for fiber optic sensing technology. So in this paper, after a very brief introduction of the basic SHM concepts, the main fiber optic technologies for this application will be reviewed, several examples and the main current technical challenges will be addressed and, finally, the conclusions summarized

    Optical Fiber Networks for Remote Fiber Optic Sensors

    Get PDF
    This paper presents an overview of optical fiber sensor networks for remote sensing. Firstly, the state of the art of remote fiber sensor systems has been considered. We have summarized the great evolution of these systems in recent years; this progress confirms that fiber-optic remote sensing is a promising technology with a wide field of practical applications. Afterwards, the most representative remote fiber-optic sensor systems are briefly explained, discussing their schemes, challenges, pros and cons. Finally, a synopsis of the main factors to take into consideration in the design of a remote sensor system is gathered

    Fiber Optical Sensing of Bearing Performance and Pump Conditions

    Get PDF
    Lectur

    Fiber bragg grating sensors for mainstream industrial processes

    Get PDF
    This paper reviews fiber Bragg grating sensing technology with respect to its use in mainstream industrial process applications. A review of the various types of sensors that have been developed for industries such as power generation, water treatment and services, mining, and the oil and gas sector has been performed. A market overview is reported as well as a discussion of some of the factors limiting their penetration into these markets. Furthermore, the author’s make recommendations for future work that would potentially provide significant opportunity for the advancement of fiber Bragg grating sensor networks in these mainstream industries

    Phase-sensitive correlation optical time-domain reflectometer using quantum phase noise of laser light

    Get PDF
    Abstract: We propose and experimentally demonstrate a simple approach to realize a phase-sensitive correlation optical time-domain reflectometer (OTDR) suitable for detection and localization of dynamic perturbations along a single-mode optical fiber. It is based on the quantum phase fluctuations of a coherent light emitted by a telecom DFB diode laser. Truly random probe signals are generated by an interferometer with the optical path difference exceeding the coherence length of the laser light. Speckle-like OTDR traces were obtained by calculating cross-correlation functions between the probe light and the light intensity signals returned back from the sensing fiber. Perturbations are detected and localized by monitoring time variations of correlation amplitude along the fiber length. Results of proof-of-concept experimental testing are presented
    corecore